]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_sysfs.c
drm/i915: s/HAS_L3_GPU_CACHE/HAS_L3_DPF
[~andy/linux] / drivers / gpu / drm / i915 / i915_sysfs.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *
26  */
27
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34
35 #ifdef CONFIG_PM
36 static u32 calc_residency(struct drm_device *dev, const u32 reg)
37 {
38         struct drm_i915_private *dev_priv = dev->dev_private;
39         u64 raw_time; /* 32b value may overflow during fixed point math */
40
41         if (!intel_enable_rc6(dev))
42                 return 0;
43
44         raw_time = I915_READ(reg) * 128ULL;
45         return DIV_ROUND_UP_ULL(raw_time, 100000);
46 }
47
48 static ssize_t
49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
50 {
51         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
52         return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
53 }
54
55 static ssize_t
56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
57 {
58         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
59         u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
60         return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
61 }
62
63 static ssize_t
64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
65 {
66         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
67         u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
68         return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
69 }
70
71 static ssize_t
72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
73 {
74         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
75         u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
76         return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
77 }
78
79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
83
84 static struct attribute *rc6_attrs[] = {
85         &dev_attr_rc6_enable.attr,
86         &dev_attr_rc6_residency_ms.attr,
87         &dev_attr_rc6p_residency_ms.attr,
88         &dev_attr_rc6pp_residency_ms.attr,
89         NULL
90 };
91
92 static struct attribute_group rc6_attr_group = {
93         .name = power_group_name,
94         .attrs =  rc6_attrs
95 };
96 #endif
97
98 static int l3_access_valid(struct drm_device *dev, loff_t offset)
99 {
100         if (!HAS_L3_DPF(dev))
101                 return -EPERM;
102
103         if (offset % 4 != 0)
104                 return -EINVAL;
105
106         if (offset >= GEN7_L3LOG_SIZE)
107                 return -ENXIO;
108
109         return 0;
110 }
111
112 static ssize_t
113 i915_l3_read(struct file *filp, struct kobject *kobj,
114              struct bin_attribute *attr, char *buf,
115              loff_t offset, size_t count)
116 {
117         struct device *dev = container_of(kobj, struct device, kobj);
118         struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
119         struct drm_device *drm_dev = dminor->dev;
120         struct drm_i915_private *dev_priv = drm_dev->dev_private;
121         int slice = (int)(uintptr_t)attr->private;
122         int ret;
123
124         count = round_down(count, 4);
125
126         ret = l3_access_valid(drm_dev, offset);
127         if (ret)
128                 return ret;
129
130         count = min_t(int, GEN7_L3LOG_SIZE-offset, count);
131
132         ret = i915_mutex_lock_interruptible(drm_dev);
133         if (ret)
134                 return ret;
135
136         if (dev_priv->l3_parity.remap_info[slice])
137                 memcpy(buf,
138                        dev_priv->l3_parity.remap_info[slice] + (offset/4),
139                        count);
140         else
141                 memset(buf, 0, count);
142
143         mutex_unlock(&drm_dev->struct_mutex);
144
145         return count;
146 }
147
148 static ssize_t
149 i915_l3_write(struct file *filp, struct kobject *kobj,
150               struct bin_attribute *attr, char *buf,
151               loff_t offset, size_t count)
152 {
153         struct device *dev = container_of(kobj, struct device, kobj);
154         struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
155         struct drm_device *drm_dev = dminor->dev;
156         struct drm_i915_private *dev_priv = drm_dev->dev_private;
157         struct i915_hw_context *ctx;
158         u32 *temp = NULL; /* Just here to make handling failures easy */
159         int slice = (int)(uintptr_t)attr->private;
160         int ret;
161
162         ret = l3_access_valid(drm_dev, offset);
163         if (ret)
164                 return ret;
165
166         if (dev_priv->hw_contexts_disabled)
167                 return -ENXIO;
168
169         ret = i915_mutex_lock_interruptible(drm_dev);
170         if (ret)
171                 return ret;
172
173         if (!dev_priv->l3_parity.remap_info[slice]) {
174                 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
175                 if (!temp) {
176                         mutex_unlock(&drm_dev->struct_mutex);
177                         return -ENOMEM;
178                 }
179         }
180
181         ret = i915_gpu_idle(drm_dev);
182         if (ret) {
183                 kfree(temp);
184                 mutex_unlock(&drm_dev->struct_mutex);
185                 return ret;
186         }
187
188         /* TODO: Ideally we really want a GPU reset here to make sure errors
189          * aren't propagated. Since I cannot find a stable way to reset the GPU
190          * at this point it is left as a TODO.
191         */
192         if (temp)
193                 dev_priv->l3_parity.remap_info[slice] = temp;
194
195         memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
196
197         /* NB: We defer the remapping until we switch to the context */
198         list_for_each_entry(ctx, &dev_priv->context_list, link)
199                 ctx->remap_slice |= (1<<slice);
200
201         mutex_unlock(&drm_dev->struct_mutex);
202
203         return count;
204 }
205
206 static struct bin_attribute dpf_attrs = {
207         .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
208         .size = GEN7_L3LOG_SIZE,
209         .read = i915_l3_read,
210         .write = i915_l3_write,
211         .mmap = NULL,
212         .private = (void *)0
213 };
214
215 static struct bin_attribute dpf_attrs_1 = {
216         .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
217         .size = GEN7_L3LOG_SIZE,
218         .read = i915_l3_read,
219         .write = i915_l3_write,
220         .mmap = NULL,
221         .private = (void *)1
222 };
223
224 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
225                                     struct device_attribute *attr, char *buf)
226 {
227         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
228         struct drm_device *dev = minor->dev;
229         struct drm_i915_private *dev_priv = dev->dev_private;
230         int ret;
231
232         mutex_lock(&dev_priv->rps.hw_lock);
233         if (IS_VALLEYVIEW(dev_priv->dev)) {
234                 u32 freq;
235                 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
236                 ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff);
237         } else {
238                 ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
239         }
240         mutex_unlock(&dev_priv->rps.hw_lock);
241
242         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
243 }
244
245 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
246                                      struct device_attribute *attr, char *buf)
247 {
248         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
249         struct drm_device *dev = minor->dev;
250         struct drm_i915_private *dev_priv = dev->dev_private;
251
252         return snprintf(buf, PAGE_SIZE, "%d\n",
253                         vlv_gpu_freq(dev_priv->mem_freq,
254                                      dev_priv->rps.rpe_delay));
255 }
256
257 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
258 {
259         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
260         struct drm_device *dev = minor->dev;
261         struct drm_i915_private *dev_priv = dev->dev_private;
262         int ret;
263
264         mutex_lock(&dev_priv->rps.hw_lock);
265         if (IS_VALLEYVIEW(dev_priv->dev))
266                 ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay);
267         else
268                 ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
269         mutex_unlock(&dev_priv->rps.hw_lock);
270
271         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
272 }
273
274 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
275                                      struct device_attribute *attr,
276                                      const char *buf, size_t count)
277 {
278         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
279         struct drm_device *dev = minor->dev;
280         struct drm_i915_private *dev_priv = dev->dev_private;
281         u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
282         ssize_t ret;
283
284         ret = kstrtou32(buf, 0, &val);
285         if (ret)
286                 return ret;
287
288         mutex_lock(&dev_priv->rps.hw_lock);
289
290         if (IS_VALLEYVIEW(dev_priv->dev)) {
291                 val = vlv_freq_opcode(dev_priv->mem_freq, val);
292
293                 hw_max = valleyview_rps_max_freq(dev_priv);
294                 hw_min = valleyview_rps_min_freq(dev_priv);
295                 non_oc_max = hw_max;
296         } else {
297                 val /= GT_FREQUENCY_MULTIPLIER;
298
299                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
300                 hw_max = dev_priv->rps.hw_max;
301                 non_oc_max = (rp_state_cap & 0xff);
302                 hw_min = ((rp_state_cap & 0xff0000) >> 16);
303         }
304
305         if (val < hw_min || val > hw_max ||
306             val < dev_priv->rps.min_delay) {
307                 mutex_unlock(&dev_priv->rps.hw_lock);
308                 return -EINVAL;
309         }
310
311         if (val > non_oc_max)
312                 DRM_DEBUG("User requested overclocking to %d\n",
313                           val * GT_FREQUENCY_MULTIPLIER);
314
315         if (dev_priv->rps.cur_delay > val) {
316                 if (IS_VALLEYVIEW(dev_priv->dev))
317                         valleyview_set_rps(dev_priv->dev, val);
318                 else
319                         gen6_set_rps(dev_priv->dev, val);
320         }
321
322         dev_priv->rps.max_delay = val;
323
324         mutex_unlock(&dev_priv->rps.hw_lock);
325
326         return count;
327 }
328
329 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
330 {
331         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
332         struct drm_device *dev = minor->dev;
333         struct drm_i915_private *dev_priv = dev->dev_private;
334         int ret;
335
336         mutex_lock(&dev_priv->rps.hw_lock);
337         if (IS_VALLEYVIEW(dev_priv->dev))
338                 ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay);
339         else
340                 ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
341         mutex_unlock(&dev_priv->rps.hw_lock);
342
343         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
344 }
345
346 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
347                                      struct device_attribute *attr,
348                                      const char *buf, size_t count)
349 {
350         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
351         struct drm_device *dev = minor->dev;
352         struct drm_i915_private *dev_priv = dev->dev_private;
353         u32 val, rp_state_cap, hw_max, hw_min;
354         ssize_t ret;
355
356         ret = kstrtou32(buf, 0, &val);
357         if (ret)
358                 return ret;
359
360         mutex_lock(&dev_priv->rps.hw_lock);
361
362         if (IS_VALLEYVIEW(dev)) {
363                 val = vlv_freq_opcode(dev_priv->mem_freq, val);
364
365                 hw_max = valleyview_rps_max_freq(dev_priv);
366                 hw_min = valleyview_rps_min_freq(dev_priv);
367         } else {
368                 val /= GT_FREQUENCY_MULTIPLIER;
369
370                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
371                 hw_max = dev_priv->rps.hw_max;
372                 hw_min = ((rp_state_cap & 0xff0000) >> 16);
373         }
374
375         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
376                 mutex_unlock(&dev_priv->rps.hw_lock);
377                 return -EINVAL;
378         }
379
380         if (dev_priv->rps.cur_delay < val) {
381                 if (IS_VALLEYVIEW(dev))
382                         valleyview_set_rps(dev, val);
383                 else
384                         gen6_set_rps(dev_priv->dev, val);
385         }
386
387         dev_priv->rps.min_delay = val;
388
389         mutex_unlock(&dev_priv->rps.hw_lock);
390
391         return count;
392
393 }
394
395 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
396 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
397 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
398
399 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
400
401 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
402 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
403 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
404 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
405
406 /* For now we have a static number of RP states */
407 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
408 {
409         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
410         struct drm_device *dev = minor->dev;
411         struct drm_i915_private *dev_priv = dev->dev_private;
412         u32 val, rp_state_cap;
413         ssize_t ret;
414
415         ret = mutex_lock_interruptible(&dev->struct_mutex);
416         if (ret)
417                 return ret;
418         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
419         mutex_unlock(&dev->struct_mutex);
420
421         if (attr == &dev_attr_gt_RP0_freq_mhz) {
422                 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
423         } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
424                 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
425         } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
426                 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
427         } else {
428                 BUG();
429         }
430         return snprintf(buf, PAGE_SIZE, "%d\n", val);
431 }
432
433 static const struct attribute *gen6_attrs[] = {
434         &dev_attr_gt_cur_freq_mhz.attr,
435         &dev_attr_gt_max_freq_mhz.attr,
436         &dev_attr_gt_min_freq_mhz.attr,
437         &dev_attr_gt_RP0_freq_mhz.attr,
438         &dev_attr_gt_RP1_freq_mhz.attr,
439         &dev_attr_gt_RPn_freq_mhz.attr,
440         NULL,
441 };
442
443 static const struct attribute *vlv_attrs[] = {
444         &dev_attr_gt_cur_freq_mhz.attr,
445         &dev_attr_gt_max_freq_mhz.attr,
446         &dev_attr_gt_min_freq_mhz.attr,
447         &dev_attr_vlv_rpe_freq_mhz.attr,
448         NULL,
449 };
450
451 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
452                                 struct bin_attribute *attr, char *buf,
453                                 loff_t off, size_t count)
454 {
455
456         struct device *kdev = container_of(kobj, struct device, kobj);
457         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
458         struct drm_device *dev = minor->dev;
459         struct i915_error_state_file_priv error_priv;
460         struct drm_i915_error_state_buf error_str;
461         ssize_t ret_count = 0;
462         int ret;
463
464         memset(&error_priv, 0, sizeof(error_priv));
465
466         ret = i915_error_state_buf_init(&error_str, count, off);
467         if (ret)
468                 return ret;
469
470         error_priv.dev = dev;
471         i915_error_state_get(dev, &error_priv);
472
473         ret = i915_error_state_to_str(&error_str, &error_priv);
474         if (ret)
475                 goto out;
476
477         ret_count = count < error_str.bytes ? count : error_str.bytes;
478
479         memcpy(buf, error_str.buf, ret_count);
480 out:
481         i915_error_state_put(&error_priv);
482         i915_error_state_buf_release(&error_str);
483
484         return ret ?: ret_count;
485 }
486
487 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
488                                  struct bin_attribute *attr, char *buf,
489                                  loff_t off, size_t count)
490 {
491         struct device *kdev = container_of(kobj, struct device, kobj);
492         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
493         struct drm_device *dev = minor->dev;
494         int ret;
495
496         DRM_DEBUG_DRIVER("Resetting error state\n");
497
498         ret = mutex_lock_interruptible(&dev->struct_mutex);
499         if (ret)
500                 return ret;
501
502         i915_destroy_error_state(dev);
503         mutex_unlock(&dev->struct_mutex);
504
505         return count;
506 }
507
508 static struct bin_attribute error_state_attr = {
509         .attr.name = "error",
510         .attr.mode = S_IRUSR | S_IWUSR,
511         .size = 0,
512         .read = error_state_read,
513         .write = error_state_write,
514 };
515
516 void i915_setup_sysfs(struct drm_device *dev)
517 {
518         int ret;
519
520 #ifdef CONFIG_PM
521         if (INTEL_INFO(dev)->gen >= 6) {
522                 ret = sysfs_merge_group(&dev->primary->kdev.kobj,
523                                         &rc6_attr_group);
524                 if (ret)
525                         DRM_ERROR("RC6 residency sysfs setup failed\n");
526         }
527 #endif
528         if (HAS_L3_DPF(dev)) {
529                 ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
530                 if (ret)
531                         DRM_ERROR("l3 parity sysfs setup failed\n");
532
533                 if (NUM_L3_SLICES(dev) > 1) {
534                         ret = device_create_bin_file(&dev->primary->kdev,
535                                                      &dpf_attrs_1);
536                         if (ret)
537                                 DRM_ERROR("l3 parity slice 1 setup failed\n");
538                 }
539         }
540
541         ret = 0;
542         if (IS_VALLEYVIEW(dev))
543                 ret = sysfs_create_files(&dev->primary->kdev.kobj, vlv_attrs);
544         else if (INTEL_INFO(dev)->gen >= 6)
545                 ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
546         if (ret)
547                 DRM_ERROR("RPS sysfs setup failed\n");
548
549         ret = sysfs_create_bin_file(&dev->primary->kdev.kobj,
550                                     &error_state_attr);
551         if (ret)
552                 DRM_ERROR("error_state sysfs setup failed\n");
553 }
554
555 void i915_teardown_sysfs(struct drm_device *dev)
556 {
557         sysfs_remove_bin_file(&dev->primary->kdev.kobj, &error_state_attr);
558         if (IS_VALLEYVIEW(dev))
559                 sysfs_remove_files(&dev->primary->kdev.kobj, vlv_attrs);
560         else
561                 sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
562         device_remove_bin_file(&dev->primary->kdev,  &dpf_attrs_1);
563         device_remove_bin_file(&dev->primary->kdev,  &dpf_attrs);
564 #ifdef CONFIG_PM
565         sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
566 #endif
567 }