]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
Linux 3.14
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         const bool irq_test_in_progress =
1019                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020         struct timespec before, now;
1021         DEFINE_WAIT(wait);
1022         unsigned long timeout_expire;
1023         int ret;
1024
1025         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028                 return 0;
1029
1030         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033                 gen6_rps_boost(dev_priv);
1034                 if (file_priv)
1035                         mod_delayed_work(dev_priv->wq,
1036                                          &file_priv->mm.idle_work,
1037                                          msecs_to_jiffies(100));
1038         }
1039
1040         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041                 return -ENODEV;
1042
1043         /* Record current time in case interrupted by signal, or wedged */
1044         trace_i915_gem_request_wait_begin(ring, seqno);
1045         getrawmonotonic(&before);
1046         for (;;) {
1047                 struct timer_list timer;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         unsigned long expire;
1081
1082                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084                         mod_timer(&timer, expire);
1085                 }
1086
1087                 io_schedule();
1088
1089                 if (timer.function) {
1090                         del_singleshot_timer_sync(&timer);
1091                         destroy_timer_on_stack(&timer);
1092                 }
1093         }
1094         getrawmonotonic(&now);
1095         trace_i915_gem_request_wait_end(ring, seqno);
1096
1097         if (!irq_test_in_progress)
1098                 ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         intel_runtime_pm_get(dev_priv);
1384
1385         /* We don't use vmf->pgoff since that has the fake offset */
1386         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387                 PAGE_SHIFT;
1388
1389         ret = i915_mutex_lock_interruptible(dev);
1390         if (ret)
1391                 goto out;
1392
1393         trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395         /* Access to snoopable pages through the GTT is incoherent. */
1396         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397                 ret = -EINVAL;
1398                 goto unlock;
1399         }
1400
1401         /* Now bind it into the GTT if needed */
1402         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1403         if (ret)
1404                 goto unlock;
1405
1406         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407         if (ret)
1408                 goto unpin;
1409
1410         ret = i915_gem_object_get_fence(obj);
1411         if (ret)
1412                 goto unpin;
1413
1414         obj->fault_mappable = true;
1415
1416         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417         pfn >>= PAGE_SHIFT;
1418         pfn += page_offset;
1419
1420         /* Finally, remap it using the new GTT offset */
1421         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423         i915_gem_object_unpin(obj);
1424 unlock:
1425         mutex_unlock(&dev->struct_mutex);
1426 out:
1427         switch (ret) {
1428         case -EIO:
1429                 /* If this -EIO is due to a gpu hang, give the reset code a
1430                  * chance to clean up the mess. Otherwise return the proper
1431                  * SIGBUS. */
1432                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433                         ret = VM_FAULT_SIGBUS;
1434                         break;
1435                 }
1436         case -EAGAIN:
1437                 /*
1438                  * EAGAIN means the gpu is hung and we'll wait for the error
1439                  * handler to reset everything when re-faulting in
1440                  * i915_mutex_lock_interruptible.
1441                  */
1442         case 0:
1443         case -ERESTARTSYS:
1444         case -EINTR:
1445         case -EBUSY:
1446                 /*
1447                  * EBUSY is ok: this just means that another thread
1448                  * already did the job.
1449                  */
1450                 ret = VM_FAULT_NOPAGE;
1451                 break;
1452         case -ENOMEM:
1453                 ret = VM_FAULT_OOM;
1454                 break;
1455         case -ENOSPC:
1456                 ret = VM_FAULT_SIGBUS;
1457                 break;
1458         default:
1459                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460                 ret = VM_FAULT_SIGBUS;
1461                 break;
1462         }
1463
1464         intel_runtime_pm_put(dev_priv);
1465         return ret;
1466 }
1467
1468 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469 {
1470         struct i915_vma *vma;
1471
1472         /*
1473          * Only the global gtt is relevant for gtt memory mappings, so restrict
1474          * list traversal to objects bound into the global address space. Note
1475          * that the active list should be empty, but better safe than sorry.
1476          */
1477         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479                 i915_gem_release_mmap(vma->obj);
1480         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481                 i915_gem_release_mmap(vma->obj);
1482 }
1483
1484 /**
1485  * i915_gem_release_mmap - remove physical page mappings
1486  * @obj: obj in question
1487  *
1488  * Preserve the reservation of the mmapping with the DRM core code, but
1489  * relinquish ownership of the pages back to the system.
1490  *
1491  * It is vital that we remove the page mapping if we have mapped a tiled
1492  * object through the GTT and then lose the fence register due to
1493  * resource pressure. Similarly if the object has been moved out of the
1494  * aperture, than pages mapped into userspace must be revoked. Removing the
1495  * mapping will then trigger a page fault on the next user access, allowing
1496  * fixup by i915_gem_fault().
1497  */
1498 void
1499 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500 {
1501         if (!obj->fault_mappable)
1502                 return;
1503
1504         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505         obj->fault_mappable = false;
1506 }
1507
1508 uint32_t
1509 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510 {
1511         uint32_t gtt_size;
1512
1513         if (INTEL_INFO(dev)->gen >= 4 ||
1514             tiling_mode == I915_TILING_NONE)
1515                 return size;
1516
1517         /* Previous chips need a power-of-two fence region when tiling */
1518         if (INTEL_INFO(dev)->gen == 3)
1519                 gtt_size = 1024*1024;
1520         else
1521                 gtt_size = 512*1024;
1522
1523         while (gtt_size < size)
1524                 gtt_size <<= 1;
1525
1526         return gtt_size;
1527 }
1528
1529 /**
1530  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531  * @obj: object to check
1532  *
1533  * Return the required GTT alignment for an object, taking into account
1534  * potential fence register mapping.
1535  */
1536 uint32_t
1537 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538                            int tiling_mode, bool fenced)
1539 {
1540         /*
1541          * Minimum alignment is 4k (GTT page size), but might be greater
1542          * if a fence register is needed for the object.
1543          */
1544         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545             tiling_mode == I915_TILING_NONE)
1546                 return 4096;
1547
1548         /*
1549          * Previous chips need to be aligned to the size of the smallest
1550          * fence register that can contain the object.
1551          */
1552         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553 }
1554
1555 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556 {
1557         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558         int ret;
1559
1560         if (drm_vma_node_has_offset(&obj->base.vma_node))
1561                 return 0;
1562
1563         dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565         ret = drm_gem_create_mmap_offset(&obj->base);
1566         if (ret != -ENOSPC)
1567                 goto out;
1568
1569         /* Badly fragmented mmap space? The only way we can recover
1570          * space is by destroying unwanted objects. We can't randomly release
1571          * mmap_offsets as userspace expects them to be persistent for the
1572          * lifetime of the objects. The closest we can is to release the
1573          * offsets on purgeable objects by truncating it and marking it purged,
1574          * which prevents userspace from ever using that object again.
1575          */
1576         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577         ret = drm_gem_create_mmap_offset(&obj->base);
1578         if (ret != -ENOSPC)
1579                 goto out;
1580
1581         i915_gem_shrink_all(dev_priv);
1582         ret = drm_gem_create_mmap_offset(&obj->base);
1583 out:
1584         dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586         return ret;
1587 }
1588
1589 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590 {
1591         drm_gem_free_mmap_offset(&obj->base);
1592 }
1593
1594 int
1595 i915_gem_mmap_gtt(struct drm_file *file,
1596                   struct drm_device *dev,
1597                   uint32_t handle,
1598                   uint64_t *offset)
1599 {
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         struct drm_i915_gem_object *obj;
1602         int ret;
1603
1604         ret = i915_mutex_lock_interruptible(dev);
1605         if (ret)
1606                 return ret;
1607
1608         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609         if (&obj->base == NULL) {
1610                 ret = -ENOENT;
1611                 goto unlock;
1612         }
1613
1614         if (obj->base.size > dev_priv->gtt.mappable_end) {
1615                 ret = -E2BIG;
1616                 goto out;
1617         }
1618
1619         if (obj->madv != I915_MADV_WILLNEED) {
1620                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621                 ret = -EINVAL;
1622                 goto out;
1623         }
1624
1625         ret = i915_gem_object_create_mmap_offset(obj);
1626         if (ret)
1627                 goto out;
1628
1629         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631 out:
1632         drm_gem_object_unreference(&obj->base);
1633 unlock:
1634         mutex_unlock(&dev->struct_mutex);
1635         return ret;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640  * @dev: DRM device
1641  * @data: GTT mapping ioctl data
1642  * @file: GEM object info
1643  *
1644  * Simply returns the fake offset to userspace so it can mmap it.
1645  * The mmap call will end up in drm_gem_mmap(), which will set things
1646  * up so we can get faults in the handler above.
1647  *
1648  * The fault handler will take care of binding the object into the GTT
1649  * (since it may have been evicted to make room for something), allocating
1650  * a fence register, and mapping the appropriate aperture address into
1651  * userspace.
1652  */
1653 int
1654 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655                         struct drm_file *file)
1656 {
1657         struct drm_i915_gem_mmap_gtt *args = data;
1658
1659         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660 }
1661
1662 /* Immediately discard the backing storage */
1663 static void
1664 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665 {
1666         struct inode *inode;
1667
1668         i915_gem_object_free_mmap_offset(obj);
1669
1670         if (obj->base.filp == NULL)
1671                 return;
1672
1673         /* Our goal here is to return as much of the memory as
1674          * is possible back to the system as we are called from OOM.
1675          * To do this we must instruct the shmfs to drop all of its
1676          * backing pages, *now*.
1677          */
1678         inode = file_inode(obj->base.filp);
1679         shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681         obj->madv = __I915_MADV_PURGED;
1682 }
1683
1684 static inline int
1685 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686 {
1687         return obj->madv == I915_MADV_DONTNEED;
1688 }
1689
1690 static void
1691 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692 {
1693         struct sg_page_iter sg_iter;
1694         int ret;
1695
1696         BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699         if (ret) {
1700                 /* In the event of a disaster, abandon all caches and
1701                  * hope for the best.
1702                  */
1703                 WARN_ON(ret != -EIO);
1704                 i915_gem_clflush_object(obj, true);
1705                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706         }
1707
1708         if (i915_gem_object_needs_bit17_swizzle(obj))
1709                 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711         if (obj->madv == I915_MADV_DONTNEED)
1712                 obj->dirty = 0;
1713
1714         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715                 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717                 if (obj->dirty)
1718                         set_page_dirty(page);
1719
1720                 if (obj->madv == I915_MADV_WILLNEED)
1721                         mark_page_accessed(page);
1722
1723                 page_cache_release(page);
1724         }
1725         obj->dirty = 0;
1726
1727         sg_free_table(obj->pages);
1728         kfree(obj->pages);
1729 }
1730
1731 int
1732 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733 {
1734         const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736         if (obj->pages == NULL)
1737                 return 0;
1738
1739         if (obj->pages_pin_count)
1740                 return -EBUSY;
1741
1742         BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744         /* ->put_pages might need to allocate memory for the bit17 swizzle
1745          * array, hence protect them from being reaped by removing them from gtt
1746          * lists early. */
1747         list_del(&obj->global_list);
1748
1749         ops->put_pages(obj);
1750         obj->pages = NULL;
1751
1752         if (i915_gem_object_is_purgeable(obj))
1753                 i915_gem_object_truncate(obj);
1754
1755         return 0;
1756 }
1757
1758 static unsigned long
1759 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760                   bool purgeable_only)
1761 {
1762         struct list_head still_bound_list;
1763         struct drm_i915_gem_object *obj, *next;
1764         unsigned long count = 0;
1765
1766         list_for_each_entry_safe(obj, next,
1767                                  &dev_priv->mm.unbound_list,
1768                                  global_list) {
1769                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770                     i915_gem_object_put_pages(obj) == 0) {
1771                         count += obj->base.size >> PAGE_SHIFT;
1772                         if (count >= target)
1773                                 return count;
1774                 }
1775         }
1776
1777         /*
1778          * As we may completely rewrite the bound list whilst unbinding
1779          * (due to retiring requests) we have to strictly process only
1780          * one element of the list at the time, and recheck the list
1781          * on every iteration.
1782          */
1783         INIT_LIST_HEAD(&still_bound_list);
1784         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785                 struct i915_vma *vma, *v;
1786
1787                 obj = list_first_entry(&dev_priv->mm.bound_list,
1788                                        typeof(*obj), global_list);
1789                 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792                         continue;
1793
1794                 /*
1795                  * Hold a reference whilst we unbind this object, as we may
1796                  * end up waiting for and retiring requests. This might
1797                  * release the final reference (held by the active list)
1798                  * and result in the object being freed from under us.
1799                  * in this object being freed.
1800                  *
1801                  * Note 1: Shrinking the bound list is special since only active
1802                  * (and hence bound objects) can contain such limbo objects, so
1803                  * we don't need special tricks for shrinking the unbound list.
1804                  * The only other place where we have to be careful with active
1805                  * objects suddenly disappearing due to retiring requests is the
1806                  * eviction code.
1807                  *
1808                  * Note 2: Even though the bound list doesn't hold a reference
1809                  * to the object we can safely grab one here: The final object
1810                  * unreferencing and the bound_list are both protected by the
1811                  * dev->struct_mutex and so we won't ever be able to observe an
1812                  * object on the bound_list with a reference count equals 0.
1813                  */
1814                 drm_gem_object_reference(&obj->base);
1815
1816                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817                         if (i915_vma_unbind(vma))
1818                                 break;
1819
1820                 if (i915_gem_object_put_pages(obj) == 0)
1821                         count += obj->base.size >> PAGE_SHIFT;
1822
1823                 drm_gem_object_unreference(&obj->base);
1824         }
1825         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827         return count;
1828 }
1829
1830 static unsigned long
1831 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832 {
1833         return __i915_gem_shrink(dev_priv, target, true);
1834 }
1835
1836 static unsigned long
1837 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838 {
1839         struct drm_i915_gem_object *obj, *next;
1840         long freed = 0;
1841
1842         i915_gem_evict_everything(dev_priv->dev);
1843
1844         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845                                  global_list) {
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         freed += obj->base.size >> PAGE_SHIFT;
1848         }
1849         return freed;
1850 }
1851
1852 static int
1853 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854 {
1855         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856         int page_count, i;
1857         struct address_space *mapping;
1858         struct sg_table *st;
1859         struct scatterlist *sg;
1860         struct sg_page_iter sg_iter;
1861         struct page *page;
1862         unsigned long last_pfn = 0;     /* suppress gcc warning */
1863         gfp_t gfp;
1864
1865         /* Assert that the object is not currently in any GPU domain. As it
1866          * wasn't in the GTT, there shouldn't be any way it could have been in
1867          * a GPU cache
1868          */
1869         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872         st = kmalloc(sizeof(*st), GFP_KERNEL);
1873         if (st == NULL)
1874                 return -ENOMEM;
1875
1876         page_count = obj->base.size / PAGE_SIZE;
1877         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878                 kfree(st);
1879                 return -ENOMEM;
1880         }
1881
1882         /* Get the list of pages out of our struct file.  They'll be pinned
1883          * at this point until we release them.
1884          *
1885          * Fail silently without starting the shrinker
1886          */
1887         mapping = file_inode(obj->base.filp)->i_mapping;
1888         gfp = mapping_gfp_mask(mapping);
1889         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890         gfp &= ~(__GFP_IO | __GFP_WAIT);
1891         sg = st->sgl;
1892         st->nents = 0;
1893         for (i = 0; i < page_count; i++) {
1894                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895                 if (IS_ERR(page)) {
1896                         i915_gem_purge(dev_priv, page_count);
1897                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898                 }
1899                 if (IS_ERR(page)) {
1900                         /* We've tried hard to allocate the memory by reaping
1901                          * our own buffer, now let the real VM do its job and
1902                          * go down in flames if truly OOM.
1903                          */
1904                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905                         gfp |= __GFP_IO | __GFP_WAIT;
1906
1907                         i915_gem_shrink_all(dev_priv);
1908                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909                         if (IS_ERR(page))
1910                                 goto err_pages;
1911
1912                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1914                 }
1915 #ifdef CONFIG_SWIOTLB
1916                 if (swiotlb_nr_tbl()) {
1917                         st->nents++;
1918                         sg_set_page(sg, page, PAGE_SIZE, 0);
1919                         sg = sg_next(sg);
1920                         continue;
1921                 }
1922 #endif
1923                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924                         if (i)
1925                                 sg = sg_next(sg);
1926                         st->nents++;
1927                         sg_set_page(sg, page, PAGE_SIZE, 0);
1928                 } else {
1929                         sg->length += PAGE_SIZE;
1930                 }
1931                 last_pfn = page_to_pfn(page);
1932
1933                 /* Check that the i965g/gm workaround works. */
1934                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935         }
1936 #ifdef CONFIG_SWIOTLB
1937         if (!swiotlb_nr_tbl())
1938 #endif
1939                 sg_mark_end(sg);
1940         obj->pages = st;
1941
1942         if (i915_gem_object_needs_bit17_swizzle(obj))
1943                 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945         return 0;
1946
1947 err_pages:
1948         sg_mark_end(sg);
1949         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950                 page_cache_release(sg_page_iter_page(&sg_iter));
1951         sg_free_table(st);
1952         kfree(st);
1953         return PTR_ERR(page);
1954 }
1955
1956 /* Ensure that the associated pages are gathered from the backing storage
1957  * and pinned into our object. i915_gem_object_get_pages() may be called
1958  * multiple times before they are released by a single call to
1959  * i915_gem_object_put_pages() - once the pages are no longer referenced
1960  * either as a result of memory pressure (reaping pages under the shrinker)
1961  * or as the object is itself released.
1962  */
1963 int
1964 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965 {
1966         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967         const struct drm_i915_gem_object_ops *ops = obj->ops;
1968         int ret;
1969
1970         if (obj->pages)
1971                 return 0;
1972
1973         if (obj->madv != I915_MADV_WILLNEED) {
1974                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975                 return -EINVAL;
1976         }
1977
1978         BUG_ON(obj->pages_pin_count);
1979
1980         ret = ops->get_pages(obj);
1981         if (ret)
1982                 return ret;
1983
1984         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985         return 0;
1986 }
1987
1988 static void
1989 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990                                struct intel_ring_buffer *ring)
1991 {
1992         struct drm_device *dev = obj->base.dev;
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994         u32 seqno = intel_ring_get_seqno(ring);
1995
1996         BUG_ON(ring == NULL);
1997         if (obj->ring != ring && obj->last_write_seqno) {
1998                 /* Keep the seqno relative to the current ring */
1999                 obj->last_write_seqno = seqno;
2000         }
2001         obj->ring = ring;
2002
2003         /* Add a reference if we're newly entering the active list. */
2004         if (!obj->active) {
2005                 drm_gem_object_reference(&obj->base);
2006                 obj->active = 1;
2007         }
2008
2009         list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011         obj->last_read_seqno = seqno;
2012
2013         if (obj->fenced_gpu_access) {
2014                 obj->last_fenced_seqno = seqno;
2015
2016                 /* Bump MRU to take account of the delayed flush */
2017                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018                         struct drm_i915_fence_reg *reg;
2019
2020                         reg = &dev_priv->fence_regs[obj->fence_reg];
2021                         list_move_tail(&reg->lru_list,
2022                                        &dev_priv->mm.fence_list);
2023                 }
2024         }
2025 }
2026
2027 void i915_vma_move_to_active(struct i915_vma *vma,
2028                              struct intel_ring_buffer *ring)
2029 {
2030         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031         return i915_gem_object_move_to_active(vma->obj, ring);
2032 }
2033
2034 static void
2035 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036 {
2037         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2039         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2040
2041         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042         BUG_ON(!obj->active);
2043
2044         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2045
2046         list_del_init(&obj->ring_list);
2047         obj->ring = NULL;
2048
2049         obj->last_read_seqno = 0;
2050         obj->last_write_seqno = 0;
2051         obj->base.write_domain = 0;
2052
2053         obj->last_fenced_seqno = 0;
2054         obj->fenced_gpu_access = false;
2055
2056         obj->active = 0;
2057         drm_gem_object_unreference(&obj->base);
2058
2059         WARN_ON(i915_verify_lists(dev));
2060 }
2061
2062 static int
2063 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2064 {
2065         struct drm_i915_private *dev_priv = dev->dev_private;
2066         struct intel_ring_buffer *ring;
2067         int ret, i, j;
2068
2069         /* Carefully retire all requests without writing to the rings */
2070         for_each_ring(ring, dev_priv, i) {
2071                 ret = intel_ring_idle(ring);
2072                 if (ret)
2073                         return ret;
2074         }
2075         i915_gem_retire_requests(dev);
2076
2077         /* Finally reset hw state */
2078         for_each_ring(ring, dev_priv, i) {
2079                 intel_ring_init_seqno(ring, seqno);
2080
2081                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2082                         ring->sync_seqno[j] = 0;
2083         }
2084
2085         return 0;
2086 }
2087
2088 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2089 {
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091         int ret;
2092
2093         if (seqno == 0)
2094                 return -EINVAL;
2095
2096         /* HWS page needs to be set less than what we
2097          * will inject to ring
2098          */
2099         ret = i915_gem_init_seqno(dev, seqno - 1);
2100         if (ret)
2101                 return ret;
2102
2103         /* Carefully set the last_seqno value so that wrap
2104          * detection still works
2105          */
2106         dev_priv->next_seqno = seqno;
2107         dev_priv->last_seqno = seqno - 1;
2108         if (dev_priv->last_seqno == 0)
2109                 dev_priv->last_seqno--;
2110
2111         return 0;
2112 }
2113
2114 int
2115 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119         /* reserve 0 for non-seqno */
2120         if (dev_priv->next_seqno == 0) {
2121                 int ret = i915_gem_init_seqno(dev, 0);
2122                 if (ret)
2123                         return ret;
2124
2125                 dev_priv->next_seqno = 1;
2126         }
2127
2128         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2129         return 0;
2130 }
2131
2132 int __i915_add_request(struct intel_ring_buffer *ring,
2133                        struct drm_file *file,
2134                        struct drm_i915_gem_object *obj,
2135                        u32 *out_seqno)
2136 {
2137         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2138         struct drm_i915_gem_request *request;
2139         u32 request_ring_position, request_start;
2140         int was_empty;
2141         int ret;
2142
2143         request_start = intel_ring_get_tail(ring);
2144         /*
2145          * Emit any outstanding flushes - execbuf can fail to emit the flush
2146          * after having emitted the batchbuffer command. Hence we need to fix
2147          * things up similar to emitting the lazy request. The difference here
2148          * is that the flush _must_ happen before the next request, no matter
2149          * what.
2150          */
2151         ret = intel_ring_flush_all_caches(ring);
2152         if (ret)
2153                 return ret;
2154
2155         request = ring->preallocated_lazy_request;
2156         if (WARN_ON(request == NULL))
2157                 return -ENOMEM;
2158
2159         /* Record the position of the start of the request so that
2160          * should we detect the updated seqno part-way through the
2161          * GPU processing the request, we never over-estimate the
2162          * position of the head.
2163          */
2164         request_ring_position = intel_ring_get_tail(ring);
2165
2166         ret = ring->add_request(ring);
2167         if (ret)
2168                 return ret;
2169
2170         request->seqno = intel_ring_get_seqno(ring);
2171         request->ring = ring;
2172         request->head = request_start;
2173         request->tail = request_ring_position;
2174
2175         /* Whilst this request exists, batch_obj will be on the
2176          * active_list, and so will hold the active reference. Only when this
2177          * request is retired will the the batch_obj be moved onto the
2178          * inactive_list and lose its active reference. Hence we do not need
2179          * to explicitly hold another reference here.
2180          */
2181         request->batch_obj = obj;
2182
2183         /* Hold a reference to the current context so that we can inspect
2184          * it later in case a hangcheck error event fires.
2185          */
2186         request->ctx = ring->last_context;
2187         if (request->ctx)
2188                 i915_gem_context_reference(request->ctx);
2189
2190         request->emitted_jiffies = jiffies;
2191         was_empty = list_empty(&ring->request_list);
2192         list_add_tail(&request->list, &ring->request_list);
2193         request->file_priv = NULL;
2194
2195         if (file) {
2196                 struct drm_i915_file_private *file_priv = file->driver_priv;
2197
2198                 spin_lock(&file_priv->mm.lock);
2199                 request->file_priv = file_priv;
2200                 list_add_tail(&request->client_list,
2201                               &file_priv->mm.request_list);
2202                 spin_unlock(&file_priv->mm.lock);
2203         }
2204
2205         trace_i915_gem_request_add(ring, request->seqno);
2206         ring->outstanding_lazy_seqno = 0;
2207         ring->preallocated_lazy_request = NULL;
2208
2209         if (!dev_priv->ums.mm_suspended) {
2210                 i915_queue_hangcheck(ring->dev);
2211
2212                 if (was_empty) {
2213                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2214                         queue_delayed_work(dev_priv->wq,
2215                                            &dev_priv->mm.retire_work,
2216                                            round_jiffies_up_relative(HZ));
2217                         intel_mark_busy(dev_priv->dev);
2218                 }
2219         }
2220
2221         if (out_seqno)
2222                 *out_seqno = request->seqno;
2223         return 0;
2224 }
2225
2226 static inline void
2227 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2228 {
2229         struct drm_i915_file_private *file_priv = request->file_priv;
2230
2231         if (!file_priv)
2232                 return;
2233
2234         spin_lock(&file_priv->mm.lock);
2235         list_del(&request->client_list);
2236         request->file_priv = NULL;
2237         spin_unlock(&file_priv->mm.lock);
2238 }
2239
2240 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2241                                     struct i915_address_space *vm)
2242 {
2243         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2244             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2245                 return true;
2246
2247         return false;
2248 }
2249
2250 static bool i915_head_inside_request(const u32 acthd_unmasked,
2251                                      const u32 request_start,
2252                                      const u32 request_end)
2253 {
2254         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2255
2256         if (request_start < request_end) {
2257                 if (acthd >= request_start && acthd < request_end)
2258                         return true;
2259         } else if (request_start > request_end) {
2260                 if (acthd >= request_start || acthd < request_end)
2261                         return true;
2262         }
2263
2264         return false;
2265 }
2266
2267 static struct i915_address_space *
2268 request_to_vm(struct drm_i915_gem_request *request)
2269 {
2270         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2271         struct i915_address_space *vm;
2272
2273         vm = &dev_priv->gtt.base;
2274
2275         return vm;
2276 }
2277
2278 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2279                                 const u32 acthd, bool *inside)
2280 {
2281         /* There is a possibility that unmasked head address
2282          * pointing inside the ring, matches the batch_obj address range.
2283          * However this is extremely unlikely.
2284          */
2285         if (request->batch_obj) {
2286                 if (i915_head_inside_object(acthd, request->batch_obj,
2287                                             request_to_vm(request))) {
2288                         *inside = true;
2289                         return true;
2290                 }
2291         }
2292
2293         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2294                 *inside = false;
2295                 return true;
2296         }
2297
2298         return false;
2299 }
2300
2301 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2302 {
2303         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2304
2305         if (hs->banned)
2306                 return true;
2307
2308         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2309                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2310                 return true;
2311         }
2312
2313         return false;
2314 }
2315
2316 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2317                                   struct drm_i915_gem_request *request,
2318                                   u32 acthd)
2319 {
2320         struct i915_ctx_hang_stats *hs = NULL;
2321         bool inside, guilty;
2322         unsigned long offset = 0;
2323
2324         /* Innocent until proven guilty */
2325         guilty = false;
2326
2327         if (request->batch_obj)
2328                 offset = i915_gem_obj_offset(request->batch_obj,
2329                                              request_to_vm(request));
2330
2331         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2332             i915_request_guilty(request, acthd, &inside)) {
2333                 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2334                           ring->name,
2335                           inside ? "inside" : "flushing",
2336                           offset,
2337                           request->ctx ? request->ctx->id : 0,
2338                           acthd);
2339
2340                 guilty = true;
2341         }
2342
2343         /* If contexts are disabled or this is the default context, use
2344          * file_priv->reset_state
2345          */
2346         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2347                 hs = &request->ctx->hang_stats;
2348         else if (request->file_priv)
2349                 hs = &request->file_priv->hang_stats;
2350
2351         if (hs) {
2352                 if (guilty) {
2353                         hs->banned = i915_context_is_banned(hs);
2354                         hs->batch_active++;
2355                         hs->guilty_ts = get_seconds();
2356                 } else {
2357                         hs->batch_pending++;
2358                 }
2359         }
2360 }
2361
2362 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2363 {
2364         list_del(&request->list);
2365         i915_gem_request_remove_from_client(request);
2366
2367         if (request->ctx)
2368                 i915_gem_context_unreference(request->ctx);
2369
2370         kfree(request);
2371 }
2372
2373 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2374                                        struct intel_ring_buffer *ring)
2375 {
2376         u32 completed_seqno = ring->get_seqno(ring, false);
2377         u32 acthd = intel_ring_get_active_head(ring);
2378         struct drm_i915_gem_request *request;
2379
2380         list_for_each_entry(request, &ring->request_list, list) {
2381                 if (i915_seqno_passed(completed_seqno, request->seqno))
2382                         continue;
2383
2384                 i915_set_reset_status(ring, request, acthd);
2385         }
2386 }
2387
2388 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2389                                         struct intel_ring_buffer *ring)
2390 {
2391         while (!list_empty(&ring->active_list)) {
2392                 struct drm_i915_gem_object *obj;
2393
2394                 obj = list_first_entry(&ring->active_list,
2395                                        struct drm_i915_gem_object,
2396                                        ring_list);
2397
2398                 i915_gem_object_move_to_inactive(obj);
2399         }
2400
2401         /*
2402          * We must free the requests after all the corresponding objects have
2403          * been moved off active lists. Which is the same order as the normal
2404          * retire_requests function does. This is important if object hold
2405          * implicit references on things like e.g. ppgtt address spaces through
2406          * the request.
2407          */
2408         while (!list_empty(&ring->request_list)) {
2409                 struct drm_i915_gem_request *request;
2410
2411                 request = list_first_entry(&ring->request_list,
2412                                            struct drm_i915_gem_request,
2413                                            list);
2414
2415                 i915_gem_free_request(request);
2416         }
2417 }
2418
2419 void i915_gem_restore_fences(struct drm_device *dev)
2420 {
2421         struct drm_i915_private *dev_priv = dev->dev_private;
2422         int i;
2423
2424         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2425                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2426
2427                 /*
2428                  * Commit delayed tiling changes if we have an object still
2429                  * attached to the fence, otherwise just clear the fence.
2430                  */
2431                 if (reg->obj) {
2432                         i915_gem_object_update_fence(reg->obj, reg,
2433                                                      reg->obj->tiling_mode);
2434                 } else {
2435                         i915_gem_write_fence(dev, i, NULL);
2436                 }
2437         }
2438 }
2439
2440 void i915_gem_reset(struct drm_device *dev)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         struct intel_ring_buffer *ring;
2444         int i;
2445
2446         /*
2447          * Before we free the objects from the requests, we need to inspect
2448          * them for finding the guilty party. As the requests only borrow
2449          * their reference to the objects, the inspection must be done first.
2450          */
2451         for_each_ring(ring, dev_priv, i)
2452                 i915_gem_reset_ring_status(dev_priv, ring);
2453
2454         for_each_ring(ring, dev_priv, i)
2455                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2456
2457         i915_gem_cleanup_ringbuffer(dev);
2458
2459         i915_gem_restore_fences(dev);
2460 }
2461
2462 /**
2463  * This function clears the request list as sequence numbers are passed.
2464  */
2465 void
2466 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2467 {
2468         uint32_t seqno;
2469
2470         if (list_empty(&ring->request_list))
2471                 return;
2472
2473         WARN_ON(i915_verify_lists(ring->dev));
2474
2475         seqno = ring->get_seqno(ring, true);
2476
2477         while (!list_empty(&ring->request_list)) {
2478                 struct drm_i915_gem_request *request;
2479
2480                 request = list_first_entry(&ring->request_list,
2481                                            struct drm_i915_gem_request,
2482                                            list);
2483
2484                 if (!i915_seqno_passed(seqno, request->seqno))
2485                         break;
2486
2487                 trace_i915_gem_request_retire(ring, request->seqno);
2488                 /* We know the GPU must have read the request to have
2489                  * sent us the seqno + interrupt, so use the position
2490                  * of tail of the request to update the last known position
2491                  * of the GPU head.
2492                  */
2493                 ring->last_retired_head = request->tail;
2494
2495                 i915_gem_free_request(request);
2496         }
2497
2498         /* Move any buffers on the active list that are no longer referenced
2499          * by the ringbuffer to the flushing/inactive lists as appropriate.
2500          */
2501         while (!list_empty(&ring->active_list)) {
2502                 struct drm_i915_gem_object *obj;
2503
2504                 obj = list_first_entry(&ring->active_list,
2505                                       struct drm_i915_gem_object,
2506                                       ring_list);
2507
2508                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2509                         break;
2510
2511                 i915_gem_object_move_to_inactive(obj);
2512         }
2513
2514         if (unlikely(ring->trace_irq_seqno &&
2515                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2516                 ring->irq_put(ring);
2517                 ring->trace_irq_seqno = 0;
2518         }
2519
2520         WARN_ON(i915_verify_lists(ring->dev));
2521 }
2522
2523 bool
2524 i915_gem_retire_requests(struct drm_device *dev)
2525 {
2526         drm_i915_private_t *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         bool idle = true;
2529         int i;
2530
2531         for_each_ring(ring, dev_priv, i) {
2532                 i915_gem_retire_requests_ring(ring);
2533                 idle &= list_empty(&ring->request_list);
2534         }
2535
2536         if (idle)
2537                 mod_delayed_work(dev_priv->wq,
2538                                    &dev_priv->mm.idle_work,
2539                                    msecs_to_jiffies(100));
2540
2541         return idle;
2542 }
2543
2544 static void
2545 i915_gem_retire_work_handler(struct work_struct *work)
2546 {
2547         struct drm_i915_private *dev_priv =
2548                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2549         struct drm_device *dev = dev_priv->dev;
2550         bool idle;
2551
2552         /* Come back later if the device is busy... */
2553         idle = false;
2554         if (mutex_trylock(&dev->struct_mutex)) {
2555                 idle = i915_gem_retire_requests(dev);
2556                 mutex_unlock(&dev->struct_mutex);
2557         }
2558         if (!idle)
2559                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2560                                    round_jiffies_up_relative(HZ));
2561 }
2562
2563 static void
2564 i915_gem_idle_work_handler(struct work_struct *work)
2565 {
2566         struct drm_i915_private *dev_priv =
2567                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2568
2569         intel_mark_idle(dev_priv->dev);
2570 }
2571
2572 /**
2573  * Ensures that an object will eventually get non-busy by flushing any required
2574  * write domains, emitting any outstanding lazy request and retiring and
2575  * completed requests.
2576  */
2577 static int
2578 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2579 {
2580         int ret;
2581
2582         if (obj->active) {
2583                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2584                 if (ret)
2585                         return ret;
2586
2587                 i915_gem_retire_requests_ring(obj->ring);
2588         }
2589
2590         return 0;
2591 }
2592
2593 /**
2594  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2595  * @DRM_IOCTL_ARGS: standard ioctl arguments
2596  *
2597  * Returns 0 if successful, else an error is returned with the remaining time in
2598  * the timeout parameter.
2599  *  -ETIME: object is still busy after timeout
2600  *  -ERESTARTSYS: signal interrupted the wait
2601  *  -ENONENT: object doesn't exist
2602  * Also possible, but rare:
2603  *  -EAGAIN: GPU wedged
2604  *  -ENOMEM: damn
2605  *  -ENODEV: Internal IRQ fail
2606  *  -E?: The add request failed
2607  *
2608  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2609  * non-zero timeout parameter the wait ioctl will wait for the given number of
2610  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2611  * without holding struct_mutex the object may become re-busied before this
2612  * function completes. A similar but shorter * race condition exists in the busy
2613  * ioctl
2614  */
2615 int
2616 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2617 {
2618         drm_i915_private_t *dev_priv = dev->dev_private;
2619         struct drm_i915_gem_wait *args = data;
2620         struct drm_i915_gem_object *obj;
2621         struct intel_ring_buffer *ring = NULL;
2622         struct timespec timeout_stack, *timeout = NULL;
2623         unsigned reset_counter;
2624         u32 seqno = 0;
2625         int ret = 0;
2626
2627         if (args->timeout_ns >= 0) {
2628                 timeout_stack = ns_to_timespec(args->timeout_ns);
2629                 timeout = &timeout_stack;
2630         }
2631
2632         ret = i915_mutex_lock_interruptible(dev);
2633         if (ret)
2634                 return ret;
2635
2636         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2637         if (&obj->base == NULL) {
2638                 mutex_unlock(&dev->struct_mutex);
2639                 return -ENOENT;
2640         }
2641
2642         /* Need to make sure the object gets inactive eventually. */
2643         ret = i915_gem_object_flush_active(obj);
2644         if (ret)
2645                 goto out;
2646
2647         if (obj->active) {
2648                 seqno = obj->last_read_seqno;
2649                 ring = obj->ring;
2650         }
2651
2652         if (seqno == 0)
2653                  goto out;
2654
2655         /* Do this after OLR check to make sure we make forward progress polling
2656          * on this IOCTL with a 0 timeout (like busy ioctl)
2657          */
2658         if (!args->timeout_ns) {
2659                 ret = -ETIME;
2660                 goto out;
2661         }
2662
2663         drm_gem_object_unreference(&obj->base);
2664         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2665         mutex_unlock(&dev->struct_mutex);
2666
2667         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2668         if (timeout)
2669                 args->timeout_ns = timespec_to_ns(timeout);
2670         return ret;
2671
2672 out:
2673         drm_gem_object_unreference(&obj->base);
2674         mutex_unlock(&dev->struct_mutex);
2675         return ret;
2676 }
2677
2678 /**
2679  * i915_gem_object_sync - sync an object to a ring.
2680  *
2681  * @obj: object which may be in use on another ring.
2682  * @to: ring we wish to use the object on. May be NULL.
2683  *
2684  * This code is meant to abstract object synchronization with the GPU.
2685  * Calling with NULL implies synchronizing the object with the CPU
2686  * rather than a particular GPU ring.
2687  *
2688  * Returns 0 if successful, else propagates up the lower layer error.
2689  */
2690 int
2691 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2692                      struct intel_ring_buffer *to)
2693 {
2694         struct intel_ring_buffer *from = obj->ring;
2695         u32 seqno;
2696         int ret, idx;
2697
2698         if (from == NULL || to == from)
2699                 return 0;
2700
2701         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2702                 return i915_gem_object_wait_rendering(obj, false);
2703
2704         idx = intel_ring_sync_index(from, to);
2705
2706         seqno = obj->last_read_seqno;
2707         if (seqno <= from->sync_seqno[idx])
2708                 return 0;
2709
2710         ret = i915_gem_check_olr(obj->ring, seqno);
2711         if (ret)
2712                 return ret;
2713
2714         trace_i915_gem_ring_sync_to(from, to, seqno);
2715         ret = to->sync_to(to, from, seqno);
2716         if (!ret)
2717                 /* We use last_read_seqno because sync_to()
2718                  * might have just caused seqno wrap under
2719                  * the radar.
2720                  */
2721                 from->sync_seqno[idx] = obj->last_read_seqno;
2722
2723         return ret;
2724 }
2725
2726 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2727 {
2728         u32 old_write_domain, old_read_domains;
2729
2730         /* Force a pagefault for domain tracking on next user access */
2731         i915_gem_release_mmap(obj);
2732
2733         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2734                 return;
2735
2736         /* Wait for any direct GTT access to complete */
2737         mb();
2738
2739         old_read_domains = obj->base.read_domains;
2740         old_write_domain = obj->base.write_domain;
2741
2742         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2743         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2744
2745         trace_i915_gem_object_change_domain(obj,
2746                                             old_read_domains,
2747                                             old_write_domain);
2748 }
2749
2750 int i915_vma_unbind(struct i915_vma *vma)
2751 {
2752         struct drm_i915_gem_object *obj = vma->obj;
2753         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2754         int ret;
2755
2756         /* For now we only ever use 1 vma per object */
2757         WARN_ON(!list_is_singular(&obj->vma_list));
2758
2759         if (list_empty(&vma->vma_link))
2760                 return 0;
2761
2762         if (!drm_mm_node_allocated(&vma->node)) {
2763                 i915_gem_vma_destroy(vma);
2764
2765                 return 0;
2766         }
2767
2768         if (obj->pin_count)
2769                 return -EBUSY;
2770
2771         BUG_ON(obj->pages == NULL);
2772
2773         ret = i915_gem_object_finish_gpu(obj);
2774         if (ret)
2775                 return ret;
2776         /* Continue on if we fail due to EIO, the GPU is hung so we
2777          * should be safe and we need to cleanup or else we might
2778          * cause memory corruption through use-after-free.
2779          */
2780
2781         i915_gem_object_finish_gtt(obj);
2782
2783         /* release the fence reg _after_ flushing */
2784         ret = i915_gem_object_put_fence(obj);
2785         if (ret)
2786                 return ret;
2787
2788         trace_i915_vma_unbind(vma);
2789
2790         if (obj->has_global_gtt_mapping)
2791                 i915_gem_gtt_unbind_object(obj);
2792         if (obj->has_aliasing_ppgtt_mapping) {
2793                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2794                 obj->has_aliasing_ppgtt_mapping = 0;
2795         }
2796         i915_gem_gtt_finish_object(obj);
2797
2798         list_del(&vma->mm_list);
2799         /* Avoid an unnecessary call to unbind on rebind. */
2800         if (i915_is_ggtt(vma->vm))
2801                 obj->map_and_fenceable = true;
2802
2803         drm_mm_remove_node(&vma->node);
2804         i915_gem_vma_destroy(vma);
2805
2806         /* Since the unbound list is global, only move to that list if
2807          * no more VMAs exist. */
2808         if (list_empty(&obj->vma_list))
2809                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2810
2811         /* And finally now the object is completely decoupled from this vma,
2812          * we can drop its hold on the backing storage and allow it to be
2813          * reaped by the shrinker.
2814          */
2815         i915_gem_object_unpin_pages(obj);
2816
2817         return 0;
2818 }
2819
2820 /**
2821  * Unbinds an object from the global GTT aperture.
2822  */
2823 int
2824 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2825 {
2826         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2827         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2828
2829         if (!i915_gem_obj_ggtt_bound(obj))
2830                 return 0;
2831
2832         if (obj->pin_count)
2833                 return -EBUSY;
2834
2835         BUG_ON(obj->pages == NULL);
2836
2837         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2838 }
2839
2840 int i915_gpu_idle(struct drm_device *dev)
2841 {
2842         drm_i915_private_t *dev_priv = dev->dev_private;
2843         struct intel_ring_buffer *ring;
2844         int ret, i;
2845
2846         /* Flush everything onto the inactive list. */
2847         for_each_ring(ring, dev_priv, i) {
2848                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2849                 if (ret)
2850                         return ret;
2851
2852                 ret = intel_ring_idle(ring);
2853                 if (ret)
2854                         return ret;
2855         }
2856
2857         return 0;
2858 }
2859
2860 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2861                                  struct drm_i915_gem_object *obj)
2862 {
2863         drm_i915_private_t *dev_priv = dev->dev_private;
2864         int fence_reg;
2865         int fence_pitch_shift;
2866
2867         if (INTEL_INFO(dev)->gen >= 6) {
2868                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2869                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2870         } else {
2871                 fence_reg = FENCE_REG_965_0;
2872                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2873         }
2874
2875         fence_reg += reg * 8;
2876
2877         /* To w/a incoherency with non-atomic 64-bit register updates,
2878          * we split the 64-bit update into two 32-bit writes. In order
2879          * for a partial fence not to be evaluated between writes, we
2880          * precede the update with write to turn off the fence register,
2881          * and only enable the fence as the last step.
2882          *
2883          * For extra levels of paranoia, we make sure each step lands
2884          * before applying the next step.
2885          */
2886         I915_WRITE(fence_reg, 0);
2887         POSTING_READ(fence_reg);
2888
2889         if (obj) {
2890                 u32 size = i915_gem_obj_ggtt_size(obj);
2891                 uint64_t val;
2892
2893                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2894                                  0xfffff000) << 32;
2895                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2896                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2897                 if (obj->tiling_mode == I915_TILING_Y)
2898                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2899                 val |= I965_FENCE_REG_VALID;
2900
2901                 I915_WRITE(fence_reg + 4, val >> 32);
2902                 POSTING_READ(fence_reg + 4);
2903
2904                 I915_WRITE(fence_reg + 0, val);
2905                 POSTING_READ(fence_reg);
2906         } else {
2907                 I915_WRITE(fence_reg + 4, 0);
2908                 POSTING_READ(fence_reg + 4);
2909         }
2910 }
2911
2912 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2913                                  struct drm_i915_gem_object *obj)
2914 {
2915         drm_i915_private_t *dev_priv = dev->dev_private;
2916         u32 val;
2917
2918         if (obj) {
2919                 u32 size = i915_gem_obj_ggtt_size(obj);
2920                 int pitch_val;
2921                 int tile_width;
2922
2923                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2924                      (size & -size) != size ||
2925                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2926                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2927                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2928
2929                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2930                         tile_width = 128;
2931                 else
2932                         tile_width = 512;
2933
2934                 /* Note: pitch better be a power of two tile widths */
2935                 pitch_val = obj->stride / tile_width;
2936                 pitch_val = ffs(pitch_val) - 1;
2937
2938                 val = i915_gem_obj_ggtt_offset(obj);
2939                 if (obj->tiling_mode == I915_TILING_Y)
2940                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941                 val |= I915_FENCE_SIZE_BITS(size);
2942                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943                 val |= I830_FENCE_REG_VALID;
2944         } else
2945                 val = 0;
2946
2947         if (reg < 8)
2948                 reg = FENCE_REG_830_0 + reg * 4;
2949         else
2950                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2951
2952         I915_WRITE(reg, val);
2953         POSTING_READ(reg);
2954 }
2955
2956 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2957                                 struct drm_i915_gem_object *obj)
2958 {
2959         drm_i915_private_t *dev_priv = dev->dev_private;
2960         uint32_t val;
2961
2962         if (obj) {
2963                 u32 size = i915_gem_obj_ggtt_size(obj);
2964                 uint32_t pitch_val;
2965
2966                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2967                      (size & -size) != size ||
2968                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2969                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2970                      i915_gem_obj_ggtt_offset(obj), size);
2971
2972                 pitch_val = obj->stride / 128;
2973                 pitch_val = ffs(pitch_val) - 1;
2974
2975                 val = i915_gem_obj_ggtt_offset(obj);
2976                 if (obj->tiling_mode == I915_TILING_Y)
2977                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2978                 val |= I830_FENCE_SIZE_BITS(size);
2979                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2980                 val |= I830_FENCE_REG_VALID;
2981         } else
2982                 val = 0;
2983
2984         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2985         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2986 }
2987
2988 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2989 {
2990         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2991 }
2992
2993 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2994                                  struct drm_i915_gem_object *obj)
2995 {
2996         struct drm_i915_private *dev_priv = dev->dev_private;
2997
2998         /* Ensure that all CPU reads are completed before installing a fence
2999          * and all writes before removing the fence.
3000          */
3001         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3002                 mb();
3003
3004         WARN(obj && (!obj->stride || !obj->tiling_mode),
3005              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3006              obj->stride, obj->tiling_mode);
3007
3008         switch (INTEL_INFO(dev)->gen) {
3009         case 8:
3010         case 7:
3011         case 6:
3012         case 5:
3013         case 4: i965_write_fence_reg(dev, reg, obj); break;
3014         case 3: i915_write_fence_reg(dev, reg, obj); break;
3015         case 2: i830_write_fence_reg(dev, reg, obj); break;
3016         default: BUG();
3017         }
3018
3019         /* And similarly be paranoid that no direct access to this region
3020          * is reordered to before the fence is installed.
3021          */
3022         if (i915_gem_object_needs_mb(obj))
3023                 mb();
3024 }
3025
3026 static inline int fence_number(struct drm_i915_private *dev_priv,
3027                                struct drm_i915_fence_reg *fence)
3028 {
3029         return fence - dev_priv->fence_regs;
3030 }
3031
3032 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3033                                          struct drm_i915_fence_reg *fence,
3034                                          bool enable)
3035 {
3036         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3037         int reg = fence_number(dev_priv, fence);
3038
3039         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3040
3041         if (enable) {
3042                 obj->fence_reg = reg;
3043                 fence->obj = obj;
3044                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3045         } else {
3046                 obj->fence_reg = I915_FENCE_REG_NONE;
3047                 fence->obj = NULL;
3048                 list_del_init(&fence->lru_list);
3049         }
3050         obj->fence_dirty = false;
3051 }
3052
3053 static int
3054 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3055 {
3056         if (obj->last_fenced_seqno) {
3057                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3058                 if (ret)
3059                         return ret;
3060
3061                 obj->last_fenced_seqno = 0;
3062         }
3063
3064         obj->fenced_gpu_access = false;
3065         return 0;
3066 }
3067
3068 int
3069 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3070 {
3071         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3072         struct drm_i915_fence_reg *fence;
3073         int ret;
3074
3075         ret = i915_gem_object_wait_fence(obj);
3076         if (ret)
3077                 return ret;
3078
3079         if (obj->fence_reg == I915_FENCE_REG_NONE)
3080                 return 0;
3081
3082         fence = &dev_priv->fence_regs[obj->fence_reg];
3083
3084         i915_gem_object_fence_lost(obj);
3085         i915_gem_object_update_fence(obj, fence, false);
3086
3087         return 0;
3088 }
3089
3090 static struct drm_i915_fence_reg *
3091 i915_find_fence_reg(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         struct drm_i915_fence_reg *reg, *avail;
3095         int i;
3096
3097         /* First try to find a free reg */
3098         avail = NULL;
3099         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3100                 reg = &dev_priv->fence_regs[i];
3101                 if (!reg->obj)
3102                         return reg;
3103
3104                 if (!reg->pin_count)
3105                         avail = reg;
3106         }
3107
3108         if (avail == NULL)
3109                 goto deadlock;
3110
3111         /* None available, try to steal one or wait for a user to finish */
3112         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3113                 if (reg->pin_count)
3114                         continue;
3115
3116                 return reg;
3117         }
3118
3119 deadlock:
3120         /* Wait for completion of pending flips which consume fences */
3121         if (intel_has_pending_fb_unpin(dev))
3122                 return ERR_PTR(-EAGAIN);
3123
3124         return ERR_PTR(-EDEADLK);
3125 }
3126
3127 /**
3128  * i915_gem_object_get_fence - set up fencing for an object
3129  * @obj: object to map through a fence reg
3130  *
3131  * When mapping objects through the GTT, userspace wants to be able to write
3132  * to them without having to worry about swizzling if the object is tiled.
3133  * This function walks the fence regs looking for a free one for @obj,
3134  * stealing one if it can't find any.
3135  *
3136  * It then sets up the reg based on the object's properties: address, pitch
3137  * and tiling format.
3138  *
3139  * For an untiled surface, this removes any existing fence.
3140  */
3141 int
3142 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3143 {
3144         struct drm_device *dev = obj->base.dev;
3145         struct drm_i915_private *dev_priv = dev->dev_private;
3146         bool enable = obj->tiling_mode != I915_TILING_NONE;
3147         struct drm_i915_fence_reg *reg;
3148         int ret;
3149
3150         /* Have we updated the tiling parameters upon the object and so
3151          * will need to serialise the write to the associated fence register?
3152          */
3153         if (obj->fence_dirty) {
3154                 ret = i915_gem_object_wait_fence(obj);
3155                 if (ret)
3156                         return ret;
3157         }
3158
3159         /* Just update our place in the LRU if our fence is getting reused. */
3160         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3161                 reg = &dev_priv->fence_regs[obj->fence_reg];
3162                 if (!obj->fence_dirty) {
3163                         list_move_tail(&reg->lru_list,
3164                                        &dev_priv->mm.fence_list);
3165                         return 0;
3166                 }
3167         } else if (enable) {
3168                 reg = i915_find_fence_reg(dev);
3169                 if (IS_ERR(reg))
3170                         return PTR_ERR(reg);
3171
3172                 if (reg->obj) {
3173                         struct drm_i915_gem_object *old = reg->obj;
3174
3175                         ret = i915_gem_object_wait_fence(old);
3176                         if (ret)
3177                                 return ret;
3178
3179                         i915_gem_object_fence_lost(old);
3180                 }
3181         } else
3182                 return 0;
3183
3184         i915_gem_object_update_fence(obj, reg, enable);
3185
3186         return 0;
3187 }
3188
3189 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3190                                      struct drm_mm_node *gtt_space,
3191                                      unsigned long cache_level)
3192 {
3193         struct drm_mm_node *other;
3194
3195         /* On non-LLC machines we have to be careful when putting differing
3196          * types of snoopable memory together to avoid the prefetcher
3197          * crossing memory domains and dying.
3198          */
3199         if (HAS_LLC(dev))
3200                 return true;
3201
3202         if (!drm_mm_node_allocated(gtt_space))
3203                 return true;
3204
3205         if (list_empty(&gtt_space->node_list))
3206                 return true;
3207
3208         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3209         if (other->allocated && !other->hole_follows && other->color != cache_level)
3210                 return false;
3211
3212         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3213         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3214                 return false;
3215
3216         return true;
3217 }
3218
3219 static void i915_gem_verify_gtt(struct drm_device *dev)
3220 {
3221 #if WATCH_GTT
3222         struct drm_i915_private *dev_priv = dev->dev_private;
3223         struct drm_i915_gem_object *obj;
3224         int err = 0;
3225
3226         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3227                 if (obj->gtt_space == NULL) {
3228                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3229                         err++;
3230                         continue;
3231                 }
3232
3233                 if (obj->cache_level != obj->gtt_space->color) {
3234                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3235                                i915_gem_obj_ggtt_offset(obj),
3236                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3237                                obj->cache_level,
3238                                obj->gtt_space->color);
3239                         err++;
3240                         continue;
3241                 }
3242
3243                 if (!i915_gem_valid_gtt_space(dev,
3244                                               obj->gtt_space,
3245                                               obj->cache_level)) {
3246                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3247                                i915_gem_obj_ggtt_offset(obj),
3248                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3249                                obj->cache_level);
3250                         err++;
3251                         continue;
3252                 }
3253         }
3254
3255         WARN_ON(err);
3256 #endif
3257 }
3258
3259 /**
3260  * Finds free space in the GTT aperture and binds the object there.
3261  */
3262 static int
3263 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3264                            struct i915_address_space *vm,
3265                            unsigned alignment,
3266                            bool map_and_fenceable,
3267                            bool nonblocking)
3268 {
3269         struct drm_device *dev = obj->base.dev;
3270         drm_i915_private_t *dev_priv = dev->dev_private;
3271         u32 size, fence_size, fence_alignment, unfenced_alignment;
3272         size_t gtt_max =
3273                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3274         struct i915_vma *vma;
3275         int ret;
3276
3277         fence_size = i915_gem_get_gtt_size(dev,
3278                                            obj->base.size,
3279                                            obj->tiling_mode);
3280         fence_alignment = i915_gem_get_gtt_alignment(dev,
3281                                                      obj->base.size,
3282                                                      obj->tiling_mode, true);
3283         unfenced_alignment =
3284                 i915_gem_get_gtt_alignment(dev,
3285                                                     obj->base.size,
3286                                                     obj->tiling_mode, false);
3287
3288         if (alignment == 0)
3289                 alignment = map_and_fenceable ? fence_alignment :
3290                                                 unfenced_alignment;
3291         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3292                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3293                 return -EINVAL;
3294         }
3295
3296         size = map_and_fenceable ? fence_size : obj->base.size;
3297
3298         /* If the object is bigger than the entire aperture, reject it early
3299          * before evicting everything in a vain attempt to find space.
3300          */
3301         if (obj->base.size > gtt_max) {
3302                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3303                           obj->base.size,
3304                           map_and_fenceable ? "mappable" : "total",
3305                           gtt_max);
3306                 return -E2BIG;
3307         }
3308
3309         ret = i915_gem_object_get_pages(obj);
3310         if (ret)
3311                 return ret;
3312
3313         i915_gem_object_pin_pages(obj);
3314
3315         BUG_ON(!i915_is_ggtt(vm));
3316
3317         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3318         if (IS_ERR(vma)) {
3319                 ret = PTR_ERR(vma);
3320                 goto err_unpin;
3321         }
3322
3323         /* For now we only ever use 1 vma per object */
3324         WARN_ON(!list_is_singular(&obj->vma_list));
3325
3326 search_free:
3327         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3328                                                   size, alignment,
3329                                                   obj->cache_level, 0, gtt_max,
3330                                                   DRM_MM_SEARCH_DEFAULT);
3331         if (ret) {
3332                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3333                                                obj->cache_level,
3334                                                map_and_fenceable,
3335                                                nonblocking);
3336                 if (ret == 0)
3337                         goto search_free;
3338
3339                 goto err_free_vma;
3340         }
3341         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3342                                               obj->cache_level))) {
3343                 ret = -EINVAL;
3344                 goto err_remove_node;
3345         }
3346
3347         ret = i915_gem_gtt_prepare_object(obj);
3348         if (ret)
3349                 goto err_remove_node;
3350
3351         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3352         list_add_tail(&vma->mm_list, &vm->inactive_list);
3353
3354         if (i915_is_ggtt(vm)) {
3355                 bool mappable, fenceable;
3356
3357                 fenceable = (vma->node.size == fence_size &&
3358                              (vma->node.start & (fence_alignment - 1)) == 0);
3359
3360                 mappable = (vma->node.start + obj->base.size <=
3361                             dev_priv->gtt.mappable_end);
3362
3363                 obj->map_and_fenceable = mappable && fenceable;
3364         }
3365
3366         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3367
3368         trace_i915_vma_bind(vma, map_and_fenceable);
3369         i915_gem_verify_gtt(dev);
3370         return 0;
3371
3372 err_remove_node:
3373         drm_mm_remove_node(&vma->node);
3374 err_free_vma:
3375         i915_gem_vma_destroy(vma);
3376 err_unpin:
3377         i915_gem_object_unpin_pages(obj);
3378         return ret;
3379 }
3380
3381 bool
3382 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3383                         bool force)
3384 {
3385         /* If we don't have a page list set up, then we're not pinned
3386          * to GPU, and we can ignore the cache flush because it'll happen
3387          * again at bind time.
3388          */
3389         if (obj->pages == NULL)
3390                 return false;
3391
3392         /*
3393          * Stolen memory is always coherent with the GPU as it is explicitly
3394          * marked as wc by the system, or the system is cache-coherent.
3395          */
3396         if (obj->stolen)
3397                 return false;
3398
3399         /* If the GPU is snooping the contents of the CPU cache,
3400          * we do not need to manually clear the CPU cache lines.  However,
3401          * the caches are only snooped when the render cache is
3402          * flushed/invalidated.  As we always have to emit invalidations
3403          * and flushes when moving into and out of the RENDER domain, correct
3404          * snooping behaviour occurs naturally as the result of our domain
3405          * tracking.
3406          */
3407         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3408                 return false;
3409
3410         trace_i915_gem_object_clflush(obj);
3411         drm_clflush_sg(obj->pages);
3412
3413         return true;
3414 }
3415
3416 /** Flushes the GTT write domain for the object if it's dirty. */
3417 static void
3418 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3419 {
3420         uint32_t old_write_domain;
3421
3422         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3423                 return;
3424
3425         /* No actual flushing is required for the GTT write domain.  Writes
3426          * to it immediately go to main memory as far as we know, so there's
3427          * no chipset flush.  It also doesn't land in render cache.
3428          *
3429          * However, we do have to enforce the order so that all writes through
3430          * the GTT land before any writes to the device, such as updates to
3431          * the GATT itself.
3432          */
3433         wmb();
3434
3435         old_write_domain = obj->base.write_domain;
3436         obj->base.write_domain = 0;
3437
3438         trace_i915_gem_object_change_domain(obj,
3439                                             obj->base.read_domains,
3440                                             old_write_domain);
3441 }
3442
3443 /** Flushes the CPU write domain for the object if it's dirty. */
3444 static void
3445 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3446                                        bool force)
3447 {
3448         uint32_t old_write_domain;
3449
3450         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3451                 return;
3452
3453         if (i915_gem_clflush_object(obj, force))
3454                 i915_gem_chipset_flush(obj->base.dev);
3455
3456         old_write_domain = obj->base.write_domain;
3457         obj->base.write_domain = 0;
3458
3459         trace_i915_gem_object_change_domain(obj,
3460                                             obj->base.read_domains,
3461                                             old_write_domain);
3462 }
3463
3464 /**
3465  * Moves a single object to the GTT read, and possibly write domain.
3466  *
3467  * This function returns when the move is complete, including waiting on
3468  * flushes to occur.
3469  */
3470 int
3471 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3472 {
3473         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3474         uint32_t old_write_domain, old_read_domains;
3475         int ret;
3476
3477         /* Not valid to be called on unbound objects. */
3478         if (!i915_gem_obj_bound_any(obj))
3479                 return -EINVAL;
3480
3481         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3482                 return 0;
3483
3484         ret = i915_gem_object_wait_rendering(obj, !write);
3485         if (ret)
3486                 return ret;
3487
3488         i915_gem_object_flush_cpu_write_domain(obj, false);
3489
3490         /* Serialise direct access to this object with the barriers for
3491          * coherent writes from the GPU, by effectively invalidating the
3492          * GTT domain upon first access.
3493          */
3494         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3495                 mb();
3496
3497         old_write_domain = obj->base.write_domain;
3498         old_read_domains = obj->base.read_domains;
3499
3500         /* It should now be out of any other write domains, and we can update
3501          * the domain values for our changes.
3502          */
3503         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3504         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3505         if (write) {
3506                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3507                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3508                 obj->dirty = 1;
3509         }
3510
3511         trace_i915_gem_object_change_domain(obj,
3512                                             old_read_domains,
3513                                             old_write_domain);
3514
3515         /* And bump the LRU for this access */
3516         if (i915_gem_object_is_inactive(obj)) {
3517                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3518                 if (vma)
3519                         list_move_tail(&vma->mm_list,
3520                                        &dev_priv->gtt.base.inactive_list);
3521
3522         }
3523
3524         return 0;
3525 }
3526
3527 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3528                                     enum i915_cache_level cache_level)
3529 {
3530         struct drm_device *dev = obj->base.dev;
3531         drm_i915_private_t *dev_priv = dev->dev_private;
3532         struct i915_vma *vma;
3533         int ret;
3534
3535         if (obj->cache_level == cache_level)
3536                 return 0;
3537
3538         if (obj->pin_count) {
3539                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3540                 return -EBUSY;
3541         }
3542
3543         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3544                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3545                         ret = i915_vma_unbind(vma);
3546                         if (ret)
3547                                 return ret;
3548
3549                         break;
3550                 }
3551         }
3552
3553         if (i915_gem_obj_bound_any(obj)) {
3554                 ret = i915_gem_object_finish_gpu(obj);
3555                 if (ret)
3556                         return ret;
3557
3558                 i915_gem_object_finish_gtt(obj);
3559
3560                 /* Before SandyBridge, you could not use tiling or fence
3561                  * registers with snooped memory, so relinquish any fences
3562                  * currently pointing to our region in the aperture.
3563                  */
3564                 if (INTEL_INFO(dev)->gen < 6) {
3565                         ret = i915_gem_object_put_fence(obj);
3566                         if (ret)
3567                                 return ret;
3568                 }
3569
3570                 if (obj->has_global_gtt_mapping)
3571                         i915_gem_gtt_bind_object(obj, cache_level);
3572                 if (obj->has_aliasing_ppgtt_mapping)
3573                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3574                                                obj, cache_level);
3575         }
3576
3577         list_for_each_entry(vma, &obj->vma_list, vma_link)
3578                 vma->node.color = cache_level;
3579         obj->cache_level = cache_level;
3580
3581         if (cpu_write_needs_clflush(obj)) {
3582                 u32 old_read_domains, old_write_domain;
3583
3584                 /* If we're coming from LLC cached, then we haven't
3585                  * actually been tracking whether the data is in the
3586                  * CPU cache or not, since we only allow one bit set
3587                  * in obj->write_domain and have been skipping the clflushes.
3588                  * Just set it to the CPU cache for now.
3589                  */
3590                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3591
3592                 old_read_domains = obj->base.read_domains;
3593                 old_write_domain = obj->base.write_domain;
3594
3595                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3596                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3597
3598                 trace_i915_gem_object_change_domain(obj,
3599                                                     old_read_domains,
3600                                                     old_write_domain);
3601         }
3602
3603         i915_gem_verify_gtt(dev);
3604         return 0;
3605 }
3606
3607 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3608                                struct drm_file *file)
3609 {
3610         struct drm_i915_gem_caching *args = data;
3611         struct drm_i915_gem_object *obj;
3612         int ret;
3613
3614         ret = i915_mutex_lock_interruptible(dev);
3615         if (ret)
3616                 return ret;
3617
3618         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3619         if (&obj->base == NULL) {
3620                 ret = -ENOENT;
3621                 goto unlock;
3622         }
3623
3624         switch (obj->cache_level) {
3625         case I915_CACHE_LLC:
3626         case I915_CACHE_L3_LLC:
3627                 args->caching = I915_CACHING_CACHED;
3628                 break;
3629
3630         case I915_CACHE_WT:
3631                 args->caching = I915_CACHING_DISPLAY;
3632                 break;
3633
3634         default:
3635                 args->caching = I915_CACHING_NONE;
3636                 break;
3637         }
3638
3639         drm_gem_object_unreference(&obj->base);
3640 unlock:
3641         mutex_unlock(&dev->struct_mutex);
3642         return ret;
3643 }
3644
3645 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3646                                struct drm_file *file)
3647 {
3648         struct drm_i915_gem_caching *args = data;
3649         struct drm_i915_gem_object *obj;
3650         enum i915_cache_level level;
3651         int ret;
3652
3653         switch (args->caching) {
3654         case I915_CACHING_NONE:
3655                 level = I915_CACHE_NONE;
3656                 break;
3657         case I915_CACHING_CACHED:
3658                 level = I915_CACHE_LLC;
3659                 break;
3660         case I915_CACHING_DISPLAY:
3661                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3662                 break;
3663         default:
3664                 return -EINVAL;
3665         }
3666
3667         ret = i915_mutex_lock_interruptible(dev);
3668         if (ret)
3669                 return ret;
3670
3671         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3672         if (&obj->base == NULL) {
3673                 ret = -ENOENT;
3674                 goto unlock;
3675         }
3676
3677         ret = i915_gem_object_set_cache_level(obj, level);
3678
3679         drm_gem_object_unreference(&obj->base);
3680 unlock:
3681         mutex_unlock(&dev->struct_mutex);
3682         return ret;
3683 }
3684
3685 static bool is_pin_display(struct drm_i915_gem_object *obj)
3686 {
3687         /* There are 3 sources that pin objects:
3688          *   1. The display engine (scanouts, sprites, cursors);
3689          *   2. Reservations for execbuffer;
3690          *   3. The user.
3691          *
3692          * We can ignore reservations as we hold the struct_mutex and
3693          * are only called outside of the reservation path.  The user
3694          * can only increment pin_count once, and so if after
3695          * subtracting the potential reference by the user, any pin_count
3696          * remains, it must be due to another use by the display engine.
3697          */
3698         return obj->pin_count - !!obj->user_pin_count;
3699 }
3700
3701 /*
3702  * Prepare buffer for display plane (scanout, cursors, etc).
3703  * Can be called from an uninterruptible phase (modesetting) and allows
3704  * any flushes to be pipelined (for pageflips).
3705  */
3706 int
3707 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3708                                      u32 alignment,
3709                                      struct intel_ring_buffer *pipelined)
3710 {
3711         u32 old_read_domains, old_write_domain;
3712         int ret;
3713
3714         if (pipelined != obj->ring) {
3715                 ret = i915_gem_object_sync(obj, pipelined);
3716                 if (ret)
3717                         return ret;
3718         }
3719
3720         /* Mark the pin_display early so that we account for the
3721          * display coherency whilst setting up the cache domains.
3722          */
3723         obj->pin_display = true;
3724
3725         /* The display engine is not coherent with the LLC cache on gen6.  As
3726          * a result, we make sure that the pinning that is about to occur is
3727          * done with uncached PTEs. This is lowest common denominator for all
3728          * chipsets.
3729          *
3730          * However for gen6+, we could do better by using the GFDT bit instead
3731          * of uncaching, which would allow us to flush all the LLC-cached data
3732          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3733          */
3734         ret = i915_gem_object_set_cache_level(obj,
3735                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3736         if (ret)
3737                 goto err_unpin_display;
3738
3739         /* As the user may map the buffer once pinned in the display plane
3740          * (e.g. libkms for the bootup splash), we have to ensure that we
3741          * always use map_and_fenceable for all scanout buffers.
3742          */
3743         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3744         if (ret)
3745                 goto err_unpin_display;
3746
3747         i915_gem_object_flush_cpu_write_domain(obj, true);
3748
3749         old_write_domain = obj->base.write_domain;
3750         old_read_domains = obj->base.read_domains;
3751
3752         /* It should now be out of any other write domains, and we can update
3753          * the domain values for our changes.
3754          */
3755         obj->base.write_domain = 0;
3756         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3757
3758         trace_i915_gem_object_change_domain(obj,
3759                                             old_read_domains,
3760                                             old_write_domain);
3761
3762         return 0;
3763
3764 err_unpin_display:
3765         obj->pin_display = is_pin_display(obj);
3766         return ret;
3767 }
3768
3769 void
3770 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3771 {
3772         i915_gem_object_unpin(obj);
3773         obj->pin_display = is_pin_display(obj);
3774 }
3775
3776 int
3777 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3778 {
3779         int ret;
3780
3781         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3782                 return 0;
3783
3784         ret = i915_gem_object_wait_rendering(obj, false);
3785         if (ret)
3786                 return ret;
3787
3788         /* Ensure that we invalidate the GPU's caches and TLBs. */
3789         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3790         return 0;
3791 }
3792
3793 /**
3794  * Moves a single object to the CPU read, and possibly write domain.
3795  *
3796  * This function returns when the move is complete, including waiting on
3797  * flushes to occur.
3798  */
3799 int
3800 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3801 {
3802         uint32_t old_write_domain, old_read_domains;
3803         int ret;
3804
3805         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3806                 return 0;
3807
3808         ret = i915_gem_object_wait_rendering(obj, !write);
3809         if (ret)
3810                 return ret;
3811
3812         i915_gem_object_flush_gtt_write_domain(obj);
3813
3814         old_write_domain = obj->base.write_domain;
3815         old_read_domains = obj->base.read_domains;
3816
3817         /* Flush the CPU cache if it's still invalid. */
3818         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3819                 i915_gem_clflush_object(obj, false);
3820
3821                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822         }
3823
3824         /* It should now be out of any other write domains, and we can update
3825          * the domain values for our changes.
3826          */
3827         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828
3829         /* If we're writing through the CPU, then the GPU read domains will
3830          * need to be invalidated at next use.
3831          */
3832         if (write) {
3833                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835         }
3836
3837         trace_i915_gem_object_change_domain(obj,
3838                                             old_read_domains,
3839                                             old_write_domain);
3840
3841         return 0;
3842 }
3843
3844 /* Throttle our rendering by waiting until the ring has completed our requests
3845  * emitted over 20 msec ago.
3846  *
3847  * Note that if we were to use the current jiffies each time around the loop,
3848  * we wouldn't escape the function with any frames outstanding if the time to
3849  * render a frame was over 20ms.
3850  *
3851  * This should get us reasonable parallelism between CPU and GPU but also
3852  * relatively low latency when blocking on a particular request to finish.
3853  */
3854 static int
3855 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3856 {
3857         struct drm_i915_private *dev_priv = dev->dev_private;
3858         struct drm_i915_file_private *file_priv = file->driver_priv;
3859         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3860         struct drm_i915_gem_request *request;
3861         struct intel_ring_buffer *ring = NULL;
3862         unsigned reset_counter;
3863         u32 seqno = 0;
3864         int ret;
3865
3866         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3867         if (ret)
3868                 return ret;
3869
3870         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3871         if (ret)
3872                 return ret;
3873
3874         spin_lock(&file_priv->mm.lock);
3875         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3876                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3877                         break;
3878
3879                 ring = request->ring;
3880                 seqno = request->seqno;
3881         }
3882         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3883         spin_unlock(&file_priv->mm.lock);
3884
3885         if (seqno == 0)
3886                 return 0;
3887
3888         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3889         if (ret == 0)
3890                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3891
3892         return ret;
3893 }
3894
3895 int
3896 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3897                     struct i915_address_space *vm,
3898                     uint32_t alignment,
3899                     bool map_and_fenceable,
3900                     bool nonblocking)
3901 {
3902         struct i915_vma *vma;
3903         int ret;
3904
3905         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3906                 return -EBUSY;
3907
3908         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3909
3910         vma = i915_gem_obj_to_vma(obj, vm);
3911
3912         if (vma) {
3913                 if ((alignment &&
3914                      vma->node.start & (alignment - 1)) ||
3915                     (map_and_fenceable && !obj->map_and_fenceable)) {
3916                         WARN(obj->pin_count,
3917                              "bo is already pinned with incorrect alignment:"
3918                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3919                              " obj->map_and_fenceable=%d\n",
3920                              i915_gem_obj_offset(obj, vm), alignment,
3921                              map_and_fenceable,
3922                              obj->map_and_fenceable);
3923                         ret = i915_vma_unbind(vma);
3924                         if (ret)
3925                                 return ret;
3926                 }
3927         }
3928
3929         if (!i915_gem_obj_bound(obj, vm)) {
3930                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3931
3932                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3933                                                  map_and_fenceable,
3934                                                  nonblocking);
3935                 if (ret)
3936                         return ret;
3937
3938                 if (!dev_priv->mm.aliasing_ppgtt)
3939                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3940         }
3941
3942         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3943                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3944
3945         obj->pin_count++;
3946         obj->pin_mappable |= map_and_fenceable;
3947
3948         return 0;
3949 }
3950
3951 void
3952 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3953 {
3954         BUG_ON(obj->pin_count == 0);
3955         BUG_ON(!i915_gem_obj_bound_any(obj));
3956
3957         if (--obj->pin_count == 0)
3958                 obj->pin_mappable = false;
3959 }
3960
3961 int
3962 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3963                    struct drm_file *file)
3964 {
3965         struct drm_i915_gem_pin *args = data;
3966         struct drm_i915_gem_object *obj;
3967         int ret;
3968
3969         ret = i915_mutex_lock_interruptible(dev);
3970         if (ret)
3971                 return ret;
3972
3973         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3974         if (&obj->base == NULL) {
3975                 ret = -ENOENT;
3976                 goto unlock;
3977         }
3978
3979         if (obj->madv != I915_MADV_WILLNEED) {
3980                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3981                 ret = -EINVAL;
3982                 goto out;
3983         }
3984
3985         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3986                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3987                           args->handle);
3988                 ret = -EINVAL;
3989                 goto out;
3990         }
3991
3992         if (obj->user_pin_count == ULONG_MAX) {
3993                 ret = -EBUSY;
3994                 goto out;
3995         }
3996
3997         if (obj->user_pin_count == 0) {
3998                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3999                 if (ret)
4000                         goto out;
4001         }
4002
4003         obj->user_pin_count++;
4004         obj->pin_filp = file;
4005
4006         args->offset = i915_gem_obj_ggtt_offset(obj);
4007 out:
4008         drm_gem_object_unreference(&obj->base);
4009 unlock:
4010         mutex_unlock(&dev->struct_mutex);
4011         return ret;
4012 }
4013
4014 int
4015 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4016                      struct drm_file *file)
4017 {
4018         struct drm_i915_gem_pin *args = data;
4019         struct drm_i915_gem_object *obj;
4020         int ret;
4021
4022         ret = i915_mutex_lock_interruptible(dev);
4023         if (ret)
4024                 return ret;
4025
4026         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4027         if (&obj->base == NULL) {
4028                 ret = -ENOENT;
4029                 goto unlock;
4030         }
4031
4032         if (obj->pin_filp != file) {
4033                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4034                           args->handle);
4035                 ret = -EINVAL;
4036                 goto out;
4037         }
4038         obj->user_pin_count--;
4039         if (obj->user_pin_count == 0) {
4040                 obj->pin_filp = NULL;
4041                 i915_gem_object_unpin(obj);
4042         }
4043
4044 out:
4045         drm_gem_object_unreference(&obj->base);
4046 unlock:
4047         mutex_unlock(&dev->struct_mutex);
4048         return ret;
4049 }
4050
4051 int
4052 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4053                     struct drm_file *file)
4054 {
4055         struct drm_i915_gem_busy *args = data;
4056         struct drm_i915_gem_object *obj;
4057         int ret;
4058
4059         ret = i915_mutex_lock_interruptible(dev);
4060         if (ret)
4061                 return ret;
4062
4063         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4064         if (&obj->base == NULL) {
4065                 ret = -ENOENT;
4066                 goto unlock;
4067         }
4068
4069         /* Count all active objects as busy, even if they are currently not used
4070          * by the gpu. Users of this interface expect objects to eventually
4071          * become non-busy without any further actions, therefore emit any
4072          * necessary flushes here.
4073          */
4074         ret = i915_gem_object_flush_active(obj);
4075
4076         args->busy = obj->active;
4077         if (obj->ring) {
4078                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4079                 args->busy |= intel_ring_flag(obj->ring) << 16;
4080         }
4081
4082         drm_gem_object_unreference(&obj->base);
4083 unlock:
4084         mutex_unlock(&dev->struct_mutex);
4085         return ret;
4086 }
4087
4088 int
4089 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4090                         struct drm_file *file_priv)
4091 {
4092         return i915_gem_ring_throttle(dev, file_priv);
4093 }
4094
4095 int
4096 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4097                        struct drm_file *file_priv)
4098 {
4099         struct drm_i915_gem_madvise *args = data;
4100         struct drm_i915_gem_object *obj;
4101         int ret;
4102
4103         switch (args->madv) {
4104         case I915_MADV_DONTNEED:
4105         case I915_MADV_WILLNEED:
4106             break;
4107         default:
4108             return -EINVAL;
4109         }
4110
4111         ret = i915_mutex_lock_interruptible(dev);
4112         if (ret)
4113                 return ret;
4114
4115         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4116         if (&obj->base == NULL) {
4117                 ret = -ENOENT;
4118                 goto unlock;
4119         }
4120
4121         if (obj->pin_count) {
4122                 ret = -EINVAL;
4123                 goto out;
4124         }
4125
4126         if (obj->madv != __I915_MADV_PURGED)
4127                 obj->madv = args->madv;
4128
4129         /* if the object is no longer attached, discard its backing storage */
4130         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4131                 i915_gem_object_truncate(obj);
4132
4133         args->retained = obj->madv != __I915_MADV_PURGED;
4134
4135 out:
4136         drm_gem_object_unreference(&obj->base);
4137 unlock:
4138         mutex_unlock(&dev->struct_mutex);
4139         return ret;
4140 }
4141
4142 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4143                           const struct drm_i915_gem_object_ops *ops)
4144 {
4145         INIT_LIST_HEAD(&obj->global_list);
4146         INIT_LIST_HEAD(&obj->ring_list);
4147         INIT_LIST_HEAD(&obj->obj_exec_link);
4148         INIT_LIST_HEAD(&obj->vma_list);
4149
4150         obj->ops = ops;
4151
4152         obj->fence_reg = I915_FENCE_REG_NONE;
4153         obj->madv = I915_MADV_WILLNEED;
4154         /* Avoid an unnecessary call to unbind on the first bind. */
4155         obj->map_and_fenceable = true;
4156
4157         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4158 }
4159
4160 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4161         .get_pages = i915_gem_object_get_pages_gtt,
4162         .put_pages = i915_gem_object_put_pages_gtt,
4163 };
4164
4165 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4166                                                   size_t size)
4167 {
4168         struct drm_i915_gem_object *obj;
4169         struct address_space *mapping;
4170         gfp_t mask;
4171
4172         obj = i915_gem_object_alloc(dev);
4173         if (obj == NULL)
4174                 return NULL;
4175
4176         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4177                 i915_gem_object_free(obj);
4178                 return NULL;
4179         }
4180
4181         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4182         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4183                 /* 965gm cannot relocate objects above 4GiB. */
4184                 mask &= ~__GFP_HIGHMEM;
4185                 mask |= __GFP_DMA32;
4186         }
4187
4188         mapping = file_inode(obj->base.filp)->i_mapping;
4189         mapping_set_gfp_mask(mapping, mask);
4190
4191         i915_gem_object_init(obj, &i915_gem_object_ops);
4192
4193         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4194         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4195
4196         if (HAS_LLC(dev)) {
4197                 /* On some devices, we can have the GPU use the LLC (the CPU
4198                  * cache) for about a 10% performance improvement
4199                  * compared to uncached.  Graphics requests other than
4200                  * display scanout are coherent with the CPU in
4201                  * accessing this cache.  This means in this mode we
4202                  * don't need to clflush on the CPU side, and on the
4203                  * GPU side we only need to flush internal caches to
4204                  * get data visible to the CPU.
4205                  *
4206                  * However, we maintain the display planes as UC, and so
4207                  * need to rebind when first used as such.
4208                  */
4209                 obj->cache_level = I915_CACHE_LLC;
4210         } else
4211                 obj->cache_level = I915_CACHE_NONE;
4212
4213         trace_i915_gem_object_create(obj);
4214
4215         return obj;
4216 }
4217
4218 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4219 {
4220         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4221         struct drm_device *dev = obj->base.dev;
4222         drm_i915_private_t *dev_priv = dev->dev_private;
4223         struct i915_vma *vma, *next;
4224
4225         intel_runtime_pm_get(dev_priv);
4226
4227         trace_i915_gem_object_destroy(obj);
4228
4229         if (obj->phys_obj)
4230                 i915_gem_detach_phys_object(dev, obj);
4231
4232         obj->pin_count = 0;
4233         /* NB: 0 or 1 elements */
4234         WARN_ON(!list_empty(&obj->vma_list) &&
4235                 !list_is_singular(&obj->vma_list));
4236         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4237                 int ret = i915_vma_unbind(vma);
4238                 if (WARN_ON(ret == -ERESTARTSYS)) {
4239                         bool was_interruptible;
4240
4241                         was_interruptible = dev_priv->mm.interruptible;
4242                         dev_priv->mm.interruptible = false;
4243
4244                         WARN_ON(i915_vma_unbind(vma));
4245
4246                         dev_priv->mm.interruptible = was_interruptible;
4247                 }
4248         }
4249
4250         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4251          * before progressing. */
4252         if (obj->stolen)
4253                 i915_gem_object_unpin_pages(obj);
4254
4255         if (WARN_ON(obj->pages_pin_count))
4256                 obj->pages_pin_count = 0;
4257         i915_gem_object_put_pages(obj);
4258         i915_gem_object_free_mmap_offset(obj);
4259         i915_gem_object_release_stolen(obj);
4260
4261         BUG_ON(obj->pages);
4262
4263         if (obj->base.import_attach)
4264                 drm_prime_gem_destroy(&obj->base, NULL);
4265
4266         drm_gem_object_release(&obj->base);
4267         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4268
4269         kfree(obj->bit_17);
4270         i915_gem_object_free(obj);
4271
4272         intel_runtime_pm_put(dev_priv);
4273 }
4274
4275 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4276                                      struct i915_address_space *vm)
4277 {
4278         struct i915_vma *vma;
4279         list_for_each_entry(vma, &obj->vma_list, vma_link)
4280                 if (vma->vm == vm)
4281                         return vma;
4282
4283         return NULL;
4284 }
4285
4286 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4287                                               struct i915_address_space *vm)
4288 {
4289         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4290         if (vma == NULL)
4291                 return ERR_PTR(-ENOMEM);
4292
4293         INIT_LIST_HEAD(&vma->vma_link);
4294         INIT_LIST_HEAD(&vma->mm_list);
4295         INIT_LIST_HEAD(&vma->exec_list);
4296         vma->vm = vm;
4297         vma->obj = obj;
4298
4299         /* Keep GGTT vmas first to make debug easier */
4300         if (i915_is_ggtt(vm))
4301                 list_add(&vma->vma_link, &obj->vma_list);
4302         else
4303                 list_add_tail(&vma->vma_link, &obj->vma_list);
4304
4305         return vma;
4306 }
4307
4308 struct i915_vma *
4309 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4310                                   struct i915_address_space *vm)
4311 {
4312         struct i915_vma *vma;
4313
4314         vma = i915_gem_obj_to_vma(obj, vm);
4315         if (!vma)
4316                 vma = __i915_gem_vma_create(obj, vm);
4317
4318         return vma;
4319 }
4320
4321 void i915_gem_vma_destroy(struct i915_vma *vma)
4322 {
4323         WARN_ON(vma->node.allocated);
4324
4325         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4326         if (!list_empty(&vma->exec_list))
4327                 return;
4328
4329         list_del(&vma->vma_link);
4330
4331         kfree(vma);
4332 }
4333
4334 int
4335 i915_gem_suspend(struct drm_device *dev)
4336 {
4337         drm_i915_private_t *dev_priv = dev->dev_private;
4338         int ret = 0;
4339
4340         mutex_lock(&dev->struct_mutex);
4341         if (dev_priv->ums.mm_suspended)
4342                 goto err;
4343
4344         ret = i915_gpu_idle(dev);
4345         if (ret)
4346                 goto err;
4347
4348         i915_gem_retire_requests(dev);
4349
4350         /* Under UMS, be paranoid and evict. */
4351         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4352                 i915_gem_evict_everything(dev);
4353
4354         i915_kernel_lost_context(dev);
4355         i915_gem_cleanup_ringbuffer(dev);
4356
4357         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4358          * We need to replace this with a semaphore, or something.
4359          * And not confound ums.mm_suspended!
4360          */
4361         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4362                                                              DRIVER_MODESET);
4363         mutex_unlock(&dev->struct_mutex);
4364
4365         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4366         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4367         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4368
4369         return 0;
4370
4371 err:
4372         mutex_unlock(&dev->struct_mutex);
4373         return ret;
4374 }
4375
4376 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4377 {
4378         struct drm_device *dev = ring->dev;
4379         drm_i915_private_t *dev_priv = dev->dev_private;
4380         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4381         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4382         int i, ret;
4383
4384         if (!HAS_L3_DPF(dev) || !remap_info)
4385                 return 0;
4386
4387         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4388         if (ret)
4389                 return ret;
4390
4391         /*
4392          * Note: We do not worry about the concurrent register cacheline hang
4393          * here because no other code should access these registers other than
4394          * at initialization time.
4395          */
4396         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4397                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4398                 intel_ring_emit(ring, reg_base + i);
4399                 intel_ring_emit(ring, remap_info[i/4]);
4400         }
4401
4402         intel_ring_advance(ring);
4403
4404         return ret;
4405 }
4406
4407 void i915_gem_init_swizzling(struct drm_device *dev)
4408 {
4409         drm_i915_private_t *dev_priv = dev->dev_private;
4410
4411         if (INTEL_INFO(dev)->gen < 5 ||
4412             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4413                 return;
4414
4415         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4416                                  DISP_TILE_SURFACE_SWIZZLING);
4417
4418         if (IS_GEN5(dev))
4419                 return;
4420
4421         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4422         if (IS_GEN6(dev))
4423                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4424         else if (IS_GEN7(dev))
4425                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4426         else if (IS_GEN8(dev))
4427                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4428         else
4429                 BUG();
4430 }
4431
4432 static bool
4433 intel_enable_blt(struct drm_device *dev)
4434 {
4435         if (!HAS_BLT(dev))
4436                 return false;
4437
4438         /* The blitter was dysfunctional on early prototypes */
4439         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4440                 DRM_INFO("BLT not supported on this pre-production hardware;"
4441                          " graphics performance will be degraded.\n");
4442                 return false;
4443         }
4444
4445         return true;
4446 }
4447
4448 static int i915_gem_init_rings(struct drm_device *dev)
4449 {
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         int ret;
4452
4453         ret = intel_init_render_ring_buffer(dev);
4454         if (ret)
4455                 return ret;
4456
4457         if (HAS_BSD(dev)) {
4458                 ret = intel_init_bsd_ring_buffer(dev);
4459                 if (ret)
4460                         goto cleanup_render_ring;
4461         }
4462
4463         if (intel_enable_blt(dev)) {
4464                 ret = intel_init_blt_ring_buffer(dev);
4465                 if (ret)
4466                         goto cleanup_bsd_ring;
4467         }
4468
4469         if (HAS_VEBOX(dev)) {
4470                 ret = intel_init_vebox_ring_buffer(dev);
4471                 if (ret)
4472                         goto cleanup_blt_ring;
4473         }
4474
4475
4476         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4477         if (ret)
4478                 goto cleanup_vebox_ring;
4479
4480         return 0;
4481
4482 cleanup_vebox_ring:
4483         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4484 cleanup_blt_ring:
4485         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4486 cleanup_bsd_ring:
4487         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4488 cleanup_render_ring:
4489         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4490
4491         return ret;
4492 }
4493
4494 int
4495 i915_gem_init_hw(struct drm_device *dev)
4496 {
4497         drm_i915_private_t *dev_priv = dev->dev_private;
4498         int ret, i;
4499
4500         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4501                 return -EIO;
4502
4503         if (dev_priv->ellc_size)
4504                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4505
4506         if (IS_HASWELL(dev))
4507                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4508                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4509
4510         if (HAS_PCH_NOP(dev)) {
4511                 u32 temp = I915_READ(GEN7_MSG_CTL);
4512                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4513                 I915_WRITE(GEN7_MSG_CTL, temp);
4514         }
4515
4516         i915_gem_init_swizzling(dev);
4517
4518         ret = i915_gem_init_rings(dev);
4519         if (ret)
4520                 return ret;
4521
4522         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4523                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4524
4525         /*
4526          * XXX: There was some w/a described somewhere suggesting loading
4527          * contexts before PPGTT.
4528          */
4529         ret = i915_gem_context_init(dev);
4530         if (ret) {
4531                 i915_gem_cleanup_ringbuffer(dev);
4532                 DRM_ERROR("Context initialization failed %d\n", ret);
4533                 return ret;
4534         }
4535
4536         if (dev_priv->mm.aliasing_ppgtt) {
4537                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4538                 if (ret) {
4539                         i915_gem_cleanup_aliasing_ppgtt(dev);
4540                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4541                 }
4542         }
4543
4544         return 0;
4545 }
4546
4547 int i915_gem_init(struct drm_device *dev)
4548 {
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550         int ret;
4551
4552         mutex_lock(&dev->struct_mutex);
4553
4554         if (IS_VALLEYVIEW(dev)) {
4555                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4556                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4557                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4558                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4559         }
4560
4561         i915_gem_init_global_gtt(dev);
4562
4563         ret = i915_gem_init_hw(dev);
4564         mutex_unlock(&dev->struct_mutex);
4565         if (ret) {
4566                 i915_gem_cleanup_aliasing_ppgtt(dev);
4567                 return ret;
4568         }
4569
4570         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4571         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4572                 dev_priv->dri1.allow_batchbuffer = 1;
4573         return 0;
4574 }
4575
4576 void
4577 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4578 {
4579         drm_i915_private_t *dev_priv = dev->dev_private;
4580         struct intel_ring_buffer *ring;
4581         int i;
4582
4583         for_each_ring(ring, dev_priv, i)
4584                 intel_cleanup_ring_buffer(ring);
4585 }
4586
4587 int
4588 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4589                        struct drm_file *file_priv)
4590 {
4591         struct drm_i915_private *dev_priv = dev->dev_private;
4592         int ret;
4593
4594         if (drm_core_check_feature(dev, DRIVER_MODESET))
4595                 return 0;
4596
4597         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4598                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4599                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4600         }
4601
4602         mutex_lock(&dev->struct_mutex);
4603         dev_priv->ums.mm_suspended = 0;
4604
4605         ret = i915_gem_init_hw(dev);
4606         if (ret != 0) {
4607                 mutex_unlock(&dev->struct_mutex);
4608                 return ret;
4609         }
4610
4611         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4612         mutex_unlock(&dev->struct_mutex);
4613
4614         ret = drm_irq_install(dev);
4615         if (ret)
4616                 goto cleanup_ringbuffer;
4617
4618         return 0;
4619
4620 cleanup_ringbuffer:
4621         mutex_lock(&dev->struct_mutex);
4622         i915_gem_cleanup_ringbuffer(dev);
4623         dev_priv->ums.mm_suspended = 1;
4624         mutex_unlock(&dev->struct_mutex);
4625
4626         return ret;
4627 }
4628
4629 int
4630 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4631                        struct drm_file *file_priv)
4632 {
4633         if (drm_core_check_feature(dev, DRIVER_MODESET))
4634                 return 0;
4635
4636         drm_irq_uninstall(dev);
4637
4638         return i915_gem_suspend(dev);
4639 }
4640
4641 void
4642 i915_gem_lastclose(struct drm_device *dev)
4643 {
4644         int ret;
4645
4646         if (drm_core_check_feature(dev, DRIVER_MODESET))
4647                 return;
4648
4649         ret = i915_gem_suspend(dev);
4650         if (ret)
4651                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4652 }
4653
4654 static void
4655 init_ring_lists(struct intel_ring_buffer *ring)
4656 {
4657         INIT_LIST_HEAD(&ring->active_list);
4658         INIT_LIST_HEAD(&ring->request_list);
4659 }
4660
4661 static void i915_init_vm(struct drm_i915_private *dev_priv,
4662                          struct i915_address_space *vm)
4663 {
4664         vm->dev = dev_priv->dev;
4665         INIT_LIST_HEAD(&vm->active_list);
4666         INIT_LIST_HEAD(&vm->inactive_list);
4667         INIT_LIST_HEAD(&vm->global_link);
4668         list_add(&vm->global_link, &dev_priv->vm_list);
4669 }
4670
4671 void
4672 i915_gem_load(struct drm_device *dev)
4673 {
4674         drm_i915_private_t *dev_priv = dev->dev_private;
4675         int i;
4676
4677         dev_priv->slab =
4678                 kmem_cache_create("i915_gem_object",
4679                                   sizeof(struct drm_i915_gem_object), 0,
4680                                   SLAB_HWCACHE_ALIGN,
4681                                   NULL);
4682
4683         INIT_LIST_HEAD(&dev_priv->vm_list);
4684         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4685
4686         INIT_LIST_HEAD(&dev_priv->context_list);
4687         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4688         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4689         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4690         for (i = 0; i < I915_NUM_RINGS; i++)
4691                 init_ring_lists(&dev_priv->ring[i]);
4692         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4693                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4694         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4695                           i915_gem_retire_work_handler);
4696         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4697                           i915_gem_idle_work_handler);
4698         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4699
4700         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4701         if (IS_GEN3(dev)) {
4702                 I915_WRITE(MI_ARB_STATE,
4703                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4704         }
4705
4706         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4707
4708         /* Old X drivers will take 0-2 for front, back, depth buffers */
4709         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4710                 dev_priv->fence_reg_start = 3;
4711
4712         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4713                 dev_priv->num_fence_regs = 32;
4714         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4715                 dev_priv->num_fence_regs = 16;
4716         else
4717                 dev_priv->num_fence_regs = 8;
4718
4719         /* Initialize fence registers to zero */
4720         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4721         i915_gem_restore_fences(dev);
4722
4723         i915_gem_detect_bit_6_swizzle(dev);
4724         init_waitqueue_head(&dev_priv->pending_flip_queue);
4725
4726         dev_priv->mm.interruptible = true;
4727
4728         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4729         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4730         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4731         register_shrinker(&dev_priv->mm.inactive_shrinker);
4732 }
4733
4734 /*
4735  * Create a physically contiguous memory object for this object
4736  * e.g. for cursor + overlay regs
4737  */
4738 static int i915_gem_init_phys_object(struct drm_device *dev,
4739                                      int id, int size, int align)
4740 {
4741         drm_i915_private_t *dev_priv = dev->dev_private;
4742         struct drm_i915_gem_phys_object *phys_obj;
4743         int ret;
4744
4745         if (dev_priv->mm.phys_objs[id - 1] || !size)
4746                 return 0;
4747
4748         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4749         if (!phys_obj)
4750                 return -ENOMEM;
4751
4752         phys_obj->id = id;
4753
4754         phys_obj->handle = drm_pci_alloc(dev, size, align);
4755         if (!phys_obj->handle) {
4756                 ret = -ENOMEM;
4757                 goto kfree_obj;
4758         }
4759 #ifdef CONFIG_X86
4760         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4761 #endif
4762
4763         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4764
4765         return 0;
4766 kfree_obj:
4767         kfree(phys_obj);
4768         return ret;
4769 }
4770
4771 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4772 {
4773         drm_i915_private_t *dev_priv = dev->dev_private;
4774         struct drm_i915_gem_phys_object *phys_obj;
4775
4776         if (!dev_priv->mm.phys_objs[id - 1])
4777                 return;
4778
4779         phys_obj = dev_priv->mm.phys_objs[id - 1];
4780         if (phys_obj->cur_obj) {
4781                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4782         }
4783
4784 #ifdef CONFIG_X86
4785         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4786 #endif
4787         drm_pci_free(dev, phys_obj->handle);
4788         kfree(phys_obj);
4789         dev_priv->mm.phys_objs[id - 1] = NULL;
4790 }
4791
4792 void i915_gem_free_all_phys_object(struct drm_device *dev)
4793 {
4794         int i;
4795
4796         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4797                 i915_gem_free_phys_object(dev, i);
4798 }
4799
4800 void i915_gem_detach_phys_object(struct drm_device *dev,
4801                                  struct drm_i915_gem_object *obj)
4802 {
4803         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4804         char *vaddr;
4805         int i;
4806         int page_count;
4807
4808         if (!obj->phys_obj)
4809                 return;
4810         vaddr = obj->phys_obj->handle->vaddr;
4811
4812         page_count = obj->base.size / PAGE_SIZE;
4813         for (i = 0; i < page_count; i++) {
4814                 struct page *page = shmem_read_mapping_page(mapping, i);
4815                 if (!IS_ERR(page)) {
4816                         char *dst = kmap_atomic(page);
4817                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4818                         kunmap_atomic(dst);
4819
4820                         drm_clflush_pages(&page, 1);
4821
4822                         set_page_dirty(page);
4823                         mark_page_accessed(page);
4824                         page_cache_release(page);
4825                 }
4826         }
4827         i915_gem_chipset_flush(dev);
4828
4829         obj->phys_obj->cur_obj = NULL;
4830         obj->phys_obj = NULL;
4831 }
4832
4833 int
4834 i915_gem_attach_phys_object(struct drm_device *dev,
4835                             struct drm_i915_gem_object *obj,
4836                             int id,
4837                             int align)
4838 {
4839         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4840         drm_i915_private_t *dev_priv = dev->dev_private;
4841         int ret = 0;
4842         int page_count;
4843         int i;
4844
4845         if (id > I915_MAX_PHYS_OBJECT)
4846                 return -EINVAL;
4847
4848         if (obj->phys_obj) {
4849                 if (obj->phys_obj->id == id)
4850                         return 0;
4851                 i915_gem_detach_phys_object(dev, obj);
4852         }
4853
4854         /* create a new object */
4855         if (!dev_priv->mm.phys_objs[id - 1]) {
4856                 ret = i915_gem_init_phys_object(dev, id,
4857                                                 obj->base.size, align);
4858                 if (ret) {
4859                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4860                                   id, obj->base.size);
4861                         return ret;
4862                 }
4863         }
4864
4865         /* bind to the object */
4866         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4867         obj->phys_obj->cur_obj = obj;
4868
4869         page_count = obj->base.size / PAGE_SIZE;
4870
4871         for (i = 0; i < page_count; i++) {
4872                 struct page *page;
4873                 char *dst, *src;
4874
4875                 page = shmem_read_mapping_page(mapping, i);
4876                 if (IS_ERR(page))
4877                         return PTR_ERR(page);
4878
4879                 src = kmap_atomic(page);
4880                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4881                 memcpy(dst, src, PAGE_SIZE);
4882                 kunmap_atomic(src);
4883
4884                 mark_page_accessed(page);
4885                 page_cache_release(page);
4886         }
4887
4888         return 0;
4889 }
4890
4891 static int
4892 i915_gem_phys_pwrite(struct drm_device *dev,
4893                      struct drm_i915_gem_object *obj,
4894                      struct drm_i915_gem_pwrite *args,
4895                      struct drm_file *file_priv)
4896 {
4897         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4898         char __user *user_data = to_user_ptr(args->data_ptr);
4899
4900         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4901                 unsigned long unwritten;
4902
4903                 /* The physical object once assigned is fixed for the lifetime
4904                  * of the obj, so we can safely drop the lock and continue
4905                  * to access vaddr.
4906                  */
4907                 mutex_unlock(&dev->struct_mutex);
4908                 unwritten = copy_from_user(vaddr, user_data, args->size);
4909                 mutex_lock(&dev->struct_mutex);
4910                 if (unwritten)
4911                         return -EFAULT;
4912         }
4913
4914         i915_gem_chipset_flush(dev);
4915         return 0;
4916 }
4917
4918 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4919 {
4920         struct drm_i915_file_private *file_priv = file->driver_priv;
4921
4922         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4923
4924         /* Clean up our request list when the client is going away, so that
4925          * later retire_requests won't dereference our soon-to-be-gone
4926          * file_priv.
4927          */
4928         spin_lock(&file_priv->mm.lock);
4929         while (!list_empty(&file_priv->mm.request_list)) {
4930                 struct drm_i915_gem_request *request;
4931
4932                 request = list_first_entry(&file_priv->mm.request_list,
4933                                            struct drm_i915_gem_request,
4934                                            client_list);
4935                 list_del(&request->client_list);
4936                 request->file_priv = NULL;
4937         }
4938         spin_unlock(&file_priv->mm.lock);
4939 }
4940
4941 static void
4942 i915_gem_file_idle_work_handler(struct work_struct *work)
4943 {
4944         struct drm_i915_file_private *file_priv =
4945                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4946
4947         atomic_set(&file_priv->rps_wait_boost, false);
4948 }
4949
4950 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4951 {
4952         struct drm_i915_file_private *file_priv;
4953
4954         DRM_DEBUG_DRIVER("\n");
4955
4956         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4957         if (!file_priv)
4958                 return -ENOMEM;
4959
4960         file->driver_priv = file_priv;
4961         file_priv->dev_priv = dev->dev_private;
4962
4963         spin_lock_init(&file_priv->mm.lock);
4964         INIT_LIST_HEAD(&file_priv->mm.request_list);
4965         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4966                           i915_gem_file_idle_work_handler);
4967
4968         idr_init(&file_priv->context_idr);
4969
4970         return 0;
4971 }
4972
4973 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4974 {
4975         if (!mutex_is_locked(mutex))
4976                 return false;
4977
4978 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4979         return mutex->owner == task;
4980 #else
4981         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4982         return false;
4983 #endif
4984 }
4985
4986 static unsigned long
4987 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4988 {
4989         struct drm_i915_private *dev_priv =
4990                 container_of(shrinker,
4991                              struct drm_i915_private,
4992                              mm.inactive_shrinker);
4993         struct drm_device *dev = dev_priv->dev;
4994         struct drm_i915_gem_object *obj;
4995         bool unlock = true;
4996         unsigned long count;
4997
4998         if (!mutex_trylock(&dev->struct_mutex)) {
4999                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5000                         return 0;
5001
5002                 if (dev_priv->mm.shrinker_no_lock_stealing)
5003                         return 0;
5004
5005                 unlock = false;
5006         }
5007
5008         count = 0;
5009         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5010                 if (obj->pages_pin_count == 0)
5011                         count += obj->base.size >> PAGE_SHIFT;
5012
5013         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5014                 if (obj->active)
5015                         continue;
5016
5017                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5018                         count += obj->base.size >> PAGE_SHIFT;
5019         }
5020
5021         if (unlock)
5022                 mutex_unlock(&dev->struct_mutex);
5023
5024         return count;
5025 }
5026
5027 /* All the new VM stuff */
5028 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5029                                   struct i915_address_space *vm)
5030 {
5031         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5032         struct i915_vma *vma;
5033
5034         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5035                 vm = &dev_priv->gtt.base;
5036
5037         BUG_ON(list_empty(&o->vma_list));
5038         list_for_each_entry(vma, &o->vma_list, vma_link) {
5039                 if (vma->vm == vm)
5040                         return vma->node.start;
5041
5042         }
5043         return -1;
5044 }
5045
5046 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5047                         struct i915_address_space *vm)
5048 {
5049         struct i915_vma *vma;
5050
5051         list_for_each_entry(vma, &o->vma_list, vma_link)
5052                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5053                         return true;
5054
5055         return false;
5056 }
5057
5058 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5059 {
5060         struct i915_vma *vma;
5061
5062         list_for_each_entry(vma, &o->vma_list, vma_link)
5063                 if (drm_mm_node_allocated(&vma->node))
5064                         return true;
5065
5066         return false;
5067 }
5068
5069 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5070                                 struct i915_address_space *vm)
5071 {
5072         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5073         struct i915_vma *vma;
5074
5075         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5076                 vm = &dev_priv->gtt.base;
5077
5078         BUG_ON(list_empty(&o->vma_list));
5079
5080         list_for_each_entry(vma, &o->vma_list, vma_link)
5081                 if (vma->vm == vm)
5082                         return vma->node.size;
5083
5084         return 0;
5085 }
5086
5087 static unsigned long
5088 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5089 {
5090         struct drm_i915_private *dev_priv =
5091                 container_of(shrinker,
5092                              struct drm_i915_private,
5093                              mm.inactive_shrinker);
5094         struct drm_device *dev = dev_priv->dev;
5095         unsigned long freed;
5096         bool unlock = true;
5097
5098         if (!mutex_trylock(&dev->struct_mutex)) {
5099                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5100                         return SHRINK_STOP;
5101
5102                 if (dev_priv->mm.shrinker_no_lock_stealing)
5103                         return SHRINK_STOP;
5104
5105                 unlock = false;
5106         }
5107
5108         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5109         if (freed < sc->nr_to_scan)
5110                 freed += __i915_gem_shrink(dev_priv,
5111                                            sc->nr_to_scan - freed,
5112                                            false);
5113         if (freed < sc->nr_to_scan)
5114                 freed += i915_gem_shrink_all(dev_priv);
5115
5116         if (unlock)
5117                 mutex_unlock(&dev->struct_mutex);
5118
5119         return freed;
5120 }
5121
5122 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5123 {
5124         struct i915_vma *vma;
5125
5126         if (WARN_ON(list_empty(&obj->vma_list)))
5127                 return NULL;
5128
5129         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5130         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5131                 return NULL;
5132
5133         return vma;
5134 }