]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Embed drm_mm_node in i915 gem obj
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return i915_gem_obj_ggtt_bound(obj) && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180                 if (obj->pin_count)
181                         pinned += i915_gem_obj_ggtt_size(obj);
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (i915_gem_obj_ggtt_bound(obj)) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (i915_gem_obj_ggtt_bound(obj)) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092                                      struct intel_ring_buffer *ring)
1093 {
1094         i915_gem_retire_requests_ring(ring);
1095
1096         /* Manually manage the write flush as we may have not yet
1097          * retired the buffer.
1098          *
1099          * Note that the last_write_seqno is always the earlier of
1100          * the two (read/write) seqno, so if we haved successfully waited,
1101          * we know we have passed the last write.
1102          */
1103         obj->last_write_seqno = 0;
1104         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * Ensures that all rendering to the object has completed and the object is
1111  * safe to unbind from the GTT or access from the CPU.
1112  */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115                                bool readonly)
1116 {
1117         struct intel_ring_buffer *ring = obj->ring;
1118         u32 seqno;
1119         int ret;
1120
1121         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122         if (seqno == 0)
1123                 return 0;
1124
1125         ret = i915_wait_seqno(ring, seqno);
1126         if (ret)
1127                 return ret;
1128
1129         return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133  * as the object state may change during this call.
1134  */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137                                             bool readonly)
1138 {
1139         struct drm_device *dev = obj->base.dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct intel_ring_buffer *ring = obj->ring;
1142         unsigned reset_counter;
1143         u32 seqno;
1144         int ret;
1145
1146         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147         BUG_ON(!dev_priv->mm.interruptible);
1148
1149         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150         if (seqno == 0)
1151                 return 0;
1152
1153         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154         if (ret)
1155                 return ret;
1156
1157         ret = i915_gem_check_olr(ring, seqno);
1158         if (ret)
1159                 return ret;
1160
1161         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162         mutex_unlock(&dev->struct_mutex);
1163         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164         mutex_lock(&dev->struct_mutex);
1165         if (ret)
1166                 return ret;
1167
1168         return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172  * Called when user space prepares to use an object with the CPU, either
1173  * through the mmap ioctl's mapping or a GTT mapping.
1174  */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177                           struct drm_file *file)
1178 {
1179         struct drm_i915_gem_set_domain *args = data;
1180         struct drm_i915_gem_object *obj;
1181         uint32_t read_domains = args->read_domains;
1182         uint32_t write_domain = args->write_domain;
1183         int ret;
1184
1185         /* Only handle setting domains to types used by the CPU. */
1186         if (write_domain & I915_GEM_GPU_DOMAINS)
1187                 return -EINVAL;
1188
1189         if (read_domains & I915_GEM_GPU_DOMAINS)
1190                 return -EINVAL;
1191
1192         /* Having something in the write domain implies it's in the read
1193          * domain, and only that read domain.  Enforce that in the request.
1194          */
1195         if (write_domain != 0 && read_domains != write_domain)
1196                 return -EINVAL;
1197
1198         ret = i915_mutex_lock_interruptible(dev);
1199         if (ret)
1200                 return ret;
1201
1202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203         if (&obj->base == NULL) {
1204                 ret = -ENOENT;
1205                 goto unlock;
1206         }
1207
1208         /* Try to flush the object off the GPU without holding the lock.
1209          * We will repeat the flush holding the lock in the normal manner
1210          * to catch cases where we are gazumped.
1211          */
1212         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213         if (ret)
1214                 goto unref;
1215
1216         if (read_domains & I915_GEM_DOMAIN_GTT) {
1217                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219                 /* Silently promote "you're not bound, there was nothing to do"
1220                  * to success, since the client was just asking us to
1221                  * make sure everything was done.
1222                  */
1223                 if (ret == -EINVAL)
1224                         ret = 0;
1225         } else {
1226                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227         }
1228
1229 unref:
1230         drm_gem_object_unreference(&obj->base);
1231 unlock:
1232         mutex_unlock(&dev->struct_mutex);
1233         return ret;
1234 }
1235
1236 /**
1237  * Called when user space has done writes to this buffer
1238  */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241                          struct drm_file *file)
1242 {
1243         struct drm_i915_gem_sw_finish *args = data;
1244         struct drm_i915_gem_object *obj;
1245         int ret = 0;
1246
1247         ret = i915_mutex_lock_interruptible(dev);
1248         if (ret)
1249                 return ret;
1250
1251         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252         if (&obj->base == NULL) {
1253                 ret = -ENOENT;
1254                 goto unlock;
1255         }
1256
1257         /* Pinned buffers may be scanout, so flush the cache */
1258         if (obj->pin_count)
1259                 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261         drm_gem_object_unreference(&obj->base);
1262 unlock:
1263         mutex_unlock(&dev->struct_mutex);
1264         return ret;
1265 }
1266
1267 /**
1268  * Maps the contents of an object, returning the address it is mapped
1269  * into.
1270  *
1271  * While the mapping holds a reference on the contents of the object, it doesn't
1272  * imply a ref on the object itself.
1273  */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276                     struct drm_file *file)
1277 {
1278         struct drm_i915_gem_mmap *args = data;
1279         struct drm_gem_object *obj;
1280         unsigned long addr;
1281
1282         obj = drm_gem_object_lookup(dev, file, args->handle);
1283         if (obj == NULL)
1284                 return -ENOENT;
1285
1286         /* prime objects have no backing filp to GEM mmap
1287          * pages from.
1288          */
1289         if (!obj->filp) {
1290                 drm_gem_object_unreference_unlocked(obj);
1291                 return -EINVAL;
1292         }
1293
1294         addr = vm_mmap(obj->filp, 0, args->size,
1295                        PROT_READ | PROT_WRITE, MAP_SHARED,
1296                        args->offset);
1297         drm_gem_object_unreference_unlocked(obj);
1298         if (IS_ERR((void *)addr))
1299                 return addr;
1300
1301         args->addr_ptr = (uint64_t) addr;
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * i915_gem_fault - fault a page into the GTT
1308  * vma: VMA in question
1309  * vmf: fault info
1310  *
1311  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312  * from userspace.  The fault handler takes care of binding the object to
1313  * the GTT (if needed), allocating and programming a fence register (again,
1314  * only if needed based on whether the old reg is still valid or the object
1315  * is tiled) and inserting a new PTE into the faulting process.
1316  *
1317  * Note that the faulting process may involve evicting existing objects
1318  * from the GTT and/or fence registers to make room.  So performance may
1319  * suffer if the GTT working set is large or there are few fence registers
1320  * left.
1321  */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325         struct drm_device *dev = obj->base.dev;
1326         drm_i915_private_t *dev_priv = dev->dev_private;
1327         pgoff_t page_offset;
1328         unsigned long pfn;
1329         int ret = 0;
1330         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332         /* We don't use vmf->pgoff since that has the fake offset */
1333         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334                 PAGE_SHIFT;
1335
1336         ret = i915_mutex_lock_interruptible(dev);
1337         if (ret)
1338                 goto out;
1339
1340         trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342         /* Access to snoopable pages through the GTT is incoherent. */
1343         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344                 ret = -EINVAL;
1345                 goto unlock;
1346         }
1347
1348         /* Now bind it into the GTT if needed */
1349         ret = i915_gem_object_pin(obj, 0, true, false);
1350         if (ret)
1351                 goto unlock;
1352
1353         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354         if (ret)
1355                 goto unpin;
1356
1357         ret = i915_gem_object_get_fence(obj);
1358         if (ret)
1359                 goto unpin;
1360
1361         obj->fault_mappable = true;
1362
1363         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364         pfn >>= PAGE_SHIFT;
1365         pfn += page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(i915_gem_obj_ggtt_bound(obj));
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->global_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         long count = 0;
1696
1697         list_for_each_entry_safe(obj, next,
1698                                  &dev_priv->mm.unbound_list,
1699                                  global_list) {
1700                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701                     i915_gem_object_put_pages(obj) == 0) {
1702                         count += obj->base.size >> PAGE_SHIFT;
1703                         if (count >= target)
1704                                 return count;
1705                 }
1706         }
1707
1708         list_for_each_entry_safe(obj, next,
1709                                  &dev_priv->mm.inactive_list,
1710                                  mm_list) {
1711                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712                     i915_gem_object_unbind(obj) == 0 &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726         return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732         struct drm_i915_gem_object *obj, *next;
1733
1734         i915_gem_evict_everything(dev_priv->dev);
1735
1736         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737                                  global_list)
1738                 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745         int page_count, i;
1746         struct address_space *mapping;
1747         struct sg_table *st;
1748         struct scatterlist *sg;
1749         struct sg_page_iter sg_iter;
1750         struct page *page;
1751         unsigned long last_pfn = 0;     /* suppress gcc warning */
1752         gfp_t gfp;
1753
1754         /* Assert that the object is not currently in any GPU domain. As it
1755          * wasn't in the GTT, there shouldn't be any way it could have been in
1756          * a GPU cache
1757          */
1758         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761         st = kmalloc(sizeof(*st), GFP_KERNEL);
1762         if (st == NULL)
1763                 return -ENOMEM;
1764
1765         page_count = obj->base.size / PAGE_SIZE;
1766         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767                 sg_free_table(st);
1768                 kfree(st);
1769                 return -ENOMEM;
1770         }
1771
1772         /* Get the list of pages out of our struct file.  They'll be pinned
1773          * at this point until we release them.
1774          *
1775          * Fail silently without starting the shrinker
1776          */
1777         mapping = file_inode(obj->base.filp)->i_mapping;
1778         gfp = mapping_gfp_mask(mapping);
1779         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780         gfp &= ~(__GFP_IO | __GFP_WAIT);
1781         sg = st->sgl;
1782         st->nents = 0;
1783         for (i = 0; i < page_count; i++) {
1784                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785                 if (IS_ERR(page)) {
1786                         i915_gem_purge(dev_priv, page_count);
1787                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788                 }
1789                 if (IS_ERR(page)) {
1790                         /* We've tried hard to allocate the memory by reaping
1791                          * our own buffer, now let the real VM do its job and
1792                          * go down in flames if truly OOM.
1793                          */
1794                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795                         gfp |= __GFP_IO | __GFP_WAIT;
1796
1797                         i915_gem_shrink_all(dev_priv);
1798                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799                         if (IS_ERR(page))
1800                                 goto err_pages;
1801
1802                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1804                 }
1805 #ifdef CONFIG_SWIOTLB
1806                 if (swiotlb_nr_tbl()) {
1807                         st->nents++;
1808                         sg_set_page(sg, page, PAGE_SIZE, 0);
1809                         sg = sg_next(sg);
1810                         continue;
1811                 }
1812 #endif
1813                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814                         if (i)
1815                                 sg = sg_next(sg);
1816                         st->nents++;
1817                         sg_set_page(sg, page, PAGE_SIZE, 0);
1818                 } else {
1819                         sg->length += PAGE_SIZE;
1820                 }
1821                 last_pfn = page_to_pfn(page);
1822         }
1823 #ifdef CONFIG_SWIOTLB
1824         if (!swiotlb_nr_tbl())
1825 #endif
1826                 sg_mark_end(sg);
1827         obj->pages = st;
1828
1829         if (i915_gem_object_needs_bit17_swizzle(obj))
1830                 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832         return 0;
1833
1834 err_pages:
1835         sg_mark_end(sg);
1836         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1837                 page_cache_release(sg_page_iter_page(&sg_iter));
1838         sg_free_table(st);
1839         kfree(st);
1840         return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844  * and pinned into our object. i915_gem_object_get_pages() may be called
1845  * multiple times before they are released by a single call to
1846  * i915_gem_object_put_pages() - once the pages are no longer referenced
1847  * either as a result of memory pressure (reaping pages under the shrinker)
1848  * or as the object is itself released.
1849  */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854         const struct drm_i915_gem_object_ops *ops = obj->ops;
1855         int ret;
1856
1857         if (obj->pages)
1858                 return 0;
1859
1860         if (obj->madv != I915_MADV_WILLNEED) {
1861                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862                 return -EINVAL;
1863         }
1864
1865         BUG_ON(obj->pages_pin_count);
1866
1867         ret = ops->get_pages(obj);
1868         if (ret)
1869                 return ret;
1870
1871         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1872         return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877                                struct intel_ring_buffer *ring)
1878 {
1879         struct drm_device *dev = obj->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         u32 seqno = intel_ring_get_seqno(ring);
1882
1883         BUG_ON(ring == NULL);
1884         obj->ring = ring;
1885
1886         /* Add a reference if we're newly entering the active list. */
1887         if (!obj->active) {
1888                 drm_gem_object_reference(&obj->base);
1889                 obj->active = 1;
1890         }
1891
1892         /* Move from whatever list we were on to the tail of execution. */
1893         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894         list_move_tail(&obj->ring_list, &ring->active_list);
1895
1896         obj->last_read_seqno = seqno;
1897
1898         if (obj->fenced_gpu_access) {
1899                 obj->last_fenced_seqno = seqno;
1900
1901                 /* Bump MRU to take account of the delayed flush */
1902                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903                         struct drm_i915_fence_reg *reg;
1904
1905                         reg = &dev_priv->fence_regs[obj->fence_reg];
1906                         list_move_tail(&reg->lru_list,
1907                                        &dev_priv->mm.fence_list);
1908                 }
1909         }
1910 }
1911
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915         struct drm_device *dev = obj->base.dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919         BUG_ON(!obj->active);
1920
1921         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1922
1923         list_del_init(&obj->ring_list);
1924         obj->ring = NULL;
1925
1926         obj->last_read_seqno = 0;
1927         obj->last_write_seqno = 0;
1928         obj->base.write_domain = 0;
1929
1930         obj->last_fenced_seqno = 0;
1931         obj->fenced_gpu_access = false;
1932
1933         obj->active = 0;
1934         drm_gem_object_unreference(&obj->base);
1935
1936         WARN_ON(i915_verify_lists(dev));
1937 }
1938
1939 static int
1940 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1941 {
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         struct intel_ring_buffer *ring;
1944         int ret, i, j;
1945
1946         /* Carefully retire all requests without writing to the rings */
1947         for_each_ring(ring, dev_priv, i) {
1948                 ret = intel_ring_idle(ring);
1949                 if (ret)
1950                         return ret;
1951         }
1952         i915_gem_retire_requests(dev);
1953
1954         /* Finally reset hw state */
1955         for_each_ring(ring, dev_priv, i) {
1956                 intel_ring_init_seqno(ring, seqno);
1957
1958                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1959                         ring->sync_seqno[j] = 0;
1960         }
1961
1962         return 0;
1963 }
1964
1965 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1966 {
1967         struct drm_i915_private *dev_priv = dev->dev_private;
1968         int ret;
1969
1970         if (seqno == 0)
1971                 return -EINVAL;
1972
1973         /* HWS page needs to be set less than what we
1974          * will inject to ring
1975          */
1976         ret = i915_gem_init_seqno(dev, seqno - 1);
1977         if (ret)
1978                 return ret;
1979
1980         /* Carefully set the last_seqno value so that wrap
1981          * detection still works
1982          */
1983         dev_priv->next_seqno = seqno;
1984         dev_priv->last_seqno = seqno - 1;
1985         if (dev_priv->last_seqno == 0)
1986                 dev_priv->last_seqno--;
1987
1988         return 0;
1989 }
1990
1991 int
1992 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1993 {
1994         struct drm_i915_private *dev_priv = dev->dev_private;
1995
1996         /* reserve 0 for non-seqno */
1997         if (dev_priv->next_seqno == 0) {
1998                 int ret = i915_gem_init_seqno(dev, 0);
1999                 if (ret)
2000                         return ret;
2001
2002                 dev_priv->next_seqno = 1;
2003         }
2004
2005         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2006         return 0;
2007 }
2008
2009 int __i915_add_request(struct intel_ring_buffer *ring,
2010                        struct drm_file *file,
2011                        struct drm_i915_gem_object *obj,
2012                        u32 *out_seqno)
2013 {
2014         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2015         struct drm_i915_gem_request *request;
2016         u32 request_ring_position, request_start;
2017         int was_empty;
2018         int ret;
2019
2020         request_start = intel_ring_get_tail(ring);
2021         /*
2022          * Emit any outstanding flushes - execbuf can fail to emit the flush
2023          * after having emitted the batchbuffer command. Hence we need to fix
2024          * things up similar to emitting the lazy request. The difference here
2025          * is that the flush _must_ happen before the next request, no matter
2026          * what.
2027          */
2028         ret = intel_ring_flush_all_caches(ring);
2029         if (ret)
2030                 return ret;
2031
2032         request = kmalloc(sizeof(*request), GFP_KERNEL);
2033         if (request == NULL)
2034                 return -ENOMEM;
2035
2036
2037         /* Record the position of the start of the request so that
2038          * should we detect the updated seqno part-way through the
2039          * GPU processing the request, we never over-estimate the
2040          * position of the head.
2041          */
2042         request_ring_position = intel_ring_get_tail(ring);
2043
2044         ret = ring->add_request(ring);
2045         if (ret) {
2046                 kfree(request);
2047                 return ret;
2048         }
2049
2050         request->seqno = intel_ring_get_seqno(ring);
2051         request->ring = ring;
2052         request->head = request_start;
2053         request->tail = request_ring_position;
2054         request->ctx = ring->last_context;
2055         request->batch_obj = obj;
2056
2057         /* Whilst this request exists, batch_obj will be on the
2058          * active_list, and so will hold the active reference. Only when this
2059          * request is retired will the the batch_obj be moved onto the
2060          * inactive_list and lose its active reference. Hence we do not need
2061          * to explicitly hold another reference here.
2062          */
2063
2064         if (request->ctx)
2065                 i915_gem_context_reference(request->ctx);
2066
2067         request->emitted_jiffies = jiffies;
2068         was_empty = list_empty(&ring->request_list);
2069         list_add_tail(&request->list, &ring->request_list);
2070         request->file_priv = NULL;
2071
2072         if (file) {
2073                 struct drm_i915_file_private *file_priv = file->driver_priv;
2074
2075                 spin_lock(&file_priv->mm.lock);
2076                 request->file_priv = file_priv;
2077                 list_add_tail(&request->client_list,
2078                               &file_priv->mm.request_list);
2079                 spin_unlock(&file_priv->mm.lock);
2080         }
2081
2082         trace_i915_gem_request_add(ring, request->seqno);
2083         ring->outstanding_lazy_request = 0;
2084
2085         if (!dev_priv->mm.suspended) {
2086                 if (i915_enable_hangcheck) {
2087                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2088                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2089                 }
2090                 if (was_empty) {
2091                         queue_delayed_work(dev_priv->wq,
2092                                            &dev_priv->mm.retire_work,
2093                                            round_jiffies_up_relative(HZ));
2094                         intel_mark_busy(dev_priv->dev);
2095                 }
2096         }
2097
2098         if (out_seqno)
2099                 *out_seqno = request->seqno;
2100         return 0;
2101 }
2102
2103 static inline void
2104 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2105 {
2106         struct drm_i915_file_private *file_priv = request->file_priv;
2107
2108         if (!file_priv)
2109                 return;
2110
2111         spin_lock(&file_priv->mm.lock);
2112         if (request->file_priv) {
2113                 list_del(&request->client_list);
2114                 request->file_priv = NULL;
2115         }
2116         spin_unlock(&file_priv->mm.lock);
2117 }
2118
2119 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2120 {
2121         if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2122             acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2123                 return true;
2124
2125         return false;
2126 }
2127
2128 static bool i915_head_inside_request(const u32 acthd_unmasked,
2129                                      const u32 request_start,
2130                                      const u32 request_end)
2131 {
2132         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2133
2134         if (request_start < request_end) {
2135                 if (acthd >= request_start && acthd < request_end)
2136                         return true;
2137         } else if (request_start > request_end) {
2138                 if (acthd >= request_start || acthd < request_end)
2139                         return true;
2140         }
2141
2142         return false;
2143 }
2144
2145 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2146                                 const u32 acthd, bool *inside)
2147 {
2148         /* There is a possibility that unmasked head address
2149          * pointing inside the ring, matches the batch_obj address range.
2150          * However this is extremely unlikely.
2151          */
2152
2153         if (request->batch_obj) {
2154                 if (i915_head_inside_object(acthd, request->batch_obj)) {
2155                         *inside = true;
2156                         return true;
2157                 }
2158         }
2159
2160         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2161                 *inside = false;
2162                 return true;
2163         }
2164
2165         return false;
2166 }
2167
2168 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2169                                   struct drm_i915_gem_request *request,
2170                                   u32 acthd)
2171 {
2172         struct i915_ctx_hang_stats *hs = NULL;
2173         bool inside, guilty;
2174
2175         /* Innocent until proven guilty */
2176         guilty = false;
2177
2178         if (ring->hangcheck.action != wait &&
2179             i915_request_guilty(request, acthd, &inside)) {
2180                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2181                           ring->name,
2182                           inside ? "inside" : "flushing",
2183                           request->batch_obj ?
2184                           i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2185                           request->ctx ? request->ctx->id : 0,
2186                           acthd);
2187
2188                 guilty = true;
2189         }
2190
2191         /* If contexts are disabled or this is the default context, use
2192          * file_priv->reset_state
2193          */
2194         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2195                 hs = &request->ctx->hang_stats;
2196         else if (request->file_priv)
2197                 hs = &request->file_priv->hang_stats;
2198
2199         if (hs) {
2200                 if (guilty)
2201                         hs->batch_active++;
2202                 else
2203                         hs->batch_pending++;
2204         }
2205 }
2206
2207 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2208 {
2209         list_del(&request->list);
2210         i915_gem_request_remove_from_client(request);
2211
2212         if (request->ctx)
2213                 i915_gem_context_unreference(request->ctx);
2214
2215         kfree(request);
2216 }
2217
2218 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2219                                       struct intel_ring_buffer *ring)
2220 {
2221         u32 completed_seqno;
2222         u32 acthd;
2223
2224         acthd = intel_ring_get_active_head(ring);
2225         completed_seqno = ring->get_seqno(ring, false);
2226
2227         while (!list_empty(&ring->request_list)) {
2228                 struct drm_i915_gem_request *request;
2229
2230                 request = list_first_entry(&ring->request_list,
2231                                            struct drm_i915_gem_request,
2232                                            list);
2233
2234                 if (request->seqno > completed_seqno)
2235                         i915_set_reset_status(ring, request, acthd);
2236
2237                 i915_gem_free_request(request);
2238         }
2239
2240         while (!list_empty(&ring->active_list)) {
2241                 struct drm_i915_gem_object *obj;
2242
2243                 obj = list_first_entry(&ring->active_list,
2244                                        struct drm_i915_gem_object,
2245                                        ring_list);
2246
2247                 i915_gem_object_move_to_inactive(obj);
2248         }
2249 }
2250
2251 static void i915_gem_reset_fences(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254         int i;
2255
2256         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2257                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2258
2259                 if (reg->obj)
2260                         i915_gem_object_fence_lost(reg->obj);
2261
2262                 i915_gem_write_fence(dev, i, NULL);
2263
2264                 reg->pin_count = 0;
2265                 reg->obj = NULL;
2266                 INIT_LIST_HEAD(&reg->lru_list);
2267         }
2268
2269         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2270 }
2271
2272 void i915_gem_reset(struct drm_device *dev)
2273 {
2274         struct drm_i915_private *dev_priv = dev->dev_private;
2275         struct drm_i915_gem_object *obj;
2276         struct intel_ring_buffer *ring;
2277         int i;
2278
2279         for_each_ring(ring, dev_priv, i)
2280                 i915_gem_reset_ring_lists(dev_priv, ring);
2281
2282         /* Move everything out of the GPU domains to ensure we do any
2283          * necessary invalidation upon reuse.
2284          */
2285         list_for_each_entry(obj,
2286                             &dev_priv->mm.inactive_list,
2287                             mm_list)
2288         {
2289                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2290         }
2291
2292         /* The fence registers are invalidated so clear them out */
2293         i915_gem_reset_fences(dev);
2294 }
2295
2296 /**
2297  * This function clears the request list as sequence numbers are passed.
2298  */
2299 void
2300 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2301 {
2302         uint32_t seqno;
2303
2304         if (list_empty(&ring->request_list))
2305                 return;
2306
2307         WARN_ON(i915_verify_lists(ring->dev));
2308
2309         seqno = ring->get_seqno(ring, true);
2310
2311         while (!list_empty(&ring->request_list)) {
2312                 struct drm_i915_gem_request *request;
2313
2314                 request = list_first_entry(&ring->request_list,
2315                                            struct drm_i915_gem_request,
2316                                            list);
2317
2318                 if (!i915_seqno_passed(seqno, request->seqno))
2319                         break;
2320
2321                 trace_i915_gem_request_retire(ring, request->seqno);
2322                 /* We know the GPU must have read the request to have
2323                  * sent us the seqno + interrupt, so use the position
2324                  * of tail of the request to update the last known position
2325                  * of the GPU head.
2326                  */
2327                 ring->last_retired_head = request->tail;
2328
2329                 i915_gem_free_request(request);
2330         }
2331
2332         /* Move any buffers on the active list that are no longer referenced
2333          * by the ringbuffer to the flushing/inactive lists as appropriate.
2334          */
2335         while (!list_empty(&ring->active_list)) {
2336                 struct drm_i915_gem_object *obj;
2337
2338                 obj = list_first_entry(&ring->active_list,
2339                                       struct drm_i915_gem_object,
2340                                       ring_list);
2341
2342                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2343                         break;
2344
2345                 i915_gem_object_move_to_inactive(obj);
2346         }
2347
2348         if (unlikely(ring->trace_irq_seqno &&
2349                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2350                 ring->irq_put(ring);
2351                 ring->trace_irq_seqno = 0;
2352         }
2353
2354         WARN_ON(i915_verify_lists(ring->dev));
2355 }
2356
2357 void
2358 i915_gem_retire_requests(struct drm_device *dev)
2359 {
2360         drm_i915_private_t *dev_priv = dev->dev_private;
2361         struct intel_ring_buffer *ring;
2362         int i;
2363
2364         for_each_ring(ring, dev_priv, i)
2365                 i915_gem_retire_requests_ring(ring);
2366 }
2367
2368 static void
2369 i915_gem_retire_work_handler(struct work_struct *work)
2370 {
2371         drm_i915_private_t *dev_priv;
2372         struct drm_device *dev;
2373         struct intel_ring_buffer *ring;
2374         bool idle;
2375         int i;
2376
2377         dev_priv = container_of(work, drm_i915_private_t,
2378                                 mm.retire_work.work);
2379         dev = dev_priv->dev;
2380
2381         /* Come back later if the device is busy... */
2382         if (!mutex_trylock(&dev->struct_mutex)) {
2383                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2384                                    round_jiffies_up_relative(HZ));
2385                 return;
2386         }
2387
2388         i915_gem_retire_requests(dev);
2389
2390         /* Send a periodic flush down the ring so we don't hold onto GEM
2391          * objects indefinitely.
2392          */
2393         idle = true;
2394         for_each_ring(ring, dev_priv, i) {
2395                 if (ring->gpu_caches_dirty)
2396                         i915_add_request(ring, NULL);
2397
2398                 idle &= list_empty(&ring->request_list);
2399         }
2400
2401         if (!dev_priv->mm.suspended && !idle)
2402                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2403                                    round_jiffies_up_relative(HZ));
2404         if (idle)
2405                 intel_mark_idle(dev);
2406
2407         mutex_unlock(&dev->struct_mutex);
2408 }
2409
2410 /**
2411  * Ensures that an object will eventually get non-busy by flushing any required
2412  * write domains, emitting any outstanding lazy request and retiring and
2413  * completed requests.
2414  */
2415 static int
2416 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2417 {
2418         int ret;
2419
2420         if (obj->active) {
2421                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2422                 if (ret)
2423                         return ret;
2424
2425                 i915_gem_retire_requests_ring(obj->ring);
2426         }
2427
2428         return 0;
2429 }
2430
2431 /**
2432  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2433  * @DRM_IOCTL_ARGS: standard ioctl arguments
2434  *
2435  * Returns 0 if successful, else an error is returned with the remaining time in
2436  * the timeout parameter.
2437  *  -ETIME: object is still busy after timeout
2438  *  -ERESTARTSYS: signal interrupted the wait
2439  *  -ENONENT: object doesn't exist
2440  * Also possible, but rare:
2441  *  -EAGAIN: GPU wedged
2442  *  -ENOMEM: damn
2443  *  -ENODEV: Internal IRQ fail
2444  *  -E?: The add request failed
2445  *
2446  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2447  * non-zero timeout parameter the wait ioctl will wait for the given number of
2448  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2449  * without holding struct_mutex the object may become re-busied before this
2450  * function completes. A similar but shorter * race condition exists in the busy
2451  * ioctl
2452  */
2453 int
2454 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2455 {
2456         drm_i915_private_t *dev_priv = dev->dev_private;
2457         struct drm_i915_gem_wait *args = data;
2458         struct drm_i915_gem_object *obj;
2459         struct intel_ring_buffer *ring = NULL;
2460         struct timespec timeout_stack, *timeout = NULL;
2461         unsigned reset_counter;
2462         u32 seqno = 0;
2463         int ret = 0;
2464
2465         if (args->timeout_ns >= 0) {
2466                 timeout_stack = ns_to_timespec(args->timeout_ns);
2467                 timeout = &timeout_stack;
2468         }
2469
2470         ret = i915_mutex_lock_interruptible(dev);
2471         if (ret)
2472                 return ret;
2473
2474         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2475         if (&obj->base == NULL) {
2476                 mutex_unlock(&dev->struct_mutex);
2477                 return -ENOENT;
2478         }
2479
2480         /* Need to make sure the object gets inactive eventually. */
2481         ret = i915_gem_object_flush_active(obj);
2482         if (ret)
2483                 goto out;
2484
2485         if (obj->active) {
2486                 seqno = obj->last_read_seqno;
2487                 ring = obj->ring;
2488         }
2489
2490         if (seqno == 0)
2491                  goto out;
2492
2493         /* Do this after OLR check to make sure we make forward progress polling
2494          * on this IOCTL with a 0 timeout (like busy ioctl)
2495          */
2496         if (!args->timeout_ns) {
2497                 ret = -ETIME;
2498                 goto out;
2499         }
2500
2501         drm_gem_object_unreference(&obj->base);
2502         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2503         mutex_unlock(&dev->struct_mutex);
2504
2505         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2506         if (timeout)
2507                 args->timeout_ns = timespec_to_ns(timeout);
2508         return ret;
2509
2510 out:
2511         drm_gem_object_unreference(&obj->base);
2512         mutex_unlock(&dev->struct_mutex);
2513         return ret;
2514 }
2515
2516 /**
2517  * i915_gem_object_sync - sync an object to a ring.
2518  *
2519  * @obj: object which may be in use on another ring.
2520  * @to: ring we wish to use the object on. May be NULL.
2521  *
2522  * This code is meant to abstract object synchronization with the GPU.
2523  * Calling with NULL implies synchronizing the object with the CPU
2524  * rather than a particular GPU ring.
2525  *
2526  * Returns 0 if successful, else propagates up the lower layer error.
2527  */
2528 int
2529 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2530                      struct intel_ring_buffer *to)
2531 {
2532         struct intel_ring_buffer *from = obj->ring;
2533         u32 seqno;
2534         int ret, idx;
2535
2536         if (from == NULL || to == from)
2537                 return 0;
2538
2539         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2540                 return i915_gem_object_wait_rendering(obj, false);
2541
2542         idx = intel_ring_sync_index(from, to);
2543
2544         seqno = obj->last_read_seqno;
2545         if (seqno <= from->sync_seqno[idx])
2546                 return 0;
2547
2548         ret = i915_gem_check_olr(obj->ring, seqno);
2549         if (ret)
2550                 return ret;
2551
2552         ret = to->sync_to(to, from, seqno);
2553         if (!ret)
2554                 /* We use last_read_seqno because sync_to()
2555                  * might have just caused seqno wrap under
2556                  * the radar.
2557                  */
2558                 from->sync_seqno[idx] = obj->last_read_seqno;
2559
2560         return ret;
2561 }
2562
2563 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2564 {
2565         u32 old_write_domain, old_read_domains;
2566
2567         /* Force a pagefault for domain tracking on next user access */
2568         i915_gem_release_mmap(obj);
2569
2570         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2571                 return;
2572
2573         /* Wait for any direct GTT access to complete */
2574         mb();
2575
2576         old_read_domains = obj->base.read_domains;
2577         old_write_domain = obj->base.write_domain;
2578
2579         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2580         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2581
2582         trace_i915_gem_object_change_domain(obj,
2583                                             old_read_domains,
2584                                             old_write_domain);
2585 }
2586
2587 /**
2588  * Unbinds an object from the GTT aperture.
2589  */
2590 int
2591 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2592 {
2593         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2594         int ret;
2595
2596         if (!i915_gem_obj_ggtt_bound(obj))
2597                 return 0;
2598
2599         if (obj->pin_count)
2600                 return -EBUSY;
2601
2602         BUG_ON(obj->pages == NULL);
2603
2604         ret = i915_gem_object_finish_gpu(obj);
2605         if (ret)
2606                 return ret;
2607         /* Continue on if we fail due to EIO, the GPU is hung so we
2608          * should be safe and we need to cleanup or else we might
2609          * cause memory corruption through use-after-free.
2610          */
2611
2612         i915_gem_object_finish_gtt(obj);
2613
2614         /* release the fence reg _after_ flushing */
2615         ret = i915_gem_object_put_fence(obj);
2616         if (ret)
2617                 return ret;
2618
2619         trace_i915_gem_object_unbind(obj);
2620
2621         if (obj->has_global_gtt_mapping)
2622                 i915_gem_gtt_unbind_object(obj);
2623         if (obj->has_aliasing_ppgtt_mapping) {
2624                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2625                 obj->has_aliasing_ppgtt_mapping = 0;
2626         }
2627         i915_gem_gtt_finish_object(obj);
2628         i915_gem_object_unpin_pages(obj);
2629
2630         list_del(&obj->mm_list);
2631         list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2632         /* Avoid an unnecessary call to unbind on rebind. */
2633         obj->map_and_fenceable = true;
2634
2635         drm_mm_remove_node(&obj->gtt_space);
2636
2637         return 0;
2638 }
2639
2640 int i915_gpu_idle(struct drm_device *dev)
2641 {
2642         drm_i915_private_t *dev_priv = dev->dev_private;
2643         struct intel_ring_buffer *ring;
2644         int ret, i;
2645
2646         /* Flush everything onto the inactive list. */
2647         for_each_ring(ring, dev_priv, i) {
2648                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2649                 if (ret)
2650                         return ret;
2651
2652                 ret = intel_ring_idle(ring);
2653                 if (ret)
2654                         return ret;
2655         }
2656
2657         return 0;
2658 }
2659
2660 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2661                                  struct drm_i915_gem_object *obj)
2662 {
2663         drm_i915_private_t *dev_priv = dev->dev_private;
2664         int fence_reg;
2665         int fence_pitch_shift;
2666         uint64_t val;
2667
2668         if (INTEL_INFO(dev)->gen >= 6) {
2669                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2670                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2671         } else {
2672                 fence_reg = FENCE_REG_965_0;
2673                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2674         }
2675
2676         if (obj) {
2677                 u32 size = i915_gem_obj_ggtt_size(obj);
2678
2679                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2680                                  0xfffff000) << 32;
2681                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2682                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2683                 if (obj->tiling_mode == I915_TILING_Y)
2684                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2685                 val |= I965_FENCE_REG_VALID;
2686         } else
2687                 val = 0;
2688
2689         fence_reg += reg * 8;
2690         I915_WRITE64(fence_reg, val);
2691         POSTING_READ(fence_reg);
2692 }
2693
2694 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2695                                  struct drm_i915_gem_object *obj)
2696 {
2697         drm_i915_private_t *dev_priv = dev->dev_private;
2698         u32 val;
2699
2700         if (obj) {
2701                 u32 size = i915_gem_obj_ggtt_size(obj);
2702                 int pitch_val;
2703                 int tile_width;
2704
2705                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2706                      (size & -size) != size ||
2707                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2708                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2709                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2710
2711                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2712                         tile_width = 128;
2713                 else
2714                         tile_width = 512;
2715
2716                 /* Note: pitch better be a power of two tile widths */
2717                 pitch_val = obj->stride / tile_width;
2718                 pitch_val = ffs(pitch_val) - 1;
2719
2720                 val = i915_gem_obj_ggtt_offset(obj);
2721                 if (obj->tiling_mode == I915_TILING_Y)
2722                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2723                 val |= I915_FENCE_SIZE_BITS(size);
2724                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2725                 val |= I830_FENCE_REG_VALID;
2726         } else
2727                 val = 0;
2728
2729         if (reg < 8)
2730                 reg = FENCE_REG_830_0 + reg * 4;
2731         else
2732                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2733
2734         I915_WRITE(reg, val);
2735         POSTING_READ(reg);
2736 }
2737
2738 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2739                                 struct drm_i915_gem_object *obj)
2740 {
2741         drm_i915_private_t *dev_priv = dev->dev_private;
2742         uint32_t val;
2743
2744         if (obj) {
2745                 u32 size = i915_gem_obj_ggtt_size(obj);
2746                 uint32_t pitch_val;
2747
2748                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2749                      (size & -size) != size ||
2750                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2751                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2752                      i915_gem_obj_ggtt_offset(obj), size);
2753
2754                 pitch_val = obj->stride / 128;
2755                 pitch_val = ffs(pitch_val) - 1;
2756
2757                 val = i915_gem_obj_ggtt_offset(obj);
2758                 if (obj->tiling_mode == I915_TILING_Y)
2759                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2760                 val |= I830_FENCE_SIZE_BITS(size);
2761                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2762                 val |= I830_FENCE_REG_VALID;
2763         } else
2764                 val = 0;
2765
2766         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2767         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2768 }
2769
2770 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2771 {
2772         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2773 }
2774
2775 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2776                                  struct drm_i915_gem_object *obj)
2777 {
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779
2780         /* Ensure that all CPU reads are completed before installing a fence
2781          * and all writes before removing the fence.
2782          */
2783         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2784                 mb();
2785
2786         switch (INTEL_INFO(dev)->gen) {
2787         case 7:
2788         case 6:
2789         case 5:
2790         case 4: i965_write_fence_reg(dev, reg, obj); break;
2791         case 3: i915_write_fence_reg(dev, reg, obj); break;
2792         case 2: i830_write_fence_reg(dev, reg, obj); break;
2793         default: BUG();
2794         }
2795
2796         /* And similarly be paranoid that no direct access to this region
2797          * is reordered to before the fence is installed.
2798          */
2799         if (i915_gem_object_needs_mb(obj))
2800                 mb();
2801 }
2802
2803 static inline int fence_number(struct drm_i915_private *dev_priv,
2804                                struct drm_i915_fence_reg *fence)
2805 {
2806         return fence - dev_priv->fence_regs;
2807 }
2808
2809 struct write_fence {
2810         struct drm_device *dev;
2811         struct drm_i915_gem_object *obj;
2812         int fence;
2813 };
2814
2815 static void i915_gem_write_fence__ipi(void *data)
2816 {
2817         struct write_fence *args = data;
2818
2819         /* Required for SNB+ with LLC */
2820         wbinvd();
2821
2822         /* Required for VLV */
2823         i915_gem_write_fence(args->dev, args->fence, args->obj);
2824 }
2825
2826 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2827                                          struct drm_i915_fence_reg *fence,
2828                                          bool enable)
2829 {
2830         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2831         struct write_fence args = {
2832                 .dev = obj->base.dev,
2833                 .fence = fence_number(dev_priv, fence),
2834                 .obj = enable ? obj : NULL,
2835         };
2836
2837         /* In order to fully serialize access to the fenced region and
2838          * the update to the fence register we need to take extreme
2839          * measures on SNB+. In theory, the write to the fence register
2840          * flushes all memory transactions before, and coupled with the
2841          * mb() placed around the register write we serialise all memory
2842          * operations with respect to the changes in the tiler. Yet, on
2843          * SNB+ we need to take a step further and emit an explicit wbinvd()
2844          * on each processor in order to manually flush all memory
2845          * transactions before updating the fence register.
2846          *
2847          * However, Valleyview complicates matter. There the wbinvd is
2848          * insufficient and unlike SNB/IVB requires the serialising
2849          * register write. (Note that that register write by itself is
2850          * conversely not sufficient for SNB+.) To compromise, we do both.
2851          */
2852         if (INTEL_INFO(args.dev)->gen >= 6)
2853                 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2854         else
2855                 i915_gem_write_fence(args.dev, args.fence, args.obj);
2856
2857         if (enable) {
2858                 obj->fence_reg = args.fence;
2859                 fence->obj = obj;
2860                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2861         } else {
2862                 obj->fence_reg = I915_FENCE_REG_NONE;
2863                 fence->obj = NULL;
2864                 list_del_init(&fence->lru_list);
2865         }
2866 }
2867
2868 static int
2869 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2870 {
2871         if (obj->last_fenced_seqno) {
2872                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2873                 if (ret)
2874                         return ret;
2875
2876                 obj->last_fenced_seqno = 0;
2877         }
2878
2879         obj->fenced_gpu_access = false;
2880         return 0;
2881 }
2882
2883 int
2884 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2885 {
2886         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2887         struct drm_i915_fence_reg *fence;
2888         int ret;
2889
2890         ret = i915_gem_object_wait_fence(obj);
2891         if (ret)
2892                 return ret;
2893
2894         if (obj->fence_reg == I915_FENCE_REG_NONE)
2895                 return 0;
2896
2897         fence = &dev_priv->fence_regs[obj->fence_reg];
2898
2899         i915_gem_object_fence_lost(obj);
2900         i915_gem_object_update_fence(obj, fence, false);
2901
2902         return 0;
2903 }
2904
2905 static struct drm_i915_fence_reg *
2906 i915_find_fence_reg(struct drm_device *dev)
2907 {
2908         struct drm_i915_private *dev_priv = dev->dev_private;
2909         struct drm_i915_fence_reg *reg, *avail;
2910         int i;
2911
2912         /* First try to find a free reg */
2913         avail = NULL;
2914         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2915                 reg = &dev_priv->fence_regs[i];
2916                 if (!reg->obj)
2917                         return reg;
2918
2919                 if (!reg->pin_count)
2920                         avail = reg;
2921         }
2922
2923         if (avail == NULL)
2924                 return NULL;
2925
2926         /* None available, try to steal one or wait for a user to finish */
2927         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2928                 if (reg->pin_count)
2929                         continue;
2930
2931                 return reg;
2932         }
2933
2934         return NULL;
2935 }
2936
2937 /**
2938  * i915_gem_object_get_fence - set up fencing for an object
2939  * @obj: object to map through a fence reg
2940  *
2941  * When mapping objects through the GTT, userspace wants to be able to write
2942  * to them without having to worry about swizzling if the object is tiled.
2943  * This function walks the fence regs looking for a free one for @obj,
2944  * stealing one if it can't find any.
2945  *
2946  * It then sets up the reg based on the object's properties: address, pitch
2947  * and tiling format.
2948  *
2949  * For an untiled surface, this removes any existing fence.
2950  */
2951 int
2952 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2953 {
2954         struct drm_device *dev = obj->base.dev;
2955         struct drm_i915_private *dev_priv = dev->dev_private;
2956         bool enable = obj->tiling_mode != I915_TILING_NONE;
2957         struct drm_i915_fence_reg *reg;
2958         int ret;
2959
2960         /* Have we updated the tiling parameters upon the object and so
2961          * will need to serialise the write to the associated fence register?
2962          */
2963         if (obj->fence_dirty) {
2964                 ret = i915_gem_object_wait_fence(obj);
2965                 if (ret)
2966                         return ret;
2967         }
2968
2969         /* Just update our place in the LRU if our fence is getting reused. */
2970         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2971                 reg = &dev_priv->fence_regs[obj->fence_reg];
2972                 if (!obj->fence_dirty) {
2973                         list_move_tail(&reg->lru_list,
2974                                        &dev_priv->mm.fence_list);
2975                         return 0;
2976                 }
2977         } else if (enable) {
2978                 reg = i915_find_fence_reg(dev);
2979                 if (reg == NULL)
2980                         return -EDEADLK;
2981
2982                 if (reg->obj) {
2983                         struct drm_i915_gem_object *old = reg->obj;
2984
2985                         ret = i915_gem_object_wait_fence(old);
2986                         if (ret)
2987                                 return ret;
2988
2989                         i915_gem_object_fence_lost(old);
2990                 }
2991         } else
2992                 return 0;
2993
2994         i915_gem_object_update_fence(obj, reg, enable);
2995         obj->fence_dirty = false;
2996
2997         return 0;
2998 }
2999
3000 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3001                                      struct drm_mm_node *gtt_space,
3002                                      unsigned long cache_level)
3003 {
3004         struct drm_mm_node *other;
3005
3006         /* On non-LLC machines we have to be careful when putting differing
3007          * types of snoopable memory together to avoid the prefetcher
3008          * crossing memory domains and dying.
3009          */
3010         if (HAS_LLC(dev))
3011                 return true;
3012
3013         if (!drm_mm_node_allocated(gtt_space))
3014                 return true;
3015
3016         if (list_empty(&gtt_space->node_list))
3017                 return true;
3018
3019         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3020         if (other->allocated && !other->hole_follows && other->color != cache_level)
3021                 return false;
3022
3023         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3024         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3025                 return false;
3026
3027         return true;
3028 }
3029
3030 static void i915_gem_verify_gtt(struct drm_device *dev)
3031 {
3032 #if WATCH_GTT
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct drm_i915_gem_object *obj;
3035         int err = 0;
3036
3037         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3038                 if (obj->gtt_space == NULL) {
3039                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3040                         err++;
3041                         continue;
3042                 }
3043
3044                 if (obj->cache_level != obj->gtt_space->color) {
3045                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3046                                i915_gem_obj_ggtt_offset(obj),
3047                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3048                                obj->cache_level,
3049                                obj->gtt_space->color);
3050                         err++;
3051                         continue;
3052                 }
3053
3054                 if (!i915_gem_valid_gtt_space(dev,
3055                                               obj->gtt_space,
3056                                               obj->cache_level)) {
3057                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3058                                i915_gem_obj_ggtt_offset(obj),
3059                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3060                                obj->cache_level);
3061                         err++;
3062                         continue;
3063                 }
3064         }
3065
3066         WARN_ON(err);
3067 #endif
3068 }
3069
3070 /**
3071  * Finds free space in the GTT aperture and binds the object there.
3072  */
3073 static int
3074 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3075                             unsigned alignment,
3076                             bool map_and_fenceable,
3077                             bool nonblocking)
3078 {
3079         struct drm_device *dev = obj->base.dev;
3080         drm_i915_private_t *dev_priv = dev->dev_private;
3081         u32 size, fence_size, fence_alignment, unfenced_alignment;
3082         bool mappable, fenceable;
3083         size_t gtt_max = map_and_fenceable ?
3084                 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3085         int ret;
3086
3087         fence_size = i915_gem_get_gtt_size(dev,
3088                                            obj->base.size,
3089                                            obj->tiling_mode);
3090         fence_alignment = i915_gem_get_gtt_alignment(dev,
3091                                                      obj->base.size,
3092                                                      obj->tiling_mode, true);
3093         unfenced_alignment =
3094                 i915_gem_get_gtt_alignment(dev,
3095                                                     obj->base.size,
3096                                                     obj->tiling_mode, false);
3097
3098         if (alignment == 0)
3099                 alignment = map_and_fenceable ? fence_alignment :
3100                                                 unfenced_alignment;
3101         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3102                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3103                 return -EINVAL;
3104         }
3105
3106         size = map_and_fenceable ? fence_size : obj->base.size;
3107
3108         /* If the object is bigger than the entire aperture, reject it early
3109          * before evicting everything in a vain attempt to find space.
3110          */
3111         if (obj->base.size > gtt_max) {
3112                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3113                           obj->base.size,
3114                           map_and_fenceable ? "mappable" : "total",
3115                           gtt_max);
3116                 return -E2BIG;
3117         }
3118
3119         ret = i915_gem_object_get_pages(obj);
3120         if (ret)
3121                 return ret;
3122
3123         i915_gem_object_pin_pages(obj);
3124
3125 search_free:
3126         ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3127                                                   &obj->gtt_space,
3128                                                   size, alignment,
3129                                                   obj->cache_level, 0, gtt_max);
3130         if (ret) {
3131                 ret = i915_gem_evict_something(dev, size, alignment,
3132                                                obj->cache_level,
3133                                                map_and_fenceable,
3134                                                nonblocking);
3135                 if (ret == 0)
3136                         goto search_free;
3137
3138                 i915_gem_object_unpin_pages(obj);
3139                 return ret;
3140         }
3141         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3142                                               obj->cache_level))) {
3143                 i915_gem_object_unpin_pages(obj);
3144                 drm_mm_remove_node(&obj->gtt_space);
3145                 return -EINVAL;
3146         }
3147
3148         ret = i915_gem_gtt_prepare_object(obj);
3149         if (ret) {
3150                 i915_gem_object_unpin_pages(obj);
3151                 drm_mm_remove_node(&obj->gtt_space);
3152                 return ret;
3153         }
3154
3155         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3156         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3157
3158         fenceable =
3159                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3160                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3161
3162         mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3163                 dev_priv->gtt.mappable_end;
3164
3165         obj->map_and_fenceable = mappable && fenceable;
3166
3167         trace_i915_gem_object_bind(obj, map_and_fenceable);
3168         i915_gem_verify_gtt(dev);
3169         return 0;
3170 }
3171
3172 void
3173 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3174 {
3175         /* If we don't have a page list set up, then we're not pinned
3176          * to GPU, and we can ignore the cache flush because it'll happen
3177          * again at bind time.
3178          */
3179         if (obj->pages == NULL)
3180                 return;
3181
3182         /*
3183          * Stolen memory is always coherent with the GPU as it is explicitly
3184          * marked as wc by the system, or the system is cache-coherent.
3185          */
3186         if (obj->stolen)
3187                 return;
3188
3189         /* If the GPU is snooping the contents of the CPU cache,
3190          * we do not need to manually clear the CPU cache lines.  However,
3191          * the caches are only snooped when the render cache is
3192          * flushed/invalidated.  As we always have to emit invalidations
3193          * and flushes when moving into and out of the RENDER domain, correct
3194          * snooping behaviour occurs naturally as the result of our domain
3195          * tracking.
3196          */
3197         if (obj->cache_level != I915_CACHE_NONE)
3198                 return;
3199
3200         trace_i915_gem_object_clflush(obj);
3201
3202         drm_clflush_sg(obj->pages);
3203 }
3204
3205 /** Flushes the GTT write domain for the object if it's dirty. */
3206 static void
3207 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3208 {
3209         uint32_t old_write_domain;
3210
3211         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3212                 return;
3213
3214         /* No actual flushing is required for the GTT write domain.  Writes
3215          * to it immediately go to main memory as far as we know, so there's
3216          * no chipset flush.  It also doesn't land in render cache.
3217          *
3218          * However, we do have to enforce the order so that all writes through
3219          * the GTT land before any writes to the device, such as updates to
3220          * the GATT itself.
3221          */
3222         wmb();
3223
3224         old_write_domain = obj->base.write_domain;
3225         obj->base.write_domain = 0;
3226
3227         trace_i915_gem_object_change_domain(obj,
3228                                             obj->base.read_domains,
3229                                             old_write_domain);
3230 }
3231
3232 /** Flushes the CPU write domain for the object if it's dirty. */
3233 static void
3234 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3235 {
3236         uint32_t old_write_domain;
3237
3238         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3239                 return;
3240
3241         i915_gem_clflush_object(obj);
3242         i915_gem_chipset_flush(obj->base.dev);
3243         old_write_domain = obj->base.write_domain;
3244         obj->base.write_domain = 0;
3245
3246         trace_i915_gem_object_change_domain(obj,
3247                                             obj->base.read_domains,
3248                                             old_write_domain);
3249 }
3250
3251 /**
3252  * Moves a single object to the GTT read, and possibly write domain.
3253  *
3254  * This function returns when the move is complete, including waiting on
3255  * flushes to occur.
3256  */
3257 int
3258 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3259 {
3260         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3261         uint32_t old_write_domain, old_read_domains;
3262         int ret;
3263
3264         /* Not valid to be called on unbound objects. */
3265         if (!i915_gem_obj_ggtt_bound(obj))
3266                 return -EINVAL;
3267
3268         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3269                 return 0;
3270
3271         ret = i915_gem_object_wait_rendering(obj, !write);
3272         if (ret)
3273                 return ret;
3274
3275         i915_gem_object_flush_cpu_write_domain(obj);
3276
3277         /* Serialise direct access to this object with the barriers for
3278          * coherent writes from the GPU, by effectively invalidating the
3279          * GTT domain upon first access.
3280          */
3281         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3282                 mb();
3283
3284         old_write_domain = obj->base.write_domain;
3285         old_read_domains = obj->base.read_domains;
3286
3287         /* It should now be out of any other write domains, and we can update
3288          * the domain values for our changes.
3289          */
3290         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3291         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3292         if (write) {
3293                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3294                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3295                 obj->dirty = 1;
3296         }
3297
3298         trace_i915_gem_object_change_domain(obj,
3299                                             old_read_domains,
3300                                             old_write_domain);
3301
3302         /* And bump the LRU for this access */
3303         if (i915_gem_object_is_inactive(obj))
3304                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3305
3306         return 0;
3307 }
3308
3309 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3310                                     enum i915_cache_level cache_level)
3311 {
3312         struct drm_device *dev = obj->base.dev;
3313         drm_i915_private_t *dev_priv = dev->dev_private;
3314         int ret;
3315
3316         if (obj->cache_level == cache_level)
3317                 return 0;
3318
3319         if (obj->pin_count) {
3320                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3321                 return -EBUSY;
3322         }
3323
3324         if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
3325                 ret = i915_gem_object_unbind(obj);
3326                 if (ret)
3327                         return ret;
3328         }
3329
3330         if (i915_gem_obj_ggtt_bound(obj)) {
3331                 ret = i915_gem_object_finish_gpu(obj);
3332                 if (ret)
3333                         return ret;
3334
3335                 i915_gem_object_finish_gtt(obj);
3336
3337                 /* Before SandyBridge, you could not use tiling or fence
3338                  * registers with snooped memory, so relinquish any fences
3339                  * currently pointing to our region in the aperture.
3340                  */
3341                 if (INTEL_INFO(dev)->gen < 6) {
3342                         ret = i915_gem_object_put_fence(obj);
3343                         if (ret)
3344                                 return ret;
3345                 }
3346
3347                 if (obj->has_global_gtt_mapping)
3348                         i915_gem_gtt_bind_object(obj, cache_level);
3349                 if (obj->has_aliasing_ppgtt_mapping)
3350                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3351                                                obj, cache_level);
3352
3353                 i915_gem_obj_ggtt_set_color(obj, cache_level);
3354         }
3355
3356         if (cache_level == I915_CACHE_NONE) {
3357                 u32 old_read_domains, old_write_domain;
3358
3359                 /* If we're coming from LLC cached, then we haven't
3360                  * actually been tracking whether the data is in the
3361                  * CPU cache or not, since we only allow one bit set
3362                  * in obj->write_domain and have been skipping the clflushes.
3363                  * Just set it to the CPU cache for now.
3364                  */
3365                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3366                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3367
3368                 old_read_domains = obj->base.read_domains;
3369                 old_write_domain = obj->base.write_domain;
3370
3371                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373
3374                 trace_i915_gem_object_change_domain(obj,
3375                                                     old_read_domains,
3376                                                     old_write_domain);
3377         }
3378
3379         obj->cache_level = cache_level;
3380         i915_gem_verify_gtt(dev);
3381         return 0;
3382 }
3383
3384 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3385                                struct drm_file *file)
3386 {
3387         struct drm_i915_gem_caching *args = data;
3388         struct drm_i915_gem_object *obj;
3389         int ret;
3390
3391         ret = i915_mutex_lock_interruptible(dev);
3392         if (ret)
3393                 return ret;
3394
3395         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3396         if (&obj->base == NULL) {
3397                 ret = -ENOENT;
3398                 goto unlock;
3399         }
3400
3401         args->caching = obj->cache_level != I915_CACHE_NONE;
3402
3403         drm_gem_object_unreference(&obj->base);
3404 unlock:
3405         mutex_unlock(&dev->struct_mutex);
3406         return ret;
3407 }
3408
3409 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3410                                struct drm_file *file)
3411 {
3412         struct drm_i915_gem_caching *args = data;
3413         struct drm_i915_gem_object *obj;
3414         enum i915_cache_level level;
3415         int ret;
3416
3417         switch (args->caching) {
3418         case I915_CACHING_NONE:
3419                 level = I915_CACHE_NONE;
3420                 break;
3421         case I915_CACHING_CACHED:
3422                 level = I915_CACHE_LLC;
3423                 break;
3424         default:
3425                 return -EINVAL;
3426         }
3427
3428         ret = i915_mutex_lock_interruptible(dev);
3429         if (ret)
3430                 return ret;
3431
3432         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3433         if (&obj->base == NULL) {
3434                 ret = -ENOENT;
3435                 goto unlock;
3436         }
3437
3438         ret = i915_gem_object_set_cache_level(obj, level);
3439
3440         drm_gem_object_unreference(&obj->base);
3441 unlock:
3442         mutex_unlock(&dev->struct_mutex);
3443         return ret;
3444 }
3445
3446 /*
3447  * Prepare buffer for display plane (scanout, cursors, etc).
3448  * Can be called from an uninterruptible phase (modesetting) and allows
3449  * any flushes to be pipelined (for pageflips).
3450  */
3451 int
3452 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3453                                      u32 alignment,
3454                                      struct intel_ring_buffer *pipelined)
3455 {
3456         u32 old_read_domains, old_write_domain;
3457         int ret;
3458
3459         if (pipelined != obj->ring) {
3460                 ret = i915_gem_object_sync(obj, pipelined);
3461                 if (ret)
3462                         return ret;
3463         }
3464
3465         /* The display engine is not coherent with the LLC cache on gen6.  As
3466          * a result, we make sure that the pinning that is about to occur is
3467          * done with uncached PTEs. This is lowest common denominator for all
3468          * chipsets.
3469          *
3470          * However for gen6+, we could do better by using the GFDT bit instead
3471          * of uncaching, which would allow us to flush all the LLC-cached data
3472          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3473          */
3474         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3475         if (ret)
3476                 return ret;
3477
3478         /* As the user may map the buffer once pinned in the display plane
3479          * (e.g. libkms for the bootup splash), we have to ensure that we
3480          * always use map_and_fenceable for all scanout buffers.
3481          */
3482         ret = i915_gem_object_pin(obj, alignment, true, false);
3483         if (ret)
3484                 return ret;
3485
3486         i915_gem_object_flush_cpu_write_domain(obj);
3487
3488         old_write_domain = obj->base.write_domain;
3489         old_read_domains = obj->base.read_domains;
3490
3491         /* It should now be out of any other write domains, and we can update
3492          * the domain values for our changes.
3493          */
3494         obj->base.write_domain = 0;
3495         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3496
3497         trace_i915_gem_object_change_domain(obj,
3498                                             old_read_domains,
3499                                             old_write_domain);
3500
3501         return 0;
3502 }
3503
3504 int
3505 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3506 {
3507         int ret;
3508
3509         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3510                 return 0;
3511
3512         ret = i915_gem_object_wait_rendering(obj, false);
3513         if (ret)
3514                 return ret;
3515
3516         /* Ensure that we invalidate the GPU's caches and TLBs. */
3517         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3518         return 0;
3519 }
3520
3521 /**
3522  * Moves a single object to the CPU read, and possibly write domain.
3523  *
3524  * This function returns when the move is complete, including waiting on
3525  * flushes to occur.
3526  */
3527 int
3528 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3529 {
3530         uint32_t old_write_domain, old_read_domains;
3531         int ret;
3532
3533         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3534                 return 0;
3535
3536         ret = i915_gem_object_wait_rendering(obj, !write);
3537         if (ret)
3538                 return ret;
3539
3540         i915_gem_object_flush_gtt_write_domain(obj);
3541
3542         old_write_domain = obj->base.write_domain;
3543         old_read_domains = obj->base.read_domains;
3544
3545         /* Flush the CPU cache if it's still invalid. */
3546         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3547                 i915_gem_clflush_object(obj);
3548
3549                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3550         }
3551
3552         /* It should now be out of any other write domains, and we can update
3553          * the domain values for our changes.
3554          */
3555         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3556
3557         /* If we're writing through the CPU, then the GPU read domains will
3558          * need to be invalidated at next use.
3559          */
3560         if (write) {
3561                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3562                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3563         }
3564
3565         trace_i915_gem_object_change_domain(obj,
3566                                             old_read_domains,
3567                                             old_write_domain);
3568
3569         return 0;
3570 }
3571
3572 /* Throttle our rendering by waiting until the ring has completed our requests
3573  * emitted over 20 msec ago.
3574  *
3575  * Note that if we were to use the current jiffies each time around the loop,
3576  * we wouldn't escape the function with any frames outstanding if the time to
3577  * render a frame was over 20ms.
3578  *
3579  * This should get us reasonable parallelism between CPU and GPU but also
3580  * relatively low latency when blocking on a particular request to finish.
3581  */
3582 static int
3583 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3584 {
3585         struct drm_i915_private *dev_priv = dev->dev_private;
3586         struct drm_i915_file_private *file_priv = file->driver_priv;
3587         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3588         struct drm_i915_gem_request *request;
3589         struct intel_ring_buffer *ring = NULL;
3590         unsigned reset_counter;
3591         u32 seqno = 0;
3592         int ret;
3593
3594         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3595         if (ret)
3596                 return ret;
3597
3598         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3599         if (ret)
3600                 return ret;
3601
3602         spin_lock(&file_priv->mm.lock);
3603         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3604                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3605                         break;
3606
3607                 ring = request->ring;
3608                 seqno = request->seqno;
3609         }
3610         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3611         spin_unlock(&file_priv->mm.lock);
3612
3613         if (seqno == 0)
3614                 return 0;
3615
3616         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3617         if (ret == 0)
3618                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3619
3620         return ret;
3621 }
3622
3623 int
3624 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3625                     uint32_t alignment,
3626                     bool map_and_fenceable,
3627                     bool nonblocking)
3628 {
3629         int ret;
3630
3631         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3632                 return -EBUSY;
3633
3634         if (i915_gem_obj_ggtt_bound(obj)) {
3635                 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3636                     (map_and_fenceable && !obj->map_and_fenceable)) {
3637                         WARN(obj->pin_count,
3638                              "bo is already pinned with incorrect alignment:"
3639                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3640                              " obj->map_and_fenceable=%d\n",
3641                              i915_gem_obj_ggtt_offset(obj), alignment,
3642                              map_and_fenceable,
3643                              obj->map_and_fenceable);
3644                         ret = i915_gem_object_unbind(obj);
3645                         if (ret)
3646                                 return ret;
3647                 }
3648         }
3649
3650         if (!i915_gem_obj_ggtt_bound(obj)) {
3651                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3652
3653                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3654                                                   map_and_fenceable,
3655                                                   nonblocking);
3656                 if (ret)
3657                         return ret;
3658
3659                 if (!dev_priv->mm.aliasing_ppgtt)
3660                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3661         }
3662
3663         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3664                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3665
3666         obj->pin_count++;
3667         obj->pin_mappable |= map_and_fenceable;
3668
3669         return 0;
3670 }
3671
3672 void
3673 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3674 {
3675         BUG_ON(obj->pin_count == 0);
3676         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3677
3678         if (--obj->pin_count == 0)
3679                 obj->pin_mappable = false;
3680 }
3681
3682 int
3683 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3684                    struct drm_file *file)
3685 {
3686         struct drm_i915_gem_pin *args = data;
3687         struct drm_i915_gem_object *obj;
3688         int ret;
3689
3690         ret = i915_mutex_lock_interruptible(dev);
3691         if (ret)
3692                 return ret;
3693
3694         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3695         if (&obj->base == NULL) {
3696                 ret = -ENOENT;
3697                 goto unlock;
3698         }
3699
3700         if (obj->madv != I915_MADV_WILLNEED) {
3701                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3702                 ret = -EINVAL;
3703                 goto out;
3704         }
3705
3706         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3707                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3708                           args->handle);
3709                 ret = -EINVAL;
3710                 goto out;
3711         }
3712
3713         if (obj->user_pin_count == 0) {
3714                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3715                 if (ret)
3716                         goto out;
3717         }
3718
3719         obj->user_pin_count++;
3720         obj->pin_filp = file;
3721
3722         /* XXX - flush the CPU caches for pinned objects
3723          * as the X server doesn't manage domains yet
3724          */
3725         i915_gem_object_flush_cpu_write_domain(obj);
3726         args->offset = i915_gem_obj_ggtt_offset(obj);
3727 out:
3728         drm_gem_object_unreference(&obj->base);
3729 unlock:
3730         mutex_unlock(&dev->struct_mutex);
3731         return ret;
3732 }
3733
3734 int
3735 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3736                      struct drm_file *file)
3737 {
3738         struct drm_i915_gem_pin *args = data;
3739         struct drm_i915_gem_object *obj;
3740         int ret;
3741
3742         ret = i915_mutex_lock_interruptible(dev);
3743         if (ret)
3744                 return ret;
3745
3746         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3747         if (&obj->base == NULL) {
3748                 ret = -ENOENT;
3749                 goto unlock;
3750         }
3751
3752         if (obj->pin_filp != file) {
3753                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3754                           args->handle);
3755                 ret = -EINVAL;
3756                 goto out;
3757         }
3758         obj->user_pin_count--;
3759         if (obj->user_pin_count == 0) {
3760                 obj->pin_filp = NULL;
3761                 i915_gem_object_unpin(obj);
3762         }
3763
3764 out:
3765         drm_gem_object_unreference(&obj->base);
3766 unlock:
3767         mutex_unlock(&dev->struct_mutex);
3768         return ret;
3769 }
3770
3771 int
3772 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3773                     struct drm_file *file)
3774 {
3775         struct drm_i915_gem_busy *args = data;
3776         struct drm_i915_gem_object *obj;
3777         int ret;
3778
3779         ret = i915_mutex_lock_interruptible(dev);
3780         if (ret)
3781                 return ret;
3782
3783         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784         if (&obj->base == NULL) {
3785                 ret = -ENOENT;
3786                 goto unlock;
3787         }
3788
3789         /* Count all active objects as busy, even if they are currently not used
3790          * by the gpu. Users of this interface expect objects to eventually
3791          * become non-busy without any further actions, therefore emit any
3792          * necessary flushes here.
3793          */
3794         ret = i915_gem_object_flush_active(obj);
3795
3796         args->busy = obj->active;
3797         if (obj->ring) {
3798                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3799                 args->busy |= intel_ring_flag(obj->ring) << 16;
3800         }
3801
3802         drm_gem_object_unreference(&obj->base);
3803 unlock:
3804         mutex_unlock(&dev->struct_mutex);
3805         return ret;
3806 }
3807
3808 int
3809 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3810                         struct drm_file *file_priv)
3811 {
3812         return i915_gem_ring_throttle(dev, file_priv);
3813 }
3814
3815 int
3816 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3817                        struct drm_file *file_priv)
3818 {
3819         struct drm_i915_gem_madvise *args = data;
3820         struct drm_i915_gem_object *obj;
3821         int ret;
3822
3823         switch (args->madv) {
3824         case I915_MADV_DONTNEED:
3825         case I915_MADV_WILLNEED:
3826             break;
3827         default:
3828             return -EINVAL;
3829         }
3830
3831         ret = i915_mutex_lock_interruptible(dev);
3832         if (ret)
3833                 return ret;
3834
3835         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3836         if (&obj->base == NULL) {
3837                 ret = -ENOENT;
3838                 goto unlock;
3839         }
3840
3841         if (obj->pin_count) {
3842                 ret = -EINVAL;
3843                 goto out;
3844         }
3845
3846         if (obj->madv != __I915_MADV_PURGED)
3847                 obj->madv = args->madv;
3848
3849         /* if the object is no longer attached, discard its backing storage */
3850         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3851                 i915_gem_object_truncate(obj);
3852
3853         args->retained = obj->madv != __I915_MADV_PURGED;
3854
3855 out:
3856         drm_gem_object_unreference(&obj->base);
3857 unlock:
3858         mutex_unlock(&dev->struct_mutex);
3859         return ret;
3860 }
3861
3862 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3863                           const struct drm_i915_gem_object_ops *ops)
3864 {
3865         INIT_LIST_HEAD(&obj->mm_list);
3866         INIT_LIST_HEAD(&obj->global_list);
3867         INIT_LIST_HEAD(&obj->ring_list);
3868         INIT_LIST_HEAD(&obj->exec_list);
3869
3870         obj->ops = ops;
3871
3872         obj->fence_reg = I915_FENCE_REG_NONE;
3873         obj->madv = I915_MADV_WILLNEED;
3874         /* Avoid an unnecessary call to unbind on the first bind. */
3875         obj->map_and_fenceable = true;
3876
3877         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3878 }
3879
3880 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3881         .get_pages = i915_gem_object_get_pages_gtt,
3882         .put_pages = i915_gem_object_put_pages_gtt,
3883 };
3884
3885 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3886                                                   size_t size)
3887 {
3888         struct drm_i915_gem_object *obj;
3889         struct address_space *mapping;
3890         gfp_t mask;
3891
3892         obj = i915_gem_object_alloc(dev);
3893         if (obj == NULL)
3894                 return NULL;
3895
3896         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3897                 i915_gem_object_free(obj);
3898                 return NULL;
3899         }
3900
3901         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3902         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3903                 /* 965gm cannot relocate objects above 4GiB. */
3904                 mask &= ~__GFP_HIGHMEM;
3905                 mask |= __GFP_DMA32;
3906         }
3907
3908         mapping = file_inode(obj->base.filp)->i_mapping;
3909         mapping_set_gfp_mask(mapping, mask);
3910
3911         i915_gem_object_init(obj, &i915_gem_object_ops);
3912
3913         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3914         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3915
3916         if (HAS_LLC(dev)) {
3917                 /* On some devices, we can have the GPU use the LLC (the CPU
3918                  * cache) for about a 10% performance improvement
3919                  * compared to uncached.  Graphics requests other than
3920                  * display scanout are coherent with the CPU in
3921                  * accessing this cache.  This means in this mode we
3922                  * don't need to clflush on the CPU side, and on the
3923                  * GPU side we only need to flush internal caches to
3924                  * get data visible to the CPU.
3925                  *
3926                  * However, we maintain the display planes as UC, and so
3927                  * need to rebind when first used as such.
3928                  */
3929                 obj->cache_level = I915_CACHE_LLC;
3930         } else
3931                 obj->cache_level = I915_CACHE_NONE;
3932
3933         return obj;
3934 }
3935
3936 int i915_gem_init_object(struct drm_gem_object *obj)
3937 {
3938         BUG();
3939
3940         return 0;
3941 }
3942
3943 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3944 {
3945         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3946         struct drm_device *dev = obj->base.dev;
3947         drm_i915_private_t *dev_priv = dev->dev_private;
3948
3949         trace_i915_gem_object_destroy(obj);
3950
3951         if (obj->phys_obj)
3952                 i915_gem_detach_phys_object(dev, obj);
3953
3954         obj->pin_count = 0;
3955         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3956                 bool was_interruptible;
3957
3958                 was_interruptible = dev_priv->mm.interruptible;
3959                 dev_priv->mm.interruptible = false;
3960
3961                 WARN_ON(i915_gem_object_unbind(obj));
3962
3963                 dev_priv->mm.interruptible = was_interruptible;
3964         }
3965
3966         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3967          * before progressing. */
3968         if (obj->stolen)
3969                 i915_gem_object_unpin_pages(obj);
3970
3971         if (WARN_ON(obj->pages_pin_count))
3972                 obj->pages_pin_count = 0;
3973         i915_gem_object_put_pages(obj);
3974         i915_gem_object_free_mmap_offset(obj);
3975         i915_gem_object_release_stolen(obj);
3976
3977         BUG_ON(obj->pages);
3978
3979         if (obj->base.import_attach)
3980                 drm_prime_gem_destroy(&obj->base, NULL);
3981
3982         drm_gem_object_release(&obj->base);
3983         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3984
3985         kfree(obj->bit_17);
3986         i915_gem_object_free(obj);
3987 }
3988
3989 int
3990 i915_gem_idle(struct drm_device *dev)
3991 {
3992         drm_i915_private_t *dev_priv = dev->dev_private;
3993         int ret;
3994
3995         mutex_lock(&dev->struct_mutex);
3996
3997         if (dev_priv->mm.suspended) {
3998                 mutex_unlock(&dev->struct_mutex);
3999                 return 0;
4000         }
4001
4002         ret = i915_gpu_idle(dev);
4003         if (ret) {
4004                 mutex_unlock(&dev->struct_mutex);
4005                 return ret;
4006         }
4007         i915_gem_retire_requests(dev);
4008
4009         /* Under UMS, be paranoid and evict. */
4010         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4011                 i915_gem_evict_everything(dev);
4012
4013         i915_gem_reset_fences(dev);
4014
4015         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4016          * We need to replace this with a semaphore, or something.
4017          * And not confound mm.suspended!
4018          */
4019         dev_priv->mm.suspended = 1;
4020         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4021
4022         i915_kernel_lost_context(dev);
4023         i915_gem_cleanup_ringbuffer(dev);
4024
4025         mutex_unlock(&dev->struct_mutex);
4026
4027         /* Cancel the retire work handler, which should be idle now. */
4028         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4029
4030         return 0;
4031 }
4032
4033 void i915_gem_l3_remap(struct drm_device *dev)
4034 {
4035         drm_i915_private_t *dev_priv = dev->dev_private;
4036         u32 misccpctl;
4037         int i;
4038
4039         if (!HAS_L3_GPU_CACHE(dev))
4040                 return;
4041
4042         if (!dev_priv->l3_parity.remap_info)
4043                 return;
4044
4045         misccpctl = I915_READ(GEN7_MISCCPCTL);
4046         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4047         POSTING_READ(GEN7_MISCCPCTL);
4048
4049         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4050                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4051                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4052                         DRM_DEBUG("0x%x was already programmed to %x\n",
4053                                   GEN7_L3LOG_BASE + i, remap);
4054                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4055                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4056                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4057         }
4058
4059         /* Make sure all the writes land before disabling dop clock gating */
4060         POSTING_READ(GEN7_L3LOG_BASE);
4061
4062         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4063 }
4064
4065 void i915_gem_init_swizzling(struct drm_device *dev)
4066 {
4067         drm_i915_private_t *dev_priv = dev->dev_private;
4068
4069         if (INTEL_INFO(dev)->gen < 5 ||
4070             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4071                 return;
4072
4073         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4074                                  DISP_TILE_SURFACE_SWIZZLING);
4075
4076         if (IS_GEN5(dev))
4077                 return;
4078
4079         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4080         if (IS_GEN6(dev))
4081                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4082         else if (IS_GEN7(dev))
4083                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4084         else
4085                 BUG();
4086 }
4087
4088 static bool
4089 intel_enable_blt(struct drm_device *dev)
4090 {
4091         if (!HAS_BLT(dev))
4092                 return false;
4093
4094         /* The blitter was dysfunctional on early prototypes */
4095         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4096                 DRM_INFO("BLT not supported on this pre-production hardware;"
4097                          " graphics performance will be degraded.\n");
4098                 return false;
4099         }
4100
4101         return true;
4102 }
4103
4104 static int i915_gem_init_rings(struct drm_device *dev)
4105 {
4106         struct drm_i915_private *dev_priv = dev->dev_private;
4107         int ret;
4108
4109         ret = intel_init_render_ring_buffer(dev);
4110         if (ret)
4111                 return ret;
4112
4113         if (HAS_BSD(dev)) {
4114                 ret = intel_init_bsd_ring_buffer(dev);
4115                 if (ret)
4116                         goto cleanup_render_ring;
4117         }
4118
4119         if (intel_enable_blt(dev)) {
4120                 ret = intel_init_blt_ring_buffer(dev);
4121                 if (ret)
4122                         goto cleanup_bsd_ring;
4123         }
4124
4125         if (HAS_VEBOX(dev)) {
4126                 ret = intel_init_vebox_ring_buffer(dev);
4127                 if (ret)
4128                         goto cleanup_blt_ring;
4129         }
4130
4131
4132         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4133         if (ret)
4134                 goto cleanup_vebox_ring;
4135
4136         return 0;
4137
4138 cleanup_vebox_ring:
4139         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4140 cleanup_blt_ring:
4141         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4142 cleanup_bsd_ring:
4143         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4144 cleanup_render_ring:
4145         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4146
4147         return ret;
4148 }
4149
4150 int
4151 i915_gem_init_hw(struct drm_device *dev)
4152 {
4153         drm_i915_private_t *dev_priv = dev->dev_private;
4154         int ret;
4155
4156         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4157                 return -EIO;
4158
4159         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4160                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4161
4162         if (HAS_PCH_NOP(dev)) {
4163                 u32 temp = I915_READ(GEN7_MSG_CTL);
4164                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4165                 I915_WRITE(GEN7_MSG_CTL, temp);
4166         }
4167
4168         i915_gem_l3_remap(dev);
4169
4170         i915_gem_init_swizzling(dev);
4171
4172         ret = i915_gem_init_rings(dev);
4173         if (ret)
4174                 return ret;
4175
4176         /*
4177          * XXX: There was some w/a described somewhere suggesting loading
4178          * contexts before PPGTT.
4179          */
4180         i915_gem_context_init(dev);
4181         if (dev_priv->mm.aliasing_ppgtt) {
4182                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4183                 if (ret) {
4184                         i915_gem_cleanup_aliasing_ppgtt(dev);
4185                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4186                 }
4187         }
4188
4189         return 0;
4190 }
4191
4192 int i915_gem_init(struct drm_device *dev)
4193 {
4194         struct drm_i915_private *dev_priv = dev->dev_private;
4195         int ret;
4196
4197         mutex_lock(&dev->struct_mutex);
4198
4199         if (IS_VALLEYVIEW(dev)) {
4200                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4201                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4202                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4203                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4204         }
4205
4206         i915_gem_init_global_gtt(dev);
4207
4208         ret = i915_gem_init_hw(dev);
4209         mutex_unlock(&dev->struct_mutex);
4210         if (ret) {
4211                 i915_gem_cleanup_aliasing_ppgtt(dev);
4212                 return ret;
4213         }
4214
4215         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4216         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4217                 dev_priv->dri1.allow_batchbuffer = 1;
4218         return 0;
4219 }
4220
4221 void
4222 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4223 {
4224         drm_i915_private_t *dev_priv = dev->dev_private;
4225         struct intel_ring_buffer *ring;
4226         int i;
4227
4228         for_each_ring(ring, dev_priv, i)
4229                 intel_cleanup_ring_buffer(ring);
4230 }
4231
4232 int
4233 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4234                        struct drm_file *file_priv)
4235 {
4236         drm_i915_private_t *dev_priv = dev->dev_private;
4237         int ret;
4238
4239         if (drm_core_check_feature(dev, DRIVER_MODESET))
4240                 return 0;
4241
4242         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4243                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4244                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4245         }
4246
4247         mutex_lock(&dev->struct_mutex);
4248         dev_priv->mm.suspended = 0;
4249
4250         ret = i915_gem_init_hw(dev);
4251         if (ret != 0) {
4252                 mutex_unlock(&dev->struct_mutex);
4253                 return ret;
4254         }
4255
4256         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4257         mutex_unlock(&dev->struct_mutex);
4258
4259         ret = drm_irq_install(dev);
4260         if (ret)
4261                 goto cleanup_ringbuffer;
4262
4263         return 0;
4264
4265 cleanup_ringbuffer:
4266         mutex_lock(&dev->struct_mutex);
4267         i915_gem_cleanup_ringbuffer(dev);
4268         dev_priv->mm.suspended = 1;
4269         mutex_unlock(&dev->struct_mutex);
4270
4271         return ret;
4272 }
4273
4274 int
4275 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4276                        struct drm_file *file_priv)
4277 {
4278         if (drm_core_check_feature(dev, DRIVER_MODESET))
4279                 return 0;
4280
4281         drm_irq_uninstall(dev);
4282         return i915_gem_idle(dev);
4283 }
4284
4285 void
4286 i915_gem_lastclose(struct drm_device *dev)
4287 {
4288         int ret;
4289
4290         if (drm_core_check_feature(dev, DRIVER_MODESET))
4291                 return;
4292
4293         ret = i915_gem_idle(dev);
4294         if (ret)
4295                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4296 }
4297
4298 static void
4299 init_ring_lists(struct intel_ring_buffer *ring)
4300 {
4301         INIT_LIST_HEAD(&ring->active_list);
4302         INIT_LIST_HEAD(&ring->request_list);
4303 }
4304
4305 void
4306 i915_gem_load(struct drm_device *dev)
4307 {
4308         drm_i915_private_t *dev_priv = dev->dev_private;
4309         int i;
4310
4311         dev_priv->slab =
4312                 kmem_cache_create("i915_gem_object",
4313                                   sizeof(struct drm_i915_gem_object), 0,
4314                                   SLAB_HWCACHE_ALIGN,
4315                                   NULL);
4316
4317         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4318         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4319         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4320         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4321         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4322         for (i = 0; i < I915_NUM_RINGS; i++)
4323                 init_ring_lists(&dev_priv->ring[i]);
4324         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4325                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4326         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4327                           i915_gem_retire_work_handler);
4328         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4329
4330         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4331         if (IS_GEN3(dev)) {
4332                 I915_WRITE(MI_ARB_STATE,
4333                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4334         }
4335
4336         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4337
4338         /* Old X drivers will take 0-2 for front, back, depth buffers */
4339         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4340                 dev_priv->fence_reg_start = 3;
4341
4342         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4343                 dev_priv->num_fence_regs = 32;
4344         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4345                 dev_priv->num_fence_regs = 16;
4346         else
4347                 dev_priv->num_fence_regs = 8;
4348
4349         /* Initialize fence registers to zero */
4350         i915_gem_reset_fences(dev);
4351
4352         i915_gem_detect_bit_6_swizzle(dev);
4353         init_waitqueue_head(&dev_priv->pending_flip_queue);
4354
4355         dev_priv->mm.interruptible = true;
4356
4357         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4358         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4359         register_shrinker(&dev_priv->mm.inactive_shrinker);
4360 }
4361
4362 /*
4363  * Create a physically contiguous memory object for this object
4364  * e.g. for cursor + overlay regs
4365  */
4366 static int i915_gem_init_phys_object(struct drm_device *dev,
4367                                      int id, int size, int align)
4368 {
4369         drm_i915_private_t *dev_priv = dev->dev_private;
4370         struct drm_i915_gem_phys_object *phys_obj;
4371         int ret;
4372
4373         if (dev_priv->mm.phys_objs[id - 1] || !size)
4374                 return 0;
4375
4376         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4377         if (!phys_obj)
4378                 return -ENOMEM;
4379
4380         phys_obj->id = id;
4381
4382         phys_obj->handle = drm_pci_alloc(dev, size, align);
4383         if (!phys_obj->handle) {
4384                 ret = -ENOMEM;
4385                 goto kfree_obj;
4386         }
4387 #ifdef CONFIG_X86
4388         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4389 #endif
4390
4391         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4392
4393         return 0;
4394 kfree_obj:
4395         kfree(phys_obj);
4396         return ret;
4397 }
4398
4399 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4400 {
4401         drm_i915_private_t *dev_priv = dev->dev_private;
4402         struct drm_i915_gem_phys_object *phys_obj;
4403
4404         if (!dev_priv->mm.phys_objs[id - 1])
4405                 return;
4406
4407         phys_obj = dev_priv->mm.phys_objs[id - 1];
4408         if (phys_obj->cur_obj) {
4409                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4410         }
4411
4412 #ifdef CONFIG_X86
4413         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4414 #endif
4415         drm_pci_free(dev, phys_obj->handle);
4416         kfree(phys_obj);
4417         dev_priv->mm.phys_objs[id - 1] = NULL;
4418 }
4419
4420 void i915_gem_free_all_phys_object(struct drm_device *dev)
4421 {
4422         int i;
4423
4424         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4425                 i915_gem_free_phys_object(dev, i);
4426 }
4427
4428 void i915_gem_detach_phys_object(struct drm_device *dev,
4429                                  struct drm_i915_gem_object *obj)
4430 {
4431         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4432         char *vaddr;
4433         int i;
4434         int page_count;
4435
4436         if (!obj->phys_obj)
4437                 return;
4438         vaddr = obj->phys_obj->handle->vaddr;
4439
4440         page_count = obj->base.size / PAGE_SIZE;
4441         for (i = 0; i < page_count; i++) {
4442                 struct page *page = shmem_read_mapping_page(mapping, i);
4443                 if (!IS_ERR(page)) {
4444                         char *dst = kmap_atomic(page);
4445                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4446                         kunmap_atomic(dst);
4447
4448                         drm_clflush_pages(&page, 1);
4449
4450                         set_page_dirty(page);
4451                         mark_page_accessed(page);
4452                         page_cache_release(page);
4453                 }
4454         }
4455         i915_gem_chipset_flush(dev);
4456
4457         obj->phys_obj->cur_obj = NULL;
4458         obj->phys_obj = NULL;
4459 }
4460
4461 int
4462 i915_gem_attach_phys_object(struct drm_device *dev,
4463                             struct drm_i915_gem_object *obj,
4464                             int id,
4465                             int align)
4466 {
4467         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4468         drm_i915_private_t *dev_priv = dev->dev_private;
4469         int ret = 0;
4470         int page_count;
4471         int i;
4472
4473         if (id > I915_MAX_PHYS_OBJECT)
4474                 return -EINVAL;
4475
4476         if (obj->phys_obj) {
4477                 if (obj->phys_obj->id == id)
4478                         return 0;
4479                 i915_gem_detach_phys_object(dev, obj);
4480         }
4481
4482         /* create a new object */
4483         if (!dev_priv->mm.phys_objs[id - 1]) {
4484                 ret = i915_gem_init_phys_object(dev, id,
4485                                                 obj->base.size, align);
4486                 if (ret) {
4487                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4488                                   id, obj->base.size);
4489                         return ret;
4490                 }
4491         }
4492
4493         /* bind to the object */
4494         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4495         obj->phys_obj->cur_obj = obj;
4496
4497         page_count = obj->base.size / PAGE_SIZE;
4498
4499         for (i = 0; i < page_count; i++) {
4500                 struct page *page;
4501                 char *dst, *src;
4502
4503                 page = shmem_read_mapping_page(mapping, i);
4504                 if (IS_ERR(page))
4505                         return PTR_ERR(page);
4506
4507                 src = kmap_atomic(page);
4508                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4509                 memcpy(dst, src, PAGE_SIZE);
4510                 kunmap_atomic(src);
4511
4512                 mark_page_accessed(page);
4513                 page_cache_release(page);
4514         }
4515
4516         return 0;
4517 }
4518
4519 static int
4520 i915_gem_phys_pwrite(struct drm_device *dev,
4521                      struct drm_i915_gem_object *obj,
4522                      struct drm_i915_gem_pwrite *args,
4523                      struct drm_file *file_priv)
4524 {
4525         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4526         char __user *user_data = to_user_ptr(args->data_ptr);
4527
4528         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4529                 unsigned long unwritten;
4530
4531                 /* The physical object once assigned is fixed for the lifetime
4532                  * of the obj, so we can safely drop the lock and continue
4533                  * to access vaddr.
4534                  */
4535                 mutex_unlock(&dev->struct_mutex);
4536                 unwritten = copy_from_user(vaddr, user_data, args->size);
4537                 mutex_lock(&dev->struct_mutex);
4538                 if (unwritten)
4539                         return -EFAULT;
4540         }
4541
4542         i915_gem_chipset_flush(dev);
4543         return 0;
4544 }
4545
4546 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4547 {
4548         struct drm_i915_file_private *file_priv = file->driver_priv;
4549
4550         /* Clean up our request list when the client is going away, so that
4551          * later retire_requests won't dereference our soon-to-be-gone
4552          * file_priv.
4553          */
4554         spin_lock(&file_priv->mm.lock);
4555         while (!list_empty(&file_priv->mm.request_list)) {
4556                 struct drm_i915_gem_request *request;
4557
4558                 request = list_first_entry(&file_priv->mm.request_list,
4559                                            struct drm_i915_gem_request,
4560                                            client_list);
4561                 list_del(&request->client_list);
4562                 request->file_priv = NULL;
4563         }
4564         spin_unlock(&file_priv->mm.lock);
4565 }
4566
4567 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4568 {
4569         if (!mutex_is_locked(mutex))
4570                 return false;
4571
4572 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4573         return mutex->owner == task;
4574 #else
4575         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4576         return false;
4577 #endif
4578 }
4579
4580 static int
4581 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4582 {
4583         struct drm_i915_private *dev_priv =
4584                 container_of(shrinker,
4585                              struct drm_i915_private,
4586                              mm.inactive_shrinker);
4587         struct drm_device *dev = dev_priv->dev;
4588         struct drm_i915_gem_object *obj;
4589         int nr_to_scan = sc->nr_to_scan;
4590         bool unlock = true;
4591         int cnt;
4592
4593         if (!mutex_trylock(&dev->struct_mutex)) {
4594                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4595                         return 0;
4596
4597                 if (dev_priv->mm.shrinker_no_lock_stealing)
4598                         return 0;
4599
4600                 unlock = false;
4601         }
4602
4603         if (nr_to_scan) {
4604                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4605                 if (nr_to_scan > 0)
4606                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4607                                                         false);
4608                 if (nr_to_scan > 0)
4609                         i915_gem_shrink_all(dev_priv);
4610         }
4611
4612         cnt = 0;
4613         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4614                 if (obj->pages_pin_count == 0)
4615                         cnt += obj->base.size >> PAGE_SHIFT;
4616         list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4617                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4618                         cnt += obj->base.size >> PAGE_SHIFT;
4619
4620         if (unlock)
4621                 mutex_unlock(&dev->struct_mutex);
4622         return cnt;
4623 }