]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
4c44e1663a9557c5a24ffa5b0b2d4b4f0826a0e4
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         struct drm_i915_private *dev_priv = dev->dev_private;
349         return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
350 }
351
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
354         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
355         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
356         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
357         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
358         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
359         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
360         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
361         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
363         .find_pll = intel_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
368         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
369         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
370         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
371         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
372         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
373         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
374         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
375         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
377         .find_pll = intel_find_best_PLL,
378 };
379         
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
382         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
383         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
384         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
385         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
386         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
387         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
388         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
389         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391         .find_pll = intel_find_best_PLL,
392 };
393
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
396         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
397         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
398         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
399         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
400         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
401         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
402         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
403         /* The single-channel range is 25-112Mhz, and dual-channel
404          * is 80-224Mhz.  Prefer single channel as much as possible.
405          */
406         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
408         .find_pll = intel_find_best_PLL,
409 };
410
411     /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
414         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
415         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
416         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
417         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
418         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
419         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
420         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
421         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
422                  .p2_slow = G4X_P2_SDVO_SLOW,
423                  .p2_fast = G4X_P2_SDVO_FAST
424         },
425         .find_pll = intel_g4x_find_best_PLL,
426 };
427
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
430         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
431         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
432         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
433         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
434         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
435         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
436         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
437         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439                  .p2_fast = G4X_P2_HDMI_DAC_FAST
440         },
441         .find_pll = intel_g4x_find_best_PLL,
442 };
443
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447         .vco = { .min = G4X_VCO_MIN,
448                  .max = G4X_VCO_MAX },
449         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
464         },
465         .find_pll = intel_g4x_find_best_PLL,
466 };
467
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471         .vco = { .min = G4X_VCO_MIN,
472                  .max = G4X_VCO_MAX },
473         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
488         },
489         .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_g4x_display_port = {
493         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494                  .max = G4X_DOT_DISPLAY_PORT_MAX },
495         .vco = { .min = G4X_VCO_MIN,
496                  .max = G4X_VCO_MAX},
497         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
498                  .max = G4X_N_DISPLAY_PORT_MAX },
499         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
500                  .max = G4X_M_DISPLAY_PORT_MAX },
501         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
502                  .max = G4X_M1_DISPLAY_PORT_MAX },
503         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
504                  .max = G4X_M2_DISPLAY_PORT_MAX },
505         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
506                  .max = G4X_P_DISPLAY_PORT_MAX },
507         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
508                  .max = G4X_P1_DISPLAY_PORT_MAX},
509         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512         .find_pll = intel_find_pll_g4x_dp,
513 };
514
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
517         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
518         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
519         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
520         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
521         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
522         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
523         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
524         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526         .find_pll = intel_find_best_PLL,
527 };
528
529 static const intel_limit_t intel_limits_pineview_lvds = {
530         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
531         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
532         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
533         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
534         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
535         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
536         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
537         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
538         /* Pineview only supports single-channel mode. */
539         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
541         .find_pll = intel_find_best_PLL,
542 };
543
544 static const intel_limit_t intel_limits_ironlake_dac = {
545         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
546         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
547         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
548         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
549         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
550         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
551         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
552         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
553         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
555                  .p2_fast = IRONLAKE_DAC_P2_FAST },
556         .find_pll = intel_g4x_find_best_PLL,
557 };
558
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
561         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
562         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
563         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
564         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
565         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
566         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
567         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
568         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571         .find_pll = intel_g4x_find_best_PLL,
572 };
573
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
576         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
577         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
578         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
579         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
580         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
581         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
582         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
583         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586         .find_pll = intel_g4x_find_best_PLL,
587 };
588
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
591         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
592         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
595         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
596         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601         .find_pll = intel_g4x_find_best_PLL,
602 };
603
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
606         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
607         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
610         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
611         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616         .find_pll = intel_g4x_find_best_PLL,
617 };
618
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620         .dot = { .min = IRONLAKE_DOT_MIN,
621                  .max = IRONLAKE_DOT_MAX },
622         .vco = { .min = IRONLAKE_VCO_MIN,
623                  .max = IRONLAKE_VCO_MAX},
624         .n   = { .min = IRONLAKE_DP_N_MIN,
625                  .max = IRONLAKE_DP_N_MAX },
626         .m   = { .min = IRONLAKE_DP_M_MIN,
627                  .max = IRONLAKE_DP_M_MAX },
628         .m1  = { .min = IRONLAKE_M1_MIN,
629                  .max = IRONLAKE_M1_MAX },
630         .m2  = { .min = IRONLAKE_M2_MIN,
631                  .max = IRONLAKE_M2_MAX },
632         .p   = { .min = IRONLAKE_DP_P_MIN,
633                  .max = IRONLAKE_DP_P_MAX },
634         .p1  = { .min = IRONLAKE_DP_P1_MIN,
635                  .max = IRONLAKE_DP_P1_MAX},
636         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637                  .p2_slow = IRONLAKE_DP_P2_SLOW,
638                  .p2_fast = IRONLAKE_DP_P2_FAST },
639         .find_pll = intel_find_pll_ironlake_dp,
640 };
641
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
643 {
644         struct drm_device *dev = crtc->dev;
645         struct drm_i915_private *dev_priv = dev->dev_private;
646         const intel_limit_t *limit;
647         int refclk = 120;
648
649         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651                         refclk = 100;
652
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
774 {
775         const intel_limit_t *limit = intel_limit (crtc);
776         struct drm_device *dev = crtc->dev;
777
778         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
779                 INTELPllInvalid ("p1 out of range\n");
780         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
781                 INTELPllInvalid ("p out of range\n");
782         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
783                 INTELPllInvalid ("m2 out of range\n");
784         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
785                 INTELPllInvalid ("m1 out of range\n");
786         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787                 INTELPllInvalid ("m1 <= m2\n");
788         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
789                 INTELPllInvalid ("m out of range\n");
790         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
791                 INTELPllInvalid ("n out of range\n");
792         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793                 INTELPllInvalid ("vco out of range\n");
794         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795          * connector, etc., rather than just a single range.
796          */
797         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798                 INTELPllInvalid ("dot out of range\n");
799
800         return true;
801 }
802
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805                     int target, int refclk, intel_clock_t *best_clock)
806
807 {
808         struct drm_device *dev = crtc->dev;
809         struct drm_i915_private *dev_priv = dev->dev_private;
810         intel_clock_t clock;
811         int err = target;
812
813         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814             (I915_READ(LVDS)) != 0) {
815                 /*
816                  * For LVDS, if the panel is on, just rely on its current
817                  * settings for dual-channel.  We haven't figured out how to
818                  * reliably set up different single/dual channel state, if we
819                  * even can.
820                  */
821                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822                     LVDS_CLKB_POWER_UP)
823                         clock.p2 = limit->p2.p2_fast;
824                 else
825                         clock.p2 = limit->p2.p2_slow;
826         } else {
827                 if (target < limit->p2.dot_limit)
828                         clock.p2 = limit->p2.p2_slow;
829                 else
830                         clock.p2 = limit->p2.p2_fast;
831         }
832
833         memset (best_clock, 0, sizeof (*best_clock));
834
835         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836              clock.m1++) {
837                 for (clock.m2 = limit->m2.min;
838                      clock.m2 <= limit->m2.max; clock.m2++) {
839                         /* m1 is always 0 in Pineview */
840                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841                                 break;
842                         for (clock.n = limit->n.min;
843                              clock.n <= limit->n.max; clock.n++) {
844                                 for (clock.p1 = limit->p1.min;
845                                         clock.p1 <= limit->p1.max; clock.p1++) {
846                                         int this_err;
847
848                                         intel_clock(dev, refclk, &clock);
849
850                                         if (!intel_PLL_is_valid(crtc, &clock))
851                                                 continue;
852
853                                         this_err = abs(clock.dot - target);
854                                         if (this_err < err) {
855                                                 *best_clock = clock;
856                                                 err = this_err;
857                                         }
858                                 }
859                         }
860                 }
861         }
862
863         return (err != target);
864 }
865
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868                         int target, int refclk, intel_clock_t *best_clock)
869 {
870         struct drm_device *dev = crtc->dev;
871         struct drm_i915_private *dev_priv = dev->dev_private;
872         intel_clock_t clock;
873         int max_n;
874         bool found;
875         /* approximately equals target * 0.00585 */
876         int err_most = (target >> 8) + (target >> 9);
877         found = false;
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 int lvds_reg;
881
882                 if (HAS_PCH_SPLIT(dev))
883                         lvds_reg = PCH_LVDS;
884                 else
885                         lvds_reg = LVDS;
886                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887                     LVDS_CLKB_POWER_UP)
888                         clock.p2 = limit->p2.p2_fast;
889                 else
890                         clock.p2 = limit->p2.p2_slow;
891         } else {
892                 if (target < limit->p2.dot_limit)
893                         clock.p2 = limit->p2.p2_slow;
894                 else
895                         clock.p2 = limit->p2.p2_fast;
896         }
897
898         memset(best_clock, 0, sizeof(*best_clock));
899         max_n = limit->n.max;
900         /* based on hardware requirement, prefer smaller n to precision */
901         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902                 /* based on hardware requirement, prefere larger m1,m2 */
903                 for (clock.m1 = limit->m1.max;
904                      clock.m1 >= limit->m1.min; clock.m1--) {
905                         for (clock.m2 = limit->m2.max;
906                              clock.m2 >= limit->m2.min; clock.m2--) {
907                                 for (clock.p1 = limit->p1.max;
908                                      clock.p1 >= limit->p1.min; clock.p1--) {
909                                         int this_err;
910
911                                         intel_clock(dev, refclk, &clock);
912                                         if (!intel_PLL_is_valid(crtc, &clock))
913                                                 continue;
914                                         this_err = abs(clock.dot - target) ;
915                                         if (this_err < err_most) {
916                                                 *best_clock = clock;
917                                                 err_most = this_err;
918                                                 max_n = clock.n;
919                                                 found = true;
920                                         }
921                                 }
922                         }
923                 }
924         }
925         return found;
926 }
927
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930                            int target, int refclk, intel_clock_t *best_clock)
931 {
932         struct drm_device *dev = crtc->dev;
933         intel_clock_t clock;
934
935         if (target < 200000) {
936                 clock.n = 1;
937                 clock.p1 = 2;
938                 clock.p2 = 10;
939                 clock.m1 = 12;
940                 clock.m2 = 9;
941         } else {
942                 clock.n = 2;
943                 clock.p1 = 1;
944                 clock.p2 = 10;
945                 clock.m1 = 14;
946                 clock.m2 = 8;
947         }
948         intel_clock(dev, refclk, &clock);
949         memcpy(best_clock, &clock, sizeof(intel_clock_t));
950         return true;
951 }
952
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956                       int target, int refclk, intel_clock_t *best_clock)
957 {
958         intel_clock_t clock;
959         if (target < 200000) {
960                 clock.p1 = 2;
961                 clock.p2 = 10;
962                 clock.n = 2;
963                 clock.m1 = 23;
964                 clock.m2 = 8;
965         } else {
966                 clock.p1 = 1;
967                 clock.p2 = 10;
968                 clock.n = 1;
969                 clock.m1 = 14;
970                 clock.m2 = 2;
971         }
972         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973         clock.p = (clock.p1 * clock.p2);
974         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975         clock.vco = 0;
976         memcpy(best_clock, &clock, sizeof(intel_clock_t));
977         return true;
978 }
979
980 /**
981  * intel_wait_for_vblank - wait for vblank on a given pipe
982  * @dev: drm device
983  * @pipe: pipe to wait for
984  *
985  * Wait for vblank to occur on a given pipe.  Needed for various bits of
986  * mode setting code.
987  */
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
989 {
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
992
993         /* Clear existing vblank status. Note this will clear any other
994          * sticky status fields as well.
995          *
996          * This races with i915_driver_irq_handler() with the result
997          * that either function could miss a vblank event.  Here it is not
998          * fatal, as we will either wait upon the next vblank interrupt or
999          * timeout.  Generally speaking intel_wait_for_vblank() is only
1000          * called during modeset at which time the GPU should be idle and
1001          * should *not* be performing page flips and thus not waiting on
1002          * vblanks...
1003          * Currently, the result of us stealing a vblank from the irq
1004          * handler is that a single frame will be skipped during swapbuffers.
1005          */
1006         I915_WRITE(pipestat_reg,
1007                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1008
1009         /* Wait for vblank interrupt bit to set */
1010         if (wait_for(I915_READ(pipestat_reg) &
1011                      PIPE_VBLANK_INTERRUPT_STATUS,
1012                      50))
1013                 DRM_DEBUG_KMS("vblank wait timed out\n");
1014 }
1015
1016 /*
1017  * intel_wait_for_pipe_off - wait for pipe to turn off
1018  * @dev: drm device
1019  * @pipe: pipe to wait for
1020  *
1021  * After disabling a pipe, we can't wait for vblank in the usual way,
1022  * spinning on the vblank interrupt status bit, since we won't actually
1023  * see an interrupt when the pipe is disabled.
1024  *
1025  * On Gen4 and above:
1026  *   wait for the pipe register state bit to turn off
1027  *
1028  * Otherwise:
1029  *   wait for the display line value to settle (it usually
1030  *   ends up stopping at the start of the next frame).
1031  *
1032  */
1033 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1034 {
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036
1037         if (INTEL_INFO(dev)->gen >= 4) {
1038                 int reg = PIPECONF(pipe);
1039
1040                 /* Wait for the Pipe State to go off */
1041                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1042                              100))
1043                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1044         } else {
1045                 u32 last_line;
1046                 int reg = PIPEDSL(pipe);
1047                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1048
1049                 /* Wait for the display line to settle */
1050                 do {
1051                         last_line = I915_READ(reg) & DSL_LINEMASK;
1052                         mdelay(5);
1053                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1054                          time_after(timeout, jiffies));
1055                 if (time_after(jiffies, timeout))
1056                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1057         }
1058 }
1059
1060 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1061 {
1062         struct drm_device *dev = crtc->dev;
1063         struct drm_i915_private *dev_priv = dev->dev_private;
1064         struct drm_framebuffer *fb = crtc->fb;
1065         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1066         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068         int plane, i;
1069         u32 fbc_ctl, fbc_ctl2;
1070
1071         if (fb->pitch == dev_priv->cfb_pitch &&
1072             obj_priv->fence_reg == dev_priv->cfb_fence &&
1073             intel_crtc->plane == dev_priv->cfb_plane &&
1074             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1075                 return;
1076
1077         i8xx_disable_fbc(dev);
1078
1079         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1080
1081         if (fb->pitch < dev_priv->cfb_pitch)
1082                 dev_priv->cfb_pitch = fb->pitch;
1083
1084         /* FBC_CTL wants 64B units */
1085         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1086         dev_priv->cfb_fence = obj_priv->fence_reg;
1087         dev_priv->cfb_plane = intel_crtc->plane;
1088         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1089
1090         /* Clear old tags */
1091         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1092                 I915_WRITE(FBC_TAG + (i * 4), 0);
1093
1094         /* Set it up... */
1095         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1096         if (obj_priv->tiling_mode != I915_TILING_NONE)
1097                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1098         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1099         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1100
1101         /* enable it... */
1102         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1103         if (IS_I945GM(dev))
1104                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1105         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1106         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1107         if (obj_priv->tiling_mode != I915_TILING_NONE)
1108                 fbc_ctl |= dev_priv->cfb_fence;
1109         I915_WRITE(FBC_CONTROL, fbc_ctl);
1110
1111         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1112                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1113 }
1114
1115 void i8xx_disable_fbc(struct drm_device *dev)
1116 {
1117         struct drm_i915_private *dev_priv = dev->dev_private;
1118         u32 fbc_ctl;
1119
1120         /* Disable compression */
1121         fbc_ctl = I915_READ(FBC_CONTROL);
1122         if ((fbc_ctl & FBC_CTL_EN) == 0)
1123                 return;
1124
1125         fbc_ctl &= ~FBC_CTL_EN;
1126         I915_WRITE(FBC_CONTROL, fbc_ctl);
1127
1128         /* Wait for compressing bit to clear */
1129         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1130                 DRM_DEBUG_KMS("FBC idle timed out\n");
1131                 return;
1132         }
1133
1134         DRM_DEBUG_KMS("disabled FBC\n");
1135 }
1136
1137 static bool i8xx_fbc_enabled(struct drm_device *dev)
1138 {
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140
1141         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1142 }
1143
1144 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1145 {
1146         struct drm_device *dev = crtc->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         struct drm_framebuffer *fb = crtc->fb;
1149         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1150         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1152         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1153         unsigned long stall_watermark = 200;
1154         u32 dpfc_ctl;
1155
1156         dpfc_ctl = I915_READ(DPFC_CONTROL);
1157         if (dpfc_ctl & DPFC_CTL_EN) {
1158                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1159                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1160                     dev_priv->cfb_plane == intel_crtc->plane &&
1161                     dev_priv->cfb_y == crtc->y)
1162                         return;
1163
1164                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1165                 POSTING_READ(DPFC_CONTROL);
1166                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1167         }
1168
1169         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1170         dev_priv->cfb_fence = obj_priv->fence_reg;
1171         dev_priv->cfb_plane = intel_crtc->plane;
1172         dev_priv->cfb_y = crtc->y;
1173
1174         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1175         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1176                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1177                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1178         } else {
1179                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1180         }
1181
1182         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1183                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1184                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1185         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1186
1187         /* enable it... */
1188         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1189
1190         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1191 }
1192
1193 void g4x_disable_fbc(struct drm_device *dev)
1194 {
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         u32 dpfc_ctl;
1197
1198         /* Disable compression */
1199         dpfc_ctl = I915_READ(DPFC_CONTROL);
1200         if (dpfc_ctl & DPFC_CTL_EN) {
1201                 dpfc_ctl &= ~DPFC_CTL_EN;
1202                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1203
1204                 DRM_DEBUG_KMS("disabled FBC\n");
1205         }
1206 }
1207
1208 static bool g4x_fbc_enabled(struct drm_device *dev)
1209 {
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211
1212         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1213 }
1214
1215 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1216 {
1217         struct drm_device *dev = crtc->dev;
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         struct drm_framebuffer *fb = crtc->fb;
1220         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1221         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1223         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1224         unsigned long stall_watermark = 200;
1225         u32 dpfc_ctl;
1226
1227         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1228         if (dpfc_ctl & DPFC_CTL_EN) {
1229                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1230                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1231                     dev_priv->cfb_plane == intel_crtc->plane &&
1232                     dev_priv->cfb_offset == obj_priv->gtt_offset &&
1233                     dev_priv->cfb_y == crtc->y)
1234                         return;
1235
1236                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1237                 POSTING_READ(ILK_DPFC_CONTROL);
1238                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1239         }
1240
1241         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1242         dev_priv->cfb_fence = obj_priv->fence_reg;
1243         dev_priv->cfb_plane = intel_crtc->plane;
1244         dev_priv->cfb_offset = obj_priv->gtt_offset;
1245         dev_priv->cfb_y = crtc->y;
1246
1247         dpfc_ctl &= DPFC_RESERVED;
1248         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1249         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1250                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1251                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1252         } else {
1253                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1254         }
1255
1256         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1257                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1258                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1259         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1260         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1261         /* enable it... */
1262         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1263
1264         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1265 }
1266
1267 void ironlake_disable_fbc(struct drm_device *dev)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         u32 dpfc_ctl;
1271
1272         /* Disable compression */
1273         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1274         if (dpfc_ctl & DPFC_CTL_EN) {
1275                 dpfc_ctl &= ~DPFC_CTL_EN;
1276                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1277
1278                 DRM_DEBUG_KMS("disabled FBC\n");
1279         }
1280 }
1281
1282 static bool ironlake_fbc_enabled(struct drm_device *dev)
1283 {
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285
1286         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1287 }
1288
1289 bool intel_fbc_enabled(struct drm_device *dev)
1290 {
1291         struct drm_i915_private *dev_priv = dev->dev_private;
1292
1293         if (!dev_priv->display.fbc_enabled)
1294                 return false;
1295
1296         return dev_priv->display.fbc_enabled(dev);
1297 }
1298
1299 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1300 {
1301         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1302
1303         if (!dev_priv->display.enable_fbc)
1304                 return;
1305
1306         dev_priv->display.enable_fbc(crtc, interval);
1307 }
1308
1309 void intel_disable_fbc(struct drm_device *dev)
1310 {
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312
1313         if (!dev_priv->display.disable_fbc)
1314                 return;
1315
1316         dev_priv->display.disable_fbc(dev);
1317 }
1318
1319 /**
1320  * intel_update_fbc - enable/disable FBC as needed
1321  * @dev: the drm_device
1322  *
1323  * Set up the framebuffer compression hardware at mode set time.  We
1324  * enable it if possible:
1325  *   - plane A only (on pre-965)
1326  *   - no pixel mulitply/line duplication
1327  *   - no alpha buffer discard
1328  *   - no dual wide
1329  *   - framebuffer <= 2048 in width, 1536 in height
1330  *
1331  * We can't assume that any compression will take place (worst case),
1332  * so the compressed buffer has to be the same size as the uncompressed
1333  * one.  It also must reside (along with the line length buffer) in
1334  * stolen memory.
1335  *
1336  * We need to enable/disable FBC on a global basis.
1337  */
1338 static void intel_update_fbc(struct drm_device *dev)
1339 {
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         struct drm_crtc *crtc = NULL, *tmp_crtc;
1342         struct intel_crtc *intel_crtc;
1343         struct drm_framebuffer *fb;
1344         struct intel_framebuffer *intel_fb;
1345         struct drm_i915_gem_object *obj_priv;
1346
1347         DRM_DEBUG_KMS("\n");
1348
1349         if (!i915_powersave)
1350                 return;
1351
1352         if (!I915_HAS_FBC(dev))
1353                 return;
1354
1355         /*
1356          * If FBC is already on, we just have to verify that we can
1357          * keep it that way...
1358          * Need to disable if:
1359          *   - more than one pipe is active
1360          *   - changing FBC params (stride, fence, mode)
1361          *   - new fb is too large to fit in compressed buffer
1362          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1363          */
1364         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1365                 if (tmp_crtc->enabled) {
1366                         if (crtc) {
1367                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1368                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1369                                 goto out_disable;
1370                         }
1371                         crtc = tmp_crtc;
1372                 }
1373         }
1374
1375         if (!crtc || crtc->fb == NULL) {
1376                 DRM_DEBUG_KMS("no output, disabling\n");
1377                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1378                 goto out_disable;
1379         }
1380
1381         intel_crtc = to_intel_crtc(crtc);
1382         fb = crtc->fb;
1383         intel_fb = to_intel_framebuffer(fb);
1384         obj_priv = to_intel_bo(intel_fb->obj);
1385
1386         if (intel_fb->obj->size > dev_priv->cfb_size) {
1387                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1388                               "compression\n");
1389                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1390                 goto out_disable;
1391         }
1392         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1393             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1394                 DRM_DEBUG_KMS("mode incompatible with compression, "
1395                               "disabling\n");
1396                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1397                 goto out_disable;
1398         }
1399         if ((crtc->mode.hdisplay > 2048) ||
1400             (crtc->mode.vdisplay > 1536)) {
1401                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1402                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1403                 goto out_disable;
1404         }
1405         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1406                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1407                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1408                 goto out_disable;
1409         }
1410         if (obj_priv->tiling_mode != I915_TILING_X) {
1411                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1412                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1413                 goto out_disable;
1414         }
1415
1416         /* If the kernel debugger is active, always disable compression */
1417         if (in_dbg_master())
1418                 goto out_disable;
1419
1420         intel_enable_fbc(crtc, 500);
1421         return;
1422
1423 out_disable:
1424         /* Multiple disables should be harmless */
1425         if (intel_fbc_enabled(dev)) {
1426                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1427                 intel_disable_fbc(dev);
1428         }
1429 }
1430
1431 int
1432 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1433                            struct drm_gem_object *obj,
1434                            bool pipelined)
1435 {
1436         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1437         u32 alignment;
1438         int ret;
1439
1440         switch (obj_priv->tiling_mode) {
1441         case I915_TILING_NONE:
1442                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1443                         alignment = 128 * 1024;
1444                 else if (INTEL_INFO(dev)->gen >= 4)
1445                         alignment = 4 * 1024;
1446                 else
1447                         alignment = 64 * 1024;
1448                 break;
1449         case I915_TILING_X:
1450                 /* pin() will align the object as required by fence */
1451                 alignment = 0;
1452                 break;
1453         case I915_TILING_Y:
1454                 /* FIXME: Is this true? */
1455                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1456                 return -EINVAL;
1457         default:
1458                 BUG();
1459         }
1460
1461         ret = i915_gem_object_pin(obj, alignment);
1462         if (ret)
1463                 return ret;
1464
1465         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1466         if (ret)
1467                 goto err_unpin;
1468
1469         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1470          * fence, whereas 965+ only requires a fence if using
1471          * framebuffer compression.  For simplicity, we always install
1472          * a fence as the cost is not that onerous.
1473          */
1474         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1475             obj_priv->tiling_mode != I915_TILING_NONE) {
1476                 ret = i915_gem_object_get_fence_reg(obj, false);
1477                 if (ret)
1478                         goto err_unpin;
1479         }
1480
1481         return 0;
1482
1483 err_unpin:
1484         i915_gem_object_unpin(obj);
1485         return ret;
1486 }
1487
1488 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1489 static int
1490 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1491                            int x, int y, int enter)
1492 {
1493         struct drm_device *dev = crtc->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1496         struct intel_framebuffer *intel_fb;
1497         struct drm_i915_gem_object *obj_priv;
1498         struct drm_gem_object *obj;
1499         int plane = intel_crtc->plane;
1500         unsigned long Start, Offset;
1501         u32 dspcntr;
1502         u32 reg;
1503
1504         switch (plane) {
1505         case 0:
1506         case 1:
1507                 break;
1508         default:
1509                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1510                 return -EINVAL;
1511         }
1512
1513         intel_fb = to_intel_framebuffer(fb);
1514         obj = intel_fb->obj;
1515         obj_priv = to_intel_bo(obj);
1516
1517         reg = DSPCNTR(plane);
1518         dspcntr = I915_READ(reg);
1519         /* Mask out pixel format bits in case we change it */
1520         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1521         switch (fb->bits_per_pixel) {
1522         case 8:
1523                 dspcntr |= DISPPLANE_8BPP;
1524                 break;
1525         case 16:
1526                 if (fb->depth == 15)
1527                         dspcntr |= DISPPLANE_15_16BPP;
1528                 else
1529                         dspcntr |= DISPPLANE_16BPP;
1530                 break;
1531         case 24:
1532         case 32:
1533                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1534                 break;
1535         default:
1536                 DRM_ERROR("Unknown color depth\n");
1537                 return -EINVAL;
1538         }
1539         if (INTEL_INFO(dev)->gen >= 4) {
1540                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1541                         dspcntr |= DISPPLANE_TILED;
1542                 else
1543                         dspcntr &= ~DISPPLANE_TILED;
1544         }
1545
1546         if (HAS_PCH_SPLIT(dev))
1547                 /* must disable */
1548                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1549
1550         I915_WRITE(reg, dspcntr);
1551
1552         Start = obj_priv->gtt_offset;
1553         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1554
1555         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1556                       Start, Offset, x, y, fb->pitch);
1557         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1558         if (INTEL_INFO(dev)->gen >= 4) {
1559                 I915_WRITE(DSPSURF(plane), Start);
1560                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1561                 I915_WRITE(DSPADDR(plane), Offset);
1562         } else
1563                 I915_WRITE(DSPADDR(plane), Start + Offset);
1564         POSTING_READ(reg);
1565
1566         intel_update_fbc(dev);
1567         intel_increase_pllclock(crtc);
1568
1569         return 0;
1570 }
1571
1572 static int
1573 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1574                     struct drm_framebuffer *old_fb)
1575 {
1576         struct drm_device *dev = crtc->dev;
1577         struct drm_i915_master_private *master_priv;
1578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1579         int ret;
1580
1581         /* no fb bound */
1582         if (!crtc->fb) {
1583                 DRM_DEBUG_KMS("No FB bound\n");
1584                 return 0;
1585         }
1586
1587         switch (intel_crtc->plane) {
1588         case 0:
1589         case 1:
1590                 break;
1591         default:
1592                 return -EINVAL;
1593         }
1594
1595         mutex_lock(&dev->struct_mutex);
1596         ret = intel_pin_and_fence_fb_obj(dev,
1597                                          to_intel_framebuffer(crtc->fb)->obj,
1598                                          false);
1599         if (ret != 0) {
1600                 mutex_unlock(&dev->struct_mutex);
1601                 return ret;
1602         }
1603
1604         if (old_fb) {
1605                 struct drm_i915_private *dev_priv = dev->dev_private;
1606                 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1607                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1608
1609                 wait_event(dev_priv->pending_flip_queue,
1610                            atomic_read(&obj_priv->pending_flip) == 0);
1611         }
1612
1613         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y, 0);
1614         if (ret) {
1615                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1616                 mutex_unlock(&dev->struct_mutex);
1617                 return ret;
1618         }
1619
1620         if (old_fb)
1621                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1622
1623         mutex_unlock(&dev->struct_mutex);
1624
1625         if (!dev->primary->master)
1626                 return 0;
1627
1628         master_priv = dev->primary->master->driver_priv;
1629         if (!master_priv->sarea_priv)
1630                 return 0;
1631
1632         if (intel_crtc->pipe) {
1633                 master_priv->sarea_priv->pipeB_x = x;
1634                 master_priv->sarea_priv->pipeB_y = y;
1635         } else {
1636                 master_priv->sarea_priv->pipeA_x = x;
1637                 master_priv->sarea_priv->pipeA_y = y;
1638         }
1639
1640         return 0;
1641 }
1642
1643 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1644 {
1645         struct drm_device *dev = crtc->dev;
1646         struct drm_i915_private *dev_priv = dev->dev_private;
1647         u32 dpa_ctl;
1648
1649         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1650         dpa_ctl = I915_READ(DP_A);
1651         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1652
1653         if (clock < 200000) {
1654                 u32 temp;
1655                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1656                 /* workaround for 160Mhz:
1657                    1) program 0x4600c bits 15:0 = 0x8124
1658                    2) program 0x46010 bit 0 = 1
1659                    3) program 0x46034 bit 24 = 1
1660                    4) program 0x64000 bit 14 = 1
1661                    */
1662                 temp = I915_READ(0x4600c);
1663                 temp &= 0xffff0000;
1664                 I915_WRITE(0x4600c, temp | 0x8124);
1665
1666                 temp = I915_READ(0x46010);
1667                 I915_WRITE(0x46010, temp | 1);
1668
1669                 temp = I915_READ(0x46034);
1670                 I915_WRITE(0x46034, temp | (1 << 24));
1671         } else {
1672                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1673         }
1674         I915_WRITE(DP_A, dpa_ctl);
1675
1676         POSTING_READ(DP_A);
1677         udelay(500);
1678 }
1679
1680 /* The FDI link training functions for ILK/Ibexpeak. */
1681 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1682 {
1683         struct drm_device *dev = crtc->dev;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1686         int pipe = intel_crtc->pipe;
1687         u32 reg, temp, tries;
1688
1689         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1690            for train result */
1691         reg = FDI_RX_IMR(pipe);
1692         temp = I915_READ(reg);
1693         temp &= ~FDI_RX_SYMBOL_LOCK;
1694         temp &= ~FDI_RX_BIT_LOCK;
1695         I915_WRITE(reg, temp);
1696         I915_READ(reg);
1697         udelay(150);
1698
1699         /* enable CPU FDI TX and PCH FDI RX */
1700         reg = FDI_TX_CTL(pipe);
1701         temp = I915_READ(reg);
1702         temp &= ~(7 << 19);
1703         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1704         temp &= ~FDI_LINK_TRAIN_NONE;
1705         temp |= FDI_LINK_TRAIN_PATTERN_1;
1706         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1707
1708         reg = FDI_RX_CTL(pipe);
1709         temp = I915_READ(reg);
1710         temp &= ~FDI_LINK_TRAIN_NONE;
1711         temp |= FDI_LINK_TRAIN_PATTERN_1;
1712         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1713
1714         POSTING_READ(reg);
1715         udelay(150);
1716
1717         reg = FDI_RX_IIR(pipe);
1718         for (tries = 0; tries < 5; tries++) {
1719                 temp = I915_READ(reg);
1720                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1721
1722                 if ((temp & FDI_RX_BIT_LOCK)) {
1723                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1724                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1725                         break;
1726                 }
1727         }
1728         if (tries == 5)
1729                 DRM_ERROR("FDI train 1 fail!\n");
1730
1731         /* Train 2 */
1732         reg = FDI_TX_CTL(pipe);
1733         temp = I915_READ(reg);
1734         temp &= ~FDI_LINK_TRAIN_NONE;
1735         temp |= FDI_LINK_TRAIN_PATTERN_2;
1736         I915_WRITE(reg, temp);
1737
1738         reg = FDI_RX_CTL(pipe);
1739         temp = I915_READ(reg);
1740         temp &= ~FDI_LINK_TRAIN_NONE;
1741         temp |= FDI_LINK_TRAIN_PATTERN_2;
1742         I915_WRITE(reg, temp);
1743
1744         POSTING_READ(reg);
1745         udelay(150);
1746
1747         reg = FDI_RX_IIR(pipe);
1748         for (tries = 0; tries < 5; tries++) {
1749                 temp = I915_READ(reg);
1750                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1751
1752                 if (temp & FDI_RX_SYMBOL_LOCK) {
1753                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1754                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1755                         break;
1756                 }
1757         }
1758         if (tries == 5)
1759                 DRM_ERROR("FDI train 2 fail!\n");
1760
1761         DRM_DEBUG_KMS("FDI train done\n");
1762
1763         /* enable normal train */
1764         reg = FDI_TX_CTL(pipe);
1765         temp = I915_READ(reg);
1766         temp &= ~FDI_LINK_TRAIN_NONE;
1767         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1768         I915_WRITE(reg, temp);
1769
1770         reg = FDI_RX_CTL(pipe);
1771         temp = I915_READ(reg);
1772         if (HAS_PCH_CPT(dev)) {
1773                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1774                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1775         } else {
1776                 temp &= ~FDI_LINK_TRAIN_NONE;
1777                 temp |= FDI_LINK_TRAIN_NONE;
1778         }
1779         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1780
1781         /* wait one idle pattern time */
1782         POSTING_READ(reg);
1783         udelay(1000);
1784 }
1785
1786 static const int const snb_b_fdi_train_param [] = {
1787         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1788         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1789         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1790         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1791 };
1792
1793 /* The FDI link training functions for SNB/Cougarpoint. */
1794 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1795 {
1796         struct drm_device *dev = crtc->dev;
1797         struct drm_i915_private *dev_priv = dev->dev_private;
1798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1799         int pipe = intel_crtc->pipe;
1800         u32 reg, temp, i;
1801
1802         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1803            for train result */
1804         reg = FDI_RX_IMR(pipe);
1805         temp = I915_READ(reg);
1806         temp &= ~FDI_RX_SYMBOL_LOCK;
1807         temp &= ~FDI_RX_BIT_LOCK;
1808         I915_WRITE(reg, temp);
1809
1810         POSTING_READ(reg);
1811         udelay(150);
1812
1813         /* enable CPU FDI TX and PCH FDI RX */
1814         reg = FDI_TX_CTL(pipe);
1815         temp = I915_READ(reg);
1816         temp &= ~(7 << 19);
1817         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1818         temp &= ~FDI_LINK_TRAIN_NONE;
1819         temp |= FDI_LINK_TRAIN_PATTERN_1;
1820         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1821         /* SNB-B */
1822         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1823         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1824
1825         reg = FDI_RX_CTL(pipe);
1826         temp = I915_READ(reg);
1827         if (HAS_PCH_CPT(dev)) {
1828                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1829                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1830         } else {
1831                 temp &= ~FDI_LINK_TRAIN_NONE;
1832                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1833         }
1834         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1835
1836         POSTING_READ(reg);
1837         udelay(150);
1838
1839         for (i = 0; i < 4; i++ ) {
1840                 reg = FDI_TX_CTL(pipe);
1841                 temp = I915_READ(reg);
1842                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1843                 temp |= snb_b_fdi_train_param[i];
1844                 I915_WRITE(reg, temp);
1845
1846                 POSTING_READ(reg);
1847                 udelay(500);
1848
1849                 reg = FDI_RX_IIR(pipe);
1850                 temp = I915_READ(reg);
1851                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1852
1853                 if (temp & FDI_RX_BIT_LOCK) {
1854                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1855                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1856                         break;
1857                 }
1858         }
1859         if (i == 4)
1860                 DRM_ERROR("FDI train 1 fail!\n");
1861
1862         /* Train 2 */
1863         reg = FDI_TX_CTL(pipe);
1864         temp = I915_READ(reg);
1865         temp &= ~FDI_LINK_TRAIN_NONE;
1866         temp |= FDI_LINK_TRAIN_PATTERN_2;
1867         if (IS_GEN6(dev)) {
1868                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1869                 /* SNB-B */
1870                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1871         }
1872         I915_WRITE(reg, temp);
1873
1874         reg = FDI_RX_CTL(pipe);
1875         temp = I915_READ(reg);
1876         if (HAS_PCH_CPT(dev)) {
1877                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1878                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1879         } else {
1880                 temp &= ~FDI_LINK_TRAIN_NONE;
1881                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1882         }
1883         I915_WRITE(reg, temp);
1884
1885         POSTING_READ(reg);
1886         udelay(150);
1887
1888         for (i = 0; i < 4; i++ ) {
1889                 reg = FDI_TX_CTL(pipe);
1890                 temp = I915_READ(reg);
1891                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1892                 temp |= snb_b_fdi_train_param[i];
1893                 I915_WRITE(reg, temp);
1894
1895                 POSTING_READ(reg);
1896                 udelay(500);
1897
1898                 reg = FDI_RX_IIR(pipe);
1899                 temp = I915_READ(reg);
1900                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1901
1902                 if (temp & FDI_RX_SYMBOL_LOCK) {
1903                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1904                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1905                         break;
1906                 }
1907         }
1908         if (i == 4)
1909                 DRM_ERROR("FDI train 2 fail!\n");
1910
1911         DRM_DEBUG_KMS("FDI train done.\n");
1912 }
1913
1914 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1915 {
1916         struct drm_device *dev = crtc->dev;
1917         struct drm_i915_private *dev_priv = dev->dev_private;
1918         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1919         int pipe = intel_crtc->pipe;
1920         u32 reg, temp;
1921
1922         /* Write the TU size bits so error detection works */
1923         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1924                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1925
1926         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1927         reg = FDI_RX_CTL(pipe);
1928         temp = I915_READ(reg);
1929         temp &= ~((0x7 << 19) | (0x7 << 16));
1930         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1931         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1932         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1933
1934         POSTING_READ(reg);
1935         udelay(200);
1936
1937         /* Switch from Rawclk to PCDclk */
1938         temp = I915_READ(reg);
1939         I915_WRITE(reg, temp | FDI_PCDCLK);
1940
1941         POSTING_READ(reg);
1942         udelay(200);
1943
1944         /* Enable CPU FDI TX PLL, always on for Ironlake */
1945         reg = FDI_TX_CTL(pipe);
1946         temp = I915_READ(reg);
1947         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1948                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1949
1950                 POSTING_READ(reg);
1951                 udelay(100);
1952         }
1953 }
1954
1955 static void intel_flush_display_plane(struct drm_device *dev,
1956                                       int plane)
1957 {
1958         struct drm_i915_private *dev_priv = dev->dev_private;
1959         u32 reg = DSPADDR(plane);
1960         I915_WRITE(reg, I915_READ(reg));
1961 }
1962
1963 /*
1964  * When we disable a pipe, we need to clear any pending scanline wait events
1965  * to avoid hanging the ring, which we assume we are waiting on.
1966  */
1967 static void intel_clear_scanline_wait(struct drm_device *dev)
1968 {
1969         struct drm_i915_private *dev_priv = dev->dev_private;
1970         u32 tmp;
1971
1972         if (IS_GEN2(dev))
1973                 /* Can't break the hang on i8xx */
1974                 return;
1975
1976         tmp = I915_READ(PRB0_CTL);
1977         if (tmp & RING_WAIT) {
1978                 I915_WRITE(PRB0_CTL, tmp);
1979                 POSTING_READ(PRB0_CTL);
1980         }
1981 }
1982
1983 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1984 {
1985         struct drm_i915_gem_object *obj_priv;
1986         struct drm_i915_private *dev_priv;
1987
1988         if (crtc->fb == NULL)
1989                 return;
1990
1991         obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
1992         dev_priv = crtc->dev->dev_private;
1993         wait_event(dev_priv->pending_flip_queue,
1994                    atomic_read(&obj_priv->pending_flip) == 0);
1995 }
1996
1997 static void ironlake_crtc_enable(struct drm_crtc *crtc)
1998 {
1999         struct drm_device *dev = crtc->dev;
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2002         int pipe = intel_crtc->pipe;
2003         int plane = intel_crtc->plane;
2004         u32 reg, temp;
2005
2006         if (intel_crtc->active)
2007                 return;
2008
2009         intel_crtc->active = true;
2010         intel_update_watermarks(dev);
2011
2012         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2013                 temp = I915_READ(PCH_LVDS);
2014                 if ((temp & LVDS_PORT_EN) == 0)
2015                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2016         }
2017
2018         ironlake_fdi_enable(crtc);
2019
2020         /* Enable panel fitting for LVDS */
2021         if (dev_priv->pch_pf_size &&
2022             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2023                 /* Force use of hard-coded filter coefficients
2024                  * as some pre-programmed values are broken,
2025                  * e.g. x201.
2026                  */
2027                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2028                            PF_ENABLE | PF_FILTER_MED_3x3);
2029                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2030                            dev_priv->pch_pf_pos);
2031                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2032                            dev_priv->pch_pf_size);
2033         }
2034
2035         /* Enable CPU pipe */
2036         reg = PIPECONF(pipe);
2037         temp = I915_READ(reg);
2038         if ((temp & PIPECONF_ENABLE) == 0) {
2039                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2040                 POSTING_READ(reg);
2041                 udelay(100);
2042         }
2043
2044         /* configure and enable CPU plane */
2045         reg = DSPCNTR(plane);
2046         temp = I915_READ(reg);
2047         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2048                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2049                 intel_flush_display_plane(dev, plane);
2050         }
2051
2052         /* For PCH output, training FDI link */
2053         if (IS_GEN6(dev))
2054                 gen6_fdi_link_train(crtc);
2055         else
2056                 ironlake_fdi_link_train(crtc);
2057
2058         /* enable PCH DPLL */
2059         reg = PCH_DPLL(pipe);
2060         temp = I915_READ(reg);
2061         if ((temp & DPLL_VCO_ENABLE) == 0) {
2062                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2063                 POSTING_READ(reg);
2064                 udelay(200);
2065         }
2066
2067         if (HAS_PCH_CPT(dev)) {
2068                 /* Be sure PCH DPLL SEL is set */
2069                 temp = I915_READ(PCH_DPLL_SEL);
2070                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2071                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2072                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2073                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2074                 I915_WRITE(PCH_DPLL_SEL, temp);
2075         }
2076
2077         /* set transcoder timing */
2078         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2079         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2080         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2081
2082         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2083         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2084         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2085
2086         /* For PCH DP, enable TRANS_DP_CTL */
2087         if (HAS_PCH_CPT(dev) &&
2088             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2089                 reg = TRANS_DP_CTL(pipe);
2090                 temp = I915_READ(reg);
2091                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2092                           TRANS_DP_SYNC_MASK);
2093                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2094                          TRANS_DP_ENH_FRAMING);
2095
2096                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2097                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2098                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2099                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2100
2101                 switch (intel_trans_dp_port_sel(crtc)) {
2102                 case PCH_DP_B:
2103                         temp |= TRANS_DP_PORT_SEL_B;
2104                         break;
2105                 case PCH_DP_C:
2106                         temp |= TRANS_DP_PORT_SEL_C;
2107                         break;
2108                 case PCH_DP_D:
2109                         temp |= TRANS_DP_PORT_SEL_D;
2110                         break;
2111                 default:
2112                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2113                         temp |= TRANS_DP_PORT_SEL_B;
2114                         break;
2115                 }
2116
2117                 I915_WRITE(reg, temp);
2118         }
2119
2120         /* enable PCH transcoder */
2121         reg = TRANSCONF(pipe);
2122         temp = I915_READ(reg);
2123         /*
2124          * make the BPC in transcoder be consistent with
2125          * that in pipeconf reg.
2126          */
2127         temp &= ~PIPE_BPC_MASK;
2128         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2129         I915_WRITE(reg, temp | TRANS_ENABLE);
2130         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2131                 DRM_ERROR("failed to enable transcoder\n");
2132
2133         intel_crtc_load_lut(crtc);
2134         intel_update_fbc(dev);
2135         intel_crtc_update_cursor(crtc, true);
2136 }
2137
2138 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2139 {
2140         struct drm_device *dev = crtc->dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143         int pipe = intel_crtc->pipe;
2144         int plane = intel_crtc->plane;
2145         u32 reg, temp;
2146
2147         if (!intel_crtc->active)
2148                 return;
2149
2150         intel_crtc_wait_for_pending_flips(crtc);
2151         drm_vblank_off(dev, pipe);
2152         intel_crtc_update_cursor(crtc, false);
2153
2154         /* Disable display plane */
2155         reg = DSPCNTR(plane);
2156         temp = I915_READ(reg);
2157         if (temp & DISPLAY_PLANE_ENABLE) {
2158                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2159                 intel_flush_display_plane(dev, plane);
2160         }
2161
2162         if (dev_priv->cfb_plane == plane &&
2163             dev_priv->display.disable_fbc)
2164                 dev_priv->display.disable_fbc(dev);
2165
2166         /* disable cpu pipe, disable after all planes disabled */
2167         reg = PIPECONF(pipe);
2168         temp = I915_READ(reg);
2169         if (temp & PIPECONF_ENABLE) {
2170                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2171                 /* wait for cpu pipe off, pipe state */
2172                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2173                         DRM_ERROR("failed to turn off cpu pipe\n");
2174         }
2175
2176         /* Disable PF */
2177         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2178         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2179
2180         /* disable CPU FDI tx and PCH FDI rx */
2181         reg = FDI_TX_CTL(pipe);
2182         temp = I915_READ(reg);
2183         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2184         POSTING_READ(reg);
2185
2186         reg = FDI_RX_CTL(pipe);
2187         temp = I915_READ(reg);
2188         temp &= ~(0x7 << 16);
2189         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2190         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2191
2192         POSTING_READ(reg);
2193         udelay(100);
2194
2195         /* still set train pattern 1 */
2196         reg = FDI_TX_CTL(pipe);
2197         temp = I915_READ(reg);
2198         temp &= ~FDI_LINK_TRAIN_NONE;
2199         temp |= FDI_LINK_TRAIN_PATTERN_1;
2200         I915_WRITE(reg, temp);
2201
2202         reg = FDI_RX_CTL(pipe);
2203         temp = I915_READ(reg);
2204         if (HAS_PCH_CPT(dev)) {
2205                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2206                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2207         } else {
2208                 temp &= ~FDI_LINK_TRAIN_NONE;
2209                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2210         }
2211         /* BPC in FDI rx is consistent with that in PIPECONF */
2212         temp &= ~(0x07 << 16);
2213         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2214         I915_WRITE(reg, temp);
2215
2216         POSTING_READ(reg);
2217         udelay(100);
2218
2219         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2220                 temp = I915_READ(PCH_LVDS);
2221                 if (temp & LVDS_PORT_EN) {
2222                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2223                         POSTING_READ(PCH_LVDS);
2224                         udelay(100);
2225                 }
2226         }
2227
2228         /* disable PCH transcoder */
2229         reg = TRANSCONF(plane);
2230         temp = I915_READ(reg);
2231         if (temp & TRANS_ENABLE) {
2232                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2233                 /* wait for PCH transcoder off, transcoder state */
2234                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2235                         DRM_ERROR("failed to disable transcoder\n");
2236         }
2237
2238         if (HAS_PCH_CPT(dev)) {
2239                 /* disable TRANS_DP_CTL */
2240                 reg = TRANS_DP_CTL(pipe);
2241                 temp = I915_READ(reg);
2242                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2243                 I915_WRITE(reg, temp);
2244
2245                 /* disable DPLL_SEL */
2246                 temp = I915_READ(PCH_DPLL_SEL);
2247                 if (pipe == 0)
2248                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2249                 else
2250                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2251                 I915_WRITE(PCH_DPLL_SEL, temp);
2252         }
2253
2254         /* disable PCH DPLL */
2255         reg = PCH_DPLL(pipe);
2256         temp = I915_READ(reg);
2257         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2258
2259         /* Switch from PCDclk to Rawclk */
2260         reg = FDI_RX_CTL(pipe);
2261         temp = I915_READ(reg);
2262         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2263
2264         /* Disable CPU FDI TX PLL */
2265         reg = FDI_TX_CTL(pipe);
2266         temp = I915_READ(reg);
2267         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2268
2269         POSTING_READ(reg);
2270         udelay(100);
2271
2272         reg = FDI_RX_CTL(pipe);
2273         temp = I915_READ(reg);
2274         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2275
2276         /* Wait for the clocks to turn off. */
2277         POSTING_READ(reg);
2278         udelay(100);
2279
2280         intel_crtc->active = false;
2281         intel_update_watermarks(dev);
2282         intel_update_fbc(dev);
2283         intel_clear_scanline_wait(dev);
2284 }
2285
2286 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2287 {
2288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2289         int pipe = intel_crtc->pipe;
2290         int plane = intel_crtc->plane;
2291
2292         /* XXX: When our outputs are all unaware of DPMS modes other than off
2293          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2294          */
2295         switch (mode) {
2296         case DRM_MODE_DPMS_ON:
2297         case DRM_MODE_DPMS_STANDBY:
2298         case DRM_MODE_DPMS_SUSPEND:
2299                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2300                 ironlake_crtc_enable(crtc);
2301                 break;
2302
2303         case DRM_MODE_DPMS_OFF:
2304                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2305                 ironlake_crtc_disable(crtc);
2306                 break;
2307         }
2308 }
2309
2310 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2311 {
2312         if (!enable && intel_crtc->overlay) {
2313                 struct drm_device *dev = intel_crtc->base.dev;
2314
2315                 mutex_lock(&dev->struct_mutex);
2316                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2317                 mutex_unlock(&dev->struct_mutex);
2318         }
2319
2320         /* Let userspace switch the overlay on again. In most cases userspace
2321          * has to recompute where to put it anyway.
2322          */
2323 }
2324
2325 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2326 {
2327         struct drm_device *dev = crtc->dev;
2328         struct drm_i915_private *dev_priv = dev->dev_private;
2329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2330         int pipe = intel_crtc->pipe;
2331         int plane = intel_crtc->plane;
2332         u32 reg, temp;
2333
2334         if (intel_crtc->active)
2335                 return;
2336
2337         intel_crtc->active = true;
2338         intel_update_watermarks(dev);
2339
2340         /* Enable the DPLL */
2341         reg = DPLL(pipe);
2342         temp = I915_READ(reg);
2343         if ((temp & DPLL_VCO_ENABLE) == 0) {
2344                 I915_WRITE(reg, temp);
2345
2346                 /* Wait for the clocks to stabilize. */
2347                 POSTING_READ(reg);
2348                 udelay(150);
2349
2350                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2351
2352                 /* Wait for the clocks to stabilize. */
2353                 POSTING_READ(reg);
2354                 udelay(150);
2355
2356                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2357
2358                 /* Wait for the clocks to stabilize. */
2359                 POSTING_READ(reg);
2360                 udelay(150);
2361         }
2362
2363         /* Enable the pipe */
2364         reg = PIPECONF(pipe);
2365         temp = I915_READ(reg);
2366         if ((temp & PIPECONF_ENABLE) == 0)
2367                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2368
2369         /* Enable the plane */
2370         reg = DSPCNTR(plane);
2371         temp = I915_READ(reg);
2372         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2373                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2374                 intel_flush_display_plane(dev, plane);
2375         }
2376
2377         intel_crtc_load_lut(crtc);
2378         intel_update_fbc(dev);
2379
2380         /* Give the overlay scaler a chance to enable if it's on this pipe */
2381         intel_crtc_dpms_overlay(intel_crtc, true);
2382         intel_crtc_update_cursor(crtc, true);
2383 }
2384
2385 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2386 {
2387         struct drm_device *dev = crtc->dev;
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2390         int pipe = intel_crtc->pipe;
2391         int plane = intel_crtc->plane;
2392         u32 reg, temp;
2393
2394         if (!intel_crtc->active)
2395                 return;
2396
2397         /* Give the overlay scaler a chance to disable if it's on this pipe */
2398         intel_crtc_wait_for_pending_flips(crtc);
2399         drm_vblank_off(dev, pipe);
2400         intel_crtc_dpms_overlay(intel_crtc, false);
2401         intel_crtc_update_cursor(crtc, false);
2402
2403         if (dev_priv->cfb_plane == plane &&
2404             dev_priv->display.disable_fbc)
2405                 dev_priv->display.disable_fbc(dev);
2406
2407         /* Disable display plane */
2408         reg = DSPCNTR(plane);
2409         temp = I915_READ(reg);
2410         if (temp & DISPLAY_PLANE_ENABLE) {
2411                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2412                 /* Flush the plane changes */
2413                 intel_flush_display_plane(dev, plane);
2414
2415                 /* Wait for vblank for the disable to take effect */
2416                 if (IS_GEN2(dev))
2417                         intel_wait_for_vblank(dev, pipe);
2418         }
2419
2420         /* Don't disable pipe A or pipe A PLLs if needed */
2421         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2422                 goto done;
2423
2424         /* Next, disable display pipes */
2425         reg = PIPECONF(pipe);
2426         temp = I915_READ(reg);
2427         if (temp & PIPECONF_ENABLE) {
2428                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2429
2430                 /* Wait for the pipe to turn off */
2431                 POSTING_READ(reg);
2432                 intel_wait_for_pipe_off(dev, pipe);
2433         }
2434
2435         reg = DPLL(pipe);
2436         temp = I915_READ(reg);
2437         if (temp & DPLL_VCO_ENABLE) {
2438                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2439
2440                 /* Wait for the clocks to turn off. */
2441                 POSTING_READ(reg);
2442                 udelay(150);
2443         }
2444
2445 done:
2446         intel_crtc->active = false;
2447         intel_update_fbc(dev);
2448         intel_update_watermarks(dev);
2449         intel_clear_scanline_wait(dev);
2450 }
2451
2452 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2453 {
2454         /* XXX: When our outputs are all unaware of DPMS modes other than off
2455          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2456          */
2457         switch (mode) {
2458         case DRM_MODE_DPMS_ON:
2459         case DRM_MODE_DPMS_STANDBY:
2460         case DRM_MODE_DPMS_SUSPEND:
2461                 i9xx_crtc_enable(crtc);
2462                 break;
2463         case DRM_MODE_DPMS_OFF:
2464                 i9xx_crtc_disable(crtc);
2465                 break;
2466         }
2467 }
2468
2469 /**
2470  * Sets the power management mode of the pipe and plane.
2471  */
2472 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2473 {
2474         struct drm_device *dev = crtc->dev;
2475         struct drm_i915_private *dev_priv = dev->dev_private;
2476         struct drm_i915_master_private *master_priv;
2477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2478         int pipe = intel_crtc->pipe;
2479         bool enabled;
2480
2481         if (intel_crtc->dpms_mode == mode)
2482                 return;
2483
2484         intel_crtc->dpms_mode = mode;
2485
2486         dev_priv->display.dpms(crtc, mode);
2487
2488         if (!dev->primary->master)
2489                 return;
2490
2491         master_priv = dev->primary->master->driver_priv;
2492         if (!master_priv->sarea_priv)
2493                 return;
2494
2495         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2496
2497         switch (pipe) {
2498         case 0:
2499                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2500                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2501                 break;
2502         case 1:
2503                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2504                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2505                 break;
2506         default:
2507                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2508                 break;
2509         }
2510 }
2511
2512 static void intel_crtc_disable(struct drm_crtc *crtc)
2513 {
2514         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2515         struct drm_device *dev = crtc->dev;
2516
2517         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2518
2519         if (crtc->fb) {
2520                 mutex_lock(&dev->struct_mutex);
2521                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2522                 mutex_unlock(&dev->struct_mutex);
2523         }
2524 }
2525
2526 /* Prepare for a mode set.
2527  *
2528  * Note we could be a lot smarter here.  We need to figure out which outputs
2529  * will be enabled, which disabled (in short, how the config will changes)
2530  * and perform the minimum necessary steps to accomplish that, e.g. updating
2531  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2532  * panel fitting is in the proper state, etc.
2533  */
2534 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2535 {
2536         i9xx_crtc_disable(crtc);
2537 }
2538
2539 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2540 {
2541         i9xx_crtc_enable(crtc);
2542 }
2543
2544 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2545 {
2546         ironlake_crtc_disable(crtc);
2547 }
2548
2549 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2550 {
2551         ironlake_crtc_enable(crtc);
2552 }
2553
2554 void intel_encoder_prepare (struct drm_encoder *encoder)
2555 {
2556         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2557         /* lvds has its own version of prepare see intel_lvds_prepare */
2558         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2559 }
2560
2561 void intel_encoder_commit (struct drm_encoder *encoder)
2562 {
2563         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2564         /* lvds has its own version of commit see intel_lvds_commit */
2565         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2566 }
2567
2568 void intel_encoder_destroy(struct drm_encoder *encoder)
2569 {
2570         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2571
2572         drm_encoder_cleanup(encoder);
2573         kfree(intel_encoder);
2574 }
2575
2576 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2577                                   struct drm_display_mode *mode,
2578                                   struct drm_display_mode *adjusted_mode)
2579 {
2580         struct drm_device *dev = crtc->dev;
2581
2582         if (HAS_PCH_SPLIT(dev)) {
2583                 /* FDI link clock is fixed at 2.7G */
2584                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2585                         return false;
2586         }
2587
2588         /* XXX some encoders set the crtcinfo, others don't.
2589          * Obviously we need some form of conflict resolution here...
2590          */
2591         if (adjusted_mode->crtc_htotal == 0)
2592                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2593
2594         return true;
2595 }
2596
2597 static int i945_get_display_clock_speed(struct drm_device *dev)
2598 {
2599         return 400000;
2600 }
2601
2602 static int i915_get_display_clock_speed(struct drm_device *dev)
2603 {
2604         return 333000;
2605 }
2606
2607 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2608 {
2609         return 200000;
2610 }
2611
2612 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2613 {
2614         u16 gcfgc = 0;
2615
2616         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2617
2618         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2619                 return 133000;
2620         else {
2621                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2622                 case GC_DISPLAY_CLOCK_333_MHZ:
2623                         return 333000;
2624                 default:
2625                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2626                         return 190000;
2627                 }
2628         }
2629 }
2630
2631 static int i865_get_display_clock_speed(struct drm_device *dev)
2632 {
2633         return 266000;
2634 }
2635
2636 static int i855_get_display_clock_speed(struct drm_device *dev)
2637 {
2638         u16 hpllcc = 0;
2639         /* Assume that the hardware is in the high speed state.  This
2640          * should be the default.
2641          */
2642         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2643         case GC_CLOCK_133_200:
2644         case GC_CLOCK_100_200:
2645                 return 200000;
2646         case GC_CLOCK_166_250:
2647                 return 250000;
2648         case GC_CLOCK_100_133:
2649                 return 133000;
2650         }
2651
2652         /* Shouldn't happen */
2653         return 0;
2654 }
2655
2656 static int i830_get_display_clock_speed(struct drm_device *dev)
2657 {
2658         return 133000;
2659 }
2660
2661 struct fdi_m_n {
2662         u32        tu;
2663         u32        gmch_m;
2664         u32        gmch_n;
2665         u32        link_m;
2666         u32        link_n;
2667 };
2668
2669 static void
2670 fdi_reduce_ratio(u32 *num, u32 *den)
2671 {
2672         while (*num > 0xffffff || *den > 0xffffff) {
2673                 *num >>= 1;
2674                 *den >>= 1;
2675         }
2676 }
2677
2678 #define DATA_N 0x800000
2679 #define LINK_N 0x80000
2680
2681 static void
2682 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2683                      int link_clock, struct fdi_m_n *m_n)
2684 {
2685         u64 temp;
2686
2687         m_n->tu = 64; /* default size */
2688
2689         temp = (u64) DATA_N * pixel_clock;
2690         temp = div_u64(temp, link_clock);
2691         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2692         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2693         m_n->gmch_n = DATA_N;
2694         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2695
2696         temp = (u64) LINK_N * pixel_clock;
2697         m_n->link_m = div_u64(temp, link_clock);
2698         m_n->link_n = LINK_N;
2699         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2700 }
2701
2702
2703 struct intel_watermark_params {
2704         unsigned long fifo_size;
2705         unsigned long max_wm;
2706         unsigned long default_wm;
2707         unsigned long guard_size;
2708         unsigned long cacheline_size;
2709 };
2710
2711 /* Pineview has different values for various configs */
2712 static struct intel_watermark_params pineview_display_wm = {
2713         PINEVIEW_DISPLAY_FIFO,
2714         PINEVIEW_MAX_WM,
2715         PINEVIEW_DFT_WM,
2716         PINEVIEW_GUARD_WM,
2717         PINEVIEW_FIFO_LINE_SIZE
2718 };
2719 static struct intel_watermark_params pineview_display_hplloff_wm = {
2720         PINEVIEW_DISPLAY_FIFO,
2721         PINEVIEW_MAX_WM,
2722         PINEVIEW_DFT_HPLLOFF_WM,
2723         PINEVIEW_GUARD_WM,
2724         PINEVIEW_FIFO_LINE_SIZE
2725 };
2726 static struct intel_watermark_params pineview_cursor_wm = {
2727         PINEVIEW_CURSOR_FIFO,
2728         PINEVIEW_CURSOR_MAX_WM,
2729         PINEVIEW_CURSOR_DFT_WM,
2730         PINEVIEW_CURSOR_GUARD_WM,
2731         PINEVIEW_FIFO_LINE_SIZE,
2732 };
2733 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2734         PINEVIEW_CURSOR_FIFO,
2735         PINEVIEW_CURSOR_MAX_WM,
2736         PINEVIEW_CURSOR_DFT_WM,
2737         PINEVIEW_CURSOR_GUARD_WM,
2738         PINEVIEW_FIFO_LINE_SIZE
2739 };
2740 static struct intel_watermark_params g4x_wm_info = {
2741         G4X_FIFO_SIZE,
2742         G4X_MAX_WM,
2743         G4X_MAX_WM,
2744         2,
2745         G4X_FIFO_LINE_SIZE,
2746 };
2747 static struct intel_watermark_params g4x_cursor_wm_info = {
2748         I965_CURSOR_FIFO,
2749         I965_CURSOR_MAX_WM,
2750         I965_CURSOR_DFT_WM,
2751         2,
2752         G4X_FIFO_LINE_SIZE,
2753 };
2754 static struct intel_watermark_params i965_cursor_wm_info = {
2755         I965_CURSOR_FIFO,
2756         I965_CURSOR_MAX_WM,
2757         I965_CURSOR_DFT_WM,
2758         2,
2759         I915_FIFO_LINE_SIZE,
2760 };
2761 static struct intel_watermark_params i945_wm_info = {
2762         I945_FIFO_SIZE,
2763         I915_MAX_WM,
2764         1,
2765         2,
2766         I915_FIFO_LINE_SIZE
2767 };
2768 static struct intel_watermark_params i915_wm_info = {
2769         I915_FIFO_SIZE,
2770         I915_MAX_WM,
2771         1,
2772         2,
2773         I915_FIFO_LINE_SIZE
2774 };
2775 static struct intel_watermark_params i855_wm_info = {
2776         I855GM_FIFO_SIZE,
2777         I915_MAX_WM,
2778         1,
2779         2,
2780         I830_FIFO_LINE_SIZE
2781 };
2782 static struct intel_watermark_params i830_wm_info = {
2783         I830_FIFO_SIZE,
2784         I915_MAX_WM,
2785         1,
2786         2,
2787         I830_FIFO_LINE_SIZE
2788 };
2789
2790 static struct intel_watermark_params ironlake_display_wm_info = {
2791         ILK_DISPLAY_FIFO,
2792         ILK_DISPLAY_MAXWM,
2793         ILK_DISPLAY_DFTWM,
2794         2,
2795         ILK_FIFO_LINE_SIZE
2796 };
2797
2798 static struct intel_watermark_params ironlake_cursor_wm_info = {
2799         ILK_CURSOR_FIFO,
2800         ILK_CURSOR_MAXWM,
2801         ILK_CURSOR_DFTWM,
2802         2,
2803         ILK_FIFO_LINE_SIZE
2804 };
2805
2806 static struct intel_watermark_params ironlake_display_srwm_info = {
2807         ILK_DISPLAY_SR_FIFO,
2808         ILK_DISPLAY_MAX_SRWM,
2809         ILK_DISPLAY_DFT_SRWM,
2810         2,
2811         ILK_FIFO_LINE_SIZE
2812 };
2813
2814 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2815         ILK_CURSOR_SR_FIFO,
2816         ILK_CURSOR_MAX_SRWM,
2817         ILK_CURSOR_DFT_SRWM,
2818         2,
2819         ILK_FIFO_LINE_SIZE
2820 };
2821
2822 /**
2823  * intel_calculate_wm - calculate watermark level
2824  * @clock_in_khz: pixel clock
2825  * @wm: chip FIFO params
2826  * @pixel_size: display pixel size
2827  * @latency_ns: memory latency for the platform
2828  *
2829  * Calculate the watermark level (the level at which the display plane will
2830  * start fetching from memory again).  Each chip has a different display
2831  * FIFO size and allocation, so the caller needs to figure that out and pass
2832  * in the correct intel_watermark_params structure.
2833  *
2834  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2835  * on the pixel size.  When it reaches the watermark level, it'll start
2836  * fetching FIFO line sized based chunks from memory until the FIFO fills
2837  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2838  * will occur, and a display engine hang could result.
2839  */
2840 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2841                                         struct intel_watermark_params *wm,
2842                                         int pixel_size,
2843                                         unsigned long latency_ns)
2844 {
2845         long entries_required, wm_size;
2846
2847         /*
2848          * Note: we need to make sure we don't overflow for various clock &
2849          * latency values.
2850          * clocks go from a few thousand to several hundred thousand.
2851          * latency is usually a few thousand
2852          */
2853         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2854                 1000;
2855         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2856
2857         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2858
2859         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2860
2861         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2862
2863         /* Don't promote wm_size to unsigned... */
2864         if (wm_size > (long)wm->max_wm)
2865                 wm_size = wm->max_wm;
2866         if (wm_size <= 0)
2867                 wm_size = wm->default_wm;
2868         return wm_size;
2869 }
2870
2871 struct cxsr_latency {
2872         int is_desktop;
2873         int is_ddr3;
2874         unsigned long fsb_freq;
2875         unsigned long mem_freq;
2876         unsigned long display_sr;
2877         unsigned long display_hpll_disable;
2878         unsigned long cursor_sr;
2879         unsigned long cursor_hpll_disable;
2880 };
2881
2882 static const struct cxsr_latency cxsr_latency_table[] = {
2883         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2884         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2885         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2886         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2887         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2888
2889         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2890         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2891         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2892         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2893         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2894
2895         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2896         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2897         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2898         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2899         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2900
2901         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2902         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2903         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2904         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2905         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2906
2907         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2908         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2909         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2910         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2911         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2912
2913         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2914         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2915         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2916         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2917         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2918 };
2919
2920 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2921                                                          int is_ddr3,
2922                                                          int fsb,
2923                                                          int mem)
2924 {
2925         const struct cxsr_latency *latency;
2926         int i;
2927
2928         if (fsb == 0 || mem == 0)
2929                 return NULL;
2930
2931         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2932                 latency = &cxsr_latency_table[i];
2933                 if (is_desktop == latency->is_desktop &&
2934                     is_ddr3 == latency->is_ddr3 &&
2935                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2936                         return latency;
2937         }
2938
2939         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2940
2941         return NULL;
2942 }
2943
2944 static void pineview_disable_cxsr(struct drm_device *dev)
2945 {
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947
2948         /* deactivate cxsr */
2949         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2950 }
2951
2952 /*
2953  * Latency for FIFO fetches is dependent on several factors:
2954  *   - memory configuration (speed, channels)
2955  *   - chipset
2956  *   - current MCH state
2957  * It can be fairly high in some situations, so here we assume a fairly
2958  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2959  * set this value too high, the FIFO will fetch frequently to stay full)
2960  * and power consumption (set it too low to save power and we might see
2961  * FIFO underruns and display "flicker").
2962  *
2963  * A value of 5us seems to be a good balance; safe for very low end
2964  * platforms but not overly aggressive on lower latency configs.
2965  */
2966 static const int latency_ns = 5000;
2967
2968 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2969 {
2970         struct drm_i915_private *dev_priv = dev->dev_private;
2971         uint32_t dsparb = I915_READ(DSPARB);
2972         int size;
2973
2974         size = dsparb & 0x7f;
2975         if (plane)
2976                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2977
2978         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2979                       plane ? "B" : "A", size);
2980
2981         return size;
2982 }
2983
2984 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         uint32_t dsparb = I915_READ(DSPARB);
2988         int size;
2989
2990         size = dsparb & 0x1ff;
2991         if (plane)
2992                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2993         size >>= 1; /* Convert to cachelines */
2994
2995         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2996                       plane ? "B" : "A", size);
2997
2998         return size;
2999 }
3000
3001 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3002 {
3003         struct drm_i915_private *dev_priv = dev->dev_private;
3004         uint32_t dsparb = I915_READ(DSPARB);
3005         int size;
3006
3007         size = dsparb & 0x7f;
3008         size >>= 2; /* Convert to cachelines */
3009
3010         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3011                       plane ? "B" : "A",
3012                       size);
3013
3014         return size;
3015 }
3016
3017 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3018 {
3019         struct drm_i915_private *dev_priv = dev->dev_private;
3020         uint32_t dsparb = I915_READ(DSPARB);
3021         int size;
3022
3023         size = dsparb & 0x7f;
3024         size >>= 1; /* Convert to cachelines */
3025
3026         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3027                       plane ? "B" : "A", size);
3028
3029         return size;
3030 }
3031
3032 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3033                                int planeb_clock, int sr_hdisplay, int unused,
3034                                int pixel_size)
3035 {
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         const struct cxsr_latency *latency;
3038         u32 reg;
3039         unsigned long wm;
3040         int sr_clock;
3041
3042         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3043                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3044         if (!latency) {
3045                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3046                 pineview_disable_cxsr(dev);
3047                 return;
3048         }
3049
3050         if (!planea_clock || !planeb_clock) {
3051                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3052
3053                 /* Display SR */
3054                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3055                                         pixel_size, latency->display_sr);
3056                 reg = I915_READ(DSPFW1);
3057                 reg &= ~DSPFW_SR_MASK;
3058                 reg |= wm << DSPFW_SR_SHIFT;
3059                 I915_WRITE(DSPFW1, reg);
3060                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3061
3062                 /* cursor SR */
3063                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3064                                         pixel_size, latency->cursor_sr);
3065                 reg = I915_READ(DSPFW3);
3066                 reg &= ~DSPFW_CURSOR_SR_MASK;
3067                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3068                 I915_WRITE(DSPFW3, reg);
3069
3070                 /* Display HPLL off SR */
3071                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3072                                         pixel_size, latency->display_hpll_disable);
3073                 reg = I915_READ(DSPFW3);
3074                 reg &= ~DSPFW_HPLL_SR_MASK;
3075                 reg |= wm & DSPFW_HPLL_SR_MASK;
3076                 I915_WRITE(DSPFW3, reg);
3077
3078                 /* cursor HPLL off SR */
3079                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3080                                         pixel_size, latency->cursor_hpll_disable);
3081                 reg = I915_READ(DSPFW3);
3082                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3083                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3084                 I915_WRITE(DSPFW3, reg);
3085                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3086
3087                 /* activate cxsr */
3088                 I915_WRITE(DSPFW3,
3089                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3090                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3091         } else {
3092                 pineview_disable_cxsr(dev);
3093                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3094         }
3095 }
3096
3097 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3098                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3099                           int pixel_size)
3100 {
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102         int total_size, cacheline_size;
3103         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3104         struct intel_watermark_params planea_params, planeb_params;
3105         unsigned long line_time_us;
3106         int sr_clock, sr_entries = 0, entries_required;
3107
3108         /* Create copies of the base settings for each pipe */
3109         planea_params = planeb_params = g4x_wm_info;
3110
3111         /* Grab a couple of global values before we overwrite them */
3112         total_size = planea_params.fifo_size;
3113         cacheline_size = planea_params.cacheline_size;
3114
3115         /*
3116          * Note: we need to make sure we don't overflow for various clock &
3117          * latency values.
3118          * clocks go from a few thousand to several hundred thousand.
3119          * latency is usually a few thousand
3120          */
3121         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3122                 1000;
3123         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3124         planea_wm = entries_required + planea_params.guard_size;
3125
3126         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3127                 1000;
3128         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3129         planeb_wm = entries_required + planeb_params.guard_size;
3130
3131         cursora_wm = cursorb_wm = 16;
3132         cursor_sr = 32;
3133
3134         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3135
3136         /* Calc sr entries for one plane configs */
3137         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3138                 /* self-refresh has much higher latency */
3139                 static const int sr_latency_ns = 12000;
3140
3141                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3142                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3143
3144                 /* Use ns/us then divide to preserve precision */
3145                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3146                         pixel_size * sr_hdisplay;
3147                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3148
3149                 entries_required = (((sr_latency_ns / line_time_us) +
3150                                      1000) / 1000) * pixel_size * 64;
3151                 entries_required = DIV_ROUND_UP(entries_required,
3152                                                 g4x_cursor_wm_info.cacheline_size);
3153                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3154
3155                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3156                         cursor_sr = g4x_cursor_wm_info.max_wm;
3157                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3158                               "cursor %d\n", sr_entries, cursor_sr);
3159
3160                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3161         } else {
3162                 /* Turn off self refresh if both pipes are enabled */
3163                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3164                            & ~FW_BLC_SELF_EN);
3165         }
3166
3167         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3168                   planea_wm, planeb_wm, sr_entries);
3169
3170         planea_wm &= 0x3f;
3171         planeb_wm &= 0x3f;
3172
3173         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3174                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3175                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3176         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3177                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3178         /* HPLL off in SR has some issues on G4x... disable it */
3179         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3180                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3181 }
3182
3183 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3184                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3185                            int pixel_size)
3186 {
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         unsigned long line_time_us;
3189         int sr_clock, sr_entries, srwm = 1;
3190         int cursor_sr = 16;
3191
3192         /* Calc sr entries for one plane configs */
3193         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3194                 /* self-refresh has much higher latency */
3195                 static const int sr_latency_ns = 12000;
3196
3197                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3198                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3199
3200                 /* Use ns/us then divide to preserve precision */
3201                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3202                         pixel_size * sr_hdisplay;
3203                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3204                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3205                 srwm = I965_FIFO_SIZE - sr_entries;
3206                 if (srwm < 0)
3207                         srwm = 1;
3208                 srwm &= 0x1ff;
3209
3210                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3211                         pixel_size * 64;
3212                 sr_entries = DIV_ROUND_UP(sr_entries,
3213                                           i965_cursor_wm_info.cacheline_size);
3214                 cursor_sr = i965_cursor_wm_info.fifo_size -
3215                         (sr_entries + i965_cursor_wm_info.guard_size);
3216
3217                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3218                         cursor_sr = i965_cursor_wm_info.max_wm;
3219
3220                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3221                               "cursor %d\n", srwm, cursor_sr);
3222
3223                 if (IS_CRESTLINE(dev))
3224                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3225         } else {
3226                 /* Turn off self refresh if both pipes are enabled */
3227                 if (IS_CRESTLINE(dev))
3228                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3229                                    & ~FW_BLC_SELF_EN);
3230         }
3231
3232         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3233                       srwm);
3234
3235         /* 965 has limitations... */
3236         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3237                    (8 << 0));
3238         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3239         /* update cursor SR watermark */
3240         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3241 }
3242
3243 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3244                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3245                            int pixel_size)
3246 {
3247         struct drm_i915_private *dev_priv = dev->dev_private;
3248         uint32_t fwater_lo;
3249         uint32_t fwater_hi;
3250         int total_size, cacheline_size, cwm, srwm = 1;
3251         int planea_wm, planeb_wm;
3252         struct intel_watermark_params planea_params, planeb_params;
3253         unsigned long line_time_us;
3254         int sr_clock, sr_entries = 0;
3255
3256         /* Create copies of the base settings for each pipe */
3257         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3258                 planea_params = planeb_params = i945_wm_info;
3259         else if (!IS_GEN2(dev))
3260                 planea_params = planeb_params = i915_wm_info;
3261         else
3262                 planea_params = planeb_params = i855_wm_info;
3263
3264         /* Grab a couple of global values before we overwrite them */
3265         total_size = planea_params.fifo_size;
3266         cacheline_size = planea_params.cacheline_size;
3267
3268         /* Update per-plane FIFO sizes */
3269         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3270         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3271
3272         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3273                                        pixel_size, latency_ns);
3274         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3275                                        pixel_size, latency_ns);
3276         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3277
3278         /*
3279          * Overlay gets an aggressive default since video jitter is bad.
3280          */
3281         cwm = 2;
3282
3283         /* Calc sr entries for one plane configs */
3284         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3285             (!planea_clock || !planeb_clock)) {
3286                 /* self-refresh has much higher latency */
3287                 static const int sr_latency_ns = 6000;
3288
3289                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3290                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3291
3292                 /* Use ns/us then divide to preserve precision */
3293                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3294                         pixel_size * sr_hdisplay;
3295                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3296                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3297                 srwm = total_size - sr_entries;
3298                 if (srwm < 0)
3299                         srwm = 1;
3300
3301                 if (IS_I945G(dev) || IS_I945GM(dev))
3302                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3303                 else if (IS_I915GM(dev)) {
3304                         /* 915M has a smaller SRWM field */
3305                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3306                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3307                 }
3308         } else {
3309                 /* Turn off self refresh if both pipes are enabled */
3310                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3311                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3312                                    & ~FW_BLC_SELF_EN);
3313                 } else if (IS_I915GM(dev)) {
3314                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3315                 }
3316         }
3317
3318         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3319                       planea_wm, planeb_wm, cwm, srwm);
3320
3321         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3322         fwater_hi = (cwm & 0x1f);
3323
3324         /* Set request length to 8 cachelines per fetch */
3325         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3326         fwater_hi = fwater_hi | (1 << 8);
3327
3328         I915_WRITE(FW_BLC, fwater_lo);
3329         I915_WRITE(FW_BLC2, fwater_hi);
3330 }
3331
3332 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3333                            int unused2, int unused3, int pixel_size)
3334 {
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3337         int planea_wm;
3338
3339         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3340
3341         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3342                                        pixel_size, latency_ns);
3343         fwater_lo |= (3<<8) | planea_wm;
3344
3345         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3346
3347         I915_WRITE(FW_BLC, fwater_lo);
3348 }
3349
3350 #define ILK_LP0_PLANE_LATENCY           700
3351 #define ILK_LP0_CURSOR_LATENCY          1300
3352
3353 static bool ironlake_compute_wm0(struct drm_device *dev,
3354                                  int pipe,
3355                                  int *plane_wm,
3356                                  int *cursor_wm)
3357 {
3358         struct drm_crtc *crtc;
3359         int htotal, hdisplay, clock, pixel_size = 0;
3360         int line_time_us, line_count, entries;
3361
3362         crtc = intel_get_crtc_for_pipe(dev, pipe);
3363         if (crtc->fb == NULL || !crtc->enabled)
3364                 return false;
3365
3366         htotal = crtc->mode.htotal;
3367         hdisplay = crtc->mode.hdisplay;
3368         clock = crtc->mode.clock;
3369         pixel_size = crtc->fb->bits_per_pixel / 8;
3370
3371         /* Use the small buffer method to calculate plane watermark */
3372         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3373         entries = DIV_ROUND_UP(entries,
3374                                ironlake_display_wm_info.cacheline_size);
3375         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3376         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3377                 *plane_wm = ironlake_display_wm_info.max_wm;
3378
3379         /* Use the large buffer method to calculate cursor watermark */
3380         line_time_us = ((htotal * 1000) / clock);
3381         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3382         entries = line_count * 64 * pixel_size;
3383         entries = DIV_ROUND_UP(entries,
3384                                ironlake_cursor_wm_info.cacheline_size);
3385         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3386         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3387                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3388
3389         return true;
3390 }
3391
3392 static void ironlake_update_wm(struct drm_device *dev,
3393                                int planea_clock, int planeb_clock,
3394                                int sr_hdisplay, int sr_htotal,
3395                                int pixel_size)
3396 {
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         int plane_wm, cursor_wm, enabled;
3399         int tmp;
3400
3401         enabled = 0;
3402         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3403                 I915_WRITE(WM0_PIPEA_ILK,
3404                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3405                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3406                               " plane %d, " "cursor: %d\n",
3407                               plane_wm, cursor_wm);
3408                 enabled++;
3409         }
3410
3411         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3412                 I915_WRITE(WM0_PIPEB_ILK,
3413                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3414                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3415                               " plane %d, cursor: %d\n",
3416                               plane_wm, cursor_wm);
3417                 enabled++;
3418         }
3419
3420         /*
3421          * Calculate and update the self-refresh watermark only when one
3422          * display plane is used.
3423          */
3424         tmp = 0;
3425         if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3426                 unsigned long line_time_us;
3427                 int small, large, plane_fbc;
3428                 int sr_clock, entries;
3429                 int line_count, line_size;
3430                 /* Read the self-refresh latency. The unit is 0.5us */
3431                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3432
3433                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3434                 line_time_us = (sr_htotal * 1000) / sr_clock;
3435
3436                 /* Use ns/us then divide to preserve precision */
3437                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3438                         / 1000;
3439                 line_size = sr_hdisplay * pixel_size;
3440
3441                 /* Use the minimum of the small and large buffer method for primary */
3442                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3443                 large = line_count * line_size;
3444
3445                 entries = DIV_ROUND_UP(min(small, large),
3446                                        ironlake_display_srwm_info.cacheline_size);
3447
3448                 plane_fbc = entries * 64;
3449                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3450
3451                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3452                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3453                         plane_wm = ironlake_display_srwm_info.max_wm;
3454
3455                 /* calculate the self-refresh watermark for display cursor */
3456                 entries = line_count * pixel_size * 64;
3457                 entries = DIV_ROUND_UP(entries,
3458                                        ironlake_cursor_srwm_info.cacheline_size);
3459
3460                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3461                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3462                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3463
3464                 /* configure watermark and enable self-refresh */
3465                 tmp = (WM1_LP_SR_EN |
3466                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3467                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3468                        (plane_wm << WM1_LP_SR_SHIFT) |
3469                        cursor_wm);
3470                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3471                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3472         }
3473         I915_WRITE(WM1_LP_ILK, tmp);
3474         /* XXX setup WM2 and WM3 */
3475 }
3476
3477 /**
3478  * intel_update_watermarks - update FIFO watermark values based on current modes
3479  *
3480  * Calculate watermark values for the various WM regs based on current mode
3481  * and plane configuration.
3482  *
3483  * There are several cases to deal with here:
3484  *   - normal (i.e. non-self-refresh)
3485  *   - self-refresh (SR) mode
3486  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3487  *   - lines are small relative to FIFO size (buffer can hold more than 2
3488  *     lines), so need to account for TLB latency
3489  *
3490  *   The normal calculation is:
3491  *     watermark = dotclock * bytes per pixel * latency
3492  *   where latency is platform & configuration dependent (we assume pessimal
3493  *   values here).
3494  *
3495  *   The SR calculation is:
3496  *     watermark = (trunc(latency/line time)+1) * surface width *
3497  *       bytes per pixel
3498  *   where
3499  *     line time = htotal / dotclock
3500  *     surface width = hdisplay for normal plane and 64 for cursor
3501  *   and latency is assumed to be high, as above.
3502  *
3503  * The final value programmed to the register should always be rounded up,
3504  * and include an extra 2 entries to account for clock crossings.
3505  *
3506  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3507  * to set the non-SR watermarks to 8.
3508  */
3509 static void intel_update_watermarks(struct drm_device *dev)
3510 {
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct drm_crtc *crtc;
3513         int sr_hdisplay = 0;
3514         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3515         int enabled = 0, pixel_size = 0;
3516         int sr_htotal = 0;
3517
3518         if (!dev_priv->display.update_wm)
3519                 return;
3520
3521         /* Get the clock config from both planes */
3522         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3523                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3524                 if (intel_crtc->active) {
3525                         enabled++;
3526                         if (intel_crtc->plane == 0) {
3527                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3528                                               intel_crtc->pipe, crtc->mode.clock);
3529                                 planea_clock = crtc->mode.clock;
3530                         } else {
3531                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3532                                               intel_crtc->pipe, crtc->mode.clock);
3533                                 planeb_clock = crtc->mode.clock;
3534                         }
3535                         sr_hdisplay = crtc->mode.hdisplay;
3536                         sr_clock = crtc->mode.clock;
3537                         sr_htotal = crtc->mode.htotal;
3538                         if (crtc->fb)
3539                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3540                         else
3541                                 pixel_size = 4; /* by default */
3542                 }
3543         }
3544
3545         if (enabled <= 0)
3546                 return;
3547
3548         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3549                                     sr_hdisplay, sr_htotal, pixel_size);
3550 }
3551
3552 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3553                                struct drm_display_mode *mode,
3554                                struct drm_display_mode *adjusted_mode,
3555                                int x, int y,
3556                                struct drm_framebuffer *old_fb)
3557 {
3558         struct drm_device *dev = crtc->dev;
3559         struct drm_i915_private *dev_priv = dev->dev_private;
3560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3561         int pipe = intel_crtc->pipe;
3562         int plane = intel_crtc->plane;
3563         u32 fp_reg, dpll_reg;
3564         int refclk, num_connectors = 0;
3565         intel_clock_t clock, reduced_clock;
3566         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3567         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3568         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3569         struct intel_encoder *has_edp_encoder = NULL;
3570         struct drm_mode_config *mode_config = &dev->mode_config;
3571         struct intel_encoder *encoder;
3572         const intel_limit_t *limit;
3573         int ret;
3574         struct fdi_m_n m_n = {0};
3575         u32 reg, temp;
3576         int target_clock;
3577
3578         drm_vblank_pre_modeset(dev, pipe);
3579
3580         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3581                 if (encoder->base.crtc != crtc)
3582                         continue;
3583
3584                 switch (encoder->type) {
3585                 case INTEL_OUTPUT_LVDS:
3586                         is_lvds = true;
3587                         break;
3588                 case INTEL_OUTPUT_SDVO:
3589                 case INTEL_OUTPUT_HDMI:
3590                         is_sdvo = true;
3591                         if (encoder->needs_tv_clock)
3592                                 is_tv = true;
3593                         break;
3594                 case INTEL_OUTPUT_DVO:
3595                         is_dvo = true;
3596                         break;
3597                 case INTEL_OUTPUT_TVOUT:
3598                         is_tv = true;
3599                         break;
3600                 case INTEL_OUTPUT_ANALOG:
3601                         is_crt = true;
3602                         break;
3603                 case INTEL_OUTPUT_DISPLAYPORT:
3604                         is_dp = true;
3605                         break;
3606                 case INTEL_OUTPUT_EDP:
3607                         has_edp_encoder = encoder;
3608                         break;
3609                 }
3610
3611                 num_connectors++;
3612         }
3613
3614         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3615                 refclk = dev_priv->lvds_ssc_freq * 1000;
3616                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3617                               refclk / 1000);
3618         } else if (!IS_GEN2(dev)) {
3619                 refclk = 96000;
3620                 if (HAS_PCH_SPLIT(dev))
3621                         refclk = 120000; /* 120Mhz refclk */
3622         } else {
3623                 refclk = 48000;
3624         }
3625
3626         /*
3627          * Returns a set of divisors for the desired target clock with the given
3628          * refclk, or FALSE.  The returned values represent the clock equation:
3629          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3630          */
3631         limit = intel_limit(crtc);
3632         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3633         if (!ok) {
3634                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3635                 drm_vblank_post_modeset(dev, pipe);
3636                 return -EINVAL;
3637         }
3638
3639         /* Ensure that the cursor is valid for the new mode before changing... */
3640         intel_crtc_update_cursor(crtc, true);
3641
3642         if (is_lvds && dev_priv->lvds_downclock_avail) {
3643                 has_reduced_clock = limit->find_pll(limit, crtc,
3644                                                     dev_priv->lvds_downclock,
3645                                                     refclk,
3646                                                     &reduced_clock);
3647                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3648                         /*
3649                          * If the different P is found, it means that we can't
3650                          * switch the display clock by using the FP0/FP1.
3651                          * In such case we will disable the LVDS downclock
3652                          * feature.
3653                          */
3654                         DRM_DEBUG_KMS("Different P is found for "
3655                                       "LVDS clock/downclock\n");
3656                         has_reduced_clock = 0;
3657                 }
3658         }
3659         /* SDVO TV has fixed PLL values depend on its clock range,
3660            this mirrors vbios setting. */
3661         if (is_sdvo && is_tv) {
3662                 if (adjusted_mode->clock >= 100000
3663                     && adjusted_mode->clock < 140500) {
3664                         clock.p1 = 2;
3665                         clock.p2 = 10;
3666                         clock.n = 3;
3667                         clock.m1 = 16;
3668                         clock.m2 = 8;
3669                 } else if (adjusted_mode->clock >= 140500
3670                            && adjusted_mode->clock <= 200000) {
3671                         clock.p1 = 1;
3672                         clock.p2 = 10;
3673                         clock.n = 6;
3674                         clock.m1 = 12;
3675                         clock.m2 = 8;
3676                 }
3677         }
3678
3679         /* FDI link */
3680         if (HAS_PCH_SPLIT(dev)) {
3681                 int lane = 0, link_bw, bpp;
3682                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3683                    according to current link config */
3684                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3685                         target_clock = mode->clock;
3686                         intel_edp_link_config(has_edp_encoder,
3687                                               &lane, &link_bw);
3688                 } else {
3689                         /* [e]DP over FDI requires target mode clock
3690                            instead of link clock */
3691                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3692                                 target_clock = mode->clock;
3693                         else
3694                                 target_clock = adjusted_mode->clock;
3695
3696                         /* FDI is a binary signal running at ~2.7GHz, encoding
3697                          * each output octet as 10 bits. The actual frequency
3698                          * is stored as a divider into a 100MHz clock, and the
3699                          * mode pixel clock is stored in units of 1KHz.
3700                          * Hence the bw of each lane in terms of the mode signal
3701                          * is:
3702                          */
3703                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3704                 }
3705
3706                 /* determine panel color depth */
3707                 temp = I915_READ(PIPECONF(pipe));
3708                 temp &= ~PIPE_BPC_MASK;
3709                 if (is_lvds) {
3710                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3711                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3712                                 temp |= PIPE_8BPC;
3713                         else
3714                                 temp |= PIPE_6BPC;
3715                 } else if (has_edp_encoder) {
3716                         switch (dev_priv->edp.bpp/3) {
3717                         case 8:
3718                                 temp |= PIPE_8BPC;
3719                                 break;
3720                         case 10:
3721                                 temp |= PIPE_10BPC;
3722                                 break;
3723                         case 6:
3724                                 temp |= PIPE_6BPC;
3725                                 break;
3726                         case 12:
3727                                 temp |= PIPE_12BPC;
3728                                 break;
3729                         }
3730                 } else
3731                         temp |= PIPE_8BPC;
3732                 I915_WRITE(PIPECONF(pipe), temp);
3733
3734                 switch (temp & PIPE_BPC_MASK) {
3735                 case PIPE_8BPC:
3736                         bpp = 24;
3737                         break;
3738                 case PIPE_10BPC:
3739                         bpp = 30;
3740                         break;
3741                 case PIPE_6BPC:
3742                         bpp = 18;
3743                         break;
3744                 case PIPE_12BPC:
3745                         bpp = 36;
3746                         break;
3747                 default:
3748                         DRM_ERROR("unknown pipe bpc value\n");
3749                         bpp = 24;
3750                 }
3751
3752                 if (!lane) {
3753                         /* 
3754                          * Account for spread spectrum to avoid
3755                          * oversubscribing the link. Max center spread
3756                          * is 2.5%; use 5% for safety's sake.
3757                          */
3758                         u32 bps = target_clock * bpp * 21 / 20;
3759                         lane = bps / (link_bw * 8) + 1;
3760                 }
3761
3762                 intel_crtc->fdi_lanes = lane;
3763
3764                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3765         }
3766
3767         /* Ironlake: try to setup display ref clock before DPLL
3768          * enabling. This is only under driver's control after
3769          * PCH B stepping, previous chipset stepping should be
3770          * ignoring this setting.
3771          */
3772         if (HAS_PCH_SPLIT(dev)) {
3773                 temp = I915_READ(PCH_DREF_CONTROL);
3774                 /* Always enable nonspread source */
3775                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3776                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3777                 temp &= ~DREF_SSC_SOURCE_MASK;
3778                 temp |= DREF_SSC_SOURCE_ENABLE;
3779                 I915_WRITE(PCH_DREF_CONTROL, temp);
3780
3781                 POSTING_READ(PCH_DREF_CONTROL);
3782                 udelay(200);
3783
3784                 if (has_edp_encoder) {
3785                         if (dev_priv->lvds_use_ssc) {
3786                                 temp |= DREF_SSC1_ENABLE;
3787                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3788
3789                                 POSTING_READ(PCH_DREF_CONTROL);
3790                                 udelay(200);
3791
3792                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3793                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3794                         } else {
3795                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3796                         }
3797                         I915_WRITE(PCH_DREF_CONTROL, temp);
3798                 }
3799         }
3800
3801         if (IS_PINEVIEW(dev)) {
3802                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3803                 if (has_reduced_clock)
3804                         fp2 = (1 << reduced_clock.n) << 16 |
3805                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3806         } else {
3807                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3808                 if (has_reduced_clock)
3809                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3810                                 reduced_clock.m2;
3811         }
3812
3813         dpll = 0;
3814         if (!HAS_PCH_SPLIT(dev))
3815                 dpll = DPLL_VGA_MODE_DIS;
3816
3817         if (!IS_GEN2(dev)) {
3818                 if (is_lvds)
3819                         dpll |= DPLLB_MODE_LVDS;
3820                 else
3821                         dpll |= DPLLB_MODE_DAC_SERIAL;
3822                 if (is_sdvo) {
3823                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3824                         if (pixel_multiplier > 1) {
3825                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3826                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3827                                 else if (HAS_PCH_SPLIT(dev))
3828                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3829                         }
3830                         dpll |= DPLL_DVO_HIGH_SPEED;
3831                 }
3832                 if (is_dp)
3833                         dpll |= DPLL_DVO_HIGH_SPEED;
3834
3835                 /* compute bitmask from p1 value */
3836                 if (IS_PINEVIEW(dev))
3837                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3838                 else {
3839                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3840                         /* also FPA1 */
3841                         if (HAS_PCH_SPLIT(dev))
3842                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3843                         if (IS_G4X(dev) && has_reduced_clock)
3844                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3845                 }
3846                 switch (clock.p2) {
3847                 case 5:
3848                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3849                         break;
3850                 case 7:
3851                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3852                         break;
3853                 case 10:
3854                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3855                         break;
3856                 case 14:
3857                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3858                         break;
3859                 }
3860                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3861                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3862         } else {
3863                 if (is_lvds) {
3864                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3865                 } else {
3866                         if (clock.p1 == 2)
3867                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3868                         else
3869                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3870                         if (clock.p2 == 4)
3871                                 dpll |= PLL_P2_DIVIDE_BY_4;
3872                 }
3873         }
3874
3875         if (is_sdvo && is_tv)
3876                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3877         else if (is_tv)
3878                 /* XXX: just matching BIOS for now */
3879                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3880                 dpll |= 3;
3881         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3882                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3883         else
3884                 dpll |= PLL_REF_INPUT_DREFCLK;
3885
3886         /* setup pipeconf */
3887         pipeconf = I915_READ(PIPECONF(pipe));
3888
3889         /* Set up the display plane register */
3890         dspcntr = DISPPLANE_GAMMA_ENABLE;
3891
3892         /* Ironlake's plane is forced to pipe, bit 24 is to
3893            enable color space conversion */
3894         if (!HAS_PCH_SPLIT(dev)) {
3895                 if (pipe == 0)
3896                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3897                 else
3898                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3899         }
3900
3901         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3902                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3903                  * core speed.
3904                  *
3905                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3906                  * pipe == 0 check?
3907                  */
3908                 if (mode->clock >
3909                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3910                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3911                 else
3912                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3913         }
3914
3915         dspcntr |= DISPLAY_PLANE_ENABLE;
3916         pipeconf |= PIPECONF_ENABLE;
3917         dpll |= DPLL_VCO_ENABLE;
3918
3919         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3920         drm_mode_debug_printmodeline(mode);
3921
3922         /* assign to Ironlake registers */
3923         if (HAS_PCH_SPLIT(dev)) {
3924                 fp_reg = PCH_FP0(pipe);
3925                 dpll_reg = PCH_DPLL(pipe);
3926         } else {
3927                 fp_reg = FP0(pipe);
3928                 dpll_reg = DPLL(pipe);
3929         }
3930
3931         /* PCH eDP needs FDI, but CPU eDP does not */
3932         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3933                 I915_WRITE(fp_reg, fp);
3934                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3935
3936                 POSTING_READ(dpll_reg);
3937                 udelay(150);
3938         }
3939
3940         /* enable transcoder DPLL */
3941         if (HAS_PCH_CPT(dev)) {
3942                 temp = I915_READ(PCH_DPLL_SEL);
3943                 if (pipe == 0)
3944                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3945                 else
3946                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3947                 I915_WRITE(PCH_DPLL_SEL, temp);
3948
3949                 POSTING_READ(PCH_DPLL_SEL);
3950                 udelay(150);
3951         }
3952
3953         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3954          * This is an exception to the general rule that mode_set doesn't turn
3955          * things on.
3956          */
3957         if (is_lvds) {
3958                 reg = LVDS;
3959                 if (HAS_PCH_SPLIT(dev))
3960                         reg = PCH_LVDS;
3961
3962                 temp = I915_READ(reg);
3963                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3964                 if (pipe == 1) {
3965                         if (HAS_PCH_CPT(dev))
3966                                 temp |= PORT_TRANS_B_SEL_CPT;
3967                         else
3968                                 temp |= LVDS_PIPEB_SELECT;
3969                 } else {
3970                         if (HAS_PCH_CPT(dev))
3971                                 temp &= ~PORT_TRANS_SEL_MASK;
3972                         else
3973                                 temp &= ~LVDS_PIPEB_SELECT;
3974                 }
3975                 /* set the corresponsding LVDS_BORDER bit */
3976                 temp |= dev_priv->lvds_border_bits;
3977                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3978                  * set the DPLLs for dual-channel mode or not.
3979                  */
3980                 if (clock.p2 == 7)
3981                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3982                 else
3983                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3984
3985                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3986                  * appropriately here, but we need to look more thoroughly into how
3987                  * panels behave in the two modes.
3988                  */
3989                 /* set the dithering flag on non-PCH LVDS as needed */
3990                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3991                         if (dev_priv->lvds_dither)
3992                                 temp |= LVDS_ENABLE_DITHER;
3993                         else
3994                                 temp &= ~LVDS_ENABLE_DITHER;
3995                 }
3996                 I915_WRITE(reg, temp);
3997         }
3998
3999         /* set the dithering flag and clear for anything other than a panel. */
4000         if (HAS_PCH_SPLIT(dev)) {
4001                 pipeconf &= ~PIPECONF_DITHER_EN;
4002                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4003                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4004                         pipeconf |= PIPECONF_DITHER_EN;
4005                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4006                 }
4007         }
4008
4009         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4010                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4011         } else if (HAS_PCH_SPLIT(dev)) {
4012                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4013                 if (pipe == 0) {
4014                         I915_WRITE(TRANSA_DATA_M1, 0);
4015                         I915_WRITE(TRANSA_DATA_N1, 0);
4016                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4017                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4018                 } else {
4019                         I915_WRITE(TRANSB_DATA_M1, 0);
4020                         I915_WRITE(TRANSB_DATA_N1, 0);
4021                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4022                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4023                 }
4024         }
4025
4026         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4027                 I915_WRITE(fp_reg, fp);
4028                 I915_WRITE(dpll_reg, dpll);
4029
4030                 /* Wait for the clocks to stabilize. */
4031                 POSTING_READ(dpll_reg);
4032                 udelay(150);
4033
4034                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4035                         temp = 0;
4036                         if (is_sdvo) {
4037                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4038                                 if (temp > 1)
4039                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4040                                 else
4041                                         temp = 0;
4042                         }
4043                         I915_WRITE(DPLL_MD(pipe), temp);
4044                 } else {
4045                         /* write it again -- the BIOS does, after all */
4046                         I915_WRITE(dpll_reg, dpll);
4047                 }
4048
4049                 /* Wait for the clocks to stabilize. */
4050                 POSTING_READ(dpll_reg);
4051                 udelay(150);
4052         }
4053
4054         intel_crtc->lowfreq_avail = false;
4055         if (is_lvds && has_reduced_clock && i915_powersave) {
4056                 I915_WRITE(fp_reg + 4, fp2);
4057                 intel_crtc->lowfreq_avail = true;
4058                 if (HAS_PIPE_CXSR(dev)) {
4059                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4060                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4061                 }
4062         } else {
4063                 I915_WRITE(fp_reg + 4, fp);
4064                 if (HAS_PIPE_CXSR(dev)) {
4065                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4066                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4067                 }
4068         }
4069
4070         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4071                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4072                 /* the chip adds 2 halflines automatically */
4073                 adjusted_mode->crtc_vdisplay -= 1;
4074                 adjusted_mode->crtc_vtotal -= 1;
4075                 adjusted_mode->crtc_vblank_start -= 1;
4076                 adjusted_mode->crtc_vblank_end -= 1;
4077                 adjusted_mode->crtc_vsync_end -= 1;
4078                 adjusted_mode->crtc_vsync_start -= 1;
4079         } else
4080                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4081
4082         I915_WRITE(HTOTAL(pipe),
4083                    (adjusted_mode->crtc_hdisplay - 1) |
4084                    ((adjusted_mode->crtc_htotal - 1) << 16));
4085         I915_WRITE(HBLANK(pipe),
4086                    (adjusted_mode->crtc_hblank_start - 1) |
4087                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4088         I915_WRITE(HSYNC(pipe),
4089                    (adjusted_mode->crtc_hsync_start - 1) |
4090                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4091
4092         I915_WRITE(VTOTAL(pipe),
4093                    (adjusted_mode->crtc_vdisplay - 1) |
4094                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4095         I915_WRITE(VBLANK(pipe),
4096                    (adjusted_mode->crtc_vblank_start - 1) |
4097                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4098         I915_WRITE(VSYNC(pipe),
4099                    (adjusted_mode->crtc_vsync_start - 1) |
4100                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4101
4102         /* pipesrc and dspsize control the size that is scaled from,
4103          * which should always be the user's requested size.
4104          */
4105         if (!HAS_PCH_SPLIT(dev)) {
4106                 I915_WRITE(DSPSIZE(plane),
4107                            ((mode->vdisplay - 1) << 16) |
4108                            (mode->hdisplay - 1));
4109                 I915_WRITE(DSPPOS(plane), 0);
4110         }
4111         I915_WRITE(PIPESRC(pipe),
4112                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4113
4114         if (HAS_PCH_SPLIT(dev)) {
4115                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4116                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4117                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4118                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4119
4120                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4121                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4122                 } else {
4123                         /* enable FDI RX PLL too */
4124                         reg = FDI_RX_CTL(pipe);
4125                         temp = I915_READ(reg);
4126                         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4127
4128                         POSTING_READ(reg);
4129                         udelay(200);
4130
4131                         /* enable FDI TX PLL too */
4132                         reg = FDI_TX_CTL(pipe);
4133                         temp = I915_READ(reg);
4134                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4135
4136                         /* enable FDI RX PCDCLK */
4137                         reg = FDI_RX_CTL(pipe);
4138                         temp = I915_READ(reg);
4139                         I915_WRITE(reg, temp | FDI_PCDCLK);
4140
4141                         POSTING_READ(reg);
4142                         udelay(200);
4143                 }
4144         }
4145
4146         I915_WRITE(PIPECONF(pipe), pipeconf);
4147         POSTING_READ(PIPECONF(pipe));
4148
4149         intel_wait_for_vblank(dev, pipe);
4150
4151         if (IS_IRONLAKE(dev)) {
4152                 /* enable address swizzle for tiling buffer */
4153                 temp = I915_READ(DISP_ARB_CTL);
4154                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4155         }
4156
4157         I915_WRITE(DSPCNTR(plane), dspcntr);
4158
4159         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4160
4161         intel_update_watermarks(dev);
4162
4163         drm_vblank_post_modeset(dev, pipe);
4164
4165         return ret;
4166 }
4167
4168 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4169 void intel_crtc_load_lut(struct drm_crtc *crtc)
4170 {
4171         struct drm_device *dev = crtc->dev;
4172         struct drm_i915_private *dev_priv = dev->dev_private;
4173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4174         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4175         int i;
4176
4177         /* The clocks have to be on to load the palette. */
4178         if (!crtc->enabled)
4179                 return;
4180
4181         /* use legacy palette for Ironlake */
4182         if (HAS_PCH_SPLIT(dev))
4183                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4184                                                    LGC_PALETTE_B;
4185
4186         for (i = 0; i < 256; i++) {
4187                 I915_WRITE(palreg + 4 * i,
4188                            (intel_crtc->lut_r[i] << 16) |
4189                            (intel_crtc->lut_g[i] << 8) |
4190                            intel_crtc->lut_b[i]);
4191         }
4192 }
4193
4194 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         bool visible = base != 0;
4200         u32 cntl;
4201
4202         if (intel_crtc->cursor_visible == visible)
4203                 return;
4204
4205         cntl = I915_READ(CURACNTR);
4206         if (visible) {
4207                 /* On these chipsets we can only modify the base whilst
4208                  * the cursor is disabled.
4209                  */
4210                 I915_WRITE(CURABASE, base);
4211
4212                 cntl &= ~(CURSOR_FORMAT_MASK);
4213                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4214                 cntl |= CURSOR_ENABLE |
4215                         CURSOR_GAMMA_ENABLE |
4216                         CURSOR_FORMAT_ARGB;
4217         } else
4218                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4219         I915_WRITE(CURACNTR, cntl);
4220
4221         intel_crtc->cursor_visible = visible;
4222 }
4223
4224 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229         int pipe = intel_crtc->pipe;
4230         bool visible = base != 0;
4231
4232         if (intel_crtc->cursor_visible != visible) {
4233                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4234                 if (base) {
4235                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4236                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4237                         cntl |= pipe << 28; /* Connect to correct pipe */
4238                 } else {
4239                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4240                         cntl |= CURSOR_MODE_DISABLE;
4241                 }
4242                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4243
4244                 intel_crtc->cursor_visible = visible;
4245         }
4246         /* and commit changes on next vblank */
4247         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4248 }
4249
4250 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4251 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4252                                      bool on)
4253 {
4254         struct drm_device *dev = crtc->dev;
4255         struct drm_i915_private *dev_priv = dev->dev_private;
4256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4257         int pipe = intel_crtc->pipe;
4258         int x = intel_crtc->cursor_x;
4259         int y = intel_crtc->cursor_y;
4260         u32 base, pos;
4261         bool visible;
4262
4263         pos = 0;
4264
4265         if (on && crtc->enabled && crtc->fb) {
4266                 base = intel_crtc->cursor_addr;
4267                 if (x > (int) crtc->fb->width)
4268                         base = 0;
4269
4270                 if (y > (int) crtc->fb->height)
4271                         base = 0;
4272         } else
4273                 base = 0;
4274
4275         if (x < 0) {
4276                 if (x + intel_crtc->cursor_width < 0)
4277                         base = 0;
4278
4279                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4280                 x = -x;
4281         }
4282         pos |= x << CURSOR_X_SHIFT;
4283
4284         if (y < 0) {
4285                 if (y + intel_crtc->cursor_height < 0)
4286                         base = 0;
4287
4288                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4289                 y = -y;
4290         }
4291         pos |= y << CURSOR_Y_SHIFT;
4292
4293         visible = base != 0;
4294         if (!visible && !intel_crtc->cursor_visible)
4295                 return;
4296
4297         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4298         if (IS_845G(dev) || IS_I865G(dev))
4299                 i845_update_cursor(crtc, base);
4300         else
4301                 i9xx_update_cursor(crtc, base);
4302
4303         if (visible)
4304                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4305 }
4306
4307 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4308                                  struct drm_file *file_priv,
4309                                  uint32_t handle,
4310                                  uint32_t width, uint32_t height)
4311 {
4312         struct drm_device *dev = crtc->dev;
4313         struct drm_i915_private *dev_priv = dev->dev_private;
4314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4315         struct drm_gem_object *bo;
4316         struct drm_i915_gem_object *obj_priv;
4317         uint32_t addr;
4318         int ret;
4319
4320         DRM_DEBUG_KMS("\n");
4321
4322         /* if we want to turn off the cursor ignore width and height */
4323         if (!handle) {
4324                 DRM_DEBUG_KMS("cursor off\n");
4325                 addr = 0;
4326                 bo = NULL;
4327                 mutex_lock(&dev->struct_mutex);
4328                 goto finish;
4329         }
4330
4331         /* Currently we only support 64x64 cursors */
4332         if (width != 64 || height != 64) {
4333                 DRM_ERROR("we currently only support 64x64 cursors\n");
4334                 return -EINVAL;
4335         }
4336
4337         bo = drm_gem_object_lookup(dev, file_priv, handle);
4338         if (!bo)
4339                 return -ENOENT;
4340
4341         obj_priv = to_intel_bo(bo);
4342
4343         if (bo->size < width * height * 4) {
4344                 DRM_ERROR("buffer is to small\n");
4345                 ret = -ENOMEM;
4346                 goto fail;
4347         }
4348
4349         /* we only need to pin inside GTT if cursor is non-phy */
4350         mutex_lock(&dev->struct_mutex);
4351         if (!dev_priv->info->cursor_needs_physical) {
4352                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4353                 if (ret) {
4354                         DRM_ERROR("failed to pin cursor bo\n");
4355                         goto fail_locked;
4356                 }
4357
4358                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4359                 if (ret) {
4360                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4361                         goto fail_unpin;
4362                 }
4363
4364                 addr = obj_priv->gtt_offset;
4365         } else {
4366                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4367                 ret = i915_gem_attach_phys_object(dev, bo,
4368                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4369                                                   align);
4370                 if (ret) {
4371                         DRM_ERROR("failed to attach phys object\n");
4372                         goto fail_locked;
4373                 }
4374                 addr = obj_priv->phys_obj->handle->busaddr;
4375         }
4376
4377         if (IS_GEN2(dev))
4378                 I915_WRITE(CURSIZE, (height << 12) | width);
4379
4380  finish:
4381         if (intel_crtc->cursor_bo) {
4382                 if (dev_priv->info->cursor_needs_physical) {
4383                         if (intel_crtc->cursor_bo != bo)
4384                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4385                 } else
4386                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4387                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4388         }
4389
4390         mutex_unlock(&dev->struct_mutex);
4391
4392         intel_crtc->cursor_addr = addr;
4393         intel_crtc->cursor_bo = bo;
4394         intel_crtc->cursor_width = width;
4395         intel_crtc->cursor_height = height;
4396
4397         intel_crtc_update_cursor(crtc, true);
4398
4399         return 0;
4400 fail_unpin:
4401         i915_gem_object_unpin(bo);
4402 fail_locked:
4403         mutex_unlock(&dev->struct_mutex);
4404 fail:
4405         drm_gem_object_unreference_unlocked(bo);
4406         return ret;
4407 }
4408
4409 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4410 {
4411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4412
4413         intel_crtc->cursor_x = x;
4414         intel_crtc->cursor_y = y;
4415
4416         intel_crtc_update_cursor(crtc, true);
4417
4418         return 0;
4419 }
4420
4421 /** Sets the color ramps on behalf of RandR */
4422 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4423                                  u16 blue, int regno)
4424 {
4425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4426
4427         intel_crtc->lut_r[regno] = red >> 8;
4428         intel_crtc->lut_g[regno] = green >> 8;
4429         intel_crtc->lut_b[regno] = blue >> 8;
4430 }
4431
4432 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4433                              u16 *blue, int regno)
4434 {
4435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4436
4437         *red = intel_crtc->lut_r[regno] << 8;
4438         *green = intel_crtc->lut_g[regno] << 8;
4439         *blue = intel_crtc->lut_b[regno] << 8;
4440 }
4441
4442 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4443                                  u16 *blue, uint32_t start, uint32_t size)
4444 {
4445         int end = (start + size > 256) ? 256 : start + size, i;
4446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4447
4448         for (i = start; i < end; i++) {
4449                 intel_crtc->lut_r[i] = red[i] >> 8;
4450                 intel_crtc->lut_g[i] = green[i] >> 8;
4451                 intel_crtc->lut_b[i] = blue[i] >> 8;
4452         }
4453
4454         intel_crtc_load_lut(crtc);
4455 }
4456
4457 /**
4458  * Get a pipe with a simple mode set on it for doing load-based monitor
4459  * detection.
4460  *
4461  * It will be up to the load-detect code to adjust the pipe as appropriate for
4462  * its requirements.  The pipe will be connected to no other encoders.
4463  *
4464  * Currently this code will only succeed if there is a pipe with no encoders
4465  * configured for it.  In the future, it could choose to temporarily disable
4466  * some outputs to free up a pipe for its use.
4467  *
4468  * \return crtc, or NULL if no pipes are available.
4469  */
4470
4471 /* VESA 640x480x72Hz mode to set on the pipe */
4472 static struct drm_display_mode load_detect_mode = {
4473         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4474                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4475 };
4476
4477 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4478                                             struct drm_connector *connector,
4479                                             struct drm_display_mode *mode,
4480                                             int *dpms_mode)
4481 {
4482         struct intel_crtc *intel_crtc;
4483         struct drm_crtc *possible_crtc;
4484         struct drm_crtc *supported_crtc =NULL;
4485         struct drm_encoder *encoder = &intel_encoder->base;
4486         struct drm_crtc *crtc = NULL;
4487         struct drm_device *dev = encoder->dev;
4488         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4489         struct drm_crtc_helper_funcs *crtc_funcs;
4490         int i = -1;
4491
4492         /*
4493          * Algorithm gets a little messy:
4494          *   - if the connector already has an assigned crtc, use it (but make
4495          *     sure it's on first)
4496          *   - try to find the first unused crtc that can drive this connector,
4497          *     and use that if we find one
4498          *   - if there are no unused crtcs available, try to use the first
4499          *     one we found that supports the connector
4500          */
4501
4502         /* See if we already have a CRTC for this connector */
4503         if (encoder->crtc) {
4504                 crtc = encoder->crtc;
4505                 /* Make sure the crtc and connector are running */
4506                 intel_crtc = to_intel_crtc(crtc);
4507                 *dpms_mode = intel_crtc->dpms_mode;
4508                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4509                         crtc_funcs = crtc->helper_private;
4510                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4511                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4512                 }
4513                 return crtc;
4514         }
4515
4516         /* Find an unused one (if possible) */
4517         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4518                 i++;
4519                 if (!(encoder->possible_crtcs & (1 << i)))
4520                         continue;
4521                 if (!possible_crtc->enabled) {
4522                         crtc = possible_crtc;
4523                         break;
4524                 }
4525                 if (!supported_crtc)
4526                         supported_crtc = possible_crtc;
4527         }
4528
4529         /*
4530          * If we didn't find an unused CRTC, don't use any.
4531          */
4532         if (!crtc) {
4533                 return NULL;
4534         }
4535
4536         encoder->crtc = crtc;
4537         connector->encoder = encoder;
4538         intel_encoder->load_detect_temp = true;
4539
4540         intel_crtc = to_intel_crtc(crtc);
4541         *dpms_mode = intel_crtc->dpms_mode;
4542
4543         if (!crtc->enabled) {
4544                 if (!mode)
4545                         mode = &load_detect_mode;
4546                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4547         } else {
4548                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4549                         crtc_funcs = crtc->helper_private;
4550                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4551                 }
4552
4553                 /* Add this connector to the crtc */
4554                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4555                 encoder_funcs->commit(encoder);
4556         }
4557         /* let the connector get through one full cycle before testing */
4558         intel_wait_for_vblank(dev, intel_crtc->pipe);
4559
4560         return crtc;
4561 }
4562
4563 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4564                                     struct drm_connector *connector, int dpms_mode)
4565 {
4566         struct drm_encoder *encoder = &intel_encoder->base;
4567         struct drm_device *dev = encoder->dev;
4568         struct drm_crtc *crtc = encoder->crtc;
4569         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4570         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4571
4572         if (intel_encoder->load_detect_temp) {
4573                 encoder->crtc = NULL;
4574                 connector->encoder = NULL;
4575                 intel_encoder->load_detect_temp = false;
4576                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4577                 drm_helper_disable_unused_functions(dev);
4578         }
4579
4580         /* Switch crtc and encoder back off if necessary */
4581         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4582                 if (encoder->crtc == crtc)
4583                         encoder_funcs->dpms(encoder, dpms_mode);
4584                 crtc_funcs->dpms(crtc, dpms_mode);
4585         }
4586 }
4587
4588 /* Returns the clock of the currently programmed mode of the given pipe. */
4589 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4590 {
4591         struct drm_i915_private *dev_priv = dev->dev_private;
4592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593         int pipe = intel_crtc->pipe;
4594         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4595         u32 fp;
4596         intel_clock_t clock;
4597
4598         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4599                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4600         else
4601                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4602
4603         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4604         if (IS_PINEVIEW(dev)) {
4605                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4606                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4607         } else {
4608                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4609                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4610         }
4611
4612         if (!IS_GEN2(dev)) {
4613                 if (IS_PINEVIEW(dev))
4614                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4615                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4616                 else
4617                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4618                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4619
4620                 switch (dpll & DPLL_MODE_MASK) {
4621                 case DPLLB_MODE_DAC_SERIAL:
4622                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4623                                 5 : 10;
4624                         break;
4625                 case DPLLB_MODE_LVDS:
4626                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4627                                 7 : 14;
4628                         break;
4629                 default:
4630                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4631                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4632                         return 0;
4633                 }
4634
4635                 /* XXX: Handle the 100Mhz refclk */
4636                 intel_clock(dev, 96000, &clock);
4637         } else {
4638                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4639
4640                 if (is_lvds) {
4641                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4642                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4643                         clock.p2 = 14;
4644
4645                         if ((dpll & PLL_REF_INPUT_MASK) ==
4646                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4647                                 /* XXX: might not be 66MHz */
4648                                 intel_clock(dev, 66000, &clock);
4649                         } else
4650                                 intel_clock(dev, 48000, &clock);
4651                 } else {
4652                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4653                                 clock.p1 = 2;
4654                         else {
4655                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4656                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4657                         }
4658                         if (dpll & PLL_P2_DIVIDE_BY_4)
4659                                 clock.p2 = 4;
4660                         else
4661                                 clock.p2 = 2;
4662
4663                         intel_clock(dev, 48000, &clock);
4664                 }
4665         }
4666
4667         /* XXX: It would be nice to validate the clocks, but we can't reuse
4668          * i830PllIsValid() because it relies on the xf86_config connector
4669          * configuration being accurate, which it isn't necessarily.
4670          */
4671
4672         return clock.dot;
4673 }
4674
4675 /** Returns the currently programmed mode of the given pipe. */
4676 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4677                                              struct drm_crtc *crtc)
4678 {
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4681         int pipe = intel_crtc->pipe;
4682         struct drm_display_mode *mode;
4683         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4684         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4685         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4686         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4687
4688         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4689         if (!mode)
4690                 return NULL;
4691
4692         mode->clock = intel_crtc_clock_get(dev, crtc);
4693         mode->hdisplay = (htot & 0xffff) + 1;
4694         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4695         mode->hsync_start = (hsync & 0xffff) + 1;
4696         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4697         mode->vdisplay = (vtot & 0xffff) + 1;
4698         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4699         mode->vsync_start = (vsync & 0xffff) + 1;
4700         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4701
4702         drm_mode_set_name(mode);
4703         drm_mode_set_crtcinfo(mode, 0);
4704
4705         return mode;
4706 }
4707
4708 #define GPU_IDLE_TIMEOUT 500 /* ms */
4709
4710 /* When this timer fires, we've been idle for awhile */
4711 static void intel_gpu_idle_timer(unsigned long arg)
4712 {
4713         struct drm_device *dev = (struct drm_device *)arg;
4714         drm_i915_private_t *dev_priv = dev->dev_private;
4715
4716         dev_priv->busy = false;
4717
4718         queue_work(dev_priv->wq, &dev_priv->idle_work);
4719 }
4720
4721 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4722
4723 static void intel_crtc_idle_timer(unsigned long arg)
4724 {
4725         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4726         struct drm_crtc *crtc = &intel_crtc->base;
4727         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4728
4729         intel_crtc->busy = false;
4730
4731         queue_work(dev_priv->wq, &dev_priv->idle_work);
4732 }
4733
4734 static void intel_increase_pllclock(struct drm_crtc *crtc)
4735 {
4736         struct drm_device *dev = crtc->dev;
4737         drm_i915_private_t *dev_priv = dev->dev_private;
4738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739         int pipe = intel_crtc->pipe;
4740         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4741         int dpll = I915_READ(dpll_reg);
4742
4743         if (HAS_PCH_SPLIT(dev))
4744                 return;
4745
4746         if (!dev_priv->lvds_downclock_avail)
4747                 return;
4748
4749         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4750                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4751
4752                 /* Unlock panel regs */
4753                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4754                            PANEL_UNLOCK_REGS);
4755
4756                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4757                 I915_WRITE(dpll_reg, dpll);
4758                 dpll = I915_READ(dpll_reg);
4759                 intel_wait_for_vblank(dev, pipe);
4760                 dpll = I915_READ(dpll_reg);
4761                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4762                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4763
4764                 /* ...and lock them again */
4765                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4766         }
4767
4768         /* Schedule downclock */
4769         mod_timer(&intel_crtc->idle_timer, jiffies +
4770                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4771 }
4772
4773 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4774 {
4775         struct drm_device *dev = crtc->dev;
4776         drm_i915_private_t *dev_priv = dev->dev_private;
4777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4778         int pipe = intel_crtc->pipe;
4779         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4780         int dpll = I915_READ(dpll_reg);
4781
4782         if (HAS_PCH_SPLIT(dev))
4783                 return;
4784
4785         if (!dev_priv->lvds_downclock_avail)
4786                 return;
4787
4788         /*
4789          * Since this is called by a timer, we should never get here in
4790          * the manual case.
4791          */
4792         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4793                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4794
4795                 /* Unlock panel regs */
4796                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4797                            PANEL_UNLOCK_REGS);
4798
4799                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4800                 I915_WRITE(dpll_reg, dpll);
4801                 dpll = I915_READ(dpll_reg);
4802                 intel_wait_for_vblank(dev, pipe);
4803                 dpll = I915_READ(dpll_reg);
4804                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4805                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4806
4807                 /* ...and lock them again */
4808                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4809         }
4810
4811 }
4812
4813 /**
4814  * intel_idle_update - adjust clocks for idleness
4815  * @work: work struct
4816  *
4817  * Either the GPU or display (or both) went idle.  Check the busy status
4818  * here and adjust the CRTC and GPU clocks as necessary.
4819  */
4820 static void intel_idle_update(struct work_struct *work)
4821 {
4822         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4823                                                     idle_work);
4824         struct drm_device *dev = dev_priv->dev;
4825         struct drm_crtc *crtc;
4826         struct intel_crtc *intel_crtc;
4827         int enabled = 0;
4828
4829         if (!i915_powersave)
4830                 return;
4831
4832         mutex_lock(&dev->struct_mutex);
4833
4834         i915_update_gfx_val(dev_priv);
4835
4836         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4837                 /* Skip inactive CRTCs */
4838                 if (!crtc->fb)
4839                         continue;
4840
4841                 enabled++;
4842                 intel_crtc = to_intel_crtc(crtc);
4843                 if (!intel_crtc->busy)
4844                         intel_decrease_pllclock(crtc);
4845         }
4846
4847         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4848                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4849                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4850         }
4851
4852         mutex_unlock(&dev->struct_mutex);
4853 }
4854
4855 /**
4856  * intel_mark_busy - mark the GPU and possibly the display busy
4857  * @dev: drm device
4858  * @obj: object we're operating on
4859  *
4860  * Callers can use this function to indicate that the GPU is busy processing
4861  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4862  * buffer), we'll also mark the display as busy, so we know to increase its
4863  * clock frequency.
4864  */
4865 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4866 {
4867         drm_i915_private_t *dev_priv = dev->dev_private;
4868         struct drm_crtc *crtc = NULL;
4869         struct intel_framebuffer *intel_fb;
4870         struct intel_crtc *intel_crtc;
4871
4872         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4873                 return;
4874
4875         if (!dev_priv->busy) {
4876                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4877                         u32 fw_blc_self;
4878
4879                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4880                         fw_blc_self = I915_READ(FW_BLC_SELF);
4881                         fw_blc_self &= ~FW_BLC_SELF_EN;
4882                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4883                 }
4884                 dev_priv->busy = true;
4885         } else
4886                 mod_timer(&dev_priv->idle_timer, jiffies +
4887                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4888
4889         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4890                 if (!crtc->fb)
4891                         continue;
4892
4893                 intel_crtc = to_intel_crtc(crtc);
4894                 intel_fb = to_intel_framebuffer(crtc->fb);
4895                 if (intel_fb->obj == obj) {
4896                         if (!intel_crtc->busy) {
4897                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4898                                         u32 fw_blc_self;
4899
4900                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4901                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4902                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4903                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4904                                 }
4905                                 /* Non-busy -> busy, upclock */
4906                                 intel_increase_pllclock(crtc);
4907                                 intel_crtc->busy = true;
4908                         } else {
4909                                 /* Busy -> busy, put off timer */
4910                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4911                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4912                         }
4913                 }
4914         }
4915 }
4916
4917 static void intel_crtc_destroy(struct drm_crtc *crtc)
4918 {
4919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4920         struct drm_device *dev = crtc->dev;
4921         struct intel_unpin_work *work;
4922         unsigned long flags;
4923
4924         spin_lock_irqsave(&dev->event_lock, flags);
4925         work = intel_crtc->unpin_work;
4926         intel_crtc->unpin_work = NULL;
4927         spin_unlock_irqrestore(&dev->event_lock, flags);
4928
4929         if (work) {
4930                 cancel_work_sync(&work->work);
4931                 kfree(work);
4932         }
4933
4934         drm_crtc_cleanup(crtc);
4935
4936         kfree(intel_crtc);
4937 }
4938
4939 static void intel_unpin_work_fn(struct work_struct *__work)
4940 {
4941         struct intel_unpin_work *work =
4942                 container_of(__work, struct intel_unpin_work, work);
4943
4944         mutex_lock(&work->dev->struct_mutex);
4945         i915_gem_object_unpin(work->old_fb_obj);
4946         drm_gem_object_unreference(work->pending_flip_obj);
4947         drm_gem_object_unreference(work->old_fb_obj);
4948         mutex_unlock(&work->dev->struct_mutex);
4949         kfree(work);
4950 }
4951
4952 static void do_intel_finish_page_flip(struct drm_device *dev,
4953                                       struct drm_crtc *crtc)
4954 {
4955         drm_i915_private_t *dev_priv = dev->dev_private;
4956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957         struct intel_unpin_work *work;
4958         struct drm_i915_gem_object *obj_priv;
4959         struct drm_pending_vblank_event *e;
4960         struct timeval now;
4961         unsigned long flags;
4962
4963         /* Ignore early vblank irqs */
4964         if (intel_crtc == NULL)
4965                 return;
4966
4967         spin_lock_irqsave(&dev->event_lock, flags);
4968         work = intel_crtc->unpin_work;
4969         if (work == NULL || !work->pending) {
4970                 spin_unlock_irqrestore(&dev->event_lock, flags);
4971                 return;
4972         }
4973
4974         intel_crtc->unpin_work = NULL;
4975         drm_vblank_put(dev, intel_crtc->pipe);
4976
4977         if (work->event) {
4978                 e = work->event;
4979                 do_gettimeofday(&now);
4980                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4981                 e->event.tv_sec = now.tv_sec;
4982                 e->event.tv_usec = now.tv_usec;
4983                 list_add_tail(&e->base.link,
4984                               &e->base.file_priv->event_list);
4985                 wake_up_interruptible(&e->base.file_priv->event_wait);
4986         }
4987
4988         spin_unlock_irqrestore(&dev->event_lock, flags);
4989
4990         obj_priv = to_intel_bo(work->pending_flip_obj);
4991
4992         /* Initial scanout buffer will have a 0 pending flip count */
4993         atomic_clear_mask(1 << intel_crtc->plane,
4994                           &obj_priv->pending_flip.counter);
4995         if (atomic_read(&obj_priv->pending_flip) == 0)
4996                 wake_up(&dev_priv->pending_flip_queue);
4997         schedule_work(&work->work);
4998
4999         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5000 }
5001
5002 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5003 {
5004         drm_i915_private_t *dev_priv = dev->dev_private;
5005         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5006
5007         do_intel_finish_page_flip(dev, crtc);
5008 }
5009
5010 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5011 {
5012         drm_i915_private_t *dev_priv = dev->dev_private;
5013         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5014
5015         do_intel_finish_page_flip(dev, crtc);
5016 }
5017
5018 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5019 {
5020         drm_i915_private_t *dev_priv = dev->dev_private;
5021         struct intel_crtc *intel_crtc =
5022                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5023         unsigned long flags;
5024
5025         spin_lock_irqsave(&dev->event_lock, flags);
5026         if (intel_crtc->unpin_work) {
5027                 if ((++intel_crtc->unpin_work->pending) > 1)
5028                         DRM_ERROR("Prepared flip multiple times\n");
5029         } else {
5030                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5031         }
5032         spin_unlock_irqrestore(&dev->event_lock, flags);
5033 }
5034
5035 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5036                                 struct drm_framebuffer *fb,
5037                                 struct drm_pending_vblank_event *event)
5038 {
5039         struct drm_device *dev = crtc->dev;
5040         struct drm_i915_private *dev_priv = dev->dev_private;
5041         struct intel_framebuffer *intel_fb;
5042         struct drm_i915_gem_object *obj_priv;
5043         struct drm_gem_object *obj;
5044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5045         struct intel_unpin_work *work;
5046         unsigned long flags, offset;
5047         int pipe = intel_crtc->pipe;
5048         u32 pf, pipesrc;
5049         int ret;
5050
5051         work = kzalloc(sizeof *work, GFP_KERNEL);
5052         if (work == NULL)
5053                 return -ENOMEM;
5054
5055         work->event = event;
5056         work->dev = crtc->dev;
5057         intel_fb = to_intel_framebuffer(crtc->fb);
5058         work->old_fb_obj = intel_fb->obj;
5059         INIT_WORK(&work->work, intel_unpin_work_fn);
5060
5061         /* We borrow the event spin lock for protecting unpin_work */
5062         spin_lock_irqsave(&dev->event_lock, flags);
5063         if (intel_crtc->unpin_work) {
5064                 spin_unlock_irqrestore(&dev->event_lock, flags);
5065                 kfree(work);
5066
5067                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5068                 return -EBUSY;
5069         }
5070         intel_crtc->unpin_work = work;
5071         spin_unlock_irqrestore(&dev->event_lock, flags);
5072
5073         intel_fb = to_intel_framebuffer(fb);
5074         obj = intel_fb->obj;
5075
5076         mutex_lock(&dev->struct_mutex);
5077         ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5078         if (ret)
5079                 goto cleanup_work;
5080
5081         /* Reference the objects for the scheduled work. */
5082         drm_gem_object_reference(work->old_fb_obj);
5083         drm_gem_object_reference(obj);
5084
5085         crtc->fb = fb;
5086
5087         ret = drm_vblank_get(dev, intel_crtc->pipe);
5088         if (ret)
5089                 goto cleanup_objs;
5090
5091         obj_priv = to_intel_bo(obj);
5092         atomic_add(1 << intel_crtc->plane, &obj_priv->pending_flip);
5093         work->pending_flip_obj = obj;
5094
5095         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5096                 u32 flip_mask;
5097
5098                 /* Can't queue multiple flips, so wait for the previous
5099                  * one to finish before executing the next.
5100                  */
5101                 BEGIN_LP_RING(2);
5102                 if (intel_crtc->plane)
5103                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5104                 else
5105                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5106                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5107                 OUT_RING(MI_NOOP);
5108                 ADVANCE_LP_RING();
5109         }
5110
5111         work->enable_stall_check = true;
5112
5113         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5114         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5115
5116         BEGIN_LP_RING(4);
5117         switch(INTEL_INFO(dev)->gen) {
5118         case 2:
5119                 OUT_RING(MI_DISPLAY_FLIP |
5120                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5121                 OUT_RING(fb->pitch);
5122                 OUT_RING(obj_priv->gtt_offset + offset);
5123                 OUT_RING(MI_NOOP);
5124                 break;
5125
5126         case 3:
5127                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5128                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5129                 OUT_RING(fb->pitch);
5130                 OUT_RING(obj_priv->gtt_offset + offset);
5131                 OUT_RING(MI_NOOP);
5132                 break;
5133
5134         case 4:
5135         case 5:
5136                 /* i965+ uses the linear or tiled offsets from the
5137                  * Display Registers (which do not change across a page-flip)
5138                  * so we need only reprogram the base address.
5139                  */
5140                 OUT_RING(MI_DISPLAY_FLIP |
5141                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5142                 OUT_RING(fb->pitch);
5143                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5144
5145                 /* XXX Enabling the panel-fitter across page-flip is so far
5146                  * untested on non-native modes, so ignore it for now.
5147                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5148                  */
5149                 pf = 0;
5150                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5151                 OUT_RING(pf | pipesrc);
5152                 break;
5153
5154         case 6:
5155                 OUT_RING(MI_DISPLAY_FLIP |
5156                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5157                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5158                 OUT_RING(obj_priv->gtt_offset);
5159
5160                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5161                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5162                 OUT_RING(pf | pipesrc);
5163                 break;
5164         }
5165         ADVANCE_LP_RING();
5166
5167         mutex_unlock(&dev->struct_mutex);
5168
5169         trace_i915_flip_request(intel_crtc->plane, obj);
5170
5171         return 0;
5172
5173 cleanup_objs:
5174         drm_gem_object_unreference(work->old_fb_obj);
5175         drm_gem_object_unreference(obj);
5176 cleanup_work:
5177         mutex_unlock(&dev->struct_mutex);
5178
5179         spin_lock_irqsave(&dev->event_lock, flags);
5180         intel_crtc->unpin_work = NULL;
5181         spin_unlock_irqrestore(&dev->event_lock, flags);
5182
5183         kfree(work);
5184
5185         return ret;
5186 }
5187
5188 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5189         .dpms = intel_crtc_dpms,
5190         .mode_fixup = intel_crtc_mode_fixup,
5191         .mode_set = intel_crtc_mode_set,
5192         .mode_set_base = intel_pipe_set_base,
5193         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5194         .load_lut = intel_crtc_load_lut,
5195         .disable = intel_crtc_disable,
5196 };
5197
5198 static const struct drm_crtc_funcs intel_crtc_funcs = {
5199         .cursor_set = intel_crtc_cursor_set,
5200         .cursor_move = intel_crtc_cursor_move,
5201         .gamma_set = intel_crtc_gamma_set,
5202         .set_config = drm_crtc_helper_set_config,
5203         .destroy = intel_crtc_destroy,
5204         .page_flip = intel_crtc_page_flip,
5205 };
5206
5207
5208 static void intel_crtc_init(struct drm_device *dev, int pipe)
5209 {
5210         drm_i915_private_t *dev_priv = dev->dev_private;
5211         struct intel_crtc *intel_crtc;
5212         int i;
5213
5214         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5215         if (intel_crtc == NULL)
5216                 return;
5217
5218         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5219
5220         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5221         for (i = 0; i < 256; i++) {
5222                 intel_crtc->lut_r[i] = i;
5223                 intel_crtc->lut_g[i] = i;
5224                 intel_crtc->lut_b[i] = i;
5225         }
5226
5227         /* Swap pipes & planes for FBC on pre-965 */
5228         intel_crtc->pipe = pipe;
5229         intel_crtc->plane = pipe;
5230         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5231                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5232                 intel_crtc->plane = !pipe;
5233         }
5234
5235         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5236                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5237         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5238         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5239
5240         intel_crtc->cursor_addr = 0;
5241         intel_crtc->dpms_mode = -1;
5242         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5243
5244         if (HAS_PCH_SPLIT(dev)) {
5245                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5246                 intel_helper_funcs.commit = ironlake_crtc_commit;
5247         } else {
5248                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5249                 intel_helper_funcs.commit = i9xx_crtc_commit;
5250         }
5251
5252         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5253
5254         intel_crtc->busy = false;
5255
5256         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5257                     (unsigned long)intel_crtc);
5258 }
5259
5260 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5261                                 struct drm_file *file_priv)
5262 {
5263         drm_i915_private_t *dev_priv = dev->dev_private;
5264         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5265         struct drm_mode_object *drmmode_obj;
5266         struct intel_crtc *crtc;
5267
5268         if (!dev_priv) {
5269                 DRM_ERROR("called with no initialization\n");
5270                 return -EINVAL;
5271         }
5272
5273         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5274                         DRM_MODE_OBJECT_CRTC);
5275
5276         if (!drmmode_obj) {
5277                 DRM_ERROR("no such CRTC id\n");
5278                 return -EINVAL;
5279         }
5280
5281         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5282         pipe_from_crtc_id->pipe = crtc->pipe;
5283
5284         return 0;
5285 }
5286
5287 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5288 {
5289         struct intel_encoder *encoder;
5290         int index_mask = 0;
5291         int entry = 0;
5292
5293         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5294                 if (type_mask & encoder->clone_mask)
5295                         index_mask |= (1 << entry);
5296                 entry++;
5297         }
5298
5299         return index_mask;
5300 }
5301
5302 static void intel_setup_outputs(struct drm_device *dev)
5303 {
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305         struct intel_encoder *encoder;
5306         bool dpd_is_edp = false;
5307
5308         if (IS_MOBILE(dev) && !IS_I830(dev))
5309                 intel_lvds_init(dev);
5310
5311         if (HAS_PCH_SPLIT(dev)) {
5312                 dpd_is_edp = intel_dpd_is_edp(dev);
5313
5314                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5315                         intel_dp_init(dev, DP_A);
5316
5317                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5318                         intel_dp_init(dev, PCH_DP_D);
5319         }
5320
5321         intel_crt_init(dev);
5322
5323         if (HAS_PCH_SPLIT(dev)) {
5324                 int found;
5325
5326                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5327                         /* PCH SDVOB multiplex with HDMIB */
5328                         found = intel_sdvo_init(dev, PCH_SDVOB);
5329                         if (!found)
5330                                 intel_hdmi_init(dev, HDMIB);
5331                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5332                                 intel_dp_init(dev, PCH_DP_B);
5333                 }
5334
5335                 if (I915_READ(HDMIC) & PORT_DETECTED)
5336                         intel_hdmi_init(dev, HDMIC);
5337
5338                 if (I915_READ(HDMID) & PORT_DETECTED)
5339                         intel_hdmi_init(dev, HDMID);
5340
5341                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5342                         intel_dp_init(dev, PCH_DP_C);
5343
5344                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5345                         intel_dp_init(dev, PCH_DP_D);
5346
5347         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5348                 bool found = false;
5349
5350                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5351                         DRM_DEBUG_KMS("probing SDVOB\n");
5352                         found = intel_sdvo_init(dev, SDVOB);
5353                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5354                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5355                                 intel_hdmi_init(dev, SDVOB);
5356                         }
5357
5358                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5359                                 DRM_DEBUG_KMS("probing DP_B\n");
5360                                 intel_dp_init(dev, DP_B);
5361                         }
5362                 }
5363
5364                 /* Before G4X SDVOC doesn't have its own detect register */
5365
5366                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5367                         DRM_DEBUG_KMS("probing SDVOC\n");
5368                         found = intel_sdvo_init(dev, SDVOC);
5369                 }
5370
5371                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5372
5373                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5374                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5375                                 intel_hdmi_init(dev, SDVOC);
5376                         }
5377                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5378                                 DRM_DEBUG_KMS("probing DP_C\n");
5379                                 intel_dp_init(dev, DP_C);
5380                         }
5381                 }
5382
5383                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5384                     (I915_READ(DP_D) & DP_DETECTED)) {
5385                         DRM_DEBUG_KMS("probing DP_D\n");
5386                         intel_dp_init(dev, DP_D);
5387                 }
5388         } else if (IS_GEN2(dev))
5389                 intel_dvo_init(dev);
5390
5391         if (SUPPORTS_TV(dev))
5392                 intel_tv_init(dev);
5393
5394         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5395                 encoder->base.possible_crtcs = encoder->crtc_mask;
5396                 encoder->base.possible_clones =
5397                         intel_encoder_clones(dev, encoder->clone_mask);
5398         }
5399 }
5400
5401 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5402 {
5403         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5404
5405         drm_framebuffer_cleanup(fb);
5406         drm_gem_object_unreference_unlocked(intel_fb->obj);
5407
5408         kfree(intel_fb);
5409 }
5410
5411 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5412                                                 struct drm_file *file_priv,
5413                                                 unsigned int *handle)
5414 {
5415         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5416         struct drm_gem_object *object = intel_fb->obj;
5417
5418         return drm_gem_handle_create(file_priv, object, handle);
5419 }
5420
5421 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5422         .destroy = intel_user_framebuffer_destroy,
5423         .create_handle = intel_user_framebuffer_create_handle,
5424 };
5425
5426 int intel_framebuffer_init(struct drm_device *dev,
5427                            struct intel_framebuffer *intel_fb,
5428                            struct drm_mode_fb_cmd *mode_cmd,
5429                            struct drm_gem_object *obj)
5430 {
5431         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5432         int ret;
5433
5434         if (obj_priv->tiling_mode == I915_TILING_Y)
5435                 return -EINVAL;
5436
5437         if (mode_cmd->pitch & 63)
5438                 return -EINVAL;
5439
5440         switch (mode_cmd->bpp) {
5441         case 8:
5442         case 16:
5443         case 24:
5444         case 32:
5445                 break;
5446         default:
5447                 return -EINVAL;
5448         }
5449
5450         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5451         if (ret) {
5452                 DRM_ERROR("framebuffer init failed %d\n", ret);
5453                 return ret;
5454         }
5455
5456         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5457         intel_fb->obj = obj;
5458         return 0;
5459 }
5460
5461 static struct drm_framebuffer *
5462 intel_user_framebuffer_create(struct drm_device *dev,
5463                               struct drm_file *filp,
5464                               struct drm_mode_fb_cmd *mode_cmd)
5465 {
5466         struct drm_gem_object *obj;
5467         struct intel_framebuffer *intel_fb;
5468         int ret;
5469
5470         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5471         if (!obj)
5472                 return ERR_PTR(-ENOENT);
5473
5474         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5475         if (!intel_fb)
5476                 return ERR_PTR(-ENOMEM);
5477
5478         ret = intel_framebuffer_init(dev, intel_fb,
5479                                      mode_cmd, obj);
5480         if (ret) {
5481                 drm_gem_object_unreference_unlocked(obj);
5482                 kfree(intel_fb);
5483                 return ERR_PTR(ret);
5484         }
5485
5486         return &intel_fb->base;
5487 }
5488
5489 static const struct drm_mode_config_funcs intel_mode_funcs = {
5490         .fb_create = intel_user_framebuffer_create,
5491         .output_poll_changed = intel_fb_output_poll_changed,
5492 };
5493
5494 static struct drm_gem_object *
5495 intel_alloc_context_page(struct drm_device *dev)
5496 {
5497         struct drm_gem_object *ctx;
5498         int ret;
5499
5500         ctx = i915_gem_alloc_object(dev, 4096);
5501         if (!ctx) {
5502                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5503                 return NULL;
5504         }
5505
5506         mutex_lock(&dev->struct_mutex);
5507         ret = i915_gem_object_pin(ctx, 4096);
5508         if (ret) {
5509                 DRM_ERROR("failed to pin power context: %d\n", ret);
5510                 goto err_unref;
5511         }
5512
5513         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5514         if (ret) {
5515                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5516                 goto err_unpin;
5517         }
5518         mutex_unlock(&dev->struct_mutex);
5519
5520         return ctx;
5521
5522 err_unpin:
5523         i915_gem_object_unpin(ctx);
5524 err_unref:
5525         drm_gem_object_unreference(ctx);
5526         mutex_unlock(&dev->struct_mutex);
5527         return NULL;
5528 }
5529
5530 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5531 {
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533         u16 rgvswctl;
5534
5535         rgvswctl = I915_READ16(MEMSWCTL);
5536         if (rgvswctl & MEMCTL_CMD_STS) {
5537                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5538                 return false; /* still busy with another command */
5539         }
5540
5541         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5542                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5543         I915_WRITE16(MEMSWCTL, rgvswctl);
5544         POSTING_READ16(MEMSWCTL);
5545
5546         rgvswctl |= MEMCTL_CMD_STS;
5547         I915_WRITE16(MEMSWCTL, rgvswctl);
5548
5549         return true;
5550 }
5551
5552 void ironlake_enable_drps(struct drm_device *dev)
5553 {
5554         struct drm_i915_private *dev_priv = dev->dev_private;
5555         u32 rgvmodectl = I915_READ(MEMMODECTL);
5556         u8 fmax, fmin, fstart, vstart;
5557
5558         /* Enable temp reporting */
5559         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5560         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5561
5562         /* 100ms RC evaluation intervals */
5563         I915_WRITE(RCUPEI, 100000);
5564         I915_WRITE(RCDNEI, 100000);
5565
5566         /* Set max/min thresholds to 90ms and 80ms respectively */
5567         I915_WRITE(RCBMAXAVG, 90000);
5568         I915_WRITE(RCBMINAVG, 80000);
5569
5570         I915_WRITE(MEMIHYST, 1);
5571
5572         /* Set up min, max, and cur for interrupt handling */
5573         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5574         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5575         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5576                 MEMMODE_FSTART_SHIFT;
5577         fstart = fmax;
5578
5579         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5580                 PXVFREQ_PX_SHIFT;
5581
5582         dev_priv->fmax = fstart; /* IPS callback will increase this */
5583         dev_priv->fstart = fstart;
5584
5585         dev_priv->max_delay = fmax;
5586         dev_priv->min_delay = fmin;
5587         dev_priv->cur_delay = fstart;
5588
5589         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5590                          fstart);
5591
5592         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5593
5594         /*
5595          * Interrupts will be enabled in ironlake_irq_postinstall
5596          */
5597
5598         I915_WRITE(VIDSTART, vstart);
5599         POSTING_READ(VIDSTART);
5600
5601         rgvmodectl |= MEMMODE_SWMODE_EN;
5602         I915_WRITE(MEMMODECTL, rgvmodectl);
5603
5604         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5605                 DRM_ERROR("stuck trying to change perf mode\n");
5606         msleep(1);
5607
5608         ironlake_set_drps(dev, fstart);
5609
5610         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5611                 I915_READ(0x112e0);
5612         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5613         dev_priv->last_count2 = I915_READ(0x112f4);
5614         getrawmonotonic(&dev_priv->last_time2);
5615 }
5616
5617 void ironlake_disable_drps(struct drm_device *dev)
5618 {
5619         struct drm_i915_private *dev_priv = dev->dev_private;
5620         u16 rgvswctl = I915_READ16(MEMSWCTL);
5621
5622         /* Ack interrupts, disable EFC interrupt */
5623         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5624         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5625         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5626         I915_WRITE(DEIIR, DE_PCU_EVENT);
5627         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5628
5629         /* Go back to the starting frequency */
5630         ironlake_set_drps(dev, dev_priv->fstart);
5631         msleep(1);
5632         rgvswctl |= MEMCTL_CMD_STS;
5633         I915_WRITE(MEMSWCTL, rgvswctl);
5634         msleep(1);
5635
5636 }
5637
5638 static unsigned long intel_pxfreq(u32 vidfreq)
5639 {
5640         unsigned long freq;
5641         int div = (vidfreq & 0x3f0000) >> 16;
5642         int post = (vidfreq & 0x3000) >> 12;
5643         int pre = (vidfreq & 0x7);
5644
5645         if (!pre)
5646                 return 0;
5647
5648         freq = ((div * 133333) / ((1<<post) * pre));
5649
5650         return freq;
5651 }
5652
5653 void intel_init_emon(struct drm_device *dev)
5654 {
5655         struct drm_i915_private *dev_priv = dev->dev_private;
5656         u32 lcfuse;
5657         u8 pxw[16];
5658         int i;
5659
5660         /* Disable to program */
5661         I915_WRITE(ECR, 0);
5662         POSTING_READ(ECR);
5663
5664         /* Program energy weights for various events */
5665         I915_WRITE(SDEW, 0x15040d00);
5666         I915_WRITE(CSIEW0, 0x007f0000);
5667         I915_WRITE(CSIEW1, 0x1e220004);
5668         I915_WRITE(CSIEW2, 0x04000004);
5669
5670         for (i = 0; i < 5; i++)
5671                 I915_WRITE(PEW + (i * 4), 0);
5672         for (i = 0; i < 3; i++)
5673                 I915_WRITE(DEW + (i * 4), 0);
5674
5675         /* Program P-state weights to account for frequency power adjustment */
5676         for (i = 0; i < 16; i++) {
5677                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5678                 unsigned long freq = intel_pxfreq(pxvidfreq);
5679                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5680                         PXVFREQ_PX_SHIFT;
5681                 unsigned long val;
5682
5683                 val = vid * vid;
5684                 val *= (freq / 1000);
5685                 val *= 255;
5686                 val /= (127*127*900);
5687                 if (val > 0xff)
5688                         DRM_ERROR("bad pxval: %ld\n", val);
5689                 pxw[i] = val;
5690         }
5691         /* Render standby states get 0 weight */
5692         pxw[14] = 0;
5693         pxw[15] = 0;
5694
5695         for (i = 0; i < 4; i++) {
5696                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5697                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5698                 I915_WRITE(PXW + (i * 4), val);
5699         }
5700
5701         /* Adjust magic regs to magic values (more experimental results) */
5702         I915_WRITE(OGW0, 0);
5703         I915_WRITE(OGW1, 0);
5704         I915_WRITE(EG0, 0x00007f00);
5705         I915_WRITE(EG1, 0x0000000e);
5706         I915_WRITE(EG2, 0x000e0000);
5707         I915_WRITE(EG3, 0x68000300);
5708         I915_WRITE(EG4, 0x42000000);
5709         I915_WRITE(EG5, 0x00140031);
5710         I915_WRITE(EG6, 0);
5711         I915_WRITE(EG7, 0);
5712
5713         for (i = 0; i < 8; i++)
5714                 I915_WRITE(PXWL + (i * 4), 0);
5715
5716         /* Enable PMON + select events */
5717         I915_WRITE(ECR, 0x80000019);
5718
5719         lcfuse = I915_READ(LCFUSE02);
5720
5721         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5722 }
5723
5724 void intel_init_clock_gating(struct drm_device *dev)
5725 {
5726         struct drm_i915_private *dev_priv = dev->dev_private;
5727
5728         /*
5729          * Disable clock gating reported to work incorrectly according to the
5730          * specs, but enable as much else as we can.
5731          */
5732         if (HAS_PCH_SPLIT(dev)) {
5733                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5734
5735                 if (IS_IRONLAKE(dev)) {
5736                         /* Required for FBC */
5737                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5738                         /* Required for CxSR */
5739                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5740
5741                         I915_WRITE(PCH_3DCGDIS0,
5742                                    MARIUNIT_CLOCK_GATE_DISABLE |
5743                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5744                 }
5745
5746                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5747
5748                 /*
5749                  * According to the spec the following bits should be set in
5750                  * order to enable memory self-refresh
5751                  * The bit 22/21 of 0x42004
5752                  * The bit 5 of 0x42020
5753                  * The bit 15 of 0x45000
5754                  */
5755                 if (IS_IRONLAKE(dev)) {
5756                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5757                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5758                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5759                         I915_WRITE(ILK_DSPCLK_GATE,
5760                                         (I915_READ(ILK_DSPCLK_GATE) |
5761                                                 ILK_DPARB_CLK_GATE));
5762                         I915_WRITE(DISP_ARB_CTL,
5763                                         (I915_READ(DISP_ARB_CTL) |
5764                                                 DISP_FBC_WM_DIS));
5765                 I915_WRITE(WM3_LP_ILK, 0);
5766                 I915_WRITE(WM2_LP_ILK, 0);
5767                 I915_WRITE(WM1_LP_ILK, 0);
5768                 }
5769                 /*
5770                  * Based on the document from hardware guys the following bits
5771                  * should be set unconditionally in order to enable FBC.
5772                  * The bit 22 of 0x42000
5773                  * The bit 22 of 0x42004
5774                  * The bit 7,8,9 of 0x42020.
5775                  */
5776                 if (IS_IRONLAKE_M(dev)) {
5777                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5778                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5779                                    ILK_FBCQ_DIS);
5780                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5781                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5782                                    ILK_DPARB_GATE);
5783                         I915_WRITE(ILK_DSPCLK_GATE,
5784                                    I915_READ(ILK_DSPCLK_GATE) |
5785                                    ILK_DPFC_DIS1 |
5786                                    ILK_DPFC_DIS2 |
5787                                    ILK_CLK_FBC);
5788                 }
5789                 return;
5790         } else if (IS_G4X(dev)) {
5791                 uint32_t dspclk_gate;
5792                 I915_WRITE(RENCLK_GATE_D1, 0);
5793                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5794                        GS_UNIT_CLOCK_GATE_DISABLE |
5795                        CL_UNIT_CLOCK_GATE_DISABLE);
5796                 I915_WRITE(RAMCLK_GATE_D, 0);
5797                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5798                         OVRUNIT_CLOCK_GATE_DISABLE |
5799                         OVCUNIT_CLOCK_GATE_DISABLE;
5800                 if (IS_GM45(dev))
5801                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5802                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5803         } else if (IS_CRESTLINE(dev)) {
5804                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5805                 I915_WRITE(RENCLK_GATE_D2, 0);
5806                 I915_WRITE(DSPCLK_GATE_D, 0);
5807                 I915_WRITE(RAMCLK_GATE_D, 0);
5808                 I915_WRITE16(DEUC, 0);
5809         } else if (IS_BROADWATER(dev)) {
5810                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5811                        I965_RCC_CLOCK_GATE_DISABLE |
5812                        I965_RCPB_CLOCK_GATE_DISABLE |
5813                        I965_ISC_CLOCK_GATE_DISABLE |
5814                        I965_FBC_CLOCK_GATE_DISABLE);
5815                 I915_WRITE(RENCLK_GATE_D2, 0);
5816         } else if (IS_GEN3(dev)) {
5817                 u32 dstate = I915_READ(D_STATE);
5818
5819                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5820                         DSTATE_DOT_CLOCK_GATING;
5821                 I915_WRITE(D_STATE, dstate);
5822         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5823                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5824         } else if (IS_I830(dev)) {
5825                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5826         }
5827
5828         /*
5829          * GPU can automatically power down the render unit if given a page
5830          * to save state.
5831          */
5832         if (IS_IRONLAKE_M(dev)) {
5833                 if (dev_priv->renderctx == NULL)
5834                         dev_priv->renderctx = intel_alloc_context_page(dev);
5835                 if (dev_priv->renderctx) {
5836                         struct drm_i915_gem_object *obj_priv;
5837                         obj_priv = to_intel_bo(dev_priv->renderctx);
5838                         if (obj_priv) {
5839                                 BEGIN_LP_RING(4);
5840                                 OUT_RING(MI_SET_CONTEXT);
5841                                 OUT_RING(obj_priv->gtt_offset |
5842                                                 MI_MM_SPACE_GTT |
5843                                                 MI_SAVE_EXT_STATE_EN |
5844                                                 MI_RESTORE_EXT_STATE_EN |
5845                                                 MI_RESTORE_INHIBIT);
5846                                 OUT_RING(MI_NOOP);
5847                                 OUT_RING(MI_FLUSH);
5848                                 ADVANCE_LP_RING();
5849                         }
5850                 } else
5851                         DRM_DEBUG_KMS("Failed to allocate render context."
5852                                        "Disable RC6\n");
5853         }
5854
5855         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5856                 struct drm_i915_gem_object *obj_priv = NULL;
5857
5858                 if (dev_priv->pwrctx) {
5859                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5860                 } else {
5861                         struct drm_gem_object *pwrctx;
5862
5863                         pwrctx = intel_alloc_context_page(dev);
5864                         if (pwrctx) {
5865                                 dev_priv->pwrctx = pwrctx;
5866                                 obj_priv = to_intel_bo(pwrctx);
5867                         }
5868                 }
5869
5870                 if (obj_priv) {
5871                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5872                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5873                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5874                 }
5875         }
5876 }
5877
5878 /* Set up chip specific display functions */
5879 static void intel_init_display(struct drm_device *dev)
5880 {
5881         struct drm_i915_private *dev_priv = dev->dev_private;
5882
5883         /* We always want a DPMS function */
5884         if (HAS_PCH_SPLIT(dev))
5885                 dev_priv->display.dpms = ironlake_crtc_dpms;
5886         else
5887                 dev_priv->display.dpms = i9xx_crtc_dpms;
5888
5889         if (I915_HAS_FBC(dev)) {
5890                 if (IS_IRONLAKE_M(dev)) {
5891                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5892                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5893                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5894                 } else if (IS_GM45(dev)) {
5895                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5896                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5897                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5898                 } else if (IS_CRESTLINE(dev)) {
5899                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5900                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5901                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5902                 }
5903                 /* 855GM needs testing */
5904         }
5905
5906         /* Returns the core display clock speed */
5907         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5908                 dev_priv->display.get_display_clock_speed =
5909                         i945_get_display_clock_speed;
5910         else if (IS_I915G(dev))
5911                 dev_priv->display.get_display_clock_speed =
5912                         i915_get_display_clock_speed;
5913         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5914                 dev_priv->display.get_display_clock_speed =
5915                         i9xx_misc_get_display_clock_speed;
5916         else if (IS_I915GM(dev))
5917                 dev_priv->display.get_display_clock_speed =
5918                         i915gm_get_display_clock_speed;
5919         else if (IS_I865G(dev))
5920                 dev_priv->display.get_display_clock_speed =
5921                         i865_get_display_clock_speed;
5922         else if (IS_I85X(dev))
5923                 dev_priv->display.get_display_clock_speed =
5924                         i855_get_display_clock_speed;
5925         else /* 852, 830 */
5926                 dev_priv->display.get_display_clock_speed =
5927                         i830_get_display_clock_speed;
5928
5929         /* For FIFO watermark updates */
5930         if (HAS_PCH_SPLIT(dev)) {
5931                 if (IS_IRONLAKE(dev)) {
5932                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5933                                 dev_priv->display.update_wm = ironlake_update_wm;
5934                         else {
5935                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5936                                               "Disable CxSR\n");
5937                                 dev_priv->display.update_wm = NULL;
5938                         }
5939                 } else
5940                         dev_priv->display.update_wm = NULL;
5941         } else if (IS_PINEVIEW(dev)) {
5942                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5943                                             dev_priv->is_ddr3,
5944                                             dev_priv->fsb_freq,
5945                                             dev_priv->mem_freq)) {
5946                         DRM_INFO("failed to find known CxSR latency "
5947                                  "(found ddr%s fsb freq %d, mem freq %d), "
5948                                  "disabling CxSR\n",
5949                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5950                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5951                         /* Disable CxSR and never update its watermark again */
5952                         pineview_disable_cxsr(dev);
5953                         dev_priv->display.update_wm = NULL;
5954                 } else
5955                         dev_priv->display.update_wm = pineview_update_wm;
5956         } else if (IS_G4X(dev))
5957                 dev_priv->display.update_wm = g4x_update_wm;
5958         else if (IS_GEN4(dev))
5959                 dev_priv->display.update_wm = i965_update_wm;
5960         else if (IS_GEN3(dev)) {
5961                 dev_priv->display.update_wm = i9xx_update_wm;
5962                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5963         } else if (IS_I85X(dev)) {
5964                 dev_priv->display.update_wm = i9xx_update_wm;
5965                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5966         } else {
5967                 dev_priv->display.update_wm = i830_update_wm;
5968                 if (IS_845G(dev))
5969                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5970                 else
5971                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5972         }
5973 }
5974
5975 /*
5976  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5977  * resume, or other times.  This quirk makes sure that's the case for
5978  * affected systems.
5979  */
5980 static void quirk_pipea_force (struct drm_device *dev)
5981 {
5982         struct drm_i915_private *dev_priv = dev->dev_private;
5983
5984         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5985         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5986 }
5987
5988 struct intel_quirk {
5989         int device;
5990         int subsystem_vendor;
5991         int subsystem_device;
5992         void (*hook)(struct drm_device *dev);
5993 };
5994
5995 struct intel_quirk intel_quirks[] = {
5996         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5997         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5998         /* HP Mini needs pipe A force quirk (LP: #322104) */
5999         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6000
6001         /* Thinkpad R31 needs pipe A force quirk */
6002         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6003         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6004         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6005
6006         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6007         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6008         /* ThinkPad X40 needs pipe A force quirk */
6009
6010         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6011         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6012
6013         /* 855 & before need to leave pipe A & dpll A up */
6014         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6015         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6016 };
6017
6018 static void intel_init_quirks(struct drm_device *dev)
6019 {
6020         struct pci_dev *d = dev->pdev;
6021         int i;
6022
6023         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6024                 struct intel_quirk *q = &intel_quirks[i];
6025
6026                 if (d->device == q->device &&
6027                     (d->subsystem_vendor == q->subsystem_vendor ||
6028                      q->subsystem_vendor == PCI_ANY_ID) &&
6029                     (d->subsystem_device == q->subsystem_device ||
6030                      q->subsystem_device == PCI_ANY_ID))
6031                         q->hook(dev);
6032         }
6033 }
6034
6035 /* Disable the VGA plane that we never use */
6036 static void i915_disable_vga(struct drm_device *dev)
6037 {
6038         struct drm_i915_private *dev_priv = dev->dev_private;
6039         u8 sr1;
6040         u32 vga_reg;
6041
6042         if (HAS_PCH_SPLIT(dev))
6043                 vga_reg = CPU_VGACNTRL;
6044         else
6045                 vga_reg = VGACNTRL;
6046
6047         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6048         outb(1, VGA_SR_INDEX);
6049         sr1 = inb(VGA_SR_DATA);
6050         outb(sr1 | 1<<5, VGA_SR_DATA);
6051         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6052         udelay(300);
6053
6054         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6055         POSTING_READ(vga_reg);
6056 }
6057
6058 void intel_modeset_init(struct drm_device *dev)
6059 {
6060         struct drm_i915_private *dev_priv = dev->dev_private;
6061         int i;
6062
6063         drm_mode_config_init(dev);
6064
6065         dev->mode_config.min_width = 0;
6066         dev->mode_config.min_height = 0;
6067
6068         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6069
6070         intel_init_quirks(dev);
6071
6072         intel_init_display(dev);
6073
6074         if (IS_GEN2(dev)) {
6075                 dev->mode_config.max_width = 2048;
6076                 dev->mode_config.max_height = 2048;
6077         } else if (IS_GEN3(dev)) {
6078                 dev->mode_config.max_width = 4096;
6079                 dev->mode_config.max_height = 4096;
6080         } else {
6081                 dev->mode_config.max_width = 8192;
6082                 dev->mode_config.max_height = 8192;
6083         }
6084
6085         /* set memory base */
6086         if (IS_GEN2(dev))
6087                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6088         else
6089                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6090
6091         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6092                 dev_priv->num_pipe = 2;
6093         else
6094                 dev_priv->num_pipe = 1;
6095         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6096                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6097
6098         for (i = 0; i < dev_priv->num_pipe; i++) {
6099                 intel_crtc_init(dev, i);
6100         }
6101
6102         intel_setup_outputs(dev);
6103
6104         intel_init_clock_gating(dev);
6105
6106         /* Just disable it once at startup */
6107         i915_disable_vga(dev);
6108
6109         if (IS_IRONLAKE_M(dev)) {
6110                 ironlake_enable_drps(dev);
6111                 intel_init_emon(dev);
6112         }
6113
6114         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6115         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6116                     (unsigned long)dev);
6117
6118         intel_setup_overlay(dev);
6119 }
6120
6121 void intel_modeset_cleanup(struct drm_device *dev)
6122 {
6123         struct drm_i915_private *dev_priv = dev->dev_private;
6124         struct drm_crtc *crtc;
6125         struct intel_crtc *intel_crtc;
6126
6127         drm_kms_helper_poll_fini(dev);
6128         mutex_lock(&dev->struct_mutex);
6129
6130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6131                 /* Skip inactive CRTCs */
6132                 if (!crtc->fb)
6133                         continue;
6134
6135                 intel_crtc = to_intel_crtc(crtc);
6136                 intel_increase_pllclock(crtc);
6137         }
6138
6139         if (dev_priv->display.disable_fbc)
6140                 dev_priv->display.disable_fbc(dev);
6141
6142         if (dev_priv->renderctx) {
6143                 struct drm_i915_gem_object *obj_priv;
6144
6145                 obj_priv = to_intel_bo(dev_priv->renderctx);
6146                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6147                 I915_READ(CCID);
6148                 i915_gem_object_unpin(dev_priv->renderctx);
6149                 drm_gem_object_unreference(dev_priv->renderctx);
6150         }
6151
6152         if (dev_priv->pwrctx) {
6153                 struct drm_i915_gem_object *obj_priv;
6154
6155                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6156                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6157                 I915_READ(PWRCTXA);
6158                 i915_gem_object_unpin(dev_priv->pwrctx);
6159                 drm_gem_object_unreference(dev_priv->pwrctx);
6160         }
6161
6162         if (IS_IRONLAKE_M(dev))
6163                 ironlake_disable_drps(dev);
6164
6165         mutex_unlock(&dev->struct_mutex);
6166
6167         /* Disable the irq before mode object teardown, for the irq might
6168          * enqueue unpin/hotplug work. */
6169         drm_irq_uninstall(dev);
6170         cancel_work_sync(&dev_priv->hotplug_work);
6171
6172         /* Shut off idle work before the crtcs get freed. */
6173         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6174                 intel_crtc = to_intel_crtc(crtc);
6175                 del_timer_sync(&intel_crtc->idle_timer);
6176         }
6177         del_timer_sync(&dev_priv->idle_timer);
6178         cancel_work_sync(&dev_priv->idle_work);
6179
6180         drm_mode_config_cleanup(dev);
6181 }
6182
6183 /*
6184  * Return which encoder is currently attached for connector.
6185  */
6186 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6187 {
6188         return &intel_attached_encoder(connector)->base;
6189 }
6190
6191 void intel_connector_attach_encoder(struct intel_connector *connector,
6192                                     struct intel_encoder *encoder)
6193 {
6194         connector->encoder = encoder;
6195         drm_mode_connector_attach_encoder(&connector->base,
6196                                           &encoder->base);
6197 }
6198
6199 /*
6200  * set vga decode state - true == enable VGA decode
6201  */
6202 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6203 {
6204         struct drm_i915_private *dev_priv = dev->dev_private;
6205         u16 gmch_ctrl;
6206
6207         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6208         if (state)
6209                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6210         else
6211                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6212         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6213         return 0;
6214 }