]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
0d7c4f634bb92bbe1ee0fa3209f2591ff62a55fe
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78         struct drm_i915_private *dev_priv = dev->dev_private;
79
80         WARN_ON(!HAS_PCH_SPLIT(dev));
81
82         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88         if (IS_GEN5(dev)) {
89                 struct drm_i915_private *dev_priv = dev->dev_private;
90                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91         } else
92                 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96         .dot = { .min = 25000, .max = 350000 },
97         .vco = { .min = 930000, .max = 1400000 },
98         .n = { .min = 3, .max = 16 },
99         .m = { .min = 96, .max = 140 },
100         .m1 = { .min = 18, .max = 26 },
101         .m2 = { .min = 6, .max = 16 },
102         .p = { .min = 4, .max = 128 },
103         .p1 = { .min = 2, .max = 33 },
104         .p2 = { .dot_limit = 165000,
105                 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 8, .max = 18 },
140         .m2 = { .min = 3, .max = 7 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 7, .max = 98 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 112000,
157                 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162         .dot = { .min = 25000, .max = 270000 },
163         .vco = { .min = 1750000, .max = 3500000},
164         .n = { .min = 1, .max = 4 },
165         .m = { .min = 104, .max = 138 },
166         .m1 = { .min = 17, .max = 23 },
167         .m2 = { .min = 5, .max = 11 },
168         .p = { .min = 10, .max = 30 },
169         .p1 = { .min = 1, .max = 3},
170         .p2 = { .dot_limit = 270000,
171                 .p2_slow = 10,
172                 .p2_fast = 10
173         },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177         .dot = { .min = 22000, .max = 400000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 16, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 5, .max = 80 },
184         .p1 = { .min = 1, .max = 8},
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190         .dot = { .min = 20000, .max = 115000 },
191         .vco = { .min = 1750000, .max = 3500000 },
192         .n = { .min = 1, .max = 3 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 17, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 28, .max = 112 },
197         .p1 = { .min = 2, .max = 8 },
198         .p2 = { .dot_limit = 0,
199                 .p2_slow = 14, .p2_fast = 14
200         },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204         .dot = { .min = 80000, .max = 224000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 14, .max = 42 },
211         .p1 = { .min = 2, .max = 6 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 7, .p2_fast = 7
214         },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218         .dot = { .min = 20000, .max = 400000},
219         .vco = { .min = 1700000, .max = 3500000 },
220         /* Pineview's Ncounter is a ring counter */
221         .n = { .min = 3, .max = 6 },
222         .m = { .min = 2, .max = 256 },
223         /* Pineview only has one combined m divider, which we treat as m2. */
224         .m1 = { .min = 0, .max = 0 },
225         .m2 = { .min = 0, .max = 254 },
226         .p = { .min = 5, .max = 80 },
227         .p1 = { .min = 1, .max = 8 },
228         .p2 = { .dot_limit = 200000,
229                 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233         .dot = { .min = 20000, .max = 400000 },
234         .vco = { .min = 1700000, .max = 3500000 },
235         .n = { .min = 3, .max = 6 },
236         .m = { .min = 2, .max = 256 },
237         .m1 = { .min = 0, .max = 0 },
238         .m2 = { .min = 0, .max = 254 },
239         .p = { .min = 7, .max = 112 },
240         .p1 = { .min = 1, .max = 8 },
241         .p2 = { .dot_limit = 112000,
242                 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246  *
247  * We calculate clock using (register_value + 2) for N/M1/M2, so here
248  * the range value for them is (actual_value - 2).
249  */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251         .dot = { .min = 25000, .max = 350000 },
252         .vco = { .min = 1760000, .max = 3510000 },
253         .n = { .min = 1, .max = 5 },
254         .m = { .min = 79, .max = 127 },
255         .m1 = { .min = 12, .max = 22 },
256         .m2 = { .min = 5, .max = 9 },
257         .p = { .min = 5, .max = 80 },
258         .p1 = { .min = 1, .max = 8 },
259         .p2 = { .dot_limit = 225000,
260                 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 1760000, .max = 3510000 },
266         .n = { .min = 1, .max = 3 },
267         .m = { .min = 79, .max = 118 },
268         .m1 = { .min = 12, .max = 22 },
269         .m2 = { .min = 5, .max = 9 },
270         .p = { .min = 28, .max = 112 },
271         .p1 = { .min = 2, .max = 8 },
272         .p2 = { .dot_limit = 225000,
273                 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 1760000, .max = 3510000 },
279         .n = { .min = 1, .max = 3 },
280         .m = { .min = 79, .max = 127 },
281         .m1 = { .min = 12, .max = 22 },
282         .m2 = { .min = 5, .max = 9 },
283         .p = { .min = 14, .max = 56 },
284         .p1 = { .min = 2, .max = 8 },
285         .p2 = { .dot_limit = 225000,
286                 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 2 },
294         .m = { .min = 79, .max = 126 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 28, .max = 112 },
298         .p1 = { .min = 2, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 126 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 42 },
311         .p1 = { .min = 2, .max = 6 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317         .dot = { .min = 25000, .max = 270000 },
318         .vco = { .min = 4000000, .max = 6000000 },
319         .n = { .min = 1, .max = 7 },
320         .m = { .min = 22, .max = 450 }, /* guess */
321         .m1 = { .min = 2, .max = 3 },
322         .m2 = { .min = 11, .max = 156 },
323         .p = { .min = 10, .max = 30 },
324         .p1 = { .min = 1, .max = 3 },
325         .p2 = { .dot_limit = 270000,
326                 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 4000000, .max = 6000000 },
332         .n = { .min = 1, .max = 7 },
333         .m = { .min = 60, .max = 300 }, /* guess */
334         .m1 = { .min = 2, .max = 3 },
335         .m2 = { .min = 11, .max = 156 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 2, .max = 3 },
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 },
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356                                                 int refclk)
357 {
358         struct drm_device *dev = crtc->dev;
359         const intel_limit_t *limit;
360
361         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362                 if (intel_is_dual_link_lvds(dev)) {
363                         if (refclk == 100000)
364                                 limit = &intel_limits_ironlake_dual_lvds_100m;
365                         else
366                                 limit = &intel_limits_ironlake_dual_lvds;
367                 } else {
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_single_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_single_lvds;
372                 }
373         } else
374                 limit = &intel_limits_ironlake_dac;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385                 if (intel_is_dual_link_lvds(dev))
386                         limit = &intel_limits_g4x_dual_channel_lvds;
387                 else
388                         limit = &intel_limits_g4x_single_channel_lvds;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391                 limit = &intel_limits_g4x_hdmi;
392         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393                 limit = &intel_limits_g4x_sdvo;
394         } else /* The option is for other outputs */
395                 limit = &intel_limits_i9xx_sdvo;
396
397         return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402         struct drm_device *dev = crtc->dev;
403         const intel_limit_t *limit;
404
405         if (HAS_PCH_SPLIT(dev))
406                 limit = intel_ironlake_limit(crtc, refclk);
407         else if (IS_G4X(dev)) {
408                 limit = intel_g4x_limit(crtc);
409         } else if (IS_PINEVIEW(dev)) {
410                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411                         limit = &intel_limits_pineview_lvds;
412                 else
413                         limit = &intel_limits_pineview_sdvo;
414         } else if (IS_VALLEYVIEW(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416                         limit = &intel_limits_vlv_dac;
417                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418                         limit = &intel_limits_vlv_hdmi;
419                 else
420                         limit = &intel_limits_vlv_dp;
421         } else if (!IS_GEN2(dev)) {
422                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423                         limit = &intel_limits_i9xx_lvds;
424                 else
425                         limit = &intel_limits_i9xx_sdvo;
426         } else {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_i8xx_lvds;
429                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430                         limit = &intel_limits_i8xx_dvo;
431                 else
432                         limit = &intel_limits_i8xx_dac;
433         }
434         return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440         clock->m = clock->m2 + 2;
441         clock->p = clock->p1 * clock->p2;
442         clock->vco = refclk * clock->m / clock->n;
443         clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453         clock->m = i9xx_dpll_compute_m(clock);
454         clock->p = clock->p1 * clock->p2;
455         clock->vco = refclk * clock->m / (clock->n + 2);
456         clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464         struct drm_device *dev = crtc->dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, crtc, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476  * Returns whether the given set of divisors are valid for a given refclk with
477  * the given connectors.
478  */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481                                const intel_limit_t *limit,
482                                const intel_clock_t *clock)
483 {
484         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
485                 INTELPllInvalid("p1 out of range\n");
486         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
487                 INTELPllInvalid("p out of range\n");
488         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
489                 INTELPllInvalid("m2 out of range\n");
490         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
491                 INTELPllInvalid("m1 out of range\n");
492         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493                 INTELPllInvalid("m1 <= m2\n");
494         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
495                 INTELPllInvalid("m out of range\n");
496         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
497                 INTELPllInvalid("n out of range\n");
498         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499                 INTELPllInvalid("vco out of range\n");
500         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501          * connector, etc., rather than just a single range.
502          */
503         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504                 INTELPllInvalid("dot out of range\n");
505
506         return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511                     int target, int refclk, intel_clock_t *match_clock,
512                     intel_clock_t *best_clock)
513 {
514         struct drm_device *dev = crtc->dev;
515         intel_clock_t clock;
516         int err = target;
517
518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519                 /*
520                  * For LVDS just rely on its current settings for dual-channel.
521                  * We haven't figured out how to reliably set up different
522                  * single/dual channel state, if we even can.
523                  */
524                 if (intel_is_dual_link_lvds(dev))
525                         clock.p2 = limit->p2.p2_fast;
526                 else
527                         clock.p2 = limit->p2.p2_slow;
528         } else {
529                 if (target < limit->p2.dot_limit)
530                         clock.p2 = limit->p2.p2_slow;
531                 else
532                         clock.p2 = limit->p2.p2_fast;
533         }
534
535         memset(best_clock, 0, sizeof(*best_clock));
536
537         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538              clock.m1++) {
539                 for (clock.m2 = limit->m2.min;
540                      clock.m2 <= limit->m2.max; clock.m2++) {
541                         if (clock.m2 >= clock.m1)
542                                 break;
543                         for (clock.n = limit->n.min;
544                              clock.n <= limit->n.max; clock.n++) {
545                                 for (clock.p1 = limit->p1.min;
546                                         clock.p1 <= limit->p1.max; clock.p1++) {
547                                         int this_err;
548
549                                         i9xx_clock(refclk, &clock);
550                                         if (!intel_PLL_is_valid(dev, limit,
551                                                                 &clock))
552                                                 continue;
553                                         if (match_clock &&
554                                             clock.p != match_clock->p)
555                                                 continue;
556
557                                         this_err = abs(clock.dot - target);
558                                         if (this_err < err) {
559                                                 *best_clock = clock;
560                                                 err = this_err;
561                                         }
562                                 }
563                         }
564                 }
565         }
566
567         return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572                    int target, int refclk, intel_clock_t *match_clock,
573                    intel_clock_t *best_clock)
574 {
575         struct drm_device *dev = crtc->dev;
576         intel_clock_t clock;
577         int err = target;
578
579         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580                 /*
581                  * For LVDS just rely on its current settings for dual-channel.
582                  * We haven't figured out how to reliably set up different
583                  * single/dual channel state, if we even can.
584                  */
585                 if (intel_is_dual_link_lvds(dev))
586                         clock.p2 = limit->p2.p2_fast;
587                 else
588                         clock.p2 = limit->p2.p2_slow;
589         } else {
590                 if (target < limit->p2.dot_limit)
591                         clock.p2 = limit->p2.p2_slow;
592                 else
593                         clock.p2 = limit->p2.p2_fast;
594         }
595
596         memset(best_clock, 0, sizeof(*best_clock));
597
598         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599              clock.m1++) {
600                 for (clock.m2 = limit->m2.min;
601                      clock.m2 <= limit->m2.max; clock.m2++) {
602                         for (clock.n = limit->n.min;
603                              clock.n <= limit->n.max; clock.n++) {
604                                 for (clock.p1 = limit->p1.min;
605                                         clock.p1 <= limit->p1.max; clock.p1++) {
606                                         int this_err;
607
608                                         pineview_clock(refclk, &clock);
609                                         if (!intel_PLL_is_valid(dev, limit,
610                                                                 &clock))
611                                                 continue;
612                                         if (match_clock &&
613                                             clock.p != match_clock->p)
614                                                 continue;
615
616                                         this_err = abs(clock.dot - target);
617                                         if (this_err < err) {
618                                                 *best_clock = clock;
619                                                 err = this_err;
620                                         }
621                                 }
622                         }
623                 }
624         }
625
626         return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631                    int target, int refclk, intel_clock_t *match_clock,
632                    intel_clock_t *best_clock)
633 {
634         struct drm_device *dev = crtc->dev;
635         intel_clock_t clock;
636         int max_n;
637         bool found;
638         /* approximately equals target * 0.00585 */
639         int err_most = (target >> 8) + (target >> 9);
640         found = false;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (intel_is_dual_link_lvds(dev))
644                         clock.p2 = limit->p2.p2_fast;
645                 else
646                         clock.p2 = limit->p2.p2_slow;
647         } else {
648                 if (target < limit->p2.dot_limit)
649                         clock.p2 = limit->p2.p2_slow;
650                 else
651                         clock.p2 = limit->p2.p2_fast;
652         }
653
654         memset(best_clock, 0, sizeof(*best_clock));
655         max_n = limit->n.max;
656         /* based on hardware requirement, prefer smaller n to precision */
657         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658                 /* based on hardware requirement, prefere larger m1,m2 */
659                 for (clock.m1 = limit->m1.max;
660                      clock.m1 >= limit->m1.min; clock.m1--) {
661                         for (clock.m2 = limit->m2.max;
662                              clock.m2 >= limit->m2.min; clock.m2--) {
663                                 for (clock.p1 = limit->p1.max;
664                                      clock.p1 >= limit->p1.min; clock.p1--) {
665                                         int this_err;
666
667                                         i9xx_clock(refclk, &clock);
668                                         if (!intel_PLL_is_valid(dev, limit,
669                                                                 &clock))
670                                                 continue;
671
672                                         this_err = abs(clock.dot - target);
673                                         if (this_err < err_most) {
674                                                 *best_clock = clock;
675                                                 err_most = this_err;
676                                                 max_n = clock.n;
677                                                 found = true;
678                                         }
679                                 }
680                         }
681                 }
682         }
683         return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688                    int target, int refclk, intel_clock_t *match_clock,
689                    intel_clock_t *best_clock)
690 {
691         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692         u32 m, n, fastclk;
693         u32 updrate, minupdate, p;
694         unsigned long bestppm, ppm, absppm;
695         int dotclk, flag;
696
697         flag = 0;
698         dotclk = target * 1000;
699         bestppm = 1000000;
700         ppm = absppm = 0;
701         fastclk = dotclk / (2*100);
702         updrate = 0;
703         minupdate = 19200;
704         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705         bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707         /* based on hardware requirement, prefer smaller n to precision */
708         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709                 updrate = refclk / n;
710                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712                                 if (p2 > 10)
713                                         p2 = p2 - 1;
714                                 p = p1 * p2;
715                                 /* based on hardware requirement, prefer bigger m1,m2 values */
716                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717                                         m2 = (((2*(fastclk * p * n / m1 )) +
718                                                refclk) / (2*refclk));
719                                         m = m1 * m2;
720                                         vco = updrate * m;
721                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
722                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723                                                 absppm = (ppm > 0) ? ppm : (-ppm);
724                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725                                                         bestppm = 0;
726                                                         flag = 1;
727                                                 }
728                                                 if (absppm < bestppm - 10) {
729                                                         bestppm = absppm;
730                                                         flag = 1;
731                                                 }
732                                                 if (flag) {
733                                                         bestn = n;
734                                                         bestm1 = m1;
735                                                         bestm2 = m2;
736                                                         bestp1 = p1;
737                                                         bestp2 = p2;
738                                                         flag = 0;
739                                                 }
740                                         }
741                                 }
742                         }
743                 }
744         }
745         best_clock->n = bestn;
746         best_clock->m1 = bestm1;
747         best_clock->m2 = bestm2;
748         best_clock->p1 = bestp1;
749         best_clock->p2 = bestp2;
750
751         return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755                                              enum pipe pipe)
756 {
757         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760         return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765         struct drm_i915_private *dev_priv = dev->dev_private;
766         u32 frame, frame_reg = PIPEFRAME(pipe);
767
768         frame = I915_READ(frame_reg);
769
770         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771                 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775  * intel_wait_for_vblank - wait for vblank on a given pipe
776  * @dev: drm device
777  * @pipe: pipe to wait for
778  *
779  * Wait for vblank to occur on a given pipe.  Needed for various bits of
780  * mode setting code.
781  */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         int pipestat_reg = PIPESTAT(pipe);
786
787         if (INTEL_INFO(dev)->gen >= 5) {
788                 ironlake_wait_for_vblank(dev, pipe);
789                 return;
790         }
791
792         /* Clear existing vblank status. Note this will clear any other
793          * sticky status fields as well.
794          *
795          * This races with i915_driver_irq_handler() with the result
796          * that either function could miss a vblank event.  Here it is not
797          * fatal, as we will either wait upon the next vblank interrupt or
798          * timeout.  Generally speaking intel_wait_for_vblank() is only
799          * called during modeset at which time the GPU should be idle and
800          * should *not* be performing page flips and thus not waiting on
801          * vblanks...
802          * Currently, the result of us stealing a vblank from the irq
803          * handler is that a single frame will be skipped during swapbuffers.
804          */
805         I915_WRITE(pipestat_reg,
806                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808         /* Wait for vblank interrupt bit to set */
809         if (wait_for(I915_READ(pipestat_reg) &
810                      PIPE_VBLANK_INTERRUPT_STATUS,
811                      50))
812                 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816  * intel_wait_for_pipe_off - wait for pipe to turn off
817  * @dev: drm device
818  * @pipe: pipe to wait for
819  *
820  * After disabling a pipe, we can't wait for vblank in the usual way,
821  * spinning on the vblank interrupt status bit, since we won't actually
822  * see an interrupt when the pipe is disabled.
823  *
824  * On Gen4 and above:
825  *   wait for the pipe register state bit to turn off
826  *
827  * Otherwise:
828  *   wait for the display line value to settle (it usually
829  *   ends up stopping at the start of the next frame).
830  *
831  */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836                                                                       pipe);
837
838         if (INTEL_INFO(dev)->gen >= 4) {
839                 int reg = PIPECONF(cpu_transcoder);
840
841                 /* Wait for the Pipe State to go off */
842                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843                              100))
844                         WARN(1, "pipe_off wait timed out\n");
845         } else {
846                 u32 last_line, line_mask;
847                 int reg = PIPEDSL(pipe);
848                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850                 if (IS_GEN2(dev))
851                         line_mask = DSL_LINEMASK_GEN2;
852                 else
853                         line_mask = DSL_LINEMASK_GEN3;
854
855                 /* Wait for the display line to settle */
856                 do {
857                         last_line = I915_READ(reg) & line_mask;
858                         mdelay(5);
859                 } while (((I915_READ(reg) & line_mask) != last_line) &&
860                          time_after(timeout, jiffies));
861                 if (time_after(jiffies, timeout))
862                         WARN(1, "pipe_off wait timed out\n");
863         }
864 }
865
866 /*
867  * ibx_digital_port_connected - is the specified port connected?
868  * @dev_priv: i915 private structure
869  * @port: the port to test
870  *
871  * Returns true if @port is connected, false otherwise.
872  */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874                                 struct intel_digital_port *port)
875 {
876         u32 bit;
877
878         if (HAS_PCH_IBX(dev_priv->dev)) {
879                 switch(port->port) {
880                 case PORT_B:
881                         bit = SDE_PORTB_HOTPLUG;
882                         break;
883                 case PORT_C:
884                         bit = SDE_PORTC_HOTPLUG;
885                         break;
886                 case PORT_D:
887                         bit = SDE_PORTD_HOTPLUG;
888                         break;
889                 default:
890                         return true;
891                 }
892         } else {
893                 switch(port->port) {
894                 case PORT_B:
895                         bit = SDE_PORTB_HOTPLUG_CPT;
896                         break;
897                 case PORT_C:
898                         bit = SDE_PORTC_HOTPLUG_CPT;
899                         break;
900                 case PORT_D:
901                         bit = SDE_PORTD_HOTPLUG_CPT;
902                         break;
903                 default:
904                         return true;
905                 }
906         }
907
908         return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913         return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918                 enum pipe pipe, bool state)
919 {
920         int reg;
921         u32 val;
922         bool cur_state;
923
924         reg = DPLL(pipe);
925         val = I915_READ(reg);
926         cur_state = !!(val & DPLL_VCO_ENABLE);
927         WARN(cur_state != state,
928              "PLL state assertion failure (expected %s, current %s)\n",
929              state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937         if (crtc->config.shared_dpll < 0)
938                 return NULL;
939
940         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945                         struct intel_shared_dpll *pll,
946                         bool state)
947 {
948         bool cur_state;
949         struct intel_dpll_hw_state hw_state;
950
951         if (HAS_PCH_LPT(dev_priv->dev)) {
952                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953                 return;
954         }
955
956         if (WARN (!pll,
957                   "asserting DPLL %s with no DPLL\n", state_string(state)))
958                 return;
959
960         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961         WARN(cur_state != state,
962              "%s assertion failure (expected %s, current %s)\n",
963              pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967                           enum pipe pipe, bool state)
968 {
969         int reg;
970         u32 val;
971         bool cur_state;
972         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973                                                                       pipe);
974
975         if (HAS_DDI(dev_priv->dev)) {
976                 /* DDI does not have a specific FDI_TX register */
977                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978                 val = I915_READ(reg);
979                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980         } else {
981                 reg = FDI_TX_CTL(pipe);
982                 val = I915_READ(reg);
983                 cur_state = !!(val & FDI_TX_ENABLE);
984         }
985         WARN(cur_state != state,
986              "FDI TX state assertion failure (expected %s, current %s)\n",
987              state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993                           enum pipe pipe, bool state)
994 {
995         int reg;
996         u32 val;
997         bool cur_state;
998
999         reg = FDI_RX_CTL(pipe);
1000         val = I915_READ(reg);
1001         cur_state = !!(val & FDI_RX_ENABLE);
1002         WARN(cur_state != state,
1003              "FDI RX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010                                       enum pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014
1015         /* ILK FDI PLL is always enabled */
1016         if (dev_priv->info->gen == 5)
1017                 return;
1018
1019         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020         if (HAS_DDI(dev_priv->dev))
1021                 return;
1022
1023         reg = FDI_TX_CTL(pipe);
1024         val = I915_READ(reg);
1025         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029                        enum pipe pipe, bool state)
1030 {
1031         int reg;
1032         u32 val;
1033         bool cur_state;
1034
1035         reg = FDI_RX_CTL(pipe);
1036         val = I915_READ(reg);
1037         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038         WARN(cur_state != state,
1039              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044                                   enum pipe pipe)
1045 {
1046         int pp_reg, lvds_reg;
1047         u32 val;
1048         enum pipe panel_pipe = PIPE_A;
1049         bool locked = true;
1050
1051         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052                 pp_reg = PCH_PP_CONTROL;
1053                 lvds_reg = PCH_LVDS;
1054         } else {
1055                 pp_reg = PP_CONTROL;
1056                 lvds_reg = LVDS;
1057         }
1058
1059         val = I915_READ(pp_reg);
1060         if (!(val & PANEL_POWER_ON) ||
1061             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062                 locked = false;
1063
1064         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065                 panel_pipe = PIPE_B;
1066
1067         WARN(panel_pipe == pipe && locked,
1068              "panel assertion failure, pipe %c regs locked\n",
1069              pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073                  enum pipe pipe, bool state)
1074 {
1075         int reg;
1076         u32 val;
1077         bool cur_state;
1078         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079                                                                       pipe);
1080
1081         /* if we need the pipe A quirk it must be always on */
1082         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083                 state = true;
1084
1085         if (!intel_display_power_enabled(dev_priv->dev,
1086                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087                 cur_state = false;
1088         } else {
1089                 reg = PIPECONF(cpu_transcoder);
1090                 val = I915_READ(reg);
1091                 cur_state = !!(val & PIPECONF_ENABLE);
1092         }
1093
1094         WARN(cur_state != state,
1095              "pipe %c assertion failure (expected %s, current %s)\n",
1096              pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100                          enum plane plane, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105
1106         reg = DSPCNTR(plane);
1107         val = I915_READ(reg);
1108         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109         WARN(cur_state != state,
1110              "plane %c assertion failure (expected %s, current %s)\n",
1111              plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118                                    enum pipe pipe)
1119 {
1120         struct drm_device *dev = dev_priv->dev;
1121         int reg, i;
1122         u32 val;
1123         int cur_pipe;
1124
1125         /* Primary planes are fixed to pipes on gen4+ */
1126         if (INTEL_INFO(dev)->gen >= 4) {
1127                 reg = DSPCNTR(pipe);
1128                 val = I915_READ(reg);
1129                 WARN((val & DISPLAY_PLANE_ENABLE),
1130                      "plane %c assertion failure, should be disabled but not\n",
1131                      plane_name(pipe));
1132                 return;
1133         }
1134
1135         /* Need to check both planes against the pipe */
1136         for_each_pipe(i) {
1137                 reg = DSPCNTR(i);
1138                 val = I915_READ(reg);
1139                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140                         DISPPLANE_SEL_PIPE_SHIFT;
1141                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143                      plane_name(i), pipe_name(pipe));
1144         }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148                                     enum pipe pipe)
1149 {
1150         struct drm_device *dev = dev_priv->dev;
1151         int reg, i;
1152         u32 val;
1153
1154         if (IS_VALLEYVIEW(dev)) {
1155                 for (i = 0; i < dev_priv->num_plane; i++) {
1156                         reg = SPCNTR(pipe, i);
1157                         val = I915_READ(reg);
1158                         WARN((val & SP_ENABLE),
1159                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160                              sprite_name(pipe, i), pipe_name(pipe));
1161                 }
1162         } else if (INTEL_INFO(dev)->gen >= 7) {
1163                 reg = SPRCTL(pipe);
1164                 val = I915_READ(reg);
1165                 WARN((val & SPRITE_ENABLE),
1166                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167                      plane_name(pipe), pipe_name(pipe));
1168         } else if (INTEL_INFO(dev)->gen >= 5) {
1169                 reg = DVSCNTR(pipe);
1170                 val = I915_READ(reg);
1171                 WARN((val & DVS_ENABLE),
1172                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173                      plane_name(pipe), pipe_name(pipe));
1174         }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179         u32 val;
1180         bool enabled;
1181
1182         if (HAS_PCH_LPT(dev_priv->dev)) {
1183                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184                 return;
1185         }
1186
1187         val = I915_READ(PCH_DREF_CONTROL);
1188         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189                             DREF_SUPERSPREAD_SOURCE_MASK));
1190         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194                                            enum pipe pipe)
1195 {
1196         int reg;
1197         u32 val;
1198         bool enabled;
1199
1200         reg = PCH_TRANSCONF(pipe);
1201         val = I915_READ(reg);
1202         enabled = !!(val & TRANS_ENABLE);
1203         WARN(enabled,
1204              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205              pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209                             enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211         if ((val & DP_PORT_EN) == 0)
1212                 return false;
1213
1214         if (HAS_PCH_CPT(dev_priv->dev)) {
1215                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218                         return false;
1219         } else {
1220                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221                         return false;
1222         }
1223         return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227                               enum pipe pipe, u32 val)
1228 {
1229         if ((val & SDVO_ENABLE) == 0)
1230                 return false;
1231
1232         if (HAS_PCH_CPT(dev_priv->dev)) {
1233                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234                         return false;
1235         } else {
1236                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & LVDS_PORT_EN) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & ADPA_DAC_ENABLE) == 0)
1262                 return false;
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274                                    enum pipe pipe, int reg, u32 port_sel)
1275 {
1276         u32 val = I915_READ(reg);
1277         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279              reg, pipe_name(pipe));
1280
1281         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282              && (val & DP_PIPEB_SELECT),
1283              "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287                                      enum pipe pipe, int reg)
1288 {
1289         u32 val = I915_READ(reg);
1290         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292              reg, pipe_name(pipe));
1293
1294         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295              && (val & SDVO_PIPE_B_SELECT),
1296              "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300                                       enum pipe pipe)
1301 {
1302         int reg;
1303         u32 val;
1304
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309         reg = PCH_ADPA;
1310         val = I915_READ(reg);
1311         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312              "PCH VGA enabled on transcoder %c, should be disabled\n",
1313              pipe_name(pipe));
1314
1315         reg = PCH_LVDS;
1316         val = I915_READ(reg);
1317         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319              pipe_name(pipe));
1320
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328         struct drm_device *dev = crtc->base.dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         int reg = DPLL(crtc->pipe);
1331         u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333         assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335         /* No really, not for ILK+ */
1336         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338         /* PLL is protected by panel, make sure we can write it */
1339         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340                 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342         I915_WRITE(reg, dpll);
1343         POSTING_READ(reg);
1344         udelay(150);
1345
1346         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350         POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352         /* We do this three times for luck */
1353         I915_WRITE(reg, dpll);
1354         POSTING_READ(reg);
1355         udelay(150); /* wait for warmup */
1356         I915_WRITE(reg, dpll);
1357         POSTING_READ(reg);
1358         udelay(150); /* wait for warmup */
1359         I915_WRITE(reg, dpll);
1360         POSTING_READ(reg);
1361         udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->base.dev;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         int reg = DPLL(crtc->pipe);
1369         u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371         assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373         /* No really, not for ILK+ */
1374         BUG_ON(dev_priv->info->gen >= 5);
1375
1376         /* PLL is protected by panel, make sure we can write it */
1377         if (IS_MOBILE(dev) && !IS_I830(dev))
1378                 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380         I915_WRITE(reg, dpll);
1381
1382         /* Wait for the clocks to stabilize. */
1383         POSTING_READ(reg);
1384         udelay(150);
1385
1386         if (INTEL_INFO(dev)->gen >= 4) {
1387                 I915_WRITE(DPLL_MD(crtc->pipe),
1388                            crtc->config.dpll_hw_state.dpll_md);
1389         } else {
1390                 /* The pixel multiplier can only be updated once the
1391                  * DPLL is enabled and the clocks are stable.
1392                  *
1393                  * So write it again.
1394                  */
1395                 I915_WRITE(reg, dpll);
1396         }
1397
1398         /* We do this three times for luck */
1399         I915_WRITE(reg, dpll);
1400         POSTING_READ(reg);
1401         udelay(150); /* wait for warmup */
1402         I915_WRITE(reg, dpll);
1403         POSTING_READ(reg);
1404         udelay(150); /* wait for warmup */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411  * i9xx_disable_pll - disable a PLL
1412  * @dev_priv: i915 private structure
1413  * @pipe: pipe PLL to disable
1414  *
1415  * Disable the PLL for @pipe, making sure the pipe is off first.
1416  *
1417  * Note!  This is for pre-ILK only.
1418  */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421         /* Don't disable pipe A or pipe A PLLs if needed */
1422         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423                 return;
1424
1425         /* Make sure the pipe isn't still relying on us */
1426         assert_pipe_disabled(dev_priv, pipe);
1427
1428         I915_WRITE(DPLL(pipe), 0);
1429         POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434         u32 port_mask;
1435
1436         if (!port)
1437                 port_mask = DPLL_PORTB_READY_MASK;
1438         else
1439                 port_mask = DPLL_PORTC_READY_MASK;
1440
1441         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443                      'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447  * ironlake_enable_shared_dpll - enable PCH PLL
1448  * @dev_priv: i915 private structure
1449  * @pipe: pipe PLL to enable
1450  *
1451  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452  * drives the transcoder clock.
1453  */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459         /* PCH PLLs only available on ILK, SNB and IVB */
1460         BUG_ON(dev_priv->info->gen < 5);
1461         if (WARN_ON(pll == NULL))
1462                 return;
1463
1464         if (WARN_ON(pll->refcount == 0))
1465                 return;
1466
1467         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468                       pll->name, pll->active, pll->on,
1469                       crtc->base.base.id);
1470
1471         if (pll->active++) {
1472                 WARN_ON(!pll->on);
1473                 assert_shared_dpll_enabled(dev_priv, pll);
1474                 return;
1475         }
1476         WARN_ON(pll->on);
1477
1478         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479         pll->enable(dev_priv, pll);
1480         pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488         /* PCH only available on ILK+ */
1489         BUG_ON(dev_priv->info->gen < 5);
1490         if (WARN_ON(pll == NULL))
1491                return;
1492
1493         if (WARN_ON(pll->refcount == 0))
1494                 return;
1495
1496         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497                       pll->name, pll->active, pll->on,
1498                       crtc->base.base.id);
1499
1500         if (WARN_ON(pll->active == 0)) {
1501                 assert_shared_dpll_disabled(dev_priv, pll);
1502                 return;
1503         }
1504
1505         assert_shared_dpll_enabled(dev_priv, pll);
1506         WARN_ON(!pll->on);
1507         if (--pll->active)
1508                 return;
1509
1510         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511         pll->disable(dev_priv, pll);
1512         pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516                                            enum pipe pipe)
1517 {
1518         struct drm_device *dev = dev_priv->dev;
1519         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521         uint32_t reg, val, pipeconf_val;
1522
1523         /* PCH only available on ILK+ */
1524         BUG_ON(dev_priv->info->gen < 5);
1525
1526         /* Make sure PCH DPLL is enabled */
1527         assert_shared_dpll_enabled(dev_priv,
1528                                    intel_crtc_to_shared_dpll(intel_crtc));
1529
1530         /* FDI must be feeding us bits for PCH ports */
1531         assert_fdi_tx_enabled(dev_priv, pipe);
1532         assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534         if (HAS_PCH_CPT(dev)) {
1535                 /* Workaround: Set the timing override bit before enabling the
1536                  * pch transcoder. */
1537                 reg = TRANS_CHICKEN2(pipe);
1538                 val = I915_READ(reg);
1539                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540                 I915_WRITE(reg, val);
1541         }
1542
1543         reg = PCH_TRANSCONF(pipe);
1544         val = I915_READ(reg);
1545         pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547         if (HAS_PCH_IBX(dev_priv->dev)) {
1548                 /*
1549                  * make the BPC in transcoder be consistent with
1550                  * that in pipeconf reg.
1551                  */
1552                 val &= ~PIPECONF_BPC_MASK;
1553                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554         }
1555
1556         val &= ~TRANS_INTERLACE_MASK;
1557         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558                 if (HAS_PCH_IBX(dev_priv->dev) &&
1559                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560                         val |= TRANS_LEGACY_INTERLACED_ILK;
1561                 else
1562                         val |= TRANS_INTERLACED;
1563         else
1564                 val |= TRANS_PROGRESSIVE;
1565
1566         I915_WRITE(reg, val | TRANS_ENABLE);
1567         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572                                       enum transcoder cpu_transcoder)
1573 {
1574         u32 val, pipeconf_val;
1575
1576         /* PCH only available on ILK+ */
1577         BUG_ON(dev_priv->info->gen < 5);
1578
1579         /* FDI must be feeding us bits for PCH ports */
1580         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583         /* Workaround: set timing override bit. */
1584         val = I915_READ(_TRANSA_CHICKEN2);
1585         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586         I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588         val = TRANS_ENABLE;
1589         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592             PIPECONF_INTERLACED_ILK)
1593                 val |= TRANS_INTERLACED;
1594         else
1595                 val |= TRANS_PROGRESSIVE;
1596
1597         I915_WRITE(LPT_TRANSCONF, val);
1598         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599                 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603                                             enum pipe pipe)
1604 {
1605         struct drm_device *dev = dev_priv->dev;
1606         uint32_t reg, val;
1607
1608         /* FDI relies on the transcoder */
1609         assert_fdi_tx_disabled(dev_priv, pipe);
1610         assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612         /* Ports must be off as well */
1613         assert_pch_ports_disabled(dev_priv, pipe);
1614
1615         reg = PCH_TRANSCONF(pipe);
1616         val = I915_READ(reg);
1617         val &= ~TRANS_ENABLE;
1618         I915_WRITE(reg, val);
1619         /* wait for PCH transcoder off, transcoder state */
1620         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623         if (!HAS_PCH_IBX(dev)) {
1624                 /* Workaround: Clear the timing override chicken bit again. */
1625                 reg = TRANS_CHICKEN2(pipe);
1626                 val = I915_READ(reg);
1627                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628                 I915_WRITE(reg, val);
1629         }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634         u32 val;
1635
1636         val = I915_READ(LPT_TRANSCONF);
1637         val &= ~TRANS_ENABLE;
1638         I915_WRITE(LPT_TRANSCONF, val);
1639         /* wait for PCH transcoder off, transcoder state */
1640         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641                 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643         /* Workaround: clear timing override bit. */
1644         val = I915_READ(_TRANSA_CHICKEN2);
1645         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646         I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650  * intel_enable_pipe - enable a pipe, asserting requirements
1651  * @dev_priv: i915 private structure
1652  * @pipe: pipe to enable
1653  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654  *
1655  * Enable @pipe, making sure that various hardware specific requirements
1656  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657  *
1658  * @pipe should be %PIPE_A or %PIPE_B.
1659  *
1660  * Will wait until the pipe is actually running (i.e. first vblank) before
1661  * returning.
1662  */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664                               bool pch_port)
1665 {
1666         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667                                                                       pipe);
1668         enum pipe pch_transcoder;
1669         int reg;
1670         u32 val;
1671
1672         assert_planes_disabled(dev_priv, pipe);
1673         assert_sprites_disabled(dev_priv, pipe);
1674
1675         if (HAS_PCH_LPT(dev_priv->dev))
1676                 pch_transcoder = TRANSCODER_A;
1677         else
1678                 pch_transcoder = pipe;
1679
1680         /*
1681          * A pipe without a PLL won't actually be able to drive bits from
1682          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1683          * need the check.
1684          */
1685         if (!HAS_PCH_SPLIT(dev_priv->dev))
1686                 assert_pll_enabled(dev_priv, pipe);
1687         else {
1688                 if (pch_port) {
1689                         /* if driving the PCH, we need FDI enabled */
1690                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691                         assert_fdi_tx_pll_enabled(dev_priv,
1692                                                   (enum pipe) cpu_transcoder);
1693                 }
1694                 /* FIXME: assert CPU port conditions for SNB+ */
1695         }
1696
1697         reg = PIPECONF(cpu_transcoder);
1698         val = I915_READ(reg);
1699         if (val & PIPECONF_ENABLE)
1700                 return;
1701
1702         I915_WRITE(reg, val | PIPECONF_ENABLE);
1703         intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707  * intel_disable_pipe - disable a pipe, asserting requirements
1708  * @dev_priv: i915 private structure
1709  * @pipe: pipe to disable
1710  *
1711  * Disable @pipe, making sure that various hardware specific requirements
1712  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713  *
1714  * @pipe should be %PIPE_A or %PIPE_B.
1715  *
1716  * Will wait until the pipe has shut down before returning.
1717  */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719                                enum pipe pipe)
1720 {
1721         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722                                                                       pipe);
1723         int reg;
1724         u32 val;
1725
1726         /*
1727          * Make sure planes won't keep trying to pump pixels to us,
1728          * or we might hang the display.
1729          */
1730         assert_planes_disabled(dev_priv, pipe);
1731         assert_sprites_disabled(dev_priv, pipe);
1732
1733         /* Don't disable pipe A or pipe A PLLs if needed */
1734         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735                 return;
1736
1737         reg = PIPECONF(cpu_transcoder);
1738         val = I915_READ(reg);
1739         if ((val & PIPECONF_ENABLE) == 0)
1740                 return;
1741
1742         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747  * Plane regs are double buffered, going from enabled->disabled needs a
1748  * trigger in order to latch.  The display address reg provides this.
1749  */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751                                       enum plane plane)
1752 {
1753         if (dev_priv->info->gen >= 4)
1754                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755         else
1756                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760  * intel_enable_plane - enable a display plane on a given pipe
1761  * @dev_priv: i915 private structure
1762  * @plane: plane to enable
1763  * @pipe: pipe being fed
1764  *
1765  * Enable @plane on @pipe, making sure that @pipe is running first.
1766  */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768                                enum plane plane, enum pipe pipe)
1769 {
1770         int reg;
1771         u32 val;
1772
1773         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774         assert_pipe_enabled(dev_priv, pipe);
1775
1776         reg = DSPCNTR(plane);
1777         val = I915_READ(reg);
1778         if (val & DISPLAY_PLANE_ENABLE)
1779                 return;
1780
1781         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782         intel_flush_display_plane(dev_priv, plane);
1783         intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787  * intel_disable_plane - disable a display plane
1788  * @dev_priv: i915 private structure
1789  * @plane: plane to disable
1790  * @pipe: pipe consuming the data
1791  *
1792  * Disable @plane; should be an independent operation.
1793  */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795                                 enum plane plane, enum pipe pipe)
1796 {
1797         int reg;
1798         u32 val;
1799
1800         reg = DSPCNTR(plane);
1801         val = I915_READ(reg);
1802         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803                 return;
1804
1805         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806         intel_flush_display_plane(dev_priv, plane);
1807         intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814                 return true;
1815 #endif
1816         return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821                            struct drm_i915_gem_object *obj,
1822                            struct intel_ring_buffer *pipelined)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 alignment;
1826         int ret;
1827
1828         switch (obj->tiling_mode) {
1829         case I915_TILING_NONE:
1830                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831                         alignment = 128 * 1024;
1832                 else if (INTEL_INFO(dev)->gen >= 4)
1833                         alignment = 4 * 1024;
1834                 else
1835                         alignment = 64 * 1024;
1836                 break;
1837         case I915_TILING_X:
1838                 /* pin() will align the object as required by fence */
1839                 alignment = 0;
1840                 break;
1841         case I915_TILING_Y:
1842                 /* Despite that we check this in framebuffer_init userspace can
1843                  * screw us over and change the tiling after the fact. Only
1844                  * pinned buffers can't change their tiling. */
1845                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846                 return -EINVAL;
1847         default:
1848                 BUG();
1849         }
1850
1851         /* Note that the w/a also requires 64 PTE of padding following the
1852          * bo. We currently fill all unused PTE with the shadow page and so
1853          * we should always have valid PTE following the scanout preventing
1854          * the VT-d warning.
1855          */
1856         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857                 alignment = 256 * 1024;
1858
1859         dev_priv->mm.interruptible = false;
1860         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861         if (ret)
1862                 goto err_interruptible;
1863
1864         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865          * fence, whereas 965+ only requires a fence if using
1866          * framebuffer compression.  For simplicity, we always install
1867          * a fence as the cost is not that onerous.
1868          */
1869         ret = i915_gem_object_get_fence(obj);
1870         if (ret)
1871                 goto err_unpin;
1872
1873         i915_gem_object_pin_fence(obj);
1874
1875         dev_priv->mm.interruptible = true;
1876         return 0;
1877
1878 err_unpin:
1879         i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881         dev_priv->mm.interruptible = true;
1882         return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887         i915_gem_object_unpin_fence(obj);
1888         i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892  * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894                                              unsigned int tiling_mode,
1895                                              unsigned int cpp,
1896                                              unsigned int pitch)
1897 {
1898         if (tiling_mode != I915_TILING_NONE) {
1899                 unsigned int tile_rows, tiles;
1900
1901                 tile_rows = *y / 8;
1902                 *y %= 8;
1903
1904                 tiles = *x / (512/cpp);
1905                 *x %= 512/cpp;
1906
1907                 return tile_rows * pitch * 8 + tiles * 4096;
1908         } else {
1909                 unsigned int offset;
1910
1911                 offset = *y * pitch + *x * cpp;
1912                 *y = 0;
1913                 *x = (offset & 4095) / cpp;
1914                 return offset & -4096;
1915         }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919                              int x, int y)
1920 {
1921         struct drm_device *dev = crtc->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924         struct intel_framebuffer *intel_fb;
1925         struct drm_i915_gem_object *obj;
1926         int plane = intel_crtc->plane;
1927         unsigned long linear_offset;
1928         u32 dspcntr;
1929         u32 reg;
1930
1931         switch (plane) {
1932         case 0:
1933         case 1:
1934                 break;
1935         default:
1936                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937                 return -EINVAL;
1938         }
1939
1940         intel_fb = to_intel_framebuffer(fb);
1941         obj = intel_fb->obj;
1942
1943         reg = DSPCNTR(plane);
1944         dspcntr = I915_READ(reg);
1945         /* Mask out pixel format bits in case we change it */
1946         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947         switch (fb->pixel_format) {
1948         case DRM_FORMAT_C8:
1949                 dspcntr |= DISPPLANE_8BPP;
1950                 break;
1951         case DRM_FORMAT_XRGB1555:
1952         case DRM_FORMAT_ARGB1555:
1953                 dspcntr |= DISPPLANE_BGRX555;
1954                 break;
1955         case DRM_FORMAT_RGB565:
1956                 dspcntr |= DISPPLANE_BGRX565;
1957                 break;
1958         case DRM_FORMAT_XRGB8888:
1959         case DRM_FORMAT_ARGB8888:
1960                 dspcntr |= DISPPLANE_BGRX888;
1961                 break;
1962         case DRM_FORMAT_XBGR8888:
1963         case DRM_FORMAT_ABGR8888:
1964                 dspcntr |= DISPPLANE_RGBX888;
1965                 break;
1966         case DRM_FORMAT_XRGB2101010:
1967         case DRM_FORMAT_ARGB2101010:
1968                 dspcntr |= DISPPLANE_BGRX101010;
1969                 break;
1970         case DRM_FORMAT_XBGR2101010:
1971         case DRM_FORMAT_ABGR2101010:
1972                 dspcntr |= DISPPLANE_RGBX101010;
1973                 break;
1974         default:
1975                 BUG();
1976         }
1977
1978         if (INTEL_INFO(dev)->gen >= 4) {
1979                 if (obj->tiling_mode != I915_TILING_NONE)
1980                         dspcntr |= DISPPLANE_TILED;
1981                 else
1982                         dspcntr &= ~DISPPLANE_TILED;
1983         }
1984
1985         if (IS_G4X(dev))
1986                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988         I915_WRITE(reg, dspcntr);
1989
1990         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992         if (INTEL_INFO(dev)->gen >= 4) {
1993                 intel_crtc->dspaddr_offset =
1994                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995                                                        fb->bits_per_pixel / 8,
1996                                                        fb->pitches[0]);
1997                 linear_offset -= intel_crtc->dspaddr_offset;
1998         } else {
1999                 intel_crtc->dspaddr_offset = linear_offset;
2000         }
2001
2002         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004                       fb->pitches[0]);
2005         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006         if (INTEL_INFO(dev)->gen >= 4) {
2007                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011         } else
2012                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013         POSTING_READ(reg);
2014
2015         return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019                                  struct drm_framebuffer *fb, int x, int y)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         struct intel_framebuffer *intel_fb;
2025         struct drm_i915_gem_object *obj;
2026         int plane = intel_crtc->plane;
2027         unsigned long linear_offset;
2028         u32 dspcntr;
2029         u32 reg;
2030
2031         switch (plane) {
2032         case 0:
2033         case 1:
2034         case 2:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->pixel_format) {
2049         case DRM_FORMAT_C8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case DRM_FORMAT_RGB565:
2053                 dspcntr |= DISPPLANE_BGRX565;
2054                 break;
2055         case DRM_FORMAT_XRGB8888:
2056         case DRM_FORMAT_ARGB8888:
2057                 dspcntr |= DISPPLANE_BGRX888;
2058                 break;
2059         case DRM_FORMAT_XBGR8888:
2060         case DRM_FORMAT_ABGR8888:
2061                 dspcntr |= DISPPLANE_RGBX888;
2062                 break;
2063         case DRM_FORMAT_XRGB2101010:
2064         case DRM_FORMAT_ARGB2101010:
2065                 dspcntr |= DISPPLANE_BGRX101010;
2066                 break;
2067         case DRM_FORMAT_XBGR2101010:
2068         case DRM_FORMAT_ABGR2101010:
2069                 dspcntr |= DISPPLANE_RGBX101010;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         if (obj->tiling_mode != I915_TILING_NONE)
2076                 dspcntr |= DISPPLANE_TILED;
2077         else
2078                 dspcntr &= ~DISPPLANE_TILED;
2079
2080         if (IS_HASWELL(dev))
2081                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2082         else
2083                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085         I915_WRITE(reg, dspcntr);
2086
2087         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088         intel_crtc->dspaddr_offset =
2089                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2090                                                fb->bits_per_pixel / 8,
2091                                                fb->pitches[0]);
2092         linear_offset -= intel_crtc->dspaddr_offset;
2093
2094         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2095                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2096                       fb->pitches[0]);
2097         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098         I915_MODIFY_DISPBASE(DSPSURF(plane),
2099                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2100         if (IS_HASWELL(dev)) {
2101                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2102         } else {
2103                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2104                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2105         }
2106         POSTING_READ(reg);
2107
2108         return 0;
2109 }
2110
2111 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2112 static int
2113 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2114                            int x, int y, enum mode_set_atomic state)
2115 {
2116         struct drm_device *dev = crtc->dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119         if (dev_priv->display.disable_fbc)
2120                 dev_priv->display.disable_fbc(dev);
2121         intel_increase_pllclock(crtc);
2122
2123         return dev_priv->display.update_plane(crtc, fb, x, y);
2124 }
2125
2126 void intel_display_handle_reset(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct drm_crtc *crtc;
2130
2131         /*
2132          * Flips in the rings have been nuked by the reset,
2133          * so complete all pending flips so that user space
2134          * will get its events and not get stuck.
2135          *
2136          * Also update the base address of all primary
2137          * planes to the the last fb to make sure we're
2138          * showing the correct fb after a reset.
2139          *
2140          * Need to make two loops over the crtcs so that we
2141          * don't try to grab a crtc mutex before the
2142          * pending_flip_queue really got woken up.
2143          */
2144
2145         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2146                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2147                 enum plane plane = intel_crtc->plane;
2148
2149                 intel_prepare_page_flip(dev, plane);
2150                 intel_finish_page_flip_plane(dev, plane);
2151         }
2152
2153         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2154                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2155
2156                 mutex_lock(&crtc->mutex);
2157                 if (intel_crtc->active)
2158                         dev_priv->display.update_plane(crtc, crtc->fb,
2159                                                        crtc->x, crtc->y);
2160                 mutex_unlock(&crtc->mutex);
2161         }
2162 }
2163
2164 static int
2165 intel_finish_fb(struct drm_framebuffer *old_fb)
2166 {
2167         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2168         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2169         bool was_interruptible = dev_priv->mm.interruptible;
2170         int ret;
2171
2172         /* Big Hammer, we also need to ensure that any pending
2173          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2174          * current scanout is retired before unpinning the old
2175          * framebuffer.
2176          *
2177          * This should only fail upon a hung GPU, in which case we
2178          * can safely continue.
2179          */
2180         dev_priv->mm.interruptible = false;
2181         ret = i915_gem_object_finish_gpu(obj);
2182         dev_priv->mm.interruptible = was_interruptible;
2183
2184         return ret;
2185 }
2186
2187 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2188 {
2189         struct drm_device *dev = crtc->dev;
2190         struct drm_i915_master_private *master_priv;
2191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192
2193         if (!dev->primary->master)
2194                 return;
2195
2196         master_priv = dev->primary->master->driver_priv;
2197         if (!master_priv->sarea_priv)
2198                 return;
2199
2200         switch (intel_crtc->pipe) {
2201         case 0:
2202                 master_priv->sarea_priv->pipeA_x = x;
2203                 master_priv->sarea_priv->pipeA_y = y;
2204                 break;
2205         case 1:
2206                 master_priv->sarea_priv->pipeB_x = x;
2207                 master_priv->sarea_priv->pipeB_y = y;
2208                 break;
2209         default:
2210                 break;
2211         }
2212 }
2213
2214 static int
2215 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2216                     struct drm_framebuffer *fb)
2217 {
2218         struct drm_device *dev = crtc->dev;
2219         struct drm_i915_private *dev_priv = dev->dev_private;
2220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221         struct drm_framebuffer *old_fb;
2222         int ret;
2223
2224         /* no fb bound */
2225         if (!fb) {
2226                 DRM_ERROR("No FB bound\n");
2227                 return 0;
2228         }
2229
2230         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2231                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2232                           plane_name(intel_crtc->plane),
2233                           INTEL_INFO(dev)->num_pipes);
2234                 return -EINVAL;
2235         }
2236
2237         mutex_lock(&dev->struct_mutex);
2238         ret = intel_pin_and_fence_fb_obj(dev,
2239                                          to_intel_framebuffer(fb)->obj,
2240                                          NULL);
2241         if (ret != 0) {
2242                 mutex_unlock(&dev->struct_mutex);
2243                 DRM_ERROR("pin & fence failed\n");
2244                 return ret;
2245         }
2246
2247         /* Update pipe size and adjust fitter if needed */
2248         if (i915_fastboot) {
2249                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2250                            ((crtc->mode.hdisplay - 1) << 16) |
2251                            (crtc->mode.vdisplay - 1));
2252                 if (!intel_crtc->config.pch_pfit.enabled &&
2253                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2254                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2255                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2256                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2257                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2258                 }
2259         }
2260
2261         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2262         if (ret) {
2263                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2264                 mutex_unlock(&dev->struct_mutex);
2265                 DRM_ERROR("failed to update base address\n");
2266                 return ret;
2267         }
2268
2269         old_fb = crtc->fb;
2270         crtc->fb = fb;
2271         crtc->x = x;
2272         crtc->y = y;
2273
2274         if (old_fb) {
2275                 if (intel_crtc->active && old_fb != fb)
2276                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2277                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2278         }
2279
2280         intel_update_fbc(dev);
2281         intel_edp_psr_update(dev);
2282         mutex_unlock(&dev->struct_mutex);
2283
2284         intel_crtc_update_sarea_pos(crtc, x, y);
2285
2286         return 0;
2287 }
2288
2289 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2290 {
2291         struct drm_device *dev = crtc->dev;
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294         int pipe = intel_crtc->pipe;
2295         u32 reg, temp;
2296
2297         /* enable normal train */
2298         reg = FDI_TX_CTL(pipe);
2299         temp = I915_READ(reg);
2300         if (IS_IVYBRIDGE(dev)) {
2301                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2302                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2303         } else {
2304                 temp &= ~FDI_LINK_TRAIN_NONE;
2305                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2306         }
2307         I915_WRITE(reg, temp);
2308
2309         reg = FDI_RX_CTL(pipe);
2310         temp = I915_READ(reg);
2311         if (HAS_PCH_CPT(dev)) {
2312                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2313                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2314         } else {
2315                 temp &= ~FDI_LINK_TRAIN_NONE;
2316                 temp |= FDI_LINK_TRAIN_NONE;
2317         }
2318         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2319
2320         /* wait one idle pattern time */
2321         POSTING_READ(reg);
2322         udelay(1000);
2323
2324         /* IVB wants error correction enabled */
2325         if (IS_IVYBRIDGE(dev))
2326                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2327                            FDI_FE_ERRC_ENABLE);
2328 }
2329
2330 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2331 {
2332         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2333 }
2334
2335 static void ivb_modeset_global_resources(struct drm_device *dev)
2336 {
2337         struct drm_i915_private *dev_priv = dev->dev_private;
2338         struct intel_crtc *pipe_B_crtc =
2339                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2340         struct intel_crtc *pipe_C_crtc =
2341                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2342         uint32_t temp;
2343
2344         /*
2345          * When everything is off disable fdi C so that we could enable fdi B
2346          * with all lanes. Note that we don't care about enabled pipes without
2347          * an enabled pch encoder.
2348          */
2349         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2350             !pipe_has_enabled_pch(pipe_C_crtc)) {
2351                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2352                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2353
2354                 temp = I915_READ(SOUTH_CHICKEN1);
2355                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2356                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2357                 I915_WRITE(SOUTH_CHICKEN1, temp);
2358         }
2359 }
2360
2361 /* The FDI link training functions for ILK/Ibexpeak. */
2362 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2363 {
2364         struct drm_device *dev = crtc->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367         int pipe = intel_crtc->pipe;
2368         int plane = intel_crtc->plane;
2369         u32 reg, temp, tries;
2370
2371         /* FDI needs bits from pipe & plane first */
2372         assert_pipe_enabled(dev_priv, pipe);
2373         assert_plane_enabled(dev_priv, plane);
2374
2375         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2376            for train result */
2377         reg = FDI_RX_IMR(pipe);
2378         temp = I915_READ(reg);
2379         temp &= ~FDI_RX_SYMBOL_LOCK;
2380         temp &= ~FDI_RX_BIT_LOCK;
2381         I915_WRITE(reg, temp);
2382         I915_READ(reg);
2383         udelay(150);
2384
2385         /* enable CPU FDI TX and PCH FDI RX */
2386         reg = FDI_TX_CTL(pipe);
2387         temp = I915_READ(reg);
2388         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2389         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2390         temp &= ~FDI_LINK_TRAIN_NONE;
2391         temp |= FDI_LINK_TRAIN_PATTERN_1;
2392         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2393
2394         reg = FDI_RX_CTL(pipe);
2395         temp = I915_READ(reg);
2396         temp &= ~FDI_LINK_TRAIN_NONE;
2397         temp |= FDI_LINK_TRAIN_PATTERN_1;
2398         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2399
2400         POSTING_READ(reg);
2401         udelay(150);
2402
2403         /* Ironlake workaround, enable clock pointer after FDI enable*/
2404         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406                    FDI_RX_PHASE_SYNC_POINTER_EN);
2407
2408         reg = FDI_RX_IIR(pipe);
2409         for (tries = 0; tries < 5; tries++) {
2410                 temp = I915_READ(reg);
2411                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413                 if ((temp & FDI_RX_BIT_LOCK)) {
2414                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2415                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416                         break;
2417                 }
2418         }
2419         if (tries == 5)
2420                 DRM_ERROR("FDI train 1 fail!\n");
2421
2422         /* Train 2 */
2423         reg = FDI_TX_CTL(pipe);
2424         temp = I915_READ(reg);
2425         temp &= ~FDI_LINK_TRAIN_NONE;
2426         temp |= FDI_LINK_TRAIN_PATTERN_2;
2427         I915_WRITE(reg, temp);
2428
2429         reg = FDI_RX_CTL(pipe);
2430         temp = I915_READ(reg);
2431         temp &= ~FDI_LINK_TRAIN_NONE;
2432         temp |= FDI_LINK_TRAIN_PATTERN_2;
2433         I915_WRITE(reg, temp);
2434
2435         POSTING_READ(reg);
2436         udelay(150);
2437
2438         reg = FDI_RX_IIR(pipe);
2439         for (tries = 0; tries < 5; tries++) {
2440                 temp = I915_READ(reg);
2441                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443                 if (temp & FDI_RX_SYMBOL_LOCK) {
2444                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2446                         break;
2447                 }
2448         }
2449         if (tries == 5)
2450                 DRM_ERROR("FDI train 2 fail!\n");
2451
2452         DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp, i, retry;
2471
2472         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473            for train result */
2474         reg = FDI_RX_IMR(pipe);
2475         temp = I915_READ(reg);
2476         temp &= ~FDI_RX_SYMBOL_LOCK;
2477         temp &= ~FDI_RX_BIT_LOCK;
2478         I915_WRITE(reg, temp);
2479
2480         POSTING_READ(reg);
2481         udelay(150);
2482
2483         /* enable CPU FDI TX and PCH FDI RX */
2484         reg = FDI_TX_CTL(pipe);
2485         temp = I915_READ(reg);
2486         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2487         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2488         temp &= ~FDI_LINK_TRAIN_NONE;
2489         temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491         /* SNB-B */
2492         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495         I915_WRITE(FDI_RX_MISC(pipe),
2496                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         if (HAS_PCH_CPT(dev)) {
2501                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503         } else {
2504                 temp &= ~FDI_LINK_TRAIN_NONE;
2505                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506         }
2507         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509         POSTING_READ(reg);
2510         udelay(150);
2511
2512         for (i = 0; i < 4; i++) {
2513                 reg = FDI_TX_CTL(pipe);
2514                 temp = I915_READ(reg);
2515                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516                 temp |= snb_b_fdi_train_param[i];
2517                 I915_WRITE(reg, temp);
2518
2519                 POSTING_READ(reg);
2520                 udelay(500);
2521
2522                 for (retry = 0; retry < 5; retry++) {
2523                         reg = FDI_RX_IIR(pipe);
2524                         temp = I915_READ(reg);
2525                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526                         if (temp & FDI_RX_BIT_LOCK) {
2527                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529                                 break;
2530                         }
2531                         udelay(50);
2532                 }
2533                 if (retry < 5)
2534                         break;
2535         }
2536         if (i == 4)
2537                 DRM_ERROR("FDI train 1 fail!\n");
2538
2539         /* Train 2 */
2540         reg = FDI_TX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         temp &= ~FDI_LINK_TRAIN_NONE;
2543         temp |= FDI_LINK_TRAIN_PATTERN_2;
2544         if (IS_GEN6(dev)) {
2545                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546                 /* SNB-B */
2547                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548         }
2549         I915_WRITE(reg, temp);
2550
2551         reg = FDI_RX_CTL(pipe);
2552         temp = I915_READ(reg);
2553         if (HAS_PCH_CPT(dev)) {
2554                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556         } else {
2557                 temp &= ~FDI_LINK_TRAIN_NONE;
2558                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559         }
2560         I915_WRITE(reg, temp);
2561
2562         POSTING_READ(reg);
2563         udelay(150);
2564
2565         for (i = 0; i < 4; i++) {
2566                 reg = FDI_TX_CTL(pipe);
2567                 temp = I915_READ(reg);
2568                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569                 temp |= snb_b_fdi_train_param[i];
2570                 I915_WRITE(reg, temp);
2571
2572                 POSTING_READ(reg);
2573                 udelay(500);
2574
2575                 for (retry = 0; retry < 5; retry++) {
2576                         reg = FDI_RX_IIR(pipe);
2577                         temp = I915_READ(reg);
2578                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579                         if (temp & FDI_RX_SYMBOL_LOCK) {
2580                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582                                 break;
2583                         }
2584                         udelay(50);
2585                 }
2586                 if (retry < 5)
2587                         break;
2588         }
2589         if (i == 4)
2590                 DRM_ERROR("FDI train 2 fail!\n");
2591
2592         DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598         struct drm_device *dev = crtc->dev;
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601         int pipe = intel_crtc->pipe;
2602         u32 reg, temp, i, j;
2603
2604         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605            for train result */
2606         reg = FDI_RX_IMR(pipe);
2607         temp = I915_READ(reg);
2608         temp &= ~FDI_RX_SYMBOL_LOCK;
2609         temp &= ~FDI_RX_BIT_LOCK;
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2616                       I915_READ(FDI_RX_IIR(pipe)));
2617
2618         /* Try each vswing and preemphasis setting twice before moving on */
2619         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2620                 /* disable first in case we need to retry */
2621                 reg = FDI_TX_CTL(pipe);
2622                 temp = I915_READ(reg);
2623                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624                 temp &= ~FDI_TX_ENABLE;
2625                 I915_WRITE(reg, temp);
2626
2627                 reg = FDI_RX_CTL(pipe);
2628                 temp = I915_READ(reg);
2629                 temp &= ~FDI_LINK_TRAIN_AUTO;
2630                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631                 temp &= ~FDI_RX_ENABLE;
2632                 I915_WRITE(reg, temp);
2633
2634                 /* enable CPU FDI TX and PCH FDI RX */
2635                 reg = FDI_TX_CTL(pipe);
2636                 temp = I915_READ(reg);
2637                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2638                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2639                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2640                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641                 temp |= snb_b_fdi_train_param[j/2];
2642                 temp |= FDI_COMPOSITE_SYNC;
2643                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2644
2645                 I915_WRITE(FDI_RX_MISC(pipe),
2646                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2647
2648                 reg = FDI_RX_CTL(pipe);
2649                 temp = I915_READ(reg);
2650                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2651                 temp |= FDI_COMPOSITE_SYNC;
2652                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2653
2654                 POSTING_READ(reg);
2655                 udelay(1); /* should be 0.5us */
2656
2657                 for (i = 0; i < 4; i++) {
2658                         reg = FDI_RX_IIR(pipe);
2659                         temp = I915_READ(reg);
2660                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2661
2662                         if (temp & FDI_RX_BIT_LOCK ||
2663                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2664                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2665                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2666                                               i);
2667                                 break;
2668                         }
2669                         udelay(1); /* should be 0.5us */
2670                 }
2671                 if (i == 4) {
2672                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2673                         continue;
2674                 }
2675
2676                 /* Train 2 */
2677                 reg = FDI_TX_CTL(pipe);
2678                 temp = I915_READ(reg);
2679                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2680                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2681                 I915_WRITE(reg, temp);
2682
2683                 reg = FDI_RX_CTL(pipe);
2684                 temp = I915_READ(reg);
2685                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2686                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2687                 I915_WRITE(reg, temp);
2688
2689                 POSTING_READ(reg);
2690                 udelay(2); /* should be 1.5us */
2691
2692                 for (i = 0; i < 4; i++) {
2693                         reg = FDI_RX_IIR(pipe);
2694                         temp = I915_READ(reg);
2695                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697                         if (temp & FDI_RX_SYMBOL_LOCK ||
2698                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2699                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2701                                               i);
2702                                 goto train_done;
2703                         }
2704                         udelay(2); /* should be 1.5us */
2705                 }
2706                 if (i == 4)
2707                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2708         }
2709
2710 train_done:
2711         DRM_DEBUG_KMS("FDI train done.\n");
2712 }
2713
2714 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2715 {
2716         struct drm_device *dev = intel_crtc->base.dev;
2717         struct drm_i915_private *dev_priv = dev->dev_private;
2718         int pipe = intel_crtc->pipe;
2719         u32 reg, temp;
2720
2721
2722         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2723         reg = FDI_RX_CTL(pipe);
2724         temp = I915_READ(reg);
2725         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2726         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2727         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2728         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2729
2730         POSTING_READ(reg);
2731         udelay(200);
2732
2733         /* Switch from Rawclk to PCDclk */
2734         temp = I915_READ(reg);
2735         I915_WRITE(reg, temp | FDI_PCDCLK);
2736
2737         POSTING_READ(reg);
2738         udelay(200);
2739
2740         /* Enable CPU FDI TX PLL, always on for Ironlake */
2741         reg = FDI_TX_CTL(pipe);
2742         temp = I915_READ(reg);
2743         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2744                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2745
2746                 POSTING_READ(reg);
2747                 udelay(100);
2748         }
2749 }
2750
2751 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2752 {
2753         struct drm_device *dev = intel_crtc->base.dev;
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         int pipe = intel_crtc->pipe;
2756         u32 reg, temp;
2757
2758         /* Switch from PCDclk to Rawclk */
2759         reg = FDI_RX_CTL(pipe);
2760         temp = I915_READ(reg);
2761         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2762
2763         /* Disable CPU FDI TX PLL */
2764         reg = FDI_TX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2767
2768         POSTING_READ(reg);
2769         udelay(100);
2770
2771         reg = FDI_RX_CTL(pipe);
2772         temp = I915_READ(reg);
2773         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2774
2775         /* Wait for the clocks to turn off. */
2776         POSTING_READ(reg);
2777         udelay(100);
2778 }
2779
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782         struct drm_device *dev = crtc->dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785         int pipe = intel_crtc->pipe;
2786         u32 reg, temp;
2787
2788         /* disable CPU FDI tx and PCH FDI rx */
2789         reg = FDI_TX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792         POSTING_READ(reg);
2793
2794         reg = FDI_RX_CTL(pipe);
2795         temp = I915_READ(reg);
2796         temp &= ~(0x7 << 16);
2797         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2798         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800         POSTING_READ(reg);
2801         udelay(100);
2802
2803         /* Ironlake workaround, disable clock pointer after downing FDI */
2804         if (HAS_PCH_IBX(dev)) {
2805                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806         }
2807
2808         /* still set train pattern 1 */
2809         reg = FDI_TX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         temp &= ~FDI_LINK_TRAIN_NONE;
2812         temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         I915_WRITE(reg, temp);
2814
2815         reg = FDI_RX_CTL(pipe);
2816         temp = I915_READ(reg);
2817         if (HAS_PCH_CPT(dev)) {
2818                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2820         } else {
2821                 temp &= ~FDI_LINK_TRAIN_NONE;
2822                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2823         }
2824         /* BPC in FDI rx is consistent with that in PIPECONF */
2825         temp &= ~(0x07 << 16);
2826         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2827         I915_WRITE(reg, temp);
2828
2829         POSTING_READ(reg);
2830         udelay(100);
2831 }
2832
2833 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2834 {
2835         struct drm_device *dev = crtc->dev;
2836         struct drm_i915_private *dev_priv = dev->dev_private;
2837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838         unsigned long flags;
2839         bool pending;
2840
2841         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843                 return false;
2844
2845         spin_lock_irqsave(&dev->event_lock, flags);
2846         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847         spin_unlock_irqrestore(&dev->event_lock, flags);
2848
2849         return pending;
2850 }
2851
2852 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856
2857         if (crtc->fb == NULL)
2858                 return;
2859
2860         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2861
2862         wait_event(dev_priv->pending_flip_queue,
2863                    !intel_crtc_has_pending_flip(crtc));
2864
2865         mutex_lock(&dev->struct_mutex);
2866         intel_finish_fb(crtc->fb);
2867         mutex_unlock(&dev->struct_mutex);
2868 }
2869
2870 /* Program iCLKIP clock to the desired frequency */
2871 static void lpt_program_iclkip(struct drm_crtc *crtc)
2872 {
2873         struct drm_device *dev = crtc->dev;
2874         struct drm_i915_private *dev_priv = dev->dev_private;
2875         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2876         u32 temp;
2877
2878         mutex_lock(&dev_priv->dpio_lock);
2879
2880         /* It is necessary to ungate the pixclk gate prior to programming
2881          * the divisors, and gate it back when it is done.
2882          */
2883         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2884
2885         /* Disable SSCCTL */
2886         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2887                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2888                                 SBI_SSCCTL_DISABLE,
2889                         SBI_ICLK);
2890
2891         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892         if (crtc->mode.clock == 20000) {
2893                 auxdiv = 1;
2894                 divsel = 0x41;
2895                 phaseinc = 0x20;
2896         } else {
2897                 /* The iCLK virtual clock root frequency is in MHz,
2898                  * but the crtc->mode.clock in in KHz. To get the divisors,
2899                  * it is necessary to divide one by another, so we
2900                  * convert the virtual clock precision to KHz here for higher
2901                  * precision.
2902                  */
2903                 u32 iclk_virtual_root_freq = 172800 * 1000;
2904                 u32 iclk_pi_range = 64;
2905                 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908                 msb_divisor_value = desired_divisor / iclk_pi_range;
2909                 pi_value = desired_divisor % iclk_pi_range;
2910
2911                 auxdiv = 0;
2912                 divsel = msb_divisor_value - 2;
2913                 phaseinc = pi_value;
2914         }
2915
2916         /* This should not happen with any sane values */
2917         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923                         crtc->mode.clock,
2924                         auxdiv,
2925                         divsel,
2926                         phasedir,
2927                         phaseinc);
2928
2929         /* Program SSCDIVINTPHASE6 */
2930         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2931         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2938
2939         /* Program SSCAUXDIV */
2940         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2941         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2942         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2943         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2944
2945         /* Enable modulator and associated divider */
2946         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2947         temp &= ~SBI_SSCCTL_DISABLE;
2948         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2949
2950         /* Wait for initialization time */
2951         udelay(24);
2952
2953         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2954
2955         mutex_unlock(&dev_priv->dpio_lock);
2956 }
2957
2958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2959                                                 enum pipe pch_transcoder)
2960 {
2961         struct drm_device *dev = crtc->base.dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2964
2965         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2966                    I915_READ(HTOTAL(cpu_transcoder)));
2967         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2968                    I915_READ(HBLANK(cpu_transcoder)));
2969         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2970                    I915_READ(HSYNC(cpu_transcoder)));
2971
2972         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2973                    I915_READ(VTOTAL(cpu_transcoder)));
2974         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2975                    I915_READ(VBLANK(cpu_transcoder)));
2976         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2977                    I915_READ(VSYNC(cpu_transcoder)));
2978         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2979                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2980 }
2981
2982 /*
2983  * Enable PCH resources required for PCH ports:
2984  *   - PCH PLLs
2985  *   - FDI training & RX/TX
2986  *   - update transcoder timings
2987  *   - DP transcoding bits
2988  *   - transcoder
2989  */
2990 static void ironlake_pch_enable(struct drm_crtc *crtc)
2991 {
2992         struct drm_device *dev = crtc->dev;
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995         int pipe = intel_crtc->pipe;
2996         u32 reg, temp;
2997
2998         assert_pch_transcoder_disabled(dev_priv, pipe);
2999
3000         /* Write the TU size bits before fdi link training, so that error
3001          * detection works. */
3002         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3003                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3004
3005         /* For PCH output, training FDI link */
3006         dev_priv->display.fdi_link_train(crtc);
3007
3008         /* We need to program the right clock selection before writing the pixel
3009          * mutliplier into the DPLL. */
3010         if (HAS_PCH_CPT(dev)) {
3011                 u32 sel;
3012
3013                 temp = I915_READ(PCH_DPLL_SEL);
3014                 temp |= TRANS_DPLL_ENABLE(pipe);
3015                 sel = TRANS_DPLLB_SEL(pipe);
3016                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3017                         temp |= sel;
3018                 else
3019                         temp &= ~sel;
3020                 I915_WRITE(PCH_DPLL_SEL, temp);
3021         }
3022
3023         /* XXX: pch pll's can be enabled any time before we enable the PCH
3024          * transcoder, and we actually should do this to not upset any PCH
3025          * transcoder that already use the clock when we share it.
3026          *
3027          * Note that enable_shared_dpll tries to do the right thing, but
3028          * get_shared_dpll unconditionally resets the pll - we need that to have
3029          * the right LVDS enable sequence. */
3030         ironlake_enable_shared_dpll(intel_crtc);
3031
3032         /* set transcoder timing, panel must allow it */
3033         assert_panel_unlocked(dev_priv, pipe);
3034         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3035
3036         intel_fdi_normal_train(crtc);
3037
3038         /* For PCH DP, enable TRANS_DP_CTL */
3039         if (HAS_PCH_CPT(dev) &&
3040             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3041              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3042                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3043                 reg = TRANS_DP_CTL(pipe);
3044                 temp = I915_READ(reg);
3045                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3046                           TRANS_DP_SYNC_MASK |
3047                           TRANS_DP_BPC_MASK);
3048                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3049                          TRANS_DP_ENH_FRAMING);
3050                 temp |= bpc << 9; /* same format but at 11:9 */
3051
3052                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3053                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3054                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3055                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3056
3057                 switch (intel_trans_dp_port_sel(crtc)) {
3058                 case PCH_DP_B:
3059                         temp |= TRANS_DP_PORT_SEL_B;
3060                         break;
3061                 case PCH_DP_C:
3062                         temp |= TRANS_DP_PORT_SEL_C;
3063                         break;
3064                 case PCH_DP_D:
3065                         temp |= TRANS_DP_PORT_SEL_D;
3066                         break;
3067                 default:
3068                         BUG();
3069                 }
3070
3071                 I915_WRITE(reg, temp);
3072         }
3073
3074         ironlake_enable_pch_transcoder(dev_priv, pipe);
3075 }
3076
3077 static void lpt_pch_enable(struct drm_crtc *crtc)
3078 {
3079         struct drm_device *dev = crtc->dev;
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3082         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3083
3084         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3085
3086         lpt_program_iclkip(crtc);
3087
3088         /* Set transcoder timing. */
3089         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3090
3091         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3092 }
3093
3094 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3095 {
3096         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3097
3098         if (pll == NULL)
3099                 return;
3100
3101         if (pll->refcount == 0) {
3102                 WARN(1, "bad %s refcount\n", pll->name);
3103                 return;
3104         }
3105
3106         if (--pll->refcount == 0) {
3107                 WARN_ON(pll->on);
3108                 WARN_ON(pll->active);
3109         }
3110
3111         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3112 }
3113
3114 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3115 {
3116         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3117         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3118         enum intel_dpll_id i;
3119
3120         if (pll) {
3121                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3122                               crtc->base.base.id, pll->name);
3123                 intel_put_shared_dpll(crtc);
3124         }
3125
3126         if (HAS_PCH_IBX(dev_priv->dev)) {
3127                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3128                 i = (enum intel_dpll_id) crtc->pipe;
3129                 pll = &dev_priv->shared_dplls[i];
3130
3131                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3132                               crtc->base.base.id, pll->name);
3133
3134                 goto found;
3135         }
3136
3137         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3138                 pll = &dev_priv->shared_dplls[i];
3139
3140                 /* Only want to check enabled timings first */
3141                 if (pll->refcount == 0)
3142                         continue;
3143
3144                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3145                            sizeof(pll->hw_state)) == 0) {
3146                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3147                                       crtc->base.base.id,
3148                                       pll->name, pll->refcount, pll->active);
3149
3150                         goto found;
3151                 }
3152         }
3153
3154         /* Ok no matching timings, maybe there's a free one? */
3155         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3156                 pll = &dev_priv->shared_dplls[i];
3157                 if (pll->refcount == 0) {
3158                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3159                                       crtc->base.base.id, pll->name);
3160                         goto found;
3161                 }
3162         }
3163
3164         return NULL;
3165
3166 found:
3167         crtc->config.shared_dpll = i;
3168         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3169                          pipe_name(crtc->pipe));
3170
3171         if (pll->active == 0) {
3172                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3173                        sizeof(pll->hw_state));
3174
3175                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3176                 WARN_ON(pll->on);
3177                 assert_shared_dpll_disabled(dev_priv, pll);
3178
3179                 pll->mode_set(dev_priv, pll);
3180         }
3181         pll->refcount++;
3182
3183         return pll;
3184 }
3185
3186 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3187 {
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         int dslreg = PIPEDSL(pipe);
3190         u32 temp;
3191
3192         temp = I915_READ(dslreg);
3193         udelay(500);
3194         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3195                 if (wait_for(I915_READ(dslreg) != temp, 5))
3196                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3197         }
3198 }
3199
3200 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3201 {
3202         struct drm_device *dev = crtc->base.dev;
3203         struct drm_i915_private *dev_priv = dev->dev_private;
3204         int pipe = crtc->pipe;
3205
3206         if (crtc->config.pch_pfit.enabled) {
3207                 /* Force use of hard-coded filter coefficients
3208                  * as some pre-programmed values are broken,
3209                  * e.g. x201.
3210                  */
3211                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3212                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3213                                                  PF_PIPE_SEL_IVB(pipe));
3214                 else
3215                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3216                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3217                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3218         }
3219 }
3220
3221 static void intel_enable_planes(struct drm_crtc *crtc)
3222 {
3223         struct drm_device *dev = crtc->dev;
3224         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3225         struct intel_plane *intel_plane;
3226
3227         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3228                 if (intel_plane->pipe == pipe)
3229                         intel_plane_restore(&intel_plane->base);
3230 }
3231
3232 static void intel_disable_planes(struct drm_crtc *crtc)
3233 {
3234         struct drm_device *dev = crtc->dev;
3235         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3236         struct intel_plane *intel_plane;
3237
3238         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3239                 if (intel_plane->pipe == pipe)
3240                         intel_plane_disable(&intel_plane->base);
3241 }
3242
3243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3244 {
3245         struct drm_device *dev = crtc->dev;
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248         struct intel_encoder *encoder;
3249         int pipe = intel_crtc->pipe;
3250         int plane = intel_crtc->plane;
3251
3252         WARN_ON(!crtc->enabled);
3253
3254         if (intel_crtc->active)
3255                 return;
3256
3257         intel_crtc->active = true;
3258
3259         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3260         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3261
3262         intel_update_watermarks(dev);
3263
3264         for_each_encoder_on_crtc(dev, crtc, encoder)
3265                 if (encoder->pre_enable)
3266                         encoder->pre_enable(encoder);
3267
3268         if (intel_crtc->config.has_pch_encoder) {
3269                 /* Note: FDI PLL enabling _must_ be done before we enable the
3270                  * cpu pipes, hence this is separate from all the other fdi/pch
3271                  * enabling. */
3272                 ironlake_fdi_pll_enable(intel_crtc);
3273         } else {
3274                 assert_fdi_tx_disabled(dev_priv, pipe);
3275                 assert_fdi_rx_disabled(dev_priv, pipe);
3276         }
3277
3278         ironlake_pfit_enable(intel_crtc);
3279
3280         /*
3281          * On ILK+ LUT must be loaded before the pipe is running but with
3282          * clocks enabled
3283          */
3284         intel_crtc_load_lut(crtc);
3285
3286         intel_enable_pipe(dev_priv, pipe,
3287                           intel_crtc->config.has_pch_encoder);
3288         intel_enable_plane(dev_priv, plane, pipe);
3289         intel_enable_planes(crtc);
3290         intel_crtc_update_cursor(crtc, true);
3291
3292         if (intel_crtc->config.has_pch_encoder)
3293                 ironlake_pch_enable(crtc);
3294
3295         mutex_lock(&dev->struct_mutex);
3296         intel_update_fbc(dev);
3297         mutex_unlock(&dev->struct_mutex);
3298
3299         for_each_encoder_on_crtc(dev, crtc, encoder)
3300                 encoder->enable(encoder);
3301
3302         if (HAS_PCH_CPT(dev))
3303                 cpt_verify_modeset(dev, intel_crtc->pipe);
3304
3305         /*
3306          * There seems to be a race in PCH platform hw (at least on some
3307          * outputs) where an enabled pipe still completes any pageflip right
3308          * away (as if the pipe is off) instead of waiting for vblank. As soon
3309          * as the first vblank happend, everything works as expected. Hence just
3310          * wait for one vblank before returning to avoid strange things
3311          * happening.
3312          */
3313         intel_wait_for_vblank(dev, intel_crtc->pipe);
3314 }
3315
3316 /* IPS only exists on ULT machines and is tied to pipe A. */
3317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3318 {
3319         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3320 }
3321
3322 static void hsw_enable_ips(struct intel_crtc *crtc)
3323 {
3324         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3325
3326         if (!crtc->config.ips_enabled)
3327                 return;
3328
3329         /* We can only enable IPS after we enable a plane and wait for a vblank.
3330          * We guarantee that the plane is enabled by calling intel_enable_ips
3331          * only after intel_enable_plane. And intel_enable_plane already waits
3332          * for a vblank, so all we need to do here is to enable the IPS bit. */
3333         assert_plane_enabled(dev_priv, crtc->plane);
3334         I915_WRITE(IPS_CTL, IPS_ENABLE);
3335 }
3336
3337 static void hsw_disable_ips(struct intel_crtc *crtc)
3338 {
3339         struct drm_device *dev = crtc->base.dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341
3342         if (!crtc->config.ips_enabled)
3343                 return;
3344
3345         assert_plane_enabled(dev_priv, crtc->plane);
3346         I915_WRITE(IPS_CTL, 0);
3347
3348         /* We need to wait for a vblank before we can disable the plane. */
3349         intel_wait_for_vblank(dev, crtc->pipe);
3350 }
3351
3352 static void haswell_crtc_enable(struct drm_crtc *crtc)
3353 {
3354         struct drm_device *dev = crtc->dev;
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357         struct intel_encoder *encoder;
3358         int pipe = intel_crtc->pipe;
3359         int plane = intel_crtc->plane;
3360
3361         WARN_ON(!crtc->enabled);
3362
3363         if (intel_crtc->active)
3364                 return;
3365
3366         intel_crtc->active = true;
3367
3368         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3369         if (intel_crtc->config.has_pch_encoder)
3370                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3371
3372         intel_update_watermarks(dev);
3373
3374         if (intel_crtc->config.has_pch_encoder)
3375                 dev_priv->display.fdi_link_train(crtc);
3376
3377         for_each_encoder_on_crtc(dev, crtc, encoder)
3378                 if (encoder->pre_enable)
3379                         encoder->pre_enable(encoder);
3380
3381         intel_ddi_enable_pipe_clock(intel_crtc);
3382
3383         ironlake_pfit_enable(intel_crtc);
3384
3385         /*
3386          * On ILK+ LUT must be loaded before the pipe is running but with
3387          * clocks enabled
3388          */
3389         intel_crtc_load_lut(crtc);
3390
3391         intel_ddi_set_pipe_settings(crtc);
3392         intel_ddi_enable_transcoder_func(crtc);
3393
3394         intel_enable_pipe(dev_priv, pipe,
3395                           intel_crtc->config.has_pch_encoder);
3396         intel_enable_plane(dev_priv, plane, pipe);
3397         intel_enable_planes(crtc);
3398         intel_crtc_update_cursor(crtc, true);
3399
3400         hsw_enable_ips(intel_crtc);
3401
3402         if (intel_crtc->config.has_pch_encoder)
3403                 lpt_pch_enable(crtc);
3404
3405         mutex_lock(&dev->struct_mutex);
3406         intel_update_fbc(dev);
3407         mutex_unlock(&dev->struct_mutex);
3408
3409         for_each_encoder_on_crtc(dev, crtc, encoder)
3410                 encoder->enable(encoder);
3411
3412         /*
3413          * There seems to be a race in PCH platform hw (at least on some
3414          * outputs) where an enabled pipe still completes any pageflip right
3415          * away (as if the pipe is off) instead of waiting for vblank. As soon
3416          * as the first vblank happend, everything works as expected. Hence just
3417          * wait for one vblank before returning to avoid strange things
3418          * happening.
3419          */
3420         intel_wait_for_vblank(dev, intel_crtc->pipe);
3421 }
3422
3423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3424 {
3425         struct drm_device *dev = crtc->base.dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         int pipe = crtc->pipe;
3428
3429         /* To avoid upsetting the power well on haswell only disable the pfit if
3430          * it's in use. The hw state code will make sure we get this right. */
3431         if (crtc->config.pch_pfit.enabled) {
3432                 I915_WRITE(PF_CTL(pipe), 0);
3433                 I915_WRITE(PF_WIN_POS(pipe), 0);
3434                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3435         }
3436 }
3437
3438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3439 {
3440         struct drm_device *dev = crtc->dev;
3441         struct drm_i915_private *dev_priv = dev->dev_private;
3442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3443         struct intel_encoder *encoder;
3444         int pipe = intel_crtc->pipe;
3445         int plane = intel_crtc->plane;
3446         u32 reg, temp;
3447
3448
3449         if (!intel_crtc->active)
3450                 return;
3451
3452         for_each_encoder_on_crtc(dev, crtc, encoder)
3453                 encoder->disable(encoder);
3454
3455         intel_crtc_wait_for_pending_flips(crtc);
3456         drm_vblank_off(dev, pipe);
3457
3458         if (dev_priv->fbc.plane == plane)
3459                 intel_disable_fbc(dev);
3460
3461         intel_crtc_update_cursor(crtc, false);
3462         intel_disable_planes(crtc);
3463         intel_disable_plane(dev_priv, plane, pipe);
3464
3465         if (intel_crtc->config.has_pch_encoder)
3466                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3467
3468         intel_disable_pipe(dev_priv, pipe);
3469
3470         ironlake_pfit_disable(intel_crtc);
3471
3472         for_each_encoder_on_crtc(dev, crtc, encoder)
3473                 if (encoder->post_disable)
3474                         encoder->post_disable(encoder);
3475
3476         if (intel_crtc->config.has_pch_encoder) {
3477                 ironlake_fdi_disable(crtc);
3478
3479                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3480                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3481
3482                 if (HAS_PCH_CPT(dev)) {
3483                         /* disable TRANS_DP_CTL */
3484                         reg = TRANS_DP_CTL(pipe);
3485                         temp = I915_READ(reg);
3486                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3487                                   TRANS_DP_PORT_SEL_MASK);
3488                         temp |= TRANS_DP_PORT_SEL_NONE;
3489                         I915_WRITE(reg, temp);
3490
3491                         /* disable DPLL_SEL */
3492                         temp = I915_READ(PCH_DPLL_SEL);
3493                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3494                         I915_WRITE(PCH_DPLL_SEL, temp);
3495                 }
3496
3497                 /* disable PCH DPLL */
3498                 intel_disable_shared_dpll(intel_crtc);
3499
3500                 ironlake_fdi_pll_disable(intel_crtc);
3501         }
3502
3503         intel_crtc->active = false;
3504         intel_update_watermarks(dev);
3505
3506         mutex_lock(&dev->struct_mutex);
3507         intel_update_fbc(dev);
3508         mutex_unlock(&dev->struct_mutex);
3509 }
3510
3511 static void haswell_crtc_disable(struct drm_crtc *crtc)
3512 {
3513         struct drm_device *dev = crtc->dev;
3514         struct drm_i915_private *dev_priv = dev->dev_private;
3515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516         struct intel_encoder *encoder;
3517         int pipe = intel_crtc->pipe;
3518         int plane = intel_crtc->plane;
3519         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3520
3521         if (!intel_crtc->active)
3522                 return;
3523
3524         for_each_encoder_on_crtc(dev, crtc, encoder)
3525                 encoder->disable(encoder);
3526
3527         intel_crtc_wait_for_pending_flips(crtc);
3528         drm_vblank_off(dev, pipe);
3529
3530         /* FBC must be disabled before disabling the plane on HSW. */
3531         if (dev_priv->fbc.plane == plane)
3532                 intel_disable_fbc(dev);
3533
3534         hsw_disable_ips(intel_crtc);
3535
3536         intel_crtc_update_cursor(crtc, false);
3537         intel_disable_planes(crtc);
3538         intel_disable_plane(dev_priv, plane, pipe);
3539
3540         if (intel_crtc->config.has_pch_encoder)
3541                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3542         intel_disable_pipe(dev_priv, pipe);
3543
3544         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3545
3546         ironlake_pfit_disable(intel_crtc);
3547
3548         intel_ddi_disable_pipe_clock(intel_crtc);
3549
3550         for_each_encoder_on_crtc(dev, crtc, encoder)
3551                 if (encoder->post_disable)
3552                         encoder->post_disable(encoder);
3553
3554         if (intel_crtc->config.has_pch_encoder) {
3555                 lpt_disable_pch_transcoder(dev_priv);
3556                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3557                 intel_ddi_fdi_disable(crtc);
3558         }
3559
3560         intel_crtc->active = false;
3561         intel_update_watermarks(dev);
3562
3563         mutex_lock(&dev->struct_mutex);
3564         intel_update_fbc(dev);
3565         mutex_unlock(&dev->struct_mutex);
3566 }
3567
3568 static void ironlake_crtc_off(struct drm_crtc *crtc)
3569 {
3570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571         intel_put_shared_dpll(intel_crtc);
3572 }
3573
3574 static void haswell_crtc_off(struct drm_crtc *crtc)
3575 {
3576         intel_ddi_put_crtc_pll(crtc);
3577 }
3578
3579 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3580 {
3581         if (!enable && intel_crtc->overlay) {
3582                 struct drm_device *dev = intel_crtc->base.dev;
3583                 struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585                 mutex_lock(&dev->struct_mutex);
3586                 dev_priv->mm.interruptible = false;
3587                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3588                 dev_priv->mm.interruptible = true;
3589                 mutex_unlock(&dev->struct_mutex);
3590         }
3591
3592         /* Let userspace switch the overlay on again. In most cases userspace
3593          * has to recompute where to put it anyway.
3594          */
3595 }
3596
3597 /**
3598  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3599  * cursor plane briefly if not already running after enabling the display
3600  * plane.
3601  * This workaround avoids occasional blank screens when self refresh is
3602  * enabled.
3603  */
3604 static void
3605 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3606 {
3607         u32 cntl = I915_READ(CURCNTR(pipe));
3608
3609         if ((cntl & CURSOR_MODE) == 0) {
3610                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3611
3612                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3613                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3614                 intel_wait_for_vblank(dev_priv->dev, pipe);
3615                 I915_WRITE(CURCNTR(pipe), cntl);
3616                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3617                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3618         }
3619 }
3620
3621 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3622 {
3623         struct drm_device *dev = crtc->base.dev;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         struct intel_crtc_config *pipe_config = &crtc->config;
3626
3627         if (!crtc->config.gmch_pfit.control)
3628                 return;
3629
3630         /*
3631          * The panel fitter should only be adjusted whilst the pipe is disabled,
3632          * according to register description and PRM.
3633          */
3634         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3635         assert_pipe_disabled(dev_priv, crtc->pipe);
3636
3637         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3638         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3639
3640         /* Border color in case we don't scale up to the full screen. Black by
3641          * default, change to something else for debugging. */
3642         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3643 }
3644
3645 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3646 {
3647         struct drm_device *dev = crtc->dev;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650         struct intel_encoder *encoder;
3651         int pipe = intel_crtc->pipe;
3652         int plane = intel_crtc->plane;
3653
3654         WARN_ON(!crtc->enabled);
3655
3656         if (intel_crtc->active)
3657                 return;
3658
3659         intel_crtc->active = true;
3660         intel_update_watermarks(dev);
3661
3662         for_each_encoder_on_crtc(dev, crtc, encoder)
3663                 if (encoder->pre_pll_enable)
3664                         encoder->pre_pll_enable(encoder);
3665
3666         vlv_enable_pll(intel_crtc);
3667
3668         for_each_encoder_on_crtc(dev, crtc, encoder)
3669                 if (encoder->pre_enable)
3670                         encoder->pre_enable(encoder);
3671
3672         i9xx_pfit_enable(intel_crtc);
3673
3674         intel_crtc_load_lut(crtc);
3675
3676         intel_enable_pipe(dev_priv, pipe, false);
3677         intel_enable_plane(dev_priv, plane, pipe);
3678         intel_enable_planes(crtc);
3679         intel_crtc_update_cursor(crtc, true);
3680
3681         intel_update_fbc(dev);
3682
3683         for_each_encoder_on_crtc(dev, crtc, encoder)
3684                 encoder->enable(encoder);
3685 }
3686
3687 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3688 {
3689         struct drm_device *dev = crtc->dev;
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692         struct intel_encoder *encoder;
3693         int pipe = intel_crtc->pipe;
3694         int plane = intel_crtc->plane;
3695
3696         WARN_ON(!crtc->enabled);
3697
3698         if (intel_crtc->active)
3699                 return;
3700
3701         intel_crtc->active = true;
3702         intel_update_watermarks(dev);
3703
3704         for_each_encoder_on_crtc(dev, crtc, encoder)
3705                 if (encoder->pre_enable)
3706                         encoder->pre_enable(encoder);
3707
3708         i9xx_enable_pll(intel_crtc);
3709
3710         i9xx_pfit_enable(intel_crtc);
3711
3712         intel_crtc_load_lut(crtc);
3713
3714         intel_enable_pipe(dev_priv, pipe, false);
3715         intel_enable_plane(dev_priv, plane, pipe);
3716         intel_enable_planes(crtc);
3717         /* The fixup needs to happen before cursor is enabled */
3718         if (IS_G4X(dev))
3719                 g4x_fixup_plane(dev_priv, pipe);
3720         intel_crtc_update_cursor(crtc, true);
3721
3722         /* Give the overlay scaler a chance to enable if it's on this pipe */
3723         intel_crtc_dpms_overlay(intel_crtc, true);
3724
3725         intel_update_fbc(dev);
3726
3727         for_each_encoder_on_crtc(dev, crtc, encoder)
3728                 encoder->enable(encoder);
3729 }
3730
3731 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3732 {
3733         struct drm_device *dev = crtc->base.dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736         if (!crtc->config.gmch_pfit.control)
3737                 return;
3738
3739         assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3742                          I915_READ(PFIT_CONTROL));
3743         I915_WRITE(PFIT_CONTROL, 0);
3744 }
3745
3746 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3747 {
3748         struct drm_device *dev = crtc->dev;
3749         struct drm_i915_private *dev_priv = dev->dev_private;
3750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751         struct intel_encoder *encoder;
3752         int pipe = intel_crtc->pipe;
3753         int plane = intel_crtc->plane;
3754
3755         if (!intel_crtc->active)
3756                 return;
3757
3758         for_each_encoder_on_crtc(dev, crtc, encoder)
3759                 encoder->disable(encoder);
3760
3761         /* Give the overlay scaler a chance to disable if it's on this pipe */
3762         intel_crtc_wait_for_pending_flips(crtc);
3763         drm_vblank_off(dev, pipe);
3764
3765         if (dev_priv->fbc.plane == plane)
3766                 intel_disable_fbc(dev);
3767
3768         intel_crtc_dpms_overlay(intel_crtc, false);
3769         intel_crtc_update_cursor(crtc, false);
3770         intel_disable_planes(crtc);
3771         intel_disable_plane(dev_priv, plane, pipe);
3772
3773         intel_disable_pipe(dev_priv, pipe);
3774
3775         i9xx_pfit_disable(intel_crtc);
3776
3777         for_each_encoder_on_crtc(dev, crtc, encoder)
3778                 if (encoder->post_disable)
3779                         encoder->post_disable(encoder);
3780
3781         i9xx_disable_pll(dev_priv, pipe);
3782
3783         intel_crtc->active = false;
3784         intel_update_fbc(dev);
3785         intel_update_watermarks(dev);
3786 }
3787
3788 static void i9xx_crtc_off(struct drm_crtc *crtc)
3789 {
3790 }
3791
3792 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3793                                     bool enabled)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_master_private *master_priv;
3797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3798         int pipe = intel_crtc->pipe;
3799
3800         if (!dev->primary->master)
3801                 return;
3802
3803         master_priv = dev->primary->master->driver_priv;
3804         if (!master_priv->sarea_priv)
3805                 return;
3806
3807         switch (pipe) {
3808         case 0:
3809                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3810                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3811                 break;
3812         case 1:
3813                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3814                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3815                 break;
3816         default:
3817                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3818                 break;
3819         }
3820 }
3821
3822 /**
3823  * Sets the power management mode of the pipe and plane.
3824  */
3825 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3826 {
3827         struct drm_device *dev = crtc->dev;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         struct intel_encoder *intel_encoder;
3830         bool enable = false;
3831
3832         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3833                 enable |= intel_encoder->connectors_active;
3834
3835         if (enable)
3836                 dev_priv->display.crtc_enable(crtc);
3837         else
3838                 dev_priv->display.crtc_disable(crtc);
3839
3840         intel_crtc_update_sarea(crtc, enable);
3841 }
3842
3843 static void intel_crtc_disable(struct drm_crtc *crtc)
3844 {
3845         struct drm_device *dev = crtc->dev;
3846         struct drm_connector *connector;
3847         struct drm_i915_private *dev_priv = dev->dev_private;
3848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850         /* crtc should still be enabled when we disable it. */
3851         WARN_ON(!crtc->enabled);
3852
3853         dev_priv->display.crtc_disable(crtc);
3854         intel_crtc->eld_vld = false;
3855         intel_crtc_update_sarea(crtc, false);
3856         dev_priv->display.off(crtc);
3857
3858         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861         if (crtc->fb) {
3862                 mutex_lock(&dev->struct_mutex);
3863                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864                 mutex_unlock(&dev->struct_mutex);
3865                 crtc->fb = NULL;
3866         }
3867
3868         /* Update computed state. */
3869         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870                 if (!connector->encoder || !connector->encoder->crtc)
3871                         continue;
3872
3873                 if (connector->encoder->crtc != crtc)
3874                         continue;
3875
3876                 connector->dpms = DRM_MODE_DPMS_OFF;
3877                 to_intel_encoder(connector->encoder)->connectors_active = false;
3878         }
3879 }
3880
3881 void intel_encoder_destroy(struct drm_encoder *encoder)
3882 {
3883         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3884
3885         drm_encoder_cleanup(encoder);
3886         kfree(intel_encoder);
3887 }
3888
3889 /* Simple dpms helper for encoders with just one connector, no cloning and only
3890  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3891  * state of the entire output pipe. */
3892 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3893 {
3894         if (mode == DRM_MODE_DPMS_ON) {
3895                 encoder->connectors_active = true;
3896
3897                 intel_crtc_update_dpms(encoder->base.crtc);
3898         } else {
3899                 encoder->connectors_active = false;
3900
3901                 intel_crtc_update_dpms(encoder->base.crtc);
3902         }
3903 }
3904
3905 /* Cross check the actual hw state with our own modeset state tracking (and it's
3906  * internal consistency). */
3907 static void intel_connector_check_state(struct intel_connector *connector)
3908 {
3909         if (connector->get_hw_state(connector)) {
3910                 struct intel_encoder *encoder = connector->encoder;
3911                 struct drm_crtc *crtc;
3912                 bool encoder_enabled;
3913                 enum pipe pipe;
3914
3915                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3916                               connector->base.base.id,
3917                               drm_get_connector_name(&connector->base));
3918
3919                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3920                      "wrong connector dpms state\n");
3921                 WARN(connector->base.encoder != &encoder->base,
3922                      "active connector not linked to encoder\n");
3923                 WARN(!encoder->connectors_active,
3924                      "encoder->connectors_active not set\n");
3925
3926                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3927                 WARN(!encoder_enabled, "encoder not enabled\n");
3928                 if (WARN_ON(!encoder->base.crtc))
3929                         return;
3930
3931                 crtc = encoder->base.crtc;
3932
3933                 WARN(!crtc->enabled, "crtc not enabled\n");
3934                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3935                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3936                      "encoder active on the wrong pipe\n");
3937         }
3938 }
3939
3940 /* Even simpler default implementation, if there's really no special case to
3941  * consider. */
3942 void intel_connector_dpms(struct drm_connector *connector, int mode)
3943 {
3944         struct intel_encoder *encoder = intel_attached_encoder(connector);
3945
3946         /* All the simple cases only support two dpms states. */
3947         if (mode != DRM_MODE_DPMS_ON)
3948                 mode = DRM_MODE_DPMS_OFF;
3949
3950         if (mode == connector->dpms)
3951                 return;
3952
3953         connector->dpms = mode;
3954
3955         /* Only need to change hw state when actually enabled */
3956         if (encoder->base.crtc)
3957                 intel_encoder_dpms(encoder, mode);
3958         else
3959                 WARN_ON(encoder->connectors_active != false);
3960
3961         intel_modeset_check_state(connector->dev);
3962 }
3963
3964 /* Simple connector->get_hw_state implementation for encoders that support only
3965  * one connector and no cloning and hence the encoder state determines the state
3966  * of the connector. */
3967 bool intel_connector_get_hw_state(struct intel_connector *connector)
3968 {
3969         enum pipe pipe = 0;
3970         struct intel_encoder *encoder = connector->encoder;
3971
3972         return encoder->get_hw_state(encoder, &pipe);
3973 }
3974
3975 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3976                                      struct intel_crtc_config *pipe_config)
3977 {
3978         struct drm_i915_private *dev_priv = dev->dev_private;
3979         struct intel_crtc *pipe_B_crtc =
3980                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3981
3982         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3983                       pipe_name(pipe), pipe_config->fdi_lanes);
3984         if (pipe_config->fdi_lanes > 4) {
3985                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3986                               pipe_name(pipe), pipe_config->fdi_lanes);
3987                 return false;
3988         }
3989
3990         if (IS_HASWELL(dev)) {
3991                 if (pipe_config->fdi_lanes > 2) {
3992                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3993                                       pipe_config->fdi_lanes);
3994                         return false;
3995                 } else {
3996                         return true;
3997                 }
3998         }
3999
4000         if (INTEL_INFO(dev)->num_pipes == 2)
4001                 return true;
4002
4003         /* Ivybridge 3 pipe is really complicated */
4004         switch (pipe) {
4005         case PIPE_A:
4006                 return true;
4007         case PIPE_B:
4008                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4009                     pipe_config->fdi_lanes > 2) {
4010                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4011                                       pipe_name(pipe), pipe_config->fdi_lanes);
4012                         return false;
4013                 }
4014                 return true;
4015         case PIPE_C:
4016                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4017                     pipe_B_crtc->config.fdi_lanes <= 2) {
4018                         if (pipe_config->fdi_lanes > 2) {
4019                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020                                               pipe_name(pipe), pipe_config->fdi_lanes);
4021                                 return false;
4022                         }
4023                 } else {
4024                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4025                         return false;
4026                 }
4027                 return true;
4028         default:
4029                 BUG();
4030         }
4031 }
4032
4033 #define RETRY 1
4034 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4035                                        struct intel_crtc_config *pipe_config)
4036 {
4037         struct drm_device *dev = intel_crtc->base.dev;
4038         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4039         int lane, link_bw, fdi_dotclock;
4040         bool setup_ok, needs_recompute = false;
4041
4042 retry:
4043         /* FDI is a binary signal running at ~2.7GHz, encoding
4044          * each output octet as 10 bits. The actual frequency
4045          * is stored as a divider into a 100MHz clock, and the
4046          * mode pixel clock is stored in units of 1KHz.
4047          * Hence the bw of each lane in terms of the mode signal
4048          * is:
4049          */
4050         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4051
4052         fdi_dotclock = adjusted_mode->clock;
4053         fdi_dotclock /= pipe_config->pixel_multiplier;
4054
4055         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4056                                            pipe_config->pipe_bpp);
4057
4058         pipe_config->fdi_lanes = lane;
4059
4060         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4061                                link_bw, &pipe_config->fdi_m_n);
4062
4063         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4064                                             intel_crtc->pipe, pipe_config);
4065         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4066                 pipe_config->pipe_bpp -= 2*3;
4067                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4068                               pipe_config->pipe_bpp);
4069                 needs_recompute = true;
4070                 pipe_config->bw_constrained = true;
4071
4072                 goto retry;
4073         }
4074
4075         if (needs_recompute)
4076                 return RETRY;
4077
4078         return setup_ok ? 0 : -EINVAL;
4079 }
4080
4081 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4082                                    struct intel_crtc_config *pipe_config)
4083 {
4084         pipe_config->ips_enabled = i915_enable_ips &&
4085                                    hsw_crtc_supports_ips(crtc) &&
4086                                    pipe_config->pipe_bpp <= 24;
4087 }
4088
4089 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4090                                      struct intel_crtc_config *pipe_config)
4091 {
4092         struct drm_device *dev = crtc->base.dev;
4093         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4094
4095         if (HAS_PCH_SPLIT(dev)) {
4096                 /* FDI link clock is fixed at 2.7G */
4097                 if (pipe_config->requested_mode.clock * 3
4098                     > IRONLAKE_FDI_FREQ * 4)
4099                         return -EINVAL;
4100         }
4101
4102         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4103          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4104          */
4105         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4106                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4107                 return -EINVAL;
4108
4109         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4110                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4111         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4112                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4113                  * for lvds. */
4114                 pipe_config->pipe_bpp = 8*3;
4115         }
4116
4117         if (HAS_IPS(dev))
4118                 hsw_compute_ips_config(crtc, pipe_config);
4119
4120         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4121          * clock survives for now. */
4122         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4123                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4124
4125         if (pipe_config->has_pch_encoder)
4126                 return ironlake_fdi_compute_config(crtc, pipe_config);
4127
4128         return 0;
4129 }
4130
4131 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4132 {
4133         return 400000; /* FIXME */
4134 }
4135
4136 static int i945_get_display_clock_speed(struct drm_device *dev)
4137 {
4138         return 400000;
4139 }
4140
4141 static int i915_get_display_clock_speed(struct drm_device *dev)
4142 {
4143         return 333000;
4144 }
4145
4146 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4147 {
4148         return 200000;
4149 }
4150
4151 static int pnv_get_display_clock_speed(struct drm_device *dev)
4152 {
4153         u16 gcfgc = 0;
4154
4155         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4156
4157         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4158         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4159                 return 267000;
4160         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4161                 return 333000;
4162         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4163                 return 444000;
4164         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4165                 return 200000;
4166         default:
4167                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4168         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4169                 return 133000;
4170         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4171                 return 167000;
4172         }
4173 }
4174
4175 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4176 {
4177         u16 gcfgc = 0;
4178
4179         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4180
4181         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4182                 return 133000;
4183         else {
4184                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4185                 case GC_DISPLAY_CLOCK_333_MHZ:
4186                         return 333000;
4187                 default:
4188                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4189                         return 190000;
4190                 }
4191         }
4192 }
4193
4194 static int i865_get_display_clock_speed(struct drm_device *dev)
4195 {
4196         return 266000;
4197 }
4198
4199 static int i855_get_display_clock_speed(struct drm_device *dev)
4200 {
4201         u16 hpllcc = 0;
4202         /* Assume that the hardware is in the high speed state.  This
4203          * should be the default.
4204          */
4205         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4206         case GC_CLOCK_133_200:
4207         case GC_CLOCK_100_200:
4208                 return 200000;
4209         case GC_CLOCK_166_250:
4210                 return 250000;
4211         case GC_CLOCK_100_133:
4212                 return 133000;
4213         }
4214
4215         /* Shouldn't happen */
4216         return 0;
4217 }
4218
4219 static int i830_get_display_clock_speed(struct drm_device *dev)
4220 {
4221         return 133000;
4222 }
4223
4224 static void
4225 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4226 {
4227         while (*num > DATA_LINK_M_N_MASK ||
4228                *den > DATA_LINK_M_N_MASK) {
4229                 *num >>= 1;
4230                 *den >>= 1;
4231         }
4232 }
4233
4234 static void compute_m_n(unsigned int m, unsigned int n,
4235                         uint32_t *ret_m, uint32_t *ret_n)
4236 {
4237         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4238         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4239         intel_reduce_m_n_ratio(ret_m, ret_n);
4240 }
4241
4242 void
4243 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4244                        int pixel_clock, int link_clock,
4245                        struct intel_link_m_n *m_n)
4246 {
4247         m_n->tu = 64;
4248
4249         compute_m_n(bits_per_pixel * pixel_clock,
4250                     link_clock * nlanes * 8,
4251                     &m_n->gmch_m, &m_n->gmch_n);
4252
4253         compute_m_n(pixel_clock, link_clock,
4254                     &m_n->link_m, &m_n->link_n);
4255 }
4256
4257 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4258 {
4259         if (i915_panel_use_ssc >= 0)
4260                 return i915_panel_use_ssc != 0;
4261         return dev_priv->vbt.lvds_use_ssc
4262                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4263 }
4264
4265 static int vlv_get_refclk(struct drm_crtc *crtc)
4266 {
4267         struct drm_device *dev = crtc->dev;
4268         struct drm_i915_private *dev_priv = dev->dev_private;
4269         int refclk = 27000; /* for DP & HDMI */
4270
4271         return 100000; /* only one validated so far */
4272
4273         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4274                 refclk = 96000;
4275         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4276                 if (intel_panel_use_ssc(dev_priv))
4277                         refclk = 100000;
4278                 else
4279                         refclk = 96000;
4280         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4281                 refclk = 100000;
4282         }
4283
4284         return refclk;
4285 }
4286
4287 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4288 {
4289         struct drm_device *dev = crtc->dev;
4290         struct drm_i915_private *dev_priv = dev->dev_private;
4291         int refclk;
4292
4293         if (IS_VALLEYVIEW(dev)) {
4294                 refclk = vlv_get_refclk(crtc);
4295         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4296             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4297                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4298                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4299                               refclk / 1000);
4300         } else if (!IS_GEN2(dev)) {
4301                 refclk = 96000;
4302         } else {
4303                 refclk = 48000;
4304         }
4305
4306         return refclk;
4307 }
4308
4309 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4310 {
4311         return (1 << dpll->n) << 16 | dpll->m2;
4312 }
4313
4314 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4315 {
4316         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4317 }
4318
4319 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4320                                      intel_clock_t *reduced_clock)
4321 {
4322         struct drm_device *dev = crtc->base.dev;
4323         struct drm_i915_private *dev_priv = dev->dev_private;
4324         int pipe = crtc->pipe;
4325         u32 fp, fp2 = 0;
4326
4327         if (IS_PINEVIEW(dev)) {
4328                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4329                 if (reduced_clock)
4330                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4331         } else {
4332                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4333                 if (reduced_clock)
4334                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4335         }
4336
4337         I915_WRITE(FP0(pipe), fp);
4338         crtc->config.dpll_hw_state.fp0 = fp;
4339
4340         crtc->lowfreq_avail = false;
4341         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4342             reduced_clock && i915_powersave) {
4343                 I915_WRITE(FP1(pipe), fp2);
4344                 crtc->config.dpll_hw_state.fp1 = fp2;
4345                 crtc->lowfreq_avail = true;
4346         } else {
4347                 I915_WRITE(FP1(pipe), fp);
4348                 crtc->config.dpll_hw_state.fp1 = fp;
4349         }
4350 }
4351
4352 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4353 {
4354         u32 reg_val;
4355
4356         /*
4357          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4358          * and set it to a reasonable value instead.
4359          */
4360         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4361         reg_val &= 0xffffff00;
4362         reg_val |= 0x00000030;
4363         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4364
4365         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4366         reg_val &= 0x8cffffff;
4367         reg_val = 0x8c000000;
4368         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4369
4370         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4371         reg_val &= 0xffffff00;
4372         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4373
4374         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4375         reg_val &= 0x00ffffff;
4376         reg_val |= 0xb0000000;
4377         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4378 }
4379
4380 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4381                                          struct intel_link_m_n *m_n)
4382 {
4383         struct drm_device *dev = crtc->base.dev;
4384         struct drm_i915_private *dev_priv = dev->dev_private;
4385         int pipe = crtc->pipe;
4386
4387         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4388         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4389         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4390         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4391 }
4392
4393 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4394                                          struct intel_link_m_n *m_n)
4395 {
4396         struct drm_device *dev = crtc->base.dev;
4397         struct drm_i915_private *dev_priv = dev->dev_private;
4398         int pipe = crtc->pipe;
4399         enum transcoder transcoder = crtc->config.cpu_transcoder;
4400
4401         if (INTEL_INFO(dev)->gen >= 5) {
4402                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4403                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4404                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4405                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4406         } else {
4407                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4408                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4409                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4410                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4411         }
4412 }
4413
4414 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4415 {
4416         if (crtc->config.has_pch_encoder)
4417                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4418         else
4419                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4420 }
4421
4422 static void vlv_update_pll(struct intel_crtc *crtc)
4423 {
4424         struct drm_device *dev = crtc->base.dev;
4425         struct drm_i915_private *dev_priv = dev->dev_private;
4426         int pipe = crtc->pipe;
4427         u32 dpll, mdiv;
4428         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4429         u32 coreclk, reg_val, dpll_md;
4430
4431         mutex_lock(&dev_priv->dpio_lock);
4432
4433         bestn = crtc->config.dpll.n;
4434         bestm1 = crtc->config.dpll.m1;
4435         bestm2 = crtc->config.dpll.m2;
4436         bestp1 = crtc->config.dpll.p1;
4437         bestp2 = crtc->config.dpll.p2;
4438
4439         /* See eDP HDMI DPIO driver vbios notes doc */
4440
4441         /* PLL B needs special handling */
4442         if (pipe)
4443                 vlv_pllb_recal_opamp(dev_priv);
4444
4445         /* Set up Tx target for periodic Rcomp update */
4446         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4447
4448         /* Disable target IRef on PLL */
4449         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4450         reg_val &= 0x00ffffff;
4451         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4452
4453         /* Disable fast lock */
4454         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4455
4456         /* Set idtafcrecal before PLL is enabled */
4457         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4458         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4459         mdiv |= ((bestn << DPIO_N_SHIFT));
4460         mdiv |= (1 << DPIO_K_SHIFT);
4461
4462         /*
4463          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4464          * but we don't support that).
4465          * Note: don't use the DAC post divider as it seems unstable.
4466          */
4467         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4468         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4469
4470         mdiv |= DPIO_ENABLE_CALIBRATION;
4471         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4472
4473         /* Set HBR and RBR LPF coefficients */
4474         if (crtc->config.port_clock == 162000 ||
4475             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4476             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4477                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4478                                  0x009f0003);
4479         else
4480                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4481                                  0x00d0000f);
4482
4483         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4484             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4485                 /* Use SSC source */
4486                 if (!pipe)
4487                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4488                                          0x0df40000);
4489                 else
4490                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4491                                          0x0df70000);
4492         } else { /* HDMI or VGA */
4493                 /* Use bend source */
4494                 if (!pipe)
4495                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4496                                          0x0df70000);
4497                 else
4498                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4499                                          0x0df40000);
4500         }
4501
4502         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4503         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4504         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4505             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4506                 coreclk |= 0x01000000;
4507         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4508
4509         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4510
4511         /* Enable DPIO clock input */
4512         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4513                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4514         if (pipe)
4515                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4516
4517         dpll |= DPLL_VCO_ENABLE;
4518         crtc->config.dpll_hw_state.dpll = dpll;
4519
4520         dpll_md = (crtc->config.pixel_multiplier - 1)
4521                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4522         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4523
4524         if (crtc->config.has_dp_encoder)
4525                 intel_dp_set_m_n(crtc);
4526
4527         mutex_unlock(&dev_priv->dpio_lock);
4528 }
4529
4530 static void i9xx_update_pll(struct intel_crtc *crtc,
4531                             intel_clock_t *reduced_clock,
4532                             int num_connectors)
4533 {
4534         struct drm_device *dev = crtc->base.dev;
4535         struct drm_i915_private *dev_priv = dev->dev_private;
4536         u32 dpll;
4537         bool is_sdvo;
4538         struct dpll *clock = &crtc->config.dpll;
4539
4540         i9xx_update_pll_dividers(crtc, reduced_clock);
4541
4542         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4543                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4544
4545         dpll = DPLL_VGA_MODE_DIS;
4546
4547         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4548                 dpll |= DPLLB_MODE_LVDS;
4549         else
4550                 dpll |= DPLLB_MODE_DAC_SERIAL;
4551
4552         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4553                 dpll |= (crtc->config.pixel_multiplier - 1)
4554                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4555         }
4556
4557         if (is_sdvo)
4558                 dpll |= DPLL_SDVO_HIGH_SPEED;
4559
4560         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4561                 dpll |= DPLL_SDVO_HIGH_SPEED;
4562
4563         /* compute bitmask from p1 value */
4564         if (IS_PINEVIEW(dev))
4565                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4566         else {
4567                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4568                 if (IS_G4X(dev) && reduced_clock)
4569                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4570         }
4571         switch (clock->p2) {
4572         case 5:
4573                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4574                 break;
4575         case 7:
4576                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4577                 break;
4578         case 10:
4579                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4580                 break;
4581         case 14:
4582                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4583                 break;
4584         }
4585         if (INTEL_INFO(dev)->gen >= 4)
4586                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4587
4588         if (crtc->config.sdvo_tv_clock)
4589                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4590         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4591                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4592                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4593         else
4594                 dpll |= PLL_REF_INPUT_DREFCLK;
4595
4596         dpll |= DPLL_VCO_ENABLE;
4597         crtc->config.dpll_hw_state.dpll = dpll;
4598
4599         if (INTEL_INFO(dev)->gen >= 4) {
4600                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4601                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4602                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4603         }
4604
4605         if (crtc->config.has_dp_encoder)
4606                 intel_dp_set_m_n(crtc);
4607 }
4608
4609 static void i8xx_update_pll(struct intel_crtc *crtc,
4610                             intel_clock_t *reduced_clock,
4611                             int num_connectors)
4612 {
4613         struct drm_device *dev = crtc->base.dev;
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         u32 dpll;
4616         struct dpll *clock = &crtc->config.dpll;
4617
4618         i9xx_update_pll_dividers(crtc, reduced_clock);
4619
4620         dpll = DPLL_VGA_MODE_DIS;
4621
4622         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4623                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4624         } else {
4625                 if (clock->p1 == 2)
4626                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4627                 else
4628                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4629                 if (clock->p2 == 4)
4630                         dpll |= PLL_P2_DIVIDE_BY_4;
4631         }
4632
4633         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4634                 dpll |= DPLL_DVO_2X_MODE;
4635
4636         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4637                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639         else
4640                 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642         dpll |= DPLL_VCO_ENABLE;
4643         crtc->config.dpll_hw_state.dpll = dpll;
4644 }
4645
4646 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4647 {
4648         struct drm_device *dev = intel_crtc->base.dev;
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650         enum pipe pipe = intel_crtc->pipe;
4651         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4652         struct drm_display_mode *adjusted_mode =
4653                 &intel_crtc->config.adjusted_mode;
4654         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4655         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4656
4657         /* We need to be careful not to changed the adjusted mode, for otherwise
4658          * the hw state checker will get angry at the mismatch. */
4659         crtc_vtotal = adjusted_mode->crtc_vtotal;
4660         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4661
4662         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4663                 /* the chip adds 2 halflines automatically */
4664                 crtc_vtotal -= 1;
4665                 crtc_vblank_end -= 1;
4666                 vsyncshift = adjusted_mode->crtc_hsync_start
4667                              - adjusted_mode->crtc_htotal / 2;
4668         } else {
4669                 vsyncshift = 0;
4670         }
4671
4672         if (INTEL_INFO(dev)->gen > 3)
4673                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4674
4675         I915_WRITE(HTOTAL(cpu_transcoder),
4676                    (adjusted_mode->crtc_hdisplay - 1) |
4677                    ((adjusted_mode->crtc_htotal - 1) << 16));
4678         I915_WRITE(HBLANK(cpu_transcoder),
4679                    (adjusted_mode->crtc_hblank_start - 1) |
4680                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4681         I915_WRITE(HSYNC(cpu_transcoder),
4682                    (adjusted_mode->crtc_hsync_start - 1) |
4683                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4684
4685         I915_WRITE(VTOTAL(cpu_transcoder),
4686                    (adjusted_mode->crtc_vdisplay - 1) |
4687                    ((crtc_vtotal - 1) << 16));
4688         I915_WRITE(VBLANK(cpu_transcoder),
4689                    (adjusted_mode->crtc_vblank_start - 1) |
4690                    ((crtc_vblank_end - 1) << 16));
4691         I915_WRITE(VSYNC(cpu_transcoder),
4692                    (adjusted_mode->crtc_vsync_start - 1) |
4693                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4694
4695         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4696          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4697          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4698          * bits. */
4699         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4700             (pipe == PIPE_B || pipe == PIPE_C))
4701                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4702
4703         /* pipesrc controls the size that is scaled from, which should
4704          * always be the user's requested size.
4705          */
4706         I915_WRITE(PIPESRC(pipe),
4707                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4708 }
4709
4710 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4711                                    struct intel_crtc_config *pipe_config)
4712 {
4713         struct drm_device *dev = crtc->base.dev;
4714         struct drm_i915_private *dev_priv = dev->dev_private;
4715         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4716         uint32_t tmp;
4717
4718         tmp = I915_READ(HTOTAL(cpu_transcoder));
4719         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4720         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4721         tmp = I915_READ(HBLANK(cpu_transcoder));
4722         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4723         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4724         tmp = I915_READ(HSYNC(cpu_transcoder));
4725         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4726         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4727
4728         tmp = I915_READ(VTOTAL(cpu_transcoder));
4729         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4730         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4731         tmp = I915_READ(VBLANK(cpu_transcoder));
4732         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4733         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4734         tmp = I915_READ(VSYNC(cpu_transcoder));
4735         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4736         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4737
4738         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4739                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4740                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4741                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4742         }
4743
4744         tmp = I915_READ(PIPESRC(crtc->pipe));
4745         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4746         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4747 }
4748
4749 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4750                                              struct intel_crtc_config *pipe_config)
4751 {
4752         struct drm_crtc *crtc = &intel_crtc->base;
4753
4754         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4755         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4756         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4757         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4758
4759         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4760         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4761         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4762         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4763
4764         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4765
4766         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4767         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4768 }
4769
4770 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4771 {
4772         struct drm_device *dev = intel_crtc->base.dev;
4773         struct drm_i915_private *dev_priv = dev->dev_private;
4774         uint32_t pipeconf;
4775
4776         pipeconf = 0;
4777
4778         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4779                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4780                  * core speed.
4781                  *
4782                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4783                  * pipe == 0 check?
4784                  */
4785                 if (intel_crtc->config.requested_mode.clock >
4786                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4787                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4788         }
4789
4790         /* only g4x and later have fancy bpc/dither controls */
4791         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4792                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4793                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4794                         pipeconf |= PIPECONF_DITHER_EN |
4795                                     PIPECONF_DITHER_TYPE_SP;
4796
4797                 switch (intel_crtc->config.pipe_bpp) {
4798                 case 18:
4799                         pipeconf |= PIPECONF_6BPC;
4800                         break;
4801                 case 24:
4802                         pipeconf |= PIPECONF_8BPC;
4803                         break;
4804                 case 30:
4805                         pipeconf |= PIPECONF_10BPC;
4806                         break;
4807                 default:
4808                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4809                         BUG();
4810                 }
4811         }
4812
4813         if (HAS_PIPE_CXSR(dev)) {
4814                 if (intel_crtc->lowfreq_avail) {
4815                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4816                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4817                 } else {
4818                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4819                 }
4820         }
4821
4822         if (!IS_GEN2(dev) &&
4823             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4824                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4825         else
4826                 pipeconf |= PIPECONF_PROGRESSIVE;
4827
4828         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4829                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4830
4831         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4832         POSTING_READ(PIPECONF(intel_crtc->pipe));
4833 }
4834
4835 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4836                               int x, int y,
4837                               struct drm_framebuffer *fb)
4838 {
4839         struct drm_device *dev = crtc->dev;
4840         struct drm_i915_private *dev_priv = dev->dev_private;
4841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4843         int pipe = intel_crtc->pipe;
4844         int plane = intel_crtc->plane;
4845         int refclk, num_connectors = 0;
4846         intel_clock_t clock, reduced_clock;
4847         u32 dspcntr;
4848         bool ok, has_reduced_clock = false;
4849         bool is_lvds = false;
4850         struct intel_encoder *encoder;
4851         const intel_limit_t *limit;
4852         int ret;
4853
4854         for_each_encoder_on_crtc(dev, crtc, encoder) {
4855                 switch (encoder->type) {
4856                 case INTEL_OUTPUT_LVDS:
4857                         is_lvds = true;
4858                         break;
4859                 }
4860
4861                 num_connectors++;
4862         }
4863
4864         refclk = i9xx_get_refclk(crtc, num_connectors);
4865
4866         /*
4867          * Returns a set of divisors for the desired target clock with the given
4868          * refclk, or FALSE.  The returned values represent the clock equation:
4869          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4870          */
4871         limit = intel_limit(crtc, refclk);
4872         ok = dev_priv->display.find_dpll(limit, crtc,
4873                                          intel_crtc->config.port_clock,
4874                                          refclk, NULL, &clock);
4875         if (!ok && !intel_crtc->config.clock_set) {
4876                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4877                 return -EINVAL;
4878         }
4879
4880         /* Ensure that the cursor is valid for the new mode before changing... */
4881         intel_crtc_update_cursor(crtc, true);
4882
4883         if (is_lvds && dev_priv->lvds_downclock_avail) {
4884                 /*
4885                  * Ensure we match the reduced clock's P to the target clock.
4886                  * If the clocks don't match, we can't switch the display clock
4887                  * by using the FP0/FP1. In such case we will disable the LVDS
4888                  * downclock feature.
4889                 */
4890                 has_reduced_clock =
4891                         dev_priv->display.find_dpll(limit, crtc,
4892                                                     dev_priv->lvds_downclock,
4893                                                     refclk, &clock,
4894                                                     &reduced_clock);
4895         }
4896         /* Compat-code for transition, will disappear. */
4897         if (!intel_crtc->config.clock_set) {
4898                 intel_crtc->config.dpll.n = clock.n;
4899                 intel_crtc->config.dpll.m1 = clock.m1;
4900                 intel_crtc->config.dpll.m2 = clock.m2;
4901                 intel_crtc->config.dpll.p1 = clock.p1;
4902                 intel_crtc->config.dpll.p2 = clock.p2;
4903         }
4904
4905         if (IS_GEN2(dev))
4906                 i8xx_update_pll(intel_crtc,
4907                                 has_reduced_clock ? &reduced_clock : NULL,
4908                                 num_connectors);
4909         else if (IS_VALLEYVIEW(dev))
4910                 vlv_update_pll(intel_crtc);
4911         else
4912                 i9xx_update_pll(intel_crtc,
4913                                 has_reduced_clock ? &reduced_clock : NULL,
4914                                 num_connectors);
4915
4916         /* Set up the display plane register */
4917         dspcntr = DISPPLANE_GAMMA_ENABLE;
4918
4919         if (!IS_VALLEYVIEW(dev)) {
4920                 if (pipe == 0)
4921                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4922                 else
4923                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4924         }
4925
4926         intel_set_pipe_timings(intel_crtc);
4927
4928         /* pipesrc and dspsize control the size that is scaled from,
4929          * which should always be the user's requested size.
4930          */
4931         I915_WRITE(DSPSIZE(plane),
4932                    ((mode->vdisplay - 1) << 16) |
4933                    (mode->hdisplay - 1));
4934         I915_WRITE(DSPPOS(plane), 0);
4935
4936         i9xx_set_pipeconf(intel_crtc);
4937
4938         I915_WRITE(DSPCNTR(plane), dspcntr);
4939         POSTING_READ(DSPCNTR(plane));
4940
4941         ret = intel_pipe_set_base(crtc, x, y, fb);
4942
4943         intel_update_watermarks(dev);
4944
4945         return ret;
4946 }
4947
4948 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4949                                  struct intel_crtc_config *pipe_config)
4950 {
4951         struct drm_device *dev = crtc->base.dev;
4952         struct drm_i915_private *dev_priv = dev->dev_private;
4953         uint32_t tmp;
4954
4955         tmp = I915_READ(PFIT_CONTROL);
4956         if (!(tmp & PFIT_ENABLE))
4957                 return;
4958
4959         /* Check whether the pfit is attached to our pipe. */
4960         if (INTEL_INFO(dev)->gen < 4) {
4961                 if (crtc->pipe != PIPE_B)
4962                         return;
4963         } else {
4964                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4965                         return;
4966         }
4967
4968         pipe_config->gmch_pfit.control = tmp;
4969         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4970         if (INTEL_INFO(dev)->gen < 5)
4971                 pipe_config->gmch_pfit.lvds_border_bits =
4972                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4973 }
4974
4975 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4976                                  struct intel_crtc_config *pipe_config)
4977 {
4978         struct drm_device *dev = crtc->base.dev;
4979         struct drm_i915_private *dev_priv = dev->dev_private;
4980         uint32_t tmp;
4981
4982         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4983         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4984
4985         tmp = I915_READ(PIPECONF(crtc->pipe));
4986         if (!(tmp & PIPECONF_ENABLE))
4987                 return false;
4988
4989         intel_get_pipe_timings(crtc, pipe_config);
4990
4991         i9xx_get_pfit_config(crtc, pipe_config);
4992
4993         if (INTEL_INFO(dev)->gen >= 4) {
4994                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4995                 pipe_config->pixel_multiplier =
4996                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4997                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4998                 pipe_config->dpll_hw_state.dpll_md = tmp;
4999         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5000                 tmp = I915_READ(DPLL(crtc->pipe));
5001                 pipe_config->pixel_multiplier =
5002                         ((tmp & SDVO_MULTIPLIER_MASK)
5003                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5004         } else {
5005                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5006                  * port and will be fixed up in the encoder->get_config
5007                  * function. */
5008                 pipe_config->pixel_multiplier = 1;
5009         }
5010         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5011         if (!IS_VALLEYVIEW(dev)) {
5012                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5013                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5014         } else {
5015                 /* Mask out read-only status bits. */
5016                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5017                                                      DPLL_PORTC_READY_MASK |
5018                                                      DPLL_PORTB_READY_MASK);
5019         }
5020
5021         return true;
5022 }
5023
5024 static void ironlake_init_pch_refclk(struct drm_device *dev)
5025 {
5026         struct drm_i915_private *dev_priv = dev->dev_private;
5027         struct drm_mode_config *mode_config = &dev->mode_config;
5028         struct intel_encoder *encoder;
5029         u32 val, final;
5030         bool has_lvds = false;
5031         bool has_cpu_edp = false;
5032         bool has_panel = false;
5033         bool has_ck505 = false;
5034         bool can_ssc = false;
5035
5036         /* We need to take the global config into account */
5037         list_for_each_entry(encoder, &mode_config->encoder_list,
5038                             base.head) {
5039                 switch (encoder->type) {
5040                 case INTEL_OUTPUT_LVDS:
5041                         has_panel = true;
5042                         has_lvds = true;
5043                         break;
5044                 case INTEL_OUTPUT_EDP:
5045                         has_panel = true;
5046                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5047                                 has_cpu_edp = true;
5048                         break;
5049                 }
5050         }
5051
5052         if (HAS_PCH_IBX(dev)) {
5053                 has_ck505 = dev_priv->vbt.display_clock_mode;
5054                 can_ssc = has_ck505;
5055         } else {
5056                 has_ck505 = false;
5057                 can_ssc = true;
5058         }
5059
5060         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5061                       has_panel, has_lvds, has_ck505);
5062
5063         /* Ironlake: try to setup display ref clock before DPLL
5064          * enabling. This is only under driver's control after
5065          * PCH B stepping, previous chipset stepping should be
5066          * ignoring this setting.
5067          */
5068         val = I915_READ(PCH_DREF_CONTROL);
5069
5070         /* As we must carefully and slowly disable/enable each source in turn,
5071          * compute the final state we want first and check if we need to
5072          * make any changes at all.
5073          */
5074         final = val;
5075         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5076         if (has_ck505)
5077                 final |= DREF_NONSPREAD_CK505_ENABLE;
5078         else
5079                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5080
5081         final &= ~DREF_SSC_SOURCE_MASK;
5082         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5083         final &= ~DREF_SSC1_ENABLE;
5084
5085         if (has_panel) {
5086                 final |= DREF_SSC_SOURCE_ENABLE;
5087
5088                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5089                         final |= DREF_SSC1_ENABLE;
5090
5091                 if (has_cpu_edp) {
5092                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5093                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5094                         else
5095                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5096                 } else
5097                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5098         } else {
5099                 final |= DREF_SSC_SOURCE_DISABLE;
5100                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5101         }
5102
5103         if (final == val)
5104                 return;
5105
5106         /* Always enable nonspread source */
5107         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5108
5109         if (has_ck505)
5110                 val |= DREF_NONSPREAD_CK505_ENABLE;
5111         else
5112                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5113
5114         if (has_panel) {
5115                 val &= ~DREF_SSC_SOURCE_MASK;
5116                 val |= DREF_SSC_SOURCE_ENABLE;
5117
5118                 /* SSC must be turned on before enabling the CPU output  */
5119                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5120                         DRM_DEBUG_KMS("Using SSC on panel\n");
5121                         val |= DREF_SSC1_ENABLE;
5122                 } else
5123                         val &= ~DREF_SSC1_ENABLE;
5124
5125                 /* Get SSC going before enabling the outputs */
5126                 I915_WRITE(PCH_DREF_CONTROL, val);
5127                 POSTING_READ(PCH_DREF_CONTROL);
5128                 udelay(200);
5129
5130                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5131
5132                 /* Enable CPU source on CPU attached eDP */
5133                 if (has_cpu_edp) {
5134                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5135                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5136                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5137                         }
5138                         else
5139                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5140                 } else
5141                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5142
5143                 I915_WRITE(PCH_DREF_CONTROL, val);
5144                 POSTING_READ(PCH_DREF_CONTROL);
5145                 udelay(200);
5146         } else {
5147                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5148
5149                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5150
5151                 /* Turn off CPU output */
5152                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5153
5154                 I915_WRITE(PCH_DREF_CONTROL, val);
5155                 POSTING_READ(PCH_DREF_CONTROL);
5156                 udelay(200);
5157
5158                 /* Turn off the SSC source */
5159                 val &= ~DREF_SSC_SOURCE_MASK;
5160                 val |= DREF_SSC_SOURCE_DISABLE;
5161
5162                 /* Turn off SSC1 */
5163                 val &= ~DREF_SSC1_ENABLE;
5164
5165                 I915_WRITE(PCH_DREF_CONTROL, val);
5166                 POSTING_READ(PCH_DREF_CONTROL);
5167                 udelay(200);
5168         }
5169
5170         BUG_ON(val != final);
5171 }
5172
5173 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5174 {
5175         uint32_t tmp;
5176
5177         tmp = I915_READ(SOUTH_CHICKEN2);
5178         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5179         I915_WRITE(SOUTH_CHICKEN2, tmp);
5180
5181         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5182                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5183                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5184
5185         tmp = I915_READ(SOUTH_CHICKEN2);
5186         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5187         I915_WRITE(SOUTH_CHICKEN2, tmp);
5188
5189         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5190                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5191                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5192 }
5193
5194 /* WaMPhyProgramming:hsw */
5195 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5196 {
5197         uint32_t tmp;
5198
5199         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5200         tmp &= ~(0xFF << 24);
5201         tmp |= (0x12 << 24);
5202         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5203
5204         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5205         tmp |= (1 << 11);
5206         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5207
5208         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5209         tmp |= (1 << 11);
5210         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5211
5212         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5213         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5214         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5215
5216         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5217         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5218         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5219
5220         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5221         tmp &= ~(7 << 13);
5222         tmp |= (5 << 13);
5223         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5224
5225         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5226         tmp &= ~(7 << 13);
5227         tmp |= (5 << 13);
5228         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5229
5230         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5231         tmp &= ~0xFF;
5232         tmp |= 0x1C;
5233         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5234
5235         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5236         tmp &= ~0xFF;
5237         tmp |= 0x1C;
5238         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5239
5240         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5241         tmp &= ~(0xFF << 16);
5242         tmp |= (0x1C << 16);
5243         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5244
5245         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5246         tmp &= ~(0xFF << 16);
5247         tmp |= (0x1C << 16);
5248         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5249
5250         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5251         tmp |= (1 << 27);
5252         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5253
5254         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5255         tmp |= (1 << 27);
5256         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5257
5258         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5259         tmp &= ~(0xF << 28);
5260         tmp |= (4 << 28);
5261         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5262
5263         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5264         tmp &= ~(0xF << 28);
5265         tmp |= (4 << 28);
5266         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5267 }
5268
5269 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5270  * Programming" based on the parameters passed:
5271  * - Sequence to enable CLKOUT_DP
5272  * - Sequence to enable CLKOUT_DP without spread
5273  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5274  */
5275 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5276                                  bool with_fdi)
5277 {
5278         struct drm_i915_private *dev_priv = dev->dev_private;
5279         uint32_t reg, tmp;
5280
5281         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5282                 with_spread = true;
5283         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5284                  with_fdi, "LP PCH doesn't have FDI\n"))
5285                 with_fdi = false;
5286
5287         mutex_lock(&dev_priv->dpio_lock);
5288
5289         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5290         tmp &= ~SBI_SSCCTL_DISABLE;
5291         tmp |= SBI_SSCCTL_PATHALT;
5292         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5293
5294         udelay(24);
5295
5296         if (with_spread) {
5297                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5298                 tmp &= ~SBI_SSCCTL_PATHALT;
5299                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5300
5301                 if (with_fdi) {
5302                         lpt_reset_fdi_mphy(dev_priv);
5303                         lpt_program_fdi_mphy(dev_priv);
5304                 }
5305         }
5306
5307         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5308                SBI_GEN0 : SBI_DBUFF0;
5309         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5310         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5311         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5312
5313         mutex_unlock(&dev_priv->dpio_lock);
5314 }
5315
5316 /* Sequence to disable CLKOUT_DP */
5317 static void lpt_disable_clkout_dp(struct drm_device *dev)
5318 {
5319         struct drm_i915_private *dev_priv = dev->dev_private;
5320         uint32_t reg, tmp;
5321
5322         mutex_lock(&dev_priv->dpio_lock);
5323
5324         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5325                SBI_GEN0 : SBI_DBUFF0;
5326         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5327         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5328         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5329
5330         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5331         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5332                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5333                         tmp |= SBI_SSCCTL_PATHALT;
5334                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5335                         udelay(32);
5336                 }
5337                 tmp |= SBI_SSCCTL_DISABLE;
5338                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5339         }
5340
5341         mutex_unlock(&dev_priv->dpio_lock);
5342 }
5343
5344 static void lpt_init_pch_refclk(struct drm_device *dev)
5345 {
5346         struct drm_mode_config *mode_config = &dev->mode_config;
5347         struct intel_encoder *encoder;
5348         bool has_vga = false;
5349
5350         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5351                 switch (encoder->type) {
5352                 case INTEL_OUTPUT_ANALOG:
5353                         has_vga = true;
5354                         break;
5355                 }
5356         }
5357
5358         if (has_vga)
5359                 lpt_enable_clkout_dp(dev, true, true);
5360         else
5361                 lpt_disable_clkout_dp(dev);
5362 }
5363
5364 /*
5365  * Initialize reference clocks when the driver loads
5366  */
5367 void intel_init_pch_refclk(struct drm_device *dev)
5368 {
5369         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5370                 ironlake_init_pch_refclk(dev);
5371         else if (HAS_PCH_LPT(dev))
5372                 lpt_init_pch_refclk(dev);
5373 }
5374
5375 static int ironlake_get_refclk(struct drm_crtc *crtc)
5376 {
5377         struct drm_device *dev = crtc->dev;
5378         struct drm_i915_private *dev_priv = dev->dev_private;
5379         struct intel_encoder *encoder;
5380         int num_connectors = 0;
5381         bool is_lvds = false;
5382
5383         for_each_encoder_on_crtc(dev, crtc, encoder) {
5384                 switch (encoder->type) {
5385                 case INTEL_OUTPUT_LVDS:
5386                         is_lvds = true;
5387                         break;
5388                 }
5389                 num_connectors++;
5390         }
5391
5392         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5393                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5394                               dev_priv->vbt.lvds_ssc_freq);
5395                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5396         }
5397
5398         return 120000;
5399 }
5400
5401 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5402 {
5403         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5405         int pipe = intel_crtc->pipe;
5406         uint32_t val;
5407
5408         val = 0;
5409
5410         switch (intel_crtc->config.pipe_bpp) {
5411         case 18:
5412                 val |= PIPECONF_6BPC;
5413                 break;
5414         case 24:
5415                 val |= PIPECONF_8BPC;
5416                 break;
5417         case 30:
5418                 val |= PIPECONF_10BPC;
5419                 break;
5420         case 36:
5421                 val |= PIPECONF_12BPC;
5422                 break;
5423         default:
5424                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5425                 BUG();
5426         }
5427
5428         if (intel_crtc->config.dither)
5429                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5430
5431         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5432                 val |= PIPECONF_INTERLACED_ILK;
5433         else
5434                 val |= PIPECONF_PROGRESSIVE;
5435
5436         if (intel_crtc->config.limited_color_range)
5437                 val |= PIPECONF_COLOR_RANGE_SELECT;
5438
5439         I915_WRITE(PIPECONF(pipe), val);
5440         POSTING_READ(PIPECONF(pipe));
5441 }
5442
5443 /*
5444  * Set up the pipe CSC unit.
5445  *
5446  * Currently only full range RGB to limited range RGB conversion
5447  * is supported, but eventually this should handle various
5448  * RGB<->YCbCr scenarios as well.
5449  */
5450 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5451 {
5452         struct drm_device *dev = crtc->dev;
5453         struct drm_i915_private *dev_priv = dev->dev_private;
5454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5455         int pipe = intel_crtc->pipe;
5456         uint16_t coeff = 0x7800; /* 1.0 */
5457
5458         /*
5459          * TODO: Check what kind of values actually come out of the pipe
5460          * with these coeff/postoff values and adjust to get the best
5461          * accuracy. Perhaps we even need to take the bpc value into
5462          * consideration.
5463          */
5464
5465         if (intel_crtc->config.limited_color_range)
5466                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5467
5468         /*
5469          * GY/GU and RY/RU should be the other way around according
5470          * to BSpec, but reality doesn't agree. Just set them up in
5471          * a way that results in the correct picture.
5472          */
5473         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5474         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5475
5476         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5477         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5478
5479         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5480         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5481
5482         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5483         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5484         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5485
5486         if (INTEL_INFO(dev)->gen > 6) {
5487                 uint16_t postoff = 0;
5488
5489                 if (intel_crtc->config.limited_color_range)
5490                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5491
5492                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5493                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5494                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5495
5496                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5497         } else {
5498                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5499
5500                 if (intel_crtc->config.limited_color_range)
5501                         mode |= CSC_BLACK_SCREEN_OFFSET;
5502
5503                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5504         }
5505 }
5506
5507 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5508 {
5509         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5511         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5512         uint32_t val;
5513
5514         val = 0;
5515
5516         if (intel_crtc->config.dither)
5517                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5518
5519         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5520                 val |= PIPECONF_INTERLACED_ILK;
5521         else
5522                 val |= PIPECONF_PROGRESSIVE;
5523
5524         I915_WRITE(PIPECONF(cpu_transcoder), val);
5525         POSTING_READ(PIPECONF(cpu_transcoder));
5526
5527         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5528         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5529 }
5530
5531 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5532                                     intel_clock_t *clock,
5533                                     bool *has_reduced_clock,
5534                                     intel_clock_t *reduced_clock)
5535 {
5536         struct drm_device *dev = crtc->dev;
5537         struct drm_i915_private *dev_priv = dev->dev_private;
5538         struct intel_encoder *intel_encoder;
5539         int refclk;
5540         const intel_limit_t *limit;
5541         bool ret, is_lvds = false;
5542
5543         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5544                 switch (intel_encoder->type) {
5545                 case INTEL_OUTPUT_LVDS:
5546                         is_lvds = true;
5547                         break;
5548                 }
5549         }
5550
5551         refclk = ironlake_get_refclk(crtc);
5552
5553         /*
5554          * Returns a set of divisors for the desired target clock with the given
5555          * refclk, or FALSE.  The returned values represent the clock equation:
5556          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5557          */
5558         limit = intel_limit(crtc, refclk);
5559         ret = dev_priv->display.find_dpll(limit, crtc,
5560                                           to_intel_crtc(crtc)->config.port_clock,
5561                                           refclk, NULL, clock);
5562         if (!ret)
5563                 return false;
5564
5565         if (is_lvds && dev_priv->lvds_downclock_avail) {
5566                 /*
5567                  * Ensure we match the reduced clock's P to the target clock.
5568                  * If the clocks don't match, we can't switch the display clock
5569                  * by using the FP0/FP1. In such case we will disable the LVDS
5570                  * downclock feature.
5571                 */
5572                 *has_reduced_clock =
5573                         dev_priv->display.find_dpll(limit, crtc,
5574                                                     dev_priv->lvds_downclock,
5575                                                     refclk, clock,
5576                                                     reduced_clock);
5577         }
5578
5579         return true;
5580 }
5581
5582 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5583 {
5584         struct drm_i915_private *dev_priv = dev->dev_private;
5585         uint32_t temp;
5586
5587         temp = I915_READ(SOUTH_CHICKEN1);
5588         if (temp & FDI_BC_BIFURCATION_SELECT)
5589                 return;
5590
5591         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5592         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5593
5594         temp |= FDI_BC_BIFURCATION_SELECT;
5595         DRM_DEBUG_KMS("enabling fdi C rx\n");
5596         I915_WRITE(SOUTH_CHICKEN1, temp);
5597         POSTING_READ(SOUTH_CHICKEN1);
5598 }
5599
5600 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5601 {
5602         struct drm_device *dev = intel_crtc->base.dev;
5603         struct drm_i915_private *dev_priv = dev->dev_private;
5604
5605         switch (intel_crtc->pipe) {
5606         case PIPE_A:
5607                 break;
5608         case PIPE_B:
5609                 if (intel_crtc->config.fdi_lanes > 2)
5610                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5611                 else
5612                         cpt_enable_fdi_bc_bifurcation(dev);
5613
5614                 break;
5615         case PIPE_C:
5616                 cpt_enable_fdi_bc_bifurcation(dev);
5617
5618                 break;
5619         default:
5620                 BUG();
5621         }
5622 }
5623
5624 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5625 {
5626         /*
5627          * Account for spread spectrum to avoid
5628          * oversubscribing the link. Max center spread
5629          * is 2.5%; use 5% for safety's sake.
5630          */
5631         u32 bps = target_clock * bpp * 21 / 20;
5632         return bps / (link_bw * 8) + 1;
5633 }
5634
5635 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5636 {
5637         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5638 }
5639
5640 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5641                                       u32 *fp,
5642                                       intel_clock_t *reduced_clock, u32 *fp2)
5643 {
5644         struct drm_crtc *crtc = &intel_crtc->base;
5645         struct drm_device *dev = crtc->dev;
5646         struct drm_i915_private *dev_priv = dev->dev_private;
5647         struct intel_encoder *intel_encoder;
5648         uint32_t dpll;
5649         int factor, num_connectors = 0;
5650         bool is_lvds = false, is_sdvo = false;
5651
5652         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5653                 switch (intel_encoder->type) {
5654                 case INTEL_OUTPUT_LVDS:
5655                         is_lvds = true;
5656                         break;
5657                 case INTEL_OUTPUT_SDVO:
5658                 case INTEL_OUTPUT_HDMI:
5659                         is_sdvo = true;
5660                         break;
5661                 }
5662
5663                 num_connectors++;
5664         }
5665
5666         /* Enable autotuning of the PLL clock (if permissible) */
5667         factor = 21;
5668         if (is_lvds) {
5669                 if ((intel_panel_use_ssc(dev_priv) &&
5670                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5671                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5672                         factor = 25;
5673         } else if (intel_crtc->config.sdvo_tv_clock)
5674                 factor = 20;
5675
5676         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5677                 *fp |= FP_CB_TUNE;
5678
5679         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5680                 *fp2 |= FP_CB_TUNE;
5681
5682         dpll = 0;
5683
5684         if (is_lvds)
5685                 dpll |= DPLLB_MODE_LVDS;
5686         else
5687                 dpll |= DPLLB_MODE_DAC_SERIAL;
5688
5689         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5690                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5691
5692         if (is_sdvo)
5693                 dpll |= DPLL_SDVO_HIGH_SPEED;
5694         if (intel_crtc->config.has_dp_encoder)
5695                 dpll |= DPLL_SDVO_HIGH_SPEED;
5696
5697         /* compute bitmask from p1 value */
5698         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5699         /* also FPA1 */
5700         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5701
5702         switch (intel_crtc->config.dpll.p2) {
5703         case 5:
5704                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5705                 break;
5706         case 7:
5707                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5708                 break;
5709         case 10:
5710                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5711                 break;
5712         case 14:
5713                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5714                 break;
5715         }
5716
5717         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5718                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5719         else
5720                 dpll |= PLL_REF_INPUT_DREFCLK;
5721
5722         return dpll | DPLL_VCO_ENABLE;
5723 }
5724
5725 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5726                                   int x, int y,
5727                                   struct drm_framebuffer *fb)
5728 {
5729         struct drm_device *dev = crtc->dev;
5730         struct drm_i915_private *dev_priv = dev->dev_private;
5731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5732         int pipe = intel_crtc->pipe;
5733         int plane = intel_crtc->plane;
5734         int num_connectors = 0;
5735         intel_clock_t clock, reduced_clock;
5736         u32 dpll = 0, fp = 0, fp2 = 0;
5737         bool ok, has_reduced_clock = false;
5738         bool is_lvds = false;
5739         struct intel_encoder *encoder;
5740         struct intel_shared_dpll *pll;
5741         int ret;
5742
5743         for_each_encoder_on_crtc(dev, crtc, encoder) {
5744                 switch (encoder->type) {
5745                 case INTEL_OUTPUT_LVDS:
5746                         is_lvds = true;
5747                         break;
5748                 }
5749
5750                 num_connectors++;
5751         }
5752
5753         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5754              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5755
5756         ok = ironlake_compute_clocks(crtc, &clock,
5757                                      &has_reduced_clock, &reduced_clock);
5758         if (!ok && !intel_crtc->config.clock_set) {
5759                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5760                 return -EINVAL;
5761         }
5762         /* Compat-code for transition, will disappear. */
5763         if (!intel_crtc->config.clock_set) {
5764                 intel_crtc->config.dpll.n = clock.n;
5765                 intel_crtc->config.dpll.m1 = clock.m1;
5766                 intel_crtc->config.dpll.m2 = clock.m2;
5767                 intel_crtc->config.dpll.p1 = clock.p1;
5768                 intel_crtc->config.dpll.p2 = clock.p2;
5769         }
5770
5771         /* Ensure that the cursor is valid for the new mode before changing... */
5772         intel_crtc_update_cursor(crtc, true);
5773
5774         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5775         if (intel_crtc->config.has_pch_encoder) {
5776                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5777                 if (has_reduced_clock)
5778                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5779
5780                 dpll = ironlake_compute_dpll(intel_crtc,
5781                                              &fp, &reduced_clock,
5782                                              has_reduced_clock ? &fp2 : NULL);
5783
5784                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5785                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5786                 if (has_reduced_clock)
5787                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5788                 else
5789                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5790
5791                 pll = intel_get_shared_dpll(intel_crtc);
5792                 if (pll == NULL) {
5793                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5794                                          pipe_name(pipe));
5795                         return -EINVAL;
5796                 }
5797         } else
5798                 intel_put_shared_dpll(intel_crtc);
5799
5800         if (intel_crtc->config.has_dp_encoder)
5801                 intel_dp_set_m_n(intel_crtc);
5802
5803         if (is_lvds && has_reduced_clock && i915_powersave)
5804                 intel_crtc->lowfreq_avail = true;
5805         else
5806                 intel_crtc->lowfreq_avail = false;
5807
5808         if (intel_crtc->config.has_pch_encoder) {
5809                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5810
5811         }
5812
5813         intel_set_pipe_timings(intel_crtc);
5814
5815         if (intel_crtc->config.has_pch_encoder) {
5816                 intel_cpu_transcoder_set_m_n(intel_crtc,
5817                                              &intel_crtc->config.fdi_m_n);
5818         }
5819
5820         if (IS_IVYBRIDGE(dev))
5821                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5822
5823         ironlake_set_pipeconf(crtc);
5824
5825         /* Set up the display plane register */
5826         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5827         POSTING_READ(DSPCNTR(plane));
5828
5829         ret = intel_pipe_set_base(crtc, x, y, fb);
5830
5831         intel_update_watermarks(dev);
5832
5833         return ret;
5834 }
5835
5836 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5837                                         struct intel_crtc_config *pipe_config)
5838 {
5839         struct drm_device *dev = crtc->base.dev;
5840         struct drm_i915_private *dev_priv = dev->dev_private;
5841         enum transcoder transcoder = pipe_config->cpu_transcoder;
5842
5843         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5844         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5845         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5846                                         & ~TU_SIZE_MASK;
5847         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5848         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5849                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5850 }
5851
5852 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5853                                      struct intel_crtc_config *pipe_config)
5854 {
5855         struct drm_device *dev = crtc->base.dev;
5856         struct drm_i915_private *dev_priv = dev->dev_private;
5857         uint32_t tmp;
5858
5859         tmp = I915_READ(PF_CTL(crtc->pipe));
5860
5861         if (tmp & PF_ENABLE) {
5862                 pipe_config->pch_pfit.enabled = true;
5863                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5864                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5865
5866                 /* We currently do not free assignements of panel fitters on
5867                  * ivb/hsw (since we don't use the higher upscaling modes which
5868                  * differentiates them) so just WARN about this case for now. */
5869                 if (IS_GEN7(dev)) {
5870                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5871                                 PF_PIPE_SEL_IVB(crtc->pipe));
5872                 }
5873         }
5874 }
5875
5876 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5877                                      struct intel_crtc_config *pipe_config)
5878 {
5879         struct drm_device *dev = crtc->base.dev;
5880         struct drm_i915_private *dev_priv = dev->dev_private;
5881         uint32_t tmp;
5882
5883         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5884         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5885
5886         tmp = I915_READ(PIPECONF(crtc->pipe));
5887         if (!(tmp & PIPECONF_ENABLE))
5888                 return false;
5889
5890         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5891                 struct intel_shared_dpll *pll;
5892
5893                 pipe_config->has_pch_encoder = true;
5894
5895                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5896                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5897                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5898
5899                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5900
5901                 if (HAS_PCH_IBX(dev_priv->dev)) {
5902                         pipe_config->shared_dpll =
5903                                 (enum intel_dpll_id) crtc->pipe;
5904                 } else {
5905                         tmp = I915_READ(PCH_DPLL_SEL);
5906                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5907                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5908                         else
5909                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5910                 }
5911
5912                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5913
5914                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5915                                            &pipe_config->dpll_hw_state));
5916
5917                 tmp = pipe_config->dpll_hw_state.dpll;
5918                 pipe_config->pixel_multiplier =
5919                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5920                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5921         } else {
5922                 pipe_config->pixel_multiplier = 1;
5923         }
5924
5925         intel_get_pipe_timings(crtc, pipe_config);
5926
5927         ironlake_get_pfit_config(crtc, pipe_config);
5928
5929         return true;
5930 }
5931
5932 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5933 {
5934         struct drm_device *dev = dev_priv->dev;
5935         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5936         struct intel_crtc *crtc;
5937         unsigned long irqflags;
5938         uint32_t val;
5939
5940         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5941                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5942                      pipe_name(crtc->pipe));
5943
5944         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5945         WARN(plls->spll_refcount, "SPLL enabled\n");
5946         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5947         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5948         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5949         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5950              "CPU PWM1 enabled\n");
5951         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5952              "CPU PWM2 enabled\n");
5953         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5954              "PCH PWM1 enabled\n");
5955         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5956              "Utility pin enabled\n");
5957         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5958
5959         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5960         val = I915_READ(DEIMR);
5961         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5962              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5963         val = I915_READ(SDEIMR);
5964         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5965              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5966         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5967 }
5968
5969 /*
5970  * This function implements pieces of two sequences from BSpec:
5971  * - Sequence for display software to disable LCPLL
5972  * - Sequence for display software to allow package C8+
5973  * The steps implemented here are just the steps that actually touch the LCPLL
5974  * register. Callers should take care of disabling all the display engine
5975  * functions, doing the mode unset, fixing interrupts, etc.
5976  */
5977 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5978                        bool switch_to_fclk, bool allow_power_down)
5979 {
5980         uint32_t val;
5981
5982         assert_can_disable_lcpll(dev_priv);
5983
5984         val = I915_READ(LCPLL_CTL);
5985
5986         if (switch_to_fclk) {
5987                 val |= LCPLL_CD_SOURCE_FCLK;
5988                 I915_WRITE(LCPLL_CTL, val);
5989
5990                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5991                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
5992                         DRM_ERROR("Switching to FCLK failed\n");
5993
5994                 val = I915_READ(LCPLL_CTL);
5995         }
5996
5997         val |= LCPLL_PLL_DISABLE;
5998         I915_WRITE(LCPLL_CTL, val);
5999         POSTING_READ(LCPLL_CTL);
6000
6001         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6002                 DRM_ERROR("LCPLL still locked\n");
6003
6004         val = I915_READ(D_COMP);
6005         val |= D_COMP_COMP_DISABLE;
6006         I915_WRITE(D_COMP, val);
6007         POSTING_READ(D_COMP);
6008         ndelay(100);
6009
6010         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6011                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6012
6013         if (allow_power_down) {
6014                 val = I915_READ(LCPLL_CTL);
6015                 val |= LCPLL_POWER_DOWN_ALLOW;
6016                 I915_WRITE(LCPLL_CTL, val);
6017                 POSTING_READ(LCPLL_CTL);
6018         }
6019 }
6020
6021 /*
6022  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6023  * source.
6024  */
6025 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6026 {
6027         uint32_t val;
6028
6029         val = I915_READ(LCPLL_CTL);
6030
6031         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6032                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6033                 return;
6034
6035         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6036          * we'll hang the machine! */
6037         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6038
6039         if (val & LCPLL_POWER_DOWN_ALLOW) {
6040                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6041                 I915_WRITE(LCPLL_CTL, val);
6042                 POSTING_READ(LCPLL_CTL);
6043         }
6044
6045         val = I915_READ(D_COMP);
6046         val |= D_COMP_COMP_FORCE;
6047         val &= ~D_COMP_COMP_DISABLE;
6048         I915_WRITE(D_COMP, val);
6049         POSTING_READ(D_COMP);
6050
6051         val = I915_READ(LCPLL_CTL);
6052         val &= ~LCPLL_PLL_DISABLE;
6053         I915_WRITE(LCPLL_CTL, val);
6054
6055         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6056                 DRM_ERROR("LCPLL not locked yet\n");
6057
6058         if (val & LCPLL_CD_SOURCE_FCLK) {
6059                 val = I915_READ(LCPLL_CTL);
6060                 val &= ~LCPLL_CD_SOURCE_FCLK;
6061                 I915_WRITE(LCPLL_CTL, val);
6062
6063                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6064                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6065                         DRM_ERROR("Switching back to LCPLL failed\n");
6066         }
6067
6068         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6069 }
6070
6071 void hsw_enable_pc8_work(struct work_struct *__work)
6072 {
6073         struct drm_i915_private *dev_priv =
6074                 container_of(to_delayed_work(__work), struct drm_i915_private,
6075                              pc8.enable_work);
6076         struct drm_device *dev = dev_priv->dev;
6077         uint32_t val;
6078
6079         if (dev_priv->pc8.enabled)
6080                 return;
6081
6082         DRM_DEBUG_KMS("Enabling package C8+\n");
6083
6084         dev_priv->pc8.enabled = true;
6085
6086         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6087                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6088                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6089                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6090         }
6091
6092         lpt_disable_clkout_dp(dev);
6093         hsw_pc8_disable_interrupts(dev);
6094         hsw_disable_lcpll(dev_priv, true, true);
6095 }
6096
6097 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6098 {
6099         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6100         WARN(dev_priv->pc8.disable_count < 1,
6101              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6102
6103         dev_priv->pc8.disable_count--;
6104         if (dev_priv->pc8.disable_count != 0)
6105                 return;
6106
6107         schedule_delayed_work(&dev_priv->pc8.enable_work,
6108                               msecs_to_jiffies(i915_pc8_timeout));
6109 }
6110
6111 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6112 {
6113         struct drm_device *dev = dev_priv->dev;
6114         uint32_t val;
6115
6116         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6117         WARN(dev_priv->pc8.disable_count < 0,
6118              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6119
6120         dev_priv->pc8.disable_count++;
6121         if (dev_priv->pc8.disable_count != 1)
6122                 return;
6123
6124         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6125         if (!dev_priv->pc8.enabled)
6126                 return;
6127
6128         DRM_DEBUG_KMS("Disabling package C8+\n");
6129
6130         hsw_restore_lcpll(dev_priv);
6131         hsw_pc8_restore_interrupts(dev);
6132         lpt_init_pch_refclk(dev);
6133
6134         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6135                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6136                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6137                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6138         }
6139
6140         intel_prepare_ddi(dev);
6141         i915_gem_init_swizzling(dev);
6142         mutex_lock(&dev_priv->rps.hw_lock);
6143         gen6_update_ring_freq(dev);
6144         mutex_unlock(&dev_priv->rps.hw_lock);
6145         dev_priv->pc8.enabled = false;
6146 }
6147
6148 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6149 {
6150         mutex_lock(&dev_priv->pc8.lock);
6151         __hsw_enable_package_c8(dev_priv);
6152         mutex_unlock(&dev_priv->pc8.lock);
6153 }
6154
6155 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6156 {
6157         mutex_lock(&dev_priv->pc8.lock);
6158         __hsw_disable_package_c8(dev_priv);
6159         mutex_unlock(&dev_priv->pc8.lock);
6160 }
6161
6162 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6163 {
6164         struct drm_device *dev = dev_priv->dev;
6165         struct intel_crtc *crtc;
6166         uint32_t val;
6167
6168         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6169                 if (crtc->base.enabled)
6170                         return false;
6171
6172         /* This case is still possible since we have the i915.disable_power_well
6173          * parameter and also the KVMr or something else might be requesting the
6174          * power well. */
6175         val = I915_READ(HSW_PWR_WELL_DRIVER);
6176         if (val != 0) {
6177                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6178                 return false;
6179         }
6180
6181         return true;
6182 }
6183
6184 /* Since we're called from modeset_global_resources there's no way to
6185  * symmetrically increase and decrease the refcount, so we use
6186  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6187  * or not.
6188  */
6189 static void hsw_update_package_c8(struct drm_device *dev)
6190 {
6191         struct drm_i915_private *dev_priv = dev->dev_private;
6192         bool allow;
6193
6194         if (!i915_enable_pc8)
6195                 return;
6196
6197         mutex_lock(&dev_priv->pc8.lock);
6198
6199         allow = hsw_can_enable_package_c8(dev_priv);
6200
6201         if (allow == dev_priv->pc8.requirements_met)
6202                 goto done;
6203
6204         dev_priv->pc8.requirements_met = allow;
6205
6206         if (allow)
6207                 __hsw_enable_package_c8(dev_priv);
6208         else
6209                 __hsw_disable_package_c8(dev_priv);
6210
6211 done:
6212         mutex_unlock(&dev_priv->pc8.lock);
6213 }
6214
6215 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6216 {
6217         if (!dev_priv->pc8.gpu_idle) {
6218                 dev_priv->pc8.gpu_idle = true;
6219                 hsw_enable_package_c8(dev_priv);
6220         }
6221 }
6222
6223 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6224 {
6225         if (dev_priv->pc8.gpu_idle) {
6226                 dev_priv->pc8.gpu_idle = false;
6227                 hsw_disable_package_c8(dev_priv);
6228         }
6229 }
6230
6231 static void haswell_modeset_global_resources(struct drm_device *dev)
6232 {
6233         bool enable = false;
6234         struct intel_crtc *crtc;
6235
6236         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6237                 if (!crtc->base.enabled)
6238                         continue;
6239
6240                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6241                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6242                         enable = true;
6243         }
6244
6245         intel_set_power_well(dev, enable);
6246
6247         hsw_update_package_c8(dev);
6248 }
6249
6250 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6251                                  int x, int y,
6252                                  struct drm_framebuffer *fb)
6253 {
6254         struct drm_device *dev = crtc->dev;
6255         struct drm_i915_private *dev_priv = dev->dev_private;
6256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6257         int plane = intel_crtc->plane;
6258         int ret;
6259
6260         if (!intel_ddi_pll_mode_set(crtc))
6261                 return -EINVAL;
6262
6263         /* Ensure that the cursor is valid for the new mode before changing... */
6264         intel_crtc_update_cursor(crtc, true);
6265
6266         if (intel_crtc->config.has_dp_encoder)
6267                 intel_dp_set_m_n(intel_crtc);
6268
6269         intel_crtc->lowfreq_avail = false;
6270
6271         intel_set_pipe_timings(intel_crtc);
6272
6273         if (intel_crtc->config.has_pch_encoder) {
6274                 intel_cpu_transcoder_set_m_n(intel_crtc,
6275                                              &intel_crtc->config.fdi_m_n);
6276         }
6277
6278         haswell_set_pipeconf(crtc);
6279
6280         intel_set_pipe_csc(crtc);
6281
6282         /* Set up the display plane register */
6283         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6284         POSTING_READ(DSPCNTR(plane));
6285
6286         ret = intel_pipe_set_base(crtc, x, y, fb);
6287
6288         intel_update_watermarks(dev);
6289
6290         return ret;
6291 }
6292
6293 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6294                                     struct intel_crtc_config *pipe_config)
6295 {
6296         struct drm_device *dev = crtc->base.dev;
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298         enum intel_display_power_domain pfit_domain;
6299         uint32_t tmp;
6300
6301         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6302         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6303
6304         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6305         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6306                 enum pipe trans_edp_pipe;
6307                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6308                 default:
6309                         WARN(1, "unknown pipe linked to edp transcoder\n");
6310                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6311                 case TRANS_DDI_EDP_INPUT_A_ON:
6312                         trans_edp_pipe = PIPE_A;
6313                         break;
6314                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6315                         trans_edp_pipe = PIPE_B;
6316                         break;
6317                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6318                         trans_edp_pipe = PIPE_C;
6319                         break;
6320                 }
6321
6322                 if (trans_edp_pipe == crtc->pipe)
6323                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6324         }
6325
6326         if (!intel_display_power_enabled(dev,
6327                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6328                 return false;
6329
6330         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6331         if (!(tmp & PIPECONF_ENABLE))
6332                 return false;
6333
6334         /*
6335          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6336          * DDI E. So just check whether this pipe is wired to DDI E and whether
6337          * the PCH transcoder is on.
6338          */
6339         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6340         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6341             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6342                 pipe_config->has_pch_encoder = true;
6343
6344                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6345                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6346                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6347
6348                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6349         }
6350
6351         intel_get_pipe_timings(crtc, pipe_config);
6352
6353         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6354         if (intel_display_power_enabled(dev, pfit_domain))
6355                 ironlake_get_pfit_config(crtc, pipe_config);
6356
6357         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6358                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6359
6360         pipe_config->pixel_multiplier = 1;
6361
6362         return true;
6363 }
6364
6365 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6366                                int x, int y,
6367                                struct drm_framebuffer *fb)
6368 {
6369         struct drm_device *dev = crtc->dev;
6370         struct drm_i915_private *dev_priv = dev->dev_private;
6371         struct intel_encoder *encoder;
6372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6373         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6374         int pipe = intel_crtc->pipe;
6375         int ret;
6376
6377         drm_vblank_pre_modeset(dev, pipe);
6378
6379         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6380
6381         drm_vblank_post_modeset(dev, pipe);
6382
6383         if (ret != 0)
6384                 return ret;
6385
6386         for_each_encoder_on_crtc(dev, crtc, encoder) {
6387                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6388                         encoder->base.base.id,
6389                         drm_get_encoder_name(&encoder->base),
6390                         mode->base.id, mode->name);
6391                 encoder->mode_set(encoder);
6392         }
6393
6394         return 0;
6395 }
6396
6397 static bool intel_eld_uptodate(struct drm_connector *connector,
6398                                int reg_eldv, uint32_t bits_eldv,
6399                                int reg_elda, uint32_t bits_elda,
6400                                int reg_edid)
6401 {
6402         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6403         uint8_t *eld = connector->eld;
6404         uint32_t i;
6405
6406         i = I915_READ(reg_eldv);
6407         i &= bits_eldv;
6408
6409         if (!eld[0])
6410                 return !i;
6411
6412         if (!i)
6413                 return false;
6414
6415         i = I915_READ(reg_elda);
6416         i &= ~bits_elda;
6417         I915_WRITE(reg_elda, i);
6418
6419         for (i = 0; i < eld[2]; i++)
6420                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6421                         return false;
6422
6423         return true;
6424 }
6425
6426 static void g4x_write_eld(struct drm_connector *connector,
6427                           struct drm_crtc *crtc)
6428 {
6429         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6430         uint8_t *eld = connector->eld;
6431         uint32_t eldv;
6432         uint32_t len;
6433         uint32_t i;
6434
6435         i = I915_READ(G4X_AUD_VID_DID);
6436
6437         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6438                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6439         else
6440                 eldv = G4X_ELDV_DEVCTG;
6441
6442         if (intel_eld_uptodate(connector,
6443                                G4X_AUD_CNTL_ST, eldv,
6444                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6445                                G4X_HDMIW_HDMIEDID))
6446                 return;
6447
6448         i = I915_READ(G4X_AUD_CNTL_ST);
6449         i &= ~(eldv | G4X_ELD_ADDR);
6450         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6451         I915_WRITE(G4X_AUD_CNTL_ST, i);
6452
6453         if (!eld[0])
6454                 return;
6455
6456         len = min_t(uint8_t, eld[2], len);
6457         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6458         for (i = 0; i < len; i++)
6459                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6460
6461         i = I915_READ(G4X_AUD_CNTL_ST);
6462         i |= eldv;
6463         I915_WRITE(G4X_AUD_CNTL_ST, i);
6464 }
6465
6466 static void haswell_write_eld(struct drm_connector *connector,
6467                                      struct drm_crtc *crtc)
6468 {
6469         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6470         uint8_t *eld = connector->eld;
6471         struct drm_device *dev = crtc->dev;
6472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6473         uint32_t eldv;
6474         uint32_t i;
6475         int len;
6476         int pipe = to_intel_crtc(crtc)->pipe;
6477         int tmp;
6478
6479         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6480         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6481         int aud_config = HSW_AUD_CFG(pipe);
6482         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6483
6484
6485         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6486
6487         /* Audio output enable */
6488         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6489         tmp = I915_READ(aud_cntrl_st2);
6490         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6491         I915_WRITE(aud_cntrl_st2, tmp);
6492
6493         /* Wait for 1 vertical blank */
6494         intel_wait_for_vblank(dev, pipe);
6495
6496         /* Set ELD valid state */
6497         tmp = I915_READ(aud_cntrl_st2);
6498         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6499         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6500         I915_WRITE(aud_cntrl_st2, tmp);
6501         tmp = I915_READ(aud_cntrl_st2);
6502         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6503
6504         /* Enable HDMI mode */
6505         tmp = I915_READ(aud_config);
6506         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6507         /* clear N_programing_enable and N_value_index */
6508         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6509         I915_WRITE(aud_config, tmp);
6510
6511         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6512
6513         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6514         intel_crtc->eld_vld = true;
6515
6516         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6517                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6518                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6519                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6520         } else
6521                 I915_WRITE(aud_config, 0);
6522
6523         if (intel_eld_uptodate(connector,
6524                                aud_cntrl_st2, eldv,
6525                                aud_cntl_st, IBX_ELD_ADDRESS,
6526                                hdmiw_hdmiedid))
6527                 return;
6528
6529         i = I915_READ(aud_cntrl_st2);
6530         i &= ~eldv;
6531         I915_WRITE(aud_cntrl_st2, i);
6532
6533         if (!eld[0])
6534                 return;
6535
6536         i = I915_READ(aud_cntl_st);
6537         i &= ~IBX_ELD_ADDRESS;
6538         I915_WRITE(aud_cntl_st, i);
6539         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6540         DRM_DEBUG_DRIVER("port num:%d\n", i);
6541
6542         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6543         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6544         for (i = 0; i < len; i++)
6545                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6546
6547         i = I915_READ(aud_cntrl_st2);
6548         i |= eldv;
6549         I915_WRITE(aud_cntrl_st2, i);
6550
6551 }
6552
6553 static void ironlake_write_eld(struct drm_connector *connector,
6554                                      struct drm_crtc *crtc)
6555 {
6556         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6557         uint8_t *eld = connector->eld;
6558         uint32_t eldv;
6559         uint32_t i;
6560         int len;
6561         int hdmiw_hdmiedid;
6562         int aud_config;
6563         int aud_cntl_st;
6564         int aud_cntrl_st2;
6565         int pipe = to_intel_crtc(crtc)->pipe;
6566
6567         if (HAS_PCH_IBX(connector->dev)) {
6568                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6569                 aud_config = IBX_AUD_CFG(pipe);
6570                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6571                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6572         } else {
6573                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6574                 aud_config = CPT_AUD_CFG(pipe);
6575                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6576                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6577         }
6578
6579         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6580
6581         i = I915_READ(aud_cntl_st);
6582         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6583         if (!i) {
6584                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6585                 /* operate blindly on all ports */
6586                 eldv = IBX_ELD_VALIDB;
6587                 eldv |= IBX_ELD_VALIDB << 4;
6588                 eldv |= IBX_ELD_VALIDB << 8;
6589         } else {
6590                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6591                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6592         }
6593
6594         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6595                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6596                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6597                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6598         } else
6599                 I915_WRITE(aud_config, 0);
6600
6601         if (intel_eld_uptodate(connector,
6602                                aud_cntrl_st2, eldv,
6603                                aud_cntl_st, IBX_ELD_ADDRESS,
6604                                hdmiw_hdmiedid))
6605                 return;
6606
6607         i = I915_READ(aud_cntrl_st2);
6608         i &= ~eldv;
6609         I915_WRITE(aud_cntrl_st2, i);
6610
6611         if (!eld[0])
6612                 return;
6613
6614         i = I915_READ(aud_cntl_st);
6615         i &= ~IBX_ELD_ADDRESS;
6616         I915_WRITE(aud_cntl_st, i);
6617
6618         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6619         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6620         for (i = 0; i < len; i++)
6621                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6622
6623         i = I915_READ(aud_cntrl_st2);
6624         i |= eldv;
6625         I915_WRITE(aud_cntrl_st2, i);
6626 }
6627
6628 void intel_write_eld(struct drm_encoder *encoder,
6629                      struct drm_display_mode *mode)
6630 {
6631         struct drm_crtc *crtc = encoder->crtc;
6632         struct drm_connector *connector;
6633         struct drm_device *dev = encoder->dev;
6634         struct drm_i915_private *dev_priv = dev->dev_private;
6635
6636         connector = drm_select_eld(encoder, mode);
6637         if (!connector)
6638                 return;
6639
6640         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6641                          connector->base.id,
6642                          drm_get_connector_name(connector),
6643                          connector->encoder->base.id,
6644                          drm_get_encoder_name(connector->encoder));
6645
6646         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6647
6648         if (dev_priv->display.write_eld)
6649                 dev_priv->display.write_eld(connector, crtc);
6650 }
6651
6652 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6653 void intel_crtc_load_lut(struct drm_crtc *crtc)
6654 {
6655         struct drm_device *dev = crtc->dev;
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6658         enum pipe pipe = intel_crtc->pipe;
6659         int palreg = PALETTE(pipe);
6660         int i;
6661         bool reenable_ips = false;
6662
6663         /* The clocks have to be on to load the palette. */
6664         if (!crtc->enabled || !intel_crtc->active)
6665                 return;
6666
6667         if (!HAS_PCH_SPLIT(dev_priv->dev))
6668                 assert_pll_enabled(dev_priv, pipe);
6669
6670         /* use legacy palette for Ironlake */
6671         if (HAS_PCH_SPLIT(dev))
6672                 palreg = LGC_PALETTE(pipe);
6673
6674         /* Workaround : Do not read or write the pipe palette/gamma data while
6675          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6676          */
6677         if (intel_crtc->config.ips_enabled &&
6678             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6679              GAMMA_MODE_MODE_SPLIT)) {
6680                 hsw_disable_ips(intel_crtc);
6681                 reenable_ips = true;
6682         }
6683
6684         for (i = 0; i < 256; i++) {
6685                 I915_WRITE(palreg + 4 * i,
6686                            (intel_crtc->lut_r[i] << 16) |
6687                            (intel_crtc->lut_g[i] << 8) |
6688                            intel_crtc->lut_b[i]);
6689         }
6690
6691         if (reenable_ips)
6692                 hsw_enable_ips(intel_crtc);
6693 }
6694
6695 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6696 {
6697         struct drm_device *dev = crtc->dev;
6698         struct drm_i915_private *dev_priv = dev->dev_private;
6699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6700         bool visible = base != 0;
6701         u32 cntl;
6702
6703         if (intel_crtc->cursor_visible == visible)
6704                 return;
6705
6706         cntl = I915_READ(_CURACNTR);
6707         if (visible) {
6708                 /* On these chipsets we can only modify the base whilst
6709                  * the cursor is disabled.
6710                  */
6711                 I915_WRITE(_CURABASE, base);
6712
6713                 cntl &= ~(CURSOR_FORMAT_MASK);
6714                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6715                 cntl |= CURSOR_ENABLE |
6716                         CURSOR_GAMMA_ENABLE |
6717                         CURSOR_FORMAT_ARGB;
6718         } else
6719                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6720         I915_WRITE(_CURACNTR, cntl);
6721
6722         intel_crtc->cursor_visible = visible;
6723 }
6724
6725 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6726 {
6727         struct drm_device *dev = crtc->dev;
6728         struct drm_i915_private *dev_priv = dev->dev_private;
6729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6730         int pipe = intel_crtc->pipe;
6731         bool visible = base != 0;
6732
6733         if (intel_crtc->cursor_visible != visible) {
6734                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6735                 if (base) {
6736                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6737                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6738                         cntl |= pipe << 28; /* Connect to correct pipe */
6739                 } else {
6740                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6741                         cntl |= CURSOR_MODE_DISABLE;
6742                 }
6743                 I915_WRITE(CURCNTR(pipe), cntl);
6744
6745                 intel_crtc->cursor_visible = visible;
6746         }
6747         /* and commit changes on next vblank */
6748         I915_WRITE(CURBASE(pipe), base);
6749 }
6750
6751 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6752 {
6753         struct drm_device *dev = crtc->dev;
6754         struct drm_i915_private *dev_priv = dev->dev_private;
6755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756         int pipe = intel_crtc->pipe;
6757         bool visible = base != 0;
6758
6759         if (intel_crtc->cursor_visible != visible) {
6760                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6761                 if (base) {
6762                         cntl &= ~CURSOR_MODE;
6763                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6764                 } else {
6765                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6766                         cntl |= CURSOR_MODE_DISABLE;
6767                 }
6768                 if (IS_HASWELL(dev)) {
6769                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6770                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6771                 }
6772                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6773
6774                 intel_crtc->cursor_visible = visible;
6775         }
6776         /* and commit changes on next vblank */
6777         I915_WRITE(CURBASE_IVB(pipe), base);
6778 }
6779
6780 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6781 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6782                                      bool on)
6783 {
6784         struct drm_device *dev = crtc->dev;
6785         struct drm_i915_private *dev_priv = dev->dev_private;
6786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6787         int pipe = intel_crtc->pipe;
6788         int x = intel_crtc->cursor_x;
6789         int y = intel_crtc->cursor_y;
6790         u32 base, pos;
6791         bool visible;
6792
6793         pos = 0;
6794
6795         if (on && crtc->enabled && crtc->fb) {
6796                 base = intel_crtc->cursor_addr;
6797                 if (x > (int) crtc->fb->width)
6798                         base = 0;
6799
6800                 if (y > (int) crtc->fb->height)
6801                         base = 0;
6802         } else
6803                 base = 0;
6804
6805         if (x < 0) {
6806                 if (x + intel_crtc->cursor_width < 0)
6807                         base = 0;
6808
6809                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6810                 x = -x;
6811         }
6812         pos |= x << CURSOR_X_SHIFT;
6813
6814         if (y < 0) {
6815                 if (y + intel_crtc->cursor_height < 0)
6816                         base = 0;
6817
6818                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6819                 y = -y;
6820         }
6821         pos |= y << CURSOR_Y_SHIFT;
6822
6823         visible = base != 0;
6824         if (!visible && !intel_crtc->cursor_visible)
6825                 return;
6826
6827         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6828                 I915_WRITE(CURPOS_IVB(pipe), pos);
6829                 ivb_update_cursor(crtc, base);
6830         } else {
6831                 I915_WRITE(CURPOS(pipe), pos);
6832                 if (IS_845G(dev) || IS_I865G(dev))
6833                         i845_update_cursor(crtc, base);
6834                 else
6835                         i9xx_update_cursor(crtc, base);
6836         }
6837 }
6838
6839 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6840                                  struct drm_file *file,
6841                                  uint32_t handle,
6842                                  uint32_t width, uint32_t height)
6843 {
6844         struct drm_device *dev = crtc->dev;
6845         struct drm_i915_private *dev_priv = dev->dev_private;
6846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6847         struct drm_i915_gem_object *obj;
6848         uint32_t addr;
6849         int ret;
6850
6851         /* if we want to turn off the cursor ignore width and height */
6852         if (!handle) {
6853                 DRM_DEBUG_KMS("cursor off\n");
6854                 addr = 0;
6855                 obj = NULL;
6856                 mutex_lock(&dev->struct_mutex);
6857                 goto finish;
6858         }
6859
6860         /* Currently we only support 64x64 cursors */
6861         if (width != 64 || height != 64) {
6862                 DRM_ERROR("we currently only support 64x64 cursors\n");
6863                 return -EINVAL;
6864         }
6865
6866         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6867         if (&obj->base == NULL)
6868                 return -ENOENT;
6869
6870         if (obj->base.size < width * height * 4) {
6871                 DRM_ERROR("buffer is to small\n");
6872                 ret = -ENOMEM;
6873                 goto fail;
6874         }
6875
6876         /* we only need to pin inside GTT if cursor is non-phy */
6877         mutex_lock(&dev->struct_mutex);
6878         if (!dev_priv->info->cursor_needs_physical) {
6879                 unsigned alignment;
6880
6881                 if (obj->tiling_mode) {
6882                         DRM_ERROR("cursor cannot be tiled\n");
6883                         ret = -EINVAL;
6884                         goto fail_locked;
6885                 }
6886
6887                 /* Note that the w/a also requires 2 PTE of padding following
6888                  * the bo. We currently fill all unused PTE with the shadow
6889                  * page and so we should always have valid PTE following the
6890                  * cursor preventing the VT-d warning.
6891                  */
6892                 alignment = 0;
6893                 if (need_vtd_wa(dev))
6894                         alignment = 64*1024;
6895
6896                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6897                 if (ret) {
6898                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6899                         goto fail_locked;
6900                 }
6901
6902                 ret = i915_gem_object_put_fence(obj);
6903                 if (ret) {
6904                         DRM_ERROR("failed to release fence for cursor");
6905                         goto fail_unpin;
6906                 }
6907
6908                 addr = i915_gem_obj_ggtt_offset(obj);
6909         } else {
6910                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6911                 ret = i915_gem_attach_phys_object(dev, obj,
6912                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6913                                                   align);
6914                 if (ret) {
6915                         DRM_ERROR("failed to attach phys object\n");
6916                         goto fail_locked;
6917                 }
6918                 addr = obj->phys_obj->handle->busaddr;
6919         }
6920
6921         if (IS_GEN2(dev))
6922                 I915_WRITE(CURSIZE, (height << 12) | width);
6923
6924  finish:
6925         if (intel_crtc->cursor_bo) {
6926                 if (dev_priv->info->cursor_needs_physical) {
6927                         if (intel_crtc->cursor_bo != obj)
6928                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6929                 } else
6930                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6931                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6932         }
6933
6934         mutex_unlock(&dev->struct_mutex);
6935
6936         intel_crtc->cursor_addr = addr;
6937         intel_crtc->cursor_bo = obj;
6938         intel_crtc->cursor_width = width;
6939         intel_crtc->cursor_height = height;
6940
6941         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6942
6943         return 0;
6944 fail_unpin:
6945         i915_gem_object_unpin_from_display_plane(obj);
6946 fail_locked:
6947         mutex_unlock(&dev->struct_mutex);
6948 fail:
6949         drm_gem_object_unreference_unlocked(&obj->base);
6950         return ret;
6951 }
6952
6953 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6954 {
6955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6956
6957         intel_crtc->cursor_x = x;
6958         intel_crtc->cursor_y = y;
6959
6960         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6961
6962         return 0;
6963 }
6964
6965 /** Sets the color ramps on behalf of RandR */
6966 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6967                                  u16 blue, int regno)
6968 {
6969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6970
6971         intel_crtc->lut_r[regno] = red >> 8;
6972         intel_crtc->lut_g[regno] = green >> 8;
6973         intel_crtc->lut_b[regno] = blue >> 8;
6974 }
6975
6976 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6977                              u16 *blue, int regno)
6978 {
6979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6980
6981         *red = intel_crtc->lut_r[regno] << 8;
6982         *green = intel_crtc->lut_g[regno] << 8;
6983         *blue = intel_crtc->lut_b[regno] << 8;
6984 }
6985
6986 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6987                                  u16 *blue, uint32_t start, uint32_t size)
6988 {
6989         int end = (start + size > 256) ? 256 : start + size, i;
6990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6991
6992         for (i = start; i < end; i++) {
6993                 intel_crtc->lut_r[i] = red[i] >> 8;
6994                 intel_crtc->lut_g[i] = green[i] >> 8;
6995                 intel_crtc->lut_b[i] = blue[i] >> 8;
6996         }
6997
6998         intel_crtc_load_lut(crtc);
6999 }
7000
7001 /* VESA 640x480x72Hz mode to set on the pipe */
7002 static struct drm_display_mode load_detect_mode = {
7003         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7004                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7005 };
7006
7007 static struct drm_framebuffer *
7008 intel_framebuffer_create(struct drm_device *dev,
7009                          struct drm_mode_fb_cmd2 *mode_cmd,
7010                          struct drm_i915_gem_object *obj)
7011 {
7012         struct intel_framebuffer *intel_fb;
7013         int ret;
7014
7015         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7016         if (!intel_fb) {
7017                 drm_gem_object_unreference_unlocked(&obj->base);
7018                 return ERR_PTR(-ENOMEM);
7019         }
7020
7021         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7022         if (ret) {
7023                 drm_gem_object_unreference_unlocked(&obj->base);
7024                 kfree(intel_fb);
7025                 return ERR_PTR(ret);
7026         }
7027
7028         return &intel_fb->base;
7029 }
7030
7031 static u32
7032 intel_framebuffer_pitch_for_width(int width, int bpp)
7033 {
7034         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7035         return ALIGN(pitch, 64);
7036 }
7037
7038 static u32
7039 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7040 {
7041         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7042         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7043 }
7044
7045 static struct drm_framebuffer *
7046 intel_framebuffer_create_for_mode(struct drm_device *dev,
7047                                   struct drm_display_mode *mode,
7048                                   int depth, int bpp)
7049 {
7050         struct drm_i915_gem_object *obj;
7051         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7052
7053         obj = i915_gem_alloc_object(dev,
7054                                     intel_framebuffer_size_for_mode(mode, bpp));
7055         if (obj == NULL)
7056                 return ERR_PTR(-ENOMEM);
7057
7058         mode_cmd.width = mode->hdisplay;
7059         mode_cmd.height = mode->vdisplay;
7060         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7061                                                                 bpp);
7062         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7063
7064         return intel_framebuffer_create(dev, &mode_cmd, obj);
7065 }
7066
7067 static struct drm_framebuffer *
7068 mode_fits_in_fbdev(struct drm_device *dev,
7069                    struct drm_display_mode *mode)
7070 {
7071         struct drm_i915_private *dev_priv = dev->dev_private;
7072         struct drm_i915_gem_object *obj;
7073         struct drm_framebuffer *fb;
7074
7075         if (dev_priv->fbdev == NULL)
7076                 return NULL;
7077
7078         obj = dev_priv->fbdev->ifb.obj;
7079         if (obj == NULL)
7080                 return NULL;
7081
7082         fb = &dev_priv->fbdev->ifb.base;
7083         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7084                                                                fb->bits_per_pixel))
7085                 return NULL;
7086
7087         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7088                 return NULL;
7089
7090         return fb;
7091 }
7092
7093 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7094                                 struct drm_display_mode *mode,
7095                                 struct intel_load_detect_pipe *old)
7096 {
7097         struct intel_crtc *intel_crtc;
7098         struct intel_encoder *intel_encoder =
7099                 intel_attached_encoder(connector);
7100         struct drm_crtc *possible_crtc;
7101         struct drm_encoder *encoder = &intel_encoder->base;
7102         struct drm_crtc *crtc = NULL;
7103         struct drm_device *dev = encoder->dev;
7104         struct drm_framebuffer *fb;
7105         int i = -1;
7106
7107         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7108                       connector->base.id, drm_get_connector_name(connector),
7109                       encoder->base.id, drm_get_encoder_name(encoder));
7110
7111         /*
7112          * Algorithm gets a little messy:
7113          *
7114          *   - if the connector already has an assigned crtc, use it (but make
7115          *     sure it's on first)
7116          *
7117          *   - try to find the first unused crtc that can drive this connector,
7118          *     and use that if we find one
7119          */
7120
7121         /* See if we already have a CRTC for this connector */
7122         if (encoder->crtc) {
7123                 crtc = encoder->crtc;
7124
7125                 mutex_lock(&crtc->mutex);
7126
7127                 old->dpms_mode = connector->dpms;
7128                 old->load_detect_temp = false;
7129
7130                 /* Make sure the crtc and connector are running */
7131                 if (connector->dpms != DRM_MODE_DPMS_ON)
7132                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7133
7134                 return true;
7135         }
7136
7137         /* Find an unused one (if possible) */
7138         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7139                 i++;
7140                 if (!(encoder->possible_crtcs & (1 << i)))
7141                         continue;
7142                 if (!possible_crtc->enabled) {
7143                         crtc = possible_crtc;
7144                         break;
7145                 }
7146         }
7147
7148         /*
7149          * If we didn't find an unused CRTC, don't use any.
7150          */
7151         if (!crtc) {
7152                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7153                 return false;
7154         }
7155
7156         mutex_lock(&crtc->mutex);
7157         intel_encoder->new_crtc = to_intel_crtc(crtc);
7158         to_intel_connector(connector)->new_encoder = intel_encoder;
7159
7160         intel_crtc = to_intel_crtc(crtc);
7161         old->dpms_mode = connector->dpms;
7162         old->load_detect_temp = true;
7163         old->release_fb = NULL;
7164
7165         if (!mode)
7166                 mode = &load_detect_mode;
7167
7168         /* We need a framebuffer large enough to accommodate all accesses
7169          * that the plane may generate whilst we perform load detection.
7170          * We can not rely on the fbcon either being present (we get called
7171          * during its initialisation to detect all boot displays, or it may
7172          * not even exist) or that it is large enough to satisfy the
7173          * requested mode.
7174          */
7175         fb = mode_fits_in_fbdev(dev, mode);
7176         if (fb == NULL) {
7177                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7178                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7179                 old->release_fb = fb;
7180         } else
7181                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7182         if (IS_ERR(fb)) {
7183                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7184                 mutex_unlock(&crtc->mutex);
7185                 return false;
7186         }
7187
7188         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7189                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7190                 if (old->release_fb)
7191                         old->release_fb->funcs->destroy(old->release_fb);
7192                 mutex_unlock(&crtc->mutex);
7193                 return false;
7194         }
7195
7196         /* let the connector get through one full cycle before testing */
7197         intel_wait_for_vblank(dev, intel_crtc->pipe);
7198         return true;
7199 }
7200
7201 void intel_release_load_detect_pipe(struct drm_connector *connector,
7202                                     struct intel_load_detect_pipe *old)
7203 {
7204         struct intel_encoder *intel_encoder =
7205                 intel_attached_encoder(connector);
7206         struct drm_encoder *encoder = &intel_encoder->base;
7207         struct drm_crtc *crtc = encoder->crtc;
7208
7209         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7210                       connector->base.id, drm_get_connector_name(connector),
7211                       encoder->base.id, drm_get_encoder_name(encoder));
7212
7213         if (old->load_detect_temp) {
7214                 to_intel_connector(connector)->new_encoder = NULL;
7215                 intel_encoder->new_crtc = NULL;
7216                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7217
7218                 if (old->release_fb) {
7219                         drm_framebuffer_unregister_private(old->release_fb);
7220                         drm_framebuffer_unreference(old->release_fb);
7221                 }
7222
7223                 mutex_unlock(&crtc->mutex);
7224                 return;
7225         }
7226
7227         /* Switch crtc and encoder back off if necessary */
7228         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7229                 connector->funcs->dpms(connector, old->dpms_mode);
7230
7231         mutex_unlock(&crtc->mutex);
7232 }
7233
7234 /* Returns the clock of the currently programmed mode of the given pipe. */
7235 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7236                                 struct intel_crtc_config *pipe_config)
7237 {
7238         struct drm_device *dev = crtc->base.dev;
7239         struct drm_i915_private *dev_priv = dev->dev_private;
7240         int pipe = pipe_config->cpu_transcoder;
7241         u32 dpll = I915_READ(DPLL(pipe));
7242         u32 fp;
7243         intel_clock_t clock;
7244
7245         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7246                 fp = I915_READ(FP0(pipe));
7247         else
7248                 fp = I915_READ(FP1(pipe));
7249
7250         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7251         if (IS_PINEVIEW(dev)) {
7252                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7253                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7254         } else {
7255                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7256                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7257         }
7258
7259         if (!IS_GEN2(dev)) {
7260                 if (IS_PINEVIEW(dev))
7261                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7262                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7263                 else
7264                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7265                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7266
7267                 switch (dpll & DPLL_MODE_MASK) {
7268                 case DPLLB_MODE_DAC_SERIAL:
7269                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7270                                 5 : 10;
7271                         break;
7272                 case DPLLB_MODE_LVDS:
7273                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7274                                 7 : 14;
7275                         break;
7276                 default:
7277                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7278                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7279                         pipe_config->adjusted_mode.clock = 0;
7280                         return;
7281                 }
7282
7283                 if (IS_PINEVIEW(dev))
7284                         pineview_clock(96000, &clock);
7285                 else
7286                         i9xx_clock(96000, &clock);
7287         } else {
7288                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7289
7290                 if (is_lvds) {
7291                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7292                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7293                         clock.p2 = 14;
7294
7295                         if ((dpll & PLL_REF_INPUT_MASK) ==
7296                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7297                                 /* XXX: might not be 66MHz */
7298                                 i9xx_clock(66000, &clock);
7299                         } else
7300                                 i9xx_clock(48000, &clock);
7301                 } else {
7302                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7303                                 clock.p1 = 2;
7304                         else {
7305                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7306                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7307                         }
7308                         if (dpll & PLL_P2_DIVIDE_BY_4)
7309                                 clock.p2 = 4;
7310                         else
7311                                 clock.p2 = 2;
7312
7313                         i9xx_clock(48000, &clock);
7314                 }
7315         }
7316
7317         pipe_config->adjusted_mode.clock = clock.dot;
7318 }
7319
7320 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7321                                     struct intel_crtc_config *pipe_config)
7322 {
7323         struct drm_device *dev = crtc->base.dev;
7324         struct drm_i915_private *dev_priv = dev->dev_private;
7325         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7326         int link_freq, repeat;
7327         u64 clock;
7328         u32 link_m, link_n;
7329
7330         repeat = pipe_config->pixel_multiplier;
7331
7332         /*
7333          * The calculation for the data clock is:
7334          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7335          * But we want to avoid losing precison if possible, so:
7336          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7337          *
7338          * and the link clock is simpler:
7339          * link_clock = (m * link_clock * repeat) / n
7340          */
7341
7342         /*
7343          * We need to get the FDI or DP link clock here to derive
7344          * the M/N dividers.
7345          *
7346          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7347          * For DP, it's either 1.62GHz or 2.7GHz.
7348          * We do our calculations in 10*MHz since we don't need much precison.
7349          */
7350         if (pipe_config->has_pch_encoder)
7351                 link_freq = intel_fdi_link_freq(dev) * 10000;
7352         else
7353                 link_freq = pipe_config->port_clock;
7354
7355         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7356         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7357
7358         if (!link_m || !link_n)
7359                 return;
7360
7361         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7362         do_div(clock, link_n);
7363
7364         pipe_config->adjusted_mode.clock = clock;
7365 }
7366
7367 /** Returns the currently programmed mode of the given pipe. */
7368 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7369                                              struct drm_crtc *crtc)
7370 {
7371         struct drm_i915_private *dev_priv = dev->dev_private;
7372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7373         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7374         struct drm_display_mode *mode;
7375         struct intel_crtc_config pipe_config;
7376         int htot = I915_READ(HTOTAL(cpu_transcoder));
7377         int hsync = I915_READ(HSYNC(cpu_transcoder));
7378         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7379         int vsync = I915_READ(VSYNC(cpu_transcoder));
7380
7381         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7382         if (!mode)
7383                 return NULL;
7384
7385         /*
7386          * Construct a pipe_config sufficient for getting the clock info
7387          * back out of crtc_clock_get.
7388          *
7389          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7390          * to use a real value here instead.
7391          */
7392         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7393         pipe_config.pixel_multiplier = 1;
7394         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7395
7396         mode->clock = pipe_config.adjusted_mode.clock;
7397         mode->hdisplay = (htot & 0xffff) + 1;
7398         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7399         mode->hsync_start = (hsync & 0xffff) + 1;
7400         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7401         mode->vdisplay = (vtot & 0xffff) + 1;
7402         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7403         mode->vsync_start = (vsync & 0xffff) + 1;
7404         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7405
7406         drm_mode_set_name(mode);
7407
7408         return mode;
7409 }
7410
7411 static void intel_increase_pllclock(struct drm_crtc *crtc)
7412 {
7413         struct drm_device *dev = crtc->dev;
7414         drm_i915_private_t *dev_priv = dev->dev_private;
7415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7416         int pipe = intel_crtc->pipe;
7417         int dpll_reg = DPLL(pipe);
7418         int dpll;
7419
7420         if (HAS_PCH_SPLIT(dev))
7421                 return;
7422
7423         if (!dev_priv->lvds_downclock_avail)
7424                 return;
7425
7426         dpll = I915_READ(dpll_reg);
7427         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7428                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7429
7430                 assert_panel_unlocked(dev_priv, pipe);
7431
7432                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7433                 I915_WRITE(dpll_reg, dpll);
7434                 intel_wait_for_vblank(dev, pipe);
7435
7436                 dpll = I915_READ(dpll_reg);
7437                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7438                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7439         }
7440 }
7441
7442 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7443 {
7444         struct drm_device *dev = crtc->dev;
7445         drm_i915_private_t *dev_priv = dev->dev_private;
7446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7447
7448         if (HAS_PCH_SPLIT(dev))
7449                 return;
7450
7451         if (!dev_priv->lvds_downclock_avail)
7452                 return;
7453
7454         /*
7455          * Since this is called by a timer, we should never get here in
7456          * the manual case.
7457          */
7458         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7459                 int pipe = intel_crtc->pipe;
7460                 int dpll_reg = DPLL(pipe);
7461                 int dpll;
7462
7463                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7464
7465                 assert_panel_unlocked(dev_priv, pipe);
7466
7467                 dpll = I915_READ(dpll_reg);
7468                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7469                 I915_WRITE(dpll_reg, dpll);
7470                 intel_wait_for_vblank(dev, pipe);
7471                 dpll = I915_READ(dpll_reg);
7472                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7473                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7474         }
7475
7476 }
7477
7478 void intel_mark_busy(struct drm_device *dev)
7479 {
7480         struct drm_i915_private *dev_priv = dev->dev_private;
7481
7482         hsw_package_c8_gpu_busy(dev_priv);
7483         i915_update_gfx_val(dev_priv);
7484 }
7485
7486 void intel_mark_idle(struct drm_device *dev)
7487 {
7488         struct drm_i915_private *dev_priv = dev->dev_private;
7489         struct drm_crtc *crtc;
7490
7491         hsw_package_c8_gpu_idle(dev_priv);
7492
7493         if (!i915_powersave)
7494                 return;
7495
7496         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7497                 if (!crtc->fb)
7498                         continue;
7499
7500                 intel_decrease_pllclock(crtc);
7501         }
7502 }
7503
7504 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7505                         struct intel_ring_buffer *ring)
7506 {
7507         struct drm_device *dev = obj->base.dev;
7508         struct drm_crtc *crtc;
7509
7510         if (!i915_powersave)
7511                 return;
7512
7513         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7514                 if (!crtc->fb)
7515                         continue;
7516
7517                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7518                         continue;
7519
7520                 intel_increase_pllclock(crtc);
7521                 if (ring && intel_fbc_enabled(dev))
7522                         ring->fbc_dirty = true;
7523         }
7524 }
7525
7526 static void intel_crtc_destroy(struct drm_crtc *crtc)
7527 {
7528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7529         struct drm_device *dev = crtc->dev;
7530         struct intel_unpin_work *work;
7531         unsigned long flags;
7532
7533         spin_lock_irqsave(&dev->event_lock, flags);
7534         work = intel_crtc->unpin_work;
7535         intel_crtc->unpin_work = NULL;
7536         spin_unlock_irqrestore(&dev->event_lock, flags);
7537
7538         if (work) {
7539                 cancel_work_sync(&work->work);
7540                 kfree(work);
7541         }
7542
7543         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7544
7545         drm_crtc_cleanup(crtc);
7546
7547         kfree(intel_crtc);
7548 }
7549
7550 static void intel_unpin_work_fn(struct work_struct *__work)
7551 {
7552         struct intel_unpin_work *work =
7553                 container_of(__work, struct intel_unpin_work, work);
7554         struct drm_device *dev = work->crtc->dev;
7555
7556         mutex_lock(&dev->struct_mutex);
7557         intel_unpin_fb_obj(work->old_fb_obj);
7558         drm_gem_object_unreference(&work->pending_flip_obj->base);
7559         drm_gem_object_unreference(&work->old_fb_obj->base);
7560
7561         intel_update_fbc(dev);
7562         mutex_unlock(&dev->struct_mutex);
7563
7564         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7565         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7566
7567         kfree(work);
7568 }
7569
7570 static void do_intel_finish_page_flip(struct drm_device *dev,
7571                                       struct drm_crtc *crtc)
7572 {
7573         drm_i915_private_t *dev_priv = dev->dev_private;
7574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7575         struct intel_unpin_work *work;
7576         unsigned long flags;
7577
7578         /* Ignore early vblank irqs */
7579         if (intel_crtc == NULL)
7580                 return;
7581
7582         spin_lock_irqsave(&dev->event_lock, flags);
7583         work = intel_crtc->unpin_work;
7584
7585         /* Ensure we don't miss a work->pending update ... */
7586         smp_rmb();
7587
7588         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7589                 spin_unlock_irqrestore(&dev->event_lock, flags);
7590                 return;
7591         }
7592
7593         /* and that the unpin work is consistent wrt ->pending. */
7594         smp_rmb();
7595
7596         intel_crtc->unpin_work = NULL;
7597
7598         if (work->event)
7599                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7600
7601         drm_vblank_put(dev, intel_crtc->pipe);
7602
7603         spin_unlock_irqrestore(&dev->event_lock, flags);
7604
7605         wake_up_all(&dev_priv->pending_flip_queue);
7606
7607         queue_work(dev_priv->wq, &work->work);
7608
7609         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7610 }
7611
7612 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7613 {
7614         drm_i915_private_t *dev_priv = dev->dev_private;
7615         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7616
7617         do_intel_finish_page_flip(dev, crtc);
7618 }
7619
7620 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7621 {
7622         drm_i915_private_t *dev_priv = dev->dev_private;
7623         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7624
7625         do_intel_finish_page_flip(dev, crtc);
7626 }
7627
7628 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7629 {
7630         drm_i915_private_t *dev_priv = dev->dev_private;
7631         struct intel_crtc *intel_crtc =
7632                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7633         unsigned long flags;
7634
7635         /* NB: An MMIO update of the plane base pointer will also
7636          * generate a page-flip completion irq, i.e. every modeset
7637          * is also accompanied by a spurious intel_prepare_page_flip().
7638          */
7639         spin_lock_irqsave(&dev->event_lock, flags);
7640         if (intel_crtc->unpin_work)
7641                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7642         spin_unlock_irqrestore(&dev->event_lock, flags);
7643 }
7644
7645 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7646 {
7647         /* Ensure that the work item is consistent when activating it ... */
7648         smp_wmb();
7649         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7650         /* and that it is marked active as soon as the irq could fire. */
7651         smp_wmb();
7652 }
7653
7654 static int intel_gen2_queue_flip(struct drm_device *dev,
7655                                  struct drm_crtc *crtc,
7656                                  struct drm_framebuffer *fb,
7657                                  struct drm_i915_gem_object *obj,
7658                                  uint32_t flags)
7659 {
7660         struct drm_i915_private *dev_priv = dev->dev_private;
7661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7662         u32 flip_mask;
7663         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7664         int ret;
7665
7666         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7667         if (ret)
7668                 goto err;
7669
7670         ret = intel_ring_begin(ring, 6);
7671         if (ret)
7672                 goto err_unpin;
7673
7674         /* Can't queue multiple flips, so wait for the previous
7675          * one to finish before executing the next.
7676          */
7677         if (intel_crtc->plane)
7678                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7679         else
7680                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7681         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7682         intel_ring_emit(ring, MI_NOOP);
7683         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7684                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7685         intel_ring_emit(ring, fb->pitches[0]);
7686         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7687         intel_ring_emit(ring, 0); /* aux display base address, unused */
7688
7689         intel_mark_page_flip_active(intel_crtc);
7690         intel_ring_advance(ring);
7691         return 0;
7692
7693 err_unpin:
7694         intel_unpin_fb_obj(obj);
7695 err:
7696         return ret;
7697 }
7698
7699 static int intel_gen3_queue_flip(struct drm_device *dev,
7700                                  struct drm_crtc *crtc,
7701                                  struct drm_framebuffer *fb,
7702                                  struct drm_i915_gem_object *obj,
7703                                  uint32_t flags)
7704 {
7705         struct drm_i915_private *dev_priv = dev->dev_private;
7706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7707         u32 flip_mask;
7708         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7709         int ret;
7710
7711         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7712         if (ret)
7713                 goto err;
7714
7715         ret = intel_ring_begin(ring, 6);
7716         if (ret)
7717                 goto err_unpin;
7718
7719         if (intel_crtc->plane)
7720                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7721         else
7722                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7723         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7724         intel_ring_emit(ring, MI_NOOP);
7725         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7726                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7727         intel_ring_emit(ring, fb->pitches[0]);
7728         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7729         intel_ring_emit(ring, MI_NOOP);
7730
7731         intel_mark_page_flip_active(intel_crtc);
7732         intel_ring_advance(ring);
7733         return 0;
7734
7735 err_unpin:
7736         intel_unpin_fb_obj(obj);
7737 err:
7738         return ret;
7739 }
7740
7741 static int intel_gen4_queue_flip(struct drm_device *dev,
7742                                  struct drm_crtc *crtc,
7743                                  struct drm_framebuffer *fb,
7744                                  struct drm_i915_gem_object *obj,
7745                                  uint32_t flags)
7746 {
7747         struct drm_i915_private *dev_priv = dev->dev_private;
7748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7749         uint32_t pf, pipesrc;
7750         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7751         int ret;
7752
7753         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7754         if (ret)
7755                 goto err;
7756
7757         ret = intel_ring_begin(ring, 4);
7758         if (ret)
7759                 goto err_unpin;
7760
7761         /* i965+ uses the linear or tiled offsets from the
7762          * Display Registers (which do not change across a page-flip)
7763          * so we need only reprogram the base address.
7764          */
7765         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7766                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7767         intel_ring_emit(ring, fb->pitches[0]);
7768         intel_ring_emit(ring,
7769                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7770                         obj->tiling_mode);
7771
7772         /* XXX Enabling the panel-fitter across page-flip is so far
7773          * untested on non-native modes, so ignore it for now.
7774          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7775          */
7776         pf = 0;
7777         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7778         intel_ring_emit(ring, pf | pipesrc);
7779
7780         intel_mark_page_flip_active(intel_crtc);
7781         intel_ring_advance(ring);
7782         return 0;
7783
7784 err_unpin:
7785         intel_unpin_fb_obj(obj);
7786 err:
7787         return ret;
7788 }
7789
7790 static int intel_gen6_queue_flip(struct drm_device *dev,
7791                                  struct drm_crtc *crtc,
7792                                  struct drm_framebuffer *fb,
7793                                  struct drm_i915_gem_object *obj,
7794                                  uint32_t flags)
7795 {
7796         struct drm_i915_private *dev_priv = dev->dev_private;
7797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7798         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7799         uint32_t pf, pipesrc;
7800         int ret;
7801
7802         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7803         if (ret)
7804                 goto err;
7805
7806         ret = intel_ring_begin(ring, 4);
7807         if (ret)
7808                 goto err_unpin;
7809
7810         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7811                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7812         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7813         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7814
7815         /* Contrary to the suggestions in the documentation,
7816          * "Enable Panel Fitter" does not seem to be required when page
7817          * flipping with a non-native mode, and worse causes a normal
7818          * modeset to fail.
7819          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7820          */
7821         pf = 0;
7822         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7823         intel_ring_emit(ring, pf | pipesrc);
7824
7825         intel_mark_page_flip_active(intel_crtc);
7826         intel_ring_advance(ring);
7827         return 0;
7828
7829 err_unpin:
7830         intel_unpin_fb_obj(obj);
7831 err:
7832         return ret;
7833 }
7834
7835 static int intel_gen7_queue_flip(struct drm_device *dev,
7836                                  struct drm_crtc *crtc,
7837                                  struct drm_framebuffer *fb,
7838                                  struct drm_i915_gem_object *obj,
7839                                  uint32_t flags)
7840 {
7841         struct drm_i915_private *dev_priv = dev->dev_private;
7842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7843         struct intel_ring_buffer *ring;
7844         uint32_t plane_bit = 0;
7845         int len, ret;
7846
7847         ring = obj->ring;
7848         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7849                 ring = &dev_priv->ring[BCS];
7850
7851         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7852         if (ret)
7853                 goto err;
7854
7855         switch(intel_crtc->plane) {
7856         case PLANE_A:
7857                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7858                 break;
7859         case PLANE_B:
7860                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7861                 break;
7862         case PLANE_C:
7863                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7864                 break;
7865         default:
7866                 WARN_ONCE(1, "unknown plane in flip command\n");
7867                 ret = -ENODEV;
7868                 goto err_unpin;
7869         }
7870
7871         len = 4;
7872         if (ring->id == RCS)
7873                 len += 6;
7874
7875         ret = intel_ring_begin(ring, len);
7876         if (ret)
7877                 goto err_unpin;
7878
7879         /* Unmask the flip-done completion message. Note that the bspec says that
7880          * we should do this for both the BCS and RCS, and that we must not unmask
7881          * more than one flip event at any time (or ensure that one flip message
7882          * can be sent by waiting for flip-done prior to queueing new flips).
7883          * Experimentation says that BCS works despite DERRMR masking all
7884          * flip-done completion events and that unmasking all planes at once
7885          * for the RCS also doesn't appear to drop events. Setting the DERRMR
7886          * to zero does lead to lockups within MI_DISPLAY_FLIP.
7887          */
7888         if (ring->id == RCS) {
7889                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7890                 intel_ring_emit(ring, DERRMR);
7891                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7892                                         DERRMR_PIPEB_PRI_FLIP_DONE |
7893                                         DERRMR_PIPEC_PRI_FLIP_DONE));
7894                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7895                 intel_ring_emit(ring, DERRMR);
7896                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7897         }
7898
7899         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7900         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7901         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7902         intel_ring_emit(ring, (MI_NOOP));
7903
7904         intel_mark_page_flip_active(intel_crtc);
7905         intel_ring_advance(ring);
7906         return 0;
7907
7908 err_unpin:
7909         intel_unpin_fb_obj(obj);
7910 err:
7911         return ret;
7912 }
7913
7914 static int intel_default_queue_flip(struct drm_device *dev,
7915                                     struct drm_crtc *crtc,
7916                                     struct drm_framebuffer *fb,
7917                                     struct drm_i915_gem_object *obj,
7918                                     uint32_t flags)
7919 {
7920         return -ENODEV;
7921 }
7922
7923 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7924                                 struct drm_framebuffer *fb,
7925                                 struct drm_pending_vblank_event *event,
7926                                 uint32_t page_flip_flags)
7927 {
7928         struct drm_device *dev = crtc->dev;
7929         struct drm_i915_private *dev_priv = dev->dev_private;
7930         struct drm_framebuffer *old_fb = crtc->fb;
7931         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7933         struct intel_unpin_work *work;
7934         unsigned long flags;
7935         int ret;
7936
7937         /* Can't change pixel format via MI display flips. */
7938         if (fb->pixel_format != crtc->fb->pixel_format)
7939                 return -EINVAL;
7940
7941         /*
7942          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7943          * Note that pitch changes could also affect these register.
7944          */
7945         if (INTEL_INFO(dev)->gen > 3 &&
7946             (fb->offsets[0] != crtc->fb->offsets[0] ||
7947              fb->pitches[0] != crtc->fb->pitches[0]))
7948                 return -EINVAL;
7949
7950         work = kzalloc(sizeof *work, GFP_KERNEL);
7951         if (work == NULL)
7952                 return -ENOMEM;
7953
7954         work->event = event;
7955         work->crtc = crtc;
7956         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7957         INIT_WORK(&work->work, intel_unpin_work_fn);
7958
7959         ret = drm_vblank_get(dev, intel_crtc->pipe);
7960         if (ret)
7961                 goto free_work;
7962
7963         /* We borrow the event spin lock for protecting unpin_work */
7964         spin_lock_irqsave(&dev->event_lock, flags);
7965         if (intel_crtc->unpin_work) {
7966                 spin_unlock_irqrestore(&dev->event_lock, flags);
7967                 kfree(work);
7968                 drm_vblank_put(dev, intel_crtc->pipe);
7969
7970                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7971                 return -EBUSY;
7972         }
7973         intel_crtc->unpin_work = work;
7974         spin_unlock_irqrestore(&dev->event_lock, flags);
7975
7976         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7977                 flush_workqueue(dev_priv->wq);
7978
7979         ret = i915_mutex_lock_interruptible(dev);
7980         if (ret)
7981                 goto cleanup;
7982
7983         /* Reference the objects for the scheduled work. */
7984         drm_gem_object_reference(&work->old_fb_obj->base);
7985         drm_gem_object_reference(&obj->base);
7986
7987         crtc->fb = fb;
7988
7989         work->pending_flip_obj = obj;
7990
7991         work->enable_stall_check = true;
7992
7993         atomic_inc(&intel_crtc->unpin_work_count);
7994         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7995
7996         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
7997         if (ret)
7998                 goto cleanup_pending;
7999
8000         intel_disable_fbc(dev);
8001         intel_mark_fb_busy(obj, NULL);
8002         mutex_unlock(&dev->struct_mutex);
8003
8004         trace_i915_flip_request(intel_crtc->plane, obj);
8005
8006         return 0;
8007
8008 cleanup_pending:
8009         atomic_dec(&intel_crtc->unpin_work_count);
8010         crtc->fb = old_fb;
8011         drm_gem_object_unreference(&work->old_fb_obj->base);
8012         drm_gem_object_unreference(&obj->base);
8013         mutex_unlock(&dev->struct_mutex);
8014
8015 cleanup:
8016         spin_lock_irqsave(&dev->event_lock, flags);
8017         intel_crtc->unpin_work = NULL;
8018         spin_unlock_irqrestore(&dev->event_lock, flags);
8019
8020         drm_vblank_put(dev, intel_crtc->pipe);
8021 free_work:
8022         kfree(work);
8023
8024         return ret;
8025 }
8026
8027 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8028         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8029         .load_lut = intel_crtc_load_lut,
8030 };
8031
8032 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8033                                   struct drm_crtc *crtc)
8034 {
8035         struct drm_device *dev;
8036         struct drm_crtc *tmp;
8037         int crtc_mask = 1;
8038
8039         WARN(!crtc, "checking null crtc?\n");
8040
8041         dev = crtc->dev;
8042
8043         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8044                 if (tmp == crtc)
8045                         break;
8046                 crtc_mask <<= 1;
8047         }
8048
8049         if (encoder->possible_crtcs & crtc_mask)
8050                 return true;
8051         return false;
8052 }
8053
8054 /**
8055  * intel_modeset_update_staged_output_state
8056  *
8057  * Updates the staged output configuration state, e.g. after we've read out the
8058  * current hw state.
8059  */
8060 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8061 {
8062         struct intel_encoder *encoder;
8063         struct intel_connector *connector;
8064
8065         list_for_each_entry(connector, &dev->mode_config.connector_list,
8066                             base.head) {
8067                 connector->new_encoder =
8068                         to_intel_encoder(connector->base.encoder);
8069         }
8070
8071         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8072                             base.head) {
8073                 encoder->new_crtc =
8074                         to_intel_crtc(encoder->base.crtc);
8075         }
8076 }
8077
8078 /**
8079  * intel_modeset_commit_output_state
8080  *
8081  * This function copies the stage display pipe configuration to the real one.
8082  */
8083 static void intel_modeset_commit_output_state(struct drm_device *dev)
8084 {
8085         struct intel_encoder *encoder;
8086         struct intel_connector *connector;
8087
8088         list_for_each_entry(connector, &dev->mode_config.connector_list,
8089                             base.head) {
8090                 connector->base.encoder = &connector->new_encoder->base;
8091         }
8092
8093         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8094                             base.head) {
8095                 encoder->base.crtc = &encoder->new_crtc->base;
8096         }
8097 }
8098
8099 static void
8100 connected_sink_compute_bpp(struct intel_connector * connector,
8101                            struct intel_crtc_config *pipe_config)
8102 {
8103         int bpp = pipe_config->pipe_bpp;
8104
8105         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8106                 connector->base.base.id,
8107                 drm_get_connector_name(&connector->base));
8108
8109         /* Don't use an invalid EDID bpc value */
8110         if (connector->base.display_info.bpc &&
8111             connector->base.display_info.bpc * 3 < bpp) {
8112                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8113                               bpp, connector->base.display_info.bpc*3);
8114                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8115         }
8116
8117         /* Clamp bpp to 8 on screens without EDID 1.4 */
8118         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8119                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8120                               bpp);
8121                 pipe_config->pipe_bpp = 24;
8122         }
8123 }
8124
8125 static int
8126 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8127                           struct drm_framebuffer *fb,
8128                           struct intel_crtc_config *pipe_config)
8129 {
8130         struct drm_device *dev = crtc->base.dev;
8131         struct intel_connector *connector;
8132         int bpp;
8133
8134         switch (fb->pixel_format) {
8135         case DRM_FORMAT_C8:
8136                 bpp = 8*3; /* since we go through a colormap */
8137                 break;
8138         case DRM_FORMAT_XRGB1555:
8139         case DRM_FORMAT_ARGB1555:
8140                 /* checked in intel_framebuffer_init already */
8141                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8142                         return -EINVAL;
8143         case DRM_FORMAT_RGB565:
8144                 bpp = 6*3; /* min is 18bpp */
8145                 break;
8146         case DRM_FORMAT_XBGR8888:
8147         case DRM_FORMAT_ABGR8888:
8148                 /* checked in intel_framebuffer_init already */
8149                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8150                         return -EINVAL;
8151         case DRM_FORMAT_XRGB8888:
8152         case DRM_FORMAT_ARGB8888:
8153                 bpp = 8*3;
8154                 break;
8155         case DRM_FORMAT_XRGB2101010:
8156         case DRM_FORMAT_ARGB2101010:
8157         case DRM_FORMAT_XBGR2101010:
8158         case DRM_FORMAT_ABGR2101010:
8159                 /* checked in intel_framebuffer_init already */
8160                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8161                         return -EINVAL;
8162                 bpp = 10*3;
8163                 break;
8164         /* TODO: gen4+ supports 16 bpc floating point, too. */
8165         default:
8166                 DRM_DEBUG_KMS("unsupported depth\n");
8167                 return -EINVAL;
8168         }
8169
8170         pipe_config->pipe_bpp = bpp;
8171
8172         /* Clamp display bpp to EDID value */
8173         list_for_each_entry(connector, &dev->mode_config.connector_list,
8174                             base.head) {
8175                 if (!connector->new_encoder ||
8176                     connector->new_encoder->new_crtc != crtc)
8177                         continue;
8178
8179                 connected_sink_compute_bpp(connector, pipe_config);
8180         }
8181
8182         return bpp;
8183 }
8184
8185 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8186                                    struct intel_crtc_config *pipe_config,
8187                                    const char *context)
8188 {
8189         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8190                       context, pipe_name(crtc->pipe));
8191
8192         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8193         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8194                       pipe_config->pipe_bpp, pipe_config->dither);
8195         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8196                       pipe_config->has_pch_encoder,
8197                       pipe_config->fdi_lanes,
8198                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8199                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8200                       pipe_config->fdi_m_n.tu);
8201         DRM_DEBUG_KMS("requested mode:\n");
8202         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8203         DRM_DEBUG_KMS("adjusted mode:\n");
8204         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8205         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8206                       pipe_config->gmch_pfit.control,
8207                       pipe_config->gmch_pfit.pgm_ratios,
8208                       pipe_config->gmch_pfit.lvds_border_bits);
8209         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8210                       pipe_config->pch_pfit.pos,
8211                       pipe_config->pch_pfit.size,
8212                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8213         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8214 }
8215
8216 static bool check_encoder_cloning(struct drm_crtc *crtc)
8217 {
8218         int num_encoders = 0;
8219         bool uncloneable_encoders = false;
8220         struct intel_encoder *encoder;
8221
8222         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8223                             base.head) {
8224                 if (&encoder->new_crtc->base != crtc)
8225                         continue;
8226
8227                 num_encoders++;
8228                 if (!encoder->cloneable)
8229                         uncloneable_encoders = true;
8230         }
8231
8232         return !(num_encoders > 1 && uncloneable_encoders);
8233 }
8234
8235 static struct intel_crtc_config *
8236 intel_modeset_pipe_config(struct drm_crtc *crtc,
8237                           struct drm_framebuffer *fb,
8238                           struct drm_display_mode *mode)
8239 {
8240         struct drm_device *dev = crtc->dev;
8241         struct intel_encoder *encoder;
8242         struct intel_crtc_config *pipe_config;
8243         int plane_bpp, ret = -EINVAL;
8244         bool retry = true;
8245
8246         if (!check_encoder_cloning(crtc)) {
8247                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8248                 return ERR_PTR(-EINVAL);
8249         }
8250
8251         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8252         if (!pipe_config)
8253                 return ERR_PTR(-ENOMEM);
8254
8255         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8256         drm_mode_copy(&pipe_config->requested_mode, mode);
8257         pipe_config->cpu_transcoder =
8258                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8259         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8260
8261         /*
8262          * Sanitize sync polarity flags based on requested ones. If neither
8263          * positive or negative polarity is requested, treat this as meaning
8264          * negative polarity.
8265          */
8266         if (!(pipe_config->adjusted_mode.flags &
8267               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8268                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8269
8270         if (!(pipe_config->adjusted_mode.flags &
8271               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8272                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8273
8274         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8275          * plane pixel format and any sink constraints into account. Returns the
8276          * source plane bpp so that dithering can be selected on mismatches
8277          * after encoders and crtc also have had their say. */
8278         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8279                                               fb, pipe_config);
8280         if (plane_bpp < 0)
8281                 goto fail;
8282
8283 encoder_retry:
8284         /* Ensure the port clock defaults are reset when retrying. */
8285         pipe_config->port_clock = 0;
8286         pipe_config->pixel_multiplier = 1;
8287
8288         /* Fill in default crtc timings, allow encoders to overwrite them. */
8289         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8290
8291         /* Pass our mode to the connectors and the CRTC to give them a chance to
8292          * adjust it according to limitations or connector properties, and also
8293          * a chance to reject the mode entirely.
8294          */
8295         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8296                             base.head) {
8297
8298                 if (&encoder->new_crtc->base != crtc)
8299                         continue;
8300
8301                 if (!(encoder->compute_config(encoder, pipe_config))) {
8302                         DRM_DEBUG_KMS("Encoder config failure\n");
8303                         goto fail;
8304                 }
8305         }
8306
8307         /* Set default port clock if not overwritten by the encoder. Needs to be
8308          * done afterwards in case the encoder adjusts the mode. */
8309         if (!pipe_config->port_clock)
8310                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8311
8312         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8313         if (ret < 0) {
8314                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8315                 goto fail;
8316         }
8317
8318         if (ret == RETRY) {
8319                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8320                         ret = -EINVAL;
8321                         goto fail;
8322                 }
8323
8324                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8325                 retry = false;
8326                 goto encoder_retry;
8327         }
8328
8329         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8330         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8331                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8332
8333         return pipe_config;
8334 fail:
8335         kfree(pipe_config);
8336         return ERR_PTR(ret);
8337 }
8338
8339 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8340  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8341 static void
8342 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8343                              unsigned *prepare_pipes, unsigned *disable_pipes)
8344 {
8345         struct intel_crtc *intel_crtc;
8346         struct drm_device *dev = crtc->dev;
8347         struct intel_encoder *encoder;
8348         struct intel_connector *connector;
8349         struct drm_crtc *tmp_crtc;
8350
8351         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8352
8353         /* Check which crtcs have changed outputs connected to them, these need
8354          * to be part of the prepare_pipes mask. We don't (yet) support global
8355          * modeset across multiple crtcs, so modeset_pipes will only have one
8356          * bit set at most. */
8357         list_for_each_entry(connector, &dev->mode_config.connector_list,
8358                             base.head) {
8359                 if (connector->base.encoder == &connector->new_encoder->base)
8360                         continue;
8361
8362                 if (connector->base.encoder) {
8363                         tmp_crtc = connector->base.encoder->crtc;
8364
8365                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8366                 }
8367
8368                 if (connector->new_encoder)
8369                         *prepare_pipes |=
8370                                 1 << connector->new_encoder->new_crtc->pipe;
8371         }
8372
8373         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8374                             base.head) {
8375                 if (encoder->base.crtc == &encoder->new_crtc->base)
8376                         continue;
8377
8378                 if (encoder->base.crtc) {
8379                         tmp_crtc = encoder->base.crtc;
8380
8381                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8382                 }
8383
8384                 if (encoder->new_crtc)
8385                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8386         }
8387
8388         /* Check for any pipes that will be fully disabled ... */
8389         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8390                             base.head) {
8391                 bool used = false;
8392
8393                 /* Don't try to disable disabled crtcs. */
8394                 if (!intel_crtc->base.enabled)
8395                         continue;
8396
8397                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8398                                     base.head) {
8399                         if (encoder->new_crtc == intel_crtc)
8400                                 used = true;
8401                 }
8402
8403                 if (!used)
8404                         *disable_pipes |= 1 << intel_crtc->pipe;
8405         }
8406
8407
8408         /* set_mode is also used to update properties on life display pipes. */
8409         intel_crtc = to_intel_crtc(crtc);
8410         if (crtc->enabled)
8411                 *prepare_pipes |= 1 << intel_crtc->pipe;
8412
8413         /*
8414          * For simplicity do a full modeset on any pipe where the output routing
8415          * changed. We could be more clever, but that would require us to be
8416          * more careful with calling the relevant encoder->mode_set functions.
8417          */
8418         if (*prepare_pipes)
8419                 *modeset_pipes = *prepare_pipes;
8420
8421         /* ... and mask these out. */
8422         *modeset_pipes &= ~(*disable_pipes);
8423         *prepare_pipes &= ~(*disable_pipes);
8424
8425         /*
8426          * HACK: We don't (yet) fully support global modesets. intel_set_config
8427          * obies this rule, but the modeset restore mode of
8428          * intel_modeset_setup_hw_state does not.
8429          */
8430         *modeset_pipes &= 1 << intel_crtc->pipe;
8431         *prepare_pipes &= 1 << intel_crtc->pipe;
8432
8433         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8434                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8435 }
8436
8437 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8438 {
8439         struct drm_encoder *encoder;
8440         struct drm_device *dev = crtc->dev;
8441
8442         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8443                 if (encoder->crtc == crtc)
8444                         return true;
8445
8446         return false;
8447 }
8448
8449 static void
8450 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8451 {
8452         struct intel_encoder *intel_encoder;
8453         struct intel_crtc *intel_crtc;
8454         struct drm_connector *connector;
8455
8456         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8457                             base.head) {
8458                 if (!intel_encoder->base.crtc)
8459                         continue;
8460
8461                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8462
8463                 if (prepare_pipes & (1 << intel_crtc->pipe))
8464                         intel_encoder->connectors_active = false;
8465         }
8466
8467         intel_modeset_commit_output_state(dev);
8468
8469         /* Update computed state. */
8470         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8471                             base.head) {
8472                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8473         }
8474
8475         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8476                 if (!connector->encoder || !connector->encoder->crtc)
8477                         continue;
8478
8479                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8480
8481                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8482                         struct drm_property *dpms_property =
8483                                 dev->mode_config.dpms_property;
8484
8485                         connector->dpms = DRM_MODE_DPMS_ON;
8486                         drm_object_property_set_value(&connector->base,
8487                                                          dpms_property,
8488                                                          DRM_MODE_DPMS_ON);
8489
8490                         intel_encoder = to_intel_encoder(connector->encoder);
8491                         intel_encoder->connectors_active = true;
8492                 }
8493         }
8494
8495 }
8496
8497 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8498                                     struct intel_crtc_config *new)
8499 {
8500         int clock1, clock2, diff;
8501
8502         clock1 = cur->adjusted_mode.clock;
8503         clock2 = new->adjusted_mode.clock;
8504
8505         if (clock1 == clock2)
8506                 return true;
8507
8508         if (!clock1 || !clock2)
8509                 return false;
8510
8511         diff = abs(clock1 - clock2);
8512
8513         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8514                 return true;
8515
8516         return false;
8517 }
8518
8519 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8520         list_for_each_entry((intel_crtc), \
8521                             &(dev)->mode_config.crtc_list, \
8522                             base.head) \
8523                 if (mask & (1 <<(intel_crtc)->pipe))
8524
8525 static bool
8526 intel_pipe_config_compare(struct drm_device *dev,
8527                           struct intel_crtc_config *current_config,
8528                           struct intel_crtc_config *pipe_config)
8529 {
8530 #define PIPE_CONF_CHECK_X(name) \
8531         if (current_config->name != pipe_config->name) { \
8532                 DRM_ERROR("mismatch in " #name " " \
8533                           "(expected 0x%08x, found 0x%08x)\n", \
8534                           current_config->name, \
8535                           pipe_config->name); \
8536                 return false; \
8537         }
8538
8539 #define PIPE_CONF_CHECK_I(name) \
8540         if (current_config->name != pipe_config->name) { \
8541                 DRM_ERROR("mismatch in " #name " " \
8542                           "(expected %i, found %i)\n", \
8543                           current_config->name, \
8544                           pipe_config->name); \
8545                 return false; \
8546         }
8547
8548 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8549         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8550                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8551                           "(expected %i, found %i)\n", \
8552                           current_config->name & (mask), \
8553                           pipe_config->name & (mask)); \
8554                 return false; \
8555         }
8556
8557 #define PIPE_CONF_QUIRK(quirk)  \
8558         ((current_config->quirks | pipe_config->quirks) & (quirk))
8559
8560         PIPE_CONF_CHECK_I(cpu_transcoder);
8561
8562         PIPE_CONF_CHECK_I(has_pch_encoder);
8563         PIPE_CONF_CHECK_I(fdi_lanes);
8564         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8565         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8566         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8567         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8568         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8569
8570         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8571         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8572         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8573         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8574         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8575         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8576
8577         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8578         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8579         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8580         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8581         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8582         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8583
8584         PIPE_CONF_CHECK_I(pixel_multiplier);
8585
8586         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8587                               DRM_MODE_FLAG_INTERLACE);
8588
8589         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8590                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8591                                       DRM_MODE_FLAG_PHSYNC);
8592                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8593                                       DRM_MODE_FLAG_NHSYNC);
8594                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8595                                       DRM_MODE_FLAG_PVSYNC);
8596                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8597                                       DRM_MODE_FLAG_NVSYNC);
8598         }
8599
8600         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8601         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8602
8603         PIPE_CONF_CHECK_I(gmch_pfit.control);
8604         /* pfit ratios are autocomputed by the hw on gen4+ */
8605         if (INTEL_INFO(dev)->gen < 4)
8606                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8607         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8608         PIPE_CONF_CHECK_I(pch_pfit.enabled);
8609         if (current_config->pch_pfit.enabled) {
8610                 PIPE_CONF_CHECK_I(pch_pfit.pos);
8611                 PIPE_CONF_CHECK_I(pch_pfit.size);
8612         }
8613
8614         PIPE_CONF_CHECK_I(ips_enabled);
8615
8616         PIPE_CONF_CHECK_I(shared_dpll);
8617         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8618         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8619         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8620         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8621
8622 #undef PIPE_CONF_CHECK_X
8623 #undef PIPE_CONF_CHECK_I
8624 #undef PIPE_CONF_CHECK_FLAGS
8625 #undef PIPE_CONF_QUIRK
8626
8627         if (!IS_HASWELL(dev)) {
8628                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8629                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8630                                   current_config->adjusted_mode.clock,
8631                                   pipe_config->adjusted_mode.clock);
8632                         return false;
8633                 }
8634         }
8635
8636         return true;
8637 }
8638
8639 static void
8640 check_connector_state(struct drm_device *dev)
8641 {
8642         struct intel_connector *connector;
8643
8644         list_for_each_entry(connector, &dev->mode_config.connector_list,
8645                             base.head) {
8646                 /* This also checks the encoder/connector hw state with the
8647                  * ->get_hw_state callbacks. */
8648                 intel_connector_check_state(connector);
8649
8650                 WARN(&connector->new_encoder->base != connector->base.encoder,
8651                      "connector's staged encoder doesn't match current encoder\n");
8652         }
8653 }
8654
8655 static void
8656 check_encoder_state(struct drm_device *dev)
8657 {
8658         struct intel_encoder *encoder;
8659         struct intel_connector *connector;
8660
8661         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8662                             base.head) {
8663                 bool enabled = false;
8664                 bool active = false;
8665                 enum pipe pipe, tracked_pipe;
8666
8667                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8668                               encoder->base.base.id,
8669                               drm_get_encoder_name(&encoder->base));
8670
8671                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8672                      "encoder's stage crtc doesn't match current crtc\n");
8673                 WARN(encoder->connectors_active && !encoder->base.crtc,
8674                      "encoder's active_connectors set, but no crtc\n");
8675
8676                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8677                                     base.head) {
8678                         if (connector->base.encoder != &encoder->base)
8679                                 continue;
8680                         enabled = true;
8681                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8682                                 active = true;
8683                 }
8684                 WARN(!!encoder->base.crtc != enabled,
8685                      "encoder's enabled state mismatch "
8686                      "(expected %i, found %i)\n",
8687                      !!encoder->base.crtc, enabled);
8688                 WARN(active && !encoder->base.crtc,
8689                      "active encoder with no crtc\n");
8690
8691                 WARN(encoder->connectors_active != active,
8692                      "encoder's computed active state doesn't match tracked active state "
8693                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8694
8695                 active = encoder->get_hw_state(encoder, &pipe);
8696                 WARN(active != encoder->connectors_active,
8697                      "encoder's hw state doesn't match sw tracking "
8698                      "(expected %i, found %i)\n",
8699                      encoder->connectors_active, active);
8700
8701                 if (!encoder->base.crtc)
8702                         continue;
8703
8704                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8705                 WARN(active && pipe != tracked_pipe,
8706                      "active encoder's pipe doesn't match"
8707                      "(expected %i, found %i)\n",
8708                      tracked_pipe, pipe);
8709
8710         }
8711 }
8712
8713 static void
8714 check_crtc_state(struct drm_device *dev)
8715 {
8716         drm_i915_private_t *dev_priv = dev->dev_private;
8717         struct intel_crtc *crtc;
8718         struct intel_encoder *encoder;
8719         struct intel_crtc_config pipe_config;
8720
8721         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8722                             base.head) {
8723                 bool enabled = false;
8724                 bool active = false;
8725
8726                 memset(&pipe_config, 0, sizeof(pipe_config));
8727
8728                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8729                               crtc->base.base.id);
8730
8731                 WARN(crtc->active && !crtc->base.enabled,
8732                      "active crtc, but not enabled in sw tracking\n");
8733
8734                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8735                                     base.head) {
8736                         if (encoder->base.crtc != &crtc->base)
8737                                 continue;
8738                         enabled = true;
8739                         if (encoder->connectors_active)
8740                                 active = true;
8741                 }
8742
8743                 WARN(active != crtc->active,
8744                      "crtc's computed active state doesn't match tracked active state "
8745                      "(expected %i, found %i)\n", active, crtc->active);
8746                 WARN(enabled != crtc->base.enabled,
8747                      "crtc's computed enabled state doesn't match tracked enabled state "
8748                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8749
8750                 active = dev_priv->display.get_pipe_config(crtc,
8751                                                            &pipe_config);
8752
8753                 /* hw state is inconsistent with the pipe A quirk */
8754                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8755                         active = crtc->active;
8756
8757                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8758                                     base.head) {
8759                         enum pipe pipe;
8760                         if (encoder->base.crtc != &crtc->base)
8761                                 continue;
8762                         if (encoder->get_config &&
8763                             encoder->get_hw_state(encoder, &pipe))
8764                                 encoder->get_config(encoder, &pipe_config);
8765                 }
8766
8767                 if (dev_priv->display.get_clock)
8768                         dev_priv->display.get_clock(crtc, &pipe_config);
8769
8770                 WARN(crtc->active != active,
8771                      "crtc active state doesn't match with hw state "
8772                      "(expected %i, found %i)\n", crtc->active, active);
8773
8774                 if (active &&
8775                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8776                         WARN(1, "pipe state doesn't match!\n");
8777                         intel_dump_pipe_config(crtc, &pipe_config,
8778                                                "[hw state]");
8779                         intel_dump_pipe_config(crtc, &crtc->config,
8780                                                "[sw state]");
8781                 }
8782         }
8783 }
8784
8785 static void
8786 check_shared_dpll_state(struct drm_device *dev)
8787 {
8788         drm_i915_private_t *dev_priv = dev->dev_private;
8789         struct intel_crtc *crtc;
8790         struct intel_dpll_hw_state dpll_hw_state;
8791         int i;
8792
8793         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8794                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8795                 int enabled_crtcs = 0, active_crtcs = 0;
8796                 bool active;
8797
8798                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8799
8800                 DRM_DEBUG_KMS("%s\n", pll->name);
8801
8802                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8803
8804                 WARN(pll->active > pll->refcount,
8805                      "more active pll users than references: %i vs %i\n",
8806                      pll->active, pll->refcount);
8807                 WARN(pll->active && !pll->on,
8808                      "pll in active use but not on in sw tracking\n");
8809                 WARN(pll->on && !pll->active,
8810                      "pll in on but not on in use in sw tracking\n");
8811                 WARN(pll->on != active,
8812                      "pll on state mismatch (expected %i, found %i)\n",
8813                      pll->on, active);
8814
8815                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8816                                     base.head) {
8817                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8818                                 enabled_crtcs++;
8819                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8820                                 active_crtcs++;
8821                 }
8822                 WARN(pll->active != active_crtcs,
8823                      "pll active crtcs mismatch (expected %i, found %i)\n",
8824                      pll->active, active_crtcs);
8825                 WARN(pll->refcount != enabled_crtcs,
8826                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8827                      pll->refcount, enabled_crtcs);
8828
8829                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8830                                        sizeof(dpll_hw_state)),
8831                      "pll hw state mismatch\n");
8832         }
8833 }
8834
8835 void
8836 intel_modeset_check_state(struct drm_device *dev)
8837 {
8838         check_connector_state(dev);
8839         check_encoder_state(dev);
8840         check_crtc_state(dev);
8841         check_shared_dpll_state(dev);
8842 }
8843
8844 static int __intel_set_mode(struct drm_crtc *crtc,
8845                             struct drm_display_mode *mode,
8846                             int x, int y, struct drm_framebuffer *fb)
8847 {
8848         struct drm_device *dev = crtc->dev;
8849         drm_i915_private_t *dev_priv = dev->dev_private;
8850         struct drm_display_mode *saved_mode, *saved_hwmode;
8851         struct intel_crtc_config *pipe_config = NULL;
8852         struct intel_crtc *intel_crtc;
8853         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8854         int ret = 0;
8855
8856         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8857         if (!saved_mode)
8858                 return -ENOMEM;
8859         saved_hwmode = saved_mode + 1;
8860
8861         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8862                                      &prepare_pipes, &disable_pipes);
8863
8864         *saved_hwmode = crtc->hwmode;
8865         *saved_mode = crtc->mode;
8866
8867         /* Hack: Because we don't (yet) support global modeset on multiple
8868          * crtcs, we don't keep track of the new mode for more than one crtc.
8869          * Hence simply check whether any bit is set in modeset_pipes in all the
8870          * pieces of code that are not yet converted to deal with mutliple crtcs
8871          * changing their mode at the same time. */
8872         if (modeset_pipes) {
8873                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8874                 if (IS_ERR(pipe_config)) {
8875                         ret = PTR_ERR(pipe_config);
8876                         pipe_config = NULL;
8877
8878                         goto out;
8879                 }
8880                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8881                                        "[modeset]");
8882         }
8883
8884         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8885                 intel_crtc_disable(&intel_crtc->base);
8886
8887         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8888                 if (intel_crtc->base.enabled)
8889                         dev_priv->display.crtc_disable(&intel_crtc->base);
8890         }
8891
8892         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8893          * to set it here already despite that we pass it down the callchain.
8894          */
8895         if (modeset_pipes) {
8896                 crtc->mode = *mode;
8897                 /* mode_set/enable/disable functions rely on a correct pipe
8898                  * config. */
8899                 to_intel_crtc(crtc)->config = *pipe_config;
8900         }
8901
8902         /* Only after disabling all output pipelines that will be changed can we
8903          * update the the output configuration. */
8904         intel_modeset_update_state(dev, prepare_pipes);
8905
8906         if (dev_priv->display.modeset_global_resources)
8907                 dev_priv->display.modeset_global_resources(dev);
8908
8909         /* Set up the DPLL and any encoders state that needs to adjust or depend
8910          * on the DPLL.
8911          */
8912         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8913                 ret = intel_crtc_mode_set(&intel_crtc->base,
8914                                           x, y, fb);
8915                 if (ret)
8916                         goto done;
8917         }
8918
8919         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8920         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8921                 dev_priv->display.crtc_enable(&intel_crtc->base);
8922
8923         if (modeset_pipes) {
8924                 /* Store real post-adjustment hardware mode. */
8925                 crtc->hwmode = pipe_config->adjusted_mode;
8926
8927                 /* Calculate and store various constants which
8928                  * are later needed by vblank and swap-completion
8929                  * timestamping. They are derived from true hwmode.
8930                  */
8931                 drm_calc_timestamping_constants(crtc);
8932         }
8933
8934         /* FIXME: add subpixel order */
8935 done:
8936         if (ret && crtc->enabled) {
8937                 crtc->hwmode = *saved_hwmode;
8938                 crtc->mode = *saved_mode;
8939         }
8940
8941 out:
8942         kfree(pipe_config);
8943         kfree(saved_mode);
8944         return ret;
8945 }
8946
8947 static int intel_set_mode(struct drm_crtc *crtc,
8948                           struct drm_display_mode *mode,
8949                           int x, int y, struct drm_framebuffer *fb)
8950 {
8951         int ret;
8952
8953         ret = __intel_set_mode(crtc, mode, x, y, fb);
8954
8955         if (ret == 0)
8956                 intel_modeset_check_state(crtc->dev);
8957
8958         return ret;
8959 }
8960
8961 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8962 {
8963         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8964 }
8965
8966 #undef for_each_intel_crtc_masked
8967
8968 static void intel_set_config_free(struct intel_set_config *config)
8969 {
8970         if (!config)
8971                 return;
8972
8973         kfree(config->save_connector_encoders);
8974         kfree(config->save_encoder_crtcs);
8975         kfree(config);
8976 }
8977
8978 static int intel_set_config_save_state(struct drm_device *dev,
8979                                        struct intel_set_config *config)
8980 {
8981         struct drm_encoder *encoder;
8982         struct drm_connector *connector;
8983         int count;
8984
8985         config->save_encoder_crtcs =
8986                 kcalloc(dev->mode_config.num_encoder,
8987                         sizeof(struct drm_crtc *), GFP_KERNEL);
8988         if (!config->save_encoder_crtcs)
8989                 return -ENOMEM;
8990
8991         config->save_connector_encoders =
8992                 kcalloc(dev->mode_config.num_connector,
8993                         sizeof(struct drm_encoder *), GFP_KERNEL);
8994         if (!config->save_connector_encoders)
8995                 return -ENOMEM;
8996
8997         /* Copy data. Note that driver private data is not affected.
8998          * Should anything bad happen only the expected state is
8999          * restored, not the drivers personal bookkeeping.
9000          */
9001         count = 0;
9002         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9003                 config->save_encoder_crtcs[count++] = encoder->crtc;
9004         }
9005
9006         count = 0;
9007         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9008                 config->save_connector_encoders[count++] = connector->encoder;
9009         }
9010
9011         return 0;
9012 }
9013
9014 static void intel_set_config_restore_state(struct drm_device *dev,
9015                                            struct intel_set_config *config)
9016 {
9017         struct intel_encoder *encoder;
9018         struct intel_connector *connector;
9019         int count;
9020
9021         count = 0;
9022         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9023                 encoder->new_crtc =
9024                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9025         }
9026
9027         count = 0;
9028         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9029                 connector->new_encoder =
9030                         to_intel_encoder(config->save_connector_encoders[count++]);
9031         }
9032 }
9033
9034 static bool
9035 is_crtc_connector_off(struct drm_mode_set *set)
9036 {
9037         int i;
9038
9039         if (set->num_connectors == 0)
9040                 return false;
9041
9042         if (WARN_ON(set->connectors == NULL))
9043                 return false;
9044
9045         for (i = 0; i < set->num_connectors; i++)
9046                 if (set->connectors[i]->encoder &&
9047                     set->connectors[i]->encoder->crtc == set->crtc &&
9048                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9049                         return true;
9050
9051         return false;
9052 }
9053
9054 static void
9055 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9056                                       struct intel_set_config *config)
9057 {
9058
9059         /* We should be able to check here if the fb has the same properties
9060          * and then just flip_or_move it */
9061         if (is_crtc_connector_off(set)) {
9062                 config->mode_changed = true;
9063         } else if (set->crtc->fb != set->fb) {
9064                 /* If we have no fb then treat it as a full mode set */
9065                 if (set->crtc->fb == NULL) {
9066                         struct intel_crtc *intel_crtc =
9067                                 to_intel_crtc(set->crtc);
9068
9069                         if (intel_crtc->active && i915_fastboot) {
9070                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9071                                 config->fb_changed = true;
9072                         } else {
9073                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9074                                 config->mode_changed = true;
9075                         }
9076                 } else if (set->fb == NULL) {
9077                         config->mode_changed = true;
9078                 } else if (set->fb->pixel_format !=
9079                            set->crtc->fb->pixel_format) {
9080                         config->mode_changed = true;
9081                 } else {
9082                         config->fb_changed = true;
9083                 }
9084         }
9085
9086         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9087                 config->fb_changed = true;
9088
9089         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9090                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9091                 drm_mode_debug_printmodeline(&set->crtc->mode);
9092                 drm_mode_debug_printmodeline(set->mode);
9093                 config->mode_changed = true;
9094         }
9095
9096         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9097                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9098 }
9099
9100 static int
9101 intel_modeset_stage_output_state(struct drm_device *dev,
9102                                  struct drm_mode_set *set,
9103                                  struct intel_set_config *config)
9104 {
9105         struct drm_crtc *new_crtc;
9106         struct intel_connector *connector;
9107         struct intel_encoder *encoder;
9108         int ro;
9109
9110         /* The upper layers ensure that we either disable a crtc or have a list
9111          * of connectors. For paranoia, double-check this. */
9112         WARN_ON(!set->fb && (set->num_connectors != 0));
9113         WARN_ON(set->fb && (set->num_connectors == 0));
9114
9115         list_for_each_entry(connector, &dev->mode_config.connector_list,
9116                             base.head) {
9117                 /* Otherwise traverse passed in connector list and get encoders
9118                  * for them. */
9119                 for (ro = 0; ro < set->num_connectors; ro++) {
9120                         if (set->connectors[ro] == &connector->base) {
9121                                 connector->new_encoder = connector->encoder;
9122                                 break;
9123                         }
9124                 }
9125
9126                 /* If we disable the crtc, disable all its connectors. Also, if
9127                  * the connector is on the changing crtc but not on the new
9128                  * connector list, disable it. */
9129                 if ((!set->fb || ro == set->num_connectors) &&
9130                     connector->base.encoder &&
9131                     connector->base.encoder->crtc == set->crtc) {
9132                         connector->new_encoder = NULL;
9133
9134                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9135                                 connector->base.base.id,
9136                                 drm_get_connector_name(&connector->base));
9137                 }
9138
9139
9140                 if (&connector->new_encoder->base != connector->base.encoder) {
9141                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9142                         config->mode_changed = true;
9143                 }
9144         }
9145         /* connector->new_encoder is now updated for all connectors. */
9146
9147         /* Update crtc of enabled connectors. */
9148         list_for_each_entry(connector, &dev->mode_config.connector_list,
9149                             base.head) {
9150                 if (!connector->new_encoder)
9151                         continue;
9152
9153                 new_crtc = connector->new_encoder->base.crtc;
9154
9155                 for (ro = 0; ro < set->num_connectors; ro++) {
9156                         if (set->connectors[ro] == &connector->base)
9157                                 new_crtc = set->crtc;
9158                 }
9159
9160                 /* Make sure the new CRTC will work with the encoder */
9161                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9162                                            new_crtc)) {
9163                         return -EINVAL;
9164                 }
9165                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9166
9167                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9168                         connector->base.base.id,
9169                         drm_get_connector_name(&connector->base),
9170                         new_crtc->base.id);
9171         }
9172
9173         /* Check for any encoders that needs to be disabled. */
9174         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9175                             base.head) {
9176                 list_for_each_entry(connector,
9177                                     &dev->mode_config.connector_list,
9178                                     base.head) {
9179                         if (connector->new_encoder == encoder) {
9180                                 WARN_ON(!connector->new_encoder->new_crtc);
9181
9182                                 goto next_encoder;
9183                         }
9184                 }
9185                 encoder->new_crtc = NULL;
9186 next_encoder:
9187                 /* Only now check for crtc changes so we don't miss encoders
9188                  * that will be disabled. */
9189                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9190                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9191                         config->mode_changed = true;
9192                 }
9193         }
9194         /* Now we've also updated encoder->new_crtc for all encoders. */
9195
9196         return 0;
9197 }
9198
9199 static int intel_crtc_set_config(struct drm_mode_set *set)
9200 {
9201         struct drm_device *dev;
9202         struct drm_mode_set save_set;
9203         struct intel_set_config *config;
9204         int ret;
9205
9206         BUG_ON(!set);
9207         BUG_ON(!set->crtc);
9208         BUG_ON(!set->crtc->helper_private);
9209
9210         /* Enforce sane interface api - has been abused by the fb helper. */
9211         BUG_ON(!set->mode && set->fb);
9212         BUG_ON(set->fb && set->num_connectors == 0);
9213
9214         if (set->fb) {
9215                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9216                                 set->crtc->base.id, set->fb->base.id,
9217                                 (int)set->num_connectors, set->x, set->y);
9218         } else {
9219                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9220         }
9221
9222         dev = set->crtc->dev;
9223
9224         ret = -ENOMEM;
9225         config = kzalloc(sizeof(*config), GFP_KERNEL);
9226         if (!config)
9227                 goto out_config;
9228
9229         ret = intel_set_config_save_state(dev, config);
9230         if (ret)
9231                 goto out_config;
9232
9233         save_set.crtc = set->crtc;
9234         save_set.mode = &set->crtc->mode;
9235         save_set.x = set->crtc->x;
9236         save_set.y = set->crtc->y;
9237         save_set.fb = set->crtc->fb;
9238
9239         /* Compute whether we need a full modeset, only an fb base update or no
9240          * change at all. In the future we might also check whether only the
9241          * mode changed, e.g. for LVDS where we only change the panel fitter in
9242          * such cases. */
9243         intel_set_config_compute_mode_changes(set, config);
9244
9245         ret = intel_modeset_stage_output_state(dev, set, config);
9246         if (ret)
9247                 goto fail;
9248
9249         if (config->mode_changed) {
9250                 ret = intel_set_mode(set->crtc, set->mode,
9251                                      set->x, set->y, set->fb);
9252         } else if (config->fb_changed) {
9253                 intel_crtc_wait_for_pending_flips(set->crtc);
9254
9255                 ret = intel_pipe_set_base(set->crtc,
9256                                           set->x, set->y, set->fb);
9257         }
9258
9259         if (ret) {
9260                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9261                               set->crtc->base.id, ret);
9262 fail:
9263                 intel_set_config_restore_state(dev, config);
9264
9265                 /* Try to restore the config */
9266                 if (config->mode_changed &&
9267                     intel_set_mode(save_set.crtc, save_set.mode,
9268                                    save_set.x, save_set.y, save_set.fb))
9269                         DRM_ERROR("failed to restore config after modeset failure\n");
9270         }
9271
9272 out_config:
9273         intel_set_config_free(config);
9274         return ret;
9275 }
9276
9277 static const struct drm_crtc_funcs intel_crtc_funcs = {
9278         .cursor_set = intel_crtc_cursor_set,
9279         .cursor_move = intel_crtc_cursor_move,
9280         .gamma_set = intel_crtc_gamma_set,
9281         .set_config = intel_crtc_set_config,
9282         .destroy = intel_crtc_destroy,
9283         .page_flip = intel_crtc_page_flip,
9284 };
9285
9286 static void intel_cpu_pll_init(struct drm_device *dev)
9287 {
9288         if (HAS_DDI(dev))
9289                 intel_ddi_pll_init(dev);
9290 }
9291
9292 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9293                                       struct intel_shared_dpll *pll,
9294                                       struct intel_dpll_hw_state *hw_state)
9295 {
9296         uint32_t val;
9297
9298         val = I915_READ(PCH_DPLL(pll->id));
9299         hw_state->dpll = val;
9300         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9301         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9302
9303         return val & DPLL_VCO_ENABLE;
9304 }
9305
9306 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9307                                   struct intel_shared_dpll *pll)
9308 {
9309         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9310         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9311 }
9312
9313 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9314                                 struct intel_shared_dpll *pll)
9315 {
9316         /* PCH refclock must be enabled first */
9317         assert_pch_refclk_enabled(dev_priv);
9318
9319         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9320
9321         /* Wait for the clocks to stabilize. */
9322         POSTING_READ(PCH_DPLL(pll->id));
9323         udelay(150);
9324
9325         /* The pixel multiplier can only be updated once the
9326          * DPLL is enabled and the clocks are stable.
9327          *
9328          * So write it again.
9329          */
9330         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9331         POSTING_READ(PCH_DPLL(pll->id));
9332         udelay(200);
9333 }
9334
9335 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9336                                  struct intel_shared_dpll *pll)
9337 {
9338         struct drm_device *dev = dev_priv->dev;
9339         struct intel_crtc *crtc;
9340
9341         /* Make sure no transcoder isn't still depending on us. */
9342         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9343                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9344                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9345         }
9346
9347         I915_WRITE(PCH_DPLL(pll->id), 0);
9348         POSTING_READ(PCH_DPLL(pll->id));
9349         udelay(200);
9350 }
9351
9352 static char *ibx_pch_dpll_names[] = {
9353         "PCH DPLL A",
9354         "PCH DPLL B",
9355 };
9356
9357 static void ibx_pch_dpll_init(struct drm_device *dev)
9358 {
9359         struct drm_i915_private *dev_priv = dev->dev_private;
9360         int i;
9361
9362         dev_priv->num_shared_dpll = 2;
9363
9364         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9365                 dev_priv->shared_dplls[i].id = i;
9366                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9367                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9368                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9369                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9370                 dev_priv->shared_dplls[i].get_hw_state =
9371                         ibx_pch_dpll_get_hw_state;
9372         }
9373 }
9374
9375 static void intel_shared_dpll_init(struct drm_device *dev)
9376 {
9377         struct drm_i915_private *dev_priv = dev->dev_private;
9378
9379         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9380                 ibx_pch_dpll_init(dev);
9381         else
9382                 dev_priv->num_shared_dpll = 0;
9383
9384         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9385         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9386                       dev_priv->num_shared_dpll);
9387 }
9388
9389 static void intel_crtc_init(struct drm_device *dev, int pipe)
9390 {
9391         drm_i915_private_t *dev_priv = dev->dev_private;
9392         struct intel_crtc *intel_crtc;
9393         int i;
9394
9395         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9396         if (intel_crtc == NULL)
9397                 return;
9398
9399         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9400
9401         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9402         for (i = 0; i < 256; i++) {
9403                 intel_crtc->lut_r[i] = i;
9404                 intel_crtc->lut_g[i] = i;
9405                 intel_crtc->lut_b[i] = i;
9406         }
9407
9408         /* Swap pipes & planes for FBC on pre-965 */
9409         intel_crtc->pipe = pipe;
9410         intel_crtc->plane = pipe;
9411         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9412                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9413                 intel_crtc->plane = !pipe;
9414         }
9415
9416         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9417                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9418         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9419         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9420
9421         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9422 }
9423
9424 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9425                                 struct drm_file *file)
9426 {
9427         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9428         struct drm_mode_object *drmmode_obj;
9429         struct intel_crtc *crtc;
9430
9431         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9432                 return -ENODEV;
9433
9434         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9435                         DRM_MODE_OBJECT_CRTC);
9436
9437         if (!drmmode_obj) {
9438                 DRM_ERROR("no such CRTC id\n");
9439                 return -EINVAL;
9440         }
9441
9442         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9443         pipe_from_crtc_id->pipe = crtc->pipe;
9444
9445         return 0;
9446 }
9447
9448 static int intel_encoder_clones(struct intel_encoder *encoder)
9449 {
9450         struct drm_device *dev = encoder->base.dev;
9451         struct intel_encoder *source_encoder;
9452         int index_mask = 0;
9453         int entry = 0;
9454
9455         list_for_each_entry(source_encoder,
9456                             &dev->mode_config.encoder_list, base.head) {
9457
9458                 if (encoder == source_encoder)
9459                         index_mask |= (1 << entry);
9460
9461                 /* Intel hw has only one MUX where enocoders could be cloned. */
9462                 if (encoder->cloneable && source_encoder->cloneable)
9463                         index_mask |= (1 << entry);
9464
9465                 entry++;
9466         }
9467
9468         return index_mask;
9469 }
9470
9471 static bool has_edp_a(struct drm_device *dev)
9472 {
9473         struct drm_i915_private *dev_priv = dev->dev_private;
9474
9475         if (!IS_MOBILE(dev))
9476                 return false;
9477
9478         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9479                 return false;
9480
9481         if (IS_GEN5(dev) &&
9482             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9483                 return false;
9484
9485         return true;
9486 }
9487
9488 static void intel_setup_outputs(struct drm_device *dev)
9489 {
9490         struct drm_i915_private *dev_priv = dev->dev_private;
9491         struct intel_encoder *encoder;
9492         bool dpd_is_edp = false;
9493
9494         intel_lvds_init(dev);
9495
9496         if (!IS_ULT(dev))
9497                 intel_crt_init(dev);
9498
9499         if (HAS_DDI(dev)) {
9500                 int found;
9501
9502                 /* Haswell uses DDI functions to detect digital outputs */
9503                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9504                 /* DDI A only supports eDP */
9505                 if (found)
9506                         intel_ddi_init(dev, PORT_A);
9507
9508                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9509                  * register */
9510                 found = I915_READ(SFUSE_STRAP);
9511
9512                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9513                         intel_ddi_init(dev, PORT_B);
9514                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9515                         intel_ddi_init(dev, PORT_C);
9516                 if (found & SFUSE_STRAP_DDID_DETECTED)
9517                         intel_ddi_init(dev, PORT_D);
9518         } else if (HAS_PCH_SPLIT(dev)) {
9519                 int found;
9520                 dpd_is_edp = intel_dpd_is_edp(dev);
9521
9522                 if (has_edp_a(dev))
9523                         intel_dp_init(dev, DP_A, PORT_A);
9524
9525                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9526                         /* PCH SDVOB multiplex with HDMIB */
9527                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9528                         if (!found)
9529                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9530                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9531                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9532                 }
9533
9534                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9535                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9536
9537                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9538                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9539
9540                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9541                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9542
9543                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9544                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9545         } else if (IS_VALLEYVIEW(dev)) {
9546                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9547                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9548                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9549                                         PORT_C);
9550                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9551                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9552                                               PORT_C);
9553                 }
9554
9555                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9556                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9557                                         PORT_B);
9558                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9559                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9560                 }
9561         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9562                 bool found = false;
9563
9564                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9565                         DRM_DEBUG_KMS("probing SDVOB\n");
9566                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9567                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9568                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9569                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9570                         }
9571
9572                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9573                                 intel_dp_init(dev, DP_B, PORT_B);
9574                 }
9575
9576                 /* Before G4X SDVOC doesn't have its own detect register */
9577
9578                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9579                         DRM_DEBUG_KMS("probing SDVOC\n");
9580                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9581                 }
9582
9583                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9584
9585                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9586                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9587                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9588                         }
9589                         if (SUPPORTS_INTEGRATED_DP(dev))
9590                                 intel_dp_init(dev, DP_C, PORT_C);
9591                 }
9592
9593                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9594                     (I915_READ(DP_D) & DP_DETECTED))
9595                         intel_dp_init(dev, DP_D, PORT_D);
9596         } else if (IS_GEN2(dev))
9597                 intel_dvo_init(dev);
9598
9599         if (SUPPORTS_TV(dev))
9600                 intel_tv_init(dev);
9601
9602         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9603                 encoder->base.possible_crtcs = encoder->crtc_mask;
9604                 encoder->base.possible_clones =
9605                         intel_encoder_clones(encoder);
9606         }
9607
9608         intel_init_pch_refclk(dev);
9609
9610         drm_helper_move_panel_connectors_to_head(dev);
9611 }
9612
9613 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9614 {
9615         drm_framebuffer_cleanup(&fb->base);
9616         drm_gem_object_unreference_unlocked(&fb->obj->base);
9617 }
9618
9619 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9620 {
9621         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9622
9623         intel_framebuffer_fini(intel_fb);
9624         kfree(intel_fb);
9625 }
9626
9627 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9628                                                 struct drm_file *file,
9629                                                 unsigned int *handle)
9630 {
9631         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9632         struct drm_i915_gem_object *obj = intel_fb->obj;
9633
9634         return drm_gem_handle_create(file, &obj->base, handle);
9635 }
9636
9637 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9638         .destroy = intel_user_framebuffer_destroy,
9639         .create_handle = intel_user_framebuffer_create_handle,
9640 };
9641
9642 int intel_framebuffer_init(struct drm_device *dev,
9643                            struct intel_framebuffer *intel_fb,
9644                            struct drm_mode_fb_cmd2 *mode_cmd,
9645                            struct drm_i915_gem_object *obj)
9646 {
9647         int pitch_limit;
9648         int ret;
9649
9650         if (obj->tiling_mode == I915_TILING_Y) {
9651                 DRM_DEBUG("hardware does not support tiling Y\n");
9652                 return -EINVAL;
9653         }
9654
9655         if (mode_cmd->pitches[0] & 63) {
9656                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9657                           mode_cmd->pitches[0]);
9658                 return -EINVAL;
9659         }
9660
9661         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9662                 pitch_limit = 32*1024;
9663         } else if (INTEL_INFO(dev)->gen >= 4) {
9664                 if (obj->tiling_mode)
9665                         pitch_limit = 16*1024;
9666                 else
9667                         pitch_limit = 32*1024;
9668         } else if (INTEL_INFO(dev)->gen >= 3) {
9669                 if (obj->tiling_mode)
9670                         pitch_limit = 8*1024;
9671                 else
9672                         pitch_limit = 16*1024;
9673         } else
9674                 /* XXX DSPC is limited to 4k tiled */
9675                 pitch_limit = 8*1024;
9676
9677         if (mode_cmd->pitches[0] > pitch_limit) {
9678                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9679                           obj->tiling_mode ? "tiled" : "linear",
9680                           mode_cmd->pitches[0], pitch_limit);
9681                 return -EINVAL;
9682         }
9683
9684         if (obj->tiling_mode != I915_TILING_NONE &&
9685             mode_cmd->pitches[0] != obj->stride) {
9686                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9687                           mode_cmd->pitches[0], obj->stride);
9688                 return -EINVAL;
9689         }
9690
9691         /* Reject formats not supported by any plane early. */
9692         switch (mode_cmd->pixel_format) {
9693         case DRM_FORMAT_C8:
9694         case DRM_FORMAT_RGB565:
9695         case DRM_FORMAT_XRGB8888:
9696         case DRM_FORMAT_ARGB8888:
9697                 break;
9698         case DRM_FORMAT_XRGB1555:
9699         case DRM_FORMAT_ARGB1555:
9700                 if (INTEL_INFO(dev)->gen > 3) {
9701                         DRM_DEBUG("unsupported pixel format: %s\n",
9702                                   drm_get_format_name(mode_cmd->pixel_format));
9703                         return -EINVAL;
9704                 }
9705                 break;
9706         case DRM_FORMAT_XBGR8888:
9707         case DRM_FORMAT_ABGR8888:
9708         case DRM_FORMAT_XRGB2101010:
9709         case DRM_FORMAT_ARGB2101010:
9710         case DRM_FORMAT_XBGR2101010:
9711         case DRM_FORMAT_ABGR2101010:
9712                 if (INTEL_INFO(dev)->gen < 4) {
9713                         DRM_DEBUG("unsupported pixel format: %s\n",
9714                                   drm_get_format_name(mode_cmd->pixel_format));
9715                         return -EINVAL;
9716                 }
9717                 break;
9718         case DRM_FORMAT_YUYV:
9719         case DRM_FORMAT_UYVY:
9720         case DRM_FORMAT_YVYU:
9721         case DRM_FORMAT_VYUY:
9722                 if (INTEL_INFO(dev)->gen < 5) {
9723                         DRM_DEBUG("unsupported pixel format: %s\n",
9724                                   drm_get_format_name(mode_cmd->pixel_format));
9725                         return -EINVAL;
9726                 }
9727                 break;
9728         default:
9729                 DRM_DEBUG("unsupported pixel format: %s\n",
9730                           drm_get_format_name(mode_cmd->pixel_format));
9731                 return -EINVAL;
9732         }
9733
9734         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9735         if (mode_cmd->offsets[0] != 0)
9736                 return -EINVAL;
9737
9738         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9739         intel_fb->obj = obj;
9740
9741         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9742         if (ret) {
9743                 DRM_ERROR("framebuffer init failed %d\n", ret);
9744                 return ret;
9745         }
9746
9747         return 0;
9748 }
9749
9750 static struct drm_framebuffer *
9751 intel_user_framebuffer_create(struct drm_device *dev,
9752                               struct drm_file *filp,
9753                               struct drm_mode_fb_cmd2 *mode_cmd)
9754 {
9755         struct drm_i915_gem_object *obj;
9756
9757         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9758                                                 mode_cmd->handles[0]));
9759         if (&obj->base == NULL)
9760                 return ERR_PTR(-ENOENT);
9761
9762         return intel_framebuffer_create(dev, mode_cmd, obj);
9763 }
9764
9765 static const struct drm_mode_config_funcs intel_mode_funcs = {
9766         .fb_create = intel_user_framebuffer_create,
9767         .output_poll_changed = intel_fb_output_poll_changed,
9768 };
9769
9770 /* Set up chip specific display functions */
9771 static void intel_init_display(struct drm_device *dev)
9772 {
9773         struct drm_i915_private *dev_priv = dev->dev_private;
9774
9775         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9776                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9777         else if (IS_VALLEYVIEW(dev))
9778                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9779         else if (IS_PINEVIEW(dev))
9780                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9781         else
9782                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9783
9784         if (HAS_DDI(dev)) {
9785                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9786                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9787                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9788                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9789                 dev_priv->display.off = haswell_crtc_off;
9790                 dev_priv->display.update_plane = ironlake_update_plane;
9791         } else if (HAS_PCH_SPLIT(dev)) {
9792                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9793                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9794                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9795                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9796                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9797                 dev_priv->display.off = ironlake_crtc_off;
9798                 dev_priv->display.update_plane = ironlake_update_plane;
9799         } else if (IS_VALLEYVIEW(dev)) {
9800                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9801                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9802                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9803                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9804                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9805                 dev_priv->display.off = i9xx_crtc_off;
9806                 dev_priv->display.update_plane = i9xx_update_plane;
9807         } else {
9808                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9809                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9810                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9811                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9812                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9813                 dev_priv->display.off = i9xx_crtc_off;
9814                 dev_priv->display.update_plane = i9xx_update_plane;
9815         }
9816
9817         /* Returns the core display clock speed */
9818         if (IS_VALLEYVIEW(dev))
9819                 dev_priv->display.get_display_clock_speed =
9820                         valleyview_get_display_clock_speed;
9821         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9822                 dev_priv->display.get_display_clock_speed =
9823                         i945_get_display_clock_speed;
9824         else if (IS_I915G(dev))
9825                 dev_priv->display.get_display_clock_speed =
9826                         i915_get_display_clock_speed;
9827         else if (IS_I945GM(dev) || IS_845G(dev))
9828                 dev_priv->display.get_display_clock_speed =
9829                         i9xx_misc_get_display_clock_speed;
9830         else if (IS_PINEVIEW(dev))
9831                 dev_priv->display.get_display_clock_speed =
9832                         pnv_get_display_clock_speed;
9833         else if (IS_I915GM(dev))
9834                 dev_priv->display.get_display_clock_speed =
9835                         i915gm_get_display_clock_speed;
9836         else if (IS_I865G(dev))
9837                 dev_priv->display.get_display_clock_speed =
9838                         i865_get_display_clock_speed;
9839         else if (IS_I85X(dev))
9840                 dev_priv->display.get_display_clock_speed =
9841                         i855_get_display_clock_speed;
9842         else /* 852, 830 */
9843                 dev_priv->display.get_display_clock_speed =
9844                         i830_get_display_clock_speed;
9845
9846         if (HAS_PCH_SPLIT(dev)) {
9847                 if (IS_GEN5(dev)) {
9848                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9849                         dev_priv->display.write_eld = ironlake_write_eld;
9850                 } else if (IS_GEN6(dev)) {
9851                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9852                         dev_priv->display.write_eld = ironlake_write_eld;
9853                 } else if (IS_IVYBRIDGE(dev)) {
9854                         /* FIXME: detect B0+ stepping and use auto training */
9855                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9856                         dev_priv->display.write_eld = ironlake_write_eld;
9857                         dev_priv->display.modeset_global_resources =
9858                                 ivb_modeset_global_resources;
9859                 } else if (IS_HASWELL(dev)) {
9860                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9861                         dev_priv->display.write_eld = haswell_write_eld;
9862                         dev_priv->display.modeset_global_resources =
9863                                 haswell_modeset_global_resources;
9864                 }
9865         } else if (IS_G4X(dev)) {
9866                 dev_priv->display.write_eld = g4x_write_eld;
9867         }
9868
9869         /* Default just returns -ENODEV to indicate unsupported */
9870         dev_priv->display.queue_flip = intel_default_queue_flip;
9871
9872         switch (INTEL_INFO(dev)->gen) {
9873         case 2:
9874                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9875                 break;
9876
9877         case 3:
9878                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9879                 break;
9880
9881         case 4:
9882         case 5:
9883                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9884                 break;
9885
9886         case 6:
9887                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9888                 break;
9889         case 7:
9890                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9891                 break;
9892         }
9893 }
9894
9895 /*
9896  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9897  * resume, or other times.  This quirk makes sure that's the case for
9898  * affected systems.
9899  */
9900 static void quirk_pipea_force(struct drm_device *dev)
9901 {
9902         struct drm_i915_private *dev_priv = dev->dev_private;
9903
9904         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9905         DRM_INFO("applying pipe a force quirk\n");
9906 }
9907
9908 /*
9909  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9910  */
9911 static void quirk_ssc_force_disable(struct drm_device *dev)
9912 {
9913         struct drm_i915_private *dev_priv = dev->dev_private;
9914         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9915         DRM_INFO("applying lvds SSC disable quirk\n");
9916 }
9917
9918 /*
9919  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9920  * brightness value
9921  */
9922 static void quirk_invert_brightness(struct drm_device *dev)
9923 {
9924         struct drm_i915_private *dev_priv = dev->dev_private;
9925         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9926         DRM_INFO("applying inverted panel brightness quirk\n");
9927 }
9928
9929 /*
9930  * Some machines (Dell XPS13) suffer broken backlight controls if
9931  * BLM_PCH_PWM_ENABLE is set.
9932  */
9933 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9934 {
9935         struct drm_i915_private *dev_priv = dev->dev_private;
9936         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9937         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9938 }
9939
9940 struct intel_quirk {
9941         int device;
9942         int subsystem_vendor;
9943         int subsystem_device;
9944         void (*hook)(struct drm_device *dev);
9945 };
9946
9947 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9948 struct intel_dmi_quirk {
9949         void (*hook)(struct drm_device *dev);
9950         const struct dmi_system_id (*dmi_id_list)[];
9951 };
9952
9953 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9954 {
9955         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9956         return 1;
9957 }
9958
9959 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9960         {
9961                 .dmi_id_list = &(const struct dmi_system_id[]) {
9962                         {
9963                                 .callback = intel_dmi_reverse_brightness,
9964                                 .ident = "NCR Corporation",
9965                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9966                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9967                                 },
9968                         },
9969                         { }  /* terminating entry */
9970                 },
9971                 .hook = quirk_invert_brightness,
9972         },
9973 };
9974
9975 static struct intel_quirk intel_quirks[] = {
9976         /* HP Mini needs pipe A force quirk (LP: #322104) */
9977         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9978
9979         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9980         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9981
9982         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9983         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9984
9985         /* 830/845 need to leave pipe A & dpll A up */
9986         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9987         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9988
9989         /* Lenovo U160 cannot use SSC on LVDS */
9990         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9991
9992         /* Sony Vaio Y cannot use SSC on LVDS */
9993         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9994
9995         /* Acer Aspire 5734Z must invert backlight brightness */
9996         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9997
9998         /* Acer/eMachines G725 */
9999         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10000
10001         /* Acer/eMachines e725 */
10002         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10003
10004         /* Acer/Packard Bell NCL20 */
10005         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10006
10007         /* Acer Aspire 4736Z */
10008         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10009
10010         /* Dell XPS13 HD Sandy Bridge */
10011         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10012         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10013         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10014 };
10015
10016 static void intel_init_quirks(struct drm_device *dev)
10017 {
10018         struct pci_dev *d = dev->pdev;
10019         int i;
10020
10021         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10022                 struct intel_quirk *q = &intel_quirks[i];
10023
10024                 if (d->device == q->device &&
10025                     (d->subsystem_vendor == q->subsystem_vendor ||
10026                      q->subsystem_vendor == PCI_ANY_ID) &&
10027                     (d->subsystem_device == q->subsystem_device ||
10028                      q->subsystem_device == PCI_ANY_ID))
10029                         q->hook(dev);
10030         }
10031         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10032                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10033                         intel_dmi_quirks[i].hook(dev);
10034         }
10035 }
10036
10037 /* Disable the VGA plane that we never use */
10038 static void i915_disable_vga(struct drm_device *dev)
10039 {
10040         struct drm_i915_private *dev_priv = dev->dev_private;
10041         u8 sr1;
10042         u32 vga_reg = i915_vgacntrl_reg(dev);
10043
10044         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10045         outb(SR01, VGA_SR_INDEX);
10046         sr1 = inb(VGA_SR_DATA);
10047         outb(sr1 | 1<<5, VGA_SR_DATA);
10048         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10049         udelay(300);
10050
10051         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10052         POSTING_READ(vga_reg);
10053 }
10054
10055 static void i915_enable_vga_mem(struct drm_device *dev)
10056 {
10057         /* Enable VGA memory on Intel HD */
10058         if (HAS_PCH_SPLIT(dev)) {
10059                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10060                 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10061                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10062                                                    VGA_RSRC_LEGACY_MEM |
10063                                                    VGA_RSRC_NORMAL_IO |
10064                                                    VGA_RSRC_NORMAL_MEM);
10065                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10066         }
10067 }
10068
10069 void i915_disable_vga_mem(struct drm_device *dev)
10070 {
10071         /* Disable VGA memory on Intel HD */
10072         if (HAS_PCH_SPLIT(dev)) {
10073                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10074                 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10075                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10076                                                    VGA_RSRC_NORMAL_IO |
10077                                                    VGA_RSRC_NORMAL_MEM);
10078                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10079         }
10080 }
10081
10082 void intel_modeset_init_hw(struct drm_device *dev)
10083 {
10084         intel_init_power_well(dev);
10085
10086         intel_prepare_ddi(dev);
10087
10088         intel_init_clock_gating(dev);
10089
10090         mutex_lock(&dev->struct_mutex);
10091         intel_enable_gt_powersave(dev);
10092         mutex_unlock(&dev->struct_mutex);
10093 }
10094
10095 void intel_modeset_suspend_hw(struct drm_device *dev)
10096 {
10097         intel_suspend_hw(dev);
10098 }
10099
10100 void intel_modeset_init(struct drm_device *dev)
10101 {
10102         struct drm_i915_private *dev_priv = dev->dev_private;
10103         int i, j, ret;
10104
10105         drm_mode_config_init(dev);
10106
10107         dev->mode_config.min_width = 0;
10108         dev->mode_config.min_height = 0;
10109
10110         dev->mode_config.preferred_depth = 24;
10111         dev->mode_config.prefer_shadow = 1;
10112
10113         dev->mode_config.funcs = &intel_mode_funcs;
10114
10115         intel_init_quirks(dev);
10116
10117         intel_init_pm(dev);
10118
10119         if (INTEL_INFO(dev)->num_pipes == 0)
10120                 return;
10121
10122         intel_init_display(dev);
10123
10124         if (IS_GEN2(dev)) {
10125                 dev->mode_config.max_width = 2048;
10126                 dev->mode_config.max_height = 2048;
10127         } else if (IS_GEN3(dev)) {
10128                 dev->mode_config.max_width = 4096;
10129                 dev->mode_config.max_height = 4096;
10130         } else {
10131                 dev->mode_config.max_width = 8192;
10132                 dev->mode_config.max_height = 8192;
10133         }
10134         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10135
10136         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10137                       INTEL_INFO(dev)->num_pipes,
10138                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10139
10140         for_each_pipe(i) {
10141                 intel_crtc_init(dev, i);
10142                 for (j = 0; j < dev_priv->num_plane; j++) {
10143                         ret = intel_plane_init(dev, i, j);
10144                         if (ret)
10145                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10146                                               pipe_name(i), sprite_name(i, j), ret);
10147                 }
10148         }
10149
10150         intel_cpu_pll_init(dev);
10151         intel_shared_dpll_init(dev);
10152
10153         /* Just disable it once at startup */
10154         i915_disable_vga(dev);
10155         intel_setup_outputs(dev);
10156
10157         /* Just in case the BIOS is doing something questionable. */
10158         intel_disable_fbc(dev);
10159 }
10160
10161 static void
10162 intel_connector_break_all_links(struct intel_connector *connector)
10163 {
10164         connector->base.dpms = DRM_MODE_DPMS_OFF;
10165         connector->base.encoder = NULL;
10166         connector->encoder->connectors_active = false;
10167         connector->encoder->base.crtc = NULL;
10168 }
10169
10170 static void intel_enable_pipe_a(struct drm_device *dev)
10171 {
10172         struct intel_connector *connector;
10173         struct drm_connector *crt = NULL;
10174         struct intel_load_detect_pipe load_detect_temp;
10175
10176         /* We can't just switch on the pipe A, we need to set things up with a
10177          * proper mode and output configuration. As a gross hack, enable pipe A
10178          * by enabling the load detect pipe once. */
10179         list_for_each_entry(connector,
10180                             &dev->mode_config.connector_list,
10181                             base.head) {
10182                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10183                         crt = &connector->base;
10184                         break;
10185                 }
10186         }
10187
10188         if (!crt)
10189                 return;
10190
10191         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10192                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10193
10194
10195 }
10196
10197 static bool
10198 intel_check_plane_mapping(struct intel_crtc *crtc)
10199 {
10200         struct drm_device *dev = crtc->base.dev;
10201         struct drm_i915_private *dev_priv = dev->dev_private;
10202         u32 reg, val;
10203
10204         if (INTEL_INFO(dev)->num_pipes == 1)
10205                 return true;
10206
10207         reg = DSPCNTR(!crtc->plane);
10208         val = I915_READ(reg);
10209
10210         if ((val & DISPLAY_PLANE_ENABLE) &&
10211             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10212                 return false;
10213
10214         return true;
10215 }
10216
10217 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10218 {
10219         struct drm_device *dev = crtc->base.dev;
10220         struct drm_i915_private *dev_priv = dev->dev_private;
10221         u32 reg;
10222
10223         /* Clear any frame start delays used for debugging left by the BIOS */
10224         reg = PIPECONF(crtc->config.cpu_transcoder);
10225         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10226
10227         /* We need to sanitize the plane -> pipe mapping first because this will
10228          * disable the crtc (and hence change the state) if it is wrong. Note
10229          * that gen4+ has a fixed plane -> pipe mapping.  */
10230         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10231                 struct intel_connector *connector;
10232                 bool plane;
10233
10234                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10235                               crtc->base.base.id);
10236
10237                 /* Pipe has the wrong plane attached and the plane is active.
10238                  * Temporarily change the plane mapping and disable everything
10239                  * ...  */
10240                 plane = crtc->plane;
10241                 crtc->plane = !plane;
10242                 dev_priv->display.crtc_disable(&crtc->base);
10243                 crtc->plane = plane;
10244
10245                 /* ... and break all links. */
10246                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10247                                     base.head) {
10248                         if (connector->encoder->base.crtc != &crtc->base)
10249                                 continue;
10250
10251                         intel_connector_break_all_links(connector);
10252                 }
10253
10254                 WARN_ON(crtc->active);
10255                 crtc->base.enabled = false;
10256         }
10257
10258         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10259             crtc->pipe == PIPE_A && !crtc->active) {
10260                 /* BIOS forgot to enable pipe A, this mostly happens after
10261                  * resume. Force-enable the pipe to fix this, the update_dpms
10262                  * call below we restore the pipe to the right state, but leave
10263                  * the required bits on. */
10264                 intel_enable_pipe_a(dev);
10265         }
10266
10267         /* Adjust the state of the output pipe according to whether we
10268          * have active connectors/encoders. */
10269         intel_crtc_update_dpms(&crtc->base);
10270
10271         if (crtc->active != crtc->base.enabled) {
10272                 struct intel_encoder *encoder;
10273
10274                 /* This can happen either due to bugs in the get_hw_state
10275                  * functions or because the pipe is force-enabled due to the
10276                  * pipe A quirk. */
10277                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10278                               crtc->base.base.id,
10279                               crtc->base.enabled ? "enabled" : "disabled",
10280                               crtc->active ? "enabled" : "disabled");
10281
10282                 crtc->base.enabled = crtc->active;
10283
10284                 /* Because we only establish the connector -> encoder ->
10285                  * crtc links if something is active, this means the
10286                  * crtc is now deactivated. Break the links. connector
10287                  * -> encoder links are only establish when things are
10288                  *  actually up, hence no need to break them. */
10289                 WARN_ON(crtc->active);
10290
10291                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10292                         WARN_ON(encoder->connectors_active);
10293                         encoder->base.crtc = NULL;
10294                 }
10295         }
10296 }
10297
10298 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10299 {
10300         struct intel_connector *connector;
10301         struct drm_device *dev = encoder->base.dev;
10302
10303         /* We need to check both for a crtc link (meaning that the
10304          * encoder is active and trying to read from a pipe) and the
10305          * pipe itself being active. */
10306         bool has_active_crtc = encoder->base.crtc &&
10307                 to_intel_crtc(encoder->base.crtc)->active;
10308
10309         if (encoder->connectors_active && !has_active_crtc) {
10310                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10311                               encoder->base.base.id,
10312                               drm_get_encoder_name(&encoder->base));
10313
10314                 /* Connector is active, but has no active pipe. This is
10315                  * fallout from our resume register restoring. Disable
10316                  * the encoder manually again. */
10317                 if (encoder->base.crtc) {
10318                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10319                                       encoder->base.base.id,
10320                                       drm_get_encoder_name(&encoder->base));
10321                         encoder->disable(encoder);
10322                 }
10323
10324                 /* Inconsistent output/port/pipe state happens presumably due to
10325                  * a bug in one of the get_hw_state functions. Or someplace else
10326                  * in our code, like the register restore mess on resume. Clamp
10327                  * things to off as a safer default. */
10328                 list_for_each_entry(connector,
10329                                     &dev->mode_config.connector_list,
10330                                     base.head) {
10331                         if (connector->encoder != encoder)
10332                                 continue;
10333
10334                         intel_connector_break_all_links(connector);
10335                 }
10336         }
10337         /* Enabled encoders without active connectors will be fixed in
10338          * the crtc fixup. */
10339 }
10340
10341 void i915_redisable_vga(struct drm_device *dev)
10342 {
10343         struct drm_i915_private *dev_priv = dev->dev_private;
10344         u32 vga_reg = i915_vgacntrl_reg(dev);
10345
10346         /* This function can be called both from intel_modeset_setup_hw_state or
10347          * at a very early point in our resume sequence, where the power well
10348          * structures are not yet restored. Since this function is at a very
10349          * paranoid "someone might have enabled VGA while we were not looking"
10350          * level, just check if the power well is enabled instead of trying to
10351          * follow the "don't touch the power well if we don't need it" policy
10352          * the rest of the driver uses. */
10353         if (HAS_POWER_WELL(dev) &&
10354             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10355                 return;
10356
10357         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10358                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10359                 i915_disable_vga(dev);
10360                 i915_disable_vga_mem(dev);
10361         }
10362 }
10363
10364 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10365 {
10366         struct drm_i915_private *dev_priv = dev->dev_private;
10367         enum pipe pipe;
10368         struct intel_crtc *crtc;
10369         struct intel_encoder *encoder;
10370         struct intel_connector *connector;
10371         int i;
10372
10373         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10374                             base.head) {
10375                 memset(&crtc->config, 0, sizeof(crtc->config));
10376
10377                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10378                                                                  &crtc->config);
10379
10380                 crtc->base.enabled = crtc->active;
10381
10382                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10383                               crtc->base.base.id,
10384                               crtc->active ? "enabled" : "disabled");
10385         }
10386
10387         /* FIXME: Smash this into the new shared dpll infrastructure. */
10388         if (HAS_DDI(dev))
10389                 intel_ddi_setup_hw_pll_state(dev);
10390
10391         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10392                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10393
10394                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10395                 pll->active = 0;
10396                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10397                                     base.head) {
10398                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10399                                 pll->active++;
10400                 }
10401                 pll->refcount = pll->active;
10402
10403                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10404                               pll->name, pll->refcount, pll->on);
10405         }
10406
10407         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10408                             base.head) {
10409                 pipe = 0;
10410
10411                 if (encoder->get_hw_state(encoder, &pipe)) {
10412                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10413                         encoder->base.crtc = &crtc->base;
10414                         if (encoder->get_config)
10415                                 encoder->get_config(encoder, &crtc->config);
10416                 } else {
10417                         encoder->base.crtc = NULL;
10418                 }
10419
10420                 encoder->connectors_active = false;
10421                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10422                               encoder->base.base.id,
10423                               drm_get_encoder_name(&encoder->base),
10424                               encoder->base.crtc ? "enabled" : "disabled",
10425                               pipe);
10426         }
10427
10428         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10429                             base.head) {
10430                 if (!crtc->active)
10431                         continue;
10432                 if (dev_priv->display.get_clock)
10433                         dev_priv->display.get_clock(crtc,
10434                                                     &crtc->config);
10435         }
10436
10437         list_for_each_entry(connector, &dev->mode_config.connector_list,
10438                             base.head) {
10439                 if (connector->get_hw_state(connector)) {
10440                         connector->base.dpms = DRM_MODE_DPMS_ON;
10441                         connector->encoder->connectors_active = true;
10442                         connector->base.encoder = &connector->encoder->base;
10443                 } else {
10444                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10445                         connector->base.encoder = NULL;
10446                 }
10447                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10448                               connector->base.base.id,
10449                               drm_get_connector_name(&connector->base),
10450                               connector->base.encoder ? "enabled" : "disabled");
10451         }
10452 }
10453
10454 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10455  * and i915 state tracking structures. */
10456 void intel_modeset_setup_hw_state(struct drm_device *dev,
10457                                   bool force_restore)
10458 {
10459         struct drm_i915_private *dev_priv = dev->dev_private;
10460         enum pipe pipe;
10461         struct drm_plane *plane;
10462         struct intel_crtc *crtc;
10463         struct intel_encoder *encoder;
10464         int i;
10465
10466         intel_modeset_readout_hw_state(dev);
10467
10468         /*
10469          * Now that we have the config, copy it to each CRTC struct
10470          * Note that this could go away if we move to using crtc_config
10471          * checking everywhere.
10472          */
10473         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10474                             base.head) {
10475                 if (crtc->active && i915_fastboot) {
10476                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10477
10478                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10479                                       crtc->base.base.id);
10480                         drm_mode_debug_printmodeline(&crtc->base.mode);
10481                 }
10482         }
10483
10484         /* HW state is read out, now we need to sanitize this mess. */
10485         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10486                             base.head) {
10487                 intel_sanitize_encoder(encoder);
10488         }
10489
10490         for_each_pipe(pipe) {
10491                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10492                 intel_sanitize_crtc(crtc);
10493                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10494         }
10495
10496         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10497                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10498
10499                 if (!pll->on || pll->active)
10500                         continue;
10501
10502                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10503
10504                 pll->disable(dev_priv, pll);
10505                 pll->on = false;
10506         }
10507
10508         if (force_restore) {
10509                 /*
10510                  * We need to use raw interfaces for restoring state to avoid
10511                  * checking (bogus) intermediate states.
10512                  */
10513                 for_each_pipe(pipe) {
10514                         struct drm_crtc *crtc =
10515                                 dev_priv->pipe_to_crtc_mapping[pipe];
10516
10517                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10518                                          crtc->fb);
10519                 }
10520                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10521                         intel_plane_restore(plane);
10522
10523                 i915_redisable_vga(dev);
10524         } else {
10525                 intel_modeset_update_staged_output_state(dev);
10526         }
10527
10528         intel_modeset_check_state(dev);
10529
10530         drm_mode_config_reset(dev);
10531 }
10532
10533 void intel_modeset_gem_init(struct drm_device *dev)
10534 {
10535         intel_modeset_init_hw(dev);
10536
10537         intel_setup_overlay(dev);
10538
10539         intel_modeset_setup_hw_state(dev, false);
10540 }
10541
10542 void intel_modeset_cleanup(struct drm_device *dev)
10543 {
10544         struct drm_i915_private *dev_priv = dev->dev_private;
10545         struct drm_crtc *crtc;
10546
10547         /*
10548          * Interrupts and polling as the first thing to avoid creating havoc.
10549          * Too much stuff here (turning of rps, connectors, ...) would
10550          * experience fancy races otherwise.
10551          */
10552         drm_irq_uninstall(dev);
10553         cancel_work_sync(&dev_priv->hotplug_work);
10554         /*
10555          * Due to the hpd irq storm handling the hotplug work can re-arm the
10556          * poll handlers. Hence disable polling after hpd handling is shut down.
10557          */
10558         drm_kms_helper_poll_fini(dev);
10559
10560         mutex_lock(&dev->struct_mutex);
10561
10562         intel_unregister_dsm_handler();
10563
10564         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10565                 /* Skip inactive CRTCs */
10566                 if (!crtc->fb)
10567                         continue;
10568
10569                 intel_increase_pllclock(crtc);
10570         }
10571
10572         intel_disable_fbc(dev);
10573
10574         i915_enable_vga_mem(dev);
10575
10576         intel_disable_gt_powersave(dev);
10577
10578         ironlake_teardown_rc6(dev);
10579
10580         mutex_unlock(&dev->struct_mutex);
10581
10582         /* flush any delayed tasks or pending work */
10583         flush_scheduled_work();
10584
10585         /* destroy backlight, if any, before the connectors */
10586         intel_panel_destroy_backlight(dev);
10587
10588         drm_mode_config_cleanup(dev);
10589
10590         intel_cleanup_overlay(dev);
10591 }
10592
10593 /*
10594  * Return which encoder is currently attached for connector.
10595  */
10596 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10597 {
10598         return &intel_attached_encoder(connector)->base;
10599 }
10600
10601 void intel_connector_attach_encoder(struct intel_connector *connector,
10602                                     struct intel_encoder *encoder)
10603 {
10604         connector->encoder = encoder;
10605         drm_mode_connector_attach_encoder(&connector->base,
10606                                           &encoder->base);
10607 }
10608
10609 /*
10610  * set vga decode state - true == enable VGA decode
10611  */
10612 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10613 {
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615         u16 gmch_ctrl;
10616
10617         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10618         if (state)
10619                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10620         else
10621                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10622         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10623         return 0;
10624 }
10625
10626 struct intel_display_error_state {
10627
10628         u32 power_well_driver;
10629
10630         int num_transcoders;
10631
10632         struct intel_cursor_error_state {
10633                 u32 control;
10634                 u32 position;
10635                 u32 base;
10636                 u32 size;
10637         } cursor[I915_MAX_PIPES];
10638
10639         struct intel_pipe_error_state {
10640                 u32 source;
10641         } pipe[I915_MAX_PIPES];
10642
10643         struct intel_plane_error_state {
10644                 u32 control;
10645                 u32 stride;
10646                 u32 size;
10647                 u32 pos;
10648                 u32 addr;
10649                 u32 surface;
10650                 u32 tile_offset;
10651         } plane[I915_MAX_PIPES];
10652
10653         struct intel_transcoder_error_state {
10654                 enum transcoder cpu_transcoder;
10655
10656                 u32 conf;
10657
10658                 u32 htotal;
10659                 u32 hblank;
10660                 u32 hsync;
10661                 u32 vtotal;
10662                 u32 vblank;
10663                 u32 vsync;
10664         } transcoder[4];
10665 };
10666
10667 struct intel_display_error_state *
10668 intel_display_capture_error_state(struct drm_device *dev)
10669 {
10670         drm_i915_private_t *dev_priv = dev->dev_private;
10671         struct intel_display_error_state *error;
10672         int transcoders[] = {
10673                 TRANSCODER_A,
10674                 TRANSCODER_B,
10675                 TRANSCODER_C,
10676                 TRANSCODER_EDP,
10677         };
10678         int i;
10679
10680         if (INTEL_INFO(dev)->num_pipes == 0)
10681                 return NULL;
10682
10683         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10684         if (error == NULL)
10685                 return NULL;
10686
10687         if (HAS_POWER_WELL(dev))
10688                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10689
10690         for_each_pipe(i) {
10691                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10692                         error->cursor[i].control = I915_READ(CURCNTR(i));
10693                         error->cursor[i].position = I915_READ(CURPOS(i));
10694                         error->cursor[i].base = I915_READ(CURBASE(i));
10695                 } else {
10696                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10697                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10698                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10699                 }
10700
10701                 error->plane[i].control = I915_READ(DSPCNTR(i));
10702                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10703                 if (INTEL_INFO(dev)->gen <= 3) {
10704                         error->plane[i].size = I915_READ(DSPSIZE(i));
10705                         error->plane[i].pos = I915_READ(DSPPOS(i));
10706                 }
10707                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10708                         error->plane[i].addr = I915_READ(DSPADDR(i));
10709                 if (INTEL_INFO(dev)->gen >= 4) {
10710                         error->plane[i].surface = I915_READ(DSPSURF(i));
10711                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10712                 }
10713
10714                 error->pipe[i].source = I915_READ(PIPESRC(i));
10715         }
10716
10717         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10718         if (HAS_DDI(dev_priv->dev))
10719                 error->num_transcoders++; /* Account for eDP. */
10720
10721         for (i = 0; i < error->num_transcoders; i++) {
10722                 enum transcoder cpu_transcoder = transcoders[i];
10723
10724                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10725
10726                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10727                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10728                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10729                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10730                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10731                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10732                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10733         }
10734
10735         /* In the code above we read the registers without checking if the power
10736          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10737          * prevent the next I915_WRITE from detecting it and printing an error
10738          * message. */
10739         intel_uncore_clear_errors(dev);
10740
10741         return error;
10742 }
10743
10744 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10745
10746 void
10747 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10748                                 struct drm_device *dev,
10749                                 struct intel_display_error_state *error)
10750 {
10751         int i;
10752
10753         if (!error)
10754                 return;
10755
10756         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10757         if (HAS_POWER_WELL(dev))
10758                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10759                            error->power_well_driver);
10760         for_each_pipe(i) {
10761                 err_printf(m, "Pipe [%d]:\n", i);
10762                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10763
10764                 err_printf(m, "Plane [%d]:\n", i);
10765                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10766                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10767                 if (INTEL_INFO(dev)->gen <= 3) {
10768                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10769                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10770                 }
10771                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10772                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10773                 if (INTEL_INFO(dev)->gen >= 4) {
10774                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10775                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10776                 }
10777
10778                 err_printf(m, "Cursor [%d]:\n", i);
10779                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10780                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10781                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10782         }
10783
10784         for (i = 0; i < error->num_transcoders; i++) {
10785                 err_printf(m, "  CPU transcoder: %c\n",
10786                            transcoder_name(error->transcoder[i].cpu_transcoder));
10787                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10788                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10789                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10790                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10791                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10792                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10793                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10794         }
10795 }