]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Initialize hardware semaphore state on ring init
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204         kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209                 struct drm_device *dev,
210                 uint64_t size,
211                 uint32_t *handle_p)
212 {
213         struct drm_i915_gem_object *obj;
214         int ret;
215         u32 handle;
216
217         size = roundup(size, PAGE_SIZE);
218         if (size == 0)
219                 return -EINVAL;
220
221         /* Allocate the new object */
222         obj = i915_gem_alloc_object(dev, size);
223         if (obj == NULL)
224                 return -ENOMEM;
225
226         ret = drm_gem_handle_create(file, &obj->base, &handle);
227         if (ret) {
228                 drm_gem_object_release(&obj->base);
229                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230                 i915_gem_object_free(obj);
231                 return ret;
232         }
233
234         /* drop reference from allocate - handle holds it now */
235         drm_gem_object_unreference(&obj->base);
236         trace_i915_gem_object_create(obj);
237
238         *handle_p = handle;
239         return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244                      struct drm_device *dev,
245                      struct drm_mode_create_dumb *args)
246 {
247         /* have to work out size/pitch and return them */
248         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249         args->size = args->pitch * args->height;
250         return i915_gem_create(file, dev,
251                                args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255                           struct drm_device *dev,
256                           uint32_t handle)
257 {
258         return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262  * Creates a new mm object and returns a handle to it.
263  */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266                       struct drm_file *file)
267 {
268         struct drm_i915_gem_create *args = data;
269
270         return i915_gem_create(file, dev,
271                                args->size, &args->handle);
272 }
273
274 static inline int
275 __copy_to_user_swizzled(char __user *cpu_vaddr,
276                         const char *gpu_vaddr, int gpu_offset,
277                         int length)
278 {
279         int ret, cpu_offset = 0;
280
281         while (length > 0) {
282                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283                 int this_length = min(cacheline_end - gpu_offset, length);
284                 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287                                      gpu_vaddr + swizzled_gpu_offset,
288                                      this_length);
289                 if (ret)
290                         return ret + length;
291
292                 cpu_offset += this_length;
293                 gpu_offset += this_length;
294                 length -= this_length;
295         }
296
297         return 0;
298 }
299
300 static inline int
301 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302                           const char __user *cpu_vaddr,
303                           int length)
304 {
305         int ret, cpu_offset = 0;
306
307         while (length > 0) {
308                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309                 int this_length = min(cacheline_end - gpu_offset, length);
310                 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313                                        cpu_vaddr + cpu_offset,
314                                        this_length);
315                 if (ret)
316                         return ret + length;
317
318                 cpu_offset += this_length;
319                 gpu_offset += this_length;
320                 length -= this_length;
321         }
322
323         return 0;
324 }
325
326 /* Per-page copy function for the shmem pread fastpath.
327  * Flushes invalid cachelines before reading the target if
328  * needs_clflush is set. */
329 static int
330 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331                  char __user *user_data,
332                  bool page_do_bit17_swizzling, bool needs_clflush)
333 {
334         char *vaddr;
335         int ret;
336
337         if (unlikely(page_do_bit17_swizzling))
338                 return -EINVAL;
339
340         vaddr = kmap_atomic(page);
341         if (needs_clflush)
342                 drm_clflush_virt_range(vaddr + shmem_page_offset,
343                                        page_length);
344         ret = __copy_to_user_inatomic(user_data,
345                                       vaddr + shmem_page_offset,
346                                       page_length);
347         kunmap_atomic(vaddr);
348
349         return ret ? -EFAULT : 0;
350 }
351
352 static void
353 shmem_clflush_swizzled_range(char *addr, unsigned long length,
354                              bool swizzled)
355 {
356         if (unlikely(swizzled)) {
357                 unsigned long start = (unsigned long) addr;
358                 unsigned long end = (unsigned long) addr + length;
359
360                 /* For swizzling simply ensure that we always flush both
361                  * channels. Lame, but simple and it works. Swizzled
362                  * pwrite/pread is far from a hotpath - current userspace
363                  * doesn't use it at all. */
364                 start = round_down(start, 128);
365                 end = round_up(end, 128);
366
367                 drm_clflush_virt_range((void *)start, end - start);
368         } else {
369                 drm_clflush_virt_range(addr, length);
370         }
371
372 }
373
374 /* Only difference to the fast-path function is that this can handle bit17
375  * and uses non-atomic copy and kmap functions. */
376 static int
377 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378                  char __user *user_data,
379                  bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381         char *vaddr;
382         int ret;
383
384         vaddr = kmap(page);
385         if (needs_clflush)
386                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387                                              page_length,
388                                              page_do_bit17_swizzling);
389
390         if (page_do_bit17_swizzling)
391                 ret = __copy_to_user_swizzled(user_data,
392                                               vaddr, shmem_page_offset,
393                                               page_length);
394         else
395                 ret = __copy_to_user(user_data,
396                                      vaddr + shmem_page_offset,
397                                      page_length);
398         kunmap(page);
399
400         return ret ? - EFAULT : 0;
401 }
402
403 static int
404 i915_gem_shmem_pread(struct drm_device *dev,
405                      struct drm_i915_gem_object *obj,
406                      struct drm_i915_gem_pread *args,
407                      struct drm_file *file)
408 {
409         char __user *user_data;
410         ssize_t remain;
411         loff_t offset;
412         int shmem_page_offset, page_length, ret = 0;
413         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414         int prefaulted = 0;
415         int needs_clflush = 0;
416         struct scatterlist *sg;
417         int i;
418
419         user_data = (char __user *) (uintptr_t) args->data_ptr;
420         remain = args->size;
421
422         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423
424         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425                 /* If we're not in the cpu read domain, set ourself into the gtt
426                  * read domain and manually flush cachelines (if required). This
427                  * optimizes for the case when the gpu will dirty the data
428                  * anyway again before the next pread happens. */
429                 if (obj->cache_level == I915_CACHE_NONE)
430                         needs_clflush = 1;
431                 if (obj->gtt_space) {
432                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
433                         if (ret)
434                                 return ret;
435                 }
436         }
437
438         ret = i915_gem_object_get_pages(obj);
439         if (ret)
440                 return ret;
441
442         i915_gem_object_pin_pages(obj);
443
444         offset = args->offset;
445
446         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447                 struct page *page;
448
449                 if (i < offset >> PAGE_SHIFT)
450                         continue;
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page = sg_page(sg);
466                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467                         (page_to_phys(page) & (1 << 17)) != 0;
468
469                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470                                        user_data, page_do_bit17_swizzling,
471                                        needs_clflush);
472                 if (ret == 0)
473                         goto next_page;
474
475                 mutex_unlock(&dev->struct_mutex);
476
477                 if (!prefaulted) {
478                         ret = fault_in_multipages_writeable(user_data, remain);
479                         /* Userspace is tricking us, but we've already clobbered
480                          * its pages with the prefault and promised to write the
481                          * data up to the first fault. Hence ignore any errors
482                          * and just continue. */
483                         (void)ret;
484                         prefaulted = 1;
485                 }
486
487                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488                                        user_data, page_do_bit17_swizzling,
489                                        needs_clflush);
490
491                 mutex_lock(&dev->struct_mutex);
492
493 next_page:
494                 mark_page_accessed(page);
495
496                 if (ret)
497                         goto out;
498
499                 remain -= page_length;
500                 user_data += page_length;
501                 offset += page_length;
502         }
503
504 out:
505         i915_gem_object_unpin_pages(obj);
506
507         return ret;
508 }
509
510 /**
511  * Reads data from the object referenced by handle.
512  *
513  * On error, the contents of *data are undefined.
514  */
515 int
516 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517                      struct drm_file *file)
518 {
519         struct drm_i915_gem_pread *args = data;
520         struct drm_i915_gem_object *obj;
521         int ret = 0;
522
523         if (args->size == 0)
524                 return 0;
525
526         if (!access_ok(VERIFY_WRITE,
527                        (char __user *)(uintptr_t)args->data_ptr,
528                        args->size))
529                 return -EFAULT;
530
531         ret = i915_mutex_lock_interruptible(dev);
532         if (ret)
533                 return ret;
534
535         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536         if (&obj->base == NULL) {
537                 ret = -ENOENT;
538                 goto unlock;
539         }
540
541         /* Bounds check source.  */
542         if (args->offset > obj->base.size ||
543             args->size > obj->base.size - args->offset) {
544                 ret = -EINVAL;
545                 goto out;
546         }
547
548         /* prime objects have no backing filp to GEM pread/pwrite
549          * pages from.
550          */
551         if (!obj->base.filp) {
552                 ret = -EINVAL;
553                 goto out;
554         }
555
556         trace_i915_gem_object_pread(obj, args->offset, args->size);
557
558         ret = i915_gem_shmem_pread(dev, obj, args, file);
559
560 out:
561         drm_gem_object_unreference(&obj->base);
562 unlock:
563         mutex_unlock(&dev->struct_mutex);
564         return ret;
565 }
566
567 /* This is the fast write path which cannot handle
568  * page faults in the source data
569  */
570
571 static inline int
572 fast_user_write(struct io_mapping *mapping,
573                 loff_t page_base, int page_offset,
574                 char __user *user_data,
575                 int length)
576 {
577         void __iomem *vaddr_atomic;
578         void *vaddr;
579         unsigned long unwritten;
580
581         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582         /* We can use the cpu mem copy function because this is X86. */
583         vaddr = (void __force*)vaddr_atomic + page_offset;
584         unwritten = __copy_from_user_inatomic_nocache(vaddr,
585                                                       user_data, length);
586         io_mapping_unmap_atomic(vaddr_atomic);
587         return unwritten;
588 }
589
590 /**
591  * This is the fast pwrite path, where we copy the data directly from the
592  * user into the GTT, uncached.
593  */
594 static int
595 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596                          struct drm_i915_gem_object *obj,
597                          struct drm_i915_gem_pwrite *args,
598                          struct drm_file *file)
599 {
600         drm_i915_private_t *dev_priv = dev->dev_private;
601         ssize_t remain;
602         loff_t offset, page_base;
603         char __user *user_data;
604         int page_offset, page_length, ret;
605
606         ret = i915_gem_object_pin(obj, 0, true, true);
607         if (ret)
608                 goto out;
609
610         ret = i915_gem_object_set_to_gtt_domain(obj, true);
611         if (ret)
612                 goto out_unpin;
613
614         ret = i915_gem_object_put_fence(obj);
615         if (ret)
616                 goto out_unpin;
617
618         user_data = (char __user *) (uintptr_t) args->data_ptr;
619         remain = args->size;
620
621         offset = obj->gtt_offset + args->offset;
622
623         while (remain > 0) {
624                 /* Operation in this page
625                  *
626                  * page_base = page offset within aperture
627                  * page_offset = offset within page
628                  * page_length = bytes to copy for this page
629                  */
630                 page_base = offset & PAGE_MASK;
631                 page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((page_offset + remain) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - page_offset;
635
636                 /* If we get a fault while copying data, then (presumably) our
637                  * source page isn't available.  Return the error and we'll
638                  * retry in the slow path.
639                  */
640                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
641                                     page_offset, user_data, page_length)) {
642                         ret = -EFAULT;
643                         goto out_unpin;
644                 }
645
646                 remain -= page_length;
647                 user_data += page_length;
648                 offset += page_length;
649         }
650
651 out_unpin:
652         i915_gem_object_unpin(obj);
653 out:
654         return ret;
655 }
656
657 /* Per-page copy function for the shmem pwrite fastpath.
658  * Flushes invalid cachelines before writing to the target if
659  * needs_clflush_before is set and flushes out any written cachelines after
660  * writing if needs_clflush is set. */
661 static int
662 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663                   char __user *user_data,
664                   bool page_do_bit17_swizzling,
665                   bool needs_clflush_before,
666                   bool needs_clflush_after)
667 {
668         char *vaddr;
669         int ret;
670
671         if (unlikely(page_do_bit17_swizzling))
672                 return -EINVAL;
673
674         vaddr = kmap_atomic(page);
675         if (needs_clflush_before)
676                 drm_clflush_virt_range(vaddr + shmem_page_offset,
677                                        page_length);
678         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679                                                 user_data,
680                                                 page_length);
681         if (needs_clflush_after)
682                 drm_clflush_virt_range(vaddr + shmem_page_offset,
683                                        page_length);
684         kunmap_atomic(vaddr);
685
686         return ret ? -EFAULT : 0;
687 }
688
689 /* Only difference to the fast-path function is that this can handle bit17
690  * and uses non-atomic copy and kmap functions. */
691 static int
692 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693                   char __user *user_data,
694                   bool page_do_bit17_swizzling,
695                   bool needs_clflush_before,
696                   bool needs_clflush_after)
697 {
698         char *vaddr;
699         int ret;
700
701         vaddr = kmap(page);
702         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704                                              page_length,
705                                              page_do_bit17_swizzling);
706         if (page_do_bit17_swizzling)
707                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708                                                 user_data,
709                                                 page_length);
710         else
711                 ret = __copy_from_user(vaddr + shmem_page_offset,
712                                        user_data,
713                                        page_length);
714         if (needs_clflush_after)
715                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716                                              page_length,
717                                              page_do_bit17_swizzling);
718         kunmap(page);
719
720         return ret ? -EFAULT : 0;
721 }
722
723 static int
724 i915_gem_shmem_pwrite(struct drm_device *dev,
725                       struct drm_i915_gem_object *obj,
726                       struct drm_i915_gem_pwrite *args,
727                       struct drm_file *file)
728 {
729         ssize_t remain;
730         loff_t offset;
731         char __user *user_data;
732         int shmem_page_offset, page_length, ret = 0;
733         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734         int hit_slowpath = 0;
735         int needs_clflush_after = 0;
736         int needs_clflush_before = 0;
737         int i;
738         struct scatterlist *sg;
739
740         user_data = (char __user *) (uintptr_t) args->data_ptr;
741         remain = args->size;
742
743         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746                 /* If we're not in the cpu write domain, set ourself into the gtt
747                  * write domain and manually flush cachelines (if required). This
748                  * optimizes for the case when the gpu will use the data
749                  * right away and we therefore have to clflush anyway. */
750                 if (obj->cache_level == I915_CACHE_NONE)
751                         needs_clflush_after = 1;
752                 if (obj->gtt_space) {
753                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
754                         if (ret)
755                                 return ret;
756                 }
757         }
758         /* Same trick applies for invalidate partially written cachelines before
759          * writing.  */
760         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761             && obj->cache_level == I915_CACHE_NONE)
762                 needs_clflush_before = 1;
763
764         ret = i915_gem_object_get_pages(obj);
765         if (ret)
766                 return ret;
767
768         i915_gem_object_pin_pages(obj);
769
770         offset = args->offset;
771         obj->dirty = 1;
772
773         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774                 struct page *page;
775                 int partial_cacheline_write;
776
777                 if (i < offset >> PAGE_SHIFT)
778                         continue;
779
780                 if (remain <= 0)
781                         break;
782
783                 /* Operation in this page
784                  *
785                  * shmem_page_offset = offset within page in shmem file
786                  * page_length = bytes to copy for this page
787                  */
788                 shmem_page_offset = offset_in_page(offset);
789
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 /* If we don't overwrite a cacheline completely we need to be
795                  * careful to have up-to-date data by first clflushing. Don't
796                  * overcomplicate things and flush the entire patch. */
797                 partial_cacheline_write = needs_clflush_before &&
798                         ((shmem_page_offset | page_length)
799                                 & (boot_cpu_data.x86_clflush_size - 1));
800
801                 page = sg_page(sg);
802                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803                         (page_to_phys(page) & (1 << 17)) != 0;
804
805                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806                                         user_data, page_do_bit17_swizzling,
807                                         partial_cacheline_write,
808                                         needs_clflush_after);
809                 if (ret == 0)
810                         goto next_page;
811
812                 hit_slowpath = 1;
813                 mutex_unlock(&dev->struct_mutex);
814                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815                                         user_data, page_do_bit17_swizzling,
816                                         partial_cacheline_write,
817                                         needs_clflush_after);
818
819                 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822                 set_page_dirty(page);
823                 mark_page_accessed(page);
824
825                 if (ret)
826                         goto out;
827
828                 remain -= page_length;
829                 user_data += page_length;
830                 offset += page_length;
831         }
832
833 out:
834         i915_gem_object_unpin_pages(obj);
835
836         if (hit_slowpath) {
837                 /*
838                  * Fixup: Flush cpu caches in case we didn't flush the dirty
839                  * cachelines in-line while writing and the object moved
840                  * out of the cpu write domain while we've dropped the lock.
841                  */
842                 if (!needs_clflush_after &&
843                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844                         i915_gem_clflush_object(obj);
845                         i915_gem_chipset_flush(dev);
846                 }
847         }
848
849         if (needs_clflush_after)
850                 i915_gem_chipset_flush(dev);
851
852         return ret;
853 }
854
855 /**
856  * Writes data to the object referenced by handle.
857  *
858  * On error, the contents of the buffer that were to be modified are undefined.
859  */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862                       struct drm_file *file)
863 {
864         struct drm_i915_gem_pwrite *args = data;
865         struct drm_i915_gem_object *obj;
866         int ret;
867
868         if (args->size == 0)
869                 return 0;
870
871         if (!access_ok(VERIFY_READ,
872                        (char __user *)(uintptr_t)args->data_ptr,
873                        args->size))
874                 return -EFAULT;
875
876         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877                                            args->size);
878         if (ret)
879                 return -EFAULT;
880
881         ret = i915_mutex_lock_interruptible(dev);
882         if (ret)
883                 return ret;
884
885         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886         if (&obj->base == NULL) {
887                 ret = -ENOENT;
888                 goto unlock;
889         }
890
891         /* Bounds check destination. */
892         if (args->offset > obj->base.size ||
893             args->size > obj->base.size - args->offset) {
894                 ret = -EINVAL;
895                 goto out;
896         }
897
898         /* prime objects have no backing filp to GEM pread/pwrite
899          * pages from.
900          */
901         if (!obj->base.filp) {
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
908         ret = -EFAULT;
909         /* We can only do the GTT pwrite on untiled buffers, as otherwise
910          * it would end up going through the fenced access, and we'll get
911          * different detiling behavior between reading and writing.
912          * pread/pwrite currently are reading and writing from the CPU
913          * perspective, requiring manual detiling by the client.
914          */
915         if (obj->phys_obj) {
916                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
917                 goto out;
918         }
919
920         if (obj->cache_level == I915_CACHE_NONE &&
921             obj->tiling_mode == I915_TILING_NONE &&
922             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
924                 /* Note that the gtt paths might fail with non-page-backed user
925                  * pointers (e.g. gtt mappings when moving data between
926                  * textures). Fallback to the shmem path in that case. */
927         }
928
929         if (ret == -EFAULT || ret == -ENOSPC)
930                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931
932 out:
933         drm_gem_object_unreference(&obj->base);
934 unlock:
935         mutex_unlock(&dev->struct_mutex);
936         return ret;
937 }
938
939 int
940 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941                      bool interruptible)
942 {
943         if (atomic_read(&dev_priv->mm.wedged)) {
944                 struct completion *x = &dev_priv->error_completion;
945                 bool recovery_complete;
946                 unsigned long flags;
947
948                 /* Give the error handler a chance to run. */
949                 spin_lock_irqsave(&x->wait.lock, flags);
950                 recovery_complete = x->done > 0;
951                 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953                 /* Non-interruptible callers can't handle -EAGAIN, hence return
954                  * -EIO unconditionally for these. */
955                 if (!interruptible)
956                         return -EIO;
957
958                 /* Recovery complete, but still wedged means reset failure. */
959                 if (recovery_complete)
960                         return -EIO;
961
962                 return -EAGAIN;
963         }
964
965         return 0;
966 }
967
968 /*
969  * Compare seqno against outstanding lazy request. Emit a request if they are
970  * equal.
971  */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975         int ret;
976
977         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979         ret = 0;
980         if (seqno == ring->outstanding_lazy_request)
981                 ret = i915_add_request(ring, NULL, NULL);
982
983         return ret;
984 }
985
986 /**
987  * __wait_seqno - wait until execution of seqno has finished
988  * @ring: the ring expected to report seqno
989  * @seqno: duh!
990  * @interruptible: do an interruptible wait (normally yes)
991  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992  *
993  * Returns 0 if the seqno was found within the alloted time. Else returns the
994  * errno with remaining time filled in timeout argument.
995  */
996 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997                         bool interruptible, struct timespec *timeout)
998 {
999         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000         struct timespec before, now, wait_time={1,0};
1001         unsigned long timeout_jiffies;
1002         long end;
1003         bool wait_forever = true;
1004         int ret;
1005
1006         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007                 return 0;
1008
1009         trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011         if (timeout != NULL) {
1012                 wait_time = *timeout;
1013                 wait_forever = false;
1014         }
1015
1016         timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018         if (WARN_ON(!ring->irq_get(ring)))
1019                 return -ENODEV;
1020
1021         /* Record current time in case interrupted by signal, or wedged * */
1022         getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026         atomic_read(&dev_priv->mm.wedged))
1027         do {
1028                 if (interruptible)
1029                         end = wait_event_interruptible_timeout(ring->irq_queue,
1030                                                                EXIT_COND,
1031                                                                timeout_jiffies);
1032                 else
1033                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034                                                  timeout_jiffies);
1035
1036                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037                 if (ret)
1038                         end = ret;
1039         } while (end == 0 && wait_forever);
1040
1041         getrawmonotonic(&now);
1042
1043         ring->irq_put(ring);
1044         trace_i915_gem_request_wait_end(ring, seqno);
1045 #undef EXIT_COND
1046
1047         if (timeout) {
1048                 struct timespec sleep_time = timespec_sub(now, before);
1049                 *timeout = timespec_sub(*timeout, sleep_time);
1050         }
1051
1052         switch (end) {
1053         case -EIO:
1054         case -EAGAIN: /* Wedged */
1055         case -ERESTARTSYS: /* Signal */
1056                 return (int)end;
1057         case 0: /* Timeout */
1058                 if (timeout)
1059                         set_normalized_timespec(timeout, 0, 0);
1060                 return -ETIME;
1061         default: /* Completed */
1062                 WARN_ON(end < 0); /* We're not aware of other errors */
1063                 return 0;
1064         }
1065 }
1066
1067 /**
1068  * Waits for a sequence number to be signaled, and cleans up the
1069  * request and object lists appropriately for that event.
1070  */
1071 int
1072 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073 {
1074         struct drm_device *dev = ring->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         bool interruptible = dev_priv->mm.interruptible;
1077         int ret;
1078
1079         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080         BUG_ON(seqno == 0);
1081
1082         ret = i915_gem_check_wedge(dev_priv, interruptible);
1083         if (ret)
1084                 return ret;
1085
1086         ret = i915_gem_check_olr(ring, seqno);
1087         if (ret)
1088                 return ret;
1089
1090         return __wait_seqno(ring, seqno, interruptible, NULL);
1091 }
1092
1093 /**
1094  * Ensures that all rendering to the object has completed and the object is
1095  * safe to unbind from the GTT or access from the CPU.
1096  */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099                                bool readonly)
1100 {
1101         struct intel_ring_buffer *ring = obj->ring;
1102         u32 seqno;
1103         int ret;
1104
1105         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106         if (seqno == 0)
1107                 return 0;
1108
1109         ret = i915_wait_seqno(ring, seqno);
1110         if (ret)
1111                 return ret;
1112
1113         i915_gem_retire_requests_ring(ring);
1114
1115         /* Manually manage the write flush as we may have not yet
1116          * retired the buffer.
1117          */
1118         if (obj->last_write_seqno &&
1119             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120                 obj->last_write_seqno = 0;
1121                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122         }
1123
1124         return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128  * as the object state may change during this call.
1129  */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132                                             bool readonly)
1133 {
1134         struct drm_device *dev = obj->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         struct intel_ring_buffer *ring = obj->ring;
1137         u32 seqno;
1138         int ret;
1139
1140         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141         BUG_ON(!dev_priv->mm.interruptible);
1142
1143         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144         if (seqno == 0)
1145                 return 0;
1146
1147         ret = i915_gem_check_wedge(dev_priv, true);
1148         if (ret)
1149                 return ret;
1150
1151         ret = i915_gem_check_olr(ring, seqno);
1152         if (ret)
1153                 return ret;
1154
1155         mutex_unlock(&dev->struct_mutex);
1156         ret = __wait_seqno(ring, seqno, true, NULL);
1157         mutex_lock(&dev->struct_mutex);
1158
1159         i915_gem_retire_requests_ring(ring);
1160
1161         /* Manually manage the write flush as we may have not yet
1162          * retired the buffer.
1163          */
1164         if (obj->last_write_seqno &&
1165             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166                 obj->last_write_seqno = 0;
1167                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168         }
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Access to snoopable pages through the GTT is incoherent. */
1345         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346                 ret = -EINVAL;
1347                 goto unlock;
1348         }
1349
1350         /* Now bind it into the GTT if needed */
1351         ret = i915_gem_object_pin(obj, 0, true, false);
1352         if (ret)
1353                 goto unlock;
1354
1355         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356         if (ret)
1357                 goto unpin;
1358
1359         ret = i915_gem_object_get_fence(obj);
1360         if (ret)
1361                 goto unpin;
1362
1363         obj->fault_mappable = true;
1364
1365         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1366                 page_offset;
1367
1368         /* Finally, remap it using the new GTT offset */
1369         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371         i915_gem_object_unpin(obj);
1372 unlock:
1373         mutex_unlock(&dev->struct_mutex);
1374 out:
1375         switch (ret) {
1376         case -EIO:
1377                 /* If this -EIO is due to a gpu hang, give the reset code a
1378                  * chance to clean up the mess. Otherwise return the proper
1379                  * SIGBUS. */
1380                 if (!atomic_read(&dev_priv->mm.wedged))
1381                         return VM_FAULT_SIGBUS;
1382         case -EAGAIN:
1383                 /* Give the error handler a chance to run and move the
1384                  * objects off the GPU active list. Next time we service the
1385                  * fault, we should be able to transition the page into the
1386                  * GTT without touching the GPU (and so avoid further
1387                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388                  * with coherency, just lost writes.
1389                  */
1390                 set_need_resched();
1391         case 0:
1392         case -ERESTARTSYS:
1393         case -EINTR:
1394         case -EBUSY:
1395                 /*
1396                  * EBUSY is ok: this just means that another thread
1397                  * already did the job.
1398                  */
1399                 return VM_FAULT_NOPAGE;
1400         case -ENOMEM:
1401                 return VM_FAULT_OOM;
1402         case -ENOSPC:
1403                 return VM_FAULT_SIGBUS;
1404         default:
1405                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406                 return VM_FAULT_SIGBUS;
1407         }
1408 }
1409
1410 /**
1411  * i915_gem_release_mmap - remove physical page mappings
1412  * @obj: obj in question
1413  *
1414  * Preserve the reservation of the mmapping with the DRM core code, but
1415  * relinquish ownership of the pages back to the system.
1416  *
1417  * It is vital that we remove the page mapping if we have mapped a tiled
1418  * object through the GTT and then lose the fence register due to
1419  * resource pressure. Similarly if the object has been moved out of the
1420  * aperture, than pages mapped into userspace must be revoked. Removing the
1421  * mapping will then trigger a page fault on the next user access, allowing
1422  * fixup by i915_gem_fault().
1423  */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427         if (!obj->fault_mappable)
1428                 return;
1429
1430         if (obj->base.dev->dev_mapping)
1431                 unmap_mapping_range(obj->base.dev->dev_mapping,
1432                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433                                     obj->base.size, 1);
1434
1435         obj->fault_mappable = false;
1436 }
1437
1438 static uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441         uint32_t gtt_size;
1442
1443         if (INTEL_INFO(dev)->gen >= 4 ||
1444             tiling_mode == I915_TILING_NONE)
1445                 return size;
1446
1447         /* Previous chips need a power-of-two fence region when tiling */
1448         if (INTEL_INFO(dev)->gen == 3)
1449                 gtt_size = 1024*1024;
1450         else
1451                 gtt_size = 512*1024;
1452
1453         while (gtt_size < size)
1454                 gtt_size <<= 1;
1455
1456         return gtt_size;
1457 }
1458
1459 /**
1460  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461  * @obj: object to check
1462  *
1463  * Return the required GTT alignment for an object, taking into account
1464  * potential fence register mapping.
1465  */
1466 static uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev,
1468                            uint32_t size,
1469                            int tiling_mode)
1470 {
1471         /*
1472          * Minimum alignment is 4k (GTT page size), but might be greater
1473          * if a fence register is needed for the object.
1474          */
1475         if (INTEL_INFO(dev)->gen >= 4 ||
1476             tiling_mode == I915_TILING_NONE)
1477                 return 4096;
1478
1479         /*
1480          * Previous chips need to be aligned to the size of the smallest
1481          * fence register that can contain the object.
1482          */
1483         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 }
1485
1486 /**
1487  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1488  *                                       unfenced object
1489  * @dev: the device
1490  * @size: size of the object
1491  * @tiling_mode: tiling mode of the object
1492  *
1493  * Return the required GTT alignment for an object, only taking into account
1494  * unfenced tiled surface requirements.
1495  */
1496 uint32_t
1497 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1498                                     uint32_t size,
1499                                     int tiling_mode)
1500 {
1501         /*
1502          * Minimum alignment is 4k (GTT page size) for sane hw.
1503          */
1504         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1505             tiling_mode == I915_TILING_NONE)
1506                 return 4096;
1507
1508         /* Previous hardware however needs to be aligned to a power-of-two
1509          * tile height. The simplest method for determining this is to reuse
1510          * the power-of-tile object size.
1511          */
1512         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1513 }
1514
1515 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1516 {
1517         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1518         int ret;
1519
1520         if (obj->base.map_list.map)
1521                 return 0;
1522
1523         ret = drm_gem_create_mmap_offset(&obj->base);
1524         if (ret != -ENOSPC)
1525                 return ret;
1526
1527         /* Badly fragmented mmap space? The only way we can recover
1528          * space is by destroying unwanted objects. We can't randomly release
1529          * mmap_offsets as userspace expects them to be persistent for the
1530          * lifetime of the objects. The closest we can is to release the
1531          * offsets on purgeable objects by truncating it and marking it purged,
1532          * which prevents userspace from ever using that object again.
1533          */
1534         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1535         ret = drm_gem_create_mmap_offset(&obj->base);
1536         if (ret != -ENOSPC)
1537                 return ret;
1538
1539         i915_gem_shrink_all(dev_priv);
1540         return drm_gem_create_mmap_offset(&obj->base);
1541 }
1542
1543 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1544 {
1545         if (!obj->base.map_list.map)
1546                 return;
1547
1548         drm_gem_free_mmap_offset(&obj->base);
1549 }
1550
1551 int
1552 i915_gem_mmap_gtt(struct drm_file *file,
1553                   struct drm_device *dev,
1554                   uint32_t handle,
1555                   uint64_t *offset)
1556 {
1557         struct drm_i915_private *dev_priv = dev->dev_private;
1558         struct drm_i915_gem_object *obj;
1559         int ret;
1560
1561         ret = i915_mutex_lock_interruptible(dev);
1562         if (ret)
1563                 return ret;
1564
1565         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1566         if (&obj->base == NULL) {
1567                 ret = -ENOENT;
1568                 goto unlock;
1569         }
1570
1571         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1572                 ret = -E2BIG;
1573                 goto out;
1574         }
1575
1576         if (obj->madv != I915_MADV_WILLNEED) {
1577                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1578                 ret = -EINVAL;
1579                 goto out;
1580         }
1581
1582         ret = i915_gem_object_create_mmap_offset(obj);
1583         if (ret)
1584                 goto out;
1585
1586         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1587
1588 out:
1589         drm_gem_object_unreference(&obj->base);
1590 unlock:
1591         mutex_unlock(&dev->struct_mutex);
1592         return ret;
1593 }
1594
1595 /**
1596  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1597  * @dev: DRM device
1598  * @data: GTT mapping ioctl data
1599  * @file: GEM object info
1600  *
1601  * Simply returns the fake offset to userspace so it can mmap it.
1602  * The mmap call will end up in drm_gem_mmap(), which will set things
1603  * up so we can get faults in the handler above.
1604  *
1605  * The fault handler will take care of binding the object into the GTT
1606  * (since it may have been evicted to make room for something), allocating
1607  * a fence register, and mapping the appropriate aperture address into
1608  * userspace.
1609  */
1610 int
1611 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1612                         struct drm_file *file)
1613 {
1614         struct drm_i915_gem_mmap_gtt *args = data;
1615
1616         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1617 }
1618
1619 /* Immediately discard the backing storage */
1620 static void
1621 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1622 {
1623         struct inode *inode;
1624
1625         i915_gem_object_free_mmap_offset(obj);
1626
1627         if (obj->base.filp == NULL)
1628                 return;
1629
1630         /* Our goal here is to return as much of the memory as
1631          * is possible back to the system as we are called from OOM.
1632          * To do this we must instruct the shmfs to drop all of its
1633          * backing pages, *now*.
1634          */
1635         inode = obj->base.filp->f_path.dentry->d_inode;
1636         shmem_truncate_range(inode, 0, (loff_t)-1);
1637
1638         obj->madv = __I915_MADV_PURGED;
1639 }
1640
1641 static inline int
1642 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1643 {
1644         return obj->madv == I915_MADV_DONTNEED;
1645 }
1646
1647 static void
1648 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1649 {
1650         int page_count = obj->base.size / PAGE_SIZE;
1651         struct scatterlist *sg;
1652         int ret, i;
1653
1654         BUG_ON(obj->madv == __I915_MADV_PURGED);
1655
1656         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1657         if (ret) {
1658                 /* In the event of a disaster, abandon all caches and
1659                  * hope for the best.
1660                  */
1661                 WARN_ON(ret != -EIO);
1662                 i915_gem_clflush_object(obj);
1663                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1664         }
1665
1666         if (i915_gem_object_needs_bit17_swizzle(obj))
1667                 i915_gem_object_save_bit_17_swizzle(obj);
1668
1669         if (obj->madv == I915_MADV_DONTNEED)
1670                 obj->dirty = 0;
1671
1672         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1673                 struct page *page = sg_page(sg);
1674
1675                 if (obj->dirty)
1676                         set_page_dirty(page);
1677
1678                 if (obj->madv == I915_MADV_WILLNEED)
1679                         mark_page_accessed(page);
1680
1681                 page_cache_release(page);
1682         }
1683         obj->dirty = 0;
1684
1685         sg_free_table(obj->pages);
1686         kfree(obj->pages);
1687 }
1688
1689 static int
1690 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1691 {
1692         const struct drm_i915_gem_object_ops *ops = obj->ops;
1693
1694         if (obj->pages == NULL)
1695                 return 0;
1696
1697         BUG_ON(obj->gtt_space);
1698
1699         if (obj->pages_pin_count)
1700                 return -EBUSY;
1701
1702         ops->put_pages(obj);
1703         obj->pages = NULL;
1704
1705         list_del(&obj->gtt_list);
1706         if (i915_gem_object_is_purgeable(obj))
1707                 i915_gem_object_truncate(obj);
1708
1709         return 0;
1710 }
1711
1712 static long
1713 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1714 {
1715         struct drm_i915_gem_object *obj, *next;
1716         long count = 0;
1717
1718         list_for_each_entry_safe(obj, next,
1719                                  &dev_priv->mm.unbound_list,
1720                                  gtt_list) {
1721                 if (i915_gem_object_is_purgeable(obj) &&
1722                     i915_gem_object_put_pages(obj) == 0) {
1723                         count += obj->base.size >> PAGE_SHIFT;
1724                         if (count >= target)
1725                                 return count;
1726                 }
1727         }
1728
1729         list_for_each_entry_safe(obj, next,
1730                                  &dev_priv->mm.inactive_list,
1731                                  mm_list) {
1732                 if (i915_gem_object_is_purgeable(obj) &&
1733                     i915_gem_object_unbind(obj) == 0 &&
1734                     i915_gem_object_put_pages(obj) == 0) {
1735                         count += obj->base.size >> PAGE_SHIFT;
1736                         if (count >= target)
1737                                 return count;
1738                 }
1739         }
1740
1741         return count;
1742 }
1743
1744 static void
1745 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1746 {
1747         struct drm_i915_gem_object *obj, *next;
1748
1749         i915_gem_evict_everything(dev_priv->dev);
1750
1751         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1752                 i915_gem_object_put_pages(obj);
1753 }
1754
1755 static int
1756 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1757 {
1758         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1759         int page_count, i;
1760         struct address_space *mapping;
1761         struct sg_table *st;
1762         struct scatterlist *sg;
1763         struct page *page;
1764         gfp_t gfp;
1765
1766         /* Assert that the object is not currently in any GPU domain. As it
1767          * wasn't in the GTT, there shouldn't be any way it could have been in
1768          * a GPU cache
1769          */
1770         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1771         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1772
1773         st = kmalloc(sizeof(*st), GFP_KERNEL);
1774         if (st == NULL)
1775                 return -ENOMEM;
1776
1777         page_count = obj->base.size / PAGE_SIZE;
1778         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1779                 sg_free_table(st);
1780                 kfree(st);
1781                 return -ENOMEM;
1782         }
1783
1784         /* Get the list of pages out of our struct file.  They'll be pinned
1785          * at this point until we release them.
1786          *
1787          * Fail silently without starting the shrinker
1788          */
1789         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1790         gfp = mapping_gfp_mask(mapping);
1791         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1792         gfp &= ~(__GFP_IO | __GFP_WAIT);
1793         for_each_sg(st->sgl, sg, page_count, i) {
1794                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795                 if (IS_ERR(page)) {
1796                         i915_gem_purge(dev_priv, page_count);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                 }
1799                 if (IS_ERR(page)) {
1800                         /* We've tried hard to allocate the memory by reaping
1801                          * our own buffer, now let the real VM do its job and
1802                          * go down in flames if truly OOM.
1803                          */
1804                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1805                         gfp |= __GFP_IO | __GFP_WAIT;
1806
1807                         i915_gem_shrink_all(dev_priv);
1808                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809                         if (IS_ERR(page))
1810                                 goto err_pages;
1811
1812                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1813                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1814                 }
1815
1816                 sg_set_page(sg, page, PAGE_SIZE, 0);
1817         }
1818
1819         obj->pages = st;
1820
1821         if (i915_gem_object_needs_bit17_swizzle(obj))
1822                 i915_gem_object_do_bit_17_swizzle(obj);
1823
1824         return 0;
1825
1826 err_pages:
1827         for_each_sg(st->sgl, sg, i, page_count)
1828                 page_cache_release(sg_page(sg));
1829         sg_free_table(st);
1830         kfree(st);
1831         return PTR_ERR(page);
1832 }
1833
1834 /* Ensure that the associated pages are gathered from the backing storage
1835  * and pinned into our object. i915_gem_object_get_pages() may be called
1836  * multiple times before they are released by a single call to
1837  * i915_gem_object_put_pages() - once the pages are no longer referenced
1838  * either as a result of memory pressure (reaping pages under the shrinker)
1839  * or as the object is itself released.
1840  */
1841 int
1842 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1843 {
1844         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1845         const struct drm_i915_gem_object_ops *ops = obj->ops;
1846         int ret;
1847
1848         if (obj->pages)
1849                 return 0;
1850
1851         BUG_ON(obj->pages_pin_count);
1852
1853         ret = ops->get_pages(obj);
1854         if (ret)
1855                 return ret;
1856
1857         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1858         return 0;
1859 }
1860
1861 void
1862 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1863                                struct intel_ring_buffer *ring)
1864 {
1865         struct drm_device *dev = obj->base.dev;
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         u32 seqno = intel_ring_get_seqno(ring);
1868
1869         BUG_ON(ring == NULL);
1870         obj->ring = ring;
1871
1872         /* Add a reference if we're newly entering the active list. */
1873         if (!obj->active) {
1874                 drm_gem_object_reference(&obj->base);
1875                 obj->active = 1;
1876         }
1877
1878         /* Move from whatever list we were on to the tail of execution. */
1879         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1880         list_move_tail(&obj->ring_list, &ring->active_list);
1881
1882         obj->last_read_seqno = seqno;
1883
1884         if (obj->fenced_gpu_access) {
1885                 obj->last_fenced_seqno = seqno;
1886
1887                 /* Bump MRU to take account of the delayed flush */
1888                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1889                         struct drm_i915_fence_reg *reg;
1890
1891                         reg = &dev_priv->fence_regs[obj->fence_reg];
1892                         list_move_tail(&reg->lru_list,
1893                                        &dev_priv->mm.fence_list);
1894                 }
1895         }
1896 }
1897
1898 static void
1899 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1900 {
1901         struct drm_device *dev = obj->base.dev;
1902         struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1905         BUG_ON(!obj->active);
1906
1907         if (obj->pin_count) /* are we a framebuffer? */
1908                 intel_mark_fb_idle(obj);
1909
1910         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1911
1912         list_del_init(&obj->ring_list);
1913         obj->ring = NULL;
1914
1915         obj->last_read_seqno = 0;
1916         obj->last_write_seqno = 0;
1917         obj->base.write_domain = 0;
1918
1919         obj->last_fenced_seqno = 0;
1920         obj->fenced_gpu_access = false;
1921
1922         obj->active = 0;
1923         drm_gem_object_unreference(&obj->base);
1924
1925         WARN_ON(i915_verify_lists(dev));
1926 }
1927
1928 static int
1929 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1930 {
1931         struct drm_i915_private *dev_priv = dev->dev_private;
1932         struct intel_ring_buffer *ring;
1933         int ret, i, j;
1934
1935         /* The hardware uses various monotonic 32-bit counters, if we
1936          * detect that they will wraparound we need to idle the GPU
1937          * and reset those counters.
1938          */
1939         ret = 0;
1940         for_each_ring(ring, dev_priv, i) {
1941                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1942                         ret |= ring->sync_seqno[j] != 0;
1943         }
1944         if (ret == 0)
1945                 return ret;
1946
1947         /* Carefully retire all requests without writing to the rings */
1948         for_each_ring(ring, dev_priv, i) {
1949                 ret = intel_ring_idle(ring);
1950                 if (ret)
1951                         return ret;
1952         }
1953         i915_gem_retire_requests(dev);
1954
1955         /* Finally reset hw state */
1956         for_each_ring(ring, dev_priv, i) {
1957                 intel_ring_init_seqno(ring, 0);
1958
1959                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1960                         ring->sync_seqno[j] = 0;
1961         }
1962
1963         return 0;
1964 }
1965
1966 int
1967 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1968 {
1969         struct drm_i915_private *dev_priv = dev->dev_private;
1970
1971         /* reserve 0 for non-seqno */
1972         if (dev_priv->next_seqno == 0) {
1973                 int ret = i915_gem_handle_seqno_wrap(dev);
1974                 if (ret)
1975                         return ret;
1976
1977                 dev_priv->next_seqno = 1;
1978         }
1979
1980         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1981         return 0;
1982 }
1983
1984 int
1985 i915_add_request(struct intel_ring_buffer *ring,
1986                  struct drm_file *file,
1987                  u32 *out_seqno)
1988 {
1989         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1990         struct drm_i915_gem_request *request;
1991         u32 request_ring_position;
1992         int was_empty;
1993         int ret;
1994
1995         /*
1996          * Emit any outstanding flushes - execbuf can fail to emit the flush
1997          * after having emitted the batchbuffer command. Hence we need to fix
1998          * things up similar to emitting the lazy request. The difference here
1999          * is that the flush _must_ happen before the next request, no matter
2000          * what.
2001          */
2002         ret = intel_ring_flush_all_caches(ring);
2003         if (ret)
2004                 return ret;
2005
2006         request = kmalloc(sizeof(*request), GFP_KERNEL);
2007         if (request == NULL)
2008                 return -ENOMEM;
2009
2010
2011         /* Record the position of the start of the request so that
2012          * should we detect the updated seqno part-way through the
2013          * GPU processing the request, we never over-estimate the
2014          * position of the head.
2015          */
2016         request_ring_position = intel_ring_get_tail(ring);
2017
2018         ret = ring->add_request(ring);
2019         if (ret) {
2020                 kfree(request);
2021                 return ret;
2022         }
2023
2024         request->seqno = intel_ring_get_seqno(ring);
2025         request->ring = ring;
2026         request->tail = request_ring_position;
2027         request->emitted_jiffies = jiffies;
2028         was_empty = list_empty(&ring->request_list);
2029         list_add_tail(&request->list, &ring->request_list);
2030         request->file_priv = NULL;
2031
2032         if (file) {
2033                 struct drm_i915_file_private *file_priv = file->driver_priv;
2034
2035                 spin_lock(&file_priv->mm.lock);
2036                 request->file_priv = file_priv;
2037                 list_add_tail(&request->client_list,
2038                               &file_priv->mm.request_list);
2039                 spin_unlock(&file_priv->mm.lock);
2040         }
2041
2042         trace_i915_gem_request_add(ring, request->seqno);
2043         ring->outstanding_lazy_request = 0;
2044
2045         if (!dev_priv->mm.suspended) {
2046                 if (i915_enable_hangcheck) {
2047                         mod_timer(&dev_priv->hangcheck_timer,
2048                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2049                 }
2050                 if (was_empty) {
2051                         queue_delayed_work(dev_priv->wq,
2052                                            &dev_priv->mm.retire_work,
2053                                            round_jiffies_up_relative(HZ));
2054                         intel_mark_busy(dev_priv->dev);
2055                 }
2056         }
2057
2058         if (out_seqno)
2059                 *out_seqno = request->seqno;
2060         return 0;
2061 }
2062
2063 static inline void
2064 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2065 {
2066         struct drm_i915_file_private *file_priv = request->file_priv;
2067
2068         if (!file_priv)
2069                 return;
2070
2071         spin_lock(&file_priv->mm.lock);
2072         if (request->file_priv) {
2073                 list_del(&request->client_list);
2074                 request->file_priv = NULL;
2075         }
2076         spin_unlock(&file_priv->mm.lock);
2077 }
2078
2079 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2080                                       struct intel_ring_buffer *ring)
2081 {
2082         while (!list_empty(&ring->request_list)) {
2083                 struct drm_i915_gem_request *request;
2084
2085                 request = list_first_entry(&ring->request_list,
2086                                            struct drm_i915_gem_request,
2087                                            list);
2088
2089                 list_del(&request->list);
2090                 i915_gem_request_remove_from_client(request);
2091                 kfree(request);
2092         }
2093
2094         while (!list_empty(&ring->active_list)) {
2095                 struct drm_i915_gem_object *obj;
2096
2097                 obj = list_first_entry(&ring->active_list,
2098                                        struct drm_i915_gem_object,
2099                                        ring_list);
2100
2101                 i915_gem_object_move_to_inactive(obj);
2102         }
2103 }
2104
2105 static void i915_gem_reset_fences(struct drm_device *dev)
2106 {
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         int i;
2109
2110         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2111                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2112
2113                 i915_gem_write_fence(dev, i, NULL);
2114
2115                 if (reg->obj)
2116                         i915_gem_object_fence_lost(reg->obj);
2117
2118                 reg->pin_count = 0;
2119                 reg->obj = NULL;
2120                 INIT_LIST_HEAD(&reg->lru_list);
2121         }
2122
2123         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2124 }
2125
2126 void i915_gem_reset(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct drm_i915_gem_object *obj;
2130         struct intel_ring_buffer *ring;
2131         int i;
2132
2133         for_each_ring(ring, dev_priv, i)
2134                 i915_gem_reset_ring_lists(dev_priv, ring);
2135
2136         /* Move everything out of the GPU domains to ensure we do any
2137          * necessary invalidation upon reuse.
2138          */
2139         list_for_each_entry(obj,
2140                             &dev_priv->mm.inactive_list,
2141                             mm_list)
2142         {
2143                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2144         }
2145
2146         /* The fence registers are invalidated so clear them out */
2147         i915_gem_reset_fences(dev);
2148 }
2149
2150 /**
2151  * This function clears the request list as sequence numbers are passed.
2152  */
2153 void
2154 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2155 {
2156         uint32_t seqno;
2157
2158         if (list_empty(&ring->request_list))
2159                 return;
2160
2161         WARN_ON(i915_verify_lists(ring->dev));
2162
2163         seqno = ring->get_seqno(ring, true);
2164
2165         while (!list_empty(&ring->request_list)) {
2166                 struct drm_i915_gem_request *request;
2167
2168                 request = list_first_entry(&ring->request_list,
2169                                            struct drm_i915_gem_request,
2170                                            list);
2171
2172                 if (!i915_seqno_passed(seqno, request->seqno))
2173                         break;
2174
2175                 trace_i915_gem_request_retire(ring, request->seqno);
2176                 /* We know the GPU must have read the request to have
2177                  * sent us the seqno + interrupt, so use the position
2178                  * of tail of the request to update the last known position
2179                  * of the GPU head.
2180                  */
2181                 ring->last_retired_head = request->tail;
2182
2183                 list_del(&request->list);
2184                 i915_gem_request_remove_from_client(request);
2185                 kfree(request);
2186         }
2187
2188         /* Move any buffers on the active list that are no longer referenced
2189          * by the ringbuffer to the flushing/inactive lists as appropriate.
2190          */
2191         while (!list_empty(&ring->active_list)) {
2192                 struct drm_i915_gem_object *obj;
2193
2194                 obj = list_first_entry(&ring->active_list,
2195                                       struct drm_i915_gem_object,
2196                                       ring_list);
2197
2198                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2199                         break;
2200
2201                 i915_gem_object_move_to_inactive(obj);
2202         }
2203
2204         if (unlikely(ring->trace_irq_seqno &&
2205                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2206                 ring->irq_put(ring);
2207                 ring->trace_irq_seqno = 0;
2208         }
2209
2210         WARN_ON(i915_verify_lists(ring->dev));
2211 }
2212
2213 void
2214 i915_gem_retire_requests(struct drm_device *dev)
2215 {
2216         drm_i915_private_t *dev_priv = dev->dev_private;
2217         struct intel_ring_buffer *ring;
2218         int i;
2219
2220         for_each_ring(ring, dev_priv, i)
2221                 i915_gem_retire_requests_ring(ring);
2222 }
2223
2224 static void
2225 i915_gem_retire_work_handler(struct work_struct *work)
2226 {
2227         drm_i915_private_t *dev_priv;
2228         struct drm_device *dev;
2229         struct intel_ring_buffer *ring;
2230         bool idle;
2231         int i;
2232
2233         dev_priv = container_of(work, drm_i915_private_t,
2234                                 mm.retire_work.work);
2235         dev = dev_priv->dev;
2236
2237         /* Come back later if the device is busy... */
2238         if (!mutex_trylock(&dev->struct_mutex)) {
2239                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2240                                    round_jiffies_up_relative(HZ));
2241                 return;
2242         }
2243
2244         i915_gem_retire_requests(dev);
2245
2246         /* Send a periodic flush down the ring so we don't hold onto GEM
2247          * objects indefinitely.
2248          */
2249         idle = true;
2250         for_each_ring(ring, dev_priv, i) {
2251                 if (ring->gpu_caches_dirty)
2252                         i915_add_request(ring, NULL, NULL);
2253
2254                 idle &= list_empty(&ring->request_list);
2255         }
2256
2257         if (!dev_priv->mm.suspended && !idle)
2258                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2259                                    round_jiffies_up_relative(HZ));
2260         if (idle)
2261                 intel_mark_idle(dev);
2262
2263         mutex_unlock(&dev->struct_mutex);
2264 }
2265
2266 /**
2267  * Ensures that an object will eventually get non-busy by flushing any required
2268  * write domains, emitting any outstanding lazy request and retiring and
2269  * completed requests.
2270  */
2271 static int
2272 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2273 {
2274         int ret;
2275
2276         if (obj->active) {
2277                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2278                 if (ret)
2279                         return ret;
2280
2281                 i915_gem_retire_requests_ring(obj->ring);
2282         }
2283
2284         return 0;
2285 }
2286
2287 /**
2288  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2289  * @DRM_IOCTL_ARGS: standard ioctl arguments
2290  *
2291  * Returns 0 if successful, else an error is returned with the remaining time in
2292  * the timeout parameter.
2293  *  -ETIME: object is still busy after timeout
2294  *  -ERESTARTSYS: signal interrupted the wait
2295  *  -ENONENT: object doesn't exist
2296  * Also possible, but rare:
2297  *  -EAGAIN: GPU wedged
2298  *  -ENOMEM: damn
2299  *  -ENODEV: Internal IRQ fail
2300  *  -E?: The add request failed
2301  *
2302  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2303  * non-zero timeout parameter the wait ioctl will wait for the given number of
2304  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2305  * without holding struct_mutex the object may become re-busied before this
2306  * function completes. A similar but shorter * race condition exists in the busy
2307  * ioctl
2308  */
2309 int
2310 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2311 {
2312         struct drm_i915_gem_wait *args = data;
2313         struct drm_i915_gem_object *obj;
2314         struct intel_ring_buffer *ring = NULL;
2315         struct timespec timeout_stack, *timeout = NULL;
2316         u32 seqno = 0;
2317         int ret = 0;
2318
2319         if (args->timeout_ns >= 0) {
2320                 timeout_stack = ns_to_timespec(args->timeout_ns);
2321                 timeout = &timeout_stack;
2322         }
2323
2324         ret = i915_mutex_lock_interruptible(dev);
2325         if (ret)
2326                 return ret;
2327
2328         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2329         if (&obj->base == NULL) {
2330                 mutex_unlock(&dev->struct_mutex);
2331                 return -ENOENT;
2332         }
2333
2334         /* Need to make sure the object gets inactive eventually. */
2335         ret = i915_gem_object_flush_active(obj);
2336         if (ret)
2337                 goto out;
2338
2339         if (obj->active) {
2340                 seqno = obj->last_read_seqno;
2341                 ring = obj->ring;
2342         }
2343
2344         if (seqno == 0)
2345                  goto out;
2346
2347         /* Do this after OLR check to make sure we make forward progress polling
2348          * on this IOCTL with a 0 timeout (like busy ioctl)
2349          */
2350         if (!args->timeout_ns) {
2351                 ret = -ETIME;
2352                 goto out;
2353         }
2354
2355         drm_gem_object_unreference(&obj->base);
2356         mutex_unlock(&dev->struct_mutex);
2357
2358         ret = __wait_seqno(ring, seqno, true, timeout);
2359         if (timeout) {
2360                 WARN_ON(!timespec_valid(timeout));
2361                 args->timeout_ns = timespec_to_ns(timeout);
2362         }
2363         return ret;
2364
2365 out:
2366         drm_gem_object_unreference(&obj->base);
2367         mutex_unlock(&dev->struct_mutex);
2368         return ret;
2369 }
2370
2371 /**
2372  * i915_gem_object_sync - sync an object to a ring.
2373  *
2374  * @obj: object which may be in use on another ring.
2375  * @to: ring we wish to use the object on. May be NULL.
2376  *
2377  * This code is meant to abstract object synchronization with the GPU.
2378  * Calling with NULL implies synchronizing the object with the CPU
2379  * rather than a particular GPU ring.
2380  *
2381  * Returns 0 if successful, else propagates up the lower layer error.
2382  */
2383 int
2384 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2385                      struct intel_ring_buffer *to)
2386 {
2387         struct intel_ring_buffer *from = obj->ring;
2388         u32 seqno;
2389         int ret, idx;
2390
2391         if (from == NULL || to == from)
2392                 return 0;
2393
2394         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2395                 return i915_gem_object_wait_rendering(obj, false);
2396
2397         idx = intel_ring_sync_index(from, to);
2398
2399         seqno = obj->last_read_seqno;
2400         if (seqno <= from->sync_seqno[idx])
2401                 return 0;
2402
2403         ret = i915_gem_check_olr(obj->ring, seqno);
2404         if (ret)
2405                 return ret;
2406
2407         ret = to->sync_to(to, from, seqno);
2408         if (!ret)
2409                 /* We use last_read_seqno because sync_to()
2410                  * might have just caused seqno wrap under
2411                  * the radar.
2412                  */
2413                 from->sync_seqno[idx] = obj->last_read_seqno;
2414
2415         return ret;
2416 }
2417
2418 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2419 {
2420         u32 old_write_domain, old_read_domains;
2421
2422         /* Act a barrier for all accesses through the GTT */
2423         mb();
2424
2425         /* Force a pagefault for domain tracking on next user access */
2426         i915_gem_release_mmap(obj);
2427
2428         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2429                 return;
2430
2431         old_read_domains = obj->base.read_domains;
2432         old_write_domain = obj->base.write_domain;
2433
2434         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2435         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2436
2437         trace_i915_gem_object_change_domain(obj,
2438                                             old_read_domains,
2439                                             old_write_domain);
2440 }
2441
2442 /**
2443  * Unbinds an object from the GTT aperture.
2444  */
2445 int
2446 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2447 {
2448         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2449         int ret = 0;
2450
2451         if (obj->gtt_space == NULL)
2452                 return 0;
2453
2454         if (obj->pin_count)
2455                 return -EBUSY;
2456
2457         BUG_ON(obj->pages == NULL);
2458
2459         ret = i915_gem_object_finish_gpu(obj);
2460         if (ret)
2461                 return ret;
2462         /* Continue on if we fail due to EIO, the GPU is hung so we
2463          * should be safe and we need to cleanup or else we might
2464          * cause memory corruption through use-after-free.
2465          */
2466
2467         i915_gem_object_finish_gtt(obj);
2468
2469         /* release the fence reg _after_ flushing */
2470         ret = i915_gem_object_put_fence(obj);
2471         if (ret)
2472                 return ret;
2473
2474         trace_i915_gem_object_unbind(obj);
2475
2476         if (obj->has_global_gtt_mapping)
2477                 i915_gem_gtt_unbind_object(obj);
2478         if (obj->has_aliasing_ppgtt_mapping) {
2479                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2480                 obj->has_aliasing_ppgtt_mapping = 0;
2481         }
2482         i915_gem_gtt_finish_object(obj);
2483
2484         list_del(&obj->mm_list);
2485         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2486         /* Avoid an unnecessary call to unbind on rebind. */
2487         obj->map_and_fenceable = true;
2488
2489         drm_mm_put_block(obj->gtt_space);
2490         obj->gtt_space = NULL;
2491         obj->gtt_offset = 0;
2492
2493         return 0;
2494 }
2495
2496 int i915_gpu_idle(struct drm_device *dev)
2497 {
2498         drm_i915_private_t *dev_priv = dev->dev_private;
2499         struct intel_ring_buffer *ring;
2500         int ret, i;
2501
2502         /* Flush everything onto the inactive list. */
2503         for_each_ring(ring, dev_priv, i) {
2504                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2505                 if (ret)
2506                         return ret;
2507
2508                 ret = intel_ring_idle(ring);
2509                 if (ret)
2510                         return ret;
2511         }
2512
2513         return 0;
2514 }
2515
2516 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2517                                         struct drm_i915_gem_object *obj)
2518 {
2519         drm_i915_private_t *dev_priv = dev->dev_private;
2520         uint64_t val;
2521
2522         if (obj) {
2523                 u32 size = obj->gtt_space->size;
2524
2525                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2526                                  0xfffff000) << 32;
2527                 val |= obj->gtt_offset & 0xfffff000;
2528                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2529                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2530
2531                 if (obj->tiling_mode == I915_TILING_Y)
2532                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2533                 val |= I965_FENCE_REG_VALID;
2534         } else
2535                 val = 0;
2536
2537         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2538         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2539 }
2540
2541 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2542                                  struct drm_i915_gem_object *obj)
2543 {
2544         drm_i915_private_t *dev_priv = dev->dev_private;
2545         uint64_t val;
2546
2547         if (obj) {
2548                 u32 size = obj->gtt_space->size;
2549
2550                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2551                                  0xfffff000) << 32;
2552                 val |= obj->gtt_offset & 0xfffff000;
2553                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2554                 if (obj->tiling_mode == I915_TILING_Y)
2555                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2556                 val |= I965_FENCE_REG_VALID;
2557         } else
2558                 val = 0;
2559
2560         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2561         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2562 }
2563
2564 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2565                                  struct drm_i915_gem_object *obj)
2566 {
2567         drm_i915_private_t *dev_priv = dev->dev_private;
2568         u32 val;
2569
2570         if (obj) {
2571                 u32 size = obj->gtt_space->size;
2572                 int pitch_val;
2573                 int tile_width;
2574
2575                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2576                      (size & -size) != size ||
2577                      (obj->gtt_offset & (size - 1)),
2578                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2579                      obj->gtt_offset, obj->map_and_fenceable, size);
2580
2581                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2582                         tile_width = 128;
2583                 else
2584                         tile_width = 512;
2585
2586                 /* Note: pitch better be a power of two tile widths */
2587                 pitch_val = obj->stride / tile_width;
2588                 pitch_val = ffs(pitch_val) - 1;
2589
2590                 val = obj->gtt_offset;
2591                 if (obj->tiling_mode == I915_TILING_Y)
2592                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2593                 val |= I915_FENCE_SIZE_BITS(size);
2594                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2595                 val |= I830_FENCE_REG_VALID;
2596         } else
2597                 val = 0;
2598
2599         if (reg < 8)
2600                 reg = FENCE_REG_830_0 + reg * 4;
2601         else
2602                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2603
2604         I915_WRITE(reg, val);
2605         POSTING_READ(reg);
2606 }
2607
2608 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2609                                 struct drm_i915_gem_object *obj)
2610 {
2611         drm_i915_private_t *dev_priv = dev->dev_private;
2612         uint32_t val;
2613
2614         if (obj) {
2615                 u32 size = obj->gtt_space->size;
2616                 uint32_t pitch_val;
2617
2618                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2619                      (size & -size) != size ||
2620                      (obj->gtt_offset & (size - 1)),
2621                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2622                      obj->gtt_offset, size);
2623
2624                 pitch_val = obj->stride / 128;
2625                 pitch_val = ffs(pitch_val) - 1;
2626
2627                 val = obj->gtt_offset;
2628                 if (obj->tiling_mode == I915_TILING_Y)
2629                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2630                 val |= I830_FENCE_SIZE_BITS(size);
2631                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2632                 val |= I830_FENCE_REG_VALID;
2633         } else
2634                 val = 0;
2635
2636         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2637         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2638 }
2639
2640 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2641                                  struct drm_i915_gem_object *obj)
2642 {
2643         switch (INTEL_INFO(dev)->gen) {
2644         case 7:
2645         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2646         case 5:
2647         case 4: i965_write_fence_reg(dev, reg, obj); break;
2648         case 3: i915_write_fence_reg(dev, reg, obj); break;
2649         case 2: i830_write_fence_reg(dev, reg, obj); break;
2650         default: BUG();
2651         }
2652 }
2653
2654 static inline int fence_number(struct drm_i915_private *dev_priv,
2655                                struct drm_i915_fence_reg *fence)
2656 {
2657         return fence - dev_priv->fence_regs;
2658 }
2659
2660 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2661                                          struct drm_i915_fence_reg *fence,
2662                                          bool enable)
2663 {
2664         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2665         int reg = fence_number(dev_priv, fence);
2666
2667         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2668
2669         if (enable) {
2670                 obj->fence_reg = reg;
2671                 fence->obj = obj;
2672                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2673         } else {
2674                 obj->fence_reg = I915_FENCE_REG_NONE;
2675                 fence->obj = NULL;
2676                 list_del_init(&fence->lru_list);
2677         }
2678 }
2679
2680 static int
2681 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2682 {
2683         if (obj->last_fenced_seqno) {
2684                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2685                 if (ret)
2686                         return ret;
2687
2688                 obj->last_fenced_seqno = 0;
2689         }
2690
2691         /* Ensure that all CPU reads are completed before installing a fence
2692          * and all writes before removing the fence.
2693          */
2694         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2695                 mb();
2696
2697         obj->fenced_gpu_access = false;
2698         return 0;
2699 }
2700
2701 int
2702 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2703 {
2704         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2705         int ret;
2706
2707         ret = i915_gem_object_flush_fence(obj);
2708         if (ret)
2709                 return ret;
2710
2711         if (obj->fence_reg == I915_FENCE_REG_NONE)
2712                 return 0;
2713
2714         i915_gem_object_update_fence(obj,
2715                                      &dev_priv->fence_regs[obj->fence_reg],
2716                                      false);
2717         i915_gem_object_fence_lost(obj);
2718
2719         return 0;
2720 }
2721
2722 static struct drm_i915_fence_reg *
2723 i915_find_fence_reg(struct drm_device *dev)
2724 {
2725         struct drm_i915_private *dev_priv = dev->dev_private;
2726         struct drm_i915_fence_reg *reg, *avail;
2727         int i;
2728
2729         /* First try to find a free reg */
2730         avail = NULL;
2731         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2732                 reg = &dev_priv->fence_regs[i];
2733                 if (!reg->obj)
2734                         return reg;
2735
2736                 if (!reg->pin_count)
2737                         avail = reg;
2738         }
2739
2740         if (avail == NULL)
2741                 return NULL;
2742
2743         /* None available, try to steal one or wait for a user to finish */
2744         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2745                 if (reg->pin_count)
2746                         continue;
2747
2748                 return reg;
2749         }
2750
2751         return NULL;
2752 }
2753
2754 /**
2755  * i915_gem_object_get_fence - set up fencing for an object
2756  * @obj: object to map through a fence reg
2757  *
2758  * When mapping objects through the GTT, userspace wants to be able to write
2759  * to them without having to worry about swizzling if the object is tiled.
2760  * This function walks the fence regs looking for a free one for @obj,
2761  * stealing one if it can't find any.
2762  *
2763  * It then sets up the reg based on the object's properties: address, pitch
2764  * and tiling format.
2765  *
2766  * For an untiled surface, this removes any existing fence.
2767  */
2768 int
2769 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2770 {
2771         struct drm_device *dev = obj->base.dev;
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         bool enable = obj->tiling_mode != I915_TILING_NONE;
2774         struct drm_i915_fence_reg *reg;
2775         int ret;
2776
2777         /* Have we updated the tiling parameters upon the object and so
2778          * will need to serialise the write to the associated fence register?
2779          */
2780         if (obj->fence_dirty) {
2781                 ret = i915_gem_object_flush_fence(obj);
2782                 if (ret)
2783                         return ret;
2784         }
2785
2786         /* Just update our place in the LRU if our fence is getting reused. */
2787         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2788                 reg = &dev_priv->fence_regs[obj->fence_reg];
2789                 if (!obj->fence_dirty) {
2790                         list_move_tail(&reg->lru_list,
2791                                        &dev_priv->mm.fence_list);
2792                         return 0;
2793                 }
2794         } else if (enable) {
2795                 reg = i915_find_fence_reg(dev);
2796                 if (reg == NULL)
2797                         return -EDEADLK;
2798
2799                 if (reg->obj) {
2800                         struct drm_i915_gem_object *old = reg->obj;
2801
2802                         ret = i915_gem_object_flush_fence(old);
2803                         if (ret)
2804                                 return ret;
2805
2806                         i915_gem_object_fence_lost(old);
2807                 }
2808         } else
2809                 return 0;
2810
2811         i915_gem_object_update_fence(obj, reg, enable);
2812         obj->fence_dirty = false;
2813
2814         return 0;
2815 }
2816
2817 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2818                                      struct drm_mm_node *gtt_space,
2819                                      unsigned long cache_level)
2820 {
2821         struct drm_mm_node *other;
2822
2823         /* On non-LLC machines we have to be careful when putting differing
2824          * types of snoopable memory together to avoid the prefetcher
2825          * crossing memory domains and dying.
2826          */
2827         if (HAS_LLC(dev))
2828                 return true;
2829
2830         if (gtt_space == NULL)
2831                 return true;
2832
2833         if (list_empty(&gtt_space->node_list))
2834                 return true;
2835
2836         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2837         if (other->allocated && !other->hole_follows && other->color != cache_level)
2838                 return false;
2839
2840         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2841         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2842                 return false;
2843
2844         return true;
2845 }
2846
2847 static void i915_gem_verify_gtt(struct drm_device *dev)
2848 {
2849 #if WATCH_GTT
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         struct drm_i915_gem_object *obj;
2852         int err = 0;
2853
2854         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2855                 if (obj->gtt_space == NULL) {
2856                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2857                         err++;
2858                         continue;
2859                 }
2860
2861                 if (obj->cache_level != obj->gtt_space->color) {
2862                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2863                                obj->gtt_space->start,
2864                                obj->gtt_space->start + obj->gtt_space->size,
2865                                obj->cache_level,
2866                                obj->gtt_space->color);
2867                         err++;
2868                         continue;
2869                 }
2870
2871                 if (!i915_gem_valid_gtt_space(dev,
2872                                               obj->gtt_space,
2873                                               obj->cache_level)) {
2874                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2875                                obj->gtt_space->start,
2876                                obj->gtt_space->start + obj->gtt_space->size,
2877                                obj->cache_level);
2878                         err++;
2879                         continue;
2880                 }
2881         }
2882
2883         WARN_ON(err);
2884 #endif
2885 }
2886
2887 /**
2888  * Finds free space in the GTT aperture and binds the object there.
2889  */
2890 static int
2891 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2892                             unsigned alignment,
2893                             bool map_and_fenceable,
2894                             bool nonblocking)
2895 {
2896         struct drm_device *dev = obj->base.dev;
2897         drm_i915_private_t *dev_priv = dev->dev_private;
2898         struct drm_mm_node *free_space;
2899         u32 size, fence_size, fence_alignment, unfenced_alignment;
2900         bool mappable, fenceable;
2901         int ret;
2902
2903         if (obj->madv != I915_MADV_WILLNEED) {
2904                 DRM_ERROR("Attempting to bind a purgeable object\n");
2905                 return -EINVAL;
2906         }
2907
2908         fence_size = i915_gem_get_gtt_size(dev,
2909                                            obj->base.size,
2910                                            obj->tiling_mode);
2911         fence_alignment = i915_gem_get_gtt_alignment(dev,
2912                                                      obj->base.size,
2913                                                      obj->tiling_mode);
2914         unfenced_alignment =
2915                 i915_gem_get_unfenced_gtt_alignment(dev,
2916                                                     obj->base.size,
2917                                                     obj->tiling_mode);
2918
2919         if (alignment == 0)
2920                 alignment = map_and_fenceable ? fence_alignment :
2921                                                 unfenced_alignment;
2922         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2923                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2924                 return -EINVAL;
2925         }
2926
2927         size = map_and_fenceable ? fence_size : obj->base.size;
2928
2929         /* If the object is bigger than the entire aperture, reject it early
2930          * before evicting everything in a vain attempt to find space.
2931          */
2932         if (obj->base.size >
2933             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2934                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2935                 return -E2BIG;
2936         }
2937
2938         ret = i915_gem_object_get_pages(obj);
2939         if (ret)
2940                 return ret;
2941
2942         i915_gem_object_pin_pages(obj);
2943
2944  search_free:
2945         if (map_and_fenceable)
2946                 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2947                                                                size, alignment, obj->cache_level,
2948                                                                0, dev_priv->mm.gtt_mappable_end,
2949                                                                false);
2950         else
2951                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2952                                                       size, alignment, obj->cache_level,
2953                                                       false);
2954
2955         if (free_space != NULL) {
2956                 if (map_and_fenceable)
2957                         free_space =
2958                                 drm_mm_get_block_range_generic(free_space,
2959                                                                size, alignment, obj->cache_level,
2960                                                                0, dev_priv->mm.gtt_mappable_end,
2961                                                                false);
2962                 else
2963                         free_space =
2964                                 drm_mm_get_block_generic(free_space,
2965                                                          size, alignment, obj->cache_level,
2966                                                          false);
2967         }
2968         if (free_space == NULL) {
2969                 ret = i915_gem_evict_something(dev, size, alignment,
2970                                                obj->cache_level,
2971                                                map_and_fenceable,
2972                                                nonblocking);
2973                 if (ret) {
2974                         i915_gem_object_unpin_pages(obj);
2975                         return ret;
2976                 }
2977
2978                 goto search_free;
2979         }
2980         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2981                                               free_space,
2982                                               obj->cache_level))) {
2983                 i915_gem_object_unpin_pages(obj);
2984                 drm_mm_put_block(free_space);
2985                 return -EINVAL;
2986         }
2987
2988         ret = i915_gem_gtt_prepare_object(obj);
2989         if (ret) {
2990                 i915_gem_object_unpin_pages(obj);
2991                 drm_mm_put_block(free_space);
2992                 return ret;
2993         }
2994
2995         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2996         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2997
2998         obj->gtt_space = free_space;
2999         obj->gtt_offset = free_space->start;
3000
3001         fenceable =
3002                 free_space->size == fence_size &&
3003                 (free_space->start & (fence_alignment - 1)) == 0;
3004
3005         mappable =
3006                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3007
3008         obj->map_and_fenceable = mappable && fenceable;
3009
3010         i915_gem_object_unpin_pages(obj);
3011         trace_i915_gem_object_bind(obj, map_and_fenceable);
3012         i915_gem_verify_gtt(dev);
3013         return 0;
3014 }
3015
3016 void
3017 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3018 {
3019         /* If we don't have a page list set up, then we're not pinned
3020          * to GPU, and we can ignore the cache flush because it'll happen
3021          * again at bind time.
3022          */
3023         if (obj->pages == NULL)
3024                 return;
3025
3026         /* If the GPU is snooping the contents of the CPU cache,
3027          * we do not need to manually clear the CPU cache lines.  However,
3028          * the caches are only snooped when the render cache is
3029          * flushed/invalidated.  As we always have to emit invalidations
3030          * and flushes when moving into and out of the RENDER domain, correct
3031          * snooping behaviour occurs naturally as the result of our domain
3032          * tracking.
3033          */
3034         if (obj->cache_level != I915_CACHE_NONE)
3035                 return;
3036
3037         trace_i915_gem_object_clflush(obj);
3038
3039         drm_clflush_sg(obj->pages);
3040 }
3041
3042 /** Flushes the GTT write domain for the object if it's dirty. */
3043 static void
3044 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3045 {
3046         uint32_t old_write_domain;
3047
3048         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3049                 return;
3050
3051         /* No actual flushing is required for the GTT write domain.  Writes
3052          * to it immediately go to main memory as far as we know, so there's
3053          * no chipset flush.  It also doesn't land in render cache.
3054          *
3055          * However, we do have to enforce the order so that all writes through
3056          * the GTT land before any writes to the device, such as updates to
3057          * the GATT itself.
3058          */
3059         wmb();
3060
3061         old_write_domain = obj->base.write_domain;
3062         obj->base.write_domain = 0;
3063
3064         trace_i915_gem_object_change_domain(obj,
3065                                             obj->base.read_domains,
3066                                             old_write_domain);
3067 }
3068
3069 /** Flushes the CPU write domain for the object if it's dirty. */
3070 static void
3071 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3072 {
3073         uint32_t old_write_domain;
3074
3075         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3076                 return;
3077
3078         i915_gem_clflush_object(obj);
3079         i915_gem_chipset_flush(obj->base.dev);
3080         old_write_domain = obj->base.write_domain;
3081         obj->base.write_domain = 0;
3082
3083         trace_i915_gem_object_change_domain(obj,
3084                                             obj->base.read_domains,
3085                                             old_write_domain);
3086 }
3087
3088 /**
3089  * Moves a single object to the GTT read, and possibly write domain.
3090  *
3091  * This function returns when the move is complete, including waiting on
3092  * flushes to occur.
3093  */
3094 int
3095 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3096 {
3097         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3098         uint32_t old_write_domain, old_read_domains;
3099         int ret;
3100
3101         /* Not valid to be called on unbound objects. */
3102         if (obj->gtt_space == NULL)
3103                 return -EINVAL;
3104
3105         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3106                 return 0;
3107
3108         ret = i915_gem_object_wait_rendering(obj, !write);
3109         if (ret)
3110                 return ret;
3111
3112         i915_gem_object_flush_cpu_write_domain(obj);
3113
3114         old_write_domain = obj->base.write_domain;
3115         old_read_domains = obj->base.read_domains;
3116
3117         /* It should now be out of any other write domains, and we can update
3118          * the domain values for our changes.
3119          */
3120         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3121         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3122         if (write) {
3123                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3124                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3125                 obj->dirty = 1;
3126         }
3127
3128         trace_i915_gem_object_change_domain(obj,
3129                                             old_read_domains,
3130                                             old_write_domain);
3131
3132         /* And bump the LRU for this access */
3133         if (i915_gem_object_is_inactive(obj))
3134                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3135
3136         return 0;
3137 }
3138
3139 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3140                                     enum i915_cache_level cache_level)
3141 {
3142         struct drm_device *dev = obj->base.dev;
3143         drm_i915_private_t *dev_priv = dev->dev_private;
3144         int ret;
3145
3146         if (obj->cache_level == cache_level)
3147                 return 0;
3148
3149         if (obj->pin_count) {
3150                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3151                 return -EBUSY;
3152         }
3153
3154         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3155                 ret = i915_gem_object_unbind(obj);
3156                 if (ret)
3157                         return ret;
3158         }
3159
3160         if (obj->gtt_space) {
3161                 ret = i915_gem_object_finish_gpu(obj);
3162                 if (ret)
3163                         return ret;
3164
3165                 i915_gem_object_finish_gtt(obj);
3166
3167                 /* Before SandyBridge, you could not use tiling or fence
3168                  * registers with snooped memory, so relinquish any fences
3169                  * currently pointing to our region in the aperture.
3170                  */
3171                 if (INTEL_INFO(dev)->gen < 6) {
3172                         ret = i915_gem_object_put_fence(obj);
3173                         if (ret)
3174                                 return ret;
3175                 }
3176
3177                 if (obj->has_global_gtt_mapping)
3178                         i915_gem_gtt_bind_object(obj, cache_level);
3179                 if (obj->has_aliasing_ppgtt_mapping)
3180                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3181                                                obj, cache_level);
3182
3183                 obj->gtt_space->color = cache_level;
3184         }
3185
3186         if (cache_level == I915_CACHE_NONE) {
3187                 u32 old_read_domains, old_write_domain;
3188
3189                 /* If we're coming from LLC cached, then we haven't
3190                  * actually been tracking whether the data is in the
3191                  * CPU cache or not, since we only allow one bit set
3192                  * in obj->write_domain and have been skipping the clflushes.
3193                  * Just set it to the CPU cache for now.
3194                  */
3195                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3196                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3197
3198                 old_read_domains = obj->base.read_domains;
3199                 old_write_domain = obj->base.write_domain;
3200
3201                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3202                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3203
3204                 trace_i915_gem_object_change_domain(obj,
3205                                                     old_read_domains,
3206                                                     old_write_domain);
3207         }
3208
3209         obj->cache_level = cache_level;
3210         i915_gem_verify_gtt(dev);
3211         return 0;
3212 }
3213
3214 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3215                                struct drm_file *file)
3216 {
3217         struct drm_i915_gem_caching *args = data;
3218         struct drm_i915_gem_object *obj;
3219         int ret;
3220
3221         ret = i915_mutex_lock_interruptible(dev);
3222         if (ret)
3223                 return ret;
3224
3225         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3226         if (&obj->base == NULL) {
3227                 ret = -ENOENT;
3228                 goto unlock;
3229         }
3230
3231         args->caching = obj->cache_level != I915_CACHE_NONE;
3232
3233         drm_gem_object_unreference(&obj->base);
3234 unlock:
3235         mutex_unlock(&dev->struct_mutex);
3236         return ret;
3237 }
3238
3239 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3240                                struct drm_file *file)
3241 {
3242         struct drm_i915_gem_caching *args = data;
3243         struct drm_i915_gem_object *obj;
3244         enum i915_cache_level level;
3245         int ret;
3246
3247         switch (args->caching) {
3248         case I915_CACHING_NONE:
3249                 level = I915_CACHE_NONE;
3250                 break;
3251         case I915_CACHING_CACHED:
3252                 level = I915_CACHE_LLC;
3253                 break;
3254         default:
3255                 return -EINVAL;
3256         }
3257
3258         ret = i915_mutex_lock_interruptible(dev);
3259         if (ret)
3260                 return ret;
3261
3262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3263         if (&obj->base == NULL) {
3264                 ret = -ENOENT;
3265                 goto unlock;
3266         }
3267
3268         ret = i915_gem_object_set_cache_level(obj, level);
3269
3270         drm_gem_object_unreference(&obj->base);
3271 unlock:
3272         mutex_unlock(&dev->struct_mutex);
3273         return ret;
3274 }
3275
3276 /*
3277  * Prepare buffer for display plane (scanout, cursors, etc).
3278  * Can be called from an uninterruptible phase (modesetting) and allows
3279  * any flushes to be pipelined (for pageflips).
3280  */
3281 int
3282 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3283                                      u32 alignment,
3284                                      struct intel_ring_buffer *pipelined)
3285 {
3286         u32 old_read_domains, old_write_domain;
3287         int ret;
3288
3289         if (pipelined != obj->ring) {
3290                 ret = i915_gem_object_sync(obj, pipelined);
3291                 if (ret)
3292                         return ret;
3293         }
3294
3295         /* The display engine is not coherent with the LLC cache on gen6.  As
3296          * a result, we make sure that the pinning that is about to occur is
3297          * done with uncached PTEs. This is lowest common denominator for all
3298          * chipsets.
3299          *
3300          * However for gen6+, we could do better by using the GFDT bit instead
3301          * of uncaching, which would allow us to flush all the LLC-cached data
3302          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3303          */
3304         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3305         if (ret)
3306                 return ret;
3307
3308         /* As the user may map the buffer once pinned in the display plane
3309          * (e.g. libkms for the bootup splash), we have to ensure that we
3310          * always use map_and_fenceable for all scanout buffers.
3311          */
3312         ret = i915_gem_object_pin(obj, alignment, true, false);
3313         if (ret)
3314                 return ret;
3315
3316         i915_gem_object_flush_cpu_write_domain(obj);
3317
3318         old_write_domain = obj->base.write_domain;
3319         old_read_domains = obj->base.read_domains;
3320
3321         /* It should now be out of any other write domains, and we can update
3322          * the domain values for our changes.
3323          */
3324         obj->base.write_domain = 0;
3325         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3326
3327         trace_i915_gem_object_change_domain(obj,
3328                                             old_read_domains,
3329                                             old_write_domain);
3330
3331         return 0;
3332 }
3333
3334 int
3335 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3336 {
3337         int ret;
3338
3339         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3340                 return 0;
3341
3342         ret = i915_gem_object_wait_rendering(obj, false);
3343         if (ret)
3344                 return ret;
3345
3346         /* Ensure that we invalidate the GPU's caches and TLBs. */
3347         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3348         return 0;
3349 }
3350
3351 /**
3352  * Moves a single object to the CPU read, and possibly write domain.
3353  *
3354  * This function returns when the move is complete, including waiting on
3355  * flushes to occur.
3356  */
3357 int
3358 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3359 {
3360         uint32_t old_write_domain, old_read_domains;
3361         int ret;
3362
3363         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3364                 return 0;
3365
3366         ret = i915_gem_object_wait_rendering(obj, !write);
3367         if (ret)
3368                 return ret;
3369
3370         i915_gem_object_flush_gtt_write_domain(obj);
3371
3372         old_write_domain = obj->base.write_domain;
3373         old_read_domains = obj->base.read_domains;
3374
3375         /* Flush the CPU cache if it's still invalid. */
3376         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3377                 i915_gem_clflush_object(obj);
3378
3379                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3380         }
3381
3382         /* It should now be out of any other write domains, and we can update
3383          * the domain values for our changes.
3384          */
3385         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3386
3387         /* If we're writing through the CPU, then the GPU read domains will
3388          * need to be invalidated at next use.
3389          */
3390         if (write) {
3391                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3392                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3393         }
3394
3395         trace_i915_gem_object_change_domain(obj,
3396                                             old_read_domains,
3397                                             old_write_domain);
3398
3399         return 0;
3400 }
3401
3402 /* Throttle our rendering by waiting until the ring has completed our requests
3403  * emitted over 20 msec ago.
3404  *
3405  * Note that if we were to use the current jiffies each time around the loop,
3406  * we wouldn't escape the function with any frames outstanding if the time to
3407  * render a frame was over 20ms.
3408  *
3409  * This should get us reasonable parallelism between CPU and GPU but also
3410  * relatively low latency when blocking on a particular request to finish.
3411  */
3412 static int
3413 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3414 {
3415         struct drm_i915_private *dev_priv = dev->dev_private;
3416         struct drm_i915_file_private *file_priv = file->driver_priv;
3417         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3418         struct drm_i915_gem_request *request;
3419         struct intel_ring_buffer *ring = NULL;
3420         u32 seqno = 0;
3421         int ret;
3422
3423         if (atomic_read(&dev_priv->mm.wedged))
3424                 return -EIO;
3425
3426         spin_lock(&file_priv->mm.lock);
3427         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3428                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3429                         break;
3430
3431                 ring = request->ring;
3432                 seqno = request->seqno;
3433         }
3434         spin_unlock(&file_priv->mm.lock);
3435
3436         if (seqno == 0)
3437                 return 0;
3438
3439         ret = __wait_seqno(ring, seqno, true, NULL);
3440         if (ret == 0)
3441                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3442
3443         return ret;
3444 }
3445
3446 int
3447 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3448                     uint32_t alignment,
3449                     bool map_and_fenceable,
3450                     bool nonblocking)
3451 {
3452         int ret;
3453
3454         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3455                 return -EBUSY;
3456
3457         if (obj->gtt_space != NULL) {
3458                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3459                     (map_and_fenceable && !obj->map_and_fenceable)) {
3460                         WARN(obj->pin_count,
3461                              "bo is already pinned with incorrect alignment:"
3462                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3463                              " obj->map_and_fenceable=%d\n",
3464                              obj->gtt_offset, alignment,
3465                              map_and_fenceable,
3466                              obj->map_and_fenceable);
3467                         ret = i915_gem_object_unbind(obj);
3468                         if (ret)
3469                                 return ret;
3470                 }
3471         }
3472
3473         if (obj->gtt_space == NULL) {
3474                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3475
3476                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3477                                                   map_and_fenceable,
3478                                                   nonblocking);
3479                 if (ret)
3480                         return ret;
3481
3482                 if (!dev_priv->mm.aliasing_ppgtt)
3483                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3484         }
3485
3486         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3487                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3488
3489         obj->pin_count++;
3490         obj->pin_mappable |= map_and_fenceable;
3491
3492         return 0;
3493 }
3494
3495 void
3496 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3497 {
3498         BUG_ON(obj->pin_count == 0);
3499         BUG_ON(obj->gtt_space == NULL);
3500
3501         if (--obj->pin_count == 0)
3502                 obj->pin_mappable = false;
3503 }
3504
3505 int
3506 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3507                    struct drm_file *file)
3508 {
3509         struct drm_i915_gem_pin *args = data;
3510         struct drm_i915_gem_object *obj;
3511         int ret;
3512
3513         ret = i915_mutex_lock_interruptible(dev);
3514         if (ret)
3515                 return ret;
3516
3517         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3518         if (&obj->base == NULL) {
3519                 ret = -ENOENT;
3520                 goto unlock;
3521         }
3522
3523         if (obj->madv != I915_MADV_WILLNEED) {
3524                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3525                 ret = -EINVAL;
3526                 goto out;
3527         }
3528
3529         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3530                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3531                           args->handle);
3532                 ret = -EINVAL;
3533                 goto out;
3534         }
3535
3536         obj->user_pin_count++;
3537         obj->pin_filp = file;
3538         if (obj->user_pin_count == 1) {
3539                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3540                 if (ret)
3541                         goto out;
3542         }
3543
3544         /* XXX - flush the CPU caches for pinned objects
3545          * as the X server doesn't manage domains yet
3546          */
3547         i915_gem_object_flush_cpu_write_domain(obj);
3548         args->offset = obj->gtt_offset;
3549 out:
3550         drm_gem_object_unreference(&obj->base);
3551 unlock:
3552         mutex_unlock(&dev->struct_mutex);
3553         return ret;
3554 }
3555
3556 int
3557 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3558                      struct drm_file *file)
3559 {
3560         struct drm_i915_gem_pin *args = data;
3561         struct drm_i915_gem_object *obj;
3562         int ret;
3563
3564         ret = i915_mutex_lock_interruptible(dev);
3565         if (ret)
3566                 return ret;
3567
3568         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3569         if (&obj->base == NULL) {
3570                 ret = -ENOENT;
3571                 goto unlock;
3572         }
3573
3574         if (obj->pin_filp != file) {
3575                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3576                           args->handle);
3577                 ret = -EINVAL;
3578                 goto out;
3579         }
3580         obj->user_pin_count--;
3581         if (obj->user_pin_count == 0) {
3582                 obj->pin_filp = NULL;
3583                 i915_gem_object_unpin(obj);
3584         }
3585
3586 out:
3587         drm_gem_object_unreference(&obj->base);
3588 unlock:
3589         mutex_unlock(&dev->struct_mutex);
3590         return ret;
3591 }
3592
3593 int
3594 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3595                     struct drm_file *file)
3596 {
3597         struct drm_i915_gem_busy *args = data;
3598         struct drm_i915_gem_object *obj;
3599         int ret;
3600
3601         ret = i915_mutex_lock_interruptible(dev);
3602         if (ret)
3603                 return ret;
3604
3605         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606         if (&obj->base == NULL) {
3607                 ret = -ENOENT;
3608                 goto unlock;
3609         }
3610
3611         /* Count all active objects as busy, even if they are currently not used
3612          * by the gpu. Users of this interface expect objects to eventually
3613          * become non-busy without any further actions, therefore emit any
3614          * necessary flushes here.
3615          */
3616         ret = i915_gem_object_flush_active(obj);
3617
3618         args->busy = obj->active;
3619         if (obj->ring) {
3620                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3621                 args->busy |= intel_ring_flag(obj->ring) << 16;
3622         }
3623
3624         drm_gem_object_unreference(&obj->base);
3625 unlock:
3626         mutex_unlock(&dev->struct_mutex);
3627         return ret;
3628 }
3629
3630 int
3631 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3632                         struct drm_file *file_priv)
3633 {
3634         return i915_gem_ring_throttle(dev, file_priv);
3635 }
3636
3637 int
3638 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3639                        struct drm_file *file_priv)
3640 {
3641         struct drm_i915_gem_madvise *args = data;
3642         struct drm_i915_gem_object *obj;
3643         int ret;
3644
3645         switch (args->madv) {
3646         case I915_MADV_DONTNEED:
3647         case I915_MADV_WILLNEED:
3648             break;
3649         default:
3650             return -EINVAL;
3651         }
3652
3653         ret = i915_mutex_lock_interruptible(dev);
3654         if (ret)
3655                 return ret;
3656
3657         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3658         if (&obj->base == NULL) {
3659                 ret = -ENOENT;
3660                 goto unlock;
3661         }
3662
3663         if (obj->pin_count) {
3664                 ret = -EINVAL;
3665                 goto out;
3666         }
3667
3668         if (obj->madv != __I915_MADV_PURGED)
3669                 obj->madv = args->madv;
3670
3671         /* if the object is no longer attached, discard its backing storage */
3672         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3673                 i915_gem_object_truncate(obj);
3674
3675         args->retained = obj->madv != __I915_MADV_PURGED;
3676
3677 out:
3678         drm_gem_object_unreference(&obj->base);
3679 unlock:
3680         mutex_unlock(&dev->struct_mutex);
3681         return ret;
3682 }
3683
3684 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3685                           const struct drm_i915_gem_object_ops *ops)
3686 {
3687         INIT_LIST_HEAD(&obj->mm_list);
3688         INIT_LIST_HEAD(&obj->gtt_list);
3689         INIT_LIST_HEAD(&obj->ring_list);
3690         INIT_LIST_HEAD(&obj->exec_list);
3691
3692         obj->ops = ops;
3693
3694         obj->fence_reg = I915_FENCE_REG_NONE;
3695         obj->madv = I915_MADV_WILLNEED;
3696         /* Avoid an unnecessary call to unbind on the first bind. */
3697         obj->map_and_fenceable = true;
3698
3699         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3700 }
3701
3702 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3703         .get_pages = i915_gem_object_get_pages_gtt,
3704         .put_pages = i915_gem_object_put_pages_gtt,
3705 };
3706
3707 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3708                                                   size_t size)
3709 {
3710         struct drm_i915_gem_object *obj;
3711         struct address_space *mapping;
3712         gfp_t mask;
3713
3714         obj = i915_gem_object_alloc(dev);
3715         if (obj == NULL)
3716                 return NULL;
3717
3718         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3719                 i915_gem_object_free(obj);
3720                 return NULL;
3721         }
3722
3723         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3724         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3725                 /* 965gm cannot relocate objects above 4GiB. */
3726                 mask &= ~__GFP_HIGHMEM;
3727                 mask |= __GFP_DMA32;
3728         }
3729
3730         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3731         mapping_set_gfp_mask(mapping, mask);
3732
3733         i915_gem_object_init(obj, &i915_gem_object_ops);
3734
3735         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3736         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3737
3738         if (HAS_LLC(dev)) {
3739                 /* On some devices, we can have the GPU use the LLC (the CPU
3740                  * cache) for about a 10% performance improvement
3741                  * compared to uncached.  Graphics requests other than
3742                  * display scanout are coherent with the CPU in
3743                  * accessing this cache.  This means in this mode we
3744                  * don't need to clflush on the CPU side, and on the
3745                  * GPU side we only need to flush internal caches to
3746                  * get data visible to the CPU.
3747                  *
3748                  * However, we maintain the display planes as UC, and so
3749                  * need to rebind when first used as such.
3750                  */
3751                 obj->cache_level = I915_CACHE_LLC;
3752         } else
3753                 obj->cache_level = I915_CACHE_NONE;
3754
3755         return obj;
3756 }
3757
3758 int i915_gem_init_object(struct drm_gem_object *obj)
3759 {
3760         BUG();
3761
3762         return 0;
3763 }
3764
3765 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3766 {
3767         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768         struct drm_device *dev = obj->base.dev;
3769         drm_i915_private_t *dev_priv = dev->dev_private;
3770
3771         trace_i915_gem_object_destroy(obj);
3772
3773         if (obj->phys_obj)
3774                 i915_gem_detach_phys_object(dev, obj);
3775
3776         obj->pin_count = 0;
3777         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3778                 bool was_interruptible;
3779
3780                 was_interruptible = dev_priv->mm.interruptible;
3781                 dev_priv->mm.interruptible = false;
3782
3783                 WARN_ON(i915_gem_object_unbind(obj));
3784
3785                 dev_priv->mm.interruptible = was_interruptible;
3786         }
3787
3788         obj->pages_pin_count = 0;
3789         i915_gem_object_put_pages(obj);
3790         i915_gem_object_free_mmap_offset(obj);
3791         i915_gem_object_release_stolen(obj);
3792
3793         BUG_ON(obj->pages);
3794
3795         if (obj->base.import_attach)
3796                 drm_prime_gem_destroy(&obj->base, NULL);
3797
3798         drm_gem_object_release(&obj->base);
3799         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3800
3801         kfree(obj->bit_17);
3802         i915_gem_object_free(obj);
3803 }
3804
3805 int
3806 i915_gem_idle(struct drm_device *dev)
3807 {
3808         drm_i915_private_t *dev_priv = dev->dev_private;
3809         int ret;
3810
3811         mutex_lock(&dev->struct_mutex);
3812
3813         if (dev_priv->mm.suspended) {
3814                 mutex_unlock(&dev->struct_mutex);
3815                 return 0;
3816         }
3817
3818         ret = i915_gpu_idle(dev);
3819         if (ret) {
3820                 mutex_unlock(&dev->struct_mutex);
3821                 return ret;
3822         }
3823         i915_gem_retire_requests(dev);
3824
3825         /* Under UMS, be paranoid and evict. */
3826         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3827                 i915_gem_evict_everything(dev);
3828
3829         i915_gem_reset_fences(dev);
3830
3831         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3832          * We need to replace this with a semaphore, or something.
3833          * And not confound mm.suspended!
3834          */
3835         dev_priv->mm.suspended = 1;
3836         del_timer_sync(&dev_priv->hangcheck_timer);
3837
3838         i915_kernel_lost_context(dev);
3839         i915_gem_cleanup_ringbuffer(dev);
3840
3841         mutex_unlock(&dev->struct_mutex);
3842
3843         /* Cancel the retire work handler, which should be idle now. */
3844         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3845
3846         return 0;
3847 }
3848
3849 void i915_gem_l3_remap(struct drm_device *dev)
3850 {
3851         drm_i915_private_t *dev_priv = dev->dev_private;
3852         u32 misccpctl;
3853         int i;
3854
3855         if (!IS_IVYBRIDGE(dev))
3856                 return;
3857
3858         if (!dev_priv->l3_parity.remap_info)
3859                 return;
3860
3861         misccpctl = I915_READ(GEN7_MISCCPCTL);
3862         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3863         POSTING_READ(GEN7_MISCCPCTL);
3864
3865         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3866                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3867                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3868                         DRM_DEBUG("0x%x was already programmed to %x\n",
3869                                   GEN7_L3LOG_BASE + i, remap);
3870                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3871                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3872                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3873         }
3874
3875         /* Make sure all the writes land before disabling dop clock gating */
3876         POSTING_READ(GEN7_L3LOG_BASE);
3877
3878         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3879 }
3880
3881 void i915_gem_init_swizzling(struct drm_device *dev)
3882 {
3883         drm_i915_private_t *dev_priv = dev->dev_private;
3884
3885         if (INTEL_INFO(dev)->gen < 5 ||
3886             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3887                 return;
3888
3889         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3890                                  DISP_TILE_SURFACE_SWIZZLING);
3891
3892         if (IS_GEN5(dev))
3893                 return;
3894
3895         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3896         if (IS_GEN6(dev))
3897                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3898         else if (IS_GEN7(dev))
3899                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3900         else
3901                 BUG();
3902 }
3903
3904 static bool
3905 intel_enable_blt(struct drm_device *dev)
3906 {
3907         if (!HAS_BLT(dev))
3908                 return false;
3909
3910         /* The blitter was dysfunctional on early prototypes */
3911         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3912                 DRM_INFO("BLT not supported on this pre-production hardware;"
3913                          " graphics performance will be degraded.\n");
3914                 return false;
3915         }
3916
3917         return true;
3918 }
3919
3920 int
3921 i915_gem_init_hw(struct drm_device *dev)
3922 {
3923         drm_i915_private_t *dev_priv = dev->dev_private;
3924         int ret;
3925
3926         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3927                 return -EIO;
3928
3929         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3930                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3931
3932         i915_gem_l3_remap(dev);
3933
3934         i915_gem_init_swizzling(dev);
3935
3936         dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3937
3938         ret = intel_init_render_ring_buffer(dev);
3939         if (ret)
3940                 return ret;
3941
3942         if (HAS_BSD(dev)) {
3943                 ret = intel_init_bsd_ring_buffer(dev);
3944                 if (ret)
3945                         goto cleanup_render_ring;
3946         }
3947
3948         if (intel_enable_blt(dev)) {
3949                 ret = intel_init_blt_ring_buffer(dev);
3950                 if (ret)
3951                         goto cleanup_bsd_ring;
3952         }
3953
3954         /*
3955          * XXX: There was some w/a described somewhere suggesting loading
3956          * contexts before PPGTT.
3957          */
3958         i915_gem_context_init(dev);
3959         i915_gem_init_ppgtt(dev);
3960
3961         return 0;
3962
3963 cleanup_bsd_ring:
3964         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3965 cleanup_render_ring:
3966         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3967         return ret;
3968 }
3969
3970 static bool
3971 intel_enable_ppgtt(struct drm_device *dev)
3972 {
3973         if (i915_enable_ppgtt >= 0)
3974                 return i915_enable_ppgtt;
3975
3976 #ifdef CONFIG_INTEL_IOMMU
3977         /* Disable ppgtt on SNB if VT-d is on. */
3978         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3979                 return false;
3980 #endif
3981
3982         return true;
3983 }
3984
3985 int i915_gem_init(struct drm_device *dev)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         unsigned long gtt_size, mappable_size;
3989         int ret;
3990
3991         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3992         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3993
3994         mutex_lock(&dev->struct_mutex);
3995         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3996                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3997                  * aperture accordingly when using aliasing ppgtt. */
3998                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3999
4000                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4001
4002                 ret = i915_gem_init_aliasing_ppgtt(dev);
4003                 if (ret) {
4004                         mutex_unlock(&dev->struct_mutex);
4005                         return ret;
4006                 }
4007         } else {
4008                 /* Let GEM Manage all of the aperture.
4009                  *
4010                  * However, leave one page at the end still bound to the scratch
4011                  * page.  There are a number of places where the hardware
4012                  * apparently prefetches past the end of the object, and we've
4013                  * seen multiple hangs with the GPU head pointer stuck in a
4014                  * batchbuffer bound at the last page of the aperture.  One page
4015                  * should be enough to keep any prefetching inside of the
4016                  * aperture.
4017                  */
4018                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4019                                          gtt_size);
4020         }
4021
4022         ret = i915_gem_init_hw(dev);
4023         mutex_unlock(&dev->struct_mutex);
4024         if (ret) {
4025                 i915_gem_cleanup_aliasing_ppgtt(dev);
4026                 return ret;
4027         }
4028
4029         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4030         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4031                 dev_priv->dri1.allow_batchbuffer = 1;
4032         return 0;
4033 }
4034
4035 void
4036 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4037 {
4038         drm_i915_private_t *dev_priv = dev->dev_private;
4039         struct intel_ring_buffer *ring;
4040         int i;
4041
4042         for_each_ring(ring, dev_priv, i)
4043                 intel_cleanup_ring_buffer(ring);
4044 }
4045
4046 int
4047 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4048                        struct drm_file *file_priv)
4049 {
4050         drm_i915_private_t *dev_priv = dev->dev_private;
4051         int ret;
4052
4053         if (drm_core_check_feature(dev, DRIVER_MODESET))
4054                 return 0;
4055
4056         if (atomic_read(&dev_priv->mm.wedged)) {
4057                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4058                 atomic_set(&dev_priv->mm.wedged, 0);
4059         }
4060
4061         mutex_lock(&dev->struct_mutex);
4062         dev_priv->mm.suspended = 0;
4063
4064         ret = i915_gem_init_hw(dev);
4065         if (ret != 0) {
4066                 mutex_unlock(&dev->struct_mutex);
4067                 return ret;
4068         }
4069
4070         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4071         mutex_unlock(&dev->struct_mutex);
4072
4073         ret = drm_irq_install(dev);
4074         if (ret)
4075                 goto cleanup_ringbuffer;
4076
4077         return 0;
4078
4079 cleanup_ringbuffer:
4080         mutex_lock(&dev->struct_mutex);
4081         i915_gem_cleanup_ringbuffer(dev);
4082         dev_priv->mm.suspended = 1;
4083         mutex_unlock(&dev->struct_mutex);
4084
4085         return ret;
4086 }
4087
4088 int
4089 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4090                        struct drm_file *file_priv)
4091 {
4092         if (drm_core_check_feature(dev, DRIVER_MODESET))
4093                 return 0;
4094
4095         drm_irq_uninstall(dev);
4096         return i915_gem_idle(dev);
4097 }
4098
4099 void
4100 i915_gem_lastclose(struct drm_device *dev)
4101 {
4102         int ret;
4103
4104         if (drm_core_check_feature(dev, DRIVER_MODESET))
4105                 return;
4106
4107         ret = i915_gem_idle(dev);
4108         if (ret)
4109                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4110 }
4111
4112 static void
4113 init_ring_lists(struct intel_ring_buffer *ring)
4114 {
4115         INIT_LIST_HEAD(&ring->active_list);
4116         INIT_LIST_HEAD(&ring->request_list);
4117 }
4118
4119 void
4120 i915_gem_load(struct drm_device *dev)
4121 {
4122         drm_i915_private_t *dev_priv = dev->dev_private;
4123         int i;
4124
4125         dev_priv->slab =
4126                 kmem_cache_create("i915_gem_object",
4127                                   sizeof(struct drm_i915_gem_object), 0,
4128                                   SLAB_HWCACHE_ALIGN,
4129                                   NULL);
4130
4131         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4132         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4133         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4134         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4135         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4136         for (i = 0; i < I915_NUM_RINGS; i++)
4137                 init_ring_lists(&dev_priv->ring[i]);
4138         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4139                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4140         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4141                           i915_gem_retire_work_handler);
4142         init_completion(&dev_priv->error_completion);
4143
4144         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4145         if (IS_GEN3(dev)) {
4146                 I915_WRITE(MI_ARB_STATE,
4147                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4148         }
4149
4150         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4151
4152         /* Old X drivers will take 0-2 for front, back, depth buffers */
4153         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4154                 dev_priv->fence_reg_start = 3;
4155
4156         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4157                 dev_priv->num_fence_regs = 16;
4158         else
4159                 dev_priv->num_fence_regs = 8;
4160
4161         /* Initialize fence registers to zero */
4162         i915_gem_reset_fences(dev);
4163
4164         i915_gem_detect_bit_6_swizzle(dev);
4165         init_waitqueue_head(&dev_priv->pending_flip_queue);
4166
4167         dev_priv->mm.interruptible = true;
4168
4169         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4170         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4171         register_shrinker(&dev_priv->mm.inactive_shrinker);
4172 }
4173
4174 /*
4175  * Create a physically contiguous memory object for this object
4176  * e.g. for cursor + overlay regs
4177  */
4178 static int i915_gem_init_phys_object(struct drm_device *dev,
4179                                      int id, int size, int align)
4180 {
4181         drm_i915_private_t *dev_priv = dev->dev_private;
4182         struct drm_i915_gem_phys_object *phys_obj;
4183         int ret;
4184
4185         if (dev_priv->mm.phys_objs[id - 1] || !size)
4186                 return 0;
4187
4188         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4189         if (!phys_obj)
4190                 return -ENOMEM;
4191
4192         phys_obj->id = id;
4193
4194         phys_obj->handle = drm_pci_alloc(dev, size, align);
4195         if (!phys_obj->handle) {
4196                 ret = -ENOMEM;
4197                 goto kfree_obj;
4198         }
4199 #ifdef CONFIG_X86
4200         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4201 #endif
4202
4203         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4204
4205         return 0;
4206 kfree_obj:
4207         kfree(phys_obj);
4208         return ret;
4209 }
4210
4211 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4212 {
4213         drm_i915_private_t *dev_priv = dev->dev_private;
4214         struct drm_i915_gem_phys_object *phys_obj;
4215
4216         if (!dev_priv->mm.phys_objs[id - 1])
4217                 return;
4218
4219         phys_obj = dev_priv->mm.phys_objs[id - 1];
4220         if (phys_obj->cur_obj) {
4221                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4222         }
4223
4224 #ifdef CONFIG_X86
4225         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4226 #endif
4227         drm_pci_free(dev, phys_obj->handle);
4228         kfree(phys_obj);
4229         dev_priv->mm.phys_objs[id - 1] = NULL;
4230 }
4231
4232 void i915_gem_free_all_phys_object(struct drm_device *dev)
4233 {
4234         int i;
4235
4236         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4237                 i915_gem_free_phys_object(dev, i);
4238 }
4239
4240 void i915_gem_detach_phys_object(struct drm_device *dev,
4241                                  struct drm_i915_gem_object *obj)
4242 {
4243         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4244         char *vaddr;
4245         int i;
4246         int page_count;
4247
4248         if (!obj->phys_obj)
4249                 return;
4250         vaddr = obj->phys_obj->handle->vaddr;
4251
4252         page_count = obj->base.size / PAGE_SIZE;
4253         for (i = 0; i < page_count; i++) {
4254                 struct page *page = shmem_read_mapping_page(mapping, i);
4255                 if (!IS_ERR(page)) {
4256                         char *dst = kmap_atomic(page);
4257                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4258                         kunmap_atomic(dst);
4259
4260                         drm_clflush_pages(&page, 1);
4261
4262                         set_page_dirty(page);
4263                         mark_page_accessed(page);
4264                         page_cache_release(page);
4265                 }
4266         }
4267         i915_gem_chipset_flush(dev);
4268
4269         obj->phys_obj->cur_obj = NULL;
4270         obj->phys_obj = NULL;
4271 }
4272
4273 int
4274 i915_gem_attach_phys_object(struct drm_device *dev,
4275                             struct drm_i915_gem_object *obj,
4276                             int id,
4277                             int align)
4278 {
4279         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4280         drm_i915_private_t *dev_priv = dev->dev_private;
4281         int ret = 0;
4282         int page_count;
4283         int i;
4284
4285         if (id > I915_MAX_PHYS_OBJECT)
4286                 return -EINVAL;
4287
4288         if (obj->phys_obj) {
4289                 if (obj->phys_obj->id == id)
4290                         return 0;
4291                 i915_gem_detach_phys_object(dev, obj);
4292         }
4293
4294         /* create a new object */
4295         if (!dev_priv->mm.phys_objs[id - 1]) {
4296                 ret = i915_gem_init_phys_object(dev, id,
4297                                                 obj->base.size, align);
4298                 if (ret) {
4299                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4300                                   id, obj->base.size);
4301                         return ret;
4302                 }
4303         }
4304
4305         /* bind to the object */
4306         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4307         obj->phys_obj->cur_obj = obj;
4308
4309         page_count = obj->base.size / PAGE_SIZE;
4310
4311         for (i = 0; i < page_count; i++) {
4312                 struct page *page;
4313                 char *dst, *src;
4314
4315                 page = shmem_read_mapping_page(mapping, i);
4316                 if (IS_ERR(page))
4317                         return PTR_ERR(page);
4318
4319                 src = kmap_atomic(page);
4320                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4321                 memcpy(dst, src, PAGE_SIZE);
4322                 kunmap_atomic(src);
4323
4324                 mark_page_accessed(page);
4325                 page_cache_release(page);
4326         }
4327
4328         return 0;
4329 }
4330
4331 static int
4332 i915_gem_phys_pwrite(struct drm_device *dev,
4333                      struct drm_i915_gem_object *obj,
4334                      struct drm_i915_gem_pwrite *args,
4335                      struct drm_file *file_priv)
4336 {
4337         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4338         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4339
4340         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4341                 unsigned long unwritten;
4342
4343                 /* The physical object once assigned is fixed for the lifetime
4344                  * of the obj, so we can safely drop the lock and continue
4345                  * to access vaddr.
4346                  */
4347                 mutex_unlock(&dev->struct_mutex);
4348                 unwritten = copy_from_user(vaddr, user_data, args->size);
4349                 mutex_lock(&dev->struct_mutex);
4350                 if (unwritten)
4351                         return -EFAULT;
4352         }
4353
4354         i915_gem_chipset_flush(dev);
4355         return 0;
4356 }
4357
4358 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4359 {
4360         struct drm_i915_file_private *file_priv = file->driver_priv;
4361
4362         /* Clean up our request list when the client is going away, so that
4363          * later retire_requests won't dereference our soon-to-be-gone
4364          * file_priv.
4365          */
4366         spin_lock(&file_priv->mm.lock);
4367         while (!list_empty(&file_priv->mm.request_list)) {
4368                 struct drm_i915_gem_request *request;
4369
4370                 request = list_first_entry(&file_priv->mm.request_list,
4371                                            struct drm_i915_gem_request,
4372                                            client_list);
4373                 list_del(&request->client_list);
4374                 request->file_priv = NULL;
4375         }
4376         spin_unlock(&file_priv->mm.lock);
4377 }
4378
4379 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4380 {
4381         if (!mutex_is_locked(mutex))
4382                 return false;
4383
4384 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4385         return mutex->owner == task;
4386 #else
4387         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4388         return false;
4389 #endif
4390 }
4391
4392 static int
4393 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4394 {
4395         struct drm_i915_private *dev_priv =
4396                 container_of(shrinker,
4397                              struct drm_i915_private,
4398                              mm.inactive_shrinker);
4399         struct drm_device *dev = dev_priv->dev;
4400         struct drm_i915_gem_object *obj;
4401         int nr_to_scan = sc->nr_to_scan;
4402         bool unlock = true;
4403         int cnt;
4404
4405         if (!mutex_trylock(&dev->struct_mutex)) {
4406                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4407                         return 0;
4408
4409                 unlock = false;
4410         }
4411
4412         if (nr_to_scan) {
4413                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4414                 if (nr_to_scan > 0)
4415                         i915_gem_shrink_all(dev_priv);
4416         }
4417
4418         cnt = 0;
4419         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4420                 if (obj->pages_pin_count == 0)
4421                         cnt += obj->base.size >> PAGE_SHIFT;
4422         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4423                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4424                         cnt += obj->base.size >> PAGE_SHIFT;
4425
4426         if (unlock)
4427                 mutex_unlock(&dev->struct_mutex);
4428         return cnt;
4429 }