]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
50215e4568e78c75c237cfb42544d87a6c3de4a0
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1153                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1154                         return;
1155         } else {
1156                 reg = FDI_RX_CTL(pipe);
1157                 val = I915_READ(reg);
1158                 cur_state = !!(val & FDI_RX_ENABLE);
1159         }
1160         WARN(cur_state != state,
1161              "FDI RX state assertion failure (expected %s, current %s)\n",
1162              state_string(state), state_string(cur_state));
1163 }
1164 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1165 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1166
1167 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1168                                       enum pipe pipe)
1169 {
1170         int reg;
1171         u32 val;
1172
1173         /* ILK FDI PLL is always enabled */
1174         if (dev_priv->info->gen == 5)
1175                 return;
1176
1177         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1178         if (IS_HASWELL(dev_priv->dev))
1179                 return;
1180
1181         reg = FDI_TX_CTL(pipe);
1182         val = I915_READ(reg);
1183         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1184 }
1185
1186 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1187                                       enum pipe pipe)
1188 {
1189         int reg;
1190         u32 val;
1191
1192         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1193                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1194                 return;
1195         }
1196         reg = FDI_RX_CTL(pipe);
1197         val = I915_READ(reg);
1198         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1199 }
1200
1201 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1202                                   enum pipe pipe)
1203 {
1204         int pp_reg, lvds_reg;
1205         u32 val;
1206         enum pipe panel_pipe = PIPE_A;
1207         bool locked = true;
1208
1209         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1210                 pp_reg = PCH_PP_CONTROL;
1211                 lvds_reg = PCH_LVDS;
1212         } else {
1213                 pp_reg = PP_CONTROL;
1214                 lvds_reg = LVDS;
1215         }
1216
1217         val = I915_READ(pp_reg);
1218         if (!(val & PANEL_POWER_ON) ||
1219             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1220                 locked = false;
1221
1222         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1223                 panel_pipe = PIPE_B;
1224
1225         WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 void assert_pipe(struct drm_i915_private *dev_priv,
1231                  enum pipe pipe, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1237                                                                       pipe);
1238
1239         /* if we need the pipe A quirk it must be always on */
1240         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1241                 state = true;
1242
1243         reg = PIPECONF(cpu_transcoder);
1244         val = I915_READ(reg);
1245         cur_state = !!(val & PIPECONF_ENABLE);
1246         WARN(cur_state != state,
1247              "pipe %c assertion failure (expected %s, current %s)\n",
1248              pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252                          enum plane plane, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = DSPCNTR(plane);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261         WARN(cur_state != state,
1262              "plane %c assertion failure (expected %s, current %s)\n",
1263              plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270                                    enum pipe pipe)
1271 {
1272         int reg, i;
1273         u32 val;
1274         int cur_pipe;
1275
1276         /* Planes are fixed to pipes on ILK+ */
1277         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1278                 reg = DSPCNTR(pipe);
1279                 val = I915_READ(reg);
1280                 WARN((val & DISPLAY_PLANE_ENABLE),
1281                      "plane %c assertion failure, should be disabled but not\n",
1282                      plane_name(pipe));
1283                 return;
1284         }
1285
1286         /* Need to check both planes against the pipe */
1287         for (i = 0; i < 2; i++) {
1288                 reg = DSPCNTR(i);
1289                 val = I915_READ(reg);
1290                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1291                         DISPPLANE_SEL_PIPE_SHIFT;
1292                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1293                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1294                      plane_name(i), pipe_name(pipe));
1295         }
1296 }
1297
1298 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1299 {
1300         u32 val;
1301         bool enabled;
1302
1303         if (HAS_PCH_LPT(dev_priv->dev)) {
1304                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1305                 return;
1306         }
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                        enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else {
1341                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1342                         return false;
1343         }
1344         return true;
1345 }
1346
1347 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe, u32 val)
1349 {
1350         if ((val & PORT_ENABLE) == 0)
1351                 return false;
1352
1353         if (HAS_PCH_CPT(dev_priv->dev)) {
1354                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355                         return false;
1356         } else {
1357                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1358                         return false;
1359         }
1360         return true;
1361 }
1362
1363 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1364                               enum pipe pipe, u32 val)
1365 {
1366         if ((val & LVDS_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1371                         return false;
1372         } else {
1373                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1374                         return false;
1375         }
1376         return true;
1377 }
1378
1379 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1380                               enum pipe pipe, u32 val)
1381 {
1382         if ((val & ADPA_DAC_ENABLE) == 0)
1383                 return false;
1384         if (HAS_PCH_CPT(dev_priv->dev)) {
1385                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1386                         return false;
1387         } else {
1388                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1389                         return false;
1390         }
1391         return true;
1392 }
1393
1394 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1395                                    enum pipe pipe, int reg, u32 port_sel)
1396 {
1397         u32 val = I915_READ(reg);
1398         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1399              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1400              reg, pipe_name(pipe));
1401
1402         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1403              && (val & DP_PIPEB_SELECT),
1404              "IBX PCH dp port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1408                                      enum pipe pipe, int reg)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1412              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1416              && (val & SDVO_PIPE_B_SELECT),
1417              "IBX PCH hdmi port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1421                                       enum pipe pipe)
1422 {
1423         int reg;
1424         u32 val;
1425
1426         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1427         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1429
1430         reg = PCH_ADPA;
1431         val = I915_READ(reg);
1432         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1433              "PCH VGA enabled on transcoder %c, should be disabled\n",
1434              pipe_name(pipe));
1435
1436         reg = PCH_LVDS;
1437         val = I915_READ(reg);
1438         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1439              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1443         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1445 }
1446
1447 /**
1448  * intel_enable_pll - enable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to enable
1451  *
1452  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1453  * make sure the PLL reg is writable first though, since the panel write
1454  * protect mechanism may be enabled.
1455  *
1456  * Note!  This is for pre-ILK only.
1457  *
1458  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1459  */
1460 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1461 {
1462         int reg;
1463         u32 val;
1464
1465         /* No really, not for ILK+ */
1466         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1467
1468         /* PLL is protected by panel, make sure we can write it */
1469         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1470                 assert_panel_unlocked(dev_priv, pipe);
1471
1472         reg = DPLL(pipe);
1473         val = I915_READ(reg);
1474         val |= DPLL_VCO_ENABLE;
1475
1476         /* We do this three times for luck */
1477         I915_WRITE(reg, val);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, val);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483         I915_WRITE(reg, val);
1484         POSTING_READ(reg);
1485         udelay(150); /* wait for warmup */
1486 }
1487
1488 /**
1489  * intel_disable_pll - disable a PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to disable
1492  *
1493  * Disable the PLL for @pipe, making sure the pipe is off first.
1494  *
1495  * Note!  This is for pre-ILK only.
1496  */
1497 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1498 {
1499         int reg;
1500         u32 val;
1501
1502         /* Don't disable pipe A or pipe A PLLs if needed */
1503         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504                 return;
1505
1506         /* Make sure the pipe isn't still relying on us */
1507         assert_pipe_disabled(dev_priv, pipe);
1508
1509         reg = DPLL(pipe);
1510         val = I915_READ(reg);
1511         val &= ~DPLL_VCO_ENABLE;
1512         I915_WRITE(reg, val);
1513         POSTING_READ(reg);
1514 }
1515
1516 /* SBI access */
1517 static void
1518 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1519 {
1520         unsigned long flags;
1521
1522         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1523         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1524                                 100)) {
1525                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1526                 goto out_unlock;
1527         }
1528
1529         I915_WRITE(SBI_ADDR,
1530                         (reg << 16));
1531         I915_WRITE(SBI_DATA,
1532                         value);
1533         I915_WRITE(SBI_CTL_STAT,
1534                         SBI_BUSY |
1535                         SBI_CTL_OP_CRWR);
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1540                 goto out_unlock;
1541         }
1542
1543 out_unlock:
1544         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1545 }
1546
1547 static u32
1548 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1549 {
1550         unsigned long flags;
1551         u32 value = 0;
1552
1553         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1557                 goto out_unlock;
1558         }
1559
1560         I915_WRITE(SBI_ADDR,
1561                         (reg << 16));
1562         I915_WRITE(SBI_CTL_STAT,
1563                         SBI_BUSY |
1564                         SBI_CTL_OP_CRRD);
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1569                 goto out_unlock;
1570         }
1571
1572         value = I915_READ(SBI_DATA);
1573
1574 out_unlock:
1575         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1576         return value;
1577 }
1578
1579 /**
1580  * ironlake_enable_pch_pll - enable PCH PLL
1581  * @dev_priv: i915 private structure
1582  * @pipe: pipe PLL to enable
1583  *
1584  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1585  * drives the transcoder clock.
1586  */
1587 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1588 {
1589         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1590         struct intel_pch_pll *pll;
1591         int reg;
1592         u32 val;
1593
1594         /* PCH PLLs only available on ILK, SNB and IVB */
1595         BUG_ON(dev_priv->info->gen < 5);
1596         pll = intel_crtc->pch_pll;
1597         if (pll == NULL)
1598                 return;
1599
1600         if (WARN_ON(pll->refcount == 0))
1601                 return;
1602
1603         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1604                       pll->pll_reg, pll->active, pll->on,
1605                       intel_crtc->base.base.id);
1606
1607         /* PCH refclock must be enabled first */
1608         assert_pch_refclk_enabled(dev_priv);
1609
1610         if (pll->active++ && pll->on) {
1611                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1612                 return;
1613         }
1614
1615         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1616
1617         reg = pll->pll_reg;
1618         val = I915_READ(reg);
1619         val |= DPLL_VCO_ENABLE;
1620         I915_WRITE(reg, val);
1621         POSTING_READ(reg);
1622         udelay(200);
1623
1624         pll->on = true;
1625 }
1626
1627 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1628 {
1629         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1630         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1631         int reg;
1632         u32 val;
1633
1634         /* PCH only available on ILK+ */
1635         BUG_ON(dev_priv->info->gen < 5);
1636         if (pll == NULL)
1637                return;
1638
1639         if (WARN_ON(pll->refcount == 0))
1640                 return;
1641
1642         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1643                       pll->pll_reg, pll->active, pll->on,
1644                       intel_crtc->base.base.id);
1645
1646         if (WARN_ON(pll->active == 0)) {
1647                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         if (--pll->active) {
1652                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1653                 return;
1654         }
1655
1656         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1657
1658         /* Make sure transcoder isn't still depending on us */
1659         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1660
1661         reg = pll->pll_reg;
1662         val = I915_READ(reg);
1663         val &= ~DPLL_VCO_ENABLE;
1664         I915_WRITE(reg, val);
1665         POSTING_READ(reg);
1666         udelay(200);
1667
1668         pll->on = false;
1669 }
1670
1671 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1672                                            enum pipe pipe)
1673 {
1674         struct drm_device *dev = dev_priv->dev;
1675         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676         uint32_t reg, val, pipeconf_val;
1677
1678         /* PCH only available on ILK+ */
1679         BUG_ON(dev_priv->info->gen < 5);
1680
1681         /* Make sure PCH DPLL is enabled */
1682         assert_pch_pll_enabled(dev_priv,
1683                                to_intel_crtc(crtc)->pch_pll,
1684                                to_intel_crtc(crtc));
1685
1686         /* FDI must be feeding us bits for PCH ports */
1687         assert_fdi_tx_enabled(dev_priv, pipe);
1688         assert_fdi_rx_enabled(dev_priv, pipe);
1689
1690         if (HAS_PCH_CPT(dev)) {
1691                 /* Workaround: Set the timing override bit before enabling the
1692                  * pch transcoder. */
1693                 reg = TRANS_CHICKEN2(pipe);
1694                 val = I915_READ(reg);
1695                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1696                 I915_WRITE(reg, val);
1697         }
1698
1699         reg = TRANSCONF(pipe);
1700         val = I915_READ(reg);
1701         pipeconf_val = I915_READ(PIPECONF(pipe));
1702
1703         if (HAS_PCH_IBX(dev_priv->dev)) {
1704                 /*
1705                  * make the BPC in transcoder be consistent with
1706                  * that in pipeconf reg.
1707                  */
1708                 val &= ~PIPE_BPC_MASK;
1709                 val |= pipeconf_val & PIPE_BPC_MASK;
1710         }
1711
1712         val &= ~TRANS_INTERLACE_MASK;
1713         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1714                 if (HAS_PCH_IBX(dev_priv->dev) &&
1715                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1716                         val |= TRANS_LEGACY_INTERLACED_ILK;
1717                 else
1718                         val |= TRANS_INTERLACED;
1719         else
1720                 val |= TRANS_PROGRESSIVE;
1721
1722         I915_WRITE(reg, val | TRANS_ENABLE);
1723         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1724                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1725 }
1726
1727 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1728                                       enum transcoder cpu_transcoder)
1729 {
1730         u32 val, pipeconf_val;
1731
1732         /* PCH only available on ILK+ */
1733         BUG_ON(dev_priv->info->gen < 5);
1734
1735         /* FDI must be feeding us bits for PCH ports */
1736         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1737         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1738
1739         /* Workaround: set timing override bit. */
1740         val = I915_READ(_TRANSA_CHICKEN2);
1741         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1742         I915_WRITE(_TRANSA_CHICKEN2, val);
1743
1744         val = TRANS_ENABLE;
1745         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1746
1747         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1748             PIPECONF_INTERLACED_ILK)
1749                 val |= TRANS_INTERLACED;
1750         else
1751                 val |= TRANS_PROGRESSIVE;
1752
1753         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1754         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1755                 DRM_ERROR("Failed to enable PCH transcoder\n");
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759                                             enum pipe pipe)
1760 {
1761         struct drm_device *dev = dev_priv->dev;
1762         uint32_t reg, val;
1763
1764         /* FDI relies on the transcoder */
1765         assert_fdi_tx_disabled(dev_priv, pipe);
1766         assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768         /* Ports must be off as well */
1769         assert_pch_ports_disabled(dev_priv, pipe);
1770
1771         reg = TRANSCONF(pipe);
1772         val = I915_READ(reg);
1773         val &= ~TRANS_ENABLE;
1774         I915_WRITE(reg, val);
1775         /* wait for PCH transcoder off, transcoder state */
1776         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778
1779         if (!HAS_PCH_IBX(dev)) {
1780                 /* Workaround: Clear the timing override chicken bit again. */
1781                 reg = TRANS_CHICKEN2(pipe);
1782                 val = I915_READ(reg);
1783                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1784                 I915_WRITE(reg, val);
1785         }
1786 }
1787
1788 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1789 {
1790         u32 val;
1791
1792         val = I915_READ(_TRANSACONF);
1793         val &= ~TRANS_ENABLE;
1794         I915_WRITE(_TRANSACONF, val);
1795         /* wait for PCH transcoder off, transcoder state */
1796         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1797                 DRM_ERROR("Failed to disable PCH transcoder\n");
1798
1799         /* Workaround: clear timing override bit. */
1800         val = I915_READ(_TRANSA_CHICKEN2);
1801         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1802         I915_WRITE(_TRANSA_CHICKEN2, val);
1803 }
1804
1805 /**
1806  * intel_enable_pipe - enable a pipe, asserting requirements
1807  * @dev_priv: i915 private structure
1808  * @pipe: pipe to enable
1809  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1810  *
1811  * Enable @pipe, making sure that various hardware specific requirements
1812  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1813  *
1814  * @pipe should be %PIPE_A or %PIPE_B.
1815  *
1816  * Will wait until the pipe is actually running (i.e. first vblank) before
1817  * returning.
1818  */
1819 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1820                               bool pch_port)
1821 {
1822         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1823                                                                       pipe);
1824         int reg;
1825         u32 val;
1826
1827         /*
1828          * A pipe without a PLL won't actually be able to drive bits from
1829          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1830          * need the check.
1831          */
1832         if (!HAS_PCH_SPLIT(dev_priv->dev))
1833                 assert_pll_enabled(dev_priv, pipe);
1834         else {
1835                 if (pch_port) {
1836                         /* if driving the PCH, we need FDI enabled */
1837                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1838                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1839                 }
1840                 /* FIXME: assert CPU port conditions for SNB+ */
1841         }
1842
1843         reg = PIPECONF(cpu_transcoder);
1844         val = I915_READ(reg);
1845         if (val & PIPECONF_ENABLE)
1846                 return;
1847
1848         I915_WRITE(reg, val | PIPECONF_ENABLE);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 /**
1853  * intel_disable_pipe - disable a pipe, asserting requirements
1854  * @dev_priv: i915 private structure
1855  * @pipe: pipe to disable
1856  *
1857  * Disable @pipe, making sure that various hardware specific requirements
1858  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1859  *
1860  * @pipe should be %PIPE_A or %PIPE_B.
1861  *
1862  * Will wait until the pipe has shut down before returning.
1863  */
1864 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1865                                enum pipe pipe)
1866 {
1867         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1868                                                                       pipe);
1869         int reg;
1870         u32 val;
1871
1872         /*
1873          * Make sure planes won't keep trying to pump pixels to us,
1874          * or we might hang the display.
1875          */
1876         assert_planes_disabled(dev_priv, pipe);
1877
1878         /* Don't disable pipe A or pipe A PLLs if needed */
1879         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1880                 return;
1881
1882         reg = PIPECONF(cpu_transcoder);
1883         val = I915_READ(reg);
1884         if ((val & PIPECONF_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1888         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1889 }
1890
1891 /*
1892  * Plane regs are double buffered, going from enabled->disabled needs a
1893  * trigger in order to latch.  The display address reg provides this.
1894  */
1895 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1896                                       enum plane plane)
1897 {
1898         if (dev_priv->info->gen >= 4)
1899                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1900         else
1901                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1902 }
1903
1904 /**
1905  * intel_enable_plane - enable a display plane on a given pipe
1906  * @dev_priv: i915 private structure
1907  * @plane: plane to enable
1908  * @pipe: pipe being fed
1909  *
1910  * Enable @plane on @pipe, making sure that @pipe is running first.
1911  */
1912 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1913                                enum plane plane, enum pipe pipe)
1914 {
1915         int reg;
1916         u32 val;
1917
1918         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1919         assert_pipe_enabled(dev_priv, pipe);
1920
1921         reg = DSPCNTR(plane);
1922         val = I915_READ(reg);
1923         if (val & DISPLAY_PLANE_ENABLE)
1924                 return;
1925
1926         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1927         intel_flush_display_plane(dev_priv, plane);
1928         intel_wait_for_vblank(dev_priv->dev, pipe);
1929 }
1930
1931 /**
1932  * intel_disable_plane - disable a display plane
1933  * @dev_priv: i915 private structure
1934  * @plane: plane to disable
1935  * @pipe: pipe consuming the data
1936  *
1937  * Disable @plane; should be an independent operation.
1938  */
1939 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1940                                 enum plane plane, enum pipe pipe)
1941 {
1942         int reg;
1943         u32 val;
1944
1945         reg = DSPCNTR(plane);
1946         val = I915_READ(reg);
1947         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1948                 return;
1949
1950         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1951         intel_flush_display_plane(dev_priv, plane);
1952         intel_wait_for_vblank(dev_priv->dev, pipe);
1953 }
1954
1955 int
1956 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1957                            struct drm_i915_gem_object *obj,
1958                            struct intel_ring_buffer *pipelined)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 alignment;
1962         int ret;
1963
1964         switch (obj->tiling_mode) {
1965         case I915_TILING_NONE:
1966                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1967                         alignment = 128 * 1024;
1968                 else if (INTEL_INFO(dev)->gen >= 4)
1969                         alignment = 4 * 1024;
1970                 else
1971                         alignment = 64 * 1024;
1972                 break;
1973         case I915_TILING_X:
1974                 /* pin() will align the object as required by fence */
1975                 alignment = 0;
1976                 break;
1977         case I915_TILING_Y:
1978                 /* FIXME: Is this true? */
1979                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1980                 return -EINVAL;
1981         default:
1982                 BUG();
1983         }
1984
1985         dev_priv->mm.interruptible = false;
1986         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1987         if (ret)
1988                 goto err_interruptible;
1989
1990         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1991          * fence, whereas 965+ only requires a fence if using
1992          * framebuffer compression.  For simplicity, we always install
1993          * a fence as the cost is not that onerous.
1994          */
1995         ret = i915_gem_object_get_fence(obj);
1996         if (ret)
1997                 goto err_unpin;
1998
1999         i915_gem_object_pin_fence(obj);
2000
2001         dev_priv->mm.interruptible = true;
2002         return 0;
2003
2004 err_unpin:
2005         i915_gem_object_unpin(obj);
2006 err_interruptible:
2007         dev_priv->mm.interruptible = true;
2008         return ret;
2009 }
2010
2011 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2012 {
2013         i915_gem_object_unpin_fence(obj);
2014         i915_gem_object_unpin(obj);
2015 }
2016
2017 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2018  * is assumed to be a power-of-two. */
2019 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2020                                                unsigned int bpp,
2021                                                unsigned int pitch)
2022 {
2023         int tile_rows, tiles;
2024
2025         tile_rows = *y / 8;
2026         *y %= 8;
2027         tiles = *x / (512/bpp);
2028         *x %= 512/bpp;
2029
2030         return tile_rows * pitch * 8 + tiles * 4096;
2031 }
2032
2033 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2034                              int x, int y)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct drm_i915_private *dev_priv = dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039         struct intel_framebuffer *intel_fb;
2040         struct drm_i915_gem_object *obj;
2041         int plane = intel_crtc->plane;
2042         unsigned long linear_offset;
2043         u32 dspcntr;
2044         u32 reg;
2045
2046         switch (plane) {
2047         case 0:
2048         case 1:
2049                 break;
2050         default:
2051                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2052                 return -EINVAL;
2053         }
2054
2055         intel_fb = to_intel_framebuffer(fb);
2056         obj = intel_fb->obj;
2057
2058         reg = DSPCNTR(plane);
2059         dspcntr = I915_READ(reg);
2060         /* Mask out pixel format bits in case we change it */
2061         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2062         switch (fb->pixel_format) {
2063         case DRM_FORMAT_C8:
2064                 dspcntr |= DISPPLANE_8BPP;
2065                 break;
2066         case DRM_FORMAT_XRGB1555:
2067         case DRM_FORMAT_ARGB1555:
2068                 dspcntr |= DISPPLANE_BGRX555;
2069                 break;
2070         case DRM_FORMAT_RGB565:
2071                 dspcntr |= DISPPLANE_BGRX565;
2072                 break;
2073         case DRM_FORMAT_XRGB8888:
2074         case DRM_FORMAT_ARGB8888:
2075                 dspcntr |= DISPPLANE_BGRX888;
2076                 break;
2077         case DRM_FORMAT_XBGR8888:
2078         case DRM_FORMAT_ABGR8888:
2079                 dspcntr |= DISPPLANE_RGBX888;
2080                 break;
2081         case DRM_FORMAT_XRGB2101010:
2082         case DRM_FORMAT_ARGB2101010:
2083                 dspcntr |= DISPPLANE_BGRX101010;
2084                 break;
2085         case DRM_FORMAT_XBGR2101010:
2086         case DRM_FORMAT_ABGR2101010:
2087                 dspcntr |= DISPPLANE_RGBX101010;
2088                 break;
2089         default:
2090                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2091                 return -EINVAL;
2092         }
2093
2094         if (INTEL_INFO(dev)->gen >= 4) {
2095                 if (obj->tiling_mode != I915_TILING_NONE)
2096                         dspcntr |= DISPPLANE_TILED;
2097                 else
2098                         dspcntr &= ~DISPPLANE_TILED;
2099         }
2100
2101         I915_WRITE(reg, dspcntr);
2102
2103         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2104
2105         if (INTEL_INFO(dev)->gen >= 4) {
2106                 intel_crtc->dspaddr_offset =
2107                         intel_gen4_compute_offset_xtiled(&x, &y,
2108                                                          fb->bits_per_pixel / 8,
2109                                                          fb->pitches[0]);
2110                 linear_offset -= intel_crtc->dspaddr_offset;
2111         } else {
2112                 intel_crtc->dspaddr_offset = linear_offset;
2113         }
2114
2115         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2116                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2117         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2118         if (INTEL_INFO(dev)->gen >= 4) {
2119                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2121                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123         } else
2124                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2125         POSTING_READ(reg);
2126
2127         return 0;
2128 }
2129
2130 static int ironlake_update_plane(struct drm_crtc *crtc,
2131                                  struct drm_framebuffer *fb, int x, int y)
2132 {
2133         struct drm_device *dev = crtc->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136         struct intel_framebuffer *intel_fb;
2137         struct drm_i915_gem_object *obj;
2138         int plane = intel_crtc->plane;
2139         unsigned long linear_offset;
2140         u32 dspcntr;
2141         u32 reg;
2142
2143         switch (plane) {
2144         case 0:
2145         case 1:
2146         case 2:
2147                 break;
2148         default:
2149                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2150                 return -EINVAL;
2151         }
2152
2153         intel_fb = to_intel_framebuffer(fb);
2154         obj = intel_fb->obj;
2155
2156         reg = DSPCNTR(plane);
2157         dspcntr = I915_READ(reg);
2158         /* Mask out pixel format bits in case we change it */
2159         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2160         switch (fb->pixel_format) {
2161         case DRM_FORMAT_C8:
2162                 dspcntr |= DISPPLANE_8BPP;
2163                 break;
2164         case DRM_FORMAT_RGB565:
2165                 dspcntr |= DISPPLANE_BGRX565;
2166                 break;
2167         case DRM_FORMAT_XRGB8888:
2168         case DRM_FORMAT_ARGB8888:
2169                 dspcntr |= DISPPLANE_BGRX888;
2170                 break;
2171         case DRM_FORMAT_XBGR8888:
2172         case DRM_FORMAT_ABGR8888:
2173                 dspcntr |= DISPPLANE_RGBX888;
2174                 break;
2175         case DRM_FORMAT_XRGB2101010:
2176         case DRM_FORMAT_ARGB2101010:
2177                 dspcntr |= DISPPLANE_BGRX101010;
2178                 break;
2179         case DRM_FORMAT_XBGR2101010:
2180         case DRM_FORMAT_ABGR2101010:
2181                 dspcntr |= DISPPLANE_RGBX101010;
2182                 break;
2183         default:
2184                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2185                 return -EINVAL;
2186         }
2187
2188         if (obj->tiling_mode != I915_TILING_NONE)
2189                 dspcntr |= DISPPLANE_TILED;
2190         else
2191                 dspcntr &= ~DISPPLANE_TILED;
2192
2193         /* must disable */
2194         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2195
2196         I915_WRITE(reg, dspcntr);
2197
2198         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2199         intel_crtc->dspaddr_offset =
2200                 intel_gen4_compute_offset_xtiled(&x, &y,
2201                                                  fb->bits_per_pixel / 8,
2202                                                  fb->pitches[0]);
2203         linear_offset -= intel_crtc->dspaddr_offset;
2204
2205         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2206                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2207         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208         I915_MODIFY_DISPBASE(DSPSURF(plane),
2209                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2210         if (IS_HASWELL(dev)) {
2211                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212         } else {
2213                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215         }
2216         POSTING_READ(reg);
2217
2218         return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224                            int x, int y, enum mode_set_atomic state)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (dev_priv->display.disable_fbc)
2230                 dev_priv->display.disable_fbc(dev);
2231         intel_increase_pllclock(crtc);
2232
2233         return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 static int
2237 intel_finish_fb(struct drm_framebuffer *old_fb)
2238 {
2239         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         bool was_interruptible = dev_priv->mm.interruptible;
2242         int ret;
2243
2244         wait_event(dev_priv->pending_flip_queue,
2245                    atomic_read(&dev_priv->mm.wedged) ||
2246                    atomic_read(&obj->pending_flip) == 0);
2247
2248         /* Big Hammer, we also need to ensure that any pending
2249          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2250          * current scanout is retired before unpinning the old
2251          * framebuffer.
2252          *
2253          * This should only fail upon a hung GPU, in which case we
2254          * can safely continue.
2255          */
2256         dev_priv->mm.interruptible = false;
2257         ret = i915_gem_object_finish_gpu(obj);
2258         dev_priv->mm.interruptible = was_interruptible;
2259
2260         return ret;
2261 }
2262
2263 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2264 {
2265         struct drm_device *dev = crtc->dev;
2266         struct drm_i915_master_private *master_priv;
2267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2268
2269         if (!dev->primary->master)
2270                 return;
2271
2272         master_priv = dev->primary->master->driver_priv;
2273         if (!master_priv->sarea_priv)
2274                 return;
2275
2276         switch (intel_crtc->pipe) {
2277         case 0:
2278                 master_priv->sarea_priv->pipeA_x = x;
2279                 master_priv->sarea_priv->pipeA_y = y;
2280                 break;
2281         case 1:
2282                 master_priv->sarea_priv->pipeB_x = x;
2283                 master_priv->sarea_priv->pipeB_y = y;
2284                 break;
2285         default:
2286                 break;
2287         }
2288 }
2289
2290 static int
2291 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2292                     struct drm_framebuffer *fb)
2293 {
2294         struct drm_device *dev = crtc->dev;
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         struct drm_framebuffer *old_fb;
2298         int ret;
2299
2300         /* no fb bound */
2301         if (!fb) {
2302                 DRM_ERROR("No FB bound\n");
2303                 return 0;
2304         }
2305
2306         if(intel_crtc->plane > dev_priv->num_pipe) {
2307                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2308                                 intel_crtc->plane,
2309                                 dev_priv->num_pipe);
2310                 return -EINVAL;
2311         }
2312
2313         mutex_lock(&dev->struct_mutex);
2314         ret = intel_pin_and_fence_fb_obj(dev,
2315                                          to_intel_framebuffer(fb)->obj,
2316                                          NULL);
2317         if (ret != 0) {
2318                 mutex_unlock(&dev->struct_mutex);
2319                 DRM_ERROR("pin & fence failed\n");
2320                 return ret;
2321         }
2322
2323         if (crtc->fb)
2324                 intel_finish_fb(crtc->fb);
2325
2326         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327         if (ret) {
2328                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2329                 mutex_unlock(&dev->struct_mutex);
2330                 DRM_ERROR("failed to update base address\n");
2331                 return ret;
2332         }
2333
2334         old_fb = crtc->fb;
2335         crtc->fb = fb;
2336         crtc->x = x;
2337         crtc->y = y;
2338
2339         if (old_fb) {
2340                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342         }
2343
2344         intel_update_fbc(dev);
2345         mutex_unlock(&dev->struct_mutex);
2346
2347         intel_crtc_update_sarea_pos(crtc, x, y);
2348
2349         return 0;
2350 }
2351
2352 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2353 {
2354         struct drm_device *dev = crtc->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         u32 dpa_ctl;
2357
2358         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2359         dpa_ctl = I915_READ(DP_A);
2360         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2361
2362         if (clock < 200000) {
2363                 u32 temp;
2364                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2365                 /* workaround for 160Mhz:
2366                    1) program 0x4600c bits 15:0 = 0x8124
2367                    2) program 0x46010 bit 0 = 1
2368                    3) program 0x46034 bit 24 = 1
2369                    4) program 0x64000 bit 14 = 1
2370                    */
2371                 temp = I915_READ(0x4600c);
2372                 temp &= 0xffff0000;
2373                 I915_WRITE(0x4600c, temp | 0x8124);
2374
2375                 temp = I915_READ(0x46010);
2376                 I915_WRITE(0x46010, temp | 1);
2377
2378                 temp = I915_READ(0x46034);
2379                 I915_WRITE(0x46034, temp | (1 << 24));
2380         } else {
2381                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2382         }
2383         I915_WRITE(DP_A, dpa_ctl);
2384
2385         POSTING_READ(DP_A);
2386         udelay(500);
2387 }
2388
2389 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2390 {
2391         struct drm_device *dev = crtc->dev;
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394         int pipe = intel_crtc->pipe;
2395         u32 reg, temp;
2396
2397         /* enable normal train */
2398         reg = FDI_TX_CTL(pipe);
2399         temp = I915_READ(reg);
2400         if (IS_IVYBRIDGE(dev)) {
2401                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2402                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2403         } else {
2404                 temp &= ~FDI_LINK_TRAIN_NONE;
2405                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2406         }
2407         I915_WRITE(reg, temp);
2408
2409         reg = FDI_RX_CTL(pipe);
2410         temp = I915_READ(reg);
2411         if (HAS_PCH_CPT(dev)) {
2412                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2413                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2414         } else {
2415                 temp &= ~FDI_LINK_TRAIN_NONE;
2416                 temp |= FDI_LINK_TRAIN_NONE;
2417         }
2418         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2419
2420         /* wait one idle pattern time */
2421         POSTING_READ(reg);
2422         udelay(1000);
2423
2424         /* IVB wants error correction enabled */
2425         if (IS_IVYBRIDGE(dev))
2426                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2427                            FDI_FE_ERRC_ENABLE);
2428 }
2429
2430 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         u32 flags = I915_READ(SOUTH_CHICKEN1);
2434
2435         flags |= FDI_PHASE_SYNC_OVR(pipe);
2436         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2437         flags |= FDI_PHASE_SYNC_EN(pipe);
2438         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2439         POSTING_READ(SOUTH_CHICKEN1);
2440 }
2441
2442 static void ivb_modeset_global_resources(struct drm_device *dev)
2443 {
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         struct intel_crtc *pipe_B_crtc =
2446                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2447         struct intel_crtc *pipe_C_crtc =
2448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2449         uint32_t temp;
2450
2451         /* When everything is off disable fdi C so that we could enable fdi B
2452          * with all lanes. XXX: This misses the case where a pipe is not using
2453          * any pch resources and so doesn't need any fdi lanes. */
2454         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2455                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2456                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2457
2458                 temp = I915_READ(SOUTH_CHICKEN1);
2459                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2460                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2461                 I915_WRITE(SOUTH_CHICKEN1, temp);
2462         }
2463 }
2464
2465 /* The FDI link training functions for ILK/Ibexpeak. */
2466 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2467 {
2468         struct drm_device *dev = crtc->dev;
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471         int pipe = intel_crtc->pipe;
2472         int plane = intel_crtc->plane;
2473         u32 reg, temp, tries;
2474
2475         /* FDI needs bits from pipe & plane first */
2476         assert_pipe_enabled(dev_priv, pipe);
2477         assert_plane_enabled(dev_priv, plane);
2478
2479         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2480            for train result */
2481         reg = FDI_RX_IMR(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_RX_SYMBOL_LOCK;
2484         temp &= ~FDI_RX_BIT_LOCK;
2485         I915_WRITE(reg, temp);
2486         I915_READ(reg);
2487         udelay(150);
2488
2489         /* enable CPU FDI TX and PCH FDI RX */
2490         reg = FDI_TX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~(7 << 19);
2493         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494         temp &= ~FDI_LINK_TRAIN_NONE;
2495         temp |= FDI_LINK_TRAIN_PATTERN_1;
2496         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504         POSTING_READ(reg);
2505         udelay(150);
2506
2507         /* Ironlake workaround, enable clock pointer after FDI enable*/
2508         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2509         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2510                    FDI_RX_PHASE_SYNC_POINTER_EN);
2511
2512         reg = FDI_RX_IIR(pipe);
2513         for (tries = 0; tries < 5; tries++) {
2514                 temp = I915_READ(reg);
2515                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
2517                 if ((temp & FDI_RX_BIT_LOCK)) {
2518                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2519                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2520                         break;
2521                 }
2522         }
2523         if (tries == 5)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         I915_WRITE(reg, temp);
2532
2533         reg = FDI_RX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_2;
2537         I915_WRITE(reg, temp);
2538
2539         POSTING_READ(reg);
2540         udelay(150);
2541
2542         reg = FDI_RX_IIR(pipe);
2543         for (tries = 0; tries < 5; tries++) {
2544                 temp = I915_READ(reg);
2545                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546
2547                 if (temp & FDI_RX_SYMBOL_LOCK) {
2548                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2550                         break;
2551                 }
2552         }
2553         if (tries == 5)
2554                 DRM_ERROR("FDI train 2 fail!\n");
2555
2556         DRM_DEBUG_KMS("FDI train done\n");
2557
2558 }
2559
2560 static const int snb_b_fdi_train_param[] = {
2561         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2562         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2563         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2564         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2565 };
2566
2567 /* The FDI link training functions for SNB/Cougarpoint. */
2568 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2569 {
2570         struct drm_device *dev = crtc->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2573         int pipe = intel_crtc->pipe;
2574         u32 reg, temp, i, retry;
2575
2576         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2577            for train result */
2578         reg = FDI_RX_IMR(pipe);
2579         temp = I915_READ(reg);
2580         temp &= ~FDI_RX_SYMBOL_LOCK;
2581         temp &= ~FDI_RX_BIT_LOCK;
2582         I915_WRITE(reg, temp);
2583
2584         POSTING_READ(reg);
2585         udelay(150);
2586
2587         /* enable CPU FDI TX and PCH FDI RX */
2588         reg = FDI_TX_CTL(pipe);
2589         temp = I915_READ(reg);
2590         temp &= ~(7 << 19);
2591         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_1;
2594         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2595         /* SNB-B */
2596         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2597         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2598
2599         I915_WRITE(FDI_RX_MISC(pipe),
2600                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2601
2602         reg = FDI_RX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         if (HAS_PCH_CPT(dev)) {
2605                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2606                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2607         } else {
2608                 temp &= ~FDI_LINK_TRAIN_NONE;
2609                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2610         }
2611         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         cpt_phase_pointer_enable(dev, pipe);
2617
2618         for (i = 0; i < 4; i++) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 for (retry = 0; retry < 5; retry++) {
2629                         reg = FDI_RX_IIR(pipe);
2630                         temp = I915_READ(reg);
2631                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632                         if (temp & FDI_RX_BIT_LOCK) {
2633                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635                                 break;
2636                         }
2637                         udelay(50);
2638                 }
2639                 if (retry < 5)
2640                         break;
2641         }
2642         if (i == 4)
2643                 DRM_ERROR("FDI train 1 fail!\n");
2644
2645         /* Train 2 */
2646         reg = FDI_TX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         temp &= ~FDI_LINK_TRAIN_NONE;
2649         temp |= FDI_LINK_TRAIN_PATTERN_2;
2650         if (IS_GEN6(dev)) {
2651                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652                 /* SNB-B */
2653                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         if (HAS_PCH_CPT(dev)) {
2660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662         } else {
2663                 temp &= ~FDI_LINK_TRAIN_NONE;
2664                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665         }
2666         I915_WRITE(reg, temp);
2667
2668         POSTING_READ(reg);
2669         udelay(150);
2670
2671         for (i = 0; i < 4; i++) {
2672                 reg = FDI_TX_CTL(pipe);
2673                 temp = I915_READ(reg);
2674                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675                 temp |= snb_b_fdi_train_param[i];
2676                 I915_WRITE(reg, temp);
2677
2678                 POSTING_READ(reg);
2679                 udelay(500);
2680
2681                 for (retry = 0; retry < 5; retry++) {
2682                         reg = FDI_RX_IIR(pipe);
2683                         temp = I915_READ(reg);
2684                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685                         if (temp & FDI_RX_SYMBOL_LOCK) {
2686                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688                                 break;
2689                         }
2690                         udelay(50);
2691                 }
2692                 if (retry < 5)
2693                         break;
2694         }
2695         if (i == 4)
2696                 DRM_ERROR("FDI train 2 fail!\n");
2697
2698         DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704         struct drm_device *dev = crtc->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707         int pipe = intel_crtc->pipe;
2708         u32 reg, temp, i;
2709
2710         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711            for train result */
2712         reg = FDI_RX_IMR(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~FDI_RX_SYMBOL_LOCK;
2715         temp &= ~FDI_RX_BIT_LOCK;
2716         I915_WRITE(reg, temp);
2717
2718         POSTING_READ(reg);
2719         udelay(150);
2720
2721         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722                       I915_READ(FDI_RX_IIR(pipe)));
2723
2724         /* enable CPU FDI TX and PCH FDI RX */
2725         reg = FDI_TX_CTL(pipe);
2726         temp = I915_READ(reg);
2727         temp &= ~(7 << 19);
2728         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736         I915_WRITE(FDI_RX_MISC(pipe),
2737                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739         reg = FDI_RX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_LINK_TRAIN_AUTO;
2742         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744         temp |= FDI_COMPOSITE_SYNC;
2745         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747         POSTING_READ(reg);
2748         udelay(150);
2749
2750         cpt_phase_pointer_enable(dev, pipe);
2751
2752         for (i = 0; i < 4; i++) {
2753                 reg = FDI_TX_CTL(pipe);
2754                 temp = I915_READ(reg);
2755                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756                 temp |= snb_b_fdi_train_param[i];
2757                 I915_WRITE(reg, temp);
2758
2759                 POSTING_READ(reg);
2760                 udelay(500);
2761
2762                 reg = FDI_RX_IIR(pipe);
2763                 temp = I915_READ(reg);
2764                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2765
2766                 if (temp & FDI_RX_BIT_LOCK ||
2767                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2768                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2769                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2770                         break;
2771                 }
2772         }
2773         if (i == 4)
2774                 DRM_ERROR("FDI train 1 fail!\n");
2775
2776         /* Train 2 */
2777         reg = FDI_TX_CTL(pipe);
2778         temp = I915_READ(reg);
2779         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2780         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2781         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2782         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2783         I915_WRITE(reg, temp);
2784
2785         reg = FDI_RX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2789         I915_WRITE(reg, temp);
2790
2791         POSTING_READ(reg);
2792         udelay(150);
2793
2794         for (i = 0; i < 4; i++) {
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2798                 temp |= snb_b_fdi_train_param[i];
2799                 I915_WRITE(reg, temp);
2800
2801                 POSTING_READ(reg);
2802                 udelay(500);
2803
2804                 reg = FDI_RX_IIR(pipe);
2805                 temp = I915_READ(reg);
2806                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2807
2808                 if (temp & FDI_RX_SYMBOL_LOCK) {
2809                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2810                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2811                         break;
2812                 }
2813         }
2814         if (i == 4)
2815                 DRM_ERROR("FDI train 2 fail!\n");
2816
2817         DRM_DEBUG_KMS("FDI train done.\n");
2818 }
2819
2820 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2821 {
2822         struct drm_device *dev = intel_crtc->base.dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         int pipe = intel_crtc->pipe;
2825         u32 reg, temp;
2826
2827
2828         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2829         reg = FDI_RX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         temp &= ~((0x7 << 19) | (0x7 << 16));
2832         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2833         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2834         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(200);
2838
2839         /* Switch from Rawclk to PCDclk */
2840         temp = I915_READ(reg);
2841         I915_WRITE(reg, temp | FDI_PCDCLK);
2842
2843         POSTING_READ(reg);
2844         udelay(200);
2845
2846         /* On Haswell, the PLL configuration for ports and pipes is handled
2847          * separately, as part of DDI setup */
2848         if (!IS_HASWELL(dev)) {
2849                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2850                 reg = FDI_TX_CTL(pipe);
2851                 temp = I915_READ(reg);
2852                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2853                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2854
2855                         POSTING_READ(reg);
2856                         udelay(100);
2857                 }
2858         }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863         struct drm_device *dev = intel_crtc->base.dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* Switch from PCDclk to Rawclk */
2869         reg = FDI_RX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873         /* Disable CPU FDI TX PLL */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878         POSTING_READ(reg);
2879         udelay(100);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885         /* Wait for the clocks to turn off. */
2886         POSTING_READ(reg);
2887         udelay(100);
2888 }
2889
2890 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2891 {
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         u32 flags = I915_READ(SOUTH_CHICKEN1);
2894
2895         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2896         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2897         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2898         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2899         POSTING_READ(SOUTH_CHICKEN1);
2900 }
2901 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2902 {
2903         struct drm_device *dev = crtc->dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         u32 reg, temp;
2908
2909         /* disable CPU FDI tx and PCH FDI rx */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2913         POSTING_READ(reg);
2914
2915         reg = FDI_RX_CTL(pipe);
2916         temp = I915_READ(reg);
2917         temp &= ~(0x7 << 16);
2918         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2919         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2920
2921         POSTING_READ(reg);
2922         udelay(100);
2923
2924         /* Ironlake workaround, disable clock pointer after downing FDI */
2925         if (HAS_PCH_IBX(dev)) {
2926                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2927                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2928                            I915_READ(FDI_RX_CHICKEN(pipe) &
2929                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2930         } else if (HAS_PCH_CPT(dev)) {
2931                 cpt_phase_pointer_disable(dev, pipe);
2932         }
2933
2934         /* still set train pattern 1 */
2935         reg = FDI_TX_CTL(pipe);
2936         temp = I915_READ(reg);
2937         temp &= ~FDI_LINK_TRAIN_NONE;
2938         temp |= FDI_LINK_TRAIN_PATTERN_1;
2939         I915_WRITE(reg, temp);
2940
2941         reg = FDI_RX_CTL(pipe);
2942         temp = I915_READ(reg);
2943         if (HAS_PCH_CPT(dev)) {
2944                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2945                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2946         } else {
2947                 temp &= ~FDI_LINK_TRAIN_NONE;
2948                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949         }
2950         /* BPC in FDI rx is consistent with that in PIPECONF */
2951         temp &= ~(0x07 << 16);
2952         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2953         I915_WRITE(reg, temp);
2954
2955         POSTING_READ(reg);
2956         udelay(100);
2957 }
2958
2959 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         unsigned long flags;
2964         bool pending;
2965
2966         if (atomic_read(&dev_priv->mm.wedged))
2967                 return false;
2968
2969         spin_lock_irqsave(&dev->event_lock, flags);
2970         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2971         spin_unlock_irqrestore(&dev->event_lock, flags);
2972
2973         return pending;
2974 }
2975
2976 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2977 {
2978         struct drm_device *dev = crtc->dev;
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980
2981         if (crtc->fb == NULL)
2982                 return;
2983
2984         wait_event(dev_priv->pending_flip_queue,
2985                    !intel_crtc_has_pending_flip(crtc));
2986
2987         mutex_lock(&dev->struct_mutex);
2988         intel_finish_fb(crtc->fb);
2989         mutex_unlock(&dev->struct_mutex);
2990 }
2991
2992 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2993 {
2994         struct drm_device *dev = crtc->dev;
2995         struct intel_encoder *intel_encoder;
2996
2997         /*
2998          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2999          * must be driven by its own crtc; no sharing is possible.
3000          */
3001         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3002                 switch (intel_encoder->type) {
3003                 case INTEL_OUTPUT_EDP:
3004                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3005                                 return false;
3006                         continue;
3007                 }
3008         }
3009
3010         return true;
3011 }
3012
3013 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3014 {
3015         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3016 }
3017
3018 /* Program iCLKIP clock to the desired frequency */
3019 static void lpt_program_iclkip(struct drm_crtc *crtc)
3020 {
3021         struct drm_device *dev = crtc->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3024         u32 temp;
3025
3026         /* It is necessary to ungate the pixclk gate prior to programming
3027          * the divisors, and gate it back when it is done.
3028          */
3029         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3030
3031         /* Disable SSCCTL */
3032         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3033                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3034                                         SBI_SSCCTL_DISABLE);
3035
3036         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3037         if (crtc->mode.clock == 20000) {
3038                 auxdiv = 1;
3039                 divsel = 0x41;
3040                 phaseinc = 0x20;
3041         } else {
3042                 /* The iCLK virtual clock root frequency is in MHz,
3043                  * but the crtc->mode.clock in in KHz. To get the divisors,
3044                  * it is necessary to divide one by another, so we
3045                  * convert the virtual clock precision to KHz here for higher
3046                  * precision.
3047                  */
3048                 u32 iclk_virtual_root_freq = 172800 * 1000;
3049                 u32 iclk_pi_range = 64;
3050                 u32 desired_divisor, msb_divisor_value, pi_value;
3051
3052                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3053                 msb_divisor_value = desired_divisor / iclk_pi_range;
3054                 pi_value = desired_divisor % iclk_pi_range;
3055
3056                 auxdiv = 0;
3057                 divsel = msb_divisor_value - 2;
3058                 phaseinc = pi_value;
3059         }
3060
3061         /* This should not happen with any sane values */
3062         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3063                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3064         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3065                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3066
3067         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3068                         crtc->mode.clock,
3069                         auxdiv,
3070                         divsel,
3071                         phasedir,
3072                         phaseinc);
3073
3074         /* Program SSCDIVINTPHASE6 */
3075         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3076         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3077         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3078         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3079         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3080         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3081         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3082
3083         intel_sbi_write(dev_priv,
3084                         SBI_SSCDIVINTPHASE6,
3085                         temp);
3086
3087         /* Program SSCAUXDIV */
3088         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3089         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3090         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3091         intel_sbi_write(dev_priv,
3092                         SBI_SSCAUXDIV6,
3093                         temp);
3094
3095
3096         /* Enable modulator and associated divider */
3097         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3098         temp &= ~SBI_SSCCTL_DISABLE;
3099         intel_sbi_write(dev_priv,
3100                         SBI_SSCCTL6,
3101                         temp);
3102
3103         /* Wait for initialization time */
3104         udelay(24);
3105
3106         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3107 }
3108
3109 /*
3110  * Enable PCH resources required for PCH ports:
3111  *   - PCH PLLs
3112  *   - FDI training & RX/TX
3113  *   - update transcoder timings
3114  *   - DP transcoding bits
3115  *   - transcoder
3116  */
3117 static void ironlake_pch_enable(struct drm_crtc *crtc)
3118 {
3119         struct drm_device *dev = crtc->dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3122         int pipe = intel_crtc->pipe;
3123         u32 reg, temp;
3124
3125         assert_transcoder_disabled(dev_priv, pipe);
3126
3127         /* Write the TU size bits before fdi link training, so that error
3128          * detection works. */
3129         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3130                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3131
3132         /* For PCH output, training FDI link */
3133         dev_priv->display.fdi_link_train(crtc);
3134
3135         /* XXX: pch pll's can be enabled any time before we enable the PCH
3136          * transcoder, and we actually should do this to not upset any PCH
3137          * transcoder that already use the clock when we share it.
3138          *
3139          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3140          * unconditionally resets the pll - we need that to have the right LVDS
3141          * enable sequence. */
3142         ironlake_enable_pch_pll(intel_crtc);
3143
3144         if (HAS_PCH_CPT(dev)) {
3145                 u32 sel;
3146
3147                 temp = I915_READ(PCH_DPLL_SEL);
3148                 switch (pipe) {
3149                 default:
3150                 case 0:
3151                         temp |= TRANSA_DPLL_ENABLE;
3152                         sel = TRANSA_DPLLB_SEL;
3153                         break;
3154                 case 1:
3155                         temp |= TRANSB_DPLL_ENABLE;
3156                         sel = TRANSB_DPLLB_SEL;
3157                         break;
3158                 case 2:
3159                         temp |= TRANSC_DPLL_ENABLE;
3160                         sel = TRANSC_DPLLB_SEL;
3161                         break;
3162                 }
3163                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3164                         temp |= sel;
3165                 else
3166                         temp &= ~sel;
3167                 I915_WRITE(PCH_DPLL_SEL, temp);
3168         }
3169
3170         /* set transcoder timing, panel must allow it */
3171         assert_panel_unlocked(dev_priv, pipe);
3172         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3173         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3174         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3175
3176         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3177         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3178         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3179         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3180
3181         intel_fdi_normal_train(crtc);
3182
3183         /* For PCH DP, enable TRANS_DP_CTL */
3184         if (HAS_PCH_CPT(dev) &&
3185             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3186              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3187                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3188                 reg = TRANS_DP_CTL(pipe);
3189                 temp = I915_READ(reg);
3190                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3191                           TRANS_DP_SYNC_MASK |
3192                           TRANS_DP_BPC_MASK);
3193                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3194                          TRANS_DP_ENH_FRAMING);
3195                 temp |= bpc << 9; /* same format but at 11:9 */
3196
3197                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3198                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3199                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3200                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3201
3202                 switch (intel_trans_dp_port_sel(crtc)) {
3203                 case PCH_DP_B:
3204                         temp |= TRANS_DP_PORT_SEL_B;
3205                         break;
3206                 case PCH_DP_C:
3207                         temp |= TRANS_DP_PORT_SEL_C;
3208                         break;
3209                 case PCH_DP_D:
3210                         temp |= TRANS_DP_PORT_SEL_D;
3211                         break;
3212                 default:
3213                         BUG();
3214                 }
3215
3216                 I915_WRITE(reg, temp);
3217         }
3218
3219         ironlake_enable_pch_transcoder(dev_priv, pipe);
3220 }
3221
3222 static void lpt_pch_enable(struct drm_crtc *crtc)
3223 {
3224         struct drm_device *dev = crtc->dev;
3225         struct drm_i915_private *dev_priv = dev->dev_private;
3226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3227         int pipe = intel_crtc->pipe;
3228         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3229
3230         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3231
3232         /* Write the TU size bits before fdi link training, so that error
3233          * detection works. */
3234         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3235                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3236
3237         /* For PCH output, training FDI link */
3238         dev_priv->display.fdi_link_train(crtc);
3239
3240         lpt_program_iclkip(crtc);
3241
3242         /* Set transcoder timing. */
3243         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3244         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3245         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3246
3247         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3248         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3249         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3250         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3251
3252         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3253 }
3254
3255 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3256 {
3257         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3258
3259         if (pll == NULL)
3260                 return;
3261
3262         if (pll->refcount == 0) {
3263                 WARN(1, "bad PCH PLL refcount\n");
3264                 return;
3265         }
3266
3267         --pll->refcount;
3268         intel_crtc->pch_pll = NULL;
3269 }
3270
3271 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3272 {
3273         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3274         struct intel_pch_pll *pll;
3275         int i;
3276
3277         pll = intel_crtc->pch_pll;
3278         if (pll) {
3279                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3280                               intel_crtc->base.base.id, pll->pll_reg);
3281                 goto prepare;
3282         }
3283
3284         if (HAS_PCH_IBX(dev_priv->dev)) {
3285                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3286                 i = intel_crtc->pipe;
3287                 pll = &dev_priv->pch_plls[i];
3288
3289                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3290                               intel_crtc->base.base.id, pll->pll_reg);
3291
3292                 goto found;
3293         }
3294
3295         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3296                 pll = &dev_priv->pch_plls[i];
3297
3298                 /* Only want to check enabled timings first */
3299                 if (pll->refcount == 0)
3300                         continue;
3301
3302                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3303                     fp == I915_READ(pll->fp0_reg)) {
3304                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3305                                       intel_crtc->base.base.id,
3306                                       pll->pll_reg, pll->refcount, pll->active);
3307
3308                         goto found;
3309                 }
3310         }
3311
3312         /* Ok no matching timings, maybe there's a free one? */
3313         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3314                 pll = &dev_priv->pch_plls[i];
3315                 if (pll->refcount == 0) {
3316                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3317                                       intel_crtc->base.base.id, pll->pll_reg);
3318                         goto found;
3319                 }
3320         }
3321
3322         return NULL;
3323
3324 found:
3325         intel_crtc->pch_pll = pll;
3326         pll->refcount++;
3327         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3328 prepare: /* separate function? */
3329         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3330
3331         /* Wait for the clocks to stabilize before rewriting the regs */
3332         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3333         POSTING_READ(pll->pll_reg);
3334         udelay(150);
3335
3336         I915_WRITE(pll->fp0_reg, fp);
3337         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3338         pll->on = false;
3339         return pll;
3340 }
3341
3342 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3343 {
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         int dslreg = PIPEDSL(pipe);
3346         u32 temp;
3347
3348         temp = I915_READ(dslreg);
3349         udelay(500);
3350         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3351                 if (wait_for(I915_READ(dslreg) != temp, 5))
3352                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3353         }
3354 }
3355
3356 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3357 {
3358         struct drm_device *dev = crtc->dev;
3359         struct drm_i915_private *dev_priv = dev->dev_private;
3360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3361         struct intel_encoder *encoder;
3362         int pipe = intel_crtc->pipe;
3363         int plane = intel_crtc->plane;
3364         u32 temp;
3365         bool is_pch_port;
3366
3367         WARN_ON(!crtc->enabled);
3368
3369         if (intel_crtc->active)
3370                 return;
3371
3372         intel_crtc->active = true;
3373         intel_update_watermarks(dev);
3374
3375         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3376                 temp = I915_READ(PCH_LVDS);
3377                 if ((temp & LVDS_PORT_EN) == 0)
3378                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3379         }
3380
3381         is_pch_port = ironlake_crtc_driving_pch(crtc);
3382
3383         if (is_pch_port) {
3384                 /* Note: FDI PLL enabling _must_ be done before we enable the
3385                  * cpu pipes, hence this is separate from all the other fdi/pch
3386                  * enabling. */
3387                 ironlake_fdi_pll_enable(intel_crtc);
3388         } else {
3389                 assert_fdi_tx_disabled(dev_priv, pipe);
3390                 assert_fdi_rx_disabled(dev_priv, pipe);
3391         }
3392
3393         for_each_encoder_on_crtc(dev, crtc, encoder)
3394                 if (encoder->pre_enable)
3395                         encoder->pre_enable(encoder);
3396
3397         /* Enable panel fitting for LVDS */
3398         if (dev_priv->pch_pf_size &&
3399             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3400              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3401                 /* Force use of hard-coded filter coefficients
3402                  * as some pre-programmed values are broken,
3403                  * e.g. x201.
3404                  */
3405                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3406                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3407                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3408         }
3409
3410         /*
3411          * On ILK+ LUT must be loaded before the pipe is running but with
3412          * clocks enabled
3413          */
3414         intel_crtc_load_lut(crtc);
3415
3416         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3417         intel_enable_plane(dev_priv, plane, pipe);
3418
3419         if (is_pch_port)
3420                 ironlake_pch_enable(crtc);
3421
3422         mutex_lock(&dev->struct_mutex);
3423         intel_update_fbc(dev);
3424         mutex_unlock(&dev->struct_mutex);
3425
3426         intel_crtc_update_cursor(crtc, true);
3427
3428         for_each_encoder_on_crtc(dev, crtc, encoder)
3429                 encoder->enable(encoder);
3430
3431         if (HAS_PCH_CPT(dev))
3432                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3433
3434         /*
3435          * There seems to be a race in PCH platform hw (at least on some
3436          * outputs) where an enabled pipe still completes any pageflip right
3437          * away (as if the pipe is off) instead of waiting for vblank. As soon
3438          * as the first vblank happend, everything works as expected. Hence just
3439          * wait for one vblank before returning to avoid strange things
3440          * happening.
3441          */
3442         intel_wait_for_vblank(dev, intel_crtc->pipe);
3443 }
3444
3445 static void haswell_crtc_enable(struct drm_crtc *crtc)
3446 {
3447         struct drm_device *dev = crtc->dev;
3448         struct drm_i915_private *dev_priv = dev->dev_private;
3449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3450         struct intel_encoder *encoder;
3451         int pipe = intel_crtc->pipe;
3452         int plane = intel_crtc->plane;
3453         bool is_pch_port;
3454
3455         WARN_ON(!crtc->enabled);
3456
3457         if (intel_crtc->active)
3458                 return;
3459
3460         intel_crtc->active = true;
3461         intel_update_watermarks(dev);
3462
3463         is_pch_port = haswell_crtc_driving_pch(crtc);
3464
3465         if (is_pch_port)
3466                 ironlake_fdi_pll_enable(intel_crtc);
3467
3468         for_each_encoder_on_crtc(dev, crtc, encoder)
3469                 if (encoder->pre_enable)
3470                         encoder->pre_enable(encoder);
3471
3472         intel_ddi_enable_pipe_clock(intel_crtc);
3473
3474         /* Enable panel fitting for eDP */
3475         if (dev_priv->pch_pf_size &&
3476             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3477                 /* Force use of hard-coded filter coefficients
3478                  * as some pre-programmed values are broken,
3479                  * e.g. x201.
3480                  */
3481                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3482                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3483                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3484         }
3485
3486         /*
3487          * On ILK+ LUT must be loaded before the pipe is running but with
3488          * clocks enabled
3489          */
3490         intel_crtc_load_lut(crtc);
3491
3492         intel_ddi_set_pipe_settings(crtc);
3493         intel_ddi_enable_pipe_func(crtc);
3494
3495         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3496         intel_enable_plane(dev_priv, plane, pipe);
3497
3498         if (is_pch_port)
3499                 lpt_pch_enable(crtc);
3500
3501         mutex_lock(&dev->struct_mutex);
3502         intel_update_fbc(dev);
3503         mutex_unlock(&dev->struct_mutex);
3504
3505         intel_crtc_update_cursor(crtc, true);
3506
3507         for_each_encoder_on_crtc(dev, crtc, encoder)
3508                 encoder->enable(encoder);
3509
3510         /*
3511          * There seems to be a race in PCH platform hw (at least on some
3512          * outputs) where an enabled pipe still completes any pageflip right
3513          * away (as if the pipe is off) instead of waiting for vblank. As soon
3514          * as the first vblank happend, everything works as expected. Hence just
3515          * wait for one vblank before returning to avoid strange things
3516          * happening.
3517          */
3518         intel_wait_for_vblank(dev, intel_crtc->pipe);
3519 }
3520
3521 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3522 {
3523         struct drm_device *dev = crtc->dev;
3524         struct drm_i915_private *dev_priv = dev->dev_private;
3525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3526         struct intel_encoder *encoder;
3527         int pipe = intel_crtc->pipe;
3528         int plane = intel_crtc->plane;
3529         u32 reg, temp;
3530
3531
3532         if (!intel_crtc->active)
3533                 return;
3534
3535         for_each_encoder_on_crtc(dev, crtc, encoder)
3536                 encoder->disable(encoder);
3537
3538         intel_crtc_wait_for_pending_flips(crtc);
3539         drm_vblank_off(dev, pipe);
3540         intel_crtc_update_cursor(crtc, false);
3541
3542         intel_disable_plane(dev_priv, plane, pipe);
3543
3544         if (dev_priv->cfb_plane == plane)
3545                 intel_disable_fbc(dev);
3546
3547         intel_disable_pipe(dev_priv, pipe);
3548
3549         /* Disable PF */
3550         I915_WRITE(PF_CTL(pipe), 0);
3551         I915_WRITE(PF_WIN_SZ(pipe), 0);
3552
3553         for_each_encoder_on_crtc(dev, crtc, encoder)
3554                 if (encoder->post_disable)
3555                         encoder->post_disable(encoder);
3556
3557         ironlake_fdi_disable(crtc);
3558
3559         ironlake_disable_pch_transcoder(dev_priv, pipe);
3560
3561         if (HAS_PCH_CPT(dev)) {
3562                 /* disable TRANS_DP_CTL */
3563                 reg = TRANS_DP_CTL(pipe);
3564                 temp = I915_READ(reg);
3565                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3566                 temp |= TRANS_DP_PORT_SEL_NONE;
3567                 I915_WRITE(reg, temp);
3568
3569                 /* disable DPLL_SEL */
3570                 temp = I915_READ(PCH_DPLL_SEL);
3571                 switch (pipe) {
3572                 case 0:
3573                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3574                         break;
3575                 case 1:
3576                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3577                         break;
3578                 case 2:
3579                         /* C shares PLL A or B */
3580                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3581                         break;
3582                 default:
3583                         BUG(); /* wtf */
3584                 }
3585                 I915_WRITE(PCH_DPLL_SEL, temp);
3586         }
3587
3588         /* disable PCH DPLL */
3589         intel_disable_pch_pll(intel_crtc);
3590
3591         ironlake_fdi_pll_disable(intel_crtc);
3592
3593         intel_crtc->active = false;
3594         intel_update_watermarks(dev);
3595
3596         mutex_lock(&dev->struct_mutex);
3597         intel_update_fbc(dev);
3598         mutex_unlock(&dev->struct_mutex);
3599 }
3600
3601 static void haswell_crtc_disable(struct drm_crtc *crtc)
3602 {
3603         struct drm_device *dev = crtc->dev;
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606         struct intel_encoder *encoder;
3607         int pipe = intel_crtc->pipe;
3608         int plane = intel_crtc->plane;
3609         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3610         bool is_pch_port;
3611
3612         if (!intel_crtc->active)
3613                 return;
3614
3615         is_pch_port = haswell_crtc_driving_pch(crtc);
3616
3617         for_each_encoder_on_crtc(dev, crtc, encoder)
3618                 encoder->disable(encoder);
3619
3620         intel_crtc_wait_for_pending_flips(crtc);
3621         drm_vblank_off(dev, pipe);
3622         intel_crtc_update_cursor(crtc, false);
3623
3624         intel_disable_plane(dev_priv, plane, pipe);
3625
3626         if (dev_priv->cfb_plane == plane)
3627                 intel_disable_fbc(dev);
3628
3629         intel_disable_pipe(dev_priv, pipe);
3630
3631         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3632
3633         /* Disable PF */
3634         I915_WRITE(PF_CTL(pipe), 0);
3635         I915_WRITE(PF_WIN_SZ(pipe), 0);
3636
3637         intel_ddi_disable_pipe_clock(intel_crtc);
3638
3639         for_each_encoder_on_crtc(dev, crtc, encoder)
3640                 if (encoder->post_disable)
3641                         encoder->post_disable(encoder);
3642
3643         if (is_pch_port) {
3644                 ironlake_fdi_disable(crtc);
3645                 lpt_disable_pch_transcoder(dev_priv);
3646                 ironlake_fdi_pll_disable(intel_crtc);
3647         }
3648
3649         intel_crtc->active = false;
3650         intel_update_watermarks(dev);
3651
3652         mutex_lock(&dev->struct_mutex);
3653         intel_update_fbc(dev);
3654         mutex_unlock(&dev->struct_mutex);
3655 }
3656
3657 static void ironlake_crtc_off(struct drm_crtc *crtc)
3658 {
3659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660         intel_put_pch_pll(intel_crtc);
3661 }
3662
3663 static void haswell_crtc_off(struct drm_crtc *crtc)
3664 {
3665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3666
3667         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3668          * start using it. */
3669         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3670
3671         intel_ddi_put_crtc_pll(crtc);
3672 }
3673
3674 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3675 {
3676         if (!enable && intel_crtc->overlay) {
3677                 struct drm_device *dev = intel_crtc->base.dev;
3678                 struct drm_i915_private *dev_priv = dev->dev_private;
3679
3680                 mutex_lock(&dev->struct_mutex);
3681                 dev_priv->mm.interruptible = false;
3682                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3683                 dev_priv->mm.interruptible = true;
3684                 mutex_unlock(&dev->struct_mutex);
3685         }
3686
3687         /* Let userspace switch the overlay on again. In most cases userspace
3688          * has to recompute where to put it anyway.
3689          */
3690 }
3691
3692 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3693 {
3694         struct drm_device *dev = crtc->dev;
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3697         struct intel_encoder *encoder;
3698         int pipe = intel_crtc->pipe;
3699         int plane = intel_crtc->plane;
3700
3701         WARN_ON(!crtc->enabled);
3702
3703         if (intel_crtc->active)
3704                 return;
3705
3706         intel_crtc->active = true;
3707         intel_update_watermarks(dev);
3708
3709         intel_enable_pll(dev_priv, pipe);
3710         intel_enable_pipe(dev_priv, pipe, false);
3711         intel_enable_plane(dev_priv, plane, pipe);
3712
3713         intel_crtc_load_lut(crtc);
3714         intel_update_fbc(dev);
3715
3716         /* Give the overlay scaler a chance to enable if it's on this pipe */
3717         intel_crtc_dpms_overlay(intel_crtc, true);
3718         intel_crtc_update_cursor(crtc, true);
3719
3720         for_each_encoder_on_crtc(dev, crtc, encoder)
3721                 encoder->enable(encoder);
3722 }
3723
3724 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3725 {
3726         struct drm_device *dev = crtc->dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729         struct intel_encoder *encoder;
3730         int pipe = intel_crtc->pipe;
3731         int plane = intel_crtc->plane;
3732
3733
3734         if (!intel_crtc->active)
3735                 return;
3736
3737         for_each_encoder_on_crtc(dev, crtc, encoder)
3738                 encoder->disable(encoder);
3739
3740         /* Give the overlay scaler a chance to disable if it's on this pipe */
3741         intel_crtc_wait_for_pending_flips(crtc);
3742         drm_vblank_off(dev, pipe);
3743         intel_crtc_dpms_overlay(intel_crtc, false);
3744         intel_crtc_update_cursor(crtc, false);
3745
3746         if (dev_priv->cfb_plane == plane)
3747                 intel_disable_fbc(dev);
3748
3749         intel_disable_plane(dev_priv, plane, pipe);
3750         intel_disable_pipe(dev_priv, pipe);
3751         intel_disable_pll(dev_priv, pipe);
3752
3753         intel_crtc->active = false;
3754         intel_update_fbc(dev);
3755         intel_update_watermarks(dev);
3756 }
3757
3758 static void i9xx_crtc_off(struct drm_crtc *crtc)
3759 {
3760 }
3761
3762 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3763                                     bool enabled)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         struct drm_i915_master_private *master_priv;
3767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768         int pipe = intel_crtc->pipe;
3769
3770         if (!dev->primary->master)
3771                 return;
3772
3773         master_priv = dev->primary->master->driver_priv;
3774         if (!master_priv->sarea_priv)
3775                 return;
3776
3777         switch (pipe) {
3778         case 0:
3779                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3780                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3781                 break;
3782         case 1:
3783                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3784                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3785                 break;
3786         default:
3787                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3788                 break;
3789         }
3790 }
3791
3792 /**
3793  * Sets the power management mode of the pipe and plane.
3794  */
3795 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3796 {
3797         struct drm_device *dev = crtc->dev;
3798         struct drm_i915_private *dev_priv = dev->dev_private;
3799         struct intel_encoder *intel_encoder;
3800         bool enable = false;
3801
3802         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3803                 enable |= intel_encoder->connectors_active;
3804
3805         if (enable)
3806                 dev_priv->display.crtc_enable(crtc);
3807         else
3808                 dev_priv->display.crtc_disable(crtc);
3809
3810         intel_crtc_update_sarea(crtc, enable);
3811 }
3812
3813 static void intel_crtc_noop(struct drm_crtc *crtc)
3814 {
3815 }
3816
3817 static void intel_crtc_disable(struct drm_crtc *crtc)
3818 {
3819         struct drm_device *dev = crtc->dev;
3820         struct drm_connector *connector;
3821         struct drm_i915_private *dev_priv = dev->dev_private;
3822
3823         /* crtc should still be enabled when we disable it. */
3824         WARN_ON(!crtc->enabled);
3825
3826         dev_priv->display.crtc_disable(crtc);
3827         intel_crtc_update_sarea(crtc, false);
3828         dev_priv->display.off(crtc);
3829
3830         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3831         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3832
3833         if (crtc->fb) {
3834                 mutex_lock(&dev->struct_mutex);
3835                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3836                 mutex_unlock(&dev->struct_mutex);
3837                 crtc->fb = NULL;
3838         }
3839
3840         /* Update computed state. */
3841         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3842                 if (!connector->encoder || !connector->encoder->crtc)
3843                         continue;
3844
3845                 if (connector->encoder->crtc != crtc)
3846                         continue;
3847
3848                 connector->dpms = DRM_MODE_DPMS_OFF;
3849                 to_intel_encoder(connector->encoder)->connectors_active = false;
3850         }
3851 }
3852
3853 void intel_modeset_disable(struct drm_device *dev)
3854 {
3855         struct drm_crtc *crtc;
3856
3857         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3858                 if (crtc->enabled)
3859                         intel_crtc_disable(crtc);
3860         }
3861 }
3862
3863 void intel_encoder_noop(struct drm_encoder *encoder)
3864 {
3865 }
3866
3867 void intel_encoder_destroy(struct drm_encoder *encoder)
3868 {
3869         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3870
3871         drm_encoder_cleanup(encoder);
3872         kfree(intel_encoder);
3873 }
3874
3875 /* Simple dpms helper for encodres with just one connector, no cloning and only
3876  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3877  * state of the entire output pipe. */
3878 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3879 {
3880         if (mode == DRM_MODE_DPMS_ON) {
3881                 encoder->connectors_active = true;
3882
3883                 intel_crtc_update_dpms(encoder->base.crtc);
3884         } else {
3885                 encoder->connectors_active = false;
3886
3887                 intel_crtc_update_dpms(encoder->base.crtc);
3888         }
3889 }
3890
3891 /* Cross check the actual hw state with our own modeset state tracking (and it's
3892  * internal consistency). */
3893 static void intel_connector_check_state(struct intel_connector *connector)
3894 {
3895         if (connector->get_hw_state(connector)) {
3896                 struct intel_encoder *encoder = connector->encoder;
3897                 struct drm_crtc *crtc;
3898                 bool encoder_enabled;
3899                 enum pipe pipe;
3900
3901                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3902                               connector->base.base.id,
3903                               drm_get_connector_name(&connector->base));
3904
3905                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3906                      "wrong connector dpms state\n");
3907                 WARN(connector->base.encoder != &encoder->base,
3908                      "active connector not linked to encoder\n");
3909                 WARN(!encoder->connectors_active,
3910                      "encoder->connectors_active not set\n");
3911
3912                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3913                 WARN(!encoder_enabled, "encoder not enabled\n");
3914                 if (WARN_ON(!encoder->base.crtc))
3915                         return;
3916
3917                 crtc = encoder->base.crtc;
3918
3919                 WARN(!crtc->enabled, "crtc not enabled\n");
3920                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3921                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3922                      "encoder active on the wrong pipe\n");
3923         }
3924 }
3925
3926 /* Even simpler default implementation, if there's really no special case to
3927  * consider. */
3928 void intel_connector_dpms(struct drm_connector *connector, int mode)
3929 {
3930         struct intel_encoder *encoder = intel_attached_encoder(connector);
3931
3932         /* All the simple cases only support two dpms states. */
3933         if (mode != DRM_MODE_DPMS_ON)
3934                 mode = DRM_MODE_DPMS_OFF;
3935
3936         if (mode == connector->dpms)
3937                 return;
3938
3939         connector->dpms = mode;
3940
3941         /* Only need to change hw state when actually enabled */
3942         if (encoder->base.crtc)
3943                 intel_encoder_dpms(encoder, mode);
3944         else
3945                 WARN_ON(encoder->connectors_active != false);
3946
3947         intel_modeset_check_state(connector->dev);
3948 }
3949
3950 /* Simple connector->get_hw_state implementation for encoders that support only
3951  * one connector and no cloning and hence the encoder state determines the state
3952  * of the connector. */
3953 bool intel_connector_get_hw_state(struct intel_connector *connector)
3954 {
3955         enum pipe pipe = 0;
3956         struct intel_encoder *encoder = connector->encoder;
3957
3958         return encoder->get_hw_state(encoder, &pipe);
3959 }
3960
3961 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3962                                   const struct drm_display_mode *mode,
3963                                   struct drm_display_mode *adjusted_mode)
3964 {
3965         struct drm_device *dev = crtc->dev;
3966
3967         if (HAS_PCH_SPLIT(dev)) {
3968                 /* FDI link clock is fixed at 2.7G */
3969                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3970                         return false;
3971         }
3972
3973         /* All interlaced capable intel hw wants timings in frames. Note though
3974          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3975          * timings, so we need to be careful not to clobber these.*/
3976         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3977                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3978
3979         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3980          * with a hsync front porch of 0.
3981          */
3982         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3983                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3984                 return false;
3985
3986         return true;
3987 }
3988
3989 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3990 {
3991         return 400000; /* FIXME */
3992 }
3993
3994 static int i945_get_display_clock_speed(struct drm_device *dev)
3995 {
3996         return 400000;
3997 }
3998
3999 static int i915_get_display_clock_speed(struct drm_device *dev)
4000 {
4001         return 333000;
4002 }
4003
4004 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4005 {
4006         return 200000;
4007 }
4008
4009 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4010 {
4011         u16 gcfgc = 0;
4012
4013         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4014
4015         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4016                 return 133000;
4017         else {
4018                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4019                 case GC_DISPLAY_CLOCK_333_MHZ:
4020                         return 333000;
4021                 default:
4022                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4023                         return 190000;
4024                 }
4025         }
4026 }
4027
4028 static int i865_get_display_clock_speed(struct drm_device *dev)
4029 {
4030         return 266000;
4031 }
4032
4033 static int i855_get_display_clock_speed(struct drm_device *dev)
4034 {
4035         u16 hpllcc = 0;
4036         /* Assume that the hardware is in the high speed state.  This
4037          * should be the default.
4038          */
4039         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4040         case GC_CLOCK_133_200:
4041         case GC_CLOCK_100_200:
4042                 return 200000;
4043         case GC_CLOCK_166_250:
4044                 return 250000;
4045         case GC_CLOCK_100_133:
4046                 return 133000;
4047         }
4048
4049         /* Shouldn't happen */
4050         return 0;
4051 }
4052
4053 static int i830_get_display_clock_speed(struct drm_device *dev)
4054 {
4055         return 133000;
4056 }
4057
4058 struct fdi_m_n {
4059         u32        tu;
4060         u32        gmch_m;
4061         u32        gmch_n;
4062         u32        link_m;
4063         u32        link_n;
4064 };
4065
4066 static void
4067 fdi_reduce_ratio(u32 *num, u32 *den)
4068 {
4069         while (*num > 0xffffff || *den > 0xffffff) {
4070                 *num >>= 1;
4071                 *den >>= 1;
4072         }
4073 }
4074
4075 static void
4076 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4077                      int link_clock, struct fdi_m_n *m_n)
4078 {
4079         m_n->tu = 64; /* default size */
4080
4081         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4082         m_n->gmch_m = bits_per_pixel * pixel_clock;
4083         m_n->gmch_n = link_clock * nlanes * 8;
4084         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4085
4086         m_n->link_m = pixel_clock;
4087         m_n->link_n = link_clock;
4088         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4089 }
4090
4091 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4092 {
4093         if (i915_panel_use_ssc >= 0)
4094                 return i915_panel_use_ssc != 0;
4095         return dev_priv->lvds_use_ssc
4096                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4097 }
4098
4099 /**
4100  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4101  * @crtc: CRTC structure
4102  * @mode: requested mode
4103  *
4104  * A pipe may be connected to one or more outputs.  Based on the depth of the
4105  * attached framebuffer, choose a good color depth to use on the pipe.
4106  *
4107  * If possible, match the pipe depth to the fb depth.  In some cases, this
4108  * isn't ideal, because the connected output supports a lesser or restricted
4109  * set of depths.  Resolve that here:
4110  *    LVDS typically supports only 6bpc, so clamp down in that case
4111  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4112  *    Displays may support a restricted set as well, check EDID and clamp as
4113  *      appropriate.
4114  *    DP may want to dither down to 6bpc to fit larger modes
4115  *
4116  * RETURNS:
4117  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4118  * true if they don't match).
4119  */
4120 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4121                                          struct drm_framebuffer *fb,
4122                                          unsigned int *pipe_bpp,
4123                                          struct drm_display_mode *mode)
4124 {
4125         struct drm_device *dev = crtc->dev;
4126         struct drm_i915_private *dev_priv = dev->dev_private;
4127         struct drm_connector *connector;
4128         struct intel_encoder *intel_encoder;
4129         unsigned int display_bpc = UINT_MAX, bpc;
4130
4131         /* Walk the encoders & connectors on this crtc, get min bpc */
4132         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4133
4134                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4135                         unsigned int lvds_bpc;
4136
4137                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4138                             LVDS_A3_POWER_UP)
4139                                 lvds_bpc = 8;
4140                         else
4141                                 lvds_bpc = 6;
4142
4143                         if (lvds_bpc < display_bpc) {
4144                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4145                                 display_bpc = lvds_bpc;
4146                         }
4147                         continue;
4148                 }
4149
4150                 /* Not one of the known troublemakers, check the EDID */
4151                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4152                                     head) {
4153                         if (connector->encoder != &intel_encoder->base)
4154                                 continue;
4155
4156                         /* Don't use an invalid EDID bpc value */
4157                         if (connector->display_info.bpc &&
4158                             connector->display_info.bpc < display_bpc) {
4159                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4160                                 display_bpc = connector->display_info.bpc;
4161                         }
4162                 }
4163
4164                 /*
4165                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4166                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4167                  */
4168                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4169                         if (display_bpc > 8 && display_bpc < 12) {
4170                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4171                                 display_bpc = 12;
4172                         } else {
4173                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4174                                 display_bpc = 8;
4175                         }
4176                 }
4177         }
4178
4179         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4180                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4181                 display_bpc = 6;
4182         }
4183
4184         /*
4185          * We could just drive the pipe at the highest bpc all the time and
4186          * enable dithering as needed, but that costs bandwidth.  So choose
4187          * the minimum value that expresses the full color range of the fb but
4188          * also stays within the max display bpc discovered above.
4189          */
4190
4191         switch (fb->depth) {
4192         case 8:
4193                 bpc = 8; /* since we go through a colormap */
4194                 break;
4195         case 15:
4196         case 16:
4197                 bpc = 6; /* min is 18bpp */
4198                 break;
4199         case 24:
4200                 bpc = 8;
4201                 break;
4202         case 30:
4203                 bpc = 10;
4204                 break;
4205         case 48:
4206                 bpc = 12;
4207                 break;
4208         default:
4209                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4210                 bpc = min((unsigned int)8, display_bpc);
4211                 break;
4212         }
4213
4214         display_bpc = min(display_bpc, bpc);
4215
4216         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4217                       bpc, display_bpc);
4218
4219         *pipe_bpp = display_bpc * 3;
4220
4221         return display_bpc != bpc;
4222 }
4223
4224 static int vlv_get_refclk(struct drm_crtc *crtc)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         int refclk = 27000; /* for DP & HDMI */
4229
4230         return 100000; /* only one validated so far */
4231
4232         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4233                 refclk = 96000;
4234         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4235                 if (intel_panel_use_ssc(dev_priv))
4236                         refclk = 100000;
4237                 else
4238                         refclk = 96000;
4239         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4240                 refclk = 100000;
4241         }
4242
4243         return refclk;
4244 }
4245
4246 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4247 {
4248         struct drm_device *dev = crtc->dev;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         int refclk;
4251
4252         if (IS_VALLEYVIEW(dev)) {
4253                 refclk = vlv_get_refclk(crtc);
4254         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4255             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4256                 refclk = dev_priv->lvds_ssc_freq * 1000;
4257                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4258                               refclk / 1000);
4259         } else if (!IS_GEN2(dev)) {
4260                 refclk = 96000;
4261         } else {
4262                 refclk = 48000;
4263         }
4264
4265         return refclk;
4266 }
4267
4268 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4269                                       intel_clock_t *clock)
4270 {
4271         /* SDVO TV has fixed PLL values depend on its clock range,
4272            this mirrors vbios setting. */
4273         if (adjusted_mode->clock >= 100000
4274             && adjusted_mode->clock < 140500) {
4275                 clock->p1 = 2;
4276                 clock->p2 = 10;
4277                 clock->n = 3;
4278                 clock->m1 = 16;
4279                 clock->m2 = 8;
4280         } else if (adjusted_mode->clock >= 140500
4281                    && adjusted_mode->clock <= 200000) {
4282                 clock->p1 = 1;
4283                 clock->p2 = 10;
4284                 clock->n = 6;
4285                 clock->m1 = 12;
4286                 clock->m2 = 8;
4287         }
4288 }
4289
4290 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4291                                      intel_clock_t *clock,
4292                                      intel_clock_t *reduced_clock)
4293 {
4294         struct drm_device *dev = crtc->dev;
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297         int pipe = intel_crtc->pipe;
4298         u32 fp, fp2 = 0;
4299
4300         if (IS_PINEVIEW(dev)) {
4301                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4302                 if (reduced_clock)
4303                         fp2 = (1 << reduced_clock->n) << 16 |
4304                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4305         } else {
4306                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4307                 if (reduced_clock)
4308                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4309                                 reduced_clock->m2;
4310         }
4311
4312         I915_WRITE(FP0(pipe), fp);
4313
4314         intel_crtc->lowfreq_avail = false;
4315         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4316             reduced_clock && i915_powersave) {
4317                 I915_WRITE(FP1(pipe), fp2);
4318                 intel_crtc->lowfreq_avail = true;
4319         } else {
4320                 I915_WRITE(FP1(pipe), fp);
4321         }
4322 }
4323
4324 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4325                               struct drm_display_mode *adjusted_mode)
4326 {
4327         struct drm_device *dev = crtc->dev;
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4330         int pipe = intel_crtc->pipe;
4331         u32 temp;
4332
4333         temp = I915_READ(LVDS);
4334         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4335         if (pipe == 1) {
4336                 temp |= LVDS_PIPEB_SELECT;
4337         } else {
4338                 temp &= ~LVDS_PIPEB_SELECT;
4339         }
4340         /* set the corresponsding LVDS_BORDER bit */
4341         temp |= dev_priv->lvds_border_bits;
4342         /* Set the B0-B3 data pairs corresponding to whether we're going to
4343          * set the DPLLs for dual-channel mode or not.
4344          */
4345         if (clock->p2 == 7)
4346                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4347         else
4348                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4349
4350         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4351          * appropriately here, but we need to look more thoroughly into how
4352          * panels behave in the two modes.
4353          */
4354         /* set the dithering flag on LVDS as needed */
4355         if (INTEL_INFO(dev)->gen >= 4) {
4356                 if (dev_priv->lvds_dither)
4357                         temp |= LVDS_ENABLE_DITHER;
4358                 else
4359                         temp &= ~LVDS_ENABLE_DITHER;
4360         }
4361         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4362         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4363                 temp |= LVDS_HSYNC_POLARITY;
4364         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4365                 temp |= LVDS_VSYNC_POLARITY;
4366         I915_WRITE(LVDS, temp);
4367 }
4368
4369 static void vlv_update_pll(struct drm_crtc *crtc,
4370                            struct drm_display_mode *mode,
4371                            struct drm_display_mode *adjusted_mode,
4372                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4373                            int num_connectors)
4374 {
4375         struct drm_device *dev = crtc->dev;
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4378         int pipe = intel_crtc->pipe;
4379         u32 dpll, mdiv, pdiv;
4380         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4381         bool is_sdvo;
4382         u32 temp;
4383
4384         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4385                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4386
4387         dpll = DPLL_VGA_MODE_DIS;
4388         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4389         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4390         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4391
4392         I915_WRITE(DPLL(pipe), dpll);
4393         POSTING_READ(DPLL(pipe));
4394
4395         bestn = clock->n;
4396         bestm1 = clock->m1;
4397         bestm2 = clock->m2;
4398         bestp1 = clock->p1;
4399         bestp2 = clock->p2;
4400
4401         /*
4402          * In Valleyview PLL and program lane counter registers are exposed
4403          * through DPIO interface
4404          */
4405         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4406         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4407         mdiv |= ((bestn << DPIO_N_SHIFT));
4408         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4409         mdiv |= (1 << DPIO_K_SHIFT);
4410         mdiv |= DPIO_ENABLE_CALIBRATION;
4411         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4412
4413         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4414
4415         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4416                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4417                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4418                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4419         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4420
4421         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4422
4423         dpll |= DPLL_VCO_ENABLE;
4424         I915_WRITE(DPLL(pipe), dpll);
4425         POSTING_READ(DPLL(pipe));
4426         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4427                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4428
4429         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4430
4431         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4432                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4433
4434         I915_WRITE(DPLL(pipe), dpll);
4435
4436         /* Wait for the clocks to stabilize. */
4437         POSTING_READ(DPLL(pipe));
4438         udelay(150);
4439
4440         temp = 0;
4441         if (is_sdvo) {
4442                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4443                 if (temp > 1)
4444                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4445                 else
4446                         temp = 0;
4447         }
4448         I915_WRITE(DPLL_MD(pipe), temp);
4449         POSTING_READ(DPLL_MD(pipe));
4450
4451         /* Now program lane control registers */
4452         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4453                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4454         {
4455                 temp = 0x1000C4;
4456                 if(pipe == 1)
4457                         temp |= (1 << 21);
4458                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4459         }
4460         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4461         {
4462                 temp = 0x1000C4;
4463                 if(pipe == 1)
4464                         temp |= (1 << 21);
4465                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4466         }
4467 }
4468
4469 static void i9xx_update_pll(struct drm_crtc *crtc,
4470                             struct drm_display_mode *mode,
4471                             struct drm_display_mode *adjusted_mode,
4472                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4473                             int num_connectors)
4474 {
4475         struct drm_device *dev = crtc->dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4478         int pipe = intel_crtc->pipe;
4479         u32 dpll;
4480         bool is_sdvo;
4481
4482         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4483
4484         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4485                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4486
4487         dpll = DPLL_VGA_MODE_DIS;
4488
4489         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4490                 dpll |= DPLLB_MODE_LVDS;
4491         else
4492                 dpll |= DPLLB_MODE_DAC_SERIAL;
4493         if (is_sdvo) {
4494                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4495                 if (pixel_multiplier > 1) {
4496                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4497                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4498                 }
4499                 dpll |= DPLL_DVO_HIGH_SPEED;
4500         }
4501         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4502                 dpll |= DPLL_DVO_HIGH_SPEED;
4503
4504         /* compute bitmask from p1 value */
4505         if (IS_PINEVIEW(dev))
4506                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4507         else {
4508                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4509                 if (IS_G4X(dev) && reduced_clock)
4510                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4511         }
4512         switch (clock->p2) {
4513         case 5:
4514                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4515                 break;
4516         case 7:
4517                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4518                 break;
4519         case 10:
4520                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4521                 break;
4522         case 14:
4523                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4524                 break;
4525         }
4526         if (INTEL_INFO(dev)->gen >= 4)
4527                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4528
4529         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4530                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4531         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4532                 /* XXX: just matching BIOS for now */
4533                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4534                 dpll |= 3;
4535         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4536                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4537                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4538         else
4539                 dpll |= PLL_REF_INPUT_DREFCLK;
4540
4541         dpll |= DPLL_VCO_ENABLE;
4542         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4543         POSTING_READ(DPLL(pipe));
4544         udelay(150);
4545
4546         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4547          * This is an exception to the general rule that mode_set doesn't turn
4548          * things on.
4549          */
4550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4551                 intel_update_lvds(crtc, clock, adjusted_mode);
4552
4553         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4554                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4555
4556         I915_WRITE(DPLL(pipe), dpll);
4557
4558         /* Wait for the clocks to stabilize. */
4559         POSTING_READ(DPLL(pipe));
4560         udelay(150);
4561
4562         if (INTEL_INFO(dev)->gen >= 4) {
4563                 u32 temp = 0;
4564                 if (is_sdvo) {
4565                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4566                         if (temp > 1)
4567                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4568                         else
4569                                 temp = 0;
4570                 }
4571                 I915_WRITE(DPLL_MD(pipe), temp);
4572         } else {
4573                 /* The pixel multiplier can only be updated once the
4574                  * DPLL is enabled and the clocks are stable.
4575                  *
4576                  * So write it again.
4577                  */
4578                 I915_WRITE(DPLL(pipe), dpll);
4579         }
4580 }
4581
4582 static void i8xx_update_pll(struct drm_crtc *crtc,
4583                             struct drm_display_mode *adjusted_mode,
4584                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4585                             int num_connectors)
4586 {
4587         struct drm_device *dev = crtc->dev;
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4590         int pipe = intel_crtc->pipe;
4591         u32 dpll;
4592
4593         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4594
4595         dpll = DPLL_VGA_MODE_DIS;
4596
4597         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4598                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4599         } else {
4600                 if (clock->p1 == 2)
4601                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4602                 else
4603                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4604                 if (clock->p2 == 4)
4605                         dpll |= PLL_P2_DIVIDE_BY_4;
4606         }
4607
4608         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4609                 /* XXX: just matching BIOS for now */
4610                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4611                 dpll |= 3;
4612         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4613                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4614                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4615         else
4616                 dpll |= PLL_REF_INPUT_DREFCLK;
4617
4618         dpll |= DPLL_VCO_ENABLE;
4619         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4620         POSTING_READ(DPLL(pipe));
4621         udelay(150);
4622
4623         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4624          * This is an exception to the general rule that mode_set doesn't turn
4625          * things on.
4626          */
4627         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4628                 intel_update_lvds(crtc, clock, adjusted_mode);
4629
4630         I915_WRITE(DPLL(pipe), dpll);
4631
4632         /* Wait for the clocks to stabilize. */
4633         POSTING_READ(DPLL(pipe));
4634         udelay(150);
4635
4636         /* The pixel multiplier can only be updated once the
4637          * DPLL is enabled and the clocks are stable.
4638          *
4639          * So write it again.
4640          */
4641         I915_WRITE(DPLL(pipe), dpll);
4642 }
4643
4644 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4645                                    struct drm_display_mode *mode,
4646                                    struct drm_display_mode *adjusted_mode)
4647 {
4648         struct drm_device *dev = intel_crtc->base.dev;
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650         enum pipe pipe = intel_crtc->pipe;
4651         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4652         uint32_t vsyncshift;
4653
4654         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4655                 /* the chip adds 2 halflines automatically */
4656                 adjusted_mode->crtc_vtotal -= 1;
4657                 adjusted_mode->crtc_vblank_end -= 1;
4658                 vsyncshift = adjusted_mode->crtc_hsync_start
4659                              - adjusted_mode->crtc_htotal / 2;
4660         } else {
4661                 vsyncshift = 0;
4662         }
4663
4664         if (INTEL_INFO(dev)->gen > 3)
4665                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4666
4667         I915_WRITE(HTOTAL(cpu_transcoder),
4668                    (adjusted_mode->crtc_hdisplay - 1) |
4669                    ((adjusted_mode->crtc_htotal - 1) << 16));
4670         I915_WRITE(HBLANK(cpu_transcoder),
4671                    (adjusted_mode->crtc_hblank_start - 1) |
4672                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4673         I915_WRITE(HSYNC(cpu_transcoder),
4674                    (adjusted_mode->crtc_hsync_start - 1) |
4675                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4676
4677         I915_WRITE(VTOTAL(cpu_transcoder),
4678                    (adjusted_mode->crtc_vdisplay - 1) |
4679                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4680         I915_WRITE(VBLANK(cpu_transcoder),
4681                    (adjusted_mode->crtc_vblank_start - 1) |
4682                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4683         I915_WRITE(VSYNC(cpu_transcoder),
4684                    (adjusted_mode->crtc_vsync_start - 1) |
4685                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4686
4687         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4688          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4689          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4690          * bits. */
4691         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4692             (pipe == PIPE_B || pipe == PIPE_C))
4693                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4694
4695         /* pipesrc controls the size that is scaled from, which should
4696          * always be the user's requested size.
4697          */
4698         I915_WRITE(PIPESRC(pipe),
4699                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4700 }
4701
4702 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4703                               struct drm_display_mode *mode,
4704                               struct drm_display_mode *adjusted_mode,
4705                               int x, int y,
4706                               struct drm_framebuffer *fb)
4707 {
4708         struct drm_device *dev = crtc->dev;
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4711         int pipe = intel_crtc->pipe;
4712         int plane = intel_crtc->plane;
4713         int refclk, num_connectors = 0;
4714         intel_clock_t clock, reduced_clock;
4715         u32 dspcntr, pipeconf;
4716         bool ok, has_reduced_clock = false, is_sdvo = false;
4717         bool is_lvds = false, is_tv = false, is_dp = false;
4718         struct intel_encoder *encoder;
4719         const intel_limit_t *limit;
4720         int ret;
4721
4722         for_each_encoder_on_crtc(dev, crtc, encoder) {
4723                 switch (encoder->type) {
4724                 case INTEL_OUTPUT_LVDS:
4725                         is_lvds = true;
4726                         break;
4727                 case INTEL_OUTPUT_SDVO:
4728                 case INTEL_OUTPUT_HDMI:
4729                         is_sdvo = true;
4730                         if (encoder->needs_tv_clock)
4731                                 is_tv = true;
4732                         break;
4733                 case INTEL_OUTPUT_TVOUT:
4734                         is_tv = true;
4735                         break;
4736                 case INTEL_OUTPUT_DISPLAYPORT:
4737                         is_dp = true;
4738                         break;
4739                 }
4740
4741                 num_connectors++;
4742         }
4743
4744         refclk = i9xx_get_refclk(crtc, num_connectors);
4745
4746         /*
4747          * Returns a set of divisors for the desired target clock with the given
4748          * refclk, or FALSE.  The returned values represent the clock equation:
4749          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4750          */
4751         limit = intel_limit(crtc, refclk);
4752         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4753                              &clock);
4754         if (!ok) {
4755                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4756                 return -EINVAL;
4757         }
4758
4759         /* Ensure that the cursor is valid for the new mode before changing... */
4760         intel_crtc_update_cursor(crtc, true);
4761
4762         if (is_lvds && dev_priv->lvds_downclock_avail) {
4763                 /*
4764                  * Ensure we match the reduced clock's P to the target clock.
4765                  * If the clocks don't match, we can't switch the display clock
4766                  * by using the FP0/FP1. In such case we will disable the LVDS
4767                  * downclock feature.
4768                 */
4769                 has_reduced_clock = limit->find_pll(limit, crtc,
4770                                                     dev_priv->lvds_downclock,
4771                                                     refclk,
4772                                                     &clock,
4773                                                     &reduced_clock);
4774         }
4775
4776         if (is_sdvo && is_tv)
4777                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4778
4779         if (IS_GEN2(dev))
4780                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4781                                 has_reduced_clock ? &reduced_clock : NULL,
4782                                 num_connectors);
4783         else if (IS_VALLEYVIEW(dev))
4784                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4785                                 has_reduced_clock ? &reduced_clock : NULL,
4786                                 num_connectors);
4787         else
4788                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4789                                 has_reduced_clock ? &reduced_clock : NULL,
4790                                 num_connectors);
4791
4792         /* setup pipeconf */
4793         pipeconf = I915_READ(PIPECONF(pipe));
4794
4795         /* Set up the display plane register */
4796         dspcntr = DISPPLANE_GAMMA_ENABLE;
4797
4798         if (pipe == 0)
4799                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4800         else
4801                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4802
4803         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4804                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4805                  * core speed.
4806                  *
4807                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4808                  * pipe == 0 check?
4809                  */
4810                 if (mode->clock >
4811                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4812                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4813                 else
4814                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4815         }
4816
4817         /* default to 8bpc */
4818         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4819         if (is_dp) {
4820                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4821                         pipeconf |= PIPECONF_BPP_6 |
4822                                     PIPECONF_DITHER_EN |
4823                                     PIPECONF_DITHER_TYPE_SP;
4824                 }
4825         }
4826
4827         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4828                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4829                         pipeconf |= PIPECONF_BPP_6 |
4830                                         PIPECONF_ENABLE |
4831                                         I965_PIPECONF_ACTIVE;
4832                 }
4833         }
4834
4835         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4836         drm_mode_debug_printmodeline(mode);
4837
4838         if (HAS_PIPE_CXSR(dev)) {
4839                 if (intel_crtc->lowfreq_avail) {
4840                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4841                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4842                 } else {
4843                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4844                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4845                 }
4846         }
4847
4848         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4849         if (!IS_GEN2(dev) &&
4850             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4851                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4852         else
4853                 pipeconf |= PIPECONF_PROGRESSIVE;
4854
4855         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4856
4857         /* pipesrc and dspsize control the size that is scaled from,
4858          * which should always be the user's requested size.
4859          */
4860         I915_WRITE(DSPSIZE(plane),
4861                    ((mode->vdisplay - 1) << 16) |
4862                    (mode->hdisplay - 1));
4863         I915_WRITE(DSPPOS(plane), 0);
4864
4865         I915_WRITE(PIPECONF(pipe), pipeconf);
4866         POSTING_READ(PIPECONF(pipe));
4867         intel_enable_pipe(dev_priv, pipe, false);
4868
4869         intel_wait_for_vblank(dev, pipe);
4870
4871         I915_WRITE(DSPCNTR(plane), dspcntr);
4872         POSTING_READ(DSPCNTR(plane));
4873
4874         ret = intel_pipe_set_base(crtc, x, y, fb);
4875
4876         intel_update_watermarks(dev);
4877
4878         return ret;
4879 }
4880
4881 /*
4882  * Initialize reference clocks when the driver loads
4883  */
4884 void ironlake_init_pch_refclk(struct drm_device *dev)
4885 {
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct drm_mode_config *mode_config = &dev->mode_config;
4888         struct intel_encoder *encoder;
4889         u32 temp;
4890         bool has_lvds = false;
4891         bool has_cpu_edp = false;
4892         bool has_pch_edp = false;
4893         bool has_panel = false;
4894         bool has_ck505 = false;
4895         bool can_ssc = false;
4896
4897         /* We need to take the global config into account */
4898         list_for_each_entry(encoder, &mode_config->encoder_list,
4899                             base.head) {
4900                 switch (encoder->type) {
4901                 case INTEL_OUTPUT_LVDS:
4902                         has_panel = true;
4903                         has_lvds = true;
4904                         break;
4905                 case INTEL_OUTPUT_EDP:
4906                         has_panel = true;
4907                         if (intel_encoder_is_pch_edp(&encoder->base))
4908                                 has_pch_edp = true;
4909                         else
4910                                 has_cpu_edp = true;
4911                         break;
4912                 }
4913         }
4914
4915         if (HAS_PCH_IBX(dev)) {
4916                 has_ck505 = dev_priv->display_clock_mode;
4917                 can_ssc = has_ck505;
4918         } else {
4919                 has_ck505 = false;
4920                 can_ssc = true;
4921         }
4922
4923         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4924                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4925                       has_ck505);
4926
4927         /* Ironlake: try to setup display ref clock before DPLL
4928          * enabling. This is only under driver's control after
4929          * PCH B stepping, previous chipset stepping should be
4930          * ignoring this setting.
4931          */
4932         temp = I915_READ(PCH_DREF_CONTROL);
4933         /* Always enable nonspread source */
4934         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4935
4936         if (has_ck505)
4937                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4938         else
4939                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4940
4941         if (has_panel) {
4942                 temp &= ~DREF_SSC_SOURCE_MASK;
4943                 temp |= DREF_SSC_SOURCE_ENABLE;
4944
4945                 /* SSC must be turned on before enabling the CPU output  */
4946                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4947                         DRM_DEBUG_KMS("Using SSC on panel\n");
4948                         temp |= DREF_SSC1_ENABLE;
4949                 } else
4950                         temp &= ~DREF_SSC1_ENABLE;
4951
4952                 /* Get SSC going before enabling the outputs */
4953                 I915_WRITE(PCH_DREF_CONTROL, temp);
4954                 POSTING_READ(PCH_DREF_CONTROL);
4955                 udelay(200);
4956
4957                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4958
4959                 /* Enable CPU source on CPU attached eDP */
4960                 if (has_cpu_edp) {
4961                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4962                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4963                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4964                         }
4965                         else
4966                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4967                 } else
4968                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4969
4970                 I915_WRITE(PCH_DREF_CONTROL, temp);
4971                 POSTING_READ(PCH_DREF_CONTROL);
4972                 udelay(200);
4973         } else {
4974                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4975
4976                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4977
4978                 /* Turn off CPU output */
4979                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4980
4981                 I915_WRITE(PCH_DREF_CONTROL, temp);
4982                 POSTING_READ(PCH_DREF_CONTROL);
4983                 udelay(200);
4984
4985                 /* Turn off the SSC source */
4986                 temp &= ~DREF_SSC_SOURCE_MASK;
4987                 temp |= DREF_SSC_SOURCE_DISABLE;
4988
4989                 /* Turn off SSC1 */
4990                 temp &= ~ DREF_SSC1_ENABLE;
4991
4992                 I915_WRITE(PCH_DREF_CONTROL, temp);
4993                 POSTING_READ(PCH_DREF_CONTROL);
4994                 udelay(200);
4995         }
4996 }
4997
4998 static int ironlake_get_refclk(struct drm_crtc *crtc)
4999 {
5000         struct drm_device *dev = crtc->dev;
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         struct intel_encoder *encoder;
5003         struct intel_encoder *edp_encoder = NULL;
5004         int num_connectors = 0;
5005         bool is_lvds = false;
5006
5007         for_each_encoder_on_crtc(dev, crtc, encoder) {
5008                 switch (encoder->type) {
5009                 case INTEL_OUTPUT_LVDS:
5010                         is_lvds = true;
5011                         break;
5012                 case INTEL_OUTPUT_EDP:
5013                         edp_encoder = encoder;
5014                         break;
5015                 }
5016                 num_connectors++;
5017         }
5018
5019         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5020                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5021                               dev_priv->lvds_ssc_freq);
5022                 return dev_priv->lvds_ssc_freq * 1000;
5023         }
5024
5025         return 120000;
5026 }
5027
5028 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5029                                   struct drm_display_mode *adjusted_mode,
5030                                   bool dither)
5031 {
5032         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5034         int pipe = intel_crtc->pipe;
5035         uint32_t val;
5036
5037         val = I915_READ(PIPECONF(pipe));
5038
5039         val &= ~PIPE_BPC_MASK;
5040         switch (intel_crtc->bpp) {
5041         case 18:
5042                 val |= PIPE_6BPC;
5043                 break;
5044         case 24:
5045                 val |= PIPE_8BPC;
5046                 break;
5047         case 30:
5048                 val |= PIPE_10BPC;
5049                 break;
5050         case 36:
5051                 val |= PIPE_12BPC;
5052                 break;
5053         default:
5054                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5055                 BUG();
5056         }
5057
5058         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5059         if (dither)
5060                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5061
5062         val &= ~PIPECONF_INTERLACE_MASK;
5063         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5064                 val |= PIPECONF_INTERLACED_ILK;
5065         else
5066                 val |= PIPECONF_PROGRESSIVE;
5067
5068         I915_WRITE(PIPECONF(pipe), val);
5069         POSTING_READ(PIPECONF(pipe));
5070 }
5071
5072 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5073                                  struct drm_display_mode *adjusted_mode,
5074                                  bool dither)
5075 {
5076         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5079         uint32_t val;
5080
5081         val = I915_READ(PIPECONF(cpu_transcoder));
5082
5083         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5084         if (dither)
5085                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5086
5087         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5088         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5089                 val |= PIPECONF_INTERLACED_ILK;
5090         else
5091                 val |= PIPECONF_PROGRESSIVE;
5092
5093         I915_WRITE(PIPECONF(cpu_transcoder), val);
5094         POSTING_READ(PIPECONF(cpu_transcoder));
5095 }
5096
5097 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5098                                     struct drm_display_mode *adjusted_mode,
5099                                     intel_clock_t *clock,
5100                                     bool *has_reduced_clock,
5101                                     intel_clock_t *reduced_clock)
5102 {
5103         struct drm_device *dev = crtc->dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         struct intel_encoder *intel_encoder;
5106         int refclk;
5107         const intel_limit_t *limit;
5108         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5109
5110         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5111                 switch (intel_encoder->type) {
5112                 case INTEL_OUTPUT_LVDS:
5113                         is_lvds = true;
5114                         break;
5115                 case INTEL_OUTPUT_SDVO:
5116                 case INTEL_OUTPUT_HDMI:
5117                         is_sdvo = true;
5118                         if (intel_encoder->needs_tv_clock)
5119                                 is_tv = true;
5120                         break;
5121                 case INTEL_OUTPUT_TVOUT:
5122                         is_tv = true;
5123                         break;
5124                 }
5125         }
5126
5127         refclk = ironlake_get_refclk(crtc);
5128
5129         /*
5130          * Returns a set of divisors for the desired target clock with the given
5131          * refclk, or FALSE.  The returned values represent the clock equation:
5132          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5133          */
5134         limit = intel_limit(crtc, refclk);
5135         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5136                               clock);
5137         if (!ret)
5138                 return false;
5139
5140         if (is_lvds && dev_priv->lvds_downclock_avail) {
5141                 /*
5142                  * Ensure we match the reduced clock's P to the target clock.
5143                  * If the clocks don't match, we can't switch the display clock
5144                  * by using the FP0/FP1. In such case we will disable the LVDS
5145                  * downclock feature.
5146                 */
5147                 *has_reduced_clock = limit->find_pll(limit, crtc,
5148                                                      dev_priv->lvds_downclock,
5149                                                      refclk,
5150                                                      clock,
5151                                                      reduced_clock);
5152         }
5153
5154         if (is_sdvo && is_tv)
5155                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5156
5157         return true;
5158 }
5159
5160 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5161 {
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         uint32_t temp;
5164
5165         temp = I915_READ(SOUTH_CHICKEN1);
5166         if (temp & FDI_BC_BIFURCATION_SELECT)
5167                 return;
5168
5169         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5170         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5171
5172         temp |= FDI_BC_BIFURCATION_SELECT;
5173         DRM_DEBUG_KMS("enabling fdi C rx\n");
5174         I915_WRITE(SOUTH_CHICKEN1, temp);
5175         POSTING_READ(SOUTH_CHICKEN1);
5176 }
5177
5178 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5179 {
5180         struct drm_device *dev = intel_crtc->base.dev;
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182         struct intel_crtc *pipe_B_crtc =
5183                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5184
5185         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5186                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5187         if (intel_crtc->fdi_lanes > 4) {
5188                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5189                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5190                 /* Clamp lanes to avoid programming the hw with bogus values. */
5191                 intel_crtc->fdi_lanes = 4;
5192
5193                 return false;
5194         }
5195
5196         if (dev_priv->num_pipe == 2)
5197                 return true;
5198
5199         switch (intel_crtc->pipe) {
5200         case PIPE_A:
5201                 return true;
5202         case PIPE_B:
5203                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5204                     intel_crtc->fdi_lanes > 2) {
5205                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5206                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5207                         /* Clamp lanes to avoid programming the hw with bogus values. */
5208                         intel_crtc->fdi_lanes = 2;
5209
5210                         return false;
5211                 }
5212
5213                 if (intel_crtc->fdi_lanes > 2)
5214                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5215                 else
5216                         cpt_enable_fdi_bc_bifurcation(dev);
5217
5218                 return true;
5219         case PIPE_C:
5220                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5221                         if (intel_crtc->fdi_lanes > 2) {
5222                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5223                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5224                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5225                                 intel_crtc->fdi_lanes = 2;
5226
5227                                 return false;
5228                         }
5229                 } else {
5230                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5231                         return false;
5232                 }
5233
5234                 cpt_enable_fdi_bc_bifurcation(dev);
5235
5236                 return true;
5237         default:
5238                 BUG();
5239         }
5240 }
5241
5242 static void ironlake_set_m_n(struct drm_crtc *crtc,
5243                              struct drm_display_mode *mode,
5244                              struct drm_display_mode *adjusted_mode)
5245 {
5246         struct drm_device *dev = crtc->dev;
5247         struct drm_i915_private *dev_priv = dev->dev_private;
5248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5250         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5251         struct fdi_m_n m_n = {0};
5252         int target_clock, pixel_multiplier, lane, link_bw;
5253         bool is_dp = false, is_cpu_edp = false;
5254
5255         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5256                 switch (intel_encoder->type) {
5257                 case INTEL_OUTPUT_DISPLAYPORT:
5258                         is_dp = true;
5259                         break;
5260                 case INTEL_OUTPUT_EDP:
5261                         is_dp = true;
5262                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5263                                 is_cpu_edp = true;
5264                         edp_encoder = intel_encoder;
5265                         break;
5266                 }
5267         }
5268
5269         /* FDI link */
5270         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5271         lane = 0;
5272         /* CPU eDP doesn't require FDI link, so just set DP M/N
5273            according to current link config */
5274         if (is_cpu_edp) {
5275                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5276         } else {
5277                 /* FDI is a binary signal running at ~2.7GHz, encoding
5278                  * each output octet as 10 bits. The actual frequency
5279                  * is stored as a divider into a 100MHz clock, and the
5280                  * mode pixel clock is stored in units of 1KHz.
5281                  * Hence the bw of each lane in terms of the mode signal
5282                  * is:
5283                  */
5284                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5285         }
5286
5287         /* [e]DP over FDI requires target mode clock instead of link clock. */
5288         if (edp_encoder)
5289                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5290         else if (is_dp)
5291                 target_clock = mode->clock;
5292         else
5293                 target_clock = adjusted_mode->clock;
5294
5295         if (!lane) {
5296                 /*
5297                  * Account for spread spectrum to avoid
5298                  * oversubscribing the link. Max center spread
5299                  * is 2.5%; use 5% for safety's sake.
5300                  */
5301                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5302                 lane = bps / (link_bw * 8) + 1;
5303         }
5304
5305         intel_crtc->fdi_lanes = lane;
5306
5307         if (pixel_multiplier > 1)
5308                 link_bw *= pixel_multiplier;
5309         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5310                              &m_n);
5311
5312         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5313         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5314         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5315         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5316 }
5317
5318 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5319                                       struct drm_display_mode *adjusted_mode,
5320                                       intel_clock_t *clock, u32 fp)
5321 {
5322         struct drm_crtc *crtc = &intel_crtc->base;
5323         struct drm_device *dev = crtc->dev;
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325         struct intel_encoder *intel_encoder;
5326         uint32_t dpll;
5327         int factor, pixel_multiplier, num_connectors = 0;
5328         bool is_lvds = false, is_sdvo = false, is_tv = false;
5329         bool is_dp = false, is_cpu_edp = false;
5330
5331         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5332                 switch (intel_encoder->type) {
5333                 case INTEL_OUTPUT_LVDS:
5334                         is_lvds = true;
5335                         break;
5336                 case INTEL_OUTPUT_SDVO:
5337                 case INTEL_OUTPUT_HDMI:
5338                         is_sdvo = true;
5339                         if (intel_encoder->needs_tv_clock)
5340                                 is_tv = true;
5341                         break;
5342                 case INTEL_OUTPUT_TVOUT:
5343                         is_tv = true;
5344                         break;
5345                 case INTEL_OUTPUT_DISPLAYPORT:
5346                         is_dp = true;
5347                         break;
5348                 case INTEL_OUTPUT_EDP:
5349                         is_dp = true;
5350                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5351                                 is_cpu_edp = true;
5352                         break;
5353                 }
5354
5355                 num_connectors++;
5356         }
5357
5358         /* Enable autotuning of the PLL clock (if permissible) */
5359         factor = 21;
5360         if (is_lvds) {
5361                 if ((intel_panel_use_ssc(dev_priv) &&
5362                      dev_priv->lvds_ssc_freq == 100) ||
5363                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5364                         factor = 25;
5365         } else if (is_sdvo && is_tv)
5366                 factor = 20;
5367
5368         if (clock->m < factor * clock->n)
5369                 fp |= FP_CB_TUNE;
5370
5371         dpll = 0;
5372
5373         if (is_lvds)
5374                 dpll |= DPLLB_MODE_LVDS;
5375         else
5376                 dpll |= DPLLB_MODE_DAC_SERIAL;
5377         if (is_sdvo) {
5378                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5379                 if (pixel_multiplier > 1) {
5380                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5381                 }
5382                 dpll |= DPLL_DVO_HIGH_SPEED;
5383         }
5384         if (is_dp && !is_cpu_edp)
5385                 dpll |= DPLL_DVO_HIGH_SPEED;
5386
5387         /* compute bitmask from p1 value */
5388         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5389         /* also FPA1 */
5390         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5391
5392         switch (clock->p2) {
5393         case 5:
5394                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5395                 break;
5396         case 7:
5397                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5398                 break;
5399         case 10:
5400                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5401                 break;
5402         case 14:
5403                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5404                 break;
5405         }
5406
5407         if (is_sdvo && is_tv)
5408                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5409         else if (is_tv)
5410                 /* XXX: just matching BIOS for now */
5411                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5412                 dpll |= 3;
5413         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5414                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5415         else
5416                 dpll |= PLL_REF_INPUT_DREFCLK;
5417
5418         return dpll;
5419 }
5420
5421 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5422                                   struct drm_display_mode *mode,
5423                                   struct drm_display_mode *adjusted_mode,
5424                                   int x, int y,
5425                                   struct drm_framebuffer *fb)
5426 {
5427         struct drm_device *dev = crtc->dev;
5428         struct drm_i915_private *dev_priv = dev->dev_private;
5429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5430         int pipe = intel_crtc->pipe;
5431         int plane = intel_crtc->plane;
5432         int num_connectors = 0;
5433         intel_clock_t clock, reduced_clock;
5434         u32 dpll, fp = 0, fp2 = 0;
5435         bool ok, has_reduced_clock = false;
5436         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5437         struct intel_encoder *encoder;
5438         u32 temp;
5439         int ret;
5440         bool dither, fdi_config_ok;
5441
5442         for_each_encoder_on_crtc(dev, crtc, encoder) {
5443                 switch (encoder->type) {
5444                 case INTEL_OUTPUT_LVDS:
5445                         is_lvds = true;
5446                         break;
5447                 case INTEL_OUTPUT_DISPLAYPORT:
5448                         is_dp = true;
5449                         break;
5450                 case INTEL_OUTPUT_EDP:
5451                         is_dp = true;
5452                         if (!intel_encoder_is_pch_edp(&encoder->base))
5453                                 is_cpu_edp = true;
5454                         break;
5455                 }
5456
5457                 num_connectors++;
5458         }
5459
5460         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5461              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5462
5463         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5464                                      &has_reduced_clock, &reduced_clock);
5465         if (!ok) {
5466                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5467                 return -EINVAL;
5468         }
5469
5470         /* Ensure that the cursor is valid for the new mode before changing... */
5471         intel_crtc_update_cursor(crtc, true);
5472
5473         /* determine panel color depth */
5474         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5475                                               adjusted_mode);
5476         if (is_lvds && dev_priv->lvds_dither)
5477                 dither = true;
5478
5479         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5480         if (has_reduced_clock)
5481                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5482                         reduced_clock.m2;
5483
5484         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5485
5486         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5487         drm_mode_debug_printmodeline(mode);
5488
5489         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5490         if (!is_cpu_edp) {
5491                 struct intel_pch_pll *pll;
5492
5493                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5494                 if (pll == NULL) {
5495                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5496                                          pipe);
5497                         return -EINVAL;
5498                 }
5499         } else
5500                 intel_put_pch_pll(intel_crtc);
5501
5502         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5503          * This is an exception to the general rule that mode_set doesn't turn
5504          * things on.
5505          */
5506         if (is_lvds) {
5507                 temp = I915_READ(PCH_LVDS);
5508                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5509                 if (HAS_PCH_CPT(dev)) {
5510                         temp &= ~PORT_TRANS_SEL_MASK;
5511                         temp |= PORT_TRANS_SEL_CPT(pipe);
5512                 } else {
5513                         if (pipe == 1)
5514                                 temp |= LVDS_PIPEB_SELECT;
5515                         else
5516                                 temp &= ~LVDS_PIPEB_SELECT;
5517                 }
5518
5519                 /* set the corresponsding LVDS_BORDER bit */
5520                 temp |= dev_priv->lvds_border_bits;
5521                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5522                  * set the DPLLs for dual-channel mode or not.
5523                  */
5524                 if (clock.p2 == 7)
5525                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5526                 else
5527                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5528
5529                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5530                  * appropriately here, but we need to look more thoroughly into how
5531                  * panels behave in the two modes.
5532                  */
5533                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5534                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5535                         temp |= LVDS_HSYNC_POLARITY;
5536                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5537                         temp |= LVDS_VSYNC_POLARITY;
5538                 I915_WRITE(PCH_LVDS, temp);
5539         }
5540
5541         if (is_dp && !is_cpu_edp) {
5542                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5543         } else {
5544                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5545                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5546                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5547                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5548                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5549         }
5550
5551         if (intel_crtc->pch_pll) {
5552                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5553
5554                 /* Wait for the clocks to stabilize. */
5555                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5556                 udelay(150);
5557
5558                 /* The pixel multiplier can only be updated once the
5559                  * DPLL is enabled and the clocks are stable.
5560                  *
5561                  * So write it again.
5562                  */
5563                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5564         }
5565
5566         intel_crtc->lowfreq_avail = false;
5567         if (intel_crtc->pch_pll) {
5568                 if (is_lvds && has_reduced_clock && i915_powersave) {
5569                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5570                         intel_crtc->lowfreq_avail = true;
5571                 } else {
5572                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5573                 }
5574         }
5575
5576         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5577
5578         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5579          * ironlake_check_fdi_lanes. */
5580         ironlake_set_m_n(crtc, mode, adjusted_mode);
5581
5582         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5583
5584         if (is_cpu_edp)
5585                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5586
5587         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5588
5589         intel_wait_for_vblank(dev, pipe);
5590
5591         /* Set up the display plane register */
5592         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5593         POSTING_READ(DSPCNTR(plane));
5594
5595         ret = intel_pipe_set_base(crtc, x, y, fb);
5596
5597         intel_update_watermarks(dev);
5598
5599         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5600
5601         return fdi_config_ok ? ret : -EINVAL;
5602 }
5603
5604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5605                                  struct drm_display_mode *mode,
5606                                  struct drm_display_mode *adjusted_mode,
5607                                  int x, int y,
5608                                  struct drm_framebuffer *fb)
5609 {
5610         struct drm_device *dev = crtc->dev;
5611         struct drm_i915_private *dev_priv = dev->dev_private;
5612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5613         int pipe = intel_crtc->pipe;
5614         int plane = intel_crtc->plane;
5615         int num_connectors = 0;
5616         intel_clock_t clock, reduced_clock;
5617         u32 dpll = 0, fp = 0, fp2 = 0;
5618         bool ok, has_reduced_clock = false;
5619         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5620         struct intel_encoder *encoder;
5621         u32 temp;
5622         int ret;
5623         bool dither;
5624
5625         for_each_encoder_on_crtc(dev, crtc, encoder) {
5626                 switch (encoder->type) {
5627                 case INTEL_OUTPUT_LVDS:
5628                         is_lvds = true;
5629                         break;
5630                 case INTEL_OUTPUT_DISPLAYPORT:
5631                         is_dp = true;
5632                         break;
5633                 case INTEL_OUTPUT_EDP:
5634                         is_dp = true;
5635                         if (!intel_encoder_is_pch_edp(&encoder->base))
5636                                 is_cpu_edp = true;
5637                         break;
5638                 }
5639
5640                 num_connectors++;
5641         }
5642
5643         if (is_cpu_edp)
5644                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5645         else
5646                 intel_crtc->cpu_transcoder = pipe;
5647
5648         /* We are not sure yet this won't happen. */
5649         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5650              INTEL_PCH_TYPE(dev));
5651
5652         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5653              num_connectors, pipe_name(pipe));
5654
5655         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5656                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5657
5658         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5659
5660         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5661                 return -EINVAL;
5662
5663         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5664                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5665                                              &has_reduced_clock,
5666                                              &reduced_clock);
5667                 if (!ok) {
5668                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5669                         return -EINVAL;
5670                 }
5671         }
5672
5673         /* Ensure that the cursor is valid for the new mode before changing... */
5674         intel_crtc_update_cursor(crtc, true);
5675
5676         /* determine panel color depth */
5677         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5678                                               adjusted_mode);
5679         if (is_lvds && dev_priv->lvds_dither)
5680                 dither = true;
5681
5682         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5683         drm_mode_debug_printmodeline(mode);
5684
5685         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5686                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5687                 if (has_reduced_clock)
5688                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5689                               reduced_clock.m2;
5690
5691                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5692                                              fp);
5693
5694                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5695                  * own on pre-Haswell/LPT generation */
5696                 if (!is_cpu_edp) {
5697                         struct intel_pch_pll *pll;
5698
5699                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5700                         if (pll == NULL) {
5701                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5702                                                  pipe);
5703                                 return -EINVAL;
5704                         }
5705                 } else
5706                         intel_put_pch_pll(intel_crtc);
5707
5708                 /* The LVDS pin pair needs to be on before the DPLLs are
5709                  * enabled.  This is an exception to the general rule that
5710                  * mode_set doesn't turn things on.
5711                  */
5712                 if (is_lvds) {
5713                         temp = I915_READ(PCH_LVDS);
5714                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5715                         if (HAS_PCH_CPT(dev)) {
5716                                 temp &= ~PORT_TRANS_SEL_MASK;
5717                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5718                         } else {
5719                                 if (pipe == 1)
5720                                         temp |= LVDS_PIPEB_SELECT;
5721                                 else
5722                                         temp &= ~LVDS_PIPEB_SELECT;
5723                         }
5724
5725                         /* set the corresponsding LVDS_BORDER bit */
5726                         temp |= dev_priv->lvds_border_bits;
5727                         /* Set the B0-B3 data pairs corresponding to whether
5728                          * we're going to set the DPLLs for dual-channel mode or
5729                          * not.
5730                          */
5731                         if (clock.p2 == 7)
5732                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5733                         else
5734                                 temp &= ~(LVDS_B0B3_POWER_UP |
5735                                           LVDS_CLKB_POWER_UP);
5736
5737                         /* It would be nice to set 24 vs 18-bit mode
5738                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5739                          * look more thoroughly into how panels behave in the
5740                          * two modes.
5741                          */
5742                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5743                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5744                                 temp |= LVDS_HSYNC_POLARITY;
5745                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5746                                 temp |= LVDS_VSYNC_POLARITY;
5747                         I915_WRITE(PCH_LVDS, temp);
5748                 }
5749         }
5750
5751         if (is_dp && !is_cpu_edp) {
5752                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5753         } else {
5754                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5755                         /* For non-DP output, clear any trans DP clock recovery
5756                          * setting.*/
5757                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5758                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5759                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5760                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5761                 }
5762         }
5763
5764         intel_crtc->lowfreq_avail = false;
5765         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5766                 if (intel_crtc->pch_pll) {
5767                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5768
5769                         /* Wait for the clocks to stabilize. */
5770                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5771                         udelay(150);
5772
5773                         /* The pixel multiplier can only be updated once the
5774                          * DPLL is enabled and the clocks are stable.
5775                          *
5776                          * So write it again.
5777                          */
5778                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5779                 }
5780
5781                 if (intel_crtc->pch_pll) {
5782                         if (is_lvds && has_reduced_clock && i915_powersave) {
5783                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5784                                 intel_crtc->lowfreq_avail = true;
5785                         } else {
5786                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5787                         }
5788                 }
5789         }
5790
5791         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5792
5793         if (!is_dp || is_cpu_edp)
5794                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5795
5796         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5797                 if (is_cpu_edp)
5798                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5799
5800         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5801
5802         /* Set up the display plane register */
5803         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5804         POSTING_READ(DSPCNTR(plane));
5805
5806         ret = intel_pipe_set_base(crtc, x, y, fb);
5807
5808         intel_update_watermarks(dev);
5809
5810         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5811
5812         return ret;
5813 }
5814
5815 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5816                                struct drm_display_mode *mode,
5817                                struct drm_display_mode *adjusted_mode,
5818                                int x, int y,
5819                                struct drm_framebuffer *fb)
5820 {
5821         struct drm_device *dev = crtc->dev;
5822         struct drm_i915_private *dev_priv = dev->dev_private;
5823         struct drm_encoder_helper_funcs *encoder_funcs;
5824         struct intel_encoder *encoder;
5825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826         int pipe = intel_crtc->pipe;
5827         int ret;
5828
5829         drm_vblank_pre_modeset(dev, pipe);
5830
5831         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5832                                               x, y, fb);
5833         drm_vblank_post_modeset(dev, pipe);
5834
5835         if (ret != 0)
5836                 return ret;
5837
5838         for_each_encoder_on_crtc(dev, crtc, encoder) {
5839                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5840                         encoder->base.base.id,
5841                         drm_get_encoder_name(&encoder->base),
5842                         mode->base.id, mode->name);
5843                 encoder_funcs = encoder->base.helper_private;
5844                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5845         }
5846
5847         return 0;
5848 }
5849
5850 static bool intel_eld_uptodate(struct drm_connector *connector,
5851                                int reg_eldv, uint32_t bits_eldv,
5852                                int reg_elda, uint32_t bits_elda,
5853                                int reg_edid)
5854 {
5855         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5856         uint8_t *eld = connector->eld;
5857         uint32_t i;
5858
5859         i = I915_READ(reg_eldv);
5860         i &= bits_eldv;
5861
5862         if (!eld[0])
5863                 return !i;
5864
5865         if (!i)
5866                 return false;
5867
5868         i = I915_READ(reg_elda);
5869         i &= ~bits_elda;
5870         I915_WRITE(reg_elda, i);
5871
5872         for (i = 0; i < eld[2]; i++)
5873                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5874                         return false;
5875
5876         return true;
5877 }
5878
5879 static void g4x_write_eld(struct drm_connector *connector,
5880                           struct drm_crtc *crtc)
5881 {
5882         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5883         uint8_t *eld = connector->eld;
5884         uint32_t eldv;
5885         uint32_t len;
5886         uint32_t i;
5887
5888         i = I915_READ(G4X_AUD_VID_DID);
5889
5890         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5891                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5892         else
5893                 eldv = G4X_ELDV_DEVCTG;
5894
5895         if (intel_eld_uptodate(connector,
5896                                G4X_AUD_CNTL_ST, eldv,
5897                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5898                                G4X_HDMIW_HDMIEDID))
5899                 return;
5900
5901         i = I915_READ(G4X_AUD_CNTL_ST);
5902         i &= ~(eldv | G4X_ELD_ADDR);
5903         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5904         I915_WRITE(G4X_AUD_CNTL_ST, i);
5905
5906         if (!eld[0])
5907                 return;
5908
5909         len = min_t(uint8_t, eld[2], len);
5910         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5911         for (i = 0; i < len; i++)
5912                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5913
5914         i = I915_READ(G4X_AUD_CNTL_ST);
5915         i |= eldv;
5916         I915_WRITE(G4X_AUD_CNTL_ST, i);
5917 }
5918
5919 static void haswell_write_eld(struct drm_connector *connector,
5920                                      struct drm_crtc *crtc)
5921 {
5922         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5923         uint8_t *eld = connector->eld;
5924         struct drm_device *dev = crtc->dev;
5925         uint32_t eldv;
5926         uint32_t i;
5927         int len;
5928         int pipe = to_intel_crtc(crtc)->pipe;
5929         int tmp;
5930
5931         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5932         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5933         int aud_config = HSW_AUD_CFG(pipe);
5934         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5935
5936
5937         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5938
5939         /* Audio output enable */
5940         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5941         tmp = I915_READ(aud_cntrl_st2);
5942         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5943         I915_WRITE(aud_cntrl_st2, tmp);
5944
5945         /* Wait for 1 vertical blank */
5946         intel_wait_for_vblank(dev, pipe);
5947
5948         /* Set ELD valid state */
5949         tmp = I915_READ(aud_cntrl_st2);
5950         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5951         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5952         I915_WRITE(aud_cntrl_st2, tmp);
5953         tmp = I915_READ(aud_cntrl_st2);
5954         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5955
5956         /* Enable HDMI mode */
5957         tmp = I915_READ(aud_config);
5958         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5959         /* clear N_programing_enable and N_value_index */
5960         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5961         I915_WRITE(aud_config, tmp);
5962
5963         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5964
5965         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5966
5967         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5968                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5969                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5970                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5971         } else
5972                 I915_WRITE(aud_config, 0);
5973
5974         if (intel_eld_uptodate(connector,
5975                                aud_cntrl_st2, eldv,
5976                                aud_cntl_st, IBX_ELD_ADDRESS,
5977                                hdmiw_hdmiedid))
5978                 return;
5979
5980         i = I915_READ(aud_cntrl_st2);
5981         i &= ~eldv;
5982         I915_WRITE(aud_cntrl_st2, i);
5983
5984         if (!eld[0])
5985                 return;
5986
5987         i = I915_READ(aud_cntl_st);
5988         i &= ~IBX_ELD_ADDRESS;
5989         I915_WRITE(aud_cntl_st, i);
5990         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5991         DRM_DEBUG_DRIVER("port num:%d\n", i);
5992
5993         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5994         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5995         for (i = 0; i < len; i++)
5996                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5997
5998         i = I915_READ(aud_cntrl_st2);
5999         i |= eldv;
6000         I915_WRITE(aud_cntrl_st2, i);
6001
6002 }
6003
6004 static void ironlake_write_eld(struct drm_connector *connector,
6005                                      struct drm_crtc *crtc)
6006 {
6007         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6008         uint8_t *eld = connector->eld;
6009         uint32_t eldv;
6010         uint32_t i;
6011         int len;
6012         int hdmiw_hdmiedid;
6013         int aud_config;
6014         int aud_cntl_st;
6015         int aud_cntrl_st2;
6016         int pipe = to_intel_crtc(crtc)->pipe;
6017
6018         if (HAS_PCH_IBX(connector->dev)) {
6019                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6020                 aud_config = IBX_AUD_CFG(pipe);
6021                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6022                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6023         } else {
6024                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6025                 aud_config = CPT_AUD_CFG(pipe);
6026                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6027                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6028         }
6029
6030         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6031
6032         i = I915_READ(aud_cntl_st);
6033         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6034         if (!i) {
6035                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6036                 /* operate blindly on all ports */
6037                 eldv = IBX_ELD_VALIDB;
6038                 eldv |= IBX_ELD_VALIDB << 4;
6039                 eldv |= IBX_ELD_VALIDB << 8;
6040         } else {
6041                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6042                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6043         }
6044
6045         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6046                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6047                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6048                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6049         } else
6050                 I915_WRITE(aud_config, 0);
6051
6052         if (intel_eld_uptodate(connector,
6053                                aud_cntrl_st2, eldv,
6054                                aud_cntl_st, IBX_ELD_ADDRESS,
6055                                hdmiw_hdmiedid))
6056                 return;
6057
6058         i = I915_READ(aud_cntrl_st2);
6059         i &= ~eldv;
6060         I915_WRITE(aud_cntrl_st2, i);
6061
6062         if (!eld[0])
6063                 return;
6064
6065         i = I915_READ(aud_cntl_st);
6066         i &= ~IBX_ELD_ADDRESS;
6067         I915_WRITE(aud_cntl_st, i);
6068
6069         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6070         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6071         for (i = 0; i < len; i++)
6072                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6073
6074         i = I915_READ(aud_cntrl_st2);
6075         i |= eldv;
6076         I915_WRITE(aud_cntrl_st2, i);
6077 }
6078
6079 void intel_write_eld(struct drm_encoder *encoder,
6080                      struct drm_display_mode *mode)
6081 {
6082         struct drm_crtc *crtc = encoder->crtc;
6083         struct drm_connector *connector;
6084         struct drm_device *dev = encoder->dev;
6085         struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087         connector = drm_select_eld(encoder, mode);
6088         if (!connector)
6089                 return;
6090
6091         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6092                          connector->base.id,
6093                          drm_get_connector_name(connector),
6094                          connector->encoder->base.id,
6095                          drm_get_encoder_name(connector->encoder));
6096
6097         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6098
6099         if (dev_priv->display.write_eld)
6100                 dev_priv->display.write_eld(connector, crtc);
6101 }
6102
6103 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6104 void intel_crtc_load_lut(struct drm_crtc *crtc)
6105 {
6106         struct drm_device *dev = crtc->dev;
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109         int palreg = PALETTE(intel_crtc->pipe);
6110         int i;
6111
6112         /* The clocks have to be on to load the palette. */
6113         if (!crtc->enabled || !intel_crtc->active)
6114                 return;
6115
6116         /* use legacy palette for Ironlake */
6117         if (HAS_PCH_SPLIT(dev))
6118                 palreg = LGC_PALETTE(intel_crtc->pipe);
6119
6120         for (i = 0; i < 256; i++) {
6121                 I915_WRITE(palreg + 4 * i,
6122                            (intel_crtc->lut_r[i] << 16) |
6123                            (intel_crtc->lut_g[i] << 8) |
6124                            intel_crtc->lut_b[i]);
6125         }
6126 }
6127
6128 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6129 {
6130         struct drm_device *dev = crtc->dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133         bool visible = base != 0;
6134         u32 cntl;
6135
6136         if (intel_crtc->cursor_visible == visible)
6137                 return;
6138
6139         cntl = I915_READ(_CURACNTR);
6140         if (visible) {
6141                 /* On these chipsets we can only modify the base whilst
6142                  * the cursor is disabled.
6143                  */
6144                 I915_WRITE(_CURABASE, base);
6145
6146                 cntl &= ~(CURSOR_FORMAT_MASK);
6147                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6148                 cntl |= CURSOR_ENABLE |
6149                         CURSOR_GAMMA_ENABLE |
6150                         CURSOR_FORMAT_ARGB;
6151         } else
6152                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6153         I915_WRITE(_CURACNTR, cntl);
6154
6155         intel_crtc->cursor_visible = visible;
6156 }
6157
6158 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6159 {
6160         struct drm_device *dev = crtc->dev;
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         int pipe = intel_crtc->pipe;
6164         bool visible = base != 0;
6165
6166         if (intel_crtc->cursor_visible != visible) {
6167                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6168                 if (base) {
6169                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6170                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6171                         cntl |= pipe << 28; /* Connect to correct pipe */
6172                 } else {
6173                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6174                         cntl |= CURSOR_MODE_DISABLE;
6175                 }
6176                 I915_WRITE(CURCNTR(pipe), cntl);
6177
6178                 intel_crtc->cursor_visible = visible;
6179         }
6180         /* and commit changes on next vblank */
6181         I915_WRITE(CURBASE(pipe), base);
6182 }
6183
6184 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6185 {
6186         struct drm_device *dev = crtc->dev;
6187         struct drm_i915_private *dev_priv = dev->dev_private;
6188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189         int pipe = intel_crtc->pipe;
6190         bool visible = base != 0;
6191
6192         if (intel_crtc->cursor_visible != visible) {
6193                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6194                 if (base) {
6195                         cntl &= ~CURSOR_MODE;
6196                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6197                 } else {
6198                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6199                         cntl |= CURSOR_MODE_DISABLE;
6200                 }
6201                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6202
6203                 intel_crtc->cursor_visible = visible;
6204         }
6205         /* and commit changes on next vblank */
6206         I915_WRITE(CURBASE_IVB(pipe), base);
6207 }
6208
6209 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6210 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6211                                      bool on)
6212 {
6213         struct drm_device *dev = crtc->dev;
6214         struct drm_i915_private *dev_priv = dev->dev_private;
6215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216         int pipe = intel_crtc->pipe;
6217         int x = intel_crtc->cursor_x;
6218         int y = intel_crtc->cursor_y;
6219         u32 base, pos;
6220         bool visible;
6221
6222         pos = 0;
6223
6224         if (on && crtc->enabled && crtc->fb) {
6225                 base = intel_crtc->cursor_addr;
6226                 if (x > (int) crtc->fb->width)
6227                         base = 0;
6228
6229                 if (y > (int) crtc->fb->height)
6230                         base = 0;
6231         } else
6232                 base = 0;
6233
6234         if (x < 0) {
6235                 if (x + intel_crtc->cursor_width < 0)
6236                         base = 0;
6237
6238                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6239                 x = -x;
6240         }
6241         pos |= x << CURSOR_X_SHIFT;
6242
6243         if (y < 0) {
6244                 if (y + intel_crtc->cursor_height < 0)
6245                         base = 0;
6246
6247                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6248                 y = -y;
6249         }
6250         pos |= y << CURSOR_Y_SHIFT;
6251
6252         visible = base != 0;
6253         if (!visible && !intel_crtc->cursor_visible)
6254                 return;
6255
6256         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6257                 I915_WRITE(CURPOS_IVB(pipe), pos);
6258                 ivb_update_cursor(crtc, base);
6259         } else {
6260                 I915_WRITE(CURPOS(pipe), pos);
6261                 if (IS_845G(dev) || IS_I865G(dev))
6262                         i845_update_cursor(crtc, base);
6263                 else
6264                         i9xx_update_cursor(crtc, base);
6265         }
6266 }
6267
6268 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6269                                  struct drm_file *file,
6270                                  uint32_t handle,
6271                                  uint32_t width, uint32_t height)
6272 {
6273         struct drm_device *dev = crtc->dev;
6274         struct drm_i915_private *dev_priv = dev->dev_private;
6275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276         struct drm_i915_gem_object *obj;
6277         uint32_t addr;
6278         int ret;
6279
6280         /* if we want to turn off the cursor ignore width and height */
6281         if (!handle) {
6282                 DRM_DEBUG_KMS("cursor off\n");
6283                 addr = 0;
6284                 obj = NULL;
6285                 mutex_lock(&dev->struct_mutex);
6286                 goto finish;
6287         }
6288
6289         /* Currently we only support 64x64 cursors */
6290         if (width != 64 || height != 64) {
6291                 DRM_ERROR("we currently only support 64x64 cursors\n");
6292                 return -EINVAL;
6293         }
6294
6295         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6296         if (&obj->base == NULL)
6297                 return -ENOENT;
6298
6299         if (obj->base.size < width * height * 4) {
6300                 DRM_ERROR("buffer is to small\n");
6301                 ret = -ENOMEM;
6302                 goto fail;
6303         }
6304
6305         /* we only need to pin inside GTT if cursor is non-phy */
6306         mutex_lock(&dev->struct_mutex);
6307         if (!dev_priv->info->cursor_needs_physical) {
6308                 if (obj->tiling_mode) {
6309                         DRM_ERROR("cursor cannot be tiled\n");
6310                         ret = -EINVAL;
6311                         goto fail_locked;
6312                 }
6313
6314                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6315                 if (ret) {
6316                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6317                         goto fail_locked;
6318                 }
6319
6320                 ret = i915_gem_object_put_fence(obj);
6321                 if (ret) {
6322                         DRM_ERROR("failed to release fence for cursor");
6323                         goto fail_unpin;
6324                 }
6325
6326                 addr = obj->gtt_offset;
6327         } else {
6328                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6329                 ret = i915_gem_attach_phys_object(dev, obj,
6330                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6331                                                   align);
6332                 if (ret) {
6333                         DRM_ERROR("failed to attach phys object\n");
6334                         goto fail_locked;
6335                 }
6336                 addr = obj->phys_obj->handle->busaddr;
6337         }
6338
6339         if (IS_GEN2(dev))
6340                 I915_WRITE(CURSIZE, (height << 12) | width);
6341
6342  finish:
6343         if (intel_crtc->cursor_bo) {
6344                 if (dev_priv->info->cursor_needs_physical) {
6345                         if (intel_crtc->cursor_bo != obj)
6346                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6347                 } else
6348                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6349                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6350         }
6351
6352         mutex_unlock(&dev->struct_mutex);
6353
6354         intel_crtc->cursor_addr = addr;
6355         intel_crtc->cursor_bo = obj;
6356         intel_crtc->cursor_width = width;
6357         intel_crtc->cursor_height = height;
6358
6359         intel_crtc_update_cursor(crtc, true);
6360
6361         return 0;
6362 fail_unpin:
6363         i915_gem_object_unpin(obj);
6364 fail_locked:
6365         mutex_unlock(&dev->struct_mutex);
6366 fail:
6367         drm_gem_object_unreference_unlocked(&obj->base);
6368         return ret;
6369 }
6370
6371 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6372 {
6373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6374
6375         intel_crtc->cursor_x = x;
6376         intel_crtc->cursor_y = y;
6377
6378         intel_crtc_update_cursor(crtc, true);
6379
6380         return 0;
6381 }
6382
6383 /** Sets the color ramps on behalf of RandR */
6384 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6385                                  u16 blue, int regno)
6386 {
6387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389         intel_crtc->lut_r[regno] = red >> 8;
6390         intel_crtc->lut_g[regno] = green >> 8;
6391         intel_crtc->lut_b[regno] = blue >> 8;
6392 }
6393
6394 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6395                              u16 *blue, int regno)
6396 {
6397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6398
6399         *red = intel_crtc->lut_r[regno] << 8;
6400         *green = intel_crtc->lut_g[regno] << 8;
6401         *blue = intel_crtc->lut_b[regno] << 8;
6402 }
6403
6404 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6405                                  u16 *blue, uint32_t start, uint32_t size)
6406 {
6407         int end = (start + size > 256) ? 256 : start + size, i;
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409
6410         for (i = start; i < end; i++) {
6411                 intel_crtc->lut_r[i] = red[i] >> 8;
6412                 intel_crtc->lut_g[i] = green[i] >> 8;
6413                 intel_crtc->lut_b[i] = blue[i] >> 8;
6414         }
6415
6416         intel_crtc_load_lut(crtc);
6417 }
6418
6419 /**
6420  * Get a pipe with a simple mode set on it for doing load-based monitor
6421  * detection.
6422  *
6423  * It will be up to the load-detect code to adjust the pipe as appropriate for
6424  * its requirements.  The pipe will be connected to no other encoders.
6425  *
6426  * Currently this code will only succeed if there is a pipe with no encoders
6427  * configured for it.  In the future, it could choose to temporarily disable
6428  * some outputs to free up a pipe for its use.
6429  *
6430  * \return crtc, or NULL if no pipes are available.
6431  */
6432
6433 /* VESA 640x480x72Hz mode to set on the pipe */
6434 static struct drm_display_mode load_detect_mode = {
6435         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6436                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6437 };
6438
6439 static struct drm_framebuffer *
6440 intel_framebuffer_create(struct drm_device *dev,
6441                          struct drm_mode_fb_cmd2 *mode_cmd,
6442                          struct drm_i915_gem_object *obj)
6443 {
6444         struct intel_framebuffer *intel_fb;
6445         int ret;
6446
6447         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6448         if (!intel_fb) {
6449                 drm_gem_object_unreference_unlocked(&obj->base);
6450                 return ERR_PTR(-ENOMEM);
6451         }
6452
6453         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6454         if (ret) {
6455                 drm_gem_object_unreference_unlocked(&obj->base);
6456                 kfree(intel_fb);
6457                 return ERR_PTR(ret);
6458         }
6459
6460         return &intel_fb->base;
6461 }
6462
6463 static u32
6464 intel_framebuffer_pitch_for_width(int width, int bpp)
6465 {
6466         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6467         return ALIGN(pitch, 64);
6468 }
6469
6470 static u32
6471 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6472 {
6473         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6474         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6475 }
6476
6477 static struct drm_framebuffer *
6478 intel_framebuffer_create_for_mode(struct drm_device *dev,
6479                                   struct drm_display_mode *mode,
6480                                   int depth, int bpp)
6481 {
6482         struct drm_i915_gem_object *obj;
6483         struct drm_mode_fb_cmd2 mode_cmd;
6484
6485         obj = i915_gem_alloc_object(dev,
6486                                     intel_framebuffer_size_for_mode(mode, bpp));
6487         if (obj == NULL)
6488                 return ERR_PTR(-ENOMEM);
6489
6490         mode_cmd.width = mode->hdisplay;
6491         mode_cmd.height = mode->vdisplay;
6492         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6493                                                                 bpp);
6494         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6495
6496         return intel_framebuffer_create(dev, &mode_cmd, obj);
6497 }
6498
6499 static struct drm_framebuffer *
6500 mode_fits_in_fbdev(struct drm_device *dev,
6501                    struct drm_display_mode *mode)
6502 {
6503         struct drm_i915_private *dev_priv = dev->dev_private;
6504         struct drm_i915_gem_object *obj;
6505         struct drm_framebuffer *fb;
6506
6507         if (dev_priv->fbdev == NULL)
6508                 return NULL;
6509
6510         obj = dev_priv->fbdev->ifb.obj;
6511         if (obj == NULL)
6512                 return NULL;
6513
6514         fb = &dev_priv->fbdev->ifb.base;
6515         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6516                                                                fb->bits_per_pixel))
6517                 return NULL;
6518
6519         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6520                 return NULL;
6521
6522         return fb;
6523 }
6524
6525 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6526                                 struct drm_display_mode *mode,
6527                                 struct intel_load_detect_pipe *old)
6528 {
6529         struct intel_crtc *intel_crtc;
6530         struct intel_encoder *intel_encoder =
6531                 intel_attached_encoder(connector);
6532         struct drm_crtc *possible_crtc;
6533         struct drm_encoder *encoder = &intel_encoder->base;
6534         struct drm_crtc *crtc = NULL;
6535         struct drm_device *dev = encoder->dev;
6536         struct drm_framebuffer *fb;
6537         int i = -1;
6538
6539         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6540                       connector->base.id, drm_get_connector_name(connector),
6541                       encoder->base.id, drm_get_encoder_name(encoder));
6542
6543         /*
6544          * Algorithm gets a little messy:
6545          *
6546          *   - if the connector already has an assigned crtc, use it (but make
6547          *     sure it's on first)
6548          *
6549          *   - try to find the first unused crtc that can drive this connector,
6550          *     and use that if we find one
6551          */
6552
6553         /* See if we already have a CRTC for this connector */
6554         if (encoder->crtc) {
6555                 crtc = encoder->crtc;
6556
6557                 old->dpms_mode = connector->dpms;
6558                 old->load_detect_temp = false;
6559
6560                 /* Make sure the crtc and connector are running */
6561                 if (connector->dpms != DRM_MODE_DPMS_ON)
6562                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6563
6564                 return true;
6565         }
6566
6567         /* Find an unused one (if possible) */
6568         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6569                 i++;
6570                 if (!(encoder->possible_crtcs & (1 << i)))
6571                         continue;
6572                 if (!possible_crtc->enabled) {
6573                         crtc = possible_crtc;
6574                         break;
6575                 }
6576         }
6577
6578         /*
6579          * If we didn't find an unused CRTC, don't use any.
6580          */
6581         if (!crtc) {
6582                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6583                 return false;
6584         }
6585
6586         intel_encoder->new_crtc = to_intel_crtc(crtc);
6587         to_intel_connector(connector)->new_encoder = intel_encoder;
6588
6589         intel_crtc = to_intel_crtc(crtc);
6590         old->dpms_mode = connector->dpms;
6591         old->load_detect_temp = true;
6592         old->release_fb = NULL;
6593
6594         if (!mode)
6595                 mode = &load_detect_mode;
6596
6597         /* We need a framebuffer large enough to accommodate all accesses
6598          * that the plane may generate whilst we perform load detection.
6599          * We can not rely on the fbcon either being present (we get called
6600          * during its initialisation to detect all boot displays, or it may
6601          * not even exist) or that it is large enough to satisfy the
6602          * requested mode.
6603          */
6604         fb = mode_fits_in_fbdev(dev, mode);
6605         if (fb == NULL) {
6606                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6607                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6608                 old->release_fb = fb;
6609         } else
6610                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6611         if (IS_ERR(fb)) {
6612                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6613                 goto fail;
6614         }
6615
6616         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6617                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6618                 if (old->release_fb)
6619                         old->release_fb->funcs->destroy(old->release_fb);
6620                 goto fail;
6621         }
6622
6623         /* let the connector get through one full cycle before testing */
6624         intel_wait_for_vblank(dev, intel_crtc->pipe);
6625
6626         return true;
6627 fail:
6628         connector->encoder = NULL;
6629         encoder->crtc = NULL;
6630         return false;
6631 }
6632
6633 void intel_release_load_detect_pipe(struct drm_connector *connector,
6634                                     struct intel_load_detect_pipe *old)
6635 {
6636         struct intel_encoder *intel_encoder =
6637                 intel_attached_encoder(connector);
6638         struct drm_encoder *encoder = &intel_encoder->base;
6639
6640         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6641                       connector->base.id, drm_get_connector_name(connector),
6642                       encoder->base.id, drm_get_encoder_name(encoder));
6643
6644         if (old->load_detect_temp) {
6645                 struct drm_crtc *crtc = encoder->crtc;
6646
6647                 to_intel_connector(connector)->new_encoder = NULL;
6648                 intel_encoder->new_crtc = NULL;
6649                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6650
6651                 if (old->release_fb)
6652                         old->release_fb->funcs->destroy(old->release_fb);
6653
6654                 return;
6655         }
6656
6657         /* Switch crtc and encoder back off if necessary */
6658         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6659                 connector->funcs->dpms(connector, old->dpms_mode);
6660 }
6661
6662 /* Returns the clock of the currently programmed mode of the given pipe. */
6663 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6664 {
6665         struct drm_i915_private *dev_priv = dev->dev_private;
6666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6667         int pipe = intel_crtc->pipe;
6668         u32 dpll = I915_READ(DPLL(pipe));
6669         u32 fp;
6670         intel_clock_t clock;
6671
6672         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6673                 fp = I915_READ(FP0(pipe));
6674         else
6675                 fp = I915_READ(FP1(pipe));
6676
6677         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6678         if (IS_PINEVIEW(dev)) {
6679                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6680                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6681         } else {
6682                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6683                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6684         }
6685
6686         if (!IS_GEN2(dev)) {
6687                 if (IS_PINEVIEW(dev))
6688                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6689                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6690                 else
6691                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6692                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6693
6694                 switch (dpll & DPLL_MODE_MASK) {
6695                 case DPLLB_MODE_DAC_SERIAL:
6696                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6697                                 5 : 10;
6698                         break;
6699                 case DPLLB_MODE_LVDS:
6700                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6701                                 7 : 14;
6702                         break;
6703                 default:
6704                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6705                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6706                         return 0;
6707                 }
6708
6709                 /* XXX: Handle the 100Mhz refclk */
6710                 intel_clock(dev, 96000, &clock);
6711         } else {
6712                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6713
6714                 if (is_lvds) {
6715                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6716                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6717                         clock.p2 = 14;
6718
6719                         if ((dpll & PLL_REF_INPUT_MASK) ==
6720                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6721                                 /* XXX: might not be 66MHz */
6722                                 intel_clock(dev, 66000, &clock);
6723                         } else
6724                                 intel_clock(dev, 48000, &clock);
6725                 } else {
6726                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6727                                 clock.p1 = 2;
6728                         else {
6729                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6730                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6731                         }
6732                         if (dpll & PLL_P2_DIVIDE_BY_4)
6733                                 clock.p2 = 4;
6734                         else
6735                                 clock.p2 = 2;
6736
6737                         intel_clock(dev, 48000, &clock);
6738                 }
6739         }
6740
6741         /* XXX: It would be nice to validate the clocks, but we can't reuse
6742          * i830PllIsValid() because it relies on the xf86_config connector
6743          * configuration being accurate, which it isn't necessarily.
6744          */
6745
6746         return clock.dot;
6747 }
6748
6749 /** Returns the currently programmed mode of the given pipe. */
6750 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6751                                              struct drm_crtc *crtc)
6752 {
6753         struct drm_i915_private *dev_priv = dev->dev_private;
6754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6756         struct drm_display_mode *mode;
6757         int htot = I915_READ(HTOTAL(cpu_transcoder));
6758         int hsync = I915_READ(HSYNC(cpu_transcoder));
6759         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6760         int vsync = I915_READ(VSYNC(cpu_transcoder));
6761
6762         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6763         if (!mode)
6764                 return NULL;
6765
6766         mode->clock = intel_crtc_clock_get(dev, crtc);
6767         mode->hdisplay = (htot & 0xffff) + 1;
6768         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6769         mode->hsync_start = (hsync & 0xffff) + 1;
6770         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6771         mode->vdisplay = (vtot & 0xffff) + 1;
6772         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6773         mode->vsync_start = (vsync & 0xffff) + 1;
6774         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6775
6776         drm_mode_set_name(mode);
6777
6778         return mode;
6779 }
6780
6781 static void intel_increase_pllclock(struct drm_crtc *crtc)
6782 {
6783         struct drm_device *dev = crtc->dev;
6784         drm_i915_private_t *dev_priv = dev->dev_private;
6785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786         int pipe = intel_crtc->pipe;
6787         int dpll_reg = DPLL(pipe);
6788         int dpll;
6789
6790         if (HAS_PCH_SPLIT(dev))
6791                 return;
6792
6793         if (!dev_priv->lvds_downclock_avail)
6794                 return;
6795
6796         dpll = I915_READ(dpll_reg);
6797         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6798                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6799
6800                 assert_panel_unlocked(dev_priv, pipe);
6801
6802                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6803                 I915_WRITE(dpll_reg, dpll);
6804                 intel_wait_for_vblank(dev, pipe);
6805
6806                 dpll = I915_READ(dpll_reg);
6807                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6808                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6809         }
6810 }
6811
6812 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6813 {
6814         struct drm_device *dev = crtc->dev;
6815         drm_i915_private_t *dev_priv = dev->dev_private;
6816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6817
6818         if (HAS_PCH_SPLIT(dev))
6819                 return;
6820
6821         if (!dev_priv->lvds_downclock_avail)
6822                 return;
6823
6824         /*
6825          * Since this is called by a timer, we should never get here in
6826          * the manual case.
6827          */
6828         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6829                 int pipe = intel_crtc->pipe;
6830                 int dpll_reg = DPLL(pipe);
6831                 int dpll;
6832
6833                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6834
6835                 assert_panel_unlocked(dev_priv, pipe);
6836
6837                 dpll = I915_READ(dpll_reg);
6838                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6839                 I915_WRITE(dpll_reg, dpll);
6840                 intel_wait_for_vblank(dev, pipe);
6841                 dpll = I915_READ(dpll_reg);
6842                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6843                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6844         }
6845
6846 }
6847
6848 void intel_mark_busy(struct drm_device *dev)
6849 {
6850         i915_update_gfx_val(dev->dev_private);
6851 }
6852
6853 void intel_mark_idle(struct drm_device *dev)
6854 {
6855 }
6856
6857 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6858 {
6859         struct drm_device *dev = obj->base.dev;
6860         struct drm_crtc *crtc;
6861
6862         if (!i915_powersave)
6863                 return;
6864
6865         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6866                 if (!crtc->fb)
6867                         continue;
6868
6869                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6870                         intel_increase_pllclock(crtc);
6871         }
6872 }
6873
6874 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6875 {
6876         struct drm_device *dev = obj->base.dev;
6877         struct drm_crtc *crtc;
6878
6879         if (!i915_powersave)
6880                 return;
6881
6882         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6883                 if (!crtc->fb)
6884                         continue;
6885
6886                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6887                         intel_decrease_pllclock(crtc);
6888         }
6889 }
6890
6891 static void intel_crtc_destroy(struct drm_crtc *crtc)
6892 {
6893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6894         struct drm_device *dev = crtc->dev;
6895         struct intel_unpin_work *work;
6896         unsigned long flags;
6897
6898         spin_lock_irqsave(&dev->event_lock, flags);
6899         work = intel_crtc->unpin_work;
6900         intel_crtc->unpin_work = NULL;
6901         spin_unlock_irqrestore(&dev->event_lock, flags);
6902
6903         if (work) {
6904                 cancel_work_sync(&work->work);
6905                 kfree(work);
6906         }
6907
6908         drm_crtc_cleanup(crtc);
6909
6910         kfree(intel_crtc);
6911 }
6912
6913 static void intel_unpin_work_fn(struct work_struct *__work)
6914 {
6915         struct intel_unpin_work *work =
6916                 container_of(__work, struct intel_unpin_work, work);
6917
6918         mutex_lock(&work->dev->struct_mutex);
6919         intel_unpin_fb_obj(work->old_fb_obj);
6920         drm_gem_object_unreference(&work->pending_flip_obj->base);
6921         drm_gem_object_unreference(&work->old_fb_obj->base);
6922
6923         intel_update_fbc(work->dev);
6924         mutex_unlock(&work->dev->struct_mutex);
6925         kfree(work);
6926 }
6927
6928 static void do_intel_finish_page_flip(struct drm_device *dev,
6929                                       struct drm_crtc *crtc)
6930 {
6931         drm_i915_private_t *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         struct intel_unpin_work *work;
6934         struct drm_i915_gem_object *obj;
6935         struct drm_pending_vblank_event *e;
6936         struct timeval tvbl;
6937         unsigned long flags;
6938
6939         /* Ignore early vblank irqs */
6940         if (intel_crtc == NULL)
6941                 return;
6942
6943         spin_lock_irqsave(&dev->event_lock, flags);
6944         work = intel_crtc->unpin_work;
6945         if (work == NULL || !work->pending) {
6946                 spin_unlock_irqrestore(&dev->event_lock, flags);
6947                 return;
6948         }
6949
6950         intel_crtc->unpin_work = NULL;
6951
6952         if (work->event) {
6953                 e = work->event;
6954                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6955
6956                 e->event.tv_sec = tvbl.tv_sec;
6957                 e->event.tv_usec = tvbl.tv_usec;
6958
6959                 list_add_tail(&e->base.link,
6960                               &e->base.file_priv->event_list);
6961                 wake_up_interruptible(&e->base.file_priv->event_wait);
6962         }
6963
6964         drm_vblank_put(dev, intel_crtc->pipe);
6965
6966         spin_unlock_irqrestore(&dev->event_lock, flags);
6967
6968         obj = work->old_fb_obj;
6969
6970         atomic_clear_mask(1 << intel_crtc->plane,
6971                           &obj->pending_flip.counter);
6972
6973         wake_up(&dev_priv->pending_flip_queue);
6974         schedule_work(&work->work);
6975
6976         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6977 }
6978
6979 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6980 {
6981         drm_i915_private_t *dev_priv = dev->dev_private;
6982         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6983
6984         do_intel_finish_page_flip(dev, crtc);
6985 }
6986
6987 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6988 {
6989         drm_i915_private_t *dev_priv = dev->dev_private;
6990         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6991
6992         do_intel_finish_page_flip(dev, crtc);
6993 }
6994
6995 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6996 {
6997         drm_i915_private_t *dev_priv = dev->dev_private;
6998         struct intel_crtc *intel_crtc =
6999                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7000         unsigned long flags;
7001
7002         spin_lock_irqsave(&dev->event_lock, flags);
7003         if (intel_crtc->unpin_work) {
7004                 if ((++intel_crtc->unpin_work->pending) > 1)
7005                         DRM_ERROR("Prepared flip multiple times\n");
7006         } else {
7007                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7008         }
7009         spin_unlock_irqrestore(&dev->event_lock, flags);
7010 }
7011
7012 static int intel_gen2_queue_flip(struct drm_device *dev,
7013                                  struct drm_crtc *crtc,
7014                                  struct drm_framebuffer *fb,
7015                                  struct drm_i915_gem_object *obj)
7016 {
7017         struct drm_i915_private *dev_priv = dev->dev_private;
7018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019         u32 flip_mask;
7020         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7021         int ret;
7022
7023         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7024         if (ret)
7025                 goto err;
7026
7027         ret = intel_ring_begin(ring, 6);
7028         if (ret)
7029                 goto err_unpin;
7030
7031         /* Can't queue multiple flips, so wait for the previous
7032          * one to finish before executing the next.
7033          */
7034         if (intel_crtc->plane)
7035                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7036         else
7037                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7038         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7039         intel_ring_emit(ring, MI_NOOP);
7040         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7041                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7042         intel_ring_emit(ring, fb->pitches[0]);
7043         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7044         intel_ring_emit(ring, 0); /* aux display base address, unused */
7045         intel_ring_advance(ring);
7046         return 0;
7047
7048 err_unpin:
7049         intel_unpin_fb_obj(obj);
7050 err:
7051         return ret;
7052 }
7053
7054 static int intel_gen3_queue_flip(struct drm_device *dev,
7055                                  struct drm_crtc *crtc,
7056                                  struct drm_framebuffer *fb,
7057                                  struct drm_i915_gem_object *obj)
7058 {
7059         struct drm_i915_private *dev_priv = dev->dev_private;
7060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7061         u32 flip_mask;
7062         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7063         int ret;
7064
7065         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7066         if (ret)
7067                 goto err;
7068
7069         ret = intel_ring_begin(ring, 6);
7070         if (ret)
7071                 goto err_unpin;
7072
7073         if (intel_crtc->plane)
7074                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7075         else
7076                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7077         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7078         intel_ring_emit(ring, MI_NOOP);
7079         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7080                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7081         intel_ring_emit(ring, fb->pitches[0]);
7082         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7083         intel_ring_emit(ring, MI_NOOP);
7084
7085         intel_ring_advance(ring);
7086         return 0;
7087
7088 err_unpin:
7089         intel_unpin_fb_obj(obj);
7090 err:
7091         return ret;
7092 }
7093
7094 static int intel_gen4_queue_flip(struct drm_device *dev,
7095                                  struct drm_crtc *crtc,
7096                                  struct drm_framebuffer *fb,
7097                                  struct drm_i915_gem_object *obj)
7098 {
7099         struct drm_i915_private *dev_priv = dev->dev_private;
7100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7101         uint32_t pf, pipesrc;
7102         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7103         int ret;
7104
7105         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7106         if (ret)
7107                 goto err;
7108
7109         ret = intel_ring_begin(ring, 4);
7110         if (ret)
7111                 goto err_unpin;
7112
7113         /* i965+ uses the linear or tiled offsets from the
7114          * Display Registers (which do not change across a page-flip)
7115          * so we need only reprogram the base address.
7116          */
7117         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7118                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7119         intel_ring_emit(ring, fb->pitches[0]);
7120         intel_ring_emit(ring,
7121                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7122                         obj->tiling_mode);
7123
7124         /* XXX Enabling the panel-fitter across page-flip is so far
7125          * untested on non-native modes, so ignore it for now.
7126          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7127          */
7128         pf = 0;
7129         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7130         intel_ring_emit(ring, pf | pipesrc);
7131         intel_ring_advance(ring);
7132         return 0;
7133
7134 err_unpin:
7135         intel_unpin_fb_obj(obj);
7136 err:
7137         return ret;
7138 }
7139
7140 static int intel_gen6_queue_flip(struct drm_device *dev,
7141                                  struct drm_crtc *crtc,
7142                                  struct drm_framebuffer *fb,
7143                                  struct drm_i915_gem_object *obj)
7144 {
7145         struct drm_i915_private *dev_priv = dev->dev_private;
7146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7147         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7148         uint32_t pf, pipesrc;
7149         int ret;
7150
7151         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7152         if (ret)
7153                 goto err;
7154
7155         ret = intel_ring_begin(ring, 4);
7156         if (ret)
7157                 goto err_unpin;
7158
7159         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7160                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7161         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7162         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7163
7164         /* Contrary to the suggestions in the documentation,
7165          * "Enable Panel Fitter" does not seem to be required when page
7166          * flipping with a non-native mode, and worse causes a normal
7167          * modeset to fail.
7168          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7169          */
7170         pf = 0;
7171         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7172         intel_ring_emit(ring, pf | pipesrc);
7173         intel_ring_advance(ring);
7174         return 0;
7175
7176 err_unpin:
7177         intel_unpin_fb_obj(obj);
7178 err:
7179         return ret;
7180 }
7181
7182 /*
7183  * On gen7 we currently use the blit ring because (in early silicon at least)
7184  * the render ring doesn't give us interrpts for page flip completion, which
7185  * means clients will hang after the first flip is queued.  Fortunately the
7186  * blit ring generates interrupts properly, so use it instead.
7187  */
7188 static int intel_gen7_queue_flip(struct drm_device *dev,
7189                                  struct drm_crtc *crtc,
7190                                  struct drm_framebuffer *fb,
7191                                  struct drm_i915_gem_object *obj)
7192 {
7193         struct drm_i915_private *dev_priv = dev->dev_private;
7194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7195         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7196         uint32_t plane_bit = 0;
7197         int ret;
7198
7199         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7200         if (ret)
7201                 goto err;
7202
7203         switch(intel_crtc->plane) {
7204         case PLANE_A:
7205                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7206                 break;
7207         case PLANE_B:
7208                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7209                 break;
7210         case PLANE_C:
7211                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7212                 break;
7213         default:
7214                 WARN_ONCE(1, "unknown plane in flip command\n");
7215                 ret = -ENODEV;
7216                 goto err_unpin;
7217         }
7218
7219         ret = intel_ring_begin(ring, 4);
7220         if (ret)
7221                 goto err_unpin;
7222
7223         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7224         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7225         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7226         intel_ring_emit(ring, (MI_NOOP));
7227         intel_ring_advance(ring);
7228         return 0;
7229
7230 err_unpin:
7231         intel_unpin_fb_obj(obj);
7232 err:
7233         return ret;
7234 }
7235
7236 static int intel_default_queue_flip(struct drm_device *dev,
7237                                     struct drm_crtc *crtc,
7238                                     struct drm_framebuffer *fb,
7239                                     struct drm_i915_gem_object *obj)
7240 {
7241         return -ENODEV;
7242 }
7243
7244 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7245                                 struct drm_framebuffer *fb,
7246                                 struct drm_pending_vblank_event *event)
7247 {
7248         struct drm_device *dev = crtc->dev;
7249         struct drm_i915_private *dev_priv = dev->dev_private;
7250         struct intel_framebuffer *intel_fb;
7251         struct drm_i915_gem_object *obj;
7252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253         struct intel_unpin_work *work;
7254         unsigned long flags;
7255         int ret;
7256
7257         /* Can't change pixel format via MI display flips. */
7258         if (fb->pixel_format != crtc->fb->pixel_format)
7259                 return -EINVAL;
7260
7261         /*
7262          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7263          * Note that pitch changes could also affect these register.
7264          */
7265         if (INTEL_INFO(dev)->gen > 3 &&
7266             (fb->offsets[0] != crtc->fb->offsets[0] ||
7267              fb->pitches[0] != crtc->fb->pitches[0]))
7268                 return -EINVAL;
7269
7270         work = kzalloc(sizeof *work, GFP_KERNEL);
7271         if (work == NULL)
7272                 return -ENOMEM;
7273
7274         work->event = event;
7275         work->dev = crtc->dev;
7276         intel_fb = to_intel_framebuffer(crtc->fb);
7277         work->old_fb_obj = intel_fb->obj;
7278         INIT_WORK(&work->work, intel_unpin_work_fn);
7279
7280         ret = drm_vblank_get(dev, intel_crtc->pipe);
7281         if (ret)
7282                 goto free_work;
7283
7284         /* We borrow the event spin lock for protecting unpin_work */
7285         spin_lock_irqsave(&dev->event_lock, flags);
7286         if (intel_crtc->unpin_work) {
7287                 spin_unlock_irqrestore(&dev->event_lock, flags);
7288                 kfree(work);
7289                 drm_vblank_put(dev, intel_crtc->pipe);
7290
7291                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7292                 return -EBUSY;
7293         }
7294         intel_crtc->unpin_work = work;
7295         spin_unlock_irqrestore(&dev->event_lock, flags);
7296
7297         intel_fb = to_intel_framebuffer(fb);
7298         obj = intel_fb->obj;
7299
7300         ret = i915_mutex_lock_interruptible(dev);
7301         if (ret)
7302                 goto cleanup;
7303
7304         /* Reference the objects for the scheduled work. */
7305         drm_gem_object_reference(&work->old_fb_obj->base);
7306         drm_gem_object_reference(&obj->base);
7307
7308         crtc->fb = fb;
7309
7310         work->pending_flip_obj = obj;
7311
7312         work->enable_stall_check = true;
7313
7314         /* Block clients from rendering to the new back buffer until
7315          * the flip occurs and the object is no longer visible.
7316          */
7317         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7318
7319         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7320         if (ret)
7321                 goto cleanup_pending;
7322
7323         intel_disable_fbc(dev);
7324         intel_mark_fb_busy(obj);
7325         mutex_unlock(&dev->struct_mutex);
7326
7327         trace_i915_flip_request(intel_crtc->plane, obj);
7328
7329         return 0;
7330
7331 cleanup_pending:
7332         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7333         drm_gem_object_unreference(&work->old_fb_obj->base);
7334         drm_gem_object_unreference(&obj->base);
7335         mutex_unlock(&dev->struct_mutex);
7336
7337 cleanup:
7338         spin_lock_irqsave(&dev->event_lock, flags);
7339         intel_crtc->unpin_work = NULL;
7340         spin_unlock_irqrestore(&dev->event_lock, flags);
7341
7342         drm_vblank_put(dev, intel_crtc->pipe);
7343 free_work:
7344         kfree(work);
7345
7346         return ret;
7347 }
7348
7349 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7350         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7351         .load_lut = intel_crtc_load_lut,
7352         .disable = intel_crtc_noop,
7353 };
7354
7355 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7356 {
7357         struct intel_encoder *other_encoder;
7358         struct drm_crtc *crtc = &encoder->new_crtc->base;
7359
7360         if (WARN_ON(!crtc))
7361                 return false;
7362
7363         list_for_each_entry(other_encoder,
7364                             &crtc->dev->mode_config.encoder_list,
7365                             base.head) {
7366
7367                 if (&other_encoder->new_crtc->base != crtc ||
7368                     encoder == other_encoder)
7369                         continue;
7370                 else
7371                         return true;
7372         }
7373
7374         return false;
7375 }
7376
7377 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7378                                   struct drm_crtc *crtc)
7379 {
7380         struct drm_device *dev;
7381         struct drm_crtc *tmp;
7382         int crtc_mask = 1;
7383
7384         WARN(!crtc, "checking null crtc?\n");
7385
7386         dev = crtc->dev;
7387
7388         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7389                 if (tmp == crtc)
7390                         break;
7391                 crtc_mask <<= 1;
7392         }
7393
7394         if (encoder->possible_crtcs & crtc_mask)
7395                 return true;
7396         return false;
7397 }
7398
7399 /**
7400  * intel_modeset_update_staged_output_state
7401  *
7402  * Updates the staged output configuration state, e.g. after we've read out the
7403  * current hw state.
7404  */
7405 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7406 {
7407         struct intel_encoder *encoder;
7408         struct intel_connector *connector;
7409
7410         list_for_each_entry(connector, &dev->mode_config.connector_list,
7411                             base.head) {
7412                 connector->new_encoder =
7413                         to_intel_encoder(connector->base.encoder);
7414         }
7415
7416         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7417                             base.head) {
7418                 encoder->new_crtc =
7419                         to_intel_crtc(encoder->base.crtc);
7420         }
7421 }
7422
7423 /**
7424  * intel_modeset_commit_output_state
7425  *
7426  * This function copies the stage display pipe configuration to the real one.
7427  */
7428 static void intel_modeset_commit_output_state(struct drm_device *dev)
7429 {
7430         struct intel_encoder *encoder;
7431         struct intel_connector *connector;
7432
7433         list_for_each_entry(connector, &dev->mode_config.connector_list,
7434                             base.head) {
7435                 connector->base.encoder = &connector->new_encoder->base;
7436         }
7437
7438         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7439                             base.head) {
7440                 encoder->base.crtc = &encoder->new_crtc->base;
7441         }
7442 }
7443
7444 static struct drm_display_mode *
7445 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7446                             struct drm_display_mode *mode)
7447 {
7448         struct drm_device *dev = crtc->dev;
7449         struct drm_display_mode *adjusted_mode;
7450         struct drm_encoder_helper_funcs *encoder_funcs;
7451         struct intel_encoder *encoder;
7452
7453         adjusted_mode = drm_mode_duplicate(dev, mode);
7454         if (!adjusted_mode)
7455                 return ERR_PTR(-ENOMEM);
7456
7457         /* Pass our mode to the connectors and the CRTC to give them a chance to
7458          * adjust it according to limitations or connector properties, and also
7459          * a chance to reject the mode entirely.
7460          */
7461         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7462                             base.head) {
7463
7464                 if (&encoder->new_crtc->base != crtc)
7465                         continue;
7466                 encoder_funcs = encoder->base.helper_private;
7467                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7468                                                 adjusted_mode))) {
7469                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7470                         goto fail;
7471                 }
7472         }
7473
7474         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7475                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7476                 goto fail;
7477         }
7478         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7479
7480         return adjusted_mode;
7481 fail:
7482         drm_mode_destroy(dev, adjusted_mode);
7483         return ERR_PTR(-EINVAL);
7484 }
7485
7486 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7487  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7488 static void
7489 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7490                              unsigned *prepare_pipes, unsigned *disable_pipes)
7491 {
7492         struct intel_crtc *intel_crtc;
7493         struct drm_device *dev = crtc->dev;
7494         struct intel_encoder *encoder;
7495         struct intel_connector *connector;
7496         struct drm_crtc *tmp_crtc;
7497
7498         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7499
7500         /* Check which crtcs have changed outputs connected to them, these need
7501          * to be part of the prepare_pipes mask. We don't (yet) support global
7502          * modeset across multiple crtcs, so modeset_pipes will only have one
7503          * bit set at most. */
7504         list_for_each_entry(connector, &dev->mode_config.connector_list,
7505                             base.head) {
7506                 if (connector->base.encoder == &connector->new_encoder->base)
7507                         continue;
7508
7509                 if (connector->base.encoder) {
7510                         tmp_crtc = connector->base.encoder->crtc;
7511
7512                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7513                 }
7514
7515                 if (connector->new_encoder)
7516                         *prepare_pipes |=
7517                                 1 << connector->new_encoder->new_crtc->pipe;
7518         }
7519
7520         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7521                             base.head) {
7522                 if (encoder->base.crtc == &encoder->new_crtc->base)
7523                         continue;
7524
7525                 if (encoder->base.crtc) {
7526                         tmp_crtc = encoder->base.crtc;
7527
7528                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7529                 }
7530
7531                 if (encoder->new_crtc)
7532                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7533         }
7534
7535         /* Check for any pipes that will be fully disabled ... */
7536         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7537                             base.head) {
7538                 bool used = false;
7539
7540                 /* Don't try to disable disabled crtcs. */
7541                 if (!intel_crtc->base.enabled)
7542                         continue;
7543
7544                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7545                                     base.head) {
7546                         if (encoder->new_crtc == intel_crtc)
7547                                 used = true;
7548                 }
7549
7550                 if (!used)
7551                         *disable_pipes |= 1 << intel_crtc->pipe;
7552         }
7553
7554
7555         /* set_mode is also used to update properties on life display pipes. */
7556         intel_crtc = to_intel_crtc(crtc);
7557         if (crtc->enabled)
7558                 *prepare_pipes |= 1 << intel_crtc->pipe;
7559
7560         /* We only support modeset on one single crtc, hence we need to do that
7561          * only for the passed in crtc iff we change anything else than just
7562          * disable crtcs.
7563          *
7564          * This is actually not true, to be fully compatible with the old crtc
7565          * helper we automatically disable _any_ output (i.e. doesn't need to be
7566          * connected to the crtc we're modesetting on) if it's disconnected.
7567          * Which is a rather nutty api (since changed the output configuration
7568          * without userspace's explicit request can lead to confusion), but
7569          * alas. Hence we currently need to modeset on all pipes we prepare. */
7570         if (*prepare_pipes)
7571                 *modeset_pipes = *prepare_pipes;
7572
7573         /* ... and mask these out. */
7574         *modeset_pipes &= ~(*disable_pipes);
7575         *prepare_pipes &= ~(*disable_pipes);
7576 }
7577
7578 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7579 {
7580         struct drm_encoder *encoder;
7581         struct drm_device *dev = crtc->dev;
7582
7583         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7584                 if (encoder->crtc == crtc)
7585                         return true;
7586
7587         return false;
7588 }
7589
7590 static void
7591 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7592 {
7593         struct intel_encoder *intel_encoder;
7594         struct intel_crtc *intel_crtc;
7595         struct drm_connector *connector;
7596
7597         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7598                             base.head) {
7599                 if (!intel_encoder->base.crtc)
7600                         continue;
7601
7602                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7603
7604                 if (prepare_pipes & (1 << intel_crtc->pipe))
7605                         intel_encoder->connectors_active = false;
7606         }
7607
7608         intel_modeset_commit_output_state(dev);
7609
7610         /* Update computed state. */
7611         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7612                             base.head) {
7613                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7614         }
7615
7616         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7617                 if (!connector->encoder || !connector->encoder->crtc)
7618                         continue;
7619
7620                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7621
7622                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7623                         struct drm_property *dpms_property =
7624                                 dev->mode_config.dpms_property;
7625
7626                         connector->dpms = DRM_MODE_DPMS_ON;
7627                         drm_connector_property_set_value(connector,
7628                                                          dpms_property,
7629                                                          DRM_MODE_DPMS_ON);
7630
7631                         intel_encoder = to_intel_encoder(connector->encoder);
7632                         intel_encoder->connectors_active = true;
7633                 }
7634         }
7635
7636 }
7637
7638 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7639         list_for_each_entry((intel_crtc), \
7640                             &(dev)->mode_config.crtc_list, \
7641                             base.head) \
7642                 if (mask & (1 <<(intel_crtc)->pipe)) \
7643
7644 void
7645 intel_modeset_check_state(struct drm_device *dev)
7646 {
7647         struct intel_crtc *crtc;
7648         struct intel_encoder *encoder;
7649         struct intel_connector *connector;
7650
7651         list_for_each_entry(connector, &dev->mode_config.connector_list,
7652                             base.head) {
7653                 /* This also checks the encoder/connector hw state with the
7654                  * ->get_hw_state callbacks. */
7655                 intel_connector_check_state(connector);
7656
7657                 WARN(&connector->new_encoder->base != connector->base.encoder,
7658                      "connector's staged encoder doesn't match current encoder\n");
7659         }
7660
7661         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7662                             base.head) {
7663                 bool enabled = false;
7664                 bool active = false;
7665                 enum pipe pipe, tracked_pipe;
7666
7667                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7668                               encoder->base.base.id,
7669                               drm_get_encoder_name(&encoder->base));
7670
7671                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7672                      "encoder's stage crtc doesn't match current crtc\n");
7673                 WARN(encoder->connectors_active && !encoder->base.crtc,
7674                      "encoder's active_connectors set, but no crtc\n");
7675
7676                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7677                                     base.head) {
7678                         if (connector->base.encoder != &encoder->base)
7679                                 continue;
7680                         enabled = true;
7681                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7682                                 active = true;
7683                 }
7684                 WARN(!!encoder->base.crtc != enabled,
7685                      "encoder's enabled state mismatch "
7686                      "(expected %i, found %i)\n",
7687                      !!encoder->base.crtc, enabled);
7688                 WARN(active && !encoder->base.crtc,
7689                      "active encoder with no crtc\n");
7690
7691                 WARN(encoder->connectors_active != active,
7692                      "encoder's computed active state doesn't match tracked active state "
7693                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7694
7695                 active = encoder->get_hw_state(encoder, &pipe);
7696                 WARN(active != encoder->connectors_active,
7697                      "encoder's hw state doesn't match sw tracking "
7698                      "(expected %i, found %i)\n",
7699                      encoder->connectors_active, active);
7700
7701                 if (!encoder->base.crtc)
7702                         continue;
7703
7704                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7705                 WARN(active && pipe != tracked_pipe,
7706                      "active encoder's pipe doesn't match"
7707                      "(expected %i, found %i)\n",
7708                      tracked_pipe, pipe);
7709
7710         }
7711
7712         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7713                             base.head) {
7714                 bool enabled = false;
7715                 bool active = false;
7716
7717                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7718                               crtc->base.base.id);
7719
7720                 WARN(crtc->active && !crtc->base.enabled,
7721                      "active crtc, but not enabled in sw tracking\n");
7722
7723                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7724                                     base.head) {
7725                         if (encoder->base.crtc != &crtc->base)
7726                                 continue;
7727                         enabled = true;
7728                         if (encoder->connectors_active)
7729                                 active = true;
7730                 }
7731                 WARN(active != crtc->active,
7732                      "crtc's computed active state doesn't match tracked active state "
7733                      "(expected %i, found %i)\n", active, crtc->active);
7734                 WARN(enabled != crtc->base.enabled,
7735                      "crtc's computed enabled state doesn't match tracked enabled state "
7736                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7737
7738                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7739         }
7740 }
7741
7742 bool intel_set_mode(struct drm_crtc *crtc,
7743                     struct drm_display_mode *mode,
7744                     int x, int y, struct drm_framebuffer *fb)
7745 {
7746         struct drm_device *dev = crtc->dev;
7747         drm_i915_private_t *dev_priv = dev->dev_private;
7748         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7749         struct intel_crtc *intel_crtc;
7750         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7751         bool ret = true;
7752
7753         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7754                                      &prepare_pipes, &disable_pipes);
7755
7756         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7757                       modeset_pipes, prepare_pipes, disable_pipes);
7758
7759         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7760                 intel_crtc_disable(&intel_crtc->base);
7761
7762         saved_hwmode = crtc->hwmode;
7763         saved_mode = crtc->mode;
7764
7765         /* Hack: Because we don't (yet) support global modeset on multiple
7766          * crtcs, we don't keep track of the new mode for more than one crtc.
7767          * Hence simply check whether any bit is set in modeset_pipes in all the
7768          * pieces of code that are not yet converted to deal with mutliple crtcs
7769          * changing their mode at the same time. */
7770         adjusted_mode = NULL;
7771         if (modeset_pipes) {
7772                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7773                 if (IS_ERR(adjusted_mode)) {
7774                         return false;
7775                 }
7776         }
7777
7778         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7779                 if (intel_crtc->base.enabled)
7780                         dev_priv->display.crtc_disable(&intel_crtc->base);
7781         }
7782
7783         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7784          * to set it here already despite that we pass it down the callchain.
7785          */
7786         if (modeset_pipes)
7787                 crtc->mode = *mode;
7788
7789         /* Only after disabling all output pipelines that will be changed can we
7790          * update the the output configuration. */
7791         intel_modeset_update_state(dev, prepare_pipes);
7792
7793         if (dev_priv->display.modeset_global_resources)
7794                 dev_priv->display.modeset_global_resources(dev);
7795
7796         /* Set up the DPLL and any encoders state that needs to adjust or depend
7797          * on the DPLL.
7798          */
7799         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7800                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7801                                            mode, adjusted_mode,
7802                                            x, y, fb);
7803                 if (!ret)
7804                     goto done;
7805         }
7806
7807         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7808         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7809                 dev_priv->display.crtc_enable(&intel_crtc->base);
7810
7811         if (modeset_pipes) {
7812                 /* Store real post-adjustment hardware mode. */
7813                 crtc->hwmode = *adjusted_mode;
7814
7815                 /* Calculate and store various constants which
7816                  * are later needed by vblank and swap-completion
7817                  * timestamping. They are derived from true hwmode.
7818                  */
7819                 drm_calc_timestamping_constants(crtc);
7820         }
7821
7822         /* FIXME: add subpixel order */
7823 done:
7824         drm_mode_destroy(dev, adjusted_mode);
7825         if (!ret && crtc->enabled) {
7826                 crtc->hwmode = saved_hwmode;
7827                 crtc->mode = saved_mode;
7828         } else {
7829                 intel_modeset_check_state(dev);
7830         }
7831
7832         return ret;
7833 }
7834
7835 #undef for_each_intel_crtc_masked
7836
7837 static void intel_set_config_free(struct intel_set_config *config)
7838 {
7839         if (!config)
7840                 return;
7841
7842         kfree(config->save_connector_encoders);
7843         kfree(config->save_encoder_crtcs);
7844         kfree(config);
7845 }
7846
7847 static int intel_set_config_save_state(struct drm_device *dev,
7848                                        struct intel_set_config *config)
7849 {
7850         struct drm_encoder *encoder;
7851         struct drm_connector *connector;
7852         int count;
7853
7854         config->save_encoder_crtcs =
7855                 kcalloc(dev->mode_config.num_encoder,
7856                         sizeof(struct drm_crtc *), GFP_KERNEL);
7857         if (!config->save_encoder_crtcs)
7858                 return -ENOMEM;
7859
7860         config->save_connector_encoders =
7861                 kcalloc(dev->mode_config.num_connector,
7862                         sizeof(struct drm_encoder *), GFP_KERNEL);
7863         if (!config->save_connector_encoders)
7864                 return -ENOMEM;
7865
7866         /* Copy data. Note that driver private data is not affected.
7867          * Should anything bad happen only the expected state is
7868          * restored, not the drivers personal bookkeeping.
7869          */
7870         count = 0;
7871         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7872                 config->save_encoder_crtcs[count++] = encoder->crtc;
7873         }
7874
7875         count = 0;
7876         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7877                 config->save_connector_encoders[count++] = connector->encoder;
7878         }
7879
7880         return 0;
7881 }
7882
7883 static void intel_set_config_restore_state(struct drm_device *dev,
7884                                            struct intel_set_config *config)
7885 {
7886         struct intel_encoder *encoder;
7887         struct intel_connector *connector;
7888         int count;
7889
7890         count = 0;
7891         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7892                 encoder->new_crtc =
7893                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7894         }
7895
7896         count = 0;
7897         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7898                 connector->new_encoder =
7899                         to_intel_encoder(config->save_connector_encoders[count++]);
7900         }
7901 }
7902
7903 static void
7904 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7905                                       struct intel_set_config *config)
7906 {
7907
7908         /* We should be able to check here if the fb has the same properties
7909          * and then just flip_or_move it */
7910         if (set->crtc->fb != set->fb) {
7911                 /* If we have no fb then treat it as a full mode set */
7912                 if (set->crtc->fb == NULL) {
7913                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7914                         config->mode_changed = true;
7915                 } else if (set->fb == NULL) {
7916                         config->mode_changed = true;
7917                 } else if (set->fb->depth != set->crtc->fb->depth) {
7918                         config->mode_changed = true;
7919                 } else if (set->fb->bits_per_pixel !=
7920                            set->crtc->fb->bits_per_pixel) {
7921                         config->mode_changed = true;
7922                 } else
7923                         config->fb_changed = true;
7924         }
7925
7926         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7927                 config->fb_changed = true;
7928
7929         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7930                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7931                 drm_mode_debug_printmodeline(&set->crtc->mode);
7932                 drm_mode_debug_printmodeline(set->mode);
7933                 config->mode_changed = true;
7934         }
7935 }
7936
7937 static int
7938 intel_modeset_stage_output_state(struct drm_device *dev,
7939                                  struct drm_mode_set *set,
7940                                  struct intel_set_config *config)
7941 {
7942         struct drm_crtc *new_crtc;
7943         struct intel_connector *connector;
7944         struct intel_encoder *encoder;
7945         int count, ro;
7946
7947         /* The upper layers ensure that we either disabl a crtc or have a list
7948          * of connectors. For paranoia, double-check this. */
7949         WARN_ON(!set->fb && (set->num_connectors != 0));
7950         WARN_ON(set->fb && (set->num_connectors == 0));
7951
7952         count = 0;
7953         list_for_each_entry(connector, &dev->mode_config.connector_list,
7954                             base.head) {
7955                 /* Otherwise traverse passed in connector list and get encoders
7956                  * for them. */
7957                 for (ro = 0; ro < set->num_connectors; ro++) {
7958                         if (set->connectors[ro] == &connector->base) {
7959                                 connector->new_encoder = connector->encoder;
7960                                 break;
7961                         }
7962                 }
7963
7964                 /* If we disable the crtc, disable all its connectors. Also, if
7965                  * the connector is on the changing crtc but not on the new
7966                  * connector list, disable it. */
7967                 if ((!set->fb || ro == set->num_connectors) &&
7968                     connector->base.encoder &&
7969                     connector->base.encoder->crtc == set->crtc) {
7970                         connector->new_encoder = NULL;
7971
7972                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7973                                 connector->base.base.id,
7974                                 drm_get_connector_name(&connector->base));
7975                 }
7976
7977
7978                 if (&connector->new_encoder->base != connector->base.encoder) {
7979                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7980                         config->mode_changed = true;
7981                 }
7982
7983                 /* Disable all disconnected encoders. */
7984                 if (connector->base.status == connector_status_disconnected)
7985                         connector->new_encoder = NULL;
7986         }
7987         /* connector->new_encoder is now updated for all connectors. */
7988
7989         /* Update crtc of enabled connectors. */
7990         count = 0;
7991         list_for_each_entry(connector, &dev->mode_config.connector_list,
7992                             base.head) {
7993                 if (!connector->new_encoder)
7994                         continue;
7995
7996                 new_crtc = connector->new_encoder->base.crtc;
7997
7998                 for (ro = 0; ro < set->num_connectors; ro++) {
7999                         if (set->connectors[ro] == &connector->base)
8000                                 new_crtc = set->crtc;
8001                 }
8002
8003                 /* Make sure the new CRTC will work with the encoder */
8004                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8005                                            new_crtc)) {
8006                         return -EINVAL;
8007                 }
8008                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8009
8010                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8011                         connector->base.base.id,
8012                         drm_get_connector_name(&connector->base),
8013                         new_crtc->base.id);
8014         }
8015
8016         /* Check for any encoders that needs to be disabled. */
8017         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8018                             base.head) {
8019                 list_for_each_entry(connector,
8020                                     &dev->mode_config.connector_list,
8021                                     base.head) {
8022                         if (connector->new_encoder == encoder) {
8023                                 WARN_ON(!connector->new_encoder->new_crtc);
8024
8025                                 goto next_encoder;
8026                         }
8027                 }
8028                 encoder->new_crtc = NULL;
8029 next_encoder:
8030                 /* Only now check for crtc changes so we don't miss encoders
8031                  * that will be disabled. */
8032                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8033                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8034                         config->mode_changed = true;
8035                 }
8036         }
8037         /* Now we've also updated encoder->new_crtc for all encoders. */
8038
8039         return 0;
8040 }
8041
8042 static int intel_crtc_set_config(struct drm_mode_set *set)
8043 {
8044         struct drm_device *dev;
8045         struct drm_mode_set save_set;
8046         struct intel_set_config *config;
8047         int ret;
8048
8049         BUG_ON(!set);
8050         BUG_ON(!set->crtc);
8051         BUG_ON(!set->crtc->helper_private);
8052
8053         if (!set->mode)
8054                 set->fb = NULL;
8055
8056         /* The fb helper likes to play gross jokes with ->mode_set_config.
8057          * Unfortunately the crtc helper doesn't do much at all for this case,
8058          * so we have to cope with this madness until the fb helper is fixed up. */
8059         if (set->fb && set->num_connectors == 0)
8060                 return 0;
8061
8062         if (set->fb) {
8063                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8064                                 set->crtc->base.id, set->fb->base.id,
8065                                 (int)set->num_connectors, set->x, set->y);
8066         } else {
8067                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8068         }
8069
8070         dev = set->crtc->dev;
8071
8072         ret = -ENOMEM;
8073         config = kzalloc(sizeof(*config), GFP_KERNEL);
8074         if (!config)
8075                 goto out_config;
8076
8077         ret = intel_set_config_save_state(dev, config);
8078         if (ret)
8079                 goto out_config;
8080
8081         save_set.crtc = set->crtc;
8082         save_set.mode = &set->crtc->mode;
8083         save_set.x = set->crtc->x;
8084         save_set.y = set->crtc->y;
8085         save_set.fb = set->crtc->fb;
8086
8087         /* Compute whether we need a full modeset, only an fb base update or no
8088          * change at all. In the future we might also check whether only the
8089          * mode changed, e.g. for LVDS where we only change the panel fitter in
8090          * such cases. */
8091         intel_set_config_compute_mode_changes(set, config);
8092
8093         ret = intel_modeset_stage_output_state(dev, set, config);
8094         if (ret)
8095                 goto fail;
8096
8097         if (config->mode_changed) {
8098                 if (set->mode) {
8099                         DRM_DEBUG_KMS("attempting to set mode from"
8100                                         " userspace\n");
8101                         drm_mode_debug_printmodeline(set->mode);
8102                 }
8103
8104                 if (!intel_set_mode(set->crtc, set->mode,
8105                                     set->x, set->y, set->fb)) {
8106                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8107                                   set->crtc->base.id);
8108                         ret = -EINVAL;
8109                         goto fail;
8110                 }
8111         } else if (config->fb_changed) {
8112                 ret = intel_pipe_set_base(set->crtc,
8113                                           set->x, set->y, set->fb);
8114         }
8115
8116         intel_set_config_free(config);
8117
8118         return 0;
8119
8120 fail:
8121         intel_set_config_restore_state(dev, config);
8122
8123         /* Try to restore the config */
8124         if (config->mode_changed &&
8125             !intel_set_mode(save_set.crtc, save_set.mode,
8126                             save_set.x, save_set.y, save_set.fb))
8127                 DRM_ERROR("failed to restore config after modeset failure\n");
8128
8129 out_config:
8130         intel_set_config_free(config);
8131         return ret;
8132 }
8133
8134 static const struct drm_crtc_funcs intel_crtc_funcs = {
8135         .cursor_set = intel_crtc_cursor_set,
8136         .cursor_move = intel_crtc_cursor_move,
8137         .gamma_set = intel_crtc_gamma_set,
8138         .set_config = intel_crtc_set_config,
8139         .destroy = intel_crtc_destroy,
8140         .page_flip = intel_crtc_page_flip,
8141 };
8142
8143 static void intel_cpu_pll_init(struct drm_device *dev)
8144 {
8145         if (IS_HASWELL(dev))
8146                 intel_ddi_pll_init(dev);
8147 }
8148
8149 static void intel_pch_pll_init(struct drm_device *dev)
8150 {
8151         drm_i915_private_t *dev_priv = dev->dev_private;
8152         int i;
8153
8154         if (dev_priv->num_pch_pll == 0) {
8155                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8156                 return;
8157         }
8158
8159         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8160                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8161                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8162                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8163         }
8164 }
8165
8166 static void intel_crtc_init(struct drm_device *dev, int pipe)
8167 {
8168         drm_i915_private_t *dev_priv = dev->dev_private;
8169         struct intel_crtc *intel_crtc;
8170         int i;
8171
8172         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8173         if (intel_crtc == NULL)
8174                 return;
8175
8176         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8177
8178         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8179         for (i = 0; i < 256; i++) {
8180                 intel_crtc->lut_r[i] = i;
8181                 intel_crtc->lut_g[i] = i;
8182                 intel_crtc->lut_b[i] = i;
8183         }
8184
8185         /* Swap pipes & planes for FBC on pre-965 */
8186         intel_crtc->pipe = pipe;
8187         intel_crtc->plane = pipe;
8188         intel_crtc->cpu_transcoder = pipe;
8189         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8190                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8191                 intel_crtc->plane = !pipe;
8192         }
8193
8194         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8195                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8196         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8197         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8198
8199         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8200
8201         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8202 }
8203
8204 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8205                                 struct drm_file *file)
8206 {
8207         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8208         struct drm_mode_object *drmmode_obj;
8209         struct intel_crtc *crtc;
8210
8211         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8212                 return -ENODEV;
8213
8214         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8215                         DRM_MODE_OBJECT_CRTC);
8216
8217         if (!drmmode_obj) {
8218                 DRM_ERROR("no such CRTC id\n");
8219                 return -EINVAL;
8220         }
8221
8222         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8223         pipe_from_crtc_id->pipe = crtc->pipe;
8224
8225         return 0;
8226 }
8227
8228 static int intel_encoder_clones(struct intel_encoder *encoder)
8229 {
8230         struct drm_device *dev = encoder->base.dev;
8231         struct intel_encoder *source_encoder;
8232         int index_mask = 0;
8233         int entry = 0;
8234
8235         list_for_each_entry(source_encoder,
8236                             &dev->mode_config.encoder_list, base.head) {
8237
8238                 if (encoder == source_encoder)
8239                         index_mask |= (1 << entry);
8240
8241                 /* Intel hw has only one MUX where enocoders could be cloned. */
8242                 if (encoder->cloneable && source_encoder->cloneable)
8243                         index_mask |= (1 << entry);
8244
8245                 entry++;
8246         }
8247
8248         return index_mask;
8249 }
8250
8251 static bool has_edp_a(struct drm_device *dev)
8252 {
8253         struct drm_i915_private *dev_priv = dev->dev_private;
8254
8255         if (!IS_MOBILE(dev))
8256                 return false;
8257
8258         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8259                 return false;
8260
8261         if (IS_GEN5(dev) &&
8262             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8263                 return false;
8264
8265         return true;
8266 }
8267
8268 static void intel_setup_outputs(struct drm_device *dev)
8269 {
8270         struct drm_i915_private *dev_priv = dev->dev_private;
8271         struct intel_encoder *encoder;
8272         bool dpd_is_edp = false;
8273         bool has_lvds;
8274
8275         has_lvds = intel_lvds_init(dev);
8276         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8277                 /* disable the panel fitter on everything but LVDS */
8278                 I915_WRITE(PFIT_CONTROL, 0);
8279         }
8280
8281         intel_crt_init(dev);
8282
8283         if (IS_HASWELL(dev)) {
8284                 int found;
8285
8286                 /* Haswell uses DDI functions to detect digital outputs */
8287                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8288                 /* DDI A only supports eDP */
8289                 if (found)
8290                         intel_ddi_init(dev, PORT_A);
8291
8292                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8293                  * register */
8294                 found = I915_READ(SFUSE_STRAP);
8295
8296                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8297                         intel_ddi_init(dev, PORT_B);
8298                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8299                         intel_ddi_init(dev, PORT_C);
8300                 if (found & SFUSE_STRAP_DDID_DETECTED)
8301                         intel_ddi_init(dev, PORT_D);
8302         } else if (HAS_PCH_SPLIT(dev)) {
8303                 int found;
8304                 dpd_is_edp = intel_dpd_is_edp(dev);
8305
8306                 if (has_edp_a(dev))
8307                         intel_dp_init(dev, DP_A, PORT_A);
8308
8309                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8310                         /* PCH SDVOB multiplex with HDMIB */
8311                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8312                         if (!found)
8313                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8314                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8315                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8316                 }
8317
8318                 if (I915_READ(HDMIC) & PORT_DETECTED)
8319                         intel_hdmi_init(dev, HDMIC, PORT_C);
8320
8321                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8322                         intel_hdmi_init(dev, HDMID, PORT_D);
8323
8324                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8325                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8326
8327                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8328                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8329         } else if (IS_VALLEYVIEW(dev)) {
8330                 int found;
8331
8332                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8333                 if (I915_READ(DP_C) & DP_DETECTED)
8334                         intel_dp_init(dev, DP_C, PORT_C);
8335
8336                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8337                         /* SDVOB multiplex with HDMIB */
8338                         found = intel_sdvo_init(dev, SDVOB, true);
8339                         if (!found)
8340                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8341                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8342                                 intel_dp_init(dev, DP_B, PORT_B);
8343                 }
8344
8345                 if (I915_READ(SDVOC) & PORT_DETECTED)
8346                         intel_hdmi_init(dev, SDVOC, PORT_C);
8347
8348         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8349                 bool found = false;
8350
8351                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8352                         DRM_DEBUG_KMS("probing SDVOB\n");
8353                         found = intel_sdvo_init(dev, SDVOB, true);
8354                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8355                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8356                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8357                         }
8358
8359                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8360                                 DRM_DEBUG_KMS("probing DP_B\n");
8361                                 intel_dp_init(dev, DP_B, PORT_B);
8362                         }
8363                 }
8364
8365                 /* Before G4X SDVOC doesn't have its own detect register */
8366
8367                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8368                         DRM_DEBUG_KMS("probing SDVOC\n");
8369                         found = intel_sdvo_init(dev, SDVOC, false);
8370                 }
8371
8372                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8373
8374                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8375                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8376                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8377                         }
8378                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8379                                 DRM_DEBUG_KMS("probing DP_C\n");
8380                                 intel_dp_init(dev, DP_C, PORT_C);
8381                         }
8382                 }
8383
8384                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8385                     (I915_READ(DP_D) & DP_DETECTED)) {
8386                         DRM_DEBUG_KMS("probing DP_D\n");
8387                         intel_dp_init(dev, DP_D, PORT_D);
8388                 }
8389         } else if (IS_GEN2(dev))
8390                 intel_dvo_init(dev);
8391
8392         if (SUPPORTS_TV(dev))
8393                 intel_tv_init(dev);
8394
8395         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8396                 encoder->base.possible_crtcs = encoder->crtc_mask;
8397                 encoder->base.possible_clones =
8398                         intel_encoder_clones(encoder);
8399         }
8400
8401         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8402                 ironlake_init_pch_refclk(dev);
8403
8404         drm_helper_move_panel_connectors_to_head(dev);
8405 }
8406
8407 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8408 {
8409         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8410
8411         drm_framebuffer_cleanup(fb);
8412         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8413
8414         kfree(intel_fb);
8415 }
8416
8417 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8418                                                 struct drm_file *file,
8419                                                 unsigned int *handle)
8420 {
8421         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8422         struct drm_i915_gem_object *obj = intel_fb->obj;
8423
8424         return drm_gem_handle_create(file, &obj->base, handle);
8425 }
8426
8427 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8428         .destroy = intel_user_framebuffer_destroy,
8429         .create_handle = intel_user_framebuffer_create_handle,
8430 };
8431
8432 int intel_framebuffer_init(struct drm_device *dev,
8433                            struct intel_framebuffer *intel_fb,
8434                            struct drm_mode_fb_cmd2 *mode_cmd,
8435                            struct drm_i915_gem_object *obj)
8436 {
8437         int ret;
8438
8439         if (obj->tiling_mode == I915_TILING_Y)
8440                 return -EINVAL;
8441
8442         if (mode_cmd->pitches[0] & 63)
8443                 return -EINVAL;
8444
8445         /* FIXME <= Gen4 stride limits are bit unclear */
8446         if (mode_cmd->pitches[0] > 32768)
8447                 return -EINVAL;
8448
8449         if (obj->tiling_mode != I915_TILING_NONE &&
8450             mode_cmd->pitches[0] != obj->stride)
8451                 return -EINVAL;
8452
8453         /* Reject formats not supported by any plane early. */
8454         switch (mode_cmd->pixel_format) {
8455         case DRM_FORMAT_C8:
8456         case DRM_FORMAT_RGB565:
8457         case DRM_FORMAT_XRGB8888:
8458         case DRM_FORMAT_ARGB8888:
8459                 break;
8460         case DRM_FORMAT_XRGB1555:
8461         case DRM_FORMAT_ARGB1555:
8462                 if (INTEL_INFO(dev)->gen > 3)
8463                         return -EINVAL;
8464                 break;
8465         case DRM_FORMAT_XBGR8888:
8466         case DRM_FORMAT_ABGR8888:
8467         case DRM_FORMAT_XRGB2101010:
8468         case DRM_FORMAT_ARGB2101010:
8469         case DRM_FORMAT_XBGR2101010:
8470         case DRM_FORMAT_ABGR2101010:
8471                 if (INTEL_INFO(dev)->gen < 4)
8472                         return -EINVAL;
8473                 break;
8474         case DRM_FORMAT_YUYV:
8475         case DRM_FORMAT_UYVY:
8476         case DRM_FORMAT_YVYU:
8477         case DRM_FORMAT_VYUY:
8478                 if (INTEL_INFO(dev)->gen < 6)
8479                         return -EINVAL;
8480                 break;
8481         default:
8482                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8483                 return -EINVAL;
8484         }
8485
8486         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8487         if (mode_cmd->offsets[0] != 0)
8488                 return -EINVAL;
8489
8490         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8491         if (ret) {
8492                 DRM_ERROR("framebuffer init failed %d\n", ret);
8493                 return ret;
8494         }
8495
8496         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8497         intel_fb->obj = obj;
8498         return 0;
8499 }
8500
8501 static struct drm_framebuffer *
8502 intel_user_framebuffer_create(struct drm_device *dev,
8503                               struct drm_file *filp,
8504                               struct drm_mode_fb_cmd2 *mode_cmd)
8505 {
8506         struct drm_i915_gem_object *obj;
8507
8508         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8509                                                 mode_cmd->handles[0]));
8510         if (&obj->base == NULL)
8511                 return ERR_PTR(-ENOENT);
8512
8513         return intel_framebuffer_create(dev, mode_cmd, obj);
8514 }
8515
8516 static const struct drm_mode_config_funcs intel_mode_funcs = {
8517         .fb_create = intel_user_framebuffer_create,
8518         .output_poll_changed = intel_fb_output_poll_changed,
8519 };
8520
8521 /* Set up chip specific display functions */
8522 static void intel_init_display(struct drm_device *dev)
8523 {
8524         struct drm_i915_private *dev_priv = dev->dev_private;
8525
8526         /* We always want a DPMS function */
8527         if (IS_HASWELL(dev)) {
8528                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8529                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8530                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8531                 dev_priv->display.off = haswell_crtc_off;
8532                 dev_priv->display.update_plane = ironlake_update_plane;
8533         } else if (HAS_PCH_SPLIT(dev)) {
8534                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8535                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8536                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8537                 dev_priv->display.off = ironlake_crtc_off;
8538                 dev_priv->display.update_plane = ironlake_update_plane;
8539         } else {
8540                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8541                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8542                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8543                 dev_priv->display.off = i9xx_crtc_off;
8544                 dev_priv->display.update_plane = i9xx_update_plane;
8545         }
8546
8547         /* Returns the core display clock speed */
8548         if (IS_VALLEYVIEW(dev))
8549                 dev_priv->display.get_display_clock_speed =
8550                         valleyview_get_display_clock_speed;
8551         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8552                 dev_priv->display.get_display_clock_speed =
8553                         i945_get_display_clock_speed;
8554         else if (IS_I915G(dev))
8555                 dev_priv->display.get_display_clock_speed =
8556                         i915_get_display_clock_speed;
8557         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8558                 dev_priv->display.get_display_clock_speed =
8559                         i9xx_misc_get_display_clock_speed;
8560         else if (IS_I915GM(dev))
8561                 dev_priv->display.get_display_clock_speed =
8562                         i915gm_get_display_clock_speed;
8563         else if (IS_I865G(dev))
8564                 dev_priv->display.get_display_clock_speed =
8565                         i865_get_display_clock_speed;
8566         else if (IS_I85X(dev))
8567                 dev_priv->display.get_display_clock_speed =
8568                         i855_get_display_clock_speed;
8569         else /* 852, 830 */
8570                 dev_priv->display.get_display_clock_speed =
8571                         i830_get_display_clock_speed;
8572
8573         if (HAS_PCH_SPLIT(dev)) {
8574                 if (IS_GEN5(dev)) {
8575                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8576                         dev_priv->display.write_eld = ironlake_write_eld;
8577                 } else if (IS_GEN6(dev)) {
8578                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8579                         dev_priv->display.write_eld = ironlake_write_eld;
8580                 } else if (IS_IVYBRIDGE(dev)) {
8581                         /* FIXME: detect B0+ stepping and use auto training */
8582                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8583                         dev_priv->display.write_eld = ironlake_write_eld;
8584                         dev_priv->display.modeset_global_resources =
8585                                 ivb_modeset_global_resources;
8586                 } else if (IS_HASWELL(dev)) {
8587                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8588                         dev_priv->display.write_eld = haswell_write_eld;
8589                 } else
8590                         dev_priv->display.update_wm = NULL;
8591         } else if (IS_G4X(dev)) {
8592                 dev_priv->display.write_eld = g4x_write_eld;
8593         }
8594
8595         /* Default just returns -ENODEV to indicate unsupported */
8596         dev_priv->display.queue_flip = intel_default_queue_flip;
8597
8598         switch (INTEL_INFO(dev)->gen) {
8599         case 2:
8600                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8601                 break;
8602
8603         case 3:
8604                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8605                 break;
8606
8607         case 4:
8608         case 5:
8609                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8610                 break;
8611
8612         case 6:
8613                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8614                 break;
8615         case 7:
8616                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8617                 break;
8618         }
8619 }
8620
8621 /*
8622  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8623  * resume, or other times.  This quirk makes sure that's the case for
8624  * affected systems.
8625  */
8626 static void quirk_pipea_force(struct drm_device *dev)
8627 {
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629
8630         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8631         DRM_INFO("applying pipe a force quirk\n");
8632 }
8633
8634 /*
8635  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8636  */
8637 static void quirk_ssc_force_disable(struct drm_device *dev)
8638 {
8639         struct drm_i915_private *dev_priv = dev->dev_private;
8640         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8641         DRM_INFO("applying lvds SSC disable quirk\n");
8642 }
8643
8644 /*
8645  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8646  * brightness value
8647  */
8648 static void quirk_invert_brightness(struct drm_device *dev)
8649 {
8650         struct drm_i915_private *dev_priv = dev->dev_private;
8651         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8652         DRM_INFO("applying inverted panel brightness quirk\n");
8653 }
8654
8655 struct intel_quirk {
8656         int device;
8657         int subsystem_vendor;
8658         int subsystem_device;
8659         void (*hook)(struct drm_device *dev);
8660 };
8661
8662 static struct intel_quirk intel_quirks[] = {
8663         /* HP Mini needs pipe A force quirk (LP: #322104) */
8664         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8665
8666         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8667         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8668
8669         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8670         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8671
8672         /* 830/845 need to leave pipe A & dpll A up */
8673         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8674         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8675
8676         /* Lenovo U160 cannot use SSC on LVDS */
8677         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8678
8679         /* Sony Vaio Y cannot use SSC on LVDS */
8680         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8681
8682         /* Acer Aspire 5734Z must invert backlight brightness */
8683         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8684 };
8685
8686 static void intel_init_quirks(struct drm_device *dev)
8687 {
8688         struct pci_dev *d = dev->pdev;
8689         int i;
8690
8691         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8692                 struct intel_quirk *q = &intel_quirks[i];
8693
8694                 if (d->device == q->device &&
8695                     (d->subsystem_vendor == q->subsystem_vendor ||
8696                      q->subsystem_vendor == PCI_ANY_ID) &&
8697                     (d->subsystem_device == q->subsystem_device ||
8698                      q->subsystem_device == PCI_ANY_ID))
8699                         q->hook(dev);
8700         }
8701 }
8702
8703 /* Disable the VGA plane that we never use */
8704 static void i915_disable_vga(struct drm_device *dev)
8705 {
8706         struct drm_i915_private *dev_priv = dev->dev_private;
8707         u8 sr1;
8708         u32 vga_reg;
8709
8710         if (HAS_PCH_SPLIT(dev))
8711                 vga_reg = CPU_VGACNTRL;
8712         else
8713                 vga_reg = VGACNTRL;
8714
8715         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8716         outb(SR01, VGA_SR_INDEX);
8717         sr1 = inb(VGA_SR_DATA);
8718         outb(sr1 | 1<<5, VGA_SR_DATA);
8719         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8720         udelay(300);
8721
8722         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8723         POSTING_READ(vga_reg);
8724 }
8725
8726 void intel_modeset_init_hw(struct drm_device *dev)
8727 {
8728         /* We attempt to init the necessary power wells early in the initialization
8729          * time, so the subsystems that expect power to be enabled can work.
8730          */
8731         intel_init_power_wells(dev);
8732
8733         intel_prepare_ddi(dev);
8734
8735         intel_init_clock_gating(dev);
8736
8737         mutex_lock(&dev->struct_mutex);
8738         intel_enable_gt_powersave(dev);
8739         mutex_unlock(&dev->struct_mutex);
8740 }
8741
8742 void intel_modeset_init(struct drm_device *dev)
8743 {
8744         struct drm_i915_private *dev_priv = dev->dev_private;
8745         int i, ret;
8746
8747         drm_mode_config_init(dev);
8748
8749         dev->mode_config.min_width = 0;
8750         dev->mode_config.min_height = 0;
8751
8752         dev->mode_config.preferred_depth = 24;
8753         dev->mode_config.prefer_shadow = 1;
8754
8755         dev->mode_config.funcs = &intel_mode_funcs;
8756
8757         intel_init_quirks(dev);
8758
8759         intel_init_pm(dev);
8760
8761         intel_init_display(dev);
8762
8763         if (IS_GEN2(dev)) {
8764                 dev->mode_config.max_width = 2048;
8765                 dev->mode_config.max_height = 2048;
8766         } else if (IS_GEN3(dev)) {
8767                 dev->mode_config.max_width = 4096;
8768                 dev->mode_config.max_height = 4096;
8769         } else {
8770                 dev->mode_config.max_width = 8192;
8771                 dev->mode_config.max_height = 8192;
8772         }
8773         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8774
8775         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8776                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8777
8778         for (i = 0; i < dev_priv->num_pipe; i++) {
8779                 intel_crtc_init(dev, i);
8780                 ret = intel_plane_init(dev, i);
8781                 if (ret)
8782                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8783         }
8784
8785         intel_cpu_pll_init(dev);
8786         intel_pch_pll_init(dev);
8787
8788         /* Just disable it once at startup */
8789         i915_disable_vga(dev);
8790         intel_setup_outputs(dev);
8791 }
8792
8793 static void
8794 intel_connector_break_all_links(struct intel_connector *connector)
8795 {
8796         connector->base.dpms = DRM_MODE_DPMS_OFF;
8797         connector->base.encoder = NULL;
8798         connector->encoder->connectors_active = false;
8799         connector->encoder->base.crtc = NULL;
8800 }
8801
8802 static void intel_enable_pipe_a(struct drm_device *dev)
8803 {
8804         struct intel_connector *connector;
8805         struct drm_connector *crt = NULL;
8806         struct intel_load_detect_pipe load_detect_temp;
8807
8808         /* We can't just switch on the pipe A, we need to set things up with a
8809          * proper mode and output configuration. As a gross hack, enable pipe A
8810          * by enabling the load detect pipe once. */
8811         list_for_each_entry(connector,
8812                             &dev->mode_config.connector_list,
8813                             base.head) {
8814                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8815                         crt = &connector->base;
8816                         break;
8817                 }
8818         }
8819
8820         if (!crt)
8821                 return;
8822
8823         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8824                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8825
8826
8827 }
8828
8829 static bool
8830 intel_check_plane_mapping(struct intel_crtc *crtc)
8831 {
8832         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8833         u32 reg, val;
8834
8835         if (dev_priv->num_pipe == 1)
8836                 return true;
8837
8838         reg = DSPCNTR(!crtc->plane);
8839         val = I915_READ(reg);
8840
8841         if ((val & DISPLAY_PLANE_ENABLE) &&
8842             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8843                 return false;
8844
8845         return true;
8846 }
8847
8848 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8849 {
8850         struct drm_device *dev = crtc->base.dev;
8851         struct drm_i915_private *dev_priv = dev->dev_private;
8852         u32 reg;
8853
8854         /* Clear any frame start delays used for debugging left by the BIOS */
8855         reg = PIPECONF(crtc->cpu_transcoder);
8856         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8857
8858         /* We need to sanitize the plane -> pipe mapping first because this will
8859          * disable the crtc (and hence change the state) if it is wrong. Note
8860          * that gen4+ has a fixed plane -> pipe mapping.  */
8861         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8862                 struct intel_connector *connector;
8863                 bool plane;
8864
8865                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8866                               crtc->base.base.id);
8867
8868                 /* Pipe has the wrong plane attached and the plane is active.
8869                  * Temporarily change the plane mapping and disable everything
8870                  * ...  */
8871                 plane = crtc->plane;
8872                 crtc->plane = !plane;
8873                 dev_priv->display.crtc_disable(&crtc->base);
8874                 crtc->plane = plane;
8875
8876                 /* ... and break all links. */
8877                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8878                                     base.head) {
8879                         if (connector->encoder->base.crtc != &crtc->base)
8880                                 continue;
8881
8882                         intel_connector_break_all_links(connector);
8883                 }
8884
8885                 WARN_ON(crtc->active);
8886                 crtc->base.enabled = false;
8887         }
8888
8889         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8890             crtc->pipe == PIPE_A && !crtc->active) {
8891                 /* BIOS forgot to enable pipe A, this mostly happens after
8892                  * resume. Force-enable the pipe to fix this, the update_dpms
8893                  * call below we restore the pipe to the right state, but leave
8894                  * the required bits on. */
8895                 intel_enable_pipe_a(dev);
8896         }
8897
8898         /* Adjust the state of the output pipe according to whether we
8899          * have active connectors/encoders. */
8900         intel_crtc_update_dpms(&crtc->base);
8901
8902         if (crtc->active != crtc->base.enabled) {
8903                 struct intel_encoder *encoder;
8904
8905                 /* This can happen either due to bugs in the get_hw_state
8906                  * functions or because the pipe is force-enabled due to the
8907                  * pipe A quirk. */
8908                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8909                               crtc->base.base.id,
8910                               crtc->base.enabled ? "enabled" : "disabled",
8911                               crtc->active ? "enabled" : "disabled");
8912
8913                 crtc->base.enabled = crtc->active;
8914
8915                 /* Because we only establish the connector -> encoder ->
8916                  * crtc links if something is active, this means the
8917                  * crtc is now deactivated. Break the links. connector
8918                  * -> encoder links are only establish when things are
8919                  *  actually up, hence no need to break them. */
8920                 WARN_ON(crtc->active);
8921
8922                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8923                         WARN_ON(encoder->connectors_active);
8924                         encoder->base.crtc = NULL;
8925                 }
8926         }
8927 }
8928
8929 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8930 {
8931         struct intel_connector *connector;
8932         struct drm_device *dev = encoder->base.dev;
8933
8934         /* We need to check both for a crtc link (meaning that the
8935          * encoder is active and trying to read from a pipe) and the
8936          * pipe itself being active. */
8937         bool has_active_crtc = encoder->base.crtc &&
8938                 to_intel_crtc(encoder->base.crtc)->active;
8939
8940         if (encoder->connectors_active && !has_active_crtc) {
8941                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8942                               encoder->base.base.id,
8943                               drm_get_encoder_name(&encoder->base));
8944
8945                 /* Connector is active, but has no active pipe. This is
8946                  * fallout from our resume register restoring. Disable
8947                  * the encoder manually again. */
8948                 if (encoder->base.crtc) {
8949                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8950                                       encoder->base.base.id,
8951                                       drm_get_encoder_name(&encoder->base));
8952                         encoder->disable(encoder);
8953                 }
8954
8955                 /* Inconsistent output/port/pipe state happens presumably due to
8956                  * a bug in one of the get_hw_state functions. Or someplace else
8957                  * in our code, like the register restore mess on resume. Clamp
8958                  * things to off as a safer default. */
8959                 list_for_each_entry(connector,
8960                                     &dev->mode_config.connector_list,
8961                                     base.head) {
8962                         if (connector->encoder != encoder)
8963                                 continue;
8964
8965                         intel_connector_break_all_links(connector);
8966                 }
8967         }
8968         /* Enabled encoders without active connectors will be fixed in
8969          * the crtc fixup. */
8970 }
8971
8972 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8973  * and i915 state tracking structures. */
8974 void intel_modeset_setup_hw_state(struct drm_device *dev)
8975 {
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977         enum pipe pipe;
8978         u32 tmp;
8979         struct intel_crtc *crtc;
8980         struct intel_encoder *encoder;
8981         struct intel_connector *connector;
8982
8983         if (IS_HASWELL(dev)) {
8984                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8985
8986                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8987                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8988                         case TRANS_DDI_EDP_INPUT_A_ON:
8989                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8990                                 pipe = PIPE_A;
8991                                 break;
8992                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8993                                 pipe = PIPE_B;
8994                                 break;
8995                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8996                                 pipe = PIPE_C;
8997                                 break;
8998                         }
8999
9000                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9001                         crtc->cpu_transcoder = TRANSCODER_EDP;
9002
9003                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9004                                       pipe_name(pipe));
9005                 }
9006         }
9007
9008         for_each_pipe(pipe) {
9009                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9010
9011                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9012                 if (tmp & PIPECONF_ENABLE)
9013                         crtc->active = true;
9014                 else
9015                         crtc->active = false;
9016
9017                 crtc->base.enabled = crtc->active;
9018
9019                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9020                               crtc->base.base.id,
9021                               crtc->active ? "enabled" : "disabled");
9022         }
9023
9024         if (IS_HASWELL(dev))
9025                 intel_ddi_setup_hw_pll_state(dev);
9026
9027         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9028                             base.head) {
9029                 pipe = 0;
9030
9031                 if (encoder->get_hw_state(encoder, &pipe)) {
9032                         encoder->base.crtc =
9033                                 dev_priv->pipe_to_crtc_mapping[pipe];
9034                 } else {
9035                         encoder->base.crtc = NULL;
9036                 }
9037
9038                 encoder->connectors_active = false;
9039                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9040                               encoder->base.base.id,
9041                               drm_get_encoder_name(&encoder->base),
9042                               encoder->base.crtc ? "enabled" : "disabled",
9043                               pipe);
9044         }
9045
9046         list_for_each_entry(connector, &dev->mode_config.connector_list,
9047                             base.head) {
9048                 if (connector->get_hw_state(connector)) {
9049                         connector->base.dpms = DRM_MODE_DPMS_ON;
9050                         connector->encoder->connectors_active = true;
9051                         connector->base.encoder = &connector->encoder->base;
9052                 } else {
9053                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9054                         connector->base.encoder = NULL;
9055                 }
9056                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9057                               connector->base.base.id,
9058                               drm_get_connector_name(&connector->base),
9059                               connector->base.encoder ? "enabled" : "disabled");
9060         }
9061
9062         /* HW state is read out, now we need to sanitize this mess. */
9063         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9064                             base.head) {
9065                 intel_sanitize_encoder(encoder);
9066         }
9067
9068         for_each_pipe(pipe) {
9069                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9070                 intel_sanitize_crtc(crtc);
9071         }
9072
9073         intel_modeset_update_staged_output_state(dev);
9074
9075         intel_modeset_check_state(dev);
9076
9077         drm_mode_config_reset(dev);
9078 }
9079
9080 void intel_modeset_gem_init(struct drm_device *dev)
9081 {
9082         intel_modeset_init_hw(dev);
9083
9084         intel_setup_overlay(dev);
9085
9086         intel_modeset_setup_hw_state(dev);
9087 }
9088
9089 void intel_modeset_cleanup(struct drm_device *dev)
9090 {
9091         struct drm_i915_private *dev_priv = dev->dev_private;
9092         struct drm_crtc *crtc;
9093         struct intel_crtc *intel_crtc;
9094
9095         drm_kms_helper_poll_fini(dev);
9096         mutex_lock(&dev->struct_mutex);
9097
9098         intel_unregister_dsm_handler();
9099
9100
9101         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9102                 /* Skip inactive CRTCs */
9103                 if (!crtc->fb)
9104                         continue;
9105
9106                 intel_crtc = to_intel_crtc(crtc);
9107                 intel_increase_pllclock(crtc);
9108         }
9109
9110         intel_disable_fbc(dev);
9111
9112         intel_disable_gt_powersave(dev);
9113
9114         ironlake_teardown_rc6(dev);
9115
9116         if (IS_VALLEYVIEW(dev))
9117                 vlv_init_dpio(dev);
9118
9119         mutex_unlock(&dev->struct_mutex);
9120
9121         /* Disable the irq before mode object teardown, for the irq might
9122          * enqueue unpin/hotplug work. */
9123         drm_irq_uninstall(dev);
9124         cancel_work_sync(&dev_priv->hotplug_work);
9125         cancel_work_sync(&dev_priv->rps.work);
9126
9127         /* flush any delayed tasks or pending work */
9128         flush_scheduled_work();
9129
9130         drm_mode_config_cleanup(dev);
9131 }
9132
9133 /*
9134  * Return which encoder is currently attached for connector.
9135  */
9136 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9137 {
9138         return &intel_attached_encoder(connector)->base;
9139 }
9140
9141 void intel_connector_attach_encoder(struct intel_connector *connector,
9142                                     struct intel_encoder *encoder)
9143 {
9144         connector->encoder = encoder;
9145         drm_mode_connector_attach_encoder(&connector->base,
9146                                           &encoder->base);
9147 }
9148
9149 /*
9150  * set vga decode state - true == enable VGA decode
9151  */
9152 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9153 {
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         u16 gmch_ctrl;
9156
9157         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9158         if (state)
9159                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9160         else
9161                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9162         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9163         return 0;
9164 }
9165
9166 #ifdef CONFIG_DEBUG_FS
9167 #include <linux/seq_file.h>
9168
9169 struct intel_display_error_state {
9170         struct intel_cursor_error_state {
9171                 u32 control;
9172                 u32 position;
9173                 u32 base;
9174                 u32 size;
9175         } cursor[I915_MAX_PIPES];
9176
9177         struct intel_pipe_error_state {
9178                 u32 conf;
9179                 u32 source;
9180
9181                 u32 htotal;
9182                 u32 hblank;
9183                 u32 hsync;
9184                 u32 vtotal;
9185                 u32 vblank;
9186                 u32 vsync;
9187         } pipe[I915_MAX_PIPES];
9188
9189         struct intel_plane_error_state {
9190                 u32 control;
9191                 u32 stride;
9192                 u32 size;
9193                 u32 pos;
9194                 u32 addr;
9195                 u32 surface;
9196                 u32 tile_offset;
9197         } plane[I915_MAX_PIPES];
9198 };
9199
9200 struct intel_display_error_state *
9201 intel_display_capture_error_state(struct drm_device *dev)
9202 {
9203         drm_i915_private_t *dev_priv = dev->dev_private;
9204         struct intel_display_error_state *error;
9205         enum transcoder cpu_transcoder;
9206         int i;
9207
9208         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9209         if (error == NULL)
9210                 return NULL;
9211
9212         for_each_pipe(i) {
9213                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9214
9215                 error->cursor[i].control = I915_READ(CURCNTR(i));
9216                 error->cursor[i].position = I915_READ(CURPOS(i));
9217                 error->cursor[i].base = I915_READ(CURBASE(i));
9218
9219                 error->plane[i].control = I915_READ(DSPCNTR(i));
9220                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9221                 error->plane[i].size = I915_READ(DSPSIZE(i));
9222                 error->plane[i].pos = I915_READ(DSPPOS(i));
9223                 error->plane[i].addr = I915_READ(DSPADDR(i));
9224                 if (INTEL_INFO(dev)->gen >= 4) {
9225                         error->plane[i].surface = I915_READ(DSPSURF(i));
9226                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9227                 }
9228
9229                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9230                 error->pipe[i].source = I915_READ(PIPESRC(i));
9231                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9232                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9233                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9234                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9235                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9236                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9237         }
9238
9239         return error;
9240 }
9241
9242 void
9243 intel_display_print_error_state(struct seq_file *m,
9244                                 struct drm_device *dev,
9245                                 struct intel_display_error_state *error)
9246 {
9247         drm_i915_private_t *dev_priv = dev->dev_private;
9248         int i;
9249
9250         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9251         for_each_pipe(i) {
9252                 seq_printf(m, "Pipe [%d]:\n", i);
9253                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9254                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9255                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9256                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9257                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9258                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9259                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9260                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9261
9262                 seq_printf(m, "Plane [%d]:\n", i);
9263                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9264                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9265                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9266                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9267                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9268                 if (INTEL_INFO(dev)->gen >= 4) {
9269                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9270                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9271                 }
9272
9273                 seq_printf(m, "Cursor [%d]:\n", i);
9274                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9275                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9276                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9277         }
9278 }
9279 #endif