]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
8f0db8cf6ced33f6aa609d7c53638e3778c50862
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1292 {
1293         u32 val;
1294         bool enabled;
1295
1296         if (HAS_PCH_LPT(dev_priv->dev)) {
1297                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1298                 return;
1299         }
1300
1301         val = I915_READ(PCH_DREF_CONTROL);
1302         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1303                             DREF_SUPERSPREAD_SOURCE_MASK));
1304         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1305 }
1306
1307 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1308                                        enum pipe pipe)
1309 {
1310         int reg;
1311         u32 val;
1312         bool enabled;
1313
1314         reg = TRANSCONF(pipe);
1315         val = I915_READ(reg);
1316         enabled = !!(val & TRANS_ENABLE);
1317         WARN(enabled,
1318              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1323                             enum pipe pipe, u32 port_sel, u32 val)
1324 {
1325         if ((val & DP_PORT_EN) == 0)
1326                 return false;
1327
1328         if (HAS_PCH_CPT(dev_priv->dev)) {
1329                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1330                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1331                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1332                         return false;
1333         } else {
1334                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & SDVO_ENABLE) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & LVDS_PORT_EN) == 0)
1360                 return false;
1361
1362         if (HAS_PCH_CPT(dev_priv->dev)) {
1363                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1364                         return false;
1365         } else {
1366                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1367                         return false;
1368         }
1369         return true;
1370 }
1371
1372 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1373                               enum pipe pipe, u32 val)
1374 {
1375         if ((val & ADPA_DAC_ENABLE) == 0)
1376                 return false;
1377         if (HAS_PCH_CPT(dev_priv->dev)) {
1378                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1388                                    enum pipe pipe, int reg, u32 port_sel)
1389 {
1390         u32 val = I915_READ(reg);
1391         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1392              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1393              reg, pipe_name(pipe));
1394
1395         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1396              && (val & DP_PIPEB_SELECT),
1397              "IBX PCH dp port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1401                                      enum pipe pipe, int reg)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1405              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1409              && (val & SDVO_PIPE_B_SELECT),
1410              "IBX PCH hdmi port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1414                                       enum pipe pipe)
1415 {
1416         int reg;
1417         u32 val;
1418
1419         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1420         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1421         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1422
1423         reg = PCH_ADPA;
1424         val = I915_READ(reg);
1425         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1426              "PCH VGA enabled on transcoder %c, should be disabled\n",
1427              pipe_name(pipe));
1428
1429         reg = PCH_LVDS;
1430         val = I915_READ(reg);
1431         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1432              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1433              pipe_name(pipe));
1434
1435         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1436         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1437         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1438 }
1439
1440 /**
1441  * intel_enable_pll - enable a PLL
1442  * @dev_priv: i915 private structure
1443  * @pipe: pipe PLL to enable
1444  *
1445  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1446  * make sure the PLL reg is writable first though, since the panel write
1447  * protect mechanism may be enabled.
1448  *
1449  * Note!  This is for pre-ILK only.
1450  *
1451  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1452  */
1453 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1454 {
1455         int reg;
1456         u32 val;
1457
1458         /* No really, not for ILK+ */
1459         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1460
1461         /* PLL is protected by panel, make sure we can write it */
1462         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1463                 assert_panel_unlocked(dev_priv, pipe);
1464
1465         reg = DPLL(pipe);
1466         val = I915_READ(reg);
1467         val |= DPLL_VCO_ENABLE;
1468
1469         /* We do this three times for luck */
1470         I915_WRITE(reg, val);
1471         POSTING_READ(reg);
1472         udelay(150); /* wait for warmup */
1473         I915_WRITE(reg, val);
1474         POSTING_READ(reg);
1475         udelay(150); /* wait for warmup */
1476         I915_WRITE(reg, val);
1477         POSTING_READ(reg);
1478         udelay(150); /* wait for warmup */
1479 }
1480
1481 /**
1482  * intel_disable_pll - disable a PLL
1483  * @dev_priv: i915 private structure
1484  * @pipe: pipe PLL to disable
1485  *
1486  * Disable the PLL for @pipe, making sure the pipe is off first.
1487  *
1488  * Note!  This is for pre-ILK only.
1489  */
1490 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1491 {
1492         int reg;
1493         u32 val;
1494
1495         /* Don't disable pipe A or pipe A PLLs if needed */
1496         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1497                 return;
1498
1499         /* Make sure the pipe isn't still relying on us */
1500         assert_pipe_disabled(dev_priv, pipe);
1501
1502         reg = DPLL(pipe);
1503         val = I915_READ(reg);
1504         val &= ~DPLL_VCO_ENABLE;
1505         I915_WRITE(reg, val);
1506         POSTING_READ(reg);
1507 }
1508
1509 /* SBI access */
1510 static void
1511 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1512                 enum intel_sbi_destination destination)
1513 {
1514         u32 tmp;
1515
1516         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1517
1518         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1519                                 100)) {
1520                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1521                 return;
1522         }
1523
1524         I915_WRITE(SBI_ADDR, (reg << 16));
1525         I915_WRITE(SBI_DATA, value);
1526
1527         if (destination == SBI_ICLK)
1528                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1529         else
1530                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1531         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1532
1533         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1534                                 100)) {
1535                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1536                 return;
1537         }
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542                enum intel_sbi_destination destination)
1543 {
1544         u32 value = 0;
1545         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1546
1547         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1548                                 100)) {
1549                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550                 return 0;
1551         }
1552
1553         I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555         if (destination == SBI_ICLK)
1556                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557         else
1558                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562                                 100)) {
1563                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564                 return 0;
1565         }
1566
1567         return I915_READ(SBI_DATA);
1568 }
1569
1570 /**
1571  * ironlake_enable_pch_pll - enable PCH PLL
1572  * @dev_priv: i915 private structure
1573  * @pipe: pipe PLL to enable
1574  *
1575  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576  * drives the transcoder clock.
1577  */
1578 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1579 {
1580         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1581         struct intel_pch_pll *pll;
1582         int reg;
1583         u32 val;
1584
1585         /* PCH PLLs only available on ILK, SNB and IVB */
1586         BUG_ON(dev_priv->info->gen < 5);
1587         pll = intel_crtc->pch_pll;
1588         if (pll == NULL)
1589                 return;
1590
1591         if (WARN_ON(pll->refcount == 0))
1592                 return;
1593
1594         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595                       pll->pll_reg, pll->active, pll->on,
1596                       intel_crtc->base.base.id);
1597
1598         /* PCH refclock must be enabled first */
1599         assert_pch_refclk_enabled(dev_priv);
1600
1601         if (pll->active++ && pll->on) {
1602                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1603                 return;
1604         }
1605
1606         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608         reg = pll->pll_reg;
1609         val = I915_READ(reg);
1610         val |= DPLL_VCO_ENABLE;
1611         I915_WRITE(reg, val);
1612         POSTING_READ(reg);
1613         udelay(200);
1614
1615         pll->on = true;
1616 }
1617
1618 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1619 {
1620         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1622         int reg;
1623         u32 val;
1624
1625         /* PCH only available on ILK+ */
1626         BUG_ON(dev_priv->info->gen < 5);
1627         if (pll == NULL)
1628                return;
1629
1630         if (WARN_ON(pll->refcount == 0))
1631                 return;
1632
1633         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634                       pll->pll_reg, pll->active, pll->on,
1635                       intel_crtc->base.base.id);
1636
1637         if (WARN_ON(pll->active == 0)) {
1638                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1639                 return;
1640         }
1641
1642         if (--pll->active) {
1643                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1644                 return;
1645         }
1646
1647         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649         /* Make sure transcoder isn't still depending on us */
1650         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1651
1652         reg = pll->pll_reg;
1653         val = I915_READ(reg);
1654         val &= ~DPLL_VCO_ENABLE;
1655         I915_WRITE(reg, val);
1656         POSTING_READ(reg);
1657         udelay(200);
1658
1659         pll->on = false;
1660 }
1661
1662 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663                                            enum pipe pipe)
1664 {
1665         struct drm_device *dev = dev_priv->dev;
1666         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1667         uint32_t reg, val, pipeconf_val;
1668
1669         /* PCH only available on ILK+ */
1670         BUG_ON(dev_priv->info->gen < 5);
1671
1672         /* Make sure PCH DPLL is enabled */
1673         assert_pch_pll_enabled(dev_priv,
1674                                to_intel_crtc(crtc)->pch_pll,
1675                                to_intel_crtc(crtc));
1676
1677         /* FDI must be feeding us bits for PCH ports */
1678         assert_fdi_tx_enabled(dev_priv, pipe);
1679         assert_fdi_rx_enabled(dev_priv, pipe);
1680
1681         if (HAS_PCH_CPT(dev)) {
1682                 /* Workaround: Set the timing override bit before enabling the
1683                  * pch transcoder. */
1684                 reg = TRANS_CHICKEN2(pipe);
1685                 val = I915_READ(reg);
1686                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687                 I915_WRITE(reg, val);
1688         }
1689
1690         reg = TRANSCONF(pipe);
1691         val = I915_READ(reg);
1692         pipeconf_val = I915_READ(PIPECONF(pipe));
1693
1694         if (HAS_PCH_IBX(dev_priv->dev)) {
1695                 /*
1696                  * make the BPC in transcoder be consistent with
1697                  * that in pipeconf reg.
1698                  */
1699                 val &= ~PIPECONF_BPC_MASK;
1700                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1701         }
1702
1703         val &= ~TRANS_INTERLACE_MASK;
1704         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1705                 if (HAS_PCH_IBX(dev_priv->dev) &&
1706                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707                         val |= TRANS_LEGACY_INTERLACED_ILK;
1708                 else
1709                         val |= TRANS_INTERLACED;
1710         else
1711                 val |= TRANS_PROGRESSIVE;
1712
1713         I915_WRITE(reg, val | TRANS_ENABLE);
1714         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716 }
1717
1718 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1719                                       enum transcoder cpu_transcoder)
1720 {
1721         u32 val, pipeconf_val;
1722
1723         /* PCH only available on ILK+ */
1724         BUG_ON(dev_priv->info->gen < 5);
1725
1726         /* FDI must be feeding us bits for PCH ports */
1727         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1728         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1729
1730         /* Workaround: set timing override bit. */
1731         val = I915_READ(_TRANSA_CHICKEN2);
1732         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1733         I915_WRITE(_TRANSA_CHICKEN2, val);
1734
1735         val = TRANS_ENABLE;
1736         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1737
1738         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739             PIPECONF_INTERLACED_ILK)
1740                 val |= TRANS_INTERLACED;
1741         else
1742                 val |= TRANS_PROGRESSIVE;
1743
1744         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1745         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746                 DRM_ERROR("Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750                                             enum pipe pipe)
1751 {
1752         struct drm_device *dev = dev_priv->dev;
1753         uint32_t reg, val;
1754
1755         /* FDI relies on the transcoder */
1756         assert_fdi_tx_disabled(dev_priv, pipe);
1757         assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759         /* Ports must be off as well */
1760         assert_pch_ports_disabled(dev_priv, pipe);
1761
1762         reg = TRANSCONF(pipe);
1763         val = I915_READ(reg);
1764         val &= ~TRANS_ENABLE;
1765         I915_WRITE(reg, val);
1766         /* wait for PCH transcoder off, transcoder state */
1767         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1768                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1769
1770         if (!HAS_PCH_IBX(dev)) {
1771                 /* Workaround: Clear the timing override chicken bit again. */
1772                 reg = TRANS_CHICKEN2(pipe);
1773                 val = I915_READ(reg);
1774                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775                 I915_WRITE(reg, val);
1776         }
1777 }
1778
1779 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1780 {
1781         u32 val;
1782
1783         val = I915_READ(_TRANSACONF);
1784         val &= ~TRANS_ENABLE;
1785         I915_WRITE(_TRANSACONF, val);
1786         /* wait for PCH transcoder off, transcoder state */
1787         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788                 DRM_ERROR("Failed to disable PCH transcoder\n");
1789
1790         /* Workaround: clear timing override bit. */
1791         val = I915_READ(_TRANSA_CHICKEN2);
1792         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1793         I915_WRITE(_TRANSA_CHICKEN2, val);
1794 }
1795
1796 /**
1797  * intel_enable_pipe - enable a pipe, asserting requirements
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe to enable
1800  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1801  *
1802  * Enable @pipe, making sure that various hardware specific requirements
1803  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804  *
1805  * @pipe should be %PIPE_A or %PIPE_B.
1806  *
1807  * Will wait until the pipe is actually running (i.e. first vblank) before
1808  * returning.
1809  */
1810 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811                               bool pch_port)
1812 {
1813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814                                                                       pipe);
1815         enum pipe pch_transcoder;
1816         int reg;
1817         u32 val;
1818
1819         if (HAS_PCH_LPT(dev_priv->dev))
1820                 pch_transcoder = TRANSCODER_A;
1821         else
1822                 pch_transcoder = pipe;
1823
1824         /*
1825          * A pipe without a PLL won't actually be able to drive bits from
1826          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1827          * need the check.
1828          */
1829         if (!HAS_PCH_SPLIT(dev_priv->dev))
1830                 assert_pll_enabled(dev_priv, pipe);
1831         else {
1832                 if (pch_port) {
1833                         /* if driving the PCH, we need FDI enabled */
1834                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835                         assert_fdi_tx_pll_enabled(dev_priv,
1836                                                   (enum pipe) cpu_transcoder);
1837                 }
1838                 /* FIXME: assert CPU port conditions for SNB+ */
1839         }
1840
1841         reg = PIPECONF(cpu_transcoder);
1842         val = I915_READ(reg);
1843         if (val & PIPECONF_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | PIPECONF_ENABLE);
1847         intel_wait_for_vblank(dev_priv->dev, pipe);
1848 }
1849
1850 /**
1851  * intel_disable_pipe - disable a pipe, asserting requirements
1852  * @dev_priv: i915 private structure
1853  * @pipe: pipe to disable
1854  *
1855  * Disable @pipe, making sure that various hardware specific requirements
1856  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1857  *
1858  * @pipe should be %PIPE_A or %PIPE_B.
1859  *
1860  * Will wait until the pipe has shut down before returning.
1861  */
1862 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1863                                enum pipe pipe)
1864 {
1865         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1866                                                                       pipe);
1867         int reg;
1868         u32 val;
1869
1870         /*
1871          * Make sure planes won't keep trying to pump pixels to us,
1872          * or we might hang the display.
1873          */
1874         assert_planes_disabled(dev_priv, pipe);
1875
1876         /* Don't disable pipe A or pipe A PLLs if needed */
1877         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1878                 return;
1879
1880         reg = PIPECONF(cpu_transcoder);
1881         val = I915_READ(reg);
1882         if ((val & PIPECONF_ENABLE) == 0)
1883                 return;
1884
1885         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1886         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1887 }
1888
1889 /*
1890  * Plane regs are double buffered, going from enabled->disabled needs a
1891  * trigger in order to latch.  The display address reg provides this.
1892  */
1893 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1894                                       enum plane plane)
1895 {
1896         if (dev_priv->info->gen >= 4)
1897                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1898         else
1899                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1900 }
1901
1902 /**
1903  * intel_enable_plane - enable a display plane on a given pipe
1904  * @dev_priv: i915 private structure
1905  * @plane: plane to enable
1906  * @pipe: pipe being fed
1907  *
1908  * Enable @plane on @pipe, making sure that @pipe is running first.
1909  */
1910 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1911                                enum plane plane, enum pipe pipe)
1912 {
1913         int reg;
1914         u32 val;
1915
1916         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1917         assert_pipe_enabled(dev_priv, pipe);
1918
1919         reg = DSPCNTR(plane);
1920         val = I915_READ(reg);
1921         if (val & DISPLAY_PLANE_ENABLE)
1922                 return;
1923
1924         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1925         intel_flush_display_plane(dev_priv, plane);
1926         intel_wait_for_vblank(dev_priv->dev, pipe);
1927 }
1928
1929 /**
1930  * intel_disable_plane - disable a display plane
1931  * @dev_priv: i915 private structure
1932  * @plane: plane to disable
1933  * @pipe: pipe consuming the data
1934  *
1935  * Disable @plane; should be an independent operation.
1936  */
1937 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1938                                 enum plane plane, enum pipe pipe)
1939 {
1940         int reg;
1941         u32 val;
1942
1943         reg = DSPCNTR(plane);
1944         val = I915_READ(reg);
1945         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1946                 return;
1947
1948         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1949         intel_flush_display_plane(dev_priv, plane);
1950         intel_wait_for_vblank(dev_priv->dev, pipe);
1951 }
1952
1953 int
1954 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1955                            struct drm_i915_gem_object *obj,
1956                            struct intel_ring_buffer *pipelined)
1957 {
1958         struct drm_i915_private *dev_priv = dev->dev_private;
1959         u32 alignment;
1960         int ret;
1961
1962         switch (obj->tiling_mode) {
1963         case I915_TILING_NONE:
1964                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1965                         alignment = 128 * 1024;
1966                 else if (INTEL_INFO(dev)->gen >= 4)
1967                         alignment = 4 * 1024;
1968                 else
1969                         alignment = 64 * 1024;
1970                 break;
1971         case I915_TILING_X:
1972                 /* pin() will align the object as required by fence */
1973                 alignment = 0;
1974                 break;
1975         case I915_TILING_Y:
1976                 /* FIXME: Is this true? */
1977                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         dev_priv->mm.interruptible = false;
1984         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1985         if (ret)
1986                 goto err_interruptible;
1987
1988         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1989          * fence, whereas 965+ only requires a fence if using
1990          * framebuffer compression.  For simplicity, we always install
1991          * a fence as the cost is not that onerous.
1992          */
1993         ret = i915_gem_object_get_fence(obj);
1994         if (ret)
1995                 goto err_unpin;
1996
1997         i915_gem_object_pin_fence(obj);
1998
1999         dev_priv->mm.interruptible = true;
2000         return 0;
2001
2002 err_unpin:
2003         i915_gem_object_unpin(obj);
2004 err_interruptible:
2005         dev_priv->mm.interruptible = true;
2006         return ret;
2007 }
2008
2009 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2010 {
2011         i915_gem_object_unpin_fence(obj);
2012         i915_gem_object_unpin(obj);
2013 }
2014
2015 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2016  * is assumed to be a power-of-two. */
2017 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2018                                              unsigned int tiling_mode,
2019                                              unsigned int cpp,
2020                                              unsigned int pitch)
2021 {
2022         if (tiling_mode != I915_TILING_NONE) {
2023                 unsigned int tile_rows, tiles;
2024
2025                 tile_rows = *y / 8;
2026                 *y %= 8;
2027
2028                 tiles = *x / (512/cpp);
2029                 *x %= 512/cpp;
2030
2031                 return tile_rows * pitch * 8 + tiles * 4096;
2032         } else {
2033                 unsigned int offset;
2034
2035                 offset = *y * pitch + *x * cpp;
2036                 *y = 0;
2037                 *x = (offset & 4095) / cpp;
2038                 return offset & -4096;
2039         }
2040 }
2041
2042 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2043                              int x, int y)
2044 {
2045         struct drm_device *dev = crtc->dev;
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2048         struct intel_framebuffer *intel_fb;
2049         struct drm_i915_gem_object *obj;
2050         int plane = intel_crtc->plane;
2051         unsigned long linear_offset;
2052         u32 dspcntr;
2053         u32 reg;
2054
2055         switch (plane) {
2056         case 0:
2057         case 1:
2058                 break;
2059         default:
2060                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2061                 return -EINVAL;
2062         }
2063
2064         intel_fb = to_intel_framebuffer(fb);
2065         obj = intel_fb->obj;
2066
2067         reg = DSPCNTR(plane);
2068         dspcntr = I915_READ(reg);
2069         /* Mask out pixel format bits in case we change it */
2070         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2071         switch (fb->pixel_format) {
2072         case DRM_FORMAT_C8:
2073                 dspcntr |= DISPPLANE_8BPP;
2074                 break;
2075         case DRM_FORMAT_XRGB1555:
2076         case DRM_FORMAT_ARGB1555:
2077                 dspcntr |= DISPPLANE_BGRX555;
2078                 break;
2079         case DRM_FORMAT_RGB565:
2080                 dspcntr |= DISPPLANE_BGRX565;
2081                 break;
2082         case DRM_FORMAT_XRGB8888:
2083         case DRM_FORMAT_ARGB8888:
2084                 dspcntr |= DISPPLANE_BGRX888;
2085                 break;
2086         case DRM_FORMAT_XBGR8888:
2087         case DRM_FORMAT_ABGR8888:
2088                 dspcntr |= DISPPLANE_RGBX888;
2089                 break;
2090         case DRM_FORMAT_XRGB2101010:
2091         case DRM_FORMAT_ARGB2101010:
2092                 dspcntr |= DISPPLANE_BGRX101010;
2093                 break;
2094         case DRM_FORMAT_XBGR2101010:
2095         case DRM_FORMAT_ABGR2101010:
2096                 dspcntr |= DISPPLANE_RGBX101010;
2097                 break;
2098         default:
2099                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2100                 return -EINVAL;
2101         }
2102
2103         if (INTEL_INFO(dev)->gen >= 4) {
2104                 if (obj->tiling_mode != I915_TILING_NONE)
2105                         dspcntr |= DISPPLANE_TILED;
2106                 else
2107                         dspcntr &= ~DISPPLANE_TILED;
2108         }
2109
2110         I915_WRITE(reg, dspcntr);
2111
2112         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2113
2114         if (INTEL_INFO(dev)->gen >= 4) {
2115                 intel_crtc->dspaddr_offset =
2116                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2117                                                        fb->bits_per_pixel / 8,
2118                                                        fb->pitches[0]);
2119                 linear_offset -= intel_crtc->dspaddr_offset;
2120         } else {
2121                 intel_crtc->dspaddr_offset = linear_offset;
2122         }
2123
2124         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2125                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2126         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2127         if (INTEL_INFO(dev)->gen >= 4) {
2128                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2129                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2130                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2131                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2132         } else
2133                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2134         POSTING_READ(reg);
2135
2136         return 0;
2137 }
2138
2139 static int ironlake_update_plane(struct drm_crtc *crtc,
2140                                  struct drm_framebuffer *fb, int x, int y)
2141 {
2142         struct drm_device *dev = crtc->dev;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145         struct intel_framebuffer *intel_fb;
2146         struct drm_i915_gem_object *obj;
2147         int plane = intel_crtc->plane;
2148         unsigned long linear_offset;
2149         u32 dspcntr;
2150         u32 reg;
2151
2152         switch (plane) {
2153         case 0:
2154         case 1:
2155         case 2:
2156                 break;
2157         default:
2158                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2159                 return -EINVAL;
2160         }
2161
2162         intel_fb = to_intel_framebuffer(fb);
2163         obj = intel_fb->obj;
2164
2165         reg = DSPCNTR(plane);
2166         dspcntr = I915_READ(reg);
2167         /* Mask out pixel format bits in case we change it */
2168         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2169         switch (fb->pixel_format) {
2170         case DRM_FORMAT_C8:
2171                 dspcntr |= DISPPLANE_8BPP;
2172                 break;
2173         case DRM_FORMAT_RGB565:
2174                 dspcntr |= DISPPLANE_BGRX565;
2175                 break;
2176         case DRM_FORMAT_XRGB8888:
2177         case DRM_FORMAT_ARGB8888:
2178                 dspcntr |= DISPPLANE_BGRX888;
2179                 break;
2180         case DRM_FORMAT_XBGR8888:
2181         case DRM_FORMAT_ABGR8888:
2182                 dspcntr |= DISPPLANE_RGBX888;
2183                 break;
2184         case DRM_FORMAT_XRGB2101010:
2185         case DRM_FORMAT_ARGB2101010:
2186                 dspcntr |= DISPPLANE_BGRX101010;
2187                 break;
2188         case DRM_FORMAT_XBGR2101010:
2189         case DRM_FORMAT_ABGR2101010:
2190                 dspcntr |= DISPPLANE_RGBX101010;
2191                 break;
2192         default:
2193                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2194                 return -EINVAL;
2195         }
2196
2197         if (obj->tiling_mode != I915_TILING_NONE)
2198                 dspcntr |= DISPPLANE_TILED;
2199         else
2200                 dspcntr &= ~DISPPLANE_TILED;
2201
2202         /* must disable */
2203         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2204
2205         I915_WRITE(reg, dspcntr);
2206
2207         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2208         intel_crtc->dspaddr_offset =
2209                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2210                                                fb->bits_per_pixel / 8,
2211                                                fb->pitches[0]);
2212         linear_offset -= intel_crtc->dspaddr_offset;
2213
2214         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2215                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2216         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2217         I915_MODIFY_DISPBASE(DSPSURF(plane),
2218                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2219         if (IS_HASWELL(dev)) {
2220                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2221         } else {
2222                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2223                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2224         }
2225         POSTING_READ(reg);
2226
2227         return 0;
2228 }
2229
2230 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2231 static int
2232 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2233                            int x, int y, enum mode_set_atomic state)
2234 {
2235         struct drm_device *dev = crtc->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238         if (dev_priv->display.disable_fbc)
2239                 dev_priv->display.disable_fbc(dev);
2240         intel_increase_pllclock(crtc);
2241
2242         return dev_priv->display.update_plane(crtc, fb, x, y);
2243 }
2244
2245 void intel_display_handle_reset(struct drm_device *dev)
2246 {
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         struct drm_crtc *crtc;
2249
2250         /*
2251          * Flips in the rings have been nuked by the reset,
2252          * so complete all pending flips so that user space
2253          * will get its events and not get stuck.
2254          *
2255          * Also update the base address of all primary
2256          * planes to the the last fb to make sure we're
2257          * showing the correct fb after a reset.
2258          *
2259          * Need to make two loops over the crtcs so that we
2260          * don't try to grab a crtc mutex before the
2261          * pending_flip_queue really got woken up.
2262          */
2263
2264         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2265                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2266                 enum plane plane = intel_crtc->plane;
2267
2268                 intel_prepare_page_flip(dev, plane);
2269                 intel_finish_page_flip_plane(dev, plane);
2270         }
2271
2272         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2273                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2274
2275                 mutex_lock(&crtc->mutex);
2276                 if (intel_crtc->active)
2277                         dev_priv->display.update_plane(crtc, crtc->fb,
2278                                                        crtc->x, crtc->y);
2279                 mutex_unlock(&crtc->mutex);
2280         }
2281 }
2282
2283 static int
2284 intel_finish_fb(struct drm_framebuffer *old_fb)
2285 {
2286         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2287         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2288         bool was_interruptible = dev_priv->mm.interruptible;
2289         int ret;
2290
2291         /* Big Hammer, we also need to ensure that any pending
2292          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2293          * current scanout is retired before unpinning the old
2294          * framebuffer.
2295          *
2296          * This should only fail upon a hung GPU, in which case we
2297          * can safely continue.
2298          */
2299         dev_priv->mm.interruptible = false;
2300         ret = i915_gem_object_finish_gpu(obj);
2301         dev_priv->mm.interruptible = was_interruptible;
2302
2303         return ret;
2304 }
2305
2306 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2307 {
2308         struct drm_device *dev = crtc->dev;
2309         struct drm_i915_master_private *master_priv;
2310         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311
2312         if (!dev->primary->master)
2313                 return;
2314
2315         master_priv = dev->primary->master->driver_priv;
2316         if (!master_priv->sarea_priv)
2317                 return;
2318
2319         switch (intel_crtc->pipe) {
2320         case 0:
2321                 master_priv->sarea_priv->pipeA_x = x;
2322                 master_priv->sarea_priv->pipeA_y = y;
2323                 break;
2324         case 1:
2325                 master_priv->sarea_priv->pipeB_x = x;
2326                 master_priv->sarea_priv->pipeB_y = y;
2327                 break;
2328         default:
2329                 break;
2330         }
2331 }
2332
2333 static int
2334 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2335                     struct drm_framebuffer *fb)
2336 {
2337         struct drm_device *dev = crtc->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2340         struct drm_framebuffer *old_fb;
2341         int ret;
2342
2343         /* no fb bound */
2344         if (!fb) {
2345                 DRM_ERROR("No FB bound\n");
2346                 return 0;
2347         }
2348
2349         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2350                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2351                                 intel_crtc->plane,
2352                                 INTEL_INFO(dev)->num_pipes);
2353                 return -EINVAL;
2354         }
2355
2356         mutex_lock(&dev->struct_mutex);
2357         ret = intel_pin_and_fence_fb_obj(dev,
2358                                          to_intel_framebuffer(fb)->obj,
2359                                          NULL);
2360         if (ret != 0) {
2361                 mutex_unlock(&dev->struct_mutex);
2362                 DRM_ERROR("pin & fence failed\n");
2363                 return ret;
2364         }
2365
2366         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2367         if (ret) {
2368                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2369                 mutex_unlock(&dev->struct_mutex);
2370                 DRM_ERROR("failed to update base address\n");
2371                 return ret;
2372         }
2373
2374         old_fb = crtc->fb;
2375         crtc->fb = fb;
2376         crtc->x = x;
2377         crtc->y = y;
2378
2379         if (old_fb) {
2380                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2381                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2382         }
2383
2384         intel_update_fbc(dev);
2385         mutex_unlock(&dev->struct_mutex);
2386
2387         intel_crtc_update_sarea_pos(crtc, x, y);
2388
2389         return 0;
2390 }
2391
2392 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2393 {
2394         struct drm_device *dev = crtc->dev;
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2397         int pipe = intel_crtc->pipe;
2398         u32 reg, temp;
2399
2400         /* enable normal train */
2401         reg = FDI_TX_CTL(pipe);
2402         temp = I915_READ(reg);
2403         if (IS_IVYBRIDGE(dev)) {
2404                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2405                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2406         } else {
2407                 temp &= ~FDI_LINK_TRAIN_NONE;
2408                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2409         }
2410         I915_WRITE(reg, temp);
2411
2412         reg = FDI_RX_CTL(pipe);
2413         temp = I915_READ(reg);
2414         if (HAS_PCH_CPT(dev)) {
2415                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2416                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2417         } else {
2418                 temp &= ~FDI_LINK_TRAIN_NONE;
2419                 temp |= FDI_LINK_TRAIN_NONE;
2420         }
2421         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2422
2423         /* wait one idle pattern time */
2424         POSTING_READ(reg);
2425         udelay(1000);
2426
2427         /* IVB wants error correction enabled */
2428         if (IS_IVYBRIDGE(dev))
2429                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2430                            FDI_FE_ERRC_ENABLE);
2431 }
2432
2433 static void ivb_modeset_global_resources(struct drm_device *dev)
2434 {
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct intel_crtc *pipe_B_crtc =
2437                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2438         struct intel_crtc *pipe_C_crtc =
2439                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2440         uint32_t temp;
2441
2442         /* When everything is off disable fdi C so that we could enable fdi B
2443          * with all lanes. XXX: This misses the case where a pipe is not using
2444          * any pch resources and so doesn't need any fdi lanes. */
2445         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449                 temp = I915_READ(SOUTH_CHICKEN1);
2450                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452                 I915_WRITE(SOUTH_CHICKEN1, temp);
2453         }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459         struct drm_device *dev = crtc->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462         int pipe = intel_crtc->pipe;
2463         int plane = intel_crtc->plane;
2464         u32 reg, temp, tries;
2465
2466         /* FDI needs bits from pipe & plane first */
2467         assert_pipe_enabled(dev_priv, pipe);
2468         assert_plane_enabled(dev_priv, plane);
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477         I915_READ(reg);
2478         udelay(150);
2479
2480         /* enable CPU FDI TX and PCH FDI RX */
2481         reg = FDI_TX_CTL(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~(7 << 19);
2484         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2485         temp &= ~FDI_LINK_TRAIN_NONE;
2486         temp |= FDI_LINK_TRAIN_PATTERN_1;
2487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489         reg = FDI_RX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495         POSTING_READ(reg);
2496         udelay(150);
2497
2498         /* Ironlake workaround, enable clock pointer after FDI enable*/
2499         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501                    FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503         reg = FDI_RX_IIR(pipe);
2504         for (tries = 0; tries < 5; tries++) {
2505                 temp = I915_READ(reg);
2506                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508                 if ((temp & FDI_RX_BIT_LOCK)) {
2509                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2510                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511                         break;
2512                 }
2513         }
2514         if (tries == 5)
2515                 DRM_ERROR("FDI train 1 fail!\n");
2516
2517         /* Train 2 */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_2;
2522         I915_WRITE(reg, temp);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_2;
2528         I915_WRITE(reg, temp);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         reg = FDI_RX_IIR(pipe);
2534         for (tries = 0; tries < 5; tries++) {
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_SYMBOL_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (tries == 5)
2545                 DRM_ERROR("FDI train 2 fail!\n");
2546
2547         DRM_DEBUG_KMS("FDI train done\n");
2548
2549 }
2550
2551 static const int snb_b_fdi_train_param[] = {
2552         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556 };
2557
2558 /* The FDI link training functions for SNB/Cougarpoint. */
2559 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560 {
2561         struct drm_device *dev = crtc->dev;
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564         int pipe = intel_crtc->pipe;
2565         u32 reg, temp, i, retry;
2566
2567         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568            for train result */
2569         reg = FDI_RX_IMR(pipe);
2570         temp = I915_READ(reg);
2571         temp &= ~FDI_RX_SYMBOL_LOCK;
2572         temp &= ~FDI_RX_BIT_LOCK;
2573         I915_WRITE(reg, temp);
2574
2575         POSTING_READ(reg);
2576         udelay(150);
2577
2578         /* enable CPU FDI TX and PCH FDI RX */
2579         reg = FDI_TX_CTL(pipe);
2580         temp = I915_READ(reg);
2581         temp &= ~(7 << 19);
2582         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_1;
2585         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586         /* SNB-B */
2587         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590         I915_WRITE(FDI_RX_MISC(pipe),
2591                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601         }
2602         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_BIT_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 1 fail!\n");
2633
2634         /* Train 2 */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         temp &= ~FDI_LINK_TRAIN_NONE;
2638         temp |= FDI_LINK_TRAIN_PATTERN_2;
2639         if (IS_GEN6(dev)) {
2640                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641                 /* SNB-B */
2642                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643         }
2644         I915_WRITE(reg, temp);
2645
2646         reg = FDI_RX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         if (HAS_PCH_CPT(dev)) {
2649                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651         } else {
2652                 temp &= ~FDI_LINK_TRAIN_NONE;
2653                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         POSTING_READ(reg);
2658         udelay(150);
2659
2660         for (i = 0; i < 4; i++) {
2661                 reg = FDI_TX_CTL(pipe);
2662                 temp = I915_READ(reg);
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 temp |= snb_b_fdi_train_param[i];
2665                 I915_WRITE(reg, temp);
2666
2667                 POSTING_READ(reg);
2668                 udelay(500);
2669
2670                 for (retry = 0; retry < 5; retry++) {
2671                         reg = FDI_RX_IIR(pipe);
2672                         temp = I915_READ(reg);
2673                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674                         if (temp & FDI_RX_SYMBOL_LOCK) {
2675                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677                                 break;
2678                         }
2679                         udelay(50);
2680                 }
2681                 if (retry < 5)
2682                         break;
2683         }
2684         if (i == 4)
2685                 DRM_ERROR("FDI train 2 fail!\n");
2686
2687         DRM_DEBUG_KMS("FDI train done.\n");
2688 }
2689
2690 /* Manual link training for Ivy Bridge A0 parts */
2691 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692 {
2693         struct drm_device *dev = crtc->dev;
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696         int pipe = intel_crtc->pipe;
2697         u32 reg, temp, i;
2698
2699         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700            for train result */
2701         reg = FDI_RX_IMR(pipe);
2702         temp = I915_READ(reg);
2703         temp &= ~FDI_RX_SYMBOL_LOCK;
2704         temp &= ~FDI_RX_BIT_LOCK;
2705         I915_WRITE(reg, temp);
2706
2707         POSTING_READ(reg);
2708         udelay(150);
2709
2710         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711                       I915_READ(FDI_RX_IIR(pipe)));
2712
2713         /* enable CPU FDI TX and PCH FDI RX */
2714         reg = FDI_TX_CTL(pipe);
2715         temp = I915_READ(reg);
2716         temp &= ~(7 << 19);
2717         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2718         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2720         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2721         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2722         temp |= FDI_COMPOSITE_SYNC;
2723         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2724
2725         I915_WRITE(FDI_RX_MISC(pipe),
2726                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2727
2728         reg = FDI_RX_CTL(pipe);
2729         temp = I915_READ(reg);
2730         temp &= ~FDI_LINK_TRAIN_AUTO;
2731         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2735
2736         POSTING_READ(reg);
2737         udelay(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 udelay(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_BIT_LOCK ||
2754                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2755                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2756                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2757                         break;
2758                 }
2759         }
2760         if (i == 4)
2761                 DRM_ERROR("FDI train 1 fail!\n");
2762
2763         /* Train 2 */
2764         reg = FDI_TX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2767         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2768         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2769         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2770         I915_WRITE(reg, temp);
2771
2772         reg = FDI_RX_CTL(pipe);
2773         temp = I915_READ(reg);
2774         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2775         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2776         I915_WRITE(reg, temp);
2777
2778         POSTING_READ(reg);
2779         udelay(150);
2780
2781         for (i = 0; i < 4; i++) {
2782                 reg = FDI_TX_CTL(pipe);
2783                 temp = I915_READ(reg);
2784                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2785                 temp |= snb_b_fdi_train_param[i];
2786                 I915_WRITE(reg, temp);
2787
2788                 POSTING_READ(reg);
2789                 udelay(500);
2790
2791                 reg = FDI_RX_IIR(pipe);
2792                 temp = I915_READ(reg);
2793                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795                 if (temp & FDI_RX_SYMBOL_LOCK) {
2796                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2797                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2798                         break;
2799                 }
2800         }
2801         if (i == 4)
2802                 DRM_ERROR("FDI train 2 fail!\n");
2803
2804         DRM_DEBUG_KMS("FDI train done.\n");
2805 }
2806
2807 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2808 {
2809         struct drm_device *dev = intel_crtc->base.dev;
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         int pipe = intel_crtc->pipe;
2812         u32 reg, temp;
2813
2814
2815         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2816         reg = FDI_RX_CTL(pipe);
2817         temp = I915_READ(reg);
2818         temp &= ~((0x7 << 19) | (0x7 << 16));
2819         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2820         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2821         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2822
2823         POSTING_READ(reg);
2824         udelay(200);
2825
2826         /* Switch from Rawclk to PCDclk */
2827         temp = I915_READ(reg);
2828         I915_WRITE(reg, temp | FDI_PCDCLK);
2829
2830         POSTING_READ(reg);
2831         udelay(200);
2832
2833         /* Enable CPU FDI TX PLL, always on for Ironlake */
2834         reg = FDI_TX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2837                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2838
2839                 POSTING_READ(reg);
2840                 udelay(100);
2841         }
2842 }
2843
2844 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2845 {
2846         struct drm_device *dev = intel_crtc->base.dev;
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         int pipe = intel_crtc->pipe;
2849         u32 reg, temp;
2850
2851         /* Switch from PCDclk to Rawclk */
2852         reg = FDI_RX_CTL(pipe);
2853         temp = I915_READ(reg);
2854         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2855
2856         /* Disable CPU FDI TX PLL */
2857         reg = FDI_TX_CTL(pipe);
2858         temp = I915_READ(reg);
2859         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2860
2861         POSTING_READ(reg);
2862         udelay(100);
2863
2864         reg = FDI_RX_CTL(pipe);
2865         temp = I915_READ(reg);
2866         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2867
2868         /* Wait for the clocks to turn off. */
2869         POSTING_READ(reg);
2870         udelay(100);
2871 }
2872
2873 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2874 {
2875         struct drm_device *dev = crtc->dev;
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2878         int pipe = intel_crtc->pipe;
2879         u32 reg, temp;
2880
2881         /* disable CPU FDI tx and PCH FDI rx */
2882         reg = FDI_TX_CTL(pipe);
2883         temp = I915_READ(reg);
2884         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2885         POSTING_READ(reg);
2886
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         temp &= ~(0x7 << 16);
2890         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2891         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2892
2893         POSTING_READ(reg);
2894         udelay(100);
2895
2896         /* Ironlake workaround, disable clock pointer after downing FDI */
2897         if (HAS_PCH_IBX(dev)) {
2898                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2899         }
2900
2901         /* still set train pattern 1 */
2902         reg = FDI_TX_CTL(pipe);
2903         temp = I915_READ(reg);
2904         temp &= ~FDI_LINK_TRAIN_NONE;
2905         temp |= FDI_LINK_TRAIN_PATTERN_1;
2906         I915_WRITE(reg, temp);
2907
2908         reg = FDI_RX_CTL(pipe);
2909         temp = I915_READ(reg);
2910         if (HAS_PCH_CPT(dev)) {
2911                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2912                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2913         } else {
2914                 temp &= ~FDI_LINK_TRAIN_NONE;
2915                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2916         }
2917         /* BPC in FDI rx is consistent with that in PIPECONF */
2918         temp &= ~(0x07 << 16);
2919         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2920         I915_WRITE(reg, temp);
2921
2922         POSTING_READ(reg);
2923         udelay(100);
2924 }
2925
2926 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2927 {
2928         struct drm_device *dev = crtc->dev;
2929         struct drm_i915_private *dev_priv = dev->dev_private;
2930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2931         unsigned long flags;
2932         bool pending;
2933
2934         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2935             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2936                 return false;
2937
2938         spin_lock_irqsave(&dev->event_lock, flags);
2939         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2940         spin_unlock_irqrestore(&dev->event_lock, flags);
2941
2942         return pending;
2943 }
2944
2945 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2946 {
2947         struct drm_device *dev = crtc->dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949
2950         if (crtc->fb == NULL)
2951                 return;
2952
2953         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2954
2955         wait_event(dev_priv->pending_flip_queue,
2956                    !intel_crtc_has_pending_flip(crtc));
2957
2958         mutex_lock(&dev->struct_mutex);
2959         intel_finish_fb(crtc->fb);
2960         mutex_unlock(&dev->struct_mutex);
2961 }
2962
2963 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2964 {
2965         struct drm_device *dev = crtc->dev;
2966         struct intel_encoder *intel_encoder;
2967
2968         /*
2969          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2970          * must be driven by its own crtc; no sharing is possible.
2971          */
2972         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2973                 switch (intel_encoder->type) {
2974                 case INTEL_OUTPUT_EDP:
2975                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2976                                 return false;
2977                         continue;
2978                 }
2979         }
2980
2981         return true;
2982 }
2983
2984 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2985 {
2986         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2987 }
2988
2989 /* Program iCLKIP clock to the desired frequency */
2990 static void lpt_program_iclkip(struct drm_crtc *crtc)
2991 {
2992         struct drm_device *dev = crtc->dev;
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2995         u32 temp;
2996
2997         mutex_lock(&dev_priv->dpio_lock);
2998
2999         /* It is necessary to ungate the pixclk gate prior to programming
3000          * the divisors, and gate it back when it is done.
3001          */
3002         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3003
3004         /* Disable SSCCTL */
3005         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3006                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3007                                 SBI_SSCCTL_DISABLE,
3008                         SBI_ICLK);
3009
3010         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3011         if (crtc->mode.clock == 20000) {
3012                 auxdiv = 1;
3013                 divsel = 0x41;
3014                 phaseinc = 0x20;
3015         } else {
3016                 /* The iCLK virtual clock root frequency is in MHz,
3017                  * but the crtc->mode.clock in in KHz. To get the divisors,
3018                  * it is necessary to divide one by another, so we
3019                  * convert the virtual clock precision to KHz here for higher
3020                  * precision.
3021                  */
3022                 u32 iclk_virtual_root_freq = 172800 * 1000;
3023                 u32 iclk_pi_range = 64;
3024                 u32 desired_divisor, msb_divisor_value, pi_value;
3025
3026                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3027                 msb_divisor_value = desired_divisor / iclk_pi_range;
3028                 pi_value = desired_divisor % iclk_pi_range;
3029
3030                 auxdiv = 0;
3031                 divsel = msb_divisor_value - 2;
3032                 phaseinc = pi_value;
3033         }
3034
3035         /* This should not happen with any sane values */
3036         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3037                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3038         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3039                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3040
3041         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3042                         crtc->mode.clock,
3043                         auxdiv,
3044                         divsel,
3045                         phasedir,
3046                         phaseinc);
3047
3048         /* Program SSCDIVINTPHASE6 */
3049         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3050         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3051         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3052         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3053         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3054         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3055         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3056         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3057
3058         /* Program SSCAUXDIV */
3059         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3060         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3061         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3062         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3063
3064         /* Enable modulator and associated divider */
3065         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3066         temp &= ~SBI_SSCCTL_DISABLE;
3067         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3068
3069         /* Wait for initialization time */
3070         udelay(24);
3071
3072         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3073
3074         mutex_unlock(&dev_priv->dpio_lock);
3075 }
3076
3077 /*
3078  * Enable PCH resources required for PCH ports:
3079  *   - PCH PLLs
3080  *   - FDI training & RX/TX
3081  *   - update transcoder timings
3082  *   - DP transcoding bits
3083  *   - transcoder
3084  */
3085 static void ironlake_pch_enable(struct drm_crtc *crtc)
3086 {
3087         struct drm_device *dev = crtc->dev;
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3090         int pipe = intel_crtc->pipe;
3091         u32 reg, temp;
3092
3093         assert_transcoder_disabled(dev_priv, pipe);
3094
3095         /* Write the TU size bits before fdi link training, so that error
3096          * detection works. */
3097         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3098                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3099
3100         /* For PCH output, training FDI link */
3101         dev_priv->display.fdi_link_train(crtc);
3102
3103         /* XXX: pch pll's can be enabled any time before we enable the PCH
3104          * transcoder, and we actually should do this to not upset any PCH
3105          * transcoder that already use the clock when we share it.
3106          *
3107          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3108          * unconditionally resets the pll - we need that to have the right LVDS
3109          * enable sequence. */
3110         ironlake_enable_pch_pll(intel_crtc);
3111
3112         if (HAS_PCH_CPT(dev)) {
3113                 u32 sel;
3114
3115                 temp = I915_READ(PCH_DPLL_SEL);
3116                 switch (pipe) {
3117                 default:
3118                 case 0:
3119                         temp |= TRANSA_DPLL_ENABLE;
3120                         sel = TRANSA_DPLLB_SEL;
3121                         break;
3122                 case 1:
3123                         temp |= TRANSB_DPLL_ENABLE;
3124                         sel = TRANSB_DPLLB_SEL;
3125                         break;
3126                 case 2:
3127                         temp |= TRANSC_DPLL_ENABLE;
3128                         sel = TRANSC_DPLLB_SEL;
3129                         break;
3130                 }
3131                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3132                         temp |= sel;
3133                 else
3134                         temp &= ~sel;
3135                 I915_WRITE(PCH_DPLL_SEL, temp);
3136         }
3137
3138         /* set transcoder timing, panel must allow it */
3139         assert_panel_unlocked(dev_priv, pipe);
3140         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3141         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3142         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3143
3144         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3145         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3146         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3147         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3148
3149         intel_fdi_normal_train(crtc);
3150
3151         /* For PCH DP, enable TRANS_DP_CTL */
3152         if (HAS_PCH_CPT(dev) &&
3153             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3154              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3155                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3156                 reg = TRANS_DP_CTL(pipe);
3157                 temp = I915_READ(reg);
3158                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3159                           TRANS_DP_SYNC_MASK |
3160                           TRANS_DP_BPC_MASK);
3161                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3162                          TRANS_DP_ENH_FRAMING);
3163                 temp |= bpc << 9; /* same format but at 11:9 */
3164
3165                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3166                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3167                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3168                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3169
3170                 switch (intel_trans_dp_port_sel(crtc)) {
3171                 case PCH_DP_B:
3172                         temp |= TRANS_DP_PORT_SEL_B;
3173                         break;
3174                 case PCH_DP_C:
3175                         temp |= TRANS_DP_PORT_SEL_C;
3176                         break;
3177                 case PCH_DP_D:
3178                         temp |= TRANS_DP_PORT_SEL_D;
3179                         break;
3180                 default:
3181                         BUG();
3182                 }
3183
3184                 I915_WRITE(reg, temp);
3185         }
3186
3187         ironlake_enable_pch_transcoder(dev_priv, pipe);
3188 }
3189
3190 static void lpt_pch_enable(struct drm_crtc *crtc)
3191 {
3192         struct drm_device *dev = crtc->dev;
3193         struct drm_i915_private *dev_priv = dev->dev_private;
3194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3195         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3196
3197         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3198
3199         lpt_program_iclkip(crtc);
3200
3201         /* Set transcoder timing. */
3202         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3203         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3204         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3205
3206         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3207         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3208         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3209         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3210
3211         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3212 }
3213
3214 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3215 {
3216         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3217
3218         if (pll == NULL)
3219                 return;
3220
3221         if (pll->refcount == 0) {
3222                 WARN(1, "bad PCH PLL refcount\n");
3223                 return;
3224         }
3225
3226         --pll->refcount;
3227         intel_crtc->pch_pll = NULL;
3228 }
3229
3230 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3231 {
3232         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3233         struct intel_pch_pll *pll;
3234         int i;
3235
3236         pll = intel_crtc->pch_pll;
3237         if (pll) {
3238                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3239                               intel_crtc->base.base.id, pll->pll_reg);
3240                 goto prepare;
3241         }
3242
3243         if (HAS_PCH_IBX(dev_priv->dev)) {
3244                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3245                 i = intel_crtc->pipe;
3246                 pll = &dev_priv->pch_plls[i];
3247
3248                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3249                               intel_crtc->base.base.id, pll->pll_reg);
3250
3251                 goto found;
3252         }
3253
3254         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3255                 pll = &dev_priv->pch_plls[i];
3256
3257                 /* Only want to check enabled timings first */
3258                 if (pll->refcount == 0)
3259                         continue;
3260
3261                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3262                     fp == I915_READ(pll->fp0_reg)) {
3263                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3264                                       intel_crtc->base.base.id,
3265                                       pll->pll_reg, pll->refcount, pll->active);
3266
3267                         goto found;
3268                 }
3269         }
3270
3271         /* Ok no matching timings, maybe there's a free one? */
3272         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3273                 pll = &dev_priv->pch_plls[i];
3274                 if (pll->refcount == 0) {
3275                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3276                                       intel_crtc->base.base.id, pll->pll_reg);
3277                         goto found;
3278                 }
3279         }
3280
3281         return NULL;
3282
3283 found:
3284         intel_crtc->pch_pll = pll;
3285         pll->refcount++;
3286         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3287 prepare: /* separate function? */
3288         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3289
3290         /* Wait for the clocks to stabilize before rewriting the regs */
3291         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3292         POSTING_READ(pll->pll_reg);
3293         udelay(150);
3294
3295         I915_WRITE(pll->fp0_reg, fp);
3296         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3297         pll->on = false;
3298         return pll;
3299 }
3300
3301 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3302 {
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304         int dslreg = PIPEDSL(pipe);
3305         u32 temp;
3306
3307         temp = I915_READ(dslreg);
3308         udelay(500);
3309         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3310                 if (wait_for(I915_READ(dslreg) != temp, 5))
3311                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3312         }
3313 }
3314
3315 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3316 {
3317         struct drm_device *dev = crtc->dev;
3318         struct drm_i915_private *dev_priv = dev->dev_private;
3319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320         struct intel_encoder *encoder;
3321         int pipe = intel_crtc->pipe;
3322         int plane = intel_crtc->plane;
3323         u32 temp;
3324         bool is_pch_port;
3325
3326         WARN_ON(!crtc->enabled);
3327
3328         if (intel_crtc->active)
3329                 return;
3330
3331         intel_crtc->active = true;
3332         intel_update_watermarks(dev);
3333
3334         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3335                 temp = I915_READ(PCH_LVDS);
3336                 if ((temp & LVDS_PORT_EN) == 0)
3337                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3338         }
3339
3340         is_pch_port = ironlake_crtc_driving_pch(crtc);
3341
3342         if (is_pch_port) {
3343                 /* Note: FDI PLL enabling _must_ be done before we enable the
3344                  * cpu pipes, hence this is separate from all the other fdi/pch
3345                  * enabling. */
3346                 ironlake_fdi_pll_enable(intel_crtc);
3347         } else {
3348                 assert_fdi_tx_disabled(dev_priv, pipe);
3349                 assert_fdi_rx_disabled(dev_priv, pipe);
3350         }
3351
3352         for_each_encoder_on_crtc(dev, crtc, encoder)
3353                 if (encoder->pre_enable)
3354                         encoder->pre_enable(encoder);
3355
3356         /* Enable panel fitting for LVDS */
3357         if (dev_priv->pch_pf_size &&
3358             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3359              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3360                 /* Force use of hard-coded filter coefficients
3361                  * as some pre-programmed values are broken,
3362                  * e.g. x201.
3363                  */
3364                 if (IS_IVYBRIDGE(dev))
3365                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3366                                                  PF_PIPE_SEL_IVB(pipe));
3367                 else
3368                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3369                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3370                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3371         }
3372
3373         /*
3374          * On ILK+ LUT must be loaded before the pipe is running but with
3375          * clocks enabled
3376          */
3377         intel_crtc_load_lut(crtc);
3378
3379         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3380         intel_enable_plane(dev_priv, plane, pipe);
3381
3382         if (is_pch_port)
3383                 ironlake_pch_enable(crtc);
3384
3385         mutex_lock(&dev->struct_mutex);
3386         intel_update_fbc(dev);
3387         mutex_unlock(&dev->struct_mutex);
3388
3389         intel_crtc_update_cursor(crtc, true);
3390
3391         for_each_encoder_on_crtc(dev, crtc, encoder)
3392                 encoder->enable(encoder);
3393
3394         if (HAS_PCH_CPT(dev))
3395                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3396
3397         /*
3398          * There seems to be a race in PCH platform hw (at least on some
3399          * outputs) where an enabled pipe still completes any pageflip right
3400          * away (as if the pipe is off) instead of waiting for vblank. As soon
3401          * as the first vblank happend, everything works as expected. Hence just
3402          * wait for one vblank before returning to avoid strange things
3403          * happening.
3404          */
3405         intel_wait_for_vblank(dev, intel_crtc->pipe);
3406 }
3407
3408 static void haswell_crtc_enable(struct drm_crtc *crtc)
3409 {
3410         struct drm_device *dev = crtc->dev;
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3413         struct intel_encoder *encoder;
3414         int pipe = intel_crtc->pipe;
3415         int plane = intel_crtc->plane;
3416         bool is_pch_port;
3417
3418         WARN_ON(!crtc->enabled);
3419
3420         if (intel_crtc->active)
3421                 return;
3422
3423         intel_crtc->active = true;
3424         intel_update_watermarks(dev);
3425
3426         is_pch_port = haswell_crtc_driving_pch(crtc);
3427
3428         if (is_pch_port)
3429                 dev_priv->display.fdi_link_train(crtc);
3430
3431         for_each_encoder_on_crtc(dev, crtc, encoder)
3432                 if (encoder->pre_enable)
3433                         encoder->pre_enable(encoder);
3434
3435         intel_ddi_enable_pipe_clock(intel_crtc);
3436
3437         /* Enable panel fitting for eDP */
3438         if (dev_priv->pch_pf_size &&
3439             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3440                 /* Force use of hard-coded filter coefficients
3441                  * as some pre-programmed values are broken,
3442                  * e.g. x201.
3443                  */
3444                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3445                                          PF_PIPE_SEL_IVB(pipe));
3446                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3447                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3448         }
3449
3450         /*
3451          * On ILK+ LUT must be loaded before the pipe is running but with
3452          * clocks enabled
3453          */
3454         intel_crtc_load_lut(crtc);
3455
3456         intel_ddi_set_pipe_settings(crtc);
3457         intel_ddi_enable_transcoder_func(crtc);
3458
3459         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3460         intel_enable_plane(dev_priv, plane, pipe);
3461
3462         if (is_pch_port)
3463                 lpt_pch_enable(crtc);
3464
3465         mutex_lock(&dev->struct_mutex);
3466         intel_update_fbc(dev);
3467         mutex_unlock(&dev->struct_mutex);
3468
3469         intel_crtc_update_cursor(crtc, true);
3470
3471         for_each_encoder_on_crtc(dev, crtc, encoder)
3472                 encoder->enable(encoder);
3473
3474         /*
3475          * There seems to be a race in PCH platform hw (at least on some
3476          * outputs) where an enabled pipe still completes any pageflip right
3477          * away (as if the pipe is off) instead of waiting for vblank. As soon
3478          * as the first vblank happend, everything works as expected. Hence just
3479          * wait for one vblank before returning to avoid strange things
3480          * happening.
3481          */
3482         intel_wait_for_vblank(dev, intel_crtc->pipe);
3483 }
3484
3485 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3486 {
3487         struct drm_device *dev = crtc->dev;
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3490         struct intel_encoder *encoder;
3491         int pipe = intel_crtc->pipe;
3492         int plane = intel_crtc->plane;
3493         u32 reg, temp;
3494
3495
3496         if (!intel_crtc->active)
3497                 return;
3498
3499         for_each_encoder_on_crtc(dev, crtc, encoder)
3500                 encoder->disable(encoder);
3501
3502         intel_crtc_wait_for_pending_flips(crtc);
3503         drm_vblank_off(dev, pipe);
3504         intel_crtc_update_cursor(crtc, false);
3505
3506         intel_disable_plane(dev_priv, plane, pipe);
3507
3508         if (dev_priv->cfb_plane == plane)
3509                 intel_disable_fbc(dev);
3510
3511         intel_disable_pipe(dev_priv, pipe);
3512
3513         /* Disable PF */
3514         I915_WRITE(PF_CTL(pipe), 0);
3515         I915_WRITE(PF_WIN_SZ(pipe), 0);
3516
3517         for_each_encoder_on_crtc(dev, crtc, encoder)
3518                 if (encoder->post_disable)
3519                         encoder->post_disable(encoder);
3520
3521         ironlake_fdi_disable(crtc);
3522
3523         ironlake_disable_pch_transcoder(dev_priv, pipe);
3524
3525         if (HAS_PCH_CPT(dev)) {
3526                 /* disable TRANS_DP_CTL */
3527                 reg = TRANS_DP_CTL(pipe);
3528                 temp = I915_READ(reg);
3529                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3530                 temp |= TRANS_DP_PORT_SEL_NONE;
3531                 I915_WRITE(reg, temp);
3532
3533                 /* disable DPLL_SEL */
3534                 temp = I915_READ(PCH_DPLL_SEL);
3535                 switch (pipe) {
3536                 case 0:
3537                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3538                         break;
3539                 case 1:
3540                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3541                         break;
3542                 case 2:
3543                         /* C shares PLL A or B */
3544                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3545                         break;
3546                 default:
3547                         BUG(); /* wtf */
3548                 }
3549                 I915_WRITE(PCH_DPLL_SEL, temp);
3550         }
3551
3552         /* disable PCH DPLL */
3553         intel_disable_pch_pll(intel_crtc);
3554
3555         ironlake_fdi_pll_disable(intel_crtc);
3556
3557         intel_crtc->active = false;
3558         intel_update_watermarks(dev);
3559
3560         mutex_lock(&dev->struct_mutex);
3561         intel_update_fbc(dev);
3562         mutex_unlock(&dev->struct_mutex);
3563 }
3564
3565 static void haswell_crtc_disable(struct drm_crtc *crtc)
3566 {
3567         struct drm_device *dev = crtc->dev;
3568         struct drm_i915_private *dev_priv = dev->dev_private;
3569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3570         struct intel_encoder *encoder;
3571         int pipe = intel_crtc->pipe;
3572         int plane = intel_crtc->plane;
3573         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3574         bool is_pch_port;
3575
3576         if (!intel_crtc->active)
3577                 return;
3578
3579         is_pch_port = haswell_crtc_driving_pch(crtc);
3580
3581         for_each_encoder_on_crtc(dev, crtc, encoder)
3582                 encoder->disable(encoder);
3583
3584         intel_crtc_wait_for_pending_flips(crtc);
3585         drm_vblank_off(dev, pipe);
3586         intel_crtc_update_cursor(crtc, false);
3587
3588         intel_disable_plane(dev_priv, plane, pipe);
3589
3590         if (dev_priv->cfb_plane == plane)
3591                 intel_disable_fbc(dev);
3592
3593         intel_disable_pipe(dev_priv, pipe);
3594
3595         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3596
3597         /* Disable PF */
3598         I915_WRITE(PF_CTL(pipe), 0);
3599         I915_WRITE(PF_WIN_SZ(pipe), 0);
3600
3601         intel_ddi_disable_pipe_clock(intel_crtc);
3602
3603         for_each_encoder_on_crtc(dev, crtc, encoder)
3604                 if (encoder->post_disable)
3605                         encoder->post_disable(encoder);
3606
3607         if (is_pch_port) {
3608                 lpt_disable_pch_transcoder(dev_priv);
3609                 intel_ddi_fdi_disable(crtc);
3610         }
3611
3612         intel_crtc->active = false;
3613         intel_update_watermarks(dev);
3614
3615         mutex_lock(&dev->struct_mutex);
3616         intel_update_fbc(dev);
3617         mutex_unlock(&dev->struct_mutex);
3618 }
3619
3620 static void ironlake_crtc_off(struct drm_crtc *crtc)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623         intel_put_pch_pll(intel_crtc);
3624 }
3625
3626 static void haswell_crtc_off(struct drm_crtc *crtc)
3627 {
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629
3630         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3631          * start using it. */
3632         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3633
3634         intel_ddi_put_crtc_pll(crtc);
3635 }
3636
3637 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3638 {
3639         if (!enable && intel_crtc->overlay) {
3640                 struct drm_device *dev = intel_crtc->base.dev;
3641                 struct drm_i915_private *dev_priv = dev->dev_private;
3642
3643                 mutex_lock(&dev->struct_mutex);
3644                 dev_priv->mm.interruptible = false;
3645                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3646                 dev_priv->mm.interruptible = true;
3647                 mutex_unlock(&dev->struct_mutex);
3648         }
3649
3650         /* Let userspace switch the overlay on again. In most cases userspace
3651          * has to recompute where to put it anyway.
3652          */
3653 }
3654
3655 /**
3656  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3657  * cursor plane briefly if not already running after enabling the display
3658  * plane.
3659  * This workaround avoids occasional blank screens when self refresh is
3660  * enabled.
3661  */
3662 static void
3663 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3664 {
3665         u32 cntl = I915_READ(CURCNTR(pipe));
3666
3667         if ((cntl & CURSOR_MODE) == 0) {
3668                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3669
3670                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3671                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3672                 intel_wait_for_vblank(dev_priv->dev, pipe);
3673                 I915_WRITE(CURCNTR(pipe), cntl);
3674                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3675                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3676         }
3677 }
3678
3679 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3680 {
3681         struct drm_device *dev = crtc->dev;
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3684         struct intel_encoder *encoder;
3685         int pipe = intel_crtc->pipe;
3686         int plane = intel_crtc->plane;
3687
3688         WARN_ON(!crtc->enabled);
3689
3690         if (intel_crtc->active)
3691                 return;
3692
3693         intel_crtc->active = true;
3694         intel_update_watermarks(dev);
3695
3696         intel_enable_pll(dev_priv, pipe);
3697
3698         for_each_encoder_on_crtc(dev, crtc, encoder)
3699                 if (encoder->pre_enable)
3700                         encoder->pre_enable(encoder);
3701
3702         intel_enable_pipe(dev_priv, pipe, false);
3703         intel_enable_plane(dev_priv, plane, pipe);
3704         if (IS_G4X(dev))
3705                 g4x_fixup_plane(dev_priv, pipe);
3706
3707         intel_crtc_load_lut(crtc);
3708         intel_update_fbc(dev);
3709
3710         /* Give the overlay scaler a chance to enable if it's on this pipe */
3711         intel_crtc_dpms_overlay(intel_crtc, true);
3712         intel_crtc_update_cursor(crtc, true);
3713
3714         for_each_encoder_on_crtc(dev, crtc, encoder)
3715                 encoder->enable(encoder);
3716 }
3717
3718 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3719 {
3720         struct drm_device *dev = crtc->dev;
3721         struct drm_i915_private *dev_priv = dev->dev_private;
3722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3723         struct intel_encoder *encoder;
3724         int pipe = intel_crtc->pipe;
3725         int plane = intel_crtc->plane;
3726         u32 pctl;
3727
3728
3729         if (!intel_crtc->active)
3730                 return;
3731
3732         for_each_encoder_on_crtc(dev, crtc, encoder)
3733                 encoder->disable(encoder);
3734
3735         /* Give the overlay scaler a chance to disable if it's on this pipe */
3736         intel_crtc_wait_for_pending_flips(crtc);
3737         drm_vblank_off(dev, pipe);
3738         intel_crtc_dpms_overlay(intel_crtc, false);
3739         intel_crtc_update_cursor(crtc, false);
3740
3741         if (dev_priv->cfb_plane == plane)
3742                 intel_disable_fbc(dev);
3743
3744         intel_disable_plane(dev_priv, plane, pipe);
3745         intel_disable_pipe(dev_priv, pipe);
3746
3747         /* Disable pannel fitter if it is on this pipe. */
3748         pctl = I915_READ(PFIT_CONTROL);
3749         if ((pctl & PFIT_ENABLE) &&
3750             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3751                 I915_WRITE(PFIT_CONTROL, 0);
3752
3753         intel_disable_pll(dev_priv, pipe);
3754
3755         intel_crtc->active = false;
3756         intel_update_fbc(dev);
3757         intel_update_watermarks(dev);
3758 }
3759
3760 static void i9xx_crtc_off(struct drm_crtc *crtc)
3761 {
3762 }
3763
3764 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3765                                     bool enabled)
3766 {
3767         struct drm_device *dev = crtc->dev;
3768         struct drm_i915_master_private *master_priv;
3769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3770         int pipe = intel_crtc->pipe;
3771
3772         if (!dev->primary->master)
3773                 return;
3774
3775         master_priv = dev->primary->master->driver_priv;
3776         if (!master_priv->sarea_priv)
3777                 return;
3778
3779         switch (pipe) {
3780         case 0:
3781                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3782                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3783                 break;
3784         case 1:
3785                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3786                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3787                 break;
3788         default:
3789                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3790                 break;
3791         }
3792 }
3793
3794 /**
3795  * Sets the power management mode of the pipe and plane.
3796  */
3797 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3798 {
3799         struct drm_device *dev = crtc->dev;
3800         struct drm_i915_private *dev_priv = dev->dev_private;
3801         struct intel_encoder *intel_encoder;
3802         bool enable = false;
3803
3804         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3805                 enable |= intel_encoder->connectors_active;
3806
3807         if (enable)
3808                 dev_priv->display.crtc_enable(crtc);
3809         else
3810                 dev_priv->display.crtc_disable(crtc);
3811
3812         intel_crtc_update_sarea(crtc, enable);
3813 }
3814
3815 static void intel_crtc_disable(struct drm_crtc *crtc)
3816 {
3817         struct drm_device *dev = crtc->dev;
3818         struct drm_connector *connector;
3819         struct drm_i915_private *dev_priv = dev->dev_private;
3820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3821
3822         /* crtc should still be enabled when we disable it. */
3823         WARN_ON(!crtc->enabled);
3824
3825         intel_crtc->eld_vld = false;
3826         dev_priv->display.crtc_disable(crtc);
3827         intel_crtc_update_sarea(crtc, false);
3828         dev_priv->display.off(crtc);
3829
3830         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3831         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3832
3833         if (crtc->fb) {
3834                 mutex_lock(&dev->struct_mutex);
3835                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3836                 mutex_unlock(&dev->struct_mutex);
3837                 crtc->fb = NULL;
3838         }
3839
3840         /* Update computed state. */
3841         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3842                 if (!connector->encoder || !connector->encoder->crtc)
3843                         continue;
3844
3845                 if (connector->encoder->crtc != crtc)
3846                         continue;
3847
3848                 connector->dpms = DRM_MODE_DPMS_OFF;
3849                 to_intel_encoder(connector->encoder)->connectors_active = false;
3850         }
3851 }
3852
3853 void intel_modeset_disable(struct drm_device *dev)
3854 {
3855         struct drm_crtc *crtc;
3856
3857         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3858                 if (crtc->enabled)
3859                         intel_crtc_disable(crtc);
3860         }
3861 }
3862
3863 void intel_encoder_destroy(struct drm_encoder *encoder)
3864 {
3865         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3866
3867         drm_encoder_cleanup(encoder);
3868         kfree(intel_encoder);
3869 }
3870
3871 /* Simple dpms helper for encodres with just one connector, no cloning and only
3872  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3873  * state of the entire output pipe. */
3874 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3875 {
3876         if (mode == DRM_MODE_DPMS_ON) {
3877                 encoder->connectors_active = true;
3878
3879                 intel_crtc_update_dpms(encoder->base.crtc);
3880         } else {
3881                 encoder->connectors_active = false;
3882
3883                 intel_crtc_update_dpms(encoder->base.crtc);
3884         }
3885 }
3886
3887 /* Cross check the actual hw state with our own modeset state tracking (and it's
3888  * internal consistency). */
3889 static void intel_connector_check_state(struct intel_connector *connector)
3890 {
3891         if (connector->get_hw_state(connector)) {
3892                 struct intel_encoder *encoder = connector->encoder;
3893                 struct drm_crtc *crtc;
3894                 bool encoder_enabled;
3895                 enum pipe pipe;
3896
3897                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3898                               connector->base.base.id,
3899                               drm_get_connector_name(&connector->base));
3900
3901                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3902                      "wrong connector dpms state\n");
3903                 WARN(connector->base.encoder != &encoder->base,
3904                      "active connector not linked to encoder\n");
3905                 WARN(!encoder->connectors_active,
3906                      "encoder->connectors_active not set\n");
3907
3908                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3909                 WARN(!encoder_enabled, "encoder not enabled\n");
3910                 if (WARN_ON(!encoder->base.crtc))
3911                         return;
3912
3913                 crtc = encoder->base.crtc;
3914
3915                 WARN(!crtc->enabled, "crtc not enabled\n");
3916                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3917                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3918                      "encoder active on the wrong pipe\n");
3919         }
3920 }
3921
3922 /* Even simpler default implementation, if there's really no special case to
3923  * consider. */
3924 void intel_connector_dpms(struct drm_connector *connector, int mode)
3925 {
3926         struct intel_encoder *encoder = intel_attached_encoder(connector);
3927
3928         /* All the simple cases only support two dpms states. */
3929         if (mode != DRM_MODE_DPMS_ON)
3930                 mode = DRM_MODE_DPMS_OFF;
3931
3932         if (mode == connector->dpms)
3933                 return;
3934
3935         connector->dpms = mode;
3936
3937         /* Only need to change hw state when actually enabled */
3938         if (encoder->base.crtc)
3939                 intel_encoder_dpms(encoder, mode);
3940         else
3941                 WARN_ON(encoder->connectors_active != false);
3942
3943         intel_modeset_check_state(connector->dev);
3944 }
3945
3946 /* Simple connector->get_hw_state implementation for encoders that support only
3947  * one connector and no cloning and hence the encoder state determines the state
3948  * of the connector. */
3949 bool intel_connector_get_hw_state(struct intel_connector *connector)
3950 {
3951         enum pipe pipe = 0;
3952         struct intel_encoder *encoder = connector->encoder;
3953
3954         return encoder->get_hw_state(encoder, &pipe);
3955 }
3956
3957 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3958                                   const struct drm_display_mode *mode,
3959                                   struct drm_display_mode *adjusted_mode)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962
3963         if (HAS_PCH_SPLIT(dev)) {
3964                 /* FDI link clock is fixed at 2.7G */
3965                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3966                         return false;
3967         }
3968
3969         /* All interlaced capable intel hw wants timings in frames. Note though
3970          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3971          * timings, so we need to be careful not to clobber these.*/
3972         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3973                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3974
3975         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3976          * with a hsync front porch of 0.
3977          */
3978         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3979                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3980                 return false;
3981
3982         return true;
3983 }
3984
3985 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 400000; /* FIXME */
3988 }
3989
3990 static int i945_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         return 400000;
3993 }
3994
3995 static int i915_get_display_clock_speed(struct drm_device *dev)
3996 {
3997         return 333000;
3998 }
3999
4000 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4001 {
4002         return 200000;
4003 }
4004
4005 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4006 {
4007         u16 gcfgc = 0;
4008
4009         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4010
4011         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4012                 return 133000;
4013         else {
4014                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4015                 case GC_DISPLAY_CLOCK_333_MHZ:
4016                         return 333000;
4017                 default:
4018                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4019                         return 190000;
4020                 }
4021         }
4022 }
4023
4024 static int i865_get_display_clock_speed(struct drm_device *dev)
4025 {
4026         return 266000;
4027 }
4028
4029 static int i855_get_display_clock_speed(struct drm_device *dev)
4030 {
4031         u16 hpllcc = 0;
4032         /* Assume that the hardware is in the high speed state.  This
4033          * should be the default.
4034          */
4035         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4036         case GC_CLOCK_133_200:
4037         case GC_CLOCK_100_200:
4038                 return 200000;
4039         case GC_CLOCK_166_250:
4040                 return 250000;
4041         case GC_CLOCK_100_133:
4042                 return 133000;
4043         }
4044
4045         /* Shouldn't happen */
4046         return 0;
4047 }
4048
4049 static int i830_get_display_clock_speed(struct drm_device *dev)
4050 {
4051         return 133000;
4052 }
4053
4054 static void
4055 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4056 {
4057         while (*num > 0xffffff || *den > 0xffffff) {
4058                 *num >>= 1;
4059                 *den >>= 1;
4060         }
4061 }
4062
4063 void
4064 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4065                        int pixel_clock, int link_clock,
4066                        struct intel_link_m_n *m_n)
4067 {
4068         m_n->tu = 64;
4069         m_n->gmch_m = bits_per_pixel * pixel_clock;
4070         m_n->gmch_n = link_clock * nlanes * 8;
4071         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4072         m_n->link_m = pixel_clock;
4073         m_n->link_n = link_clock;
4074         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4075 }
4076
4077 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4078 {
4079         if (i915_panel_use_ssc >= 0)
4080                 return i915_panel_use_ssc != 0;
4081         return dev_priv->lvds_use_ssc
4082                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4083 }
4084
4085 /**
4086  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4087  * @crtc: CRTC structure
4088  * @mode: requested mode
4089  *
4090  * A pipe may be connected to one or more outputs.  Based on the depth of the
4091  * attached framebuffer, choose a good color depth to use on the pipe.
4092  *
4093  * If possible, match the pipe depth to the fb depth.  In some cases, this
4094  * isn't ideal, because the connected output supports a lesser or restricted
4095  * set of depths.  Resolve that here:
4096  *    LVDS typically supports only 6bpc, so clamp down in that case
4097  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4098  *    Displays may support a restricted set as well, check EDID and clamp as
4099  *      appropriate.
4100  *    DP may want to dither down to 6bpc to fit larger modes
4101  *
4102  * RETURNS:
4103  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4104  * true if they don't match).
4105  */
4106 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4107                                          struct drm_framebuffer *fb,
4108                                          unsigned int *pipe_bpp,
4109                                          struct drm_display_mode *mode)
4110 {
4111         struct drm_device *dev = crtc->dev;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct drm_connector *connector;
4114         struct intel_encoder *intel_encoder;
4115         unsigned int display_bpc = UINT_MAX, bpc;
4116
4117         /* Walk the encoders & connectors on this crtc, get min bpc */
4118         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4119
4120                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4121                         unsigned int lvds_bpc;
4122
4123                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4124                             LVDS_A3_POWER_UP)
4125                                 lvds_bpc = 8;
4126                         else
4127                                 lvds_bpc = 6;
4128
4129                         if (lvds_bpc < display_bpc) {
4130                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4131                                 display_bpc = lvds_bpc;
4132                         }
4133                         continue;
4134                 }
4135
4136                 /* Not one of the known troublemakers, check the EDID */
4137                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4138                                     head) {
4139                         if (connector->encoder != &intel_encoder->base)
4140                                 continue;
4141
4142                         /* Don't use an invalid EDID bpc value */
4143                         if (connector->display_info.bpc &&
4144                             connector->display_info.bpc < display_bpc) {
4145                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4146                                 display_bpc = connector->display_info.bpc;
4147                         }
4148                 }
4149
4150                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4151                         /* Use VBT settings if we have an eDP panel */
4152                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4153
4154                         if (edp_bpc && edp_bpc < display_bpc) {
4155                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4156                                 display_bpc = edp_bpc;
4157                         }
4158                         continue;
4159                 }
4160
4161                 /*
4162                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4163                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4164                  */
4165                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4166                         if (display_bpc > 8 && display_bpc < 12) {
4167                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4168                                 display_bpc = 12;
4169                         } else {
4170                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4171                                 display_bpc = 8;
4172                         }
4173                 }
4174         }
4175
4176         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4177                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4178                 display_bpc = 6;
4179         }
4180
4181         /*
4182          * We could just drive the pipe at the highest bpc all the time and
4183          * enable dithering as needed, but that costs bandwidth.  So choose
4184          * the minimum value that expresses the full color range of the fb but
4185          * also stays within the max display bpc discovered above.
4186          */
4187
4188         switch (fb->depth) {
4189         case 8:
4190                 bpc = 8; /* since we go through a colormap */
4191                 break;
4192         case 15:
4193         case 16:
4194                 bpc = 6; /* min is 18bpp */
4195                 break;
4196         case 24:
4197                 bpc = 8;
4198                 break;
4199         case 30:
4200                 bpc = 10;
4201                 break;
4202         case 48:
4203                 bpc = 12;
4204                 break;
4205         default:
4206                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4207                 bpc = min((unsigned int)8, display_bpc);
4208                 break;
4209         }
4210
4211         display_bpc = min(display_bpc, bpc);
4212
4213         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4214                       bpc, display_bpc);
4215
4216         *pipe_bpp = display_bpc * 3;
4217
4218         return display_bpc != bpc;
4219 }
4220
4221 static int vlv_get_refclk(struct drm_crtc *crtc)
4222 {
4223         struct drm_device *dev = crtc->dev;
4224         struct drm_i915_private *dev_priv = dev->dev_private;
4225         int refclk = 27000; /* for DP & HDMI */
4226
4227         return 100000; /* only one validated so far */
4228
4229         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4230                 refclk = 96000;
4231         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4232                 if (intel_panel_use_ssc(dev_priv))
4233                         refclk = 100000;
4234                 else
4235                         refclk = 96000;
4236         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4237                 refclk = 100000;
4238         }
4239
4240         return refclk;
4241 }
4242
4243 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4244 {
4245         struct drm_device *dev = crtc->dev;
4246         struct drm_i915_private *dev_priv = dev->dev_private;
4247         int refclk;
4248
4249         if (IS_VALLEYVIEW(dev)) {
4250                 refclk = vlv_get_refclk(crtc);
4251         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4252             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4253                 refclk = dev_priv->lvds_ssc_freq * 1000;
4254                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4255                               refclk / 1000);
4256         } else if (!IS_GEN2(dev)) {
4257                 refclk = 96000;
4258         } else {
4259                 refclk = 48000;
4260         }
4261
4262         return refclk;
4263 }
4264
4265 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4266                                       intel_clock_t *clock)
4267 {
4268         /* SDVO TV has fixed PLL values depend on its clock range,
4269            this mirrors vbios setting. */
4270         if (adjusted_mode->clock >= 100000
4271             && adjusted_mode->clock < 140500) {
4272                 clock->p1 = 2;
4273                 clock->p2 = 10;
4274                 clock->n = 3;
4275                 clock->m1 = 16;
4276                 clock->m2 = 8;
4277         } else if (adjusted_mode->clock >= 140500
4278                    && adjusted_mode->clock <= 200000) {
4279                 clock->p1 = 1;
4280                 clock->p2 = 10;
4281                 clock->n = 6;
4282                 clock->m1 = 12;
4283                 clock->m2 = 8;
4284         }
4285 }
4286
4287 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4288                                      intel_clock_t *clock,
4289                                      intel_clock_t *reduced_clock)
4290 {
4291         struct drm_device *dev = crtc->dev;
4292         struct drm_i915_private *dev_priv = dev->dev_private;
4293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4294         int pipe = intel_crtc->pipe;
4295         u32 fp, fp2 = 0;
4296
4297         if (IS_PINEVIEW(dev)) {
4298                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4299                 if (reduced_clock)
4300                         fp2 = (1 << reduced_clock->n) << 16 |
4301                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4302         } else {
4303                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4304                 if (reduced_clock)
4305                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4306                                 reduced_clock->m2;
4307         }
4308
4309         I915_WRITE(FP0(pipe), fp);
4310
4311         intel_crtc->lowfreq_avail = false;
4312         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4313             reduced_clock && i915_powersave) {
4314                 I915_WRITE(FP1(pipe), fp2);
4315                 intel_crtc->lowfreq_avail = true;
4316         } else {
4317                 I915_WRITE(FP1(pipe), fp);
4318         }
4319 }
4320
4321 static void vlv_update_pll(struct drm_crtc *crtc,
4322                            struct drm_display_mode *mode,
4323                            struct drm_display_mode *adjusted_mode,
4324                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4325                            int num_connectors)
4326 {
4327         struct drm_device *dev = crtc->dev;
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4330         int pipe = intel_crtc->pipe;
4331         u32 dpll, mdiv, pdiv;
4332         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4333         bool is_sdvo;
4334         u32 temp;
4335
4336         mutex_lock(&dev_priv->dpio_lock);
4337
4338         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4339                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4340
4341         dpll = DPLL_VGA_MODE_DIS;
4342         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4343         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4344         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4345
4346         I915_WRITE(DPLL(pipe), dpll);
4347         POSTING_READ(DPLL(pipe));
4348
4349         bestn = clock->n;
4350         bestm1 = clock->m1;
4351         bestm2 = clock->m2;
4352         bestp1 = clock->p1;
4353         bestp2 = clock->p2;
4354
4355         /*
4356          * In Valleyview PLL and program lane counter registers are exposed
4357          * through DPIO interface
4358          */
4359         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4360         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4361         mdiv |= ((bestn << DPIO_N_SHIFT));
4362         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4363         mdiv |= (1 << DPIO_K_SHIFT);
4364         mdiv |= DPIO_ENABLE_CALIBRATION;
4365         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4366
4367         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4368
4369         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4370                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4371                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4372                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4373         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4374
4375         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4376
4377         dpll |= DPLL_VCO_ENABLE;
4378         I915_WRITE(DPLL(pipe), dpll);
4379         POSTING_READ(DPLL(pipe));
4380         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4381                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4382
4383         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4384
4385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4386                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4387
4388         I915_WRITE(DPLL(pipe), dpll);
4389
4390         /* Wait for the clocks to stabilize. */
4391         POSTING_READ(DPLL(pipe));
4392         udelay(150);
4393
4394         temp = 0;
4395         if (is_sdvo) {
4396                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4397                 if (temp > 1)
4398                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4399                 else
4400                         temp = 0;
4401         }
4402         I915_WRITE(DPLL_MD(pipe), temp);
4403         POSTING_READ(DPLL_MD(pipe));
4404
4405         /* Now program lane control registers */
4406         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4407                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4408         {
4409                 temp = 0x1000C4;
4410                 if(pipe == 1)
4411                         temp |= (1 << 21);
4412                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4413         }
4414         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4415         {
4416                 temp = 0x1000C4;
4417                 if(pipe == 1)
4418                         temp |= (1 << 21);
4419                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4420         }
4421
4422         mutex_unlock(&dev_priv->dpio_lock);
4423 }
4424
4425 static void i9xx_update_pll(struct drm_crtc *crtc,
4426                             struct drm_display_mode *mode,
4427                             struct drm_display_mode *adjusted_mode,
4428                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4429                             int num_connectors)
4430 {
4431         struct drm_device *dev = crtc->dev;
4432         struct drm_i915_private *dev_priv = dev->dev_private;
4433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4434         struct intel_encoder *encoder;
4435         int pipe = intel_crtc->pipe;
4436         u32 dpll;
4437         bool is_sdvo;
4438
4439         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4440
4441         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4442                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4443
4444         dpll = DPLL_VGA_MODE_DIS;
4445
4446         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4447                 dpll |= DPLLB_MODE_LVDS;
4448         else
4449                 dpll |= DPLLB_MODE_DAC_SERIAL;
4450         if (is_sdvo) {
4451                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4452                 if (pixel_multiplier > 1) {
4453                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4454                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4455                 }
4456                 dpll |= DPLL_DVO_HIGH_SPEED;
4457         }
4458         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4459                 dpll |= DPLL_DVO_HIGH_SPEED;
4460
4461         /* compute bitmask from p1 value */
4462         if (IS_PINEVIEW(dev))
4463                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4464         else {
4465                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4466                 if (IS_G4X(dev) && reduced_clock)
4467                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4468         }
4469         switch (clock->p2) {
4470         case 5:
4471                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4472                 break;
4473         case 7:
4474                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4475                 break;
4476         case 10:
4477                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4478                 break;
4479         case 14:
4480                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4481                 break;
4482         }
4483         if (INTEL_INFO(dev)->gen >= 4)
4484                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4485
4486         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4487                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4488         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4489                 /* XXX: just matching BIOS for now */
4490                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4491                 dpll |= 3;
4492         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4493                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4494                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4495         else
4496                 dpll |= PLL_REF_INPUT_DREFCLK;
4497
4498         dpll |= DPLL_VCO_ENABLE;
4499         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4500         POSTING_READ(DPLL(pipe));
4501         udelay(150);
4502
4503         for_each_encoder_on_crtc(dev, crtc, encoder)
4504                 if (encoder->pre_pll_enable)
4505                         encoder->pre_pll_enable(encoder);
4506
4507         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4508                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4509
4510         I915_WRITE(DPLL(pipe), dpll);
4511
4512         /* Wait for the clocks to stabilize. */
4513         POSTING_READ(DPLL(pipe));
4514         udelay(150);
4515
4516         if (INTEL_INFO(dev)->gen >= 4) {
4517                 u32 temp = 0;
4518                 if (is_sdvo) {
4519                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4520                         if (temp > 1)
4521                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4522                         else
4523                                 temp = 0;
4524                 }
4525                 I915_WRITE(DPLL_MD(pipe), temp);
4526         } else {
4527                 /* The pixel multiplier can only be updated once the
4528                  * DPLL is enabled and the clocks are stable.
4529                  *
4530                  * So write it again.
4531                  */
4532                 I915_WRITE(DPLL(pipe), dpll);
4533         }
4534 }
4535
4536 static void i8xx_update_pll(struct drm_crtc *crtc,
4537                             struct drm_display_mode *adjusted_mode,
4538                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4539                             int num_connectors)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4544         struct intel_encoder *encoder;
4545         int pipe = intel_crtc->pipe;
4546         u32 dpll;
4547
4548         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4549
4550         dpll = DPLL_VGA_MODE_DIS;
4551
4552         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4553                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4554         } else {
4555                 if (clock->p1 == 2)
4556                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4557                 else
4558                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4559                 if (clock->p2 == 4)
4560                         dpll |= PLL_P2_DIVIDE_BY_4;
4561         }
4562
4563         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4564                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4565                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4566         else
4567                 dpll |= PLL_REF_INPUT_DREFCLK;
4568
4569         dpll |= DPLL_VCO_ENABLE;
4570         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4571         POSTING_READ(DPLL(pipe));
4572         udelay(150);
4573
4574         for_each_encoder_on_crtc(dev, crtc, encoder)
4575                 if (encoder->pre_pll_enable)
4576                         encoder->pre_pll_enable(encoder);
4577
4578         I915_WRITE(DPLL(pipe), dpll);
4579
4580         /* Wait for the clocks to stabilize. */
4581         POSTING_READ(DPLL(pipe));
4582         udelay(150);
4583
4584         /* The pixel multiplier can only be updated once the
4585          * DPLL is enabled and the clocks are stable.
4586          *
4587          * So write it again.
4588          */
4589         I915_WRITE(DPLL(pipe), dpll);
4590 }
4591
4592 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4593                                    struct drm_display_mode *mode,
4594                                    struct drm_display_mode *adjusted_mode)
4595 {
4596         struct drm_device *dev = intel_crtc->base.dev;
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598         enum pipe pipe = intel_crtc->pipe;
4599         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4600         uint32_t vsyncshift;
4601
4602         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4603                 /* the chip adds 2 halflines automatically */
4604                 adjusted_mode->crtc_vtotal -= 1;
4605                 adjusted_mode->crtc_vblank_end -= 1;
4606                 vsyncshift = adjusted_mode->crtc_hsync_start
4607                              - adjusted_mode->crtc_htotal / 2;
4608         } else {
4609                 vsyncshift = 0;
4610         }
4611
4612         if (INTEL_INFO(dev)->gen > 3)
4613                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4614
4615         I915_WRITE(HTOTAL(cpu_transcoder),
4616                    (adjusted_mode->crtc_hdisplay - 1) |
4617                    ((adjusted_mode->crtc_htotal - 1) << 16));
4618         I915_WRITE(HBLANK(cpu_transcoder),
4619                    (adjusted_mode->crtc_hblank_start - 1) |
4620                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4621         I915_WRITE(HSYNC(cpu_transcoder),
4622                    (adjusted_mode->crtc_hsync_start - 1) |
4623                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4624
4625         I915_WRITE(VTOTAL(cpu_transcoder),
4626                    (adjusted_mode->crtc_vdisplay - 1) |
4627                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4628         I915_WRITE(VBLANK(cpu_transcoder),
4629                    (adjusted_mode->crtc_vblank_start - 1) |
4630                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4631         I915_WRITE(VSYNC(cpu_transcoder),
4632                    (adjusted_mode->crtc_vsync_start - 1) |
4633                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4634
4635         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4636          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4637          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4638          * bits. */
4639         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4640             (pipe == PIPE_B || pipe == PIPE_C))
4641                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4642
4643         /* pipesrc controls the size that is scaled from, which should
4644          * always be the user's requested size.
4645          */
4646         I915_WRITE(PIPESRC(pipe),
4647                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4648 }
4649
4650 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4651                               struct drm_display_mode *mode,
4652                               struct drm_display_mode *adjusted_mode,
4653                               int x, int y,
4654                               struct drm_framebuffer *fb)
4655 {
4656         struct drm_device *dev = crtc->dev;
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659         int pipe = intel_crtc->pipe;
4660         int plane = intel_crtc->plane;
4661         int refclk, num_connectors = 0;
4662         intel_clock_t clock, reduced_clock;
4663         u32 dspcntr, pipeconf;
4664         bool ok, has_reduced_clock = false, is_sdvo = false;
4665         bool is_lvds = false, is_tv = false, is_dp = false;
4666         struct intel_encoder *encoder;
4667         const intel_limit_t *limit;
4668         int ret;
4669
4670         for_each_encoder_on_crtc(dev, crtc, encoder) {
4671                 switch (encoder->type) {
4672                 case INTEL_OUTPUT_LVDS:
4673                         is_lvds = true;
4674                         break;
4675                 case INTEL_OUTPUT_SDVO:
4676                 case INTEL_OUTPUT_HDMI:
4677                         is_sdvo = true;
4678                         if (encoder->needs_tv_clock)
4679                                 is_tv = true;
4680                         break;
4681                 case INTEL_OUTPUT_TVOUT:
4682                         is_tv = true;
4683                         break;
4684                 case INTEL_OUTPUT_DISPLAYPORT:
4685                         is_dp = true;
4686                         break;
4687                 }
4688
4689                 num_connectors++;
4690         }
4691
4692         refclk = i9xx_get_refclk(crtc, num_connectors);
4693
4694         /*
4695          * Returns a set of divisors for the desired target clock with the given
4696          * refclk, or FALSE.  The returned values represent the clock equation:
4697          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4698          */
4699         limit = intel_limit(crtc, refclk);
4700         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4701                              &clock);
4702         if (!ok) {
4703                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4704                 return -EINVAL;
4705         }
4706
4707         /* Ensure that the cursor is valid for the new mode before changing... */
4708         intel_crtc_update_cursor(crtc, true);
4709
4710         if (is_lvds && dev_priv->lvds_downclock_avail) {
4711                 /*
4712                  * Ensure we match the reduced clock's P to the target clock.
4713                  * If the clocks don't match, we can't switch the display clock
4714                  * by using the FP0/FP1. In such case we will disable the LVDS
4715                  * downclock feature.
4716                 */
4717                 has_reduced_clock = limit->find_pll(limit, crtc,
4718                                                     dev_priv->lvds_downclock,
4719                                                     refclk,
4720                                                     &clock,
4721                                                     &reduced_clock);
4722         }
4723
4724         if (is_sdvo && is_tv)
4725                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4726
4727         if (IS_GEN2(dev))
4728                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4729                                 has_reduced_clock ? &reduced_clock : NULL,
4730                                 num_connectors);
4731         else if (IS_VALLEYVIEW(dev))
4732                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4733                                 has_reduced_clock ? &reduced_clock : NULL,
4734                                 num_connectors);
4735         else
4736                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4737                                 has_reduced_clock ? &reduced_clock : NULL,
4738                                 num_connectors);
4739
4740         /* setup pipeconf */
4741         pipeconf = I915_READ(PIPECONF(pipe));
4742
4743         /* Set up the display plane register */
4744         dspcntr = DISPPLANE_GAMMA_ENABLE;
4745
4746         if (!IS_VALLEYVIEW(dev)) {
4747                 if (pipe == 0)
4748                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4749                 else
4750                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4751         }
4752
4753         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4754                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4755                  * core speed.
4756                  *
4757                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4758                  * pipe == 0 check?
4759                  */
4760                 if (mode->clock >
4761                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4762                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4763                 else
4764                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4765         }
4766
4767         /* default to 8bpc */
4768         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4769         if (is_dp) {
4770                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4771                         pipeconf |= PIPECONF_6BPC |
4772                                     PIPECONF_DITHER_EN |
4773                                     PIPECONF_DITHER_TYPE_SP;
4774                 }
4775         }
4776
4777         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4778                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4779                         pipeconf |= PIPECONF_6BPC |
4780                                         PIPECONF_ENABLE |
4781                                         I965_PIPECONF_ACTIVE;
4782                 }
4783         }
4784
4785         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4786         drm_mode_debug_printmodeline(mode);
4787
4788         if (HAS_PIPE_CXSR(dev)) {
4789                 if (intel_crtc->lowfreq_avail) {
4790                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4791                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4792                 } else {
4793                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4794                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4795                 }
4796         }
4797
4798         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4799         if (!IS_GEN2(dev) &&
4800             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4801                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4802         else
4803                 pipeconf |= PIPECONF_PROGRESSIVE;
4804
4805         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4806
4807         /* pipesrc and dspsize control the size that is scaled from,
4808          * which should always be the user's requested size.
4809          */
4810         I915_WRITE(DSPSIZE(plane),
4811                    ((mode->vdisplay - 1) << 16) |
4812                    (mode->hdisplay - 1));
4813         I915_WRITE(DSPPOS(plane), 0);
4814
4815         I915_WRITE(PIPECONF(pipe), pipeconf);
4816         POSTING_READ(PIPECONF(pipe));
4817         intel_enable_pipe(dev_priv, pipe, false);
4818
4819         intel_wait_for_vblank(dev, pipe);
4820
4821         I915_WRITE(DSPCNTR(plane), dspcntr);
4822         POSTING_READ(DSPCNTR(plane));
4823
4824         ret = intel_pipe_set_base(crtc, x, y, fb);
4825
4826         intel_update_watermarks(dev);
4827
4828         return ret;
4829 }
4830
4831 static void ironlake_init_pch_refclk(struct drm_device *dev)
4832 {
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         struct drm_mode_config *mode_config = &dev->mode_config;
4835         struct intel_encoder *encoder;
4836         u32 temp;
4837         bool has_lvds = false;
4838         bool has_cpu_edp = false;
4839         bool has_pch_edp = false;
4840         bool has_panel = false;
4841         bool has_ck505 = false;
4842         bool can_ssc = false;
4843
4844         /* We need to take the global config into account */
4845         list_for_each_entry(encoder, &mode_config->encoder_list,
4846                             base.head) {
4847                 switch (encoder->type) {
4848                 case INTEL_OUTPUT_LVDS:
4849                         has_panel = true;
4850                         has_lvds = true;
4851                         break;
4852                 case INTEL_OUTPUT_EDP:
4853                         has_panel = true;
4854                         if (intel_encoder_is_pch_edp(&encoder->base))
4855                                 has_pch_edp = true;
4856                         else
4857                                 has_cpu_edp = true;
4858                         break;
4859                 }
4860         }
4861
4862         if (HAS_PCH_IBX(dev)) {
4863                 has_ck505 = dev_priv->display_clock_mode;
4864                 can_ssc = has_ck505;
4865         } else {
4866                 has_ck505 = false;
4867                 can_ssc = true;
4868         }
4869
4870         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4871                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4872                       has_ck505);
4873
4874         /* Ironlake: try to setup display ref clock before DPLL
4875          * enabling. This is only under driver's control after
4876          * PCH B stepping, previous chipset stepping should be
4877          * ignoring this setting.
4878          */
4879         temp = I915_READ(PCH_DREF_CONTROL);
4880         /* Always enable nonspread source */
4881         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4882
4883         if (has_ck505)
4884                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4885         else
4886                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4887
4888         if (has_panel) {
4889                 temp &= ~DREF_SSC_SOURCE_MASK;
4890                 temp |= DREF_SSC_SOURCE_ENABLE;
4891
4892                 /* SSC must be turned on before enabling the CPU output  */
4893                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4894                         DRM_DEBUG_KMS("Using SSC on panel\n");
4895                         temp |= DREF_SSC1_ENABLE;
4896                 } else
4897                         temp &= ~DREF_SSC1_ENABLE;
4898
4899                 /* Get SSC going before enabling the outputs */
4900                 I915_WRITE(PCH_DREF_CONTROL, temp);
4901                 POSTING_READ(PCH_DREF_CONTROL);
4902                 udelay(200);
4903
4904                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4905
4906                 /* Enable CPU source on CPU attached eDP */
4907                 if (has_cpu_edp) {
4908                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4909                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4910                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4911                         }
4912                         else
4913                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4914                 } else
4915                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4916
4917                 I915_WRITE(PCH_DREF_CONTROL, temp);
4918                 POSTING_READ(PCH_DREF_CONTROL);
4919                 udelay(200);
4920         } else {
4921                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4922
4923                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4924
4925                 /* Turn off CPU output */
4926                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4927
4928                 I915_WRITE(PCH_DREF_CONTROL, temp);
4929                 POSTING_READ(PCH_DREF_CONTROL);
4930                 udelay(200);
4931
4932                 /* Turn off the SSC source */
4933                 temp &= ~DREF_SSC_SOURCE_MASK;
4934                 temp |= DREF_SSC_SOURCE_DISABLE;
4935
4936                 /* Turn off SSC1 */
4937                 temp &= ~ DREF_SSC1_ENABLE;
4938
4939                 I915_WRITE(PCH_DREF_CONTROL, temp);
4940                 POSTING_READ(PCH_DREF_CONTROL);
4941                 udelay(200);
4942         }
4943 }
4944
4945 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4946 static void lpt_init_pch_refclk(struct drm_device *dev)
4947 {
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         struct drm_mode_config *mode_config = &dev->mode_config;
4950         struct intel_encoder *encoder;
4951         bool has_vga = false;
4952         bool is_sdv = false;
4953         u32 tmp;
4954
4955         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4956                 switch (encoder->type) {
4957                 case INTEL_OUTPUT_ANALOG:
4958                         has_vga = true;
4959                         break;
4960                 }
4961         }
4962
4963         if (!has_vga)
4964                 return;
4965
4966         mutex_lock(&dev_priv->dpio_lock);
4967
4968         /* XXX: Rip out SDV support once Haswell ships for real. */
4969         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4970                 is_sdv = true;
4971
4972         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4973         tmp &= ~SBI_SSCCTL_DISABLE;
4974         tmp |= SBI_SSCCTL_PATHALT;
4975         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4976
4977         udelay(24);
4978
4979         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4980         tmp &= ~SBI_SSCCTL_PATHALT;
4981         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4982
4983         if (!is_sdv) {
4984                 tmp = I915_READ(SOUTH_CHICKEN2);
4985                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4986                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4987
4988                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4989                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4990                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4991
4992                 tmp = I915_READ(SOUTH_CHICKEN2);
4993                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4994                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4995
4996                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4997                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4998                                        100))
4999                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5000         }
5001
5002         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5003         tmp &= ~(0xFF << 24);
5004         tmp |= (0x12 << 24);
5005         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5006
5007         if (!is_sdv) {
5008                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5009                 tmp &= ~(0x3 << 6);
5010                 tmp |= (1 << 6) | (1 << 0);
5011                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5012         }
5013
5014         if (is_sdv) {
5015                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5016                 tmp |= 0x7FFF;
5017                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5018         }
5019
5020         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5021         tmp |= (1 << 11);
5022         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5023
5024         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5025         tmp |= (1 << 11);
5026         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5027
5028         if (is_sdv) {
5029                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5030                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5031                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5032
5033                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5034                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5035                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5036
5037                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5038                 tmp |= (0x3F << 8);
5039                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5040
5041                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5042                 tmp |= (0x3F << 8);
5043                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5044         }
5045
5046         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5047         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5048         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5049
5050         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5051         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5052         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5053
5054         if (!is_sdv) {
5055                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5056                 tmp &= ~(7 << 13);
5057                 tmp |= (5 << 13);
5058                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5059
5060                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5061                 tmp &= ~(7 << 13);
5062                 tmp |= (5 << 13);
5063                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5064         }
5065
5066         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5067         tmp &= ~0xFF;
5068         tmp |= 0x1C;
5069         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5070
5071         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5072         tmp &= ~0xFF;
5073         tmp |= 0x1C;
5074         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5075
5076         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5077         tmp &= ~(0xFF << 16);
5078         tmp |= (0x1C << 16);
5079         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5080
5081         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5082         tmp &= ~(0xFF << 16);
5083         tmp |= (0x1C << 16);
5084         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5085
5086         if (!is_sdv) {
5087                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5088                 tmp |= (1 << 27);
5089                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5090
5091                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5092                 tmp |= (1 << 27);
5093                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5094
5095                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5096                 tmp &= ~(0xF << 28);
5097                 tmp |= (4 << 28);
5098                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5099
5100                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5101                 tmp &= ~(0xF << 28);
5102                 tmp |= (4 << 28);
5103                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5104         }
5105
5106         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5107         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5108         tmp |= SBI_DBUFF0_ENABLE;
5109         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5110
5111         mutex_unlock(&dev_priv->dpio_lock);
5112 }
5113
5114 /*
5115  * Initialize reference clocks when the driver loads
5116  */
5117 void intel_init_pch_refclk(struct drm_device *dev)
5118 {
5119         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5120                 ironlake_init_pch_refclk(dev);
5121         else if (HAS_PCH_LPT(dev))
5122                 lpt_init_pch_refclk(dev);
5123 }
5124
5125 static int ironlake_get_refclk(struct drm_crtc *crtc)
5126 {
5127         struct drm_device *dev = crtc->dev;
5128         struct drm_i915_private *dev_priv = dev->dev_private;
5129         struct intel_encoder *encoder;
5130         struct intel_encoder *edp_encoder = NULL;
5131         int num_connectors = 0;
5132         bool is_lvds = false;
5133
5134         for_each_encoder_on_crtc(dev, crtc, encoder) {
5135                 switch (encoder->type) {
5136                 case INTEL_OUTPUT_LVDS:
5137                         is_lvds = true;
5138                         break;
5139                 case INTEL_OUTPUT_EDP:
5140                         edp_encoder = encoder;
5141                         break;
5142                 }
5143                 num_connectors++;
5144         }
5145
5146         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5147                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5148                               dev_priv->lvds_ssc_freq);
5149                 return dev_priv->lvds_ssc_freq * 1000;
5150         }
5151
5152         return 120000;
5153 }
5154
5155 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5156                                   struct drm_display_mode *adjusted_mode,
5157                                   bool dither)
5158 {
5159         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161         int pipe = intel_crtc->pipe;
5162         uint32_t val;
5163
5164         val = I915_READ(PIPECONF(pipe));
5165
5166         val &= ~PIPECONF_BPC_MASK;
5167         switch (intel_crtc->bpp) {
5168         case 18:
5169                 val |= PIPECONF_6BPC;
5170                 break;
5171         case 24:
5172                 val |= PIPECONF_8BPC;
5173                 break;
5174         case 30:
5175                 val |= PIPECONF_10BPC;
5176                 break;
5177         case 36:
5178                 val |= PIPECONF_12BPC;
5179                 break;
5180         default:
5181                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5182                 BUG();
5183         }
5184
5185         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5186         if (dither)
5187                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5188
5189         val &= ~PIPECONF_INTERLACE_MASK;
5190         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5191                 val |= PIPECONF_INTERLACED_ILK;
5192         else
5193                 val |= PIPECONF_PROGRESSIVE;
5194
5195         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5196                 val |= PIPECONF_COLOR_RANGE_SELECT;
5197         else
5198                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5199
5200         I915_WRITE(PIPECONF(pipe), val);
5201         POSTING_READ(PIPECONF(pipe));
5202 }
5203
5204 /*
5205  * Set up the pipe CSC unit.
5206  *
5207  * Currently only full range RGB to limited range RGB conversion
5208  * is supported, but eventually this should handle various
5209  * RGB<->YCbCr scenarios as well.
5210  */
5211 static void intel_set_pipe_csc(struct drm_crtc *crtc,
5212                                const struct drm_display_mode *adjusted_mode)
5213 {
5214         struct drm_device *dev = crtc->dev;
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5217         int pipe = intel_crtc->pipe;
5218         uint16_t coeff = 0x7800; /* 1.0 */
5219
5220         /*
5221          * TODO: Check what kind of values actually come out of the pipe
5222          * with these coeff/postoff values and adjust to get the best
5223          * accuracy. Perhaps we even need to take the bpc value into
5224          * consideration.
5225          */
5226
5227         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5228                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5229
5230         /*
5231          * GY/GU and RY/RU should be the other way around according
5232          * to BSpec, but reality doesn't agree. Just set them up in
5233          * a way that results in the correct picture.
5234          */
5235         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5236         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5237
5238         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5239         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5240
5241         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5242         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5243
5244         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5245         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5246         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5247
5248         if (INTEL_INFO(dev)->gen > 6) {
5249                 uint16_t postoff = 0;
5250
5251                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5252                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5253
5254                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5255                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5256                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5257
5258                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5259         } else {
5260                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5261
5262                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5263                         mode |= CSC_BLACK_SCREEN_OFFSET;
5264
5265                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5266         }
5267 }
5268
5269 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5270                                  struct drm_display_mode *adjusted_mode,
5271                                  bool dither)
5272 {
5273         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5275         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5276         uint32_t val;
5277
5278         val = I915_READ(PIPECONF(cpu_transcoder));
5279
5280         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5281         if (dither)
5282                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5283
5284         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5285         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5286                 val |= PIPECONF_INTERLACED_ILK;
5287         else
5288                 val |= PIPECONF_PROGRESSIVE;
5289
5290         I915_WRITE(PIPECONF(cpu_transcoder), val);
5291         POSTING_READ(PIPECONF(cpu_transcoder));
5292 }
5293
5294 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5295                                     struct drm_display_mode *adjusted_mode,
5296                                     intel_clock_t *clock,
5297                                     bool *has_reduced_clock,
5298                                     intel_clock_t *reduced_clock)
5299 {
5300         struct drm_device *dev = crtc->dev;
5301         struct drm_i915_private *dev_priv = dev->dev_private;
5302         struct intel_encoder *intel_encoder;
5303         int refclk;
5304         const intel_limit_t *limit;
5305         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5306
5307         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5308                 switch (intel_encoder->type) {
5309                 case INTEL_OUTPUT_LVDS:
5310                         is_lvds = true;
5311                         break;
5312                 case INTEL_OUTPUT_SDVO:
5313                 case INTEL_OUTPUT_HDMI:
5314                         is_sdvo = true;
5315                         if (intel_encoder->needs_tv_clock)
5316                                 is_tv = true;
5317                         break;
5318                 case INTEL_OUTPUT_TVOUT:
5319                         is_tv = true;
5320                         break;
5321                 }
5322         }
5323
5324         refclk = ironlake_get_refclk(crtc);
5325
5326         /*
5327          * Returns a set of divisors for the desired target clock with the given
5328          * refclk, or FALSE.  The returned values represent the clock equation:
5329          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5330          */
5331         limit = intel_limit(crtc, refclk);
5332         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5333                               clock);
5334         if (!ret)
5335                 return false;
5336
5337         if (is_lvds && dev_priv->lvds_downclock_avail) {
5338                 /*
5339                  * Ensure we match the reduced clock's P to the target clock.
5340                  * If the clocks don't match, we can't switch the display clock
5341                  * by using the FP0/FP1. In such case we will disable the LVDS
5342                  * downclock feature.
5343                 */
5344                 *has_reduced_clock = limit->find_pll(limit, crtc,
5345                                                      dev_priv->lvds_downclock,
5346                                                      refclk,
5347                                                      clock,
5348                                                      reduced_clock);
5349         }
5350
5351         if (is_sdvo && is_tv)
5352                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5353
5354         return true;
5355 }
5356
5357 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5358 {
5359         struct drm_i915_private *dev_priv = dev->dev_private;
5360         uint32_t temp;
5361
5362         temp = I915_READ(SOUTH_CHICKEN1);
5363         if (temp & FDI_BC_BIFURCATION_SELECT)
5364                 return;
5365
5366         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5367         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5368
5369         temp |= FDI_BC_BIFURCATION_SELECT;
5370         DRM_DEBUG_KMS("enabling fdi C rx\n");
5371         I915_WRITE(SOUTH_CHICKEN1, temp);
5372         POSTING_READ(SOUTH_CHICKEN1);
5373 }
5374
5375 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5376 {
5377         struct drm_device *dev = intel_crtc->base.dev;
5378         struct drm_i915_private *dev_priv = dev->dev_private;
5379         struct intel_crtc *pipe_B_crtc =
5380                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5381
5382         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5383                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5384         if (intel_crtc->fdi_lanes > 4) {
5385                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5386                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5387                 /* Clamp lanes to avoid programming the hw with bogus values. */
5388                 intel_crtc->fdi_lanes = 4;
5389
5390                 return false;
5391         }
5392
5393         if (INTEL_INFO(dev)->num_pipes == 2)
5394                 return true;
5395
5396         switch (intel_crtc->pipe) {
5397         case PIPE_A:
5398                 return true;
5399         case PIPE_B:
5400                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5401                     intel_crtc->fdi_lanes > 2) {
5402                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5403                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5404                         /* Clamp lanes to avoid programming the hw with bogus values. */
5405                         intel_crtc->fdi_lanes = 2;
5406
5407                         return false;
5408                 }
5409
5410                 if (intel_crtc->fdi_lanes > 2)
5411                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5412                 else
5413                         cpt_enable_fdi_bc_bifurcation(dev);
5414
5415                 return true;
5416         case PIPE_C:
5417                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5418                         if (intel_crtc->fdi_lanes > 2) {
5419                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5420                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5421                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5422                                 intel_crtc->fdi_lanes = 2;
5423
5424                                 return false;
5425                         }
5426                 } else {
5427                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5428                         return false;
5429                 }
5430
5431                 cpt_enable_fdi_bc_bifurcation(dev);
5432
5433                 return true;
5434         default:
5435                 BUG();
5436         }
5437 }
5438
5439 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5440 {
5441         /*
5442          * Account for spread spectrum to avoid
5443          * oversubscribing the link. Max center spread
5444          * is 2.5%; use 5% for safety's sake.
5445          */
5446         u32 bps = target_clock * bpp * 21 / 20;
5447         return bps / (link_bw * 8) + 1;
5448 }
5449
5450 static void ironlake_set_m_n(struct drm_crtc *crtc,
5451                              struct drm_display_mode *mode,
5452                              struct drm_display_mode *adjusted_mode)
5453 {
5454         struct drm_device *dev = crtc->dev;
5455         struct drm_i915_private *dev_priv = dev->dev_private;
5456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5457         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5458         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5459         struct intel_link_m_n m_n = {0};
5460         int target_clock, pixel_multiplier, lane, link_bw;
5461         bool is_dp = false, is_cpu_edp = false;
5462
5463         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5464                 switch (intel_encoder->type) {
5465                 case INTEL_OUTPUT_DISPLAYPORT:
5466                         is_dp = true;
5467                         break;
5468                 case INTEL_OUTPUT_EDP:
5469                         is_dp = true;
5470                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5471                                 is_cpu_edp = true;
5472                         edp_encoder = intel_encoder;
5473                         break;
5474                 }
5475         }
5476
5477         /* FDI link */
5478         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5479         lane = 0;
5480         /* CPU eDP doesn't require FDI link, so just set DP M/N
5481            according to current link config */
5482         if (is_cpu_edp) {
5483                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5484         } else {
5485                 /* FDI is a binary signal running at ~2.7GHz, encoding
5486                  * each output octet as 10 bits. The actual frequency
5487                  * is stored as a divider into a 100MHz clock, and the
5488                  * mode pixel clock is stored in units of 1KHz.
5489                  * Hence the bw of each lane in terms of the mode signal
5490                  * is:
5491                  */
5492                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5493         }
5494
5495         /* [e]DP over FDI requires target mode clock instead of link clock. */
5496         if (edp_encoder)
5497                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5498         else if (is_dp)
5499                 target_clock = mode->clock;
5500         else
5501                 target_clock = adjusted_mode->clock;
5502
5503         if (!lane)
5504                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5505                                                    intel_crtc->bpp);
5506
5507         intel_crtc->fdi_lanes = lane;
5508
5509         if (pixel_multiplier > 1)
5510                 link_bw *= pixel_multiplier;
5511         intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5512
5513         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5514         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5515         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5516         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5517 }
5518
5519 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5520                                       struct drm_display_mode *adjusted_mode,
5521                                       intel_clock_t *clock, u32 fp)
5522 {
5523         struct drm_crtc *crtc = &intel_crtc->base;
5524         struct drm_device *dev = crtc->dev;
5525         struct drm_i915_private *dev_priv = dev->dev_private;
5526         struct intel_encoder *intel_encoder;
5527         uint32_t dpll;
5528         int factor, pixel_multiplier, num_connectors = 0;
5529         bool is_lvds = false, is_sdvo = false, is_tv = false;
5530         bool is_dp = false, is_cpu_edp = false;
5531
5532         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5533                 switch (intel_encoder->type) {
5534                 case INTEL_OUTPUT_LVDS:
5535                         is_lvds = true;
5536                         break;
5537                 case INTEL_OUTPUT_SDVO:
5538                 case INTEL_OUTPUT_HDMI:
5539                         is_sdvo = true;
5540                         if (intel_encoder->needs_tv_clock)
5541                                 is_tv = true;
5542                         break;
5543                 case INTEL_OUTPUT_TVOUT:
5544                         is_tv = true;
5545                         break;
5546                 case INTEL_OUTPUT_DISPLAYPORT:
5547                         is_dp = true;
5548                         break;
5549                 case INTEL_OUTPUT_EDP:
5550                         is_dp = true;
5551                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5552                                 is_cpu_edp = true;
5553                         break;
5554                 }
5555
5556                 num_connectors++;
5557         }
5558
5559         /* Enable autotuning of the PLL clock (if permissible) */
5560         factor = 21;
5561         if (is_lvds) {
5562                 if ((intel_panel_use_ssc(dev_priv) &&
5563                      dev_priv->lvds_ssc_freq == 100) ||
5564                     intel_is_dual_link_lvds(dev))
5565                         factor = 25;
5566         } else if (is_sdvo && is_tv)
5567                 factor = 20;
5568
5569         if (clock->m < factor * clock->n)
5570                 fp |= FP_CB_TUNE;
5571
5572         dpll = 0;
5573
5574         if (is_lvds)
5575                 dpll |= DPLLB_MODE_LVDS;
5576         else
5577                 dpll |= DPLLB_MODE_DAC_SERIAL;
5578         if (is_sdvo) {
5579                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5580                 if (pixel_multiplier > 1) {
5581                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5582                 }
5583                 dpll |= DPLL_DVO_HIGH_SPEED;
5584         }
5585         if (is_dp && !is_cpu_edp)
5586                 dpll |= DPLL_DVO_HIGH_SPEED;
5587
5588         /* compute bitmask from p1 value */
5589         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5590         /* also FPA1 */
5591         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5592
5593         switch (clock->p2) {
5594         case 5:
5595                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5596                 break;
5597         case 7:
5598                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5599                 break;
5600         case 10:
5601                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5602                 break;
5603         case 14:
5604                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5605                 break;
5606         }
5607
5608         if (is_sdvo && is_tv)
5609                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5610         else if (is_tv)
5611                 /* XXX: just matching BIOS for now */
5612                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5613                 dpll |= 3;
5614         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5615                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5616         else
5617                 dpll |= PLL_REF_INPUT_DREFCLK;
5618
5619         return dpll;
5620 }
5621
5622 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5623                                   struct drm_display_mode *mode,
5624                                   struct drm_display_mode *adjusted_mode,
5625                                   int x, int y,
5626                                   struct drm_framebuffer *fb)
5627 {
5628         struct drm_device *dev = crtc->dev;
5629         struct drm_i915_private *dev_priv = dev->dev_private;
5630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5631         int pipe = intel_crtc->pipe;
5632         int plane = intel_crtc->plane;
5633         int num_connectors = 0;
5634         intel_clock_t clock, reduced_clock;
5635         u32 dpll, fp = 0, fp2 = 0;
5636         bool ok, has_reduced_clock = false;
5637         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5638         struct intel_encoder *encoder;
5639         int ret;
5640         bool dither, fdi_config_ok;
5641
5642         for_each_encoder_on_crtc(dev, crtc, encoder) {
5643                 switch (encoder->type) {
5644                 case INTEL_OUTPUT_LVDS:
5645                         is_lvds = true;
5646                         break;
5647                 case INTEL_OUTPUT_DISPLAYPORT:
5648                         is_dp = true;
5649                         break;
5650                 case INTEL_OUTPUT_EDP:
5651                         is_dp = true;
5652                         if (!intel_encoder_is_pch_edp(&encoder->base))
5653                                 is_cpu_edp = true;
5654                         break;
5655                 }
5656
5657                 num_connectors++;
5658         }
5659
5660         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5661              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5662
5663         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5664                                      &has_reduced_clock, &reduced_clock);
5665         if (!ok) {
5666                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5667                 return -EINVAL;
5668         }
5669
5670         /* Ensure that the cursor is valid for the new mode before changing... */
5671         intel_crtc_update_cursor(crtc, true);
5672
5673         /* determine panel color depth */
5674         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5675                                               adjusted_mode);
5676         if (is_lvds && dev_priv->lvds_dither)
5677                 dither = true;
5678
5679         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5680         if (has_reduced_clock)
5681                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5682                         reduced_clock.m2;
5683
5684         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5685
5686         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5687         drm_mode_debug_printmodeline(mode);
5688
5689         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5690         if (!is_cpu_edp) {
5691                 struct intel_pch_pll *pll;
5692
5693                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5694                 if (pll == NULL) {
5695                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5696                                          pipe);
5697                         return -EINVAL;
5698                 }
5699         } else
5700                 intel_put_pch_pll(intel_crtc);
5701
5702         if (is_dp && !is_cpu_edp)
5703                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5704
5705         for_each_encoder_on_crtc(dev, crtc, encoder)
5706                 if (encoder->pre_pll_enable)
5707                         encoder->pre_pll_enable(encoder);
5708
5709         if (intel_crtc->pch_pll) {
5710                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5711
5712                 /* Wait for the clocks to stabilize. */
5713                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5714                 udelay(150);
5715
5716                 /* The pixel multiplier can only be updated once the
5717                  * DPLL is enabled and the clocks are stable.
5718                  *
5719                  * So write it again.
5720                  */
5721                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5722         }
5723
5724         intel_crtc->lowfreq_avail = false;
5725         if (intel_crtc->pch_pll) {
5726                 if (is_lvds && has_reduced_clock && i915_powersave) {
5727                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5728                         intel_crtc->lowfreq_avail = true;
5729                 } else {
5730                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5731                 }
5732         }
5733
5734         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5735
5736         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5737          * ironlake_check_fdi_lanes. */
5738         ironlake_set_m_n(crtc, mode, adjusted_mode);
5739
5740         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5741
5742         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5743
5744         intel_wait_for_vblank(dev, pipe);
5745
5746         /* Set up the display plane register */
5747         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5748         POSTING_READ(DSPCNTR(plane));
5749
5750         ret = intel_pipe_set_base(crtc, x, y, fb);
5751
5752         intel_update_watermarks(dev);
5753
5754         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5755
5756         return fdi_config_ok ? ret : -EINVAL;
5757 }
5758
5759 static void haswell_modeset_global_resources(struct drm_device *dev)
5760 {
5761         struct drm_i915_private *dev_priv = dev->dev_private;
5762         bool enable = false;
5763         struct intel_crtc *crtc;
5764         struct intel_encoder *encoder;
5765
5766         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5767                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5768                         enable = true;
5769                 /* XXX: Should check for edp transcoder here, but thanks to init
5770                  * sequence that's not yet available. Just in case desktop eDP
5771                  * on PORT D is possible on haswell, too. */
5772         }
5773
5774         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5775                             base.head) {
5776                 if (encoder->type != INTEL_OUTPUT_EDP &&
5777                     encoder->connectors_active)
5778                         enable = true;
5779         }
5780
5781         /* Even the eDP panel fitter is outside the always-on well. */
5782         if (dev_priv->pch_pf_size)
5783                 enable = true;
5784
5785         intel_set_power_well(dev, enable);
5786 }
5787
5788 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5789                                  struct drm_display_mode *mode,
5790                                  struct drm_display_mode *adjusted_mode,
5791                                  int x, int y,
5792                                  struct drm_framebuffer *fb)
5793 {
5794         struct drm_device *dev = crtc->dev;
5795         struct drm_i915_private *dev_priv = dev->dev_private;
5796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5797         int pipe = intel_crtc->pipe;
5798         int plane = intel_crtc->plane;
5799         int num_connectors = 0;
5800         bool is_dp = false, is_cpu_edp = false;
5801         struct intel_encoder *encoder;
5802         int ret;
5803         bool dither;
5804
5805         for_each_encoder_on_crtc(dev, crtc, encoder) {
5806                 switch (encoder->type) {
5807                 case INTEL_OUTPUT_DISPLAYPORT:
5808                         is_dp = true;
5809                         break;
5810                 case INTEL_OUTPUT_EDP:
5811                         is_dp = true;
5812                         if (!intel_encoder_is_pch_edp(&encoder->base))
5813                                 is_cpu_edp = true;
5814                         break;
5815                 }
5816
5817                 num_connectors++;
5818         }
5819
5820         /* We are not sure yet this won't happen. */
5821         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5822              INTEL_PCH_TYPE(dev));
5823
5824         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5825              num_connectors, pipe_name(pipe));
5826
5827         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5828                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5829
5830         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5831
5832         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5833                 return -EINVAL;
5834
5835         /* Ensure that the cursor is valid for the new mode before changing... */
5836         intel_crtc_update_cursor(crtc, true);
5837
5838         /* determine panel color depth */
5839         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5840                                               adjusted_mode);
5841
5842         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5843         drm_mode_debug_printmodeline(mode);
5844
5845         if (is_dp && !is_cpu_edp)
5846                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5847
5848         intel_crtc->lowfreq_avail = false;
5849
5850         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5851
5852         if (!is_dp || is_cpu_edp)
5853                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5854
5855         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5856
5857         intel_set_pipe_csc(crtc, adjusted_mode);
5858
5859         /* Set up the display plane register */
5860         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5861         POSTING_READ(DSPCNTR(plane));
5862
5863         ret = intel_pipe_set_base(crtc, x, y, fb);
5864
5865         intel_update_watermarks(dev);
5866
5867         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5868
5869         return ret;
5870 }
5871
5872 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5873                                struct drm_display_mode *mode,
5874                                struct drm_display_mode *adjusted_mode,
5875                                int x, int y,
5876                                struct drm_framebuffer *fb)
5877 {
5878         struct drm_device *dev = crtc->dev;
5879         struct drm_i915_private *dev_priv = dev->dev_private;
5880         struct drm_encoder_helper_funcs *encoder_funcs;
5881         struct intel_encoder *encoder;
5882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5883         int pipe = intel_crtc->pipe;
5884         int ret;
5885
5886         if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5887                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5888         else
5889                 intel_crtc->cpu_transcoder = pipe;
5890
5891         drm_vblank_pre_modeset(dev, pipe);
5892
5893         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5894                                               x, y, fb);
5895         drm_vblank_post_modeset(dev, pipe);
5896
5897         if (ret != 0)
5898                 return ret;
5899
5900         for_each_encoder_on_crtc(dev, crtc, encoder) {
5901                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5902                         encoder->base.base.id,
5903                         drm_get_encoder_name(&encoder->base),
5904                         mode->base.id, mode->name);
5905                 encoder_funcs = encoder->base.helper_private;
5906                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5907         }
5908
5909         return 0;
5910 }
5911
5912 static bool intel_eld_uptodate(struct drm_connector *connector,
5913                                int reg_eldv, uint32_t bits_eldv,
5914                                int reg_elda, uint32_t bits_elda,
5915                                int reg_edid)
5916 {
5917         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5918         uint8_t *eld = connector->eld;
5919         uint32_t i;
5920
5921         i = I915_READ(reg_eldv);
5922         i &= bits_eldv;
5923
5924         if (!eld[0])
5925                 return !i;
5926
5927         if (!i)
5928                 return false;
5929
5930         i = I915_READ(reg_elda);
5931         i &= ~bits_elda;
5932         I915_WRITE(reg_elda, i);
5933
5934         for (i = 0; i < eld[2]; i++)
5935                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5936                         return false;
5937
5938         return true;
5939 }
5940
5941 static void g4x_write_eld(struct drm_connector *connector,
5942                           struct drm_crtc *crtc)
5943 {
5944         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5945         uint8_t *eld = connector->eld;
5946         uint32_t eldv;
5947         uint32_t len;
5948         uint32_t i;
5949
5950         i = I915_READ(G4X_AUD_VID_DID);
5951
5952         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5953                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5954         else
5955                 eldv = G4X_ELDV_DEVCTG;
5956
5957         if (intel_eld_uptodate(connector,
5958                                G4X_AUD_CNTL_ST, eldv,
5959                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5960                                G4X_HDMIW_HDMIEDID))
5961                 return;
5962
5963         i = I915_READ(G4X_AUD_CNTL_ST);
5964         i &= ~(eldv | G4X_ELD_ADDR);
5965         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5966         I915_WRITE(G4X_AUD_CNTL_ST, i);
5967
5968         if (!eld[0])
5969                 return;
5970
5971         len = min_t(uint8_t, eld[2], len);
5972         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5973         for (i = 0; i < len; i++)
5974                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5975
5976         i = I915_READ(G4X_AUD_CNTL_ST);
5977         i |= eldv;
5978         I915_WRITE(G4X_AUD_CNTL_ST, i);
5979 }
5980
5981 static void haswell_write_eld(struct drm_connector *connector,
5982                                      struct drm_crtc *crtc)
5983 {
5984         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5985         uint8_t *eld = connector->eld;
5986         struct drm_device *dev = crtc->dev;
5987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5988         uint32_t eldv;
5989         uint32_t i;
5990         int len;
5991         int pipe = to_intel_crtc(crtc)->pipe;
5992         int tmp;
5993
5994         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5995         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5996         int aud_config = HSW_AUD_CFG(pipe);
5997         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5998
5999
6000         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6001
6002         /* Audio output enable */
6003         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6004         tmp = I915_READ(aud_cntrl_st2);
6005         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6006         I915_WRITE(aud_cntrl_st2, tmp);
6007
6008         /* Wait for 1 vertical blank */
6009         intel_wait_for_vblank(dev, pipe);
6010
6011         /* Set ELD valid state */
6012         tmp = I915_READ(aud_cntrl_st2);
6013         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6014         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6015         I915_WRITE(aud_cntrl_st2, tmp);
6016         tmp = I915_READ(aud_cntrl_st2);
6017         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6018
6019         /* Enable HDMI mode */
6020         tmp = I915_READ(aud_config);
6021         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6022         /* clear N_programing_enable and N_value_index */
6023         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6024         I915_WRITE(aud_config, tmp);
6025
6026         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6027
6028         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6029         intel_crtc->eld_vld = true;
6030
6031         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6032                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6033                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6034                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6035         } else
6036                 I915_WRITE(aud_config, 0);
6037
6038         if (intel_eld_uptodate(connector,
6039                                aud_cntrl_st2, eldv,
6040                                aud_cntl_st, IBX_ELD_ADDRESS,
6041                                hdmiw_hdmiedid))
6042                 return;
6043
6044         i = I915_READ(aud_cntrl_st2);
6045         i &= ~eldv;
6046         I915_WRITE(aud_cntrl_st2, i);
6047
6048         if (!eld[0])
6049                 return;
6050
6051         i = I915_READ(aud_cntl_st);
6052         i &= ~IBX_ELD_ADDRESS;
6053         I915_WRITE(aud_cntl_st, i);
6054         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6055         DRM_DEBUG_DRIVER("port num:%d\n", i);
6056
6057         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6058         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6059         for (i = 0; i < len; i++)
6060                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6061
6062         i = I915_READ(aud_cntrl_st2);
6063         i |= eldv;
6064         I915_WRITE(aud_cntrl_st2, i);
6065
6066 }
6067
6068 static void ironlake_write_eld(struct drm_connector *connector,
6069                                      struct drm_crtc *crtc)
6070 {
6071         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6072         uint8_t *eld = connector->eld;
6073         uint32_t eldv;
6074         uint32_t i;
6075         int len;
6076         int hdmiw_hdmiedid;
6077         int aud_config;
6078         int aud_cntl_st;
6079         int aud_cntrl_st2;
6080         int pipe = to_intel_crtc(crtc)->pipe;
6081
6082         if (HAS_PCH_IBX(connector->dev)) {
6083                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6084                 aud_config = IBX_AUD_CFG(pipe);
6085                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6086                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6087         } else {
6088                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6089                 aud_config = CPT_AUD_CFG(pipe);
6090                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6091                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6092         }
6093
6094         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6095
6096         i = I915_READ(aud_cntl_st);
6097         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6098         if (!i) {
6099                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6100                 /* operate blindly on all ports */
6101                 eldv = IBX_ELD_VALIDB;
6102                 eldv |= IBX_ELD_VALIDB << 4;
6103                 eldv |= IBX_ELD_VALIDB << 8;
6104         } else {
6105                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6106                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6107         }
6108
6109         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6110                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6111                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6112                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6113         } else
6114                 I915_WRITE(aud_config, 0);
6115
6116         if (intel_eld_uptodate(connector,
6117                                aud_cntrl_st2, eldv,
6118                                aud_cntl_st, IBX_ELD_ADDRESS,
6119                                hdmiw_hdmiedid))
6120                 return;
6121
6122         i = I915_READ(aud_cntrl_st2);
6123         i &= ~eldv;
6124         I915_WRITE(aud_cntrl_st2, i);
6125
6126         if (!eld[0])
6127                 return;
6128
6129         i = I915_READ(aud_cntl_st);
6130         i &= ~IBX_ELD_ADDRESS;
6131         I915_WRITE(aud_cntl_st, i);
6132
6133         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6134         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6135         for (i = 0; i < len; i++)
6136                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6137
6138         i = I915_READ(aud_cntrl_st2);
6139         i |= eldv;
6140         I915_WRITE(aud_cntrl_st2, i);
6141 }
6142
6143 void intel_write_eld(struct drm_encoder *encoder,
6144                      struct drm_display_mode *mode)
6145 {
6146         struct drm_crtc *crtc = encoder->crtc;
6147         struct drm_connector *connector;
6148         struct drm_device *dev = encoder->dev;
6149         struct drm_i915_private *dev_priv = dev->dev_private;
6150
6151         connector = drm_select_eld(encoder, mode);
6152         if (!connector)
6153                 return;
6154
6155         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6156                          connector->base.id,
6157                          drm_get_connector_name(connector),
6158                          connector->encoder->base.id,
6159                          drm_get_encoder_name(connector->encoder));
6160
6161         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6162
6163         if (dev_priv->display.write_eld)
6164                 dev_priv->display.write_eld(connector, crtc);
6165 }
6166
6167 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6168 void intel_crtc_load_lut(struct drm_crtc *crtc)
6169 {
6170         struct drm_device *dev = crtc->dev;
6171         struct drm_i915_private *dev_priv = dev->dev_private;
6172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6173         int palreg = PALETTE(intel_crtc->pipe);
6174         int i;
6175
6176         /* The clocks have to be on to load the palette. */
6177         if (!crtc->enabled || !intel_crtc->active)
6178                 return;
6179
6180         /* use legacy palette for Ironlake */
6181         if (HAS_PCH_SPLIT(dev))
6182                 palreg = LGC_PALETTE(intel_crtc->pipe);
6183
6184         for (i = 0; i < 256; i++) {
6185                 I915_WRITE(palreg + 4 * i,
6186                            (intel_crtc->lut_r[i] << 16) |
6187                            (intel_crtc->lut_g[i] << 8) |
6188                            intel_crtc->lut_b[i]);
6189         }
6190 }
6191
6192 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6193 {
6194         struct drm_device *dev = crtc->dev;
6195         struct drm_i915_private *dev_priv = dev->dev_private;
6196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6197         bool visible = base != 0;
6198         u32 cntl;
6199
6200         if (intel_crtc->cursor_visible == visible)
6201                 return;
6202
6203         cntl = I915_READ(_CURACNTR);
6204         if (visible) {
6205                 /* On these chipsets we can only modify the base whilst
6206                  * the cursor is disabled.
6207                  */
6208                 I915_WRITE(_CURABASE, base);
6209
6210                 cntl &= ~(CURSOR_FORMAT_MASK);
6211                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6212                 cntl |= CURSOR_ENABLE |
6213                         CURSOR_GAMMA_ENABLE |
6214                         CURSOR_FORMAT_ARGB;
6215         } else
6216                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6217         I915_WRITE(_CURACNTR, cntl);
6218
6219         intel_crtc->cursor_visible = visible;
6220 }
6221
6222 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6223 {
6224         struct drm_device *dev = crtc->dev;
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6227         int pipe = intel_crtc->pipe;
6228         bool visible = base != 0;
6229
6230         if (intel_crtc->cursor_visible != visible) {
6231                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6232                 if (base) {
6233                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6234                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6235                         cntl |= pipe << 28; /* Connect to correct pipe */
6236                 } else {
6237                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6238                         cntl |= CURSOR_MODE_DISABLE;
6239                 }
6240                 I915_WRITE(CURCNTR(pipe), cntl);
6241
6242                 intel_crtc->cursor_visible = visible;
6243         }
6244         /* and commit changes on next vblank */
6245         I915_WRITE(CURBASE(pipe), base);
6246 }
6247
6248 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6249 {
6250         struct drm_device *dev = crtc->dev;
6251         struct drm_i915_private *dev_priv = dev->dev_private;
6252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6253         int pipe = intel_crtc->pipe;
6254         bool visible = base != 0;
6255
6256         if (intel_crtc->cursor_visible != visible) {
6257                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6258                 if (base) {
6259                         cntl &= ~CURSOR_MODE;
6260                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6261                 } else {
6262                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6263                         cntl |= CURSOR_MODE_DISABLE;
6264                 }
6265                 if (IS_HASWELL(dev))
6266                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6267                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6268
6269                 intel_crtc->cursor_visible = visible;
6270         }
6271         /* and commit changes on next vblank */
6272         I915_WRITE(CURBASE_IVB(pipe), base);
6273 }
6274
6275 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6276 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6277                                      bool on)
6278 {
6279         struct drm_device *dev = crtc->dev;
6280         struct drm_i915_private *dev_priv = dev->dev_private;
6281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6282         int pipe = intel_crtc->pipe;
6283         int x = intel_crtc->cursor_x;
6284         int y = intel_crtc->cursor_y;
6285         u32 base, pos;
6286         bool visible;
6287
6288         pos = 0;
6289
6290         if (on && crtc->enabled && crtc->fb) {
6291                 base = intel_crtc->cursor_addr;
6292                 if (x > (int) crtc->fb->width)
6293                         base = 0;
6294
6295                 if (y > (int) crtc->fb->height)
6296                         base = 0;
6297         } else
6298                 base = 0;
6299
6300         if (x < 0) {
6301                 if (x + intel_crtc->cursor_width < 0)
6302                         base = 0;
6303
6304                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6305                 x = -x;
6306         }
6307         pos |= x << CURSOR_X_SHIFT;
6308
6309         if (y < 0) {
6310                 if (y + intel_crtc->cursor_height < 0)
6311                         base = 0;
6312
6313                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6314                 y = -y;
6315         }
6316         pos |= y << CURSOR_Y_SHIFT;
6317
6318         visible = base != 0;
6319         if (!visible && !intel_crtc->cursor_visible)
6320                 return;
6321
6322         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6323                 I915_WRITE(CURPOS_IVB(pipe), pos);
6324                 ivb_update_cursor(crtc, base);
6325         } else {
6326                 I915_WRITE(CURPOS(pipe), pos);
6327                 if (IS_845G(dev) || IS_I865G(dev))
6328                         i845_update_cursor(crtc, base);
6329                 else
6330                         i9xx_update_cursor(crtc, base);
6331         }
6332 }
6333
6334 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6335                                  struct drm_file *file,
6336                                  uint32_t handle,
6337                                  uint32_t width, uint32_t height)
6338 {
6339         struct drm_device *dev = crtc->dev;
6340         struct drm_i915_private *dev_priv = dev->dev_private;
6341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6342         struct drm_i915_gem_object *obj;
6343         uint32_t addr;
6344         int ret;
6345
6346         /* if we want to turn off the cursor ignore width and height */
6347         if (!handle) {
6348                 DRM_DEBUG_KMS("cursor off\n");
6349                 addr = 0;
6350                 obj = NULL;
6351                 mutex_lock(&dev->struct_mutex);
6352                 goto finish;
6353         }
6354
6355         /* Currently we only support 64x64 cursors */
6356         if (width != 64 || height != 64) {
6357                 DRM_ERROR("we currently only support 64x64 cursors\n");
6358                 return -EINVAL;
6359         }
6360
6361         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6362         if (&obj->base == NULL)
6363                 return -ENOENT;
6364
6365         if (obj->base.size < width * height * 4) {
6366                 DRM_ERROR("buffer is to small\n");
6367                 ret = -ENOMEM;
6368                 goto fail;
6369         }
6370
6371         /* we only need to pin inside GTT if cursor is non-phy */
6372         mutex_lock(&dev->struct_mutex);
6373         if (!dev_priv->info->cursor_needs_physical) {
6374                 if (obj->tiling_mode) {
6375                         DRM_ERROR("cursor cannot be tiled\n");
6376                         ret = -EINVAL;
6377                         goto fail_locked;
6378                 }
6379
6380                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6381                 if (ret) {
6382                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6383                         goto fail_locked;
6384                 }
6385
6386                 ret = i915_gem_object_put_fence(obj);
6387                 if (ret) {
6388                         DRM_ERROR("failed to release fence for cursor");
6389                         goto fail_unpin;
6390                 }
6391
6392                 addr = obj->gtt_offset;
6393         } else {
6394                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6395                 ret = i915_gem_attach_phys_object(dev, obj,
6396                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6397                                                   align);
6398                 if (ret) {
6399                         DRM_ERROR("failed to attach phys object\n");
6400                         goto fail_locked;
6401                 }
6402                 addr = obj->phys_obj->handle->busaddr;
6403         }
6404
6405         if (IS_GEN2(dev))
6406                 I915_WRITE(CURSIZE, (height << 12) | width);
6407
6408  finish:
6409         if (intel_crtc->cursor_bo) {
6410                 if (dev_priv->info->cursor_needs_physical) {
6411                         if (intel_crtc->cursor_bo != obj)
6412                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6413                 } else
6414                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6415                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6416         }
6417
6418         mutex_unlock(&dev->struct_mutex);
6419
6420         intel_crtc->cursor_addr = addr;
6421         intel_crtc->cursor_bo = obj;
6422         intel_crtc->cursor_width = width;
6423         intel_crtc->cursor_height = height;
6424
6425         intel_crtc_update_cursor(crtc, true);
6426
6427         return 0;
6428 fail_unpin:
6429         i915_gem_object_unpin(obj);
6430 fail_locked:
6431         mutex_unlock(&dev->struct_mutex);
6432 fail:
6433         drm_gem_object_unreference_unlocked(&obj->base);
6434         return ret;
6435 }
6436
6437 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6438 {
6439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6440
6441         intel_crtc->cursor_x = x;
6442         intel_crtc->cursor_y = y;
6443
6444         intel_crtc_update_cursor(crtc, true);
6445
6446         return 0;
6447 }
6448
6449 /** Sets the color ramps on behalf of RandR */
6450 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6451                                  u16 blue, int regno)
6452 {
6453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6454
6455         intel_crtc->lut_r[regno] = red >> 8;
6456         intel_crtc->lut_g[regno] = green >> 8;
6457         intel_crtc->lut_b[regno] = blue >> 8;
6458 }
6459
6460 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6461                              u16 *blue, int regno)
6462 {
6463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6464
6465         *red = intel_crtc->lut_r[regno] << 8;
6466         *green = intel_crtc->lut_g[regno] << 8;
6467         *blue = intel_crtc->lut_b[regno] << 8;
6468 }
6469
6470 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6471                                  u16 *blue, uint32_t start, uint32_t size)
6472 {
6473         int end = (start + size > 256) ? 256 : start + size, i;
6474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6475
6476         for (i = start; i < end; i++) {
6477                 intel_crtc->lut_r[i] = red[i] >> 8;
6478                 intel_crtc->lut_g[i] = green[i] >> 8;
6479                 intel_crtc->lut_b[i] = blue[i] >> 8;
6480         }
6481
6482         intel_crtc_load_lut(crtc);
6483 }
6484
6485 /* VESA 640x480x72Hz mode to set on the pipe */
6486 static struct drm_display_mode load_detect_mode = {
6487         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6488                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6489 };
6490
6491 static struct drm_framebuffer *
6492 intel_framebuffer_create(struct drm_device *dev,
6493                          struct drm_mode_fb_cmd2 *mode_cmd,
6494                          struct drm_i915_gem_object *obj)
6495 {
6496         struct intel_framebuffer *intel_fb;
6497         int ret;
6498
6499         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6500         if (!intel_fb) {
6501                 drm_gem_object_unreference_unlocked(&obj->base);
6502                 return ERR_PTR(-ENOMEM);
6503         }
6504
6505         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6506         if (ret) {
6507                 drm_gem_object_unreference_unlocked(&obj->base);
6508                 kfree(intel_fb);
6509                 return ERR_PTR(ret);
6510         }
6511
6512         return &intel_fb->base;
6513 }
6514
6515 static u32
6516 intel_framebuffer_pitch_for_width(int width, int bpp)
6517 {
6518         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6519         return ALIGN(pitch, 64);
6520 }
6521
6522 static u32
6523 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6524 {
6525         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6526         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6527 }
6528
6529 static struct drm_framebuffer *
6530 intel_framebuffer_create_for_mode(struct drm_device *dev,
6531                                   struct drm_display_mode *mode,
6532                                   int depth, int bpp)
6533 {
6534         struct drm_i915_gem_object *obj;
6535         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6536
6537         obj = i915_gem_alloc_object(dev,
6538                                     intel_framebuffer_size_for_mode(mode, bpp));
6539         if (obj == NULL)
6540                 return ERR_PTR(-ENOMEM);
6541
6542         mode_cmd.width = mode->hdisplay;
6543         mode_cmd.height = mode->vdisplay;
6544         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6545                                                                 bpp);
6546         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6547
6548         return intel_framebuffer_create(dev, &mode_cmd, obj);
6549 }
6550
6551 static struct drm_framebuffer *
6552 mode_fits_in_fbdev(struct drm_device *dev,
6553                    struct drm_display_mode *mode)
6554 {
6555         struct drm_i915_private *dev_priv = dev->dev_private;
6556         struct drm_i915_gem_object *obj;
6557         struct drm_framebuffer *fb;
6558
6559         if (dev_priv->fbdev == NULL)
6560                 return NULL;
6561
6562         obj = dev_priv->fbdev->ifb.obj;
6563         if (obj == NULL)
6564                 return NULL;
6565
6566         fb = &dev_priv->fbdev->ifb.base;
6567         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6568                                                                fb->bits_per_pixel))
6569                 return NULL;
6570
6571         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6572                 return NULL;
6573
6574         return fb;
6575 }
6576
6577 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6578                                 struct drm_display_mode *mode,
6579                                 struct intel_load_detect_pipe *old)
6580 {
6581         struct intel_crtc *intel_crtc;
6582         struct intel_encoder *intel_encoder =
6583                 intel_attached_encoder(connector);
6584         struct drm_crtc *possible_crtc;
6585         struct drm_encoder *encoder = &intel_encoder->base;
6586         struct drm_crtc *crtc = NULL;
6587         struct drm_device *dev = encoder->dev;
6588         struct drm_framebuffer *fb;
6589         int i = -1;
6590
6591         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6592                       connector->base.id, drm_get_connector_name(connector),
6593                       encoder->base.id, drm_get_encoder_name(encoder));
6594
6595         /*
6596          * Algorithm gets a little messy:
6597          *
6598          *   - if the connector already has an assigned crtc, use it (but make
6599          *     sure it's on first)
6600          *
6601          *   - try to find the first unused crtc that can drive this connector,
6602          *     and use that if we find one
6603          */
6604
6605         /* See if we already have a CRTC for this connector */
6606         if (encoder->crtc) {
6607                 crtc = encoder->crtc;
6608
6609                 mutex_lock(&crtc->mutex);
6610
6611                 old->dpms_mode = connector->dpms;
6612                 old->load_detect_temp = false;
6613
6614                 /* Make sure the crtc and connector are running */
6615                 if (connector->dpms != DRM_MODE_DPMS_ON)
6616                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6617
6618                 return true;
6619         }
6620
6621         /* Find an unused one (if possible) */
6622         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6623                 i++;
6624                 if (!(encoder->possible_crtcs & (1 << i)))
6625                         continue;
6626                 if (!possible_crtc->enabled) {
6627                         crtc = possible_crtc;
6628                         break;
6629                 }
6630         }
6631
6632         /*
6633          * If we didn't find an unused CRTC, don't use any.
6634          */
6635         if (!crtc) {
6636                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6637                 return false;
6638         }
6639
6640         mutex_lock(&crtc->mutex);
6641         intel_encoder->new_crtc = to_intel_crtc(crtc);
6642         to_intel_connector(connector)->new_encoder = intel_encoder;
6643
6644         intel_crtc = to_intel_crtc(crtc);
6645         old->dpms_mode = connector->dpms;
6646         old->load_detect_temp = true;
6647         old->release_fb = NULL;
6648
6649         if (!mode)
6650                 mode = &load_detect_mode;
6651
6652         /* We need a framebuffer large enough to accommodate all accesses
6653          * that the plane may generate whilst we perform load detection.
6654          * We can not rely on the fbcon either being present (we get called
6655          * during its initialisation to detect all boot displays, or it may
6656          * not even exist) or that it is large enough to satisfy the
6657          * requested mode.
6658          */
6659         fb = mode_fits_in_fbdev(dev, mode);
6660         if (fb == NULL) {
6661                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6662                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6663                 old->release_fb = fb;
6664         } else
6665                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6666         if (IS_ERR(fb)) {
6667                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6668                 mutex_unlock(&crtc->mutex);
6669                 return false;
6670         }
6671
6672         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6673                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6674                 if (old->release_fb)
6675                         old->release_fb->funcs->destroy(old->release_fb);
6676                 mutex_unlock(&crtc->mutex);
6677                 return false;
6678         }
6679
6680         /* let the connector get through one full cycle before testing */
6681         intel_wait_for_vblank(dev, intel_crtc->pipe);
6682         return true;
6683 }
6684
6685 void intel_release_load_detect_pipe(struct drm_connector *connector,
6686                                     struct intel_load_detect_pipe *old)
6687 {
6688         struct intel_encoder *intel_encoder =
6689                 intel_attached_encoder(connector);
6690         struct drm_encoder *encoder = &intel_encoder->base;
6691         struct drm_crtc *crtc = encoder->crtc;
6692
6693         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6694                       connector->base.id, drm_get_connector_name(connector),
6695                       encoder->base.id, drm_get_encoder_name(encoder));
6696
6697         if (old->load_detect_temp) {
6698                 to_intel_connector(connector)->new_encoder = NULL;
6699                 intel_encoder->new_crtc = NULL;
6700                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6701
6702                 if (old->release_fb) {
6703                         drm_framebuffer_unregister_private(old->release_fb);
6704                         drm_framebuffer_unreference(old->release_fb);
6705                 }
6706
6707                 mutex_unlock(&crtc->mutex);
6708                 return;
6709         }
6710
6711         /* Switch crtc and encoder back off if necessary */
6712         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6713                 connector->funcs->dpms(connector, old->dpms_mode);
6714
6715         mutex_unlock(&crtc->mutex);
6716 }
6717
6718 /* Returns the clock of the currently programmed mode of the given pipe. */
6719 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6720 {
6721         struct drm_i915_private *dev_priv = dev->dev_private;
6722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6723         int pipe = intel_crtc->pipe;
6724         u32 dpll = I915_READ(DPLL(pipe));
6725         u32 fp;
6726         intel_clock_t clock;
6727
6728         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6729                 fp = I915_READ(FP0(pipe));
6730         else
6731                 fp = I915_READ(FP1(pipe));
6732
6733         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6734         if (IS_PINEVIEW(dev)) {
6735                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6736                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6737         } else {
6738                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6739                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6740         }
6741
6742         if (!IS_GEN2(dev)) {
6743                 if (IS_PINEVIEW(dev))
6744                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6745                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6746                 else
6747                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6748                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6749
6750                 switch (dpll & DPLL_MODE_MASK) {
6751                 case DPLLB_MODE_DAC_SERIAL:
6752                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6753                                 5 : 10;
6754                         break;
6755                 case DPLLB_MODE_LVDS:
6756                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6757                                 7 : 14;
6758                         break;
6759                 default:
6760                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6761                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6762                         return 0;
6763                 }
6764
6765                 /* XXX: Handle the 100Mhz refclk */
6766                 intel_clock(dev, 96000, &clock);
6767         } else {
6768                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6769
6770                 if (is_lvds) {
6771                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6772                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6773                         clock.p2 = 14;
6774
6775                         if ((dpll & PLL_REF_INPUT_MASK) ==
6776                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6777                                 /* XXX: might not be 66MHz */
6778                                 intel_clock(dev, 66000, &clock);
6779                         } else
6780                                 intel_clock(dev, 48000, &clock);
6781                 } else {
6782                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6783                                 clock.p1 = 2;
6784                         else {
6785                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6786                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6787                         }
6788                         if (dpll & PLL_P2_DIVIDE_BY_4)
6789                                 clock.p2 = 4;
6790                         else
6791                                 clock.p2 = 2;
6792
6793                         intel_clock(dev, 48000, &clock);
6794                 }
6795         }
6796
6797         /* XXX: It would be nice to validate the clocks, but we can't reuse
6798          * i830PllIsValid() because it relies on the xf86_config connector
6799          * configuration being accurate, which it isn't necessarily.
6800          */
6801
6802         return clock.dot;
6803 }
6804
6805 /** Returns the currently programmed mode of the given pipe. */
6806 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6807                                              struct drm_crtc *crtc)
6808 {
6809         struct drm_i915_private *dev_priv = dev->dev_private;
6810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6811         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6812         struct drm_display_mode *mode;
6813         int htot = I915_READ(HTOTAL(cpu_transcoder));
6814         int hsync = I915_READ(HSYNC(cpu_transcoder));
6815         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6816         int vsync = I915_READ(VSYNC(cpu_transcoder));
6817
6818         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6819         if (!mode)
6820                 return NULL;
6821
6822         mode->clock = intel_crtc_clock_get(dev, crtc);
6823         mode->hdisplay = (htot & 0xffff) + 1;
6824         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6825         mode->hsync_start = (hsync & 0xffff) + 1;
6826         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6827         mode->vdisplay = (vtot & 0xffff) + 1;
6828         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6829         mode->vsync_start = (vsync & 0xffff) + 1;
6830         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6831
6832         drm_mode_set_name(mode);
6833
6834         return mode;
6835 }
6836
6837 static void intel_increase_pllclock(struct drm_crtc *crtc)
6838 {
6839         struct drm_device *dev = crtc->dev;
6840         drm_i915_private_t *dev_priv = dev->dev_private;
6841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842         int pipe = intel_crtc->pipe;
6843         int dpll_reg = DPLL(pipe);
6844         int dpll;
6845
6846         if (HAS_PCH_SPLIT(dev))
6847                 return;
6848
6849         if (!dev_priv->lvds_downclock_avail)
6850                 return;
6851
6852         dpll = I915_READ(dpll_reg);
6853         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6854                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6855
6856                 assert_panel_unlocked(dev_priv, pipe);
6857
6858                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6859                 I915_WRITE(dpll_reg, dpll);
6860                 intel_wait_for_vblank(dev, pipe);
6861
6862                 dpll = I915_READ(dpll_reg);
6863                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6864                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6865         }
6866 }
6867
6868 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6869 {
6870         struct drm_device *dev = crtc->dev;
6871         drm_i915_private_t *dev_priv = dev->dev_private;
6872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6873
6874         if (HAS_PCH_SPLIT(dev))
6875                 return;
6876
6877         if (!dev_priv->lvds_downclock_avail)
6878                 return;
6879
6880         /*
6881          * Since this is called by a timer, we should never get here in
6882          * the manual case.
6883          */
6884         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6885                 int pipe = intel_crtc->pipe;
6886                 int dpll_reg = DPLL(pipe);
6887                 int dpll;
6888
6889                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6890
6891                 assert_panel_unlocked(dev_priv, pipe);
6892
6893                 dpll = I915_READ(dpll_reg);
6894                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6895                 I915_WRITE(dpll_reg, dpll);
6896                 intel_wait_for_vblank(dev, pipe);
6897                 dpll = I915_READ(dpll_reg);
6898                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6899                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6900         }
6901
6902 }
6903
6904 void intel_mark_busy(struct drm_device *dev)
6905 {
6906         i915_update_gfx_val(dev->dev_private);
6907 }
6908
6909 void intel_mark_idle(struct drm_device *dev)
6910 {
6911         struct drm_crtc *crtc;
6912
6913         if (!i915_powersave)
6914                 return;
6915
6916         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6917                 if (!crtc->fb)
6918                         continue;
6919
6920                 intel_decrease_pllclock(crtc);
6921         }
6922 }
6923
6924 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6925 {
6926         struct drm_device *dev = obj->base.dev;
6927         struct drm_crtc *crtc;
6928
6929         if (!i915_powersave)
6930                 return;
6931
6932         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6933                 if (!crtc->fb)
6934                         continue;
6935
6936                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6937                         intel_increase_pllclock(crtc);
6938         }
6939 }
6940
6941 static void intel_crtc_destroy(struct drm_crtc *crtc)
6942 {
6943         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6944         struct drm_device *dev = crtc->dev;
6945         struct intel_unpin_work *work;
6946         unsigned long flags;
6947
6948         spin_lock_irqsave(&dev->event_lock, flags);
6949         work = intel_crtc->unpin_work;
6950         intel_crtc->unpin_work = NULL;
6951         spin_unlock_irqrestore(&dev->event_lock, flags);
6952
6953         if (work) {
6954                 cancel_work_sync(&work->work);
6955                 kfree(work);
6956         }
6957
6958         drm_crtc_cleanup(crtc);
6959
6960         kfree(intel_crtc);
6961 }
6962
6963 static void intel_unpin_work_fn(struct work_struct *__work)
6964 {
6965         struct intel_unpin_work *work =
6966                 container_of(__work, struct intel_unpin_work, work);
6967         struct drm_device *dev = work->crtc->dev;
6968
6969         mutex_lock(&dev->struct_mutex);
6970         intel_unpin_fb_obj(work->old_fb_obj);
6971         drm_gem_object_unreference(&work->pending_flip_obj->base);
6972         drm_gem_object_unreference(&work->old_fb_obj->base);
6973
6974         intel_update_fbc(dev);
6975         mutex_unlock(&dev->struct_mutex);
6976
6977         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6978         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6979
6980         kfree(work);
6981 }
6982
6983 static void do_intel_finish_page_flip(struct drm_device *dev,
6984                                       struct drm_crtc *crtc)
6985 {
6986         drm_i915_private_t *dev_priv = dev->dev_private;
6987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6988         struct intel_unpin_work *work;
6989         unsigned long flags;
6990
6991         /* Ignore early vblank irqs */
6992         if (intel_crtc == NULL)
6993                 return;
6994
6995         spin_lock_irqsave(&dev->event_lock, flags);
6996         work = intel_crtc->unpin_work;
6997
6998         /* Ensure we don't miss a work->pending update ... */
6999         smp_rmb();
7000
7001         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7002                 spin_unlock_irqrestore(&dev->event_lock, flags);
7003                 return;
7004         }
7005
7006         /* and that the unpin work is consistent wrt ->pending. */
7007         smp_rmb();
7008
7009         intel_crtc->unpin_work = NULL;
7010
7011         if (work->event)
7012                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7013
7014         drm_vblank_put(dev, intel_crtc->pipe);
7015
7016         spin_unlock_irqrestore(&dev->event_lock, flags);
7017
7018         wake_up_all(&dev_priv->pending_flip_queue);
7019
7020         queue_work(dev_priv->wq, &work->work);
7021
7022         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7023 }
7024
7025 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7026 {
7027         drm_i915_private_t *dev_priv = dev->dev_private;
7028         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7029
7030         do_intel_finish_page_flip(dev, crtc);
7031 }
7032
7033 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7034 {
7035         drm_i915_private_t *dev_priv = dev->dev_private;
7036         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7037
7038         do_intel_finish_page_flip(dev, crtc);
7039 }
7040
7041 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7042 {
7043         drm_i915_private_t *dev_priv = dev->dev_private;
7044         struct intel_crtc *intel_crtc =
7045                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7046         unsigned long flags;
7047
7048         /* NB: An MMIO update of the plane base pointer will also
7049          * generate a page-flip completion irq, i.e. every modeset
7050          * is also accompanied by a spurious intel_prepare_page_flip().
7051          */
7052         spin_lock_irqsave(&dev->event_lock, flags);
7053         if (intel_crtc->unpin_work)
7054                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7055         spin_unlock_irqrestore(&dev->event_lock, flags);
7056 }
7057
7058 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7059 {
7060         /* Ensure that the work item is consistent when activating it ... */
7061         smp_wmb();
7062         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7063         /* and that it is marked active as soon as the irq could fire. */
7064         smp_wmb();
7065 }
7066
7067 static int intel_gen2_queue_flip(struct drm_device *dev,
7068                                  struct drm_crtc *crtc,
7069                                  struct drm_framebuffer *fb,
7070                                  struct drm_i915_gem_object *obj)
7071 {
7072         struct drm_i915_private *dev_priv = dev->dev_private;
7073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7074         u32 flip_mask;
7075         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7076         int ret;
7077
7078         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7079         if (ret)
7080                 goto err;
7081
7082         ret = intel_ring_begin(ring, 6);
7083         if (ret)
7084                 goto err_unpin;
7085
7086         /* Can't queue multiple flips, so wait for the previous
7087          * one to finish before executing the next.
7088          */
7089         if (intel_crtc->plane)
7090                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7091         else
7092                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7093         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7094         intel_ring_emit(ring, MI_NOOP);
7095         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7096                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7097         intel_ring_emit(ring, fb->pitches[0]);
7098         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7099         intel_ring_emit(ring, 0); /* aux display base address, unused */
7100
7101         intel_mark_page_flip_active(intel_crtc);
7102         intel_ring_advance(ring);
7103         return 0;
7104
7105 err_unpin:
7106         intel_unpin_fb_obj(obj);
7107 err:
7108         return ret;
7109 }
7110
7111 static int intel_gen3_queue_flip(struct drm_device *dev,
7112                                  struct drm_crtc *crtc,
7113                                  struct drm_framebuffer *fb,
7114                                  struct drm_i915_gem_object *obj)
7115 {
7116         struct drm_i915_private *dev_priv = dev->dev_private;
7117         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7118         u32 flip_mask;
7119         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7120         int ret;
7121
7122         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7123         if (ret)
7124                 goto err;
7125
7126         ret = intel_ring_begin(ring, 6);
7127         if (ret)
7128                 goto err_unpin;
7129
7130         if (intel_crtc->plane)
7131                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7132         else
7133                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7134         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7135         intel_ring_emit(ring, MI_NOOP);
7136         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7137                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7138         intel_ring_emit(ring, fb->pitches[0]);
7139         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7140         intel_ring_emit(ring, MI_NOOP);
7141
7142         intel_mark_page_flip_active(intel_crtc);
7143         intel_ring_advance(ring);
7144         return 0;
7145
7146 err_unpin:
7147         intel_unpin_fb_obj(obj);
7148 err:
7149         return ret;
7150 }
7151
7152 static int intel_gen4_queue_flip(struct drm_device *dev,
7153                                  struct drm_crtc *crtc,
7154                                  struct drm_framebuffer *fb,
7155                                  struct drm_i915_gem_object *obj)
7156 {
7157         struct drm_i915_private *dev_priv = dev->dev_private;
7158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7159         uint32_t pf, pipesrc;
7160         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7161         int ret;
7162
7163         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7164         if (ret)
7165                 goto err;
7166
7167         ret = intel_ring_begin(ring, 4);
7168         if (ret)
7169                 goto err_unpin;
7170
7171         /* i965+ uses the linear or tiled offsets from the
7172          * Display Registers (which do not change across a page-flip)
7173          * so we need only reprogram the base address.
7174          */
7175         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7176                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7177         intel_ring_emit(ring, fb->pitches[0]);
7178         intel_ring_emit(ring,
7179                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7180                         obj->tiling_mode);
7181
7182         /* XXX Enabling the panel-fitter across page-flip is so far
7183          * untested on non-native modes, so ignore it for now.
7184          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7185          */
7186         pf = 0;
7187         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7188         intel_ring_emit(ring, pf | pipesrc);
7189
7190         intel_mark_page_flip_active(intel_crtc);
7191         intel_ring_advance(ring);
7192         return 0;
7193
7194 err_unpin:
7195         intel_unpin_fb_obj(obj);
7196 err:
7197         return ret;
7198 }
7199
7200 static int intel_gen6_queue_flip(struct drm_device *dev,
7201                                  struct drm_crtc *crtc,
7202                                  struct drm_framebuffer *fb,
7203                                  struct drm_i915_gem_object *obj)
7204 {
7205         struct drm_i915_private *dev_priv = dev->dev_private;
7206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7207         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7208         uint32_t pf, pipesrc;
7209         int ret;
7210
7211         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7212         if (ret)
7213                 goto err;
7214
7215         ret = intel_ring_begin(ring, 4);
7216         if (ret)
7217                 goto err_unpin;
7218
7219         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7220                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7221         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7222         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7223
7224         /* Contrary to the suggestions in the documentation,
7225          * "Enable Panel Fitter" does not seem to be required when page
7226          * flipping with a non-native mode, and worse causes a normal
7227          * modeset to fail.
7228          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7229          */
7230         pf = 0;
7231         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7232         intel_ring_emit(ring, pf | pipesrc);
7233
7234         intel_mark_page_flip_active(intel_crtc);
7235         intel_ring_advance(ring);
7236         return 0;
7237
7238 err_unpin:
7239         intel_unpin_fb_obj(obj);
7240 err:
7241         return ret;
7242 }
7243
7244 /*
7245  * On gen7 we currently use the blit ring because (in early silicon at least)
7246  * the render ring doesn't give us interrpts for page flip completion, which
7247  * means clients will hang after the first flip is queued.  Fortunately the
7248  * blit ring generates interrupts properly, so use it instead.
7249  */
7250 static int intel_gen7_queue_flip(struct drm_device *dev,
7251                                  struct drm_crtc *crtc,
7252                                  struct drm_framebuffer *fb,
7253                                  struct drm_i915_gem_object *obj)
7254 {
7255         struct drm_i915_private *dev_priv = dev->dev_private;
7256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7257         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7258         uint32_t plane_bit = 0;
7259         int ret;
7260
7261         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7262         if (ret)
7263                 goto err;
7264
7265         switch(intel_crtc->plane) {
7266         case PLANE_A:
7267                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7268                 break;
7269         case PLANE_B:
7270                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7271                 break;
7272         case PLANE_C:
7273                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7274                 break;
7275         default:
7276                 WARN_ONCE(1, "unknown plane in flip command\n");
7277                 ret = -ENODEV;
7278                 goto err_unpin;
7279         }
7280
7281         ret = intel_ring_begin(ring, 4);
7282         if (ret)
7283                 goto err_unpin;
7284
7285         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7286         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7287         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7288         intel_ring_emit(ring, (MI_NOOP));
7289
7290         intel_mark_page_flip_active(intel_crtc);
7291         intel_ring_advance(ring);
7292         return 0;
7293
7294 err_unpin:
7295         intel_unpin_fb_obj(obj);
7296 err:
7297         return ret;
7298 }
7299
7300 static int intel_default_queue_flip(struct drm_device *dev,
7301                                     struct drm_crtc *crtc,
7302                                     struct drm_framebuffer *fb,
7303                                     struct drm_i915_gem_object *obj)
7304 {
7305         return -ENODEV;
7306 }
7307
7308 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7309                                 struct drm_framebuffer *fb,
7310                                 struct drm_pending_vblank_event *event)
7311 {
7312         struct drm_device *dev = crtc->dev;
7313         struct drm_i915_private *dev_priv = dev->dev_private;
7314         struct drm_framebuffer *old_fb = crtc->fb;
7315         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7317         struct intel_unpin_work *work;
7318         unsigned long flags;
7319         int ret;
7320
7321         /* Can't change pixel format via MI display flips. */
7322         if (fb->pixel_format != crtc->fb->pixel_format)
7323                 return -EINVAL;
7324
7325         /*
7326          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7327          * Note that pitch changes could also affect these register.
7328          */
7329         if (INTEL_INFO(dev)->gen > 3 &&
7330             (fb->offsets[0] != crtc->fb->offsets[0] ||
7331              fb->pitches[0] != crtc->fb->pitches[0]))
7332                 return -EINVAL;
7333
7334         work = kzalloc(sizeof *work, GFP_KERNEL);
7335         if (work == NULL)
7336                 return -ENOMEM;
7337
7338         work->event = event;
7339         work->crtc = crtc;
7340         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7341         INIT_WORK(&work->work, intel_unpin_work_fn);
7342
7343         ret = drm_vblank_get(dev, intel_crtc->pipe);
7344         if (ret)
7345                 goto free_work;
7346
7347         /* We borrow the event spin lock for protecting unpin_work */
7348         spin_lock_irqsave(&dev->event_lock, flags);
7349         if (intel_crtc->unpin_work) {
7350                 spin_unlock_irqrestore(&dev->event_lock, flags);
7351                 kfree(work);
7352                 drm_vblank_put(dev, intel_crtc->pipe);
7353
7354                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7355                 return -EBUSY;
7356         }
7357         intel_crtc->unpin_work = work;
7358         spin_unlock_irqrestore(&dev->event_lock, flags);
7359
7360         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7361                 flush_workqueue(dev_priv->wq);
7362
7363         ret = i915_mutex_lock_interruptible(dev);
7364         if (ret)
7365                 goto cleanup;
7366
7367         /* Reference the objects for the scheduled work. */
7368         drm_gem_object_reference(&work->old_fb_obj->base);
7369         drm_gem_object_reference(&obj->base);
7370
7371         crtc->fb = fb;
7372
7373         work->pending_flip_obj = obj;
7374
7375         work->enable_stall_check = true;
7376
7377         atomic_inc(&intel_crtc->unpin_work_count);
7378         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7379
7380         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7381         if (ret)
7382                 goto cleanup_pending;
7383
7384         intel_disable_fbc(dev);
7385         intel_mark_fb_busy(obj);
7386         mutex_unlock(&dev->struct_mutex);
7387
7388         trace_i915_flip_request(intel_crtc->plane, obj);
7389
7390         return 0;
7391
7392 cleanup_pending:
7393         atomic_dec(&intel_crtc->unpin_work_count);
7394         crtc->fb = old_fb;
7395         drm_gem_object_unreference(&work->old_fb_obj->base);
7396         drm_gem_object_unreference(&obj->base);
7397         mutex_unlock(&dev->struct_mutex);
7398
7399 cleanup:
7400         spin_lock_irqsave(&dev->event_lock, flags);
7401         intel_crtc->unpin_work = NULL;
7402         spin_unlock_irqrestore(&dev->event_lock, flags);
7403
7404         drm_vblank_put(dev, intel_crtc->pipe);
7405 free_work:
7406         kfree(work);
7407
7408         return ret;
7409 }
7410
7411 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7412         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7413         .load_lut = intel_crtc_load_lut,
7414 };
7415
7416 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7417 {
7418         struct intel_encoder *other_encoder;
7419         struct drm_crtc *crtc = &encoder->new_crtc->base;
7420
7421         if (WARN_ON(!crtc))
7422                 return false;
7423
7424         list_for_each_entry(other_encoder,
7425                             &crtc->dev->mode_config.encoder_list,
7426                             base.head) {
7427
7428                 if (&other_encoder->new_crtc->base != crtc ||
7429                     encoder == other_encoder)
7430                         continue;
7431                 else
7432                         return true;
7433         }
7434
7435         return false;
7436 }
7437
7438 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7439                                   struct drm_crtc *crtc)
7440 {
7441         struct drm_device *dev;
7442         struct drm_crtc *tmp;
7443         int crtc_mask = 1;
7444
7445         WARN(!crtc, "checking null crtc?\n");
7446
7447         dev = crtc->dev;
7448
7449         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7450                 if (tmp == crtc)
7451                         break;
7452                 crtc_mask <<= 1;
7453         }
7454
7455         if (encoder->possible_crtcs & crtc_mask)
7456                 return true;
7457         return false;
7458 }
7459
7460 /**
7461  * intel_modeset_update_staged_output_state
7462  *
7463  * Updates the staged output configuration state, e.g. after we've read out the
7464  * current hw state.
7465  */
7466 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7467 {
7468         struct intel_encoder *encoder;
7469         struct intel_connector *connector;
7470
7471         list_for_each_entry(connector, &dev->mode_config.connector_list,
7472                             base.head) {
7473                 connector->new_encoder =
7474                         to_intel_encoder(connector->base.encoder);
7475         }
7476
7477         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7478                             base.head) {
7479                 encoder->new_crtc =
7480                         to_intel_crtc(encoder->base.crtc);
7481         }
7482 }
7483
7484 /**
7485  * intel_modeset_commit_output_state
7486  *
7487  * This function copies the stage display pipe configuration to the real one.
7488  */
7489 static void intel_modeset_commit_output_state(struct drm_device *dev)
7490 {
7491         struct intel_encoder *encoder;
7492         struct intel_connector *connector;
7493
7494         list_for_each_entry(connector, &dev->mode_config.connector_list,
7495                             base.head) {
7496                 connector->base.encoder = &connector->new_encoder->base;
7497         }
7498
7499         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7500                             base.head) {
7501                 encoder->base.crtc = &encoder->new_crtc->base;
7502         }
7503 }
7504
7505 static struct drm_display_mode *
7506 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7507                             struct drm_display_mode *mode)
7508 {
7509         struct drm_device *dev = crtc->dev;
7510         struct drm_display_mode *adjusted_mode;
7511         struct drm_encoder_helper_funcs *encoder_funcs;
7512         struct intel_encoder *encoder;
7513
7514         adjusted_mode = drm_mode_duplicate(dev, mode);
7515         if (!adjusted_mode)
7516                 return ERR_PTR(-ENOMEM);
7517
7518         /* Pass our mode to the connectors and the CRTC to give them a chance to
7519          * adjust it according to limitations or connector properties, and also
7520          * a chance to reject the mode entirely.
7521          */
7522         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7523                             base.head) {
7524
7525                 if (&encoder->new_crtc->base != crtc)
7526                         continue;
7527                 encoder_funcs = encoder->base.helper_private;
7528                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7529                                                 adjusted_mode))) {
7530                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7531                         goto fail;
7532                 }
7533         }
7534
7535         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7536                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7537                 goto fail;
7538         }
7539         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7540
7541         return adjusted_mode;
7542 fail:
7543         drm_mode_destroy(dev, adjusted_mode);
7544         return ERR_PTR(-EINVAL);
7545 }
7546
7547 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7548  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7549 static void
7550 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7551                              unsigned *prepare_pipes, unsigned *disable_pipes)
7552 {
7553         struct intel_crtc *intel_crtc;
7554         struct drm_device *dev = crtc->dev;
7555         struct intel_encoder *encoder;
7556         struct intel_connector *connector;
7557         struct drm_crtc *tmp_crtc;
7558
7559         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7560
7561         /* Check which crtcs have changed outputs connected to them, these need
7562          * to be part of the prepare_pipes mask. We don't (yet) support global
7563          * modeset across multiple crtcs, so modeset_pipes will only have one
7564          * bit set at most. */
7565         list_for_each_entry(connector, &dev->mode_config.connector_list,
7566                             base.head) {
7567                 if (connector->base.encoder == &connector->new_encoder->base)
7568                         continue;
7569
7570                 if (connector->base.encoder) {
7571                         tmp_crtc = connector->base.encoder->crtc;
7572
7573                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7574                 }
7575
7576                 if (connector->new_encoder)
7577                         *prepare_pipes |=
7578                                 1 << connector->new_encoder->new_crtc->pipe;
7579         }
7580
7581         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7582                             base.head) {
7583                 if (encoder->base.crtc == &encoder->new_crtc->base)
7584                         continue;
7585
7586                 if (encoder->base.crtc) {
7587                         tmp_crtc = encoder->base.crtc;
7588
7589                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7590                 }
7591
7592                 if (encoder->new_crtc)
7593                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7594         }
7595
7596         /* Check for any pipes that will be fully disabled ... */
7597         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7598                             base.head) {
7599                 bool used = false;
7600
7601                 /* Don't try to disable disabled crtcs. */
7602                 if (!intel_crtc->base.enabled)
7603                         continue;
7604
7605                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7606                                     base.head) {
7607                         if (encoder->new_crtc == intel_crtc)
7608                                 used = true;
7609                 }
7610
7611                 if (!used)
7612                         *disable_pipes |= 1 << intel_crtc->pipe;
7613         }
7614
7615
7616         /* set_mode is also used to update properties on life display pipes. */
7617         intel_crtc = to_intel_crtc(crtc);
7618         if (crtc->enabled)
7619                 *prepare_pipes |= 1 << intel_crtc->pipe;
7620
7621         /* We only support modeset on one single crtc, hence we need to do that
7622          * only for the passed in crtc iff we change anything else than just
7623          * disable crtcs.
7624          *
7625          * This is actually not true, to be fully compatible with the old crtc
7626          * helper we automatically disable _any_ output (i.e. doesn't need to be
7627          * connected to the crtc we're modesetting on) if it's disconnected.
7628          * Which is a rather nutty api (since changed the output configuration
7629          * without userspace's explicit request can lead to confusion), but
7630          * alas. Hence we currently need to modeset on all pipes we prepare. */
7631         if (*prepare_pipes)
7632                 *modeset_pipes = *prepare_pipes;
7633
7634         /* ... and mask these out. */
7635         *modeset_pipes &= ~(*disable_pipes);
7636         *prepare_pipes &= ~(*disable_pipes);
7637 }
7638
7639 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7640 {
7641         struct drm_encoder *encoder;
7642         struct drm_device *dev = crtc->dev;
7643
7644         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7645                 if (encoder->crtc == crtc)
7646                         return true;
7647
7648         return false;
7649 }
7650
7651 static void
7652 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7653 {
7654         struct intel_encoder *intel_encoder;
7655         struct intel_crtc *intel_crtc;
7656         struct drm_connector *connector;
7657
7658         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7659                             base.head) {
7660                 if (!intel_encoder->base.crtc)
7661                         continue;
7662
7663                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7664
7665                 if (prepare_pipes & (1 << intel_crtc->pipe))
7666                         intel_encoder->connectors_active = false;
7667         }
7668
7669         intel_modeset_commit_output_state(dev);
7670
7671         /* Update computed state. */
7672         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7673                             base.head) {
7674                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7675         }
7676
7677         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7678                 if (!connector->encoder || !connector->encoder->crtc)
7679                         continue;
7680
7681                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7682
7683                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7684                         struct drm_property *dpms_property =
7685                                 dev->mode_config.dpms_property;
7686
7687                         connector->dpms = DRM_MODE_DPMS_ON;
7688                         drm_object_property_set_value(&connector->base,
7689                                                          dpms_property,
7690                                                          DRM_MODE_DPMS_ON);
7691
7692                         intel_encoder = to_intel_encoder(connector->encoder);
7693                         intel_encoder->connectors_active = true;
7694                 }
7695         }
7696
7697 }
7698
7699 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7700         list_for_each_entry((intel_crtc), \
7701                             &(dev)->mode_config.crtc_list, \
7702                             base.head) \
7703                 if (mask & (1 <<(intel_crtc)->pipe)) \
7704
7705 void
7706 intel_modeset_check_state(struct drm_device *dev)
7707 {
7708         struct intel_crtc *crtc;
7709         struct intel_encoder *encoder;
7710         struct intel_connector *connector;
7711
7712         list_for_each_entry(connector, &dev->mode_config.connector_list,
7713                             base.head) {
7714                 /* This also checks the encoder/connector hw state with the
7715                  * ->get_hw_state callbacks. */
7716                 intel_connector_check_state(connector);
7717
7718                 WARN(&connector->new_encoder->base != connector->base.encoder,
7719                      "connector's staged encoder doesn't match current encoder\n");
7720         }
7721
7722         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7723                             base.head) {
7724                 bool enabled = false;
7725                 bool active = false;
7726                 enum pipe pipe, tracked_pipe;
7727
7728                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7729                               encoder->base.base.id,
7730                               drm_get_encoder_name(&encoder->base));
7731
7732                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7733                      "encoder's stage crtc doesn't match current crtc\n");
7734                 WARN(encoder->connectors_active && !encoder->base.crtc,
7735                      "encoder's active_connectors set, but no crtc\n");
7736
7737                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7738                                     base.head) {
7739                         if (connector->base.encoder != &encoder->base)
7740                                 continue;
7741                         enabled = true;
7742                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7743                                 active = true;
7744                 }
7745                 WARN(!!encoder->base.crtc != enabled,
7746                      "encoder's enabled state mismatch "
7747                      "(expected %i, found %i)\n",
7748                      !!encoder->base.crtc, enabled);
7749                 WARN(active && !encoder->base.crtc,
7750                      "active encoder with no crtc\n");
7751
7752                 WARN(encoder->connectors_active != active,
7753                      "encoder's computed active state doesn't match tracked active state "
7754                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7755
7756                 active = encoder->get_hw_state(encoder, &pipe);
7757                 WARN(active != encoder->connectors_active,
7758                      "encoder's hw state doesn't match sw tracking "
7759                      "(expected %i, found %i)\n",
7760                      encoder->connectors_active, active);
7761
7762                 if (!encoder->base.crtc)
7763                         continue;
7764
7765                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7766                 WARN(active && pipe != tracked_pipe,
7767                      "active encoder's pipe doesn't match"
7768                      "(expected %i, found %i)\n",
7769                      tracked_pipe, pipe);
7770
7771         }
7772
7773         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7774                             base.head) {
7775                 bool enabled = false;
7776                 bool active = false;
7777
7778                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7779                               crtc->base.base.id);
7780
7781                 WARN(crtc->active && !crtc->base.enabled,
7782                      "active crtc, but not enabled in sw tracking\n");
7783
7784                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7785                                     base.head) {
7786                         if (encoder->base.crtc != &crtc->base)
7787                                 continue;
7788                         enabled = true;
7789                         if (encoder->connectors_active)
7790                                 active = true;
7791                 }
7792                 WARN(active != crtc->active,
7793                      "crtc's computed active state doesn't match tracked active state "
7794                      "(expected %i, found %i)\n", active, crtc->active);
7795                 WARN(enabled != crtc->base.enabled,
7796                      "crtc's computed enabled state doesn't match tracked enabled state "
7797                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7798
7799                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7800         }
7801 }
7802
7803 int intel_set_mode(struct drm_crtc *crtc,
7804                    struct drm_display_mode *mode,
7805                    int x, int y, struct drm_framebuffer *fb)
7806 {
7807         struct drm_device *dev = crtc->dev;
7808         drm_i915_private_t *dev_priv = dev->dev_private;
7809         struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7810         struct intel_crtc *intel_crtc;
7811         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7812         int ret = 0;
7813
7814         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7815         if (!saved_mode)
7816                 return -ENOMEM;
7817         saved_hwmode = saved_mode + 1;
7818
7819         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7820                                      &prepare_pipes, &disable_pipes);
7821
7822         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7823                       modeset_pipes, prepare_pipes, disable_pipes);
7824
7825         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7826                 intel_crtc_disable(&intel_crtc->base);
7827
7828         *saved_hwmode = crtc->hwmode;
7829         *saved_mode = crtc->mode;
7830
7831         /* Hack: Because we don't (yet) support global modeset on multiple
7832          * crtcs, we don't keep track of the new mode for more than one crtc.
7833          * Hence simply check whether any bit is set in modeset_pipes in all the
7834          * pieces of code that are not yet converted to deal with mutliple crtcs
7835          * changing their mode at the same time. */
7836         adjusted_mode = NULL;
7837         if (modeset_pipes) {
7838                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7839                 if (IS_ERR(adjusted_mode)) {
7840                         ret = PTR_ERR(adjusted_mode);
7841                         goto out;
7842                 }
7843         }
7844
7845         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7846                 if (intel_crtc->base.enabled)
7847                         dev_priv->display.crtc_disable(&intel_crtc->base);
7848         }
7849
7850         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7851          * to set it here already despite that we pass it down the callchain.
7852          */
7853         if (modeset_pipes)
7854                 crtc->mode = *mode;
7855
7856         /* Only after disabling all output pipelines that will be changed can we
7857          * update the the output configuration. */
7858         intel_modeset_update_state(dev, prepare_pipes);
7859
7860         if (dev_priv->display.modeset_global_resources)
7861                 dev_priv->display.modeset_global_resources(dev);
7862
7863         /* Set up the DPLL and any encoders state that needs to adjust or depend
7864          * on the DPLL.
7865          */
7866         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7867                 ret = intel_crtc_mode_set(&intel_crtc->base,
7868                                           mode, adjusted_mode,
7869                                           x, y, fb);
7870                 if (ret)
7871                         goto done;
7872         }
7873
7874         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7875         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7876                 dev_priv->display.crtc_enable(&intel_crtc->base);
7877
7878         if (modeset_pipes) {
7879                 /* Store real post-adjustment hardware mode. */
7880                 crtc->hwmode = *adjusted_mode;
7881
7882                 /* Calculate and store various constants which
7883                  * are later needed by vblank and swap-completion
7884                  * timestamping. They are derived from true hwmode.
7885                  */
7886                 drm_calc_timestamping_constants(crtc);
7887         }
7888
7889         /* FIXME: add subpixel order */
7890 done:
7891         drm_mode_destroy(dev, adjusted_mode);
7892         if (ret && crtc->enabled) {
7893                 crtc->hwmode = *saved_hwmode;
7894                 crtc->mode = *saved_mode;
7895         } else {
7896                 intel_modeset_check_state(dev);
7897         }
7898
7899 out:
7900         kfree(saved_mode);
7901         return ret;
7902 }
7903
7904 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7905 {
7906         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7907 }
7908
7909 #undef for_each_intel_crtc_masked
7910
7911 static void intel_set_config_free(struct intel_set_config *config)
7912 {
7913         if (!config)
7914                 return;
7915
7916         kfree(config->save_connector_encoders);
7917         kfree(config->save_encoder_crtcs);
7918         kfree(config);
7919 }
7920
7921 static int intel_set_config_save_state(struct drm_device *dev,
7922                                        struct intel_set_config *config)
7923 {
7924         struct drm_encoder *encoder;
7925         struct drm_connector *connector;
7926         int count;
7927
7928         config->save_encoder_crtcs =
7929                 kcalloc(dev->mode_config.num_encoder,
7930                         sizeof(struct drm_crtc *), GFP_KERNEL);
7931         if (!config->save_encoder_crtcs)
7932                 return -ENOMEM;
7933
7934         config->save_connector_encoders =
7935                 kcalloc(dev->mode_config.num_connector,
7936                         sizeof(struct drm_encoder *), GFP_KERNEL);
7937         if (!config->save_connector_encoders)
7938                 return -ENOMEM;
7939
7940         /* Copy data. Note that driver private data is not affected.
7941          * Should anything bad happen only the expected state is
7942          * restored, not the drivers personal bookkeeping.
7943          */
7944         count = 0;
7945         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7946                 config->save_encoder_crtcs[count++] = encoder->crtc;
7947         }
7948
7949         count = 0;
7950         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7951                 config->save_connector_encoders[count++] = connector->encoder;
7952         }
7953
7954         return 0;
7955 }
7956
7957 static void intel_set_config_restore_state(struct drm_device *dev,
7958                                            struct intel_set_config *config)
7959 {
7960         struct intel_encoder *encoder;
7961         struct intel_connector *connector;
7962         int count;
7963
7964         count = 0;
7965         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7966                 encoder->new_crtc =
7967                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7968         }
7969
7970         count = 0;
7971         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7972                 connector->new_encoder =
7973                         to_intel_encoder(config->save_connector_encoders[count++]);
7974         }
7975 }
7976
7977 static void
7978 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7979                                       struct intel_set_config *config)
7980 {
7981
7982         /* We should be able to check here if the fb has the same properties
7983          * and then just flip_or_move it */
7984         if (set->crtc->fb != set->fb) {
7985                 /* If we have no fb then treat it as a full mode set */
7986                 if (set->crtc->fb == NULL) {
7987                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7988                         config->mode_changed = true;
7989                 } else if (set->fb == NULL) {
7990                         config->mode_changed = true;
7991                 } else if (set->fb->depth != set->crtc->fb->depth) {
7992                         config->mode_changed = true;
7993                 } else if (set->fb->bits_per_pixel !=
7994                            set->crtc->fb->bits_per_pixel) {
7995                         config->mode_changed = true;
7996                 } else
7997                         config->fb_changed = true;
7998         }
7999
8000         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8001                 config->fb_changed = true;
8002
8003         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8004                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8005                 drm_mode_debug_printmodeline(&set->crtc->mode);
8006                 drm_mode_debug_printmodeline(set->mode);
8007                 config->mode_changed = true;
8008         }
8009 }
8010
8011 static int
8012 intel_modeset_stage_output_state(struct drm_device *dev,
8013                                  struct drm_mode_set *set,
8014                                  struct intel_set_config *config)
8015 {
8016         struct drm_crtc *new_crtc;
8017         struct intel_connector *connector;
8018         struct intel_encoder *encoder;
8019         int count, ro;
8020
8021         /* The upper layers ensure that we either disable a crtc or have a list
8022          * of connectors. For paranoia, double-check this. */
8023         WARN_ON(!set->fb && (set->num_connectors != 0));
8024         WARN_ON(set->fb && (set->num_connectors == 0));
8025
8026         count = 0;
8027         list_for_each_entry(connector, &dev->mode_config.connector_list,
8028                             base.head) {
8029                 /* Otherwise traverse passed in connector list and get encoders
8030                  * for them. */
8031                 for (ro = 0; ro < set->num_connectors; ro++) {
8032                         if (set->connectors[ro] == &connector->base) {
8033                                 connector->new_encoder = connector->encoder;
8034                                 break;
8035                         }
8036                 }
8037
8038                 /* If we disable the crtc, disable all its connectors. Also, if
8039                  * the connector is on the changing crtc but not on the new
8040                  * connector list, disable it. */
8041                 if ((!set->fb || ro == set->num_connectors) &&
8042                     connector->base.encoder &&
8043                     connector->base.encoder->crtc == set->crtc) {
8044                         connector->new_encoder = NULL;
8045
8046                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8047                                 connector->base.base.id,
8048                                 drm_get_connector_name(&connector->base));
8049                 }
8050
8051
8052                 if (&connector->new_encoder->base != connector->base.encoder) {
8053                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8054                         config->mode_changed = true;
8055                 }
8056         }
8057         /* connector->new_encoder is now updated for all connectors. */
8058
8059         /* Update crtc of enabled connectors. */
8060         count = 0;
8061         list_for_each_entry(connector, &dev->mode_config.connector_list,
8062                             base.head) {
8063                 if (!connector->new_encoder)
8064                         continue;
8065
8066                 new_crtc = connector->new_encoder->base.crtc;
8067
8068                 for (ro = 0; ro < set->num_connectors; ro++) {
8069                         if (set->connectors[ro] == &connector->base)
8070                                 new_crtc = set->crtc;
8071                 }
8072
8073                 /* Make sure the new CRTC will work with the encoder */
8074                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8075                                            new_crtc)) {
8076                         return -EINVAL;
8077                 }
8078                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8079
8080                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8081                         connector->base.base.id,
8082                         drm_get_connector_name(&connector->base),
8083                         new_crtc->base.id);
8084         }
8085
8086         /* Check for any encoders that needs to be disabled. */
8087         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8088                             base.head) {
8089                 list_for_each_entry(connector,
8090                                     &dev->mode_config.connector_list,
8091                                     base.head) {
8092                         if (connector->new_encoder == encoder) {
8093                                 WARN_ON(!connector->new_encoder->new_crtc);
8094
8095                                 goto next_encoder;
8096                         }
8097                 }
8098                 encoder->new_crtc = NULL;
8099 next_encoder:
8100                 /* Only now check for crtc changes so we don't miss encoders
8101                  * that will be disabled. */
8102                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8103                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8104                         config->mode_changed = true;
8105                 }
8106         }
8107         /* Now we've also updated encoder->new_crtc for all encoders. */
8108
8109         return 0;
8110 }
8111
8112 static int intel_crtc_set_config(struct drm_mode_set *set)
8113 {
8114         struct drm_device *dev;
8115         struct drm_mode_set save_set;
8116         struct intel_set_config *config;
8117         int ret;
8118
8119         BUG_ON(!set);
8120         BUG_ON(!set->crtc);
8121         BUG_ON(!set->crtc->helper_private);
8122
8123         /* Enforce sane interface api - has been abused by the fb helper. */
8124         BUG_ON(!set->mode && set->fb);
8125         BUG_ON(set->fb && set->num_connectors == 0);
8126
8127         if (set->fb) {
8128                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8129                                 set->crtc->base.id, set->fb->base.id,
8130                                 (int)set->num_connectors, set->x, set->y);
8131         } else {
8132                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8133         }
8134
8135         dev = set->crtc->dev;
8136
8137         ret = -ENOMEM;
8138         config = kzalloc(sizeof(*config), GFP_KERNEL);
8139         if (!config)
8140                 goto out_config;
8141
8142         ret = intel_set_config_save_state(dev, config);
8143         if (ret)
8144                 goto out_config;
8145
8146         save_set.crtc = set->crtc;
8147         save_set.mode = &set->crtc->mode;
8148         save_set.x = set->crtc->x;
8149         save_set.y = set->crtc->y;
8150         save_set.fb = set->crtc->fb;
8151
8152         /* Compute whether we need a full modeset, only an fb base update or no
8153          * change at all. In the future we might also check whether only the
8154          * mode changed, e.g. for LVDS where we only change the panel fitter in
8155          * such cases. */
8156         intel_set_config_compute_mode_changes(set, config);
8157
8158         ret = intel_modeset_stage_output_state(dev, set, config);
8159         if (ret)
8160                 goto fail;
8161
8162         if (config->mode_changed) {
8163                 if (set->mode) {
8164                         DRM_DEBUG_KMS("attempting to set mode from"
8165                                         " userspace\n");
8166                         drm_mode_debug_printmodeline(set->mode);
8167                 }
8168
8169                 ret = intel_set_mode(set->crtc, set->mode,
8170                                      set->x, set->y, set->fb);
8171                 if (ret) {
8172                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8173                                   set->crtc->base.id, ret);
8174                         goto fail;
8175                 }
8176         } else if (config->fb_changed) {
8177                 intel_crtc_wait_for_pending_flips(set->crtc);
8178
8179                 ret = intel_pipe_set_base(set->crtc,
8180                                           set->x, set->y, set->fb);
8181         }
8182
8183         intel_set_config_free(config);
8184
8185         return 0;
8186
8187 fail:
8188         intel_set_config_restore_state(dev, config);
8189
8190         /* Try to restore the config */
8191         if (config->mode_changed &&
8192             intel_set_mode(save_set.crtc, save_set.mode,
8193                            save_set.x, save_set.y, save_set.fb))
8194                 DRM_ERROR("failed to restore config after modeset failure\n");
8195
8196 out_config:
8197         intel_set_config_free(config);
8198         return ret;
8199 }
8200
8201 static const struct drm_crtc_funcs intel_crtc_funcs = {
8202         .cursor_set = intel_crtc_cursor_set,
8203         .cursor_move = intel_crtc_cursor_move,
8204         .gamma_set = intel_crtc_gamma_set,
8205         .set_config = intel_crtc_set_config,
8206         .destroy = intel_crtc_destroy,
8207         .page_flip = intel_crtc_page_flip,
8208 };
8209
8210 static void intel_cpu_pll_init(struct drm_device *dev)
8211 {
8212         if (HAS_DDI(dev))
8213                 intel_ddi_pll_init(dev);
8214 }
8215
8216 static void intel_pch_pll_init(struct drm_device *dev)
8217 {
8218         drm_i915_private_t *dev_priv = dev->dev_private;
8219         int i;
8220
8221         if (dev_priv->num_pch_pll == 0) {
8222                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8223                 return;
8224         }
8225
8226         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8227                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8228                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8229                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8230         }
8231 }
8232
8233 static void intel_crtc_init(struct drm_device *dev, int pipe)
8234 {
8235         drm_i915_private_t *dev_priv = dev->dev_private;
8236         struct intel_crtc *intel_crtc;
8237         int i;
8238
8239         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8240         if (intel_crtc == NULL)
8241                 return;
8242
8243         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8244
8245         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8246         for (i = 0; i < 256; i++) {
8247                 intel_crtc->lut_r[i] = i;
8248                 intel_crtc->lut_g[i] = i;
8249                 intel_crtc->lut_b[i] = i;
8250         }
8251
8252         /* Swap pipes & planes for FBC on pre-965 */
8253         intel_crtc->pipe = pipe;
8254         intel_crtc->plane = pipe;
8255         intel_crtc->cpu_transcoder = pipe;
8256         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8257                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8258                 intel_crtc->plane = !pipe;
8259         }
8260
8261         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8262                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8263         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8264         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8265
8266         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8267
8268         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8269 }
8270
8271 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8272                                 struct drm_file *file)
8273 {
8274         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8275         struct drm_mode_object *drmmode_obj;
8276         struct intel_crtc *crtc;
8277
8278         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8279                 return -ENODEV;
8280
8281         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8282                         DRM_MODE_OBJECT_CRTC);
8283
8284         if (!drmmode_obj) {
8285                 DRM_ERROR("no such CRTC id\n");
8286                 return -EINVAL;
8287         }
8288
8289         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8290         pipe_from_crtc_id->pipe = crtc->pipe;
8291
8292         return 0;
8293 }
8294
8295 static int intel_encoder_clones(struct intel_encoder *encoder)
8296 {
8297         struct drm_device *dev = encoder->base.dev;
8298         struct intel_encoder *source_encoder;
8299         int index_mask = 0;
8300         int entry = 0;
8301
8302         list_for_each_entry(source_encoder,
8303                             &dev->mode_config.encoder_list, base.head) {
8304
8305                 if (encoder == source_encoder)
8306                         index_mask |= (1 << entry);
8307
8308                 /* Intel hw has only one MUX where enocoders could be cloned. */
8309                 if (encoder->cloneable && source_encoder->cloneable)
8310                         index_mask |= (1 << entry);
8311
8312                 entry++;
8313         }
8314
8315         return index_mask;
8316 }
8317
8318 static bool has_edp_a(struct drm_device *dev)
8319 {
8320         struct drm_i915_private *dev_priv = dev->dev_private;
8321
8322         if (!IS_MOBILE(dev))
8323                 return false;
8324
8325         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8326                 return false;
8327
8328         if (IS_GEN5(dev) &&
8329             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8330                 return false;
8331
8332         return true;
8333 }
8334
8335 static void intel_setup_outputs(struct drm_device *dev)
8336 {
8337         struct drm_i915_private *dev_priv = dev->dev_private;
8338         struct intel_encoder *encoder;
8339         bool dpd_is_edp = false;
8340         bool has_lvds;
8341
8342         has_lvds = intel_lvds_init(dev);
8343         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8344                 /* disable the panel fitter on everything but LVDS */
8345                 I915_WRITE(PFIT_CONTROL, 0);
8346         }
8347
8348         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8349                 intel_crt_init(dev);
8350
8351         if (HAS_DDI(dev)) {
8352                 int found;
8353
8354                 /* Haswell uses DDI functions to detect digital outputs */
8355                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8356                 /* DDI A only supports eDP */
8357                 if (found)
8358                         intel_ddi_init(dev, PORT_A);
8359
8360                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8361                  * register */
8362                 found = I915_READ(SFUSE_STRAP);
8363
8364                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8365                         intel_ddi_init(dev, PORT_B);
8366                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8367                         intel_ddi_init(dev, PORT_C);
8368                 if (found & SFUSE_STRAP_DDID_DETECTED)
8369                         intel_ddi_init(dev, PORT_D);
8370         } else if (HAS_PCH_SPLIT(dev)) {
8371                 int found;
8372                 dpd_is_edp = intel_dpd_is_edp(dev);
8373
8374                 if (has_edp_a(dev))
8375                         intel_dp_init(dev, DP_A, PORT_A);
8376
8377                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8378                         /* PCH SDVOB multiplex with HDMIB */
8379                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8380                         if (!found)
8381                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8382                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8383                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8384                 }
8385
8386                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8387                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8388
8389                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8390                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8391
8392                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8393                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8394
8395                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8396                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8397         } else if (IS_VALLEYVIEW(dev)) {
8398                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8399                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8400                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8401
8402                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8403                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8404                                         PORT_B);
8405                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8406                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8407                 }
8408         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8409                 bool found = false;
8410
8411                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8412                         DRM_DEBUG_KMS("probing SDVOB\n");
8413                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8414                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8415                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8416                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8417                         }
8418
8419                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8420                                 DRM_DEBUG_KMS("probing DP_B\n");
8421                                 intel_dp_init(dev, DP_B, PORT_B);
8422                         }
8423                 }
8424
8425                 /* Before G4X SDVOC doesn't have its own detect register */
8426
8427                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8428                         DRM_DEBUG_KMS("probing SDVOC\n");
8429                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8430                 }
8431
8432                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8433
8434                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8435                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8436                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8437                         }
8438                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8439                                 DRM_DEBUG_KMS("probing DP_C\n");
8440                                 intel_dp_init(dev, DP_C, PORT_C);
8441                         }
8442                 }
8443
8444                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8445                     (I915_READ(DP_D) & DP_DETECTED)) {
8446                         DRM_DEBUG_KMS("probing DP_D\n");
8447                         intel_dp_init(dev, DP_D, PORT_D);
8448                 }
8449         } else if (IS_GEN2(dev))
8450                 intel_dvo_init(dev);
8451
8452         if (SUPPORTS_TV(dev))
8453                 intel_tv_init(dev);
8454
8455         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8456                 encoder->base.possible_crtcs = encoder->crtc_mask;
8457                 encoder->base.possible_clones =
8458                         intel_encoder_clones(encoder);
8459         }
8460
8461         intel_init_pch_refclk(dev);
8462
8463         drm_helper_move_panel_connectors_to_head(dev);
8464 }
8465
8466 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8467 {
8468         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8469
8470         drm_framebuffer_cleanup(fb);
8471         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8472
8473         kfree(intel_fb);
8474 }
8475
8476 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8477                                                 struct drm_file *file,
8478                                                 unsigned int *handle)
8479 {
8480         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8481         struct drm_i915_gem_object *obj = intel_fb->obj;
8482
8483         return drm_gem_handle_create(file, &obj->base, handle);
8484 }
8485
8486 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8487         .destroy = intel_user_framebuffer_destroy,
8488         .create_handle = intel_user_framebuffer_create_handle,
8489 };
8490
8491 int intel_framebuffer_init(struct drm_device *dev,
8492                            struct intel_framebuffer *intel_fb,
8493                            struct drm_mode_fb_cmd2 *mode_cmd,
8494                            struct drm_i915_gem_object *obj)
8495 {
8496         int ret;
8497
8498         if (obj->tiling_mode == I915_TILING_Y) {
8499                 DRM_DEBUG("hardware does not support tiling Y\n");
8500                 return -EINVAL;
8501         }
8502
8503         if (mode_cmd->pitches[0] & 63) {
8504                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8505                           mode_cmd->pitches[0]);
8506                 return -EINVAL;
8507         }
8508
8509         /* FIXME <= Gen4 stride limits are bit unclear */
8510         if (mode_cmd->pitches[0] > 32768) {
8511                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8512                           mode_cmd->pitches[0]);
8513                 return -EINVAL;
8514         }
8515
8516         if (obj->tiling_mode != I915_TILING_NONE &&
8517             mode_cmd->pitches[0] != obj->stride) {
8518                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8519                           mode_cmd->pitches[0], obj->stride);
8520                 return -EINVAL;
8521         }
8522
8523         /* Reject formats not supported by any plane early. */
8524         switch (mode_cmd->pixel_format) {
8525         case DRM_FORMAT_C8:
8526         case DRM_FORMAT_RGB565:
8527         case DRM_FORMAT_XRGB8888:
8528         case DRM_FORMAT_ARGB8888:
8529                 break;
8530         case DRM_FORMAT_XRGB1555:
8531         case DRM_FORMAT_ARGB1555:
8532                 if (INTEL_INFO(dev)->gen > 3) {
8533                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8534                         return -EINVAL;
8535                 }
8536                 break;
8537         case DRM_FORMAT_XBGR8888:
8538         case DRM_FORMAT_ABGR8888:
8539         case DRM_FORMAT_XRGB2101010:
8540         case DRM_FORMAT_ARGB2101010:
8541         case DRM_FORMAT_XBGR2101010:
8542         case DRM_FORMAT_ABGR2101010:
8543                 if (INTEL_INFO(dev)->gen < 4) {
8544                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8545                         return -EINVAL;
8546                 }
8547                 break;
8548         case DRM_FORMAT_YUYV:
8549         case DRM_FORMAT_UYVY:
8550         case DRM_FORMAT_YVYU:
8551         case DRM_FORMAT_VYUY:
8552                 if (INTEL_INFO(dev)->gen < 5) {
8553                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8554                         return -EINVAL;
8555                 }
8556                 break;
8557         default:
8558                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8559                 return -EINVAL;
8560         }
8561
8562         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8563         if (mode_cmd->offsets[0] != 0)
8564                 return -EINVAL;
8565
8566         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8567         intel_fb->obj = obj;
8568
8569         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8570         if (ret) {
8571                 DRM_ERROR("framebuffer init failed %d\n", ret);
8572                 return ret;
8573         }
8574
8575         return 0;
8576 }
8577
8578 static struct drm_framebuffer *
8579 intel_user_framebuffer_create(struct drm_device *dev,
8580                               struct drm_file *filp,
8581                               struct drm_mode_fb_cmd2 *mode_cmd)
8582 {
8583         struct drm_i915_gem_object *obj;
8584
8585         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8586                                                 mode_cmd->handles[0]));
8587         if (&obj->base == NULL)
8588                 return ERR_PTR(-ENOENT);
8589
8590         return intel_framebuffer_create(dev, mode_cmd, obj);
8591 }
8592
8593 static const struct drm_mode_config_funcs intel_mode_funcs = {
8594         .fb_create = intel_user_framebuffer_create,
8595         .output_poll_changed = intel_fb_output_poll_changed,
8596 };
8597
8598 /* Set up chip specific display functions */
8599 static void intel_init_display(struct drm_device *dev)
8600 {
8601         struct drm_i915_private *dev_priv = dev->dev_private;
8602
8603         if (HAS_DDI(dev)) {
8604                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8605                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8606                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8607                 dev_priv->display.off = haswell_crtc_off;
8608                 dev_priv->display.update_plane = ironlake_update_plane;
8609         } else if (HAS_PCH_SPLIT(dev)) {
8610                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8611                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8612                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8613                 dev_priv->display.off = ironlake_crtc_off;
8614                 dev_priv->display.update_plane = ironlake_update_plane;
8615         } else {
8616                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8617                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8618                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8619                 dev_priv->display.off = i9xx_crtc_off;
8620                 dev_priv->display.update_plane = i9xx_update_plane;
8621         }
8622
8623         /* Returns the core display clock speed */
8624         if (IS_VALLEYVIEW(dev))
8625                 dev_priv->display.get_display_clock_speed =
8626                         valleyview_get_display_clock_speed;
8627         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8628                 dev_priv->display.get_display_clock_speed =
8629                         i945_get_display_clock_speed;
8630         else if (IS_I915G(dev))
8631                 dev_priv->display.get_display_clock_speed =
8632                         i915_get_display_clock_speed;
8633         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8634                 dev_priv->display.get_display_clock_speed =
8635                         i9xx_misc_get_display_clock_speed;
8636         else if (IS_I915GM(dev))
8637                 dev_priv->display.get_display_clock_speed =
8638                         i915gm_get_display_clock_speed;
8639         else if (IS_I865G(dev))
8640                 dev_priv->display.get_display_clock_speed =
8641                         i865_get_display_clock_speed;
8642         else if (IS_I85X(dev))
8643                 dev_priv->display.get_display_clock_speed =
8644                         i855_get_display_clock_speed;
8645         else /* 852, 830 */
8646                 dev_priv->display.get_display_clock_speed =
8647                         i830_get_display_clock_speed;
8648
8649         if (HAS_PCH_SPLIT(dev)) {
8650                 if (IS_GEN5(dev)) {
8651                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8652                         dev_priv->display.write_eld = ironlake_write_eld;
8653                 } else if (IS_GEN6(dev)) {
8654                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8655                         dev_priv->display.write_eld = ironlake_write_eld;
8656                 } else if (IS_IVYBRIDGE(dev)) {
8657                         /* FIXME: detect B0+ stepping and use auto training */
8658                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8659                         dev_priv->display.write_eld = ironlake_write_eld;
8660                         dev_priv->display.modeset_global_resources =
8661                                 ivb_modeset_global_resources;
8662                 } else if (IS_HASWELL(dev)) {
8663                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8664                         dev_priv->display.write_eld = haswell_write_eld;
8665                         dev_priv->display.modeset_global_resources =
8666                                 haswell_modeset_global_resources;
8667                 }
8668         } else if (IS_G4X(dev)) {
8669                 dev_priv->display.write_eld = g4x_write_eld;
8670         }
8671
8672         /* Default just returns -ENODEV to indicate unsupported */
8673         dev_priv->display.queue_flip = intel_default_queue_flip;
8674
8675         switch (INTEL_INFO(dev)->gen) {
8676         case 2:
8677                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8678                 break;
8679
8680         case 3:
8681                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8682                 break;
8683
8684         case 4:
8685         case 5:
8686                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8687                 break;
8688
8689         case 6:
8690                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8691                 break;
8692         case 7:
8693                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8694                 break;
8695         }
8696 }
8697
8698 /*
8699  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8700  * resume, or other times.  This quirk makes sure that's the case for
8701  * affected systems.
8702  */
8703 static void quirk_pipea_force(struct drm_device *dev)
8704 {
8705         struct drm_i915_private *dev_priv = dev->dev_private;
8706
8707         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8708         DRM_INFO("applying pipe a force quirk\n");
8709 }
8710
8711 /*
8712  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8713  */
8714 static void quirk_ssc_force_disable(struct drm_device *dev)
8715 {
8716         struct drm_i915_private *dev_priv = dev->dev_private;
8717         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8718         DRM_INFO("applying lvds SSC disable quirk\n");
8719 }
8720
8721 /*
8722  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8723  * brightness value
8724  */
8725 static void quirk_invert_brightness(struct drm_device *dev)
8726 {
8727         struct drm_i915_private *dev_priv = dev->dev_private;
8728         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8729         DRM_INFO("applying inverted panel brightness quirk\n");
8730 }
8731
8732 struct intel_quirk {
8733         int device;
8734         int subsystem_vendor;
8735         int subsystem_device;
8736         void (*hook)(struct drm_device *dev);
8737 };
8738
8739 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8740 struct intel_dmi_quirk {
8741         void (*hook)(struct drm_device *dev);
8742         const struct dmi_system_id (*dmi_id_list)[];
8743 };
8744
8745 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8746 {
8747         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8748         return 1;
8749 }
8750
8751 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8752         {
8753                 .dmi_id_list = &(const struct dmi_system_id[]) {
8754                         {
8755                                 .callback = intel_dmi_reverse_brightness,
8756                                 .ident = "NCR Corporation",
8757                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8758                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8759                                 },
8760                         },
8761                         { }  /* terminating entry */
8762                 },
8763                 .hook = quirk_invert_brightness,
8764         },
8765 };
8766
8767 static struct intel_quirk intel_quirks[] = {
8768         /* HP Mini needs pipe A force quirk (LP: #322104) */
8769         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8770
8771         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8772         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8773
8774         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8775         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8776
8777         /* 830/845 need to leave pipe A & dpll A up */
8778         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8779         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8780
8781         /* Lenovo U160 cannot use SSC on LVDS */
8782         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8783
8784         /* Sony Vaio Y cannot use SSC on LVDS */
8785         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8786
8787         /* Acer Aspire 5734Z must invert backlight brightness */
8788         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8789
8790         /* Acer/eMachines G725 */
8791         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8792
8793         /* Acer/eMachines e725 */
8794         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8795
8796         /* Acer/Packard Bell NCL20 */
8797         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8798
8799         /* Acer Aspire 4736Z */
8800         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8801 };
8802
8803 static void intel_init_quirks(struct drm_device *dev)
8804 {
8805         struct pci_dev *d = dev->pdev;
8806         int i;
8807
8808         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8809                 struct intel_quirk *q = &intel_quirks[i];
8810
8811                 if (d->device == q->device &&
8812                     (d->subsystem_vendor == q->subsystem_vendor ||
8813                      q->subsystem_vendor == PCI_ANY_ID) &&
8814                     (d->subsystem_device == q->subsystem_device ||
8815                      q->subsystem_device == PCI_ANY_ID))
8816                         q->hook(dev);
8817         }
8818         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8819                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8820                         intel_dmi_quirks[i].hook(dev);
8821         }
8822 }
8823
8824 /* Disable the VGA plane that we never use */
8825 static void i915_disable_vga(struct drm_device *dev)
8826 {
8827         struct drm_i915_private *dev_priv = dev->dev_private;
8828         u8 sr1;
8829         u32 vga_reg = i915_vgacntrl_reg(dev);
8830
8831         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8832         outb(SR01, VGA_SR_INDEX);
8833         sr1 = inb(VGA_SR_DATA);
8834         outb(sr1 | 1<<5, VGA_SR_DATA);
8835         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8836         udelay(300);
8837
8838         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8839         POSTING_READ(vga_reg);
8840 }
8841
8842 void intel_modeset_init_hw(struct drm_device *dev)
8843 {
8844         intel_init_power_well(dev);
8845
8846         intel_prepare_ddi(dev);
8847
8848         intel_init_clock_gating(dev);
8849
8850         mutex_lock(&dev->struct_mutex);
8851         intel_enable_gt_powersave(dev);
8852         mutex_unlock(&dev->struct_mutex);
8853 }
8854
8855 void intel_modeset_init(struct drm_device *dev)
8856 {
8857         struct drm_i915_private *dev_priv = dev->dev_private;
8858         int i, ret;
8859
8860         drm_mode_config_init(dev);
8861
8862         dev->mode_config.min_width = 0;
8863         dev->mode_config.min_height = 0;
8864
8865         dev->mode_config.preferred_depth = 24;
8866         dev->mode_config.prefer_shadow = 1;
8867
8868         dev->mode_config.funcs = &intel_mode_funcs;
8869
8870         intel_init_quirks(dev);
8871
8872         intel_init_pm(dev);
8873
8874         intel_init_display(dev);
8875
8876         if (IS_GEN2(dev)) {
8877                 dev->mode_config.max_width = 2048;
8878                 dev->mode_config.max_height = 2048;
8879         } else if (IS_GEN3(dev)) {
8880                 dev->mode_config.max_width = 4096;
8881                 dev->mode_config.max_height = 4096;
8882         } else {
8883                 dev->mode_config.max_width = 8192;
8884                 dev->mode_config.max_height = 8192;
8885         }
8886         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8887
8888         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8889                       INTEL_INFO(dev)->num_pipes,
8890                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
8891
8892         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
8893                 intel_crtc_init(dev, i);
8894                 ret = intel_plane_init(dev, i);
8895                 if (ret)
8896                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8897         }
8898
8899         intel_cpu_pll_init(dev);
8900         intel_pch_pll_init(dev);
8901
8902         /* Just disable it once at startup */
8903         i915_disable_vga(dev);
8904         intel_setup_outputs(dev);
8905
8906         /* Just in case the BIOS is doing something questionable. */
8907         intel_disable_fbc(dev);
8908 }
8909
8910 static void
8911 intel_connector_break_all_links(struct intel_connector *connector)
8912 {
8913         connector->base.dpms = DRM_MODE_DPMS_OFF;
8914         connector->base.encoder = NULL;
8915         connector->encoder->connectors_active = false;
8916         connector->encoder->base.crtc = NULL;
8917 }
8918
8919 static void intel_enable_pipe_a(struct drm_device *dev)
8920 {
8921         struct intel_connector *connector;
8922         struct drm_connector *crt = NULL;
8923         struct intel_load_detect_pipe load_detect_temp;
8924
8925         /* We can't just switch on the pipe A, we need to set things up with a
8926          * proper mode and output configuration. As a gross hack, enable pipe A
8927          * by enabling the load detect pipe once. */
8928         list_for_each_entry(connector,
8929                             &dev->mode_config.connector_list,
8930                             base.head) {
8931                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8932                         crt = &connector->base;
8933                         break;
8934                 }
8935         }
8936
8937         if (!crt)
8938                 return;
8939
8940         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8941                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8942
8943
8944 }
8945
8946 static bool
8947 intel_check_plane_mapping(struct intel_crtc *crtc)
8948 {
8949         struct drm_device *dev = crtc->base.dev;
8950         struct drm_i915_private *dev_priv = dev->dev_private;
8951         u32 reg, val;
8952
8953         if (INTEL_INFO(dev)->num_pipes == 1)
8954                 return true;
8955
8956         reg = DSPCNTR(!crtc->plane);
8957         val = I915_READ(reg);
8958
8959         if ((val & DISPLAY_PLANE_ENABLE) &&
8960             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8961                 return false;
8962
8963         return true;
8964 }
8965
8966 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8967 {
8968         struct drm_device *dev = crtc->base.dev;
8969         struct drm_i915_private *dev_priv = dev->dev_private;
8970         u32 reg;
8971
8972         /* Clear any frame start delays used for debugging left by the BIOS */
8973         reg = PIPECONF(crtc->cpu_transcoder);
8974         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8975
8976         /* We need to sanitize the plane -> pipe mapping first because this will
8977          * disable the crtc (and hence change the state) if it is wrong. Note
8978          * that gen4+ has a fixed plane -> pipe mapping.  */
8979         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8980                 struct intel_connector *connector;
8981                 bool plane;
8982
8983                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8984                               crtc->base.base.id);
8985
8986                 /* Pipe has the wrong plane attached and the plane is active.
8987                  * Temporarily change the plane mapping and disable everything
8988                  * ...  */
8989                 plane = crtc->plane;
8990                 crtc->plane = !plane;
8991                 dev_priv->display.crtc_disable(&crtc->base);
8992                 crtc->plane = plane;
8993
8994                 /* ... and break all links. */
8995                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8996                                     base.head) {
8997                         if (connector->encoder->base.crtc != &crtc->base)
8998                                 continue;
8999
9000                         intel_connector_break_all_links(connector);
9001                 }
9002
9003                 WARN_ON(crtc->active);
9004                 crtc->base.enabled = false;
9005         }
9006
9007         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9008             crtc->pipe == PIPE_A && !crtc->active) {
9009                 /* BIOS forgot to enable pipe A, this mostly happens after
9010                  * resume. Force-enable the pipe to fix this, the update_dpms
9011                  * call below we restore the pipe to the right state, but leave
9012                  * the required bits on. */
9013                 intel_enable_pipe_a(dev);
9014         }
9015
9016         /* Adjust the state of the output pipe according to whether we
9017          * have active connectors/encoders. */
9018         intel_crtc_update_dpms(&crtc->base);
9019
9020         if (crtc->active != crtc->base.enabled) {
9021                 struct intel_encoder *encoder;
9022
9023                 /* This can happen either due to bugs in the get_hw_state
9024                  * functions or because the pipe is force-enabled due to the
9025                  * pipe A quirk. */
9026                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9027                               crtc->base.base.id,
9028                               crtc->base.enabled ? "enabled" : "disabled",
9029                               crtc->active ? "enabled" : "disabled");
9030
9031                 crtc->base.enabled = crtc->active;
9032
9033                 /* Because we only establish the connector -> encoder ->
9034                  * crtc links if something is active, this means the
9035                  * crtc is now deactivated. Break the links. connector
9036                  * -> encoder links are only establish when things are
9037                  *  actually up, hence no need to break them. */
9038                 WARN_ON(crtc->active);
9039
9040                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9041                         WARN_ON(encoder->connectors_active);
9042                         encoder->base.crtc = NULL;
9043                 }
9044         }
9045 }
9046
9047 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9048 {
9049         struct intel_connector *connector;
9050         struct drm_device *dev = encoder->base.dev;
9051
9052         /* We need to check both for a crtc link (meaning that the
9053          * encoder is active and trying to read from a pipe) and the
9054          * pipe itself being active. */
9055         bool has_active_crtc = encoder->base.crtc &&
9056                 to_intel_crtc(encoder->base.crtc)->active;
9057
9058         if (encoder->connectors_active && !has_active_crtc) {
9059                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9060                               encoder->base.base.id,
9061                               drm_get_encoder_name(&encoder->base));
9062
9063                 /* Connector is active, but has no active pipe. This is
9064                  * fallout from our resume register restoring. Disable
9065                  * the encoder manually again. */
9066                 if (encoder->base.crtc) {
9067                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9068                                       encoder->base.base.id,
9069                                       drm_get_encoder_name(&encoder->base));
9070                         encoder->disable(encoder);
9071                 }
9072
9073                 /* Inconsistent output/port/pipe state happens presumably due to
9074                  * a bug in one of the get_hw_state functions. Or someplace else
9075                  * in our code, like the register restore mess on resume. Clamp
9076                  * things to off as a safer default. */
9077                 list_for_each_entry(connector,
9078                                     &dev->mode_config.connector_list,
9079                                     base.head) {
9080                         if (connector->encoder != encoder)
9081                                 continue;
9082
9083                         intel_connector_break_all_links(connector);
9084                 }
9085         }
9086         /* Enabled encoders without active connectors will be fixed in
9087          * the crtc fixup. */
9088 }
9089
9090 void i915_redisable_vga(struct drm_device *dev)
9091 {
9092         struct drm_i915_private *dev_priv = dev->dev_private;
9093         u32 vga_reg = i915_vgacntrl_reg(dev);
9094
9095         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9096                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9097                 i915_disable_vga(dev);
9098         }
9099 }
9100
9101 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9102  * and i915 state tracking structures. */
9103 void intel_modeset_setup_hw_state(struct drm_device *dev,
9104                                   bool force_restore)
9105 {
9106         struct drm_i915_private *dev_priv = dev->dev_private;
9107         enum pipe pipe;
9108         u32 tmp;
9109         struct drm_plane *plane;
9110         struct intel_crtc *crtc;
9111         struct intel_encoder *encoder;
9112         struct intel_connector *connector;
9113
9114         if (HAS_DDI(dev)) {
9115                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9116
9117                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9118                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9119                         case TRANS_DDI_EDP_INPUT_A_ON:
9120                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9121                                 pipe = PIPE_A;
9122                                 break;
9123                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9124                                 pipe = PIPE_B;
9125                                 break;
9126                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9127                                 pipe = PIPE_C;
9128                                 break;
9129                         default:
9130                                 /* A bogus value has been programmed, disable
9131                                  * the transcoder */
9132                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9133                                 intel_ddi_disable_transcoder_func(dev_priv,
9134                                                 TRANSCODER_EDP);
9135                                 goto setup_pipes;
9136                         }
9137
9138                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9139                         crtc->cpu_transcoder = TRANSCODER_EDP;
9140
9141                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9142                                       pipe_name(pipe));
9143                 }
9144         }
9145
9146 setup_pipes:
9147         for_each_pipe(pipe) {
9148                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9149
9150                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9151                 if (tmp & PIPECONF_ENABLE)
9152                         crtc->active = true;
9153                 else
9154                         crtc->active = false;
9155
9156                 crtc->base.enabled = crtc->active;
9157
9158                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9159                               crtc->base.base.id,
9160                               crtc->active ? "enabled" : "disabled");
9161         }
9162
9163         if (HAS_DDI(dev))
9164                 intel_ddi_setup_hw_pll_state(dev);
9165
9166         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9167                             base.head) {
9168                 pipe = 0;
9169
9170                 if (encoder->get_hw_state(encoder, &pipe)) {
9171                         encoder->base.crtc =
9172                                 dev_priv->pipe_to_crtc_mapping[pipe];
9173                 } else {
9174                         encoder->base.crtc = NULL;
9175                 }
9176
9177                 encoder->connectors_active = false;
9178                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9179                               encoder->base.base.id,
9180                               drm_get_encoder_name(&encoder->base),
9181                               encoder->base.crtc ? "enabled" : "disabled",
9182                               pipe);
9183         }
9184
9185         list_for_each_entry(connector, &dev->mode_config.connector_list,
9186                             base.head) {
9187                 if (connector->get_hw_state(connector)) {
9188                         connector->base.dpms = DRM_MODE_DPMS_ON;
9189                         connector->encoder->connectors_active = true;
9190                         connector->base.encoder = &connector->encoder->base;
9191                 } else {
9192                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9193                         connector->base.encoder = NULL;
9194                 }
9195                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9196                               connector->base.base.id,
9197                               drm_get_connector_name(&connector->base),
9198                               connector->base.encoder ? "enabled" : "disabled");
9199         }
9200
9201         /* HW state is read out, now we need to sanitize this mess. */
9202         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9203                             base.head) {
9204                 intel_sanitize_encoder(encoder);
9205         }
9206
9207         for_each_pipe(pipe) {
9208                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9209                 intel_sanitize_crtc(crtc);
9210         }
9211
9212         if (force_restore) {
9213                 for_each_pipe(pipe) {
9214                         struct drm_crtc *crtc =
9215                                 dev_priv->pipe_to_crtc_mapping[pipe];
9216                         intel_crtc_restore_mode(crtc);
9217                 }
9218                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9219                         intel_plane_restore(plane);
9220
9221                 i915_redisable_vga(dev);
9222         } else {
9223                 intel_modeset_update_staged_output_state(dev);
9224         }
9225
9226         intel_modeset_check_state(dev);
9227
9228         drm_mode_config_reset(dev);
9229 }
9230
9231 void intel_modeset_gem_init(struct drm_device *dev)
9232 {
9233         intel_modeset_init_hw(dev);
9234
9235         intel_setup_overlay(dev);
9236
9237         intel_modeset_setup_hw_state(dev, false);
9238 }
9239
9240 void intel_modeset_cleanup(struct drm_device *dev)
9241 {
9242         struct drm_i915_private *dev_priv = dev->dev_private;
9243         struct drm_crtc *crtc;
9244         struct intel_crtc *intel_crtc;
9245
9246         drm_kms_helper_poll_fini(dev);
9247         mutex_lock(&dev->struct_mutex);
9248
9249         intel_unregister_dsm_handler();
9250
9251
9252         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9253                 /* Skip inactive CRTCs */
9254                 if (!crtc->fb)
9255                         continue;
9256
9257                 intel_crtc = to_intel_crtc(crtc);
9258                 intel_increase_pllclock(crtc);
9259         }
9260
9261         intel_disable_fbc(dev);
9262
9263         intel_disable_gt_powersave(dev);
9264
9265         ironlake_teardown_rc6(dev);
9266
9267         if (IS_VALLEYVIEW(dev))
9268                 vlv_init_dpio(dev);
9269
9270         mutex_unlock(&dev->struct_mutex);
9271
9272         /* Disable the irq before mode object teardown, for the irq might
9273          * enqueue unpin/hotplug work. */
9274         drm_irq_uninstall(dev);
9275         cancel_work_sync(&dev_priv->hotplug_work);
9276         cancel_work_sync(&dev_priv->rps.work);
9277
9278         /* flush any delayed tasks or pending work */
9279         flush_scheduled_work();
9280
9281         drm_mode_config_cleanup(dev);
9282
9283         intel_cleanup_overlay(dev);
9284 }
9285
9286 /*
9287  * Return which encoder is currently attached for connector.
9288  */
9289 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9290 {
9291         return &intel_attached_encoder(connector)->base;
9292 }
9293
9294 void intel_connector_attach_encoder(struct intel_connector *connector,
9295                                     struct intel_encoder *encoder)
9296 {
9297         connector->encoder = encoder;
9298         drm_mode_connector_attach_encoder(&connector->base,
9299                                           &encoder->base);
9300 }
9301
9302 /*
9303  * set vga decode state - true == enable VGA decode
9304  */
9305 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9306 {
9307         struct drm_i915_private *dev_priv = dev->dev_private;
9308         u16 gmch_ctrl;
9309
9310         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9311         if (state)
9312                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9313         else
9314                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9315         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9316         return 0;
9317 }
9318
9319 #ifdef CONFIG_DEBUG_FS
9320 #include <linux/seq_file.h>
9321
9322 struct intel_display_error_state {
9323         struct intel_cursor_error_state {
9324                 u32 control;
9325                 u32 position;
9326                 u32 base;
9327                 u32 size;
9328         } cursor[I915_MAX_PIPES];
9329
9330         struct intel_pipe_error_state {
9331                 u32 conf;
9332                 u32 source;
9333
9334                 u32 htotal;
9335                 u32 hblank;
9336                 u32 hsync;
9337                 u32 vtotal;
9338                 u32 vblank;
9339                 u32 vsync;
9340         } pipe[I915_MAX_PIPES];
9341
9342         struct intel_plane_error_state {
9343                 u32 control;
9344                 u32 stride;
9345                 u32 size;
9346                 u32 pos;
9347                 u32 addr;
9348                 u32 surface;
9349                 u32 tile_offset;
9350         } plane[I915_MAX_PIPES];
9351 };
9352
9353 struct intel_display_error_state *
9354 intel_display_capture_error_state(struct drm_device *dev)
9355 {
9356         drm_i915_private_t *dev_priv = dev->dev_private;
9357         struct intel_display_error_state *error;
9358         enum transcoder cpu_transcoder;
9359         int i;
9360
9361         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9362         if (error == NULL)
9363                 return NULL;
9364
9365         for_each_pipe(i) {
9366                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9367
9368                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9369                         error->cursor[i].control = I915_READ(CURCNTR(i));
9370                         error->cursor[i].position = I915_READ(CURPOS(i));
9371                         error->cursor[i].base = I915_READ(CURBASE(i));
9372                 } else {
9373                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9374                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9375                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9376                 }
9377
9378                 error->plane[i].control = I915_READ(DSPCNTR(i));
9379                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9380                 if (INTEL_INFO(dev)->gen <= 3) {
9381                         error->plane[i].size = I915_READ(DSPSIZE(i));
9382                         error->plane[i].pos = I915_READ(DSPPOS(i));
9383                 }
9384                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9385                         error->plane[i].addr = I915_READ(DSPADDR(i));
9386                 if (INTEL_INFO(dev)->gen >= 4) {
9387                         error->plane[i].surface = I915_READ(DSPSURF(i));
9388                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9389                 }
9390
9391                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9392                 error->pipe[i].source = I915_READ(PIPESRC(i));
9393                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9394                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9395                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9396                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9397                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9398                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9399         }
9400
9401         return error;
9402 }
9403
9404 void
9405 intel_display_print_error_state(struct seq_file *m,
9406                                 struct drm_device *dev,
9407                                 struct intel_display_error_state *error)
9408 {
9409         int i;
9410
9411         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9412         for_each_pipe(i) {
9413                 seq_printf(m, "Pipe [%d]:\n", i);
9414                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9415                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9416                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9417                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9418                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9419                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9420                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9421                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9422
9423                 seq_printf(m, "Plane [%d]:\n", i);
9424                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9425                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9426                 if (INTEL_INFO(dev)->gen <= 3) {
9427                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9428                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9429                 }
9430                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9431                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9432                 if (INTEL_INFO(dev)->gen >= 4) {
9433                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9434                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9435                 }
9436
9437                 seq_printf(m, "Cursor [%d]:\n", i);
9438                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9439                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9440                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9441         }
9442 }
9443 #endif