]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'v3.10-rc7' into drm-next
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180                 if (obj->pin_count)
181                         pinned += obj->gtt_space->size;
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (obj->gtt_space) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = obj->gtt_offset + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (obj->gtt_space) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096                                bool readonly)
1097 {
1098         struct intel_ring_buffer *ring = obj->ring;
1099         u32 seqno;
1100         int ret;
1101
1102         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103         if (seqno == 0)
1104                 return 0;
1105
1106         ret = i915_wait_seqno(ring, seqno);
1107         if (ret)
1108                 return ret;
1109
1110         i915_gem_retire_requests_ring(ring);
1111
1112         /* Manually manage the write flush as we may have not yet
1113          * retired the buffer.
1114          */
1115         if (obj->last_write_seqno &&
1116             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117                 obj->last_write_seqno = 0;
1118                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119         }
1120
1121         return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129                                             bool readonly)
1130 {
1131         struct drm_device *dev = obj->base.dev;
1132         struct drm_i915_private *dev_priv = dev->dev_private;
1133         struct intel_ring_buffer *ring = obj->ring;
1134         unsigned reset_counter;
1135         u32 seqno;
1136         int ret;
1137
1138         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139         BUG_ON(!dev_priv->mm.interruptible);
1140
1141         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142         if (seqno == 0)
1143                 return 0;
1144
1145         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146         if (ret)
1147                 return ret;
1148
1149         ret = i915_gem_check_olr(ring, seqno);
1150         if (ret)
1151                 return ret;
1152
1153         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154         mutex_unlock(&dev->struct_mutex);
1155         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156         mutex_lock(&dev->struct_mutex);
1157
1158         i915_gem_retire_requests_ring(ring);
1159
1160         /* Manually manage the write flush as we may have not yet
1161          * retired the buffer.
1162          */
1163         if (obj->last_write_seqno &&
1164             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165                 obj->last_write_seqno = 0;
1166                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167         }
1168
1169         return ret;
1170 }
1171
1172 /**
1173  * Called when user space prepares to use an object with the CPU, either
1174  * through the mmap ioctl's mapping or a GTT mapping.
1175  */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178                           struct drm_file *file)
1179 {
1180         struct drm_i915_gem_set_domain *args = data;
1181         struct drm_i915_gem_object *obj;
1182         uint32_t read_domains = args->read_domains;
1183         uint32_t write_domain = args->write_domain;
1184         int ret;
1185
1186         /* Only handle setting domains to types used by the CPU. */
1187         if (write_domain & I915_GEM_GPU_DOMAINS)
1188                 return -EINVAL;
1189
1190         if (read_domains & I915_GEM_GPU_DOMAINS)
1191                 return -EINVAL;
1192
1193         /* Having something in the write domain implies it's in the read
1194          * domain, and only that read domain.  Enforce that in the request.
1195          */
1196         if (write_domain != 0 && read_domains != write_domain)
1197                 return -EINVAL;
1198
1199         ret = i915_mutex_lock_interruptible(dev);
1200         if (ret)
1201                 return ret;
1202
1203         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204         if (&obj->base == NULL) {
1205                 ret = -ENOENT;
1206                 goto unlock;
1207         }
1208
1209         /* Try to flush the object off the GPU without holding the lock.
1210          * We will repeat the flush holding the lock in the normal manner
1211          * to catch cases where we are gazumped.
1212          */
1213         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214         if (ret)
1215                 goto unref;
1216
1217         if (read_domains & I915_GEM_DOMAIN_GTT) {
1218                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220                 /* Silently promote "you're not bound, there was nothing to do"
1221                  * to success, since the client was just asking us to
1222                  * make sure everything was done.
1223                  */
1224                 if (ret == -EINVAL)
1225                         ret = 0;
1226         } else {
1227                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228         }
1229
1230 unref:
1231         drm_gem_object_unreference(&obj->base);
1232 unlock:
1233         mutex_unlock(&dev->struct_mutex);
1234         return ret;
1235 }
1236
1237 /**
1238  * Called when user space has done writes to this buffer
1239  */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242                          struct drm_file *file)
1243 {
1244         struct drm_i915_gem_sw_finish *args = data;
1245         struct drm_i915_gem_object *obj;
1246         int ret = 0;
1247
1248         ret = i915_mutex_lock_interruptible(dev);
1249         if (ret)
1250                 return ret;
1251
1252         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253         if (&obj->base == NULL) {
1254                 ret = -ENOENT;
1255                 goto unlock;
1256         }
1257
1258         /* Pinned buffers may be scanout, so flush the cache */
1259         if (obj->pin_count)
1260                 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262         drm_gem_object_unreference(&obj->base);
1263 unlock:
1264         mutex_unlock(&dev->struct_mutex);
1265         return ret;
1266 }
1267
1268 /**
1269  * Maps the contents of an object, returning the address it is mapped
1270  * into.
1271  *
1272  * While the mapping holds a reference on the contents of the object, it doesn't
1273  * imply a ref on the object itself.
1274  */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277                     struct drm_file *file)
1278 {
1279         struct drm_i915_gem_mmap *args = data;
1280         struct drm_gem_object *obj;
1281         unsigned long addr;
1282
1283         obj = drm_gem_object_lookup(dev, file, args->handle);
1284         if (obj == NULL)
1285                 return -ENOENT;
1286
1287         /* prime objects have no backing filp to GEM mmap
1288          * pages from.
1289          */
1290         if (!obj->filp) {
1291                 drm_gem_object_unreference_unlocked(obj);
1292                 return -EINVAL;
1293         }
1294
1295         addr = vm_mmap(obj->filp, 0, args->size,
1296                        PROT_READ | PROT_WRITE, MAP_SHARED,
1297                        args->offset);
1298         drm_gem_object_unreference_unlocked(obj);
1299         if (IS_ERR((void *)addr))
1300                 return addr;
1301
1302         args->addr_ptr = (uint64_t) addr;
1303
1304         return 0;
1305 }
1306
1307 /**
1308  * i915_gem_fault - fault a page into the GTT
1309  * vma: VMA in question
1310  * vmf: fault info
1311  *
1312  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313  * from userspace.  The fault handler takes care of binding the object to
1314  * the GTT (if needed), allocating and programming a fence register (again,
1315  * only if needed based on whether the old reg is still valid or the object
1316  * is tiled) and inserting a new PTE into the faulting process.
1317  *
1318  * Note that the faulting process may involve evicting existing objects
1319  * from the GTT and/or fence registers to make room.  So performance may
1320  * suffer if the GTT working set is large or there are few fence registers
1321  * left.
1322  */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326         struct drm_device *dev = obj->base.dev;
1327         drm_i915_private_t *dev_priv = dev->dev_private;
1328         pgoff_t page_offset;
1329         unsigned long pfn;
1330         int ret = 0;
1331         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333         /* We don't use vmf->pgoff since that has the fake offset */
1334         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335                 PAGE_SHIFT;
1336
1337         ret = i915_mutex_lock_interruptible(dev);
1338         if (ret)
1339                 goto out;
1340
1341         trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343         /* Access to snoopable pages through the GTT is incoherent. */
1344         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345                 ret = -EINVAL;
1346                 goto unlock;
1347         }
1348
1349         /* Now bind it into the GTT if needed */
1350         ret = i915_gem_object_pin(obj, 0, true, false);
1351         if (ret)
1352                 goto unlock;
1353
1354         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355         if (ret)
1356                 goto unpin;
1357
1358         ret = i915_gem_object_get_fence(obj);
1359         if (ret)
1360                 goto unpin;
1361
1362         obj->fault_mappable = true;
1363
1364         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365                 page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(obj->gtt_space);
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->gtt_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         long count = 0;
1696
1697         list_for_each_entry_safe(obj, next,
1698                                  &dev_priv->mm.unbound_list,
1699                                  gtt_list) {
1700                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701                     i915_gem_object_put_pages(obj) == 0) {
1702                         count += obj->base.size >> PAGE_SHIFT;
1703                         if (count >= target)
1704                                 return count;
1705                 }
1706         }
1707
1708         list_for_each_entry_safe(obj, next,
1709                                  &dev_priv->mm.inactive_list,
1710                                  mm_list) {
1711                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712                     i915_gem_object_unbind(obj) == 0 &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726         return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732         struct drm_i915_gem_object *obj, *next;
1733
1734         i915_gem_evict_everything(dev_priv->dev);
1735
1736         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737                 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744         int page_count, i;
1745         struct address_space *mapping;
1746         struct sg_table *st;
1747         struct scatterlist *sg;
1748         struct sg_page_iter sg_iter;
1749         struct page *page;
1750         unsigned long last_pfn = 0;     /* suppress gcc warning */
1751         gfp_t gfp;
1752
1753         /* Assert that the object is not currently in any GPU domain. As it
1754          * wasn't in the GTT, there shouldn't be any way it could have been in
1755          * a GPU cache
1756          */
1757         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760         st = kmalloc(sizeof(*st), GFP_KERNEL);
1761         if (st == NULL)
1762                 return -ENOMEM;
1763
1764         page_count = obj->base.size / PAGE_SIZE;
1765         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766                 sg_free_table(st);
1767                 kfree(st);
1768                 return -ENOMEM;
1769         }
1770
1771         /* Get the list of pages out of our struct file.  They'll be pinned
1772          * at this point until we release them.
1773          *
1774          * Fail silently without starting the shrinker
1775          */
1776         mapping = file_inode(obj->base.filp)->i_mapping;
1777         gfp = mapping_gfp_mask(mapping);
1778         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779         gfp &= ~(__GFP_IO | __GFP_WAIT);
1780         sg = st->sgl;
1781         st->nents = 0;
1782         for (i = 0; i < page_count; i++) {
1783                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784                 if (IS_ERR(page)) {
1785                         i915_gem_purge(dev_priv, page_count);
1786                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787                 }
1788                 if (IS_ERR(page)) {
1789                         /* We've tried hard to allocate the memory by reaping
1790                          * our own buffer, now let the real VM do its job and
1791                          * go down in flames if truly OOM.
1792                          */
1793                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794                         gfp |= __GFP_IO | __GFP_WAIT;
1795
1796                         i915_gem_shrink_all(dev_priv);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                         if (IS_ERR(page))
1799                                 goto err_pages;
1800
1801                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1803                 }
1804
1805                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1806                         if (i)
1807                                 sg = sg_next(sg);
1808                         st->nents++;
1809                         sg_set_page(sg, page, PAGE_SIZE, 0);
1810                 } else {
1811                         sg->length += PAGE_SIZE;
1812                 }
1813                 last_pfn = page_to_pfn(page);
1814         }
1815
1816         sg_mark_end(sg);
1817         obj->pages = st;
1818
1819         if (i915_gem_object_needs_bit17_swizzle(obj))
1820                 i915_gem_object_do_bit_17_swizzle(obj);
1821
1822         return 0;
1823
1824 err_pages:
1825         sg_mark_end(sg);
1826         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1827                 page_cache_release(sg_page_iter_page(&sg_iter));
1828         sg_free_table(st);
1829         kfree(st);
1830         return PTR_ERR(page);
1831 }
1832
1833 /* Ensure that the associated pages are gathered from the backing storage
1834  * and pinned into our object. i915_gem_object_get_pages() may be called
1835  * multiple times before they are released by a single call to
1836  * i915_gem_object_put_pages() - once the pages are no longer referenced
1837  * either as a result of memory pressure (reaping pages under the shrinker)
1838  * or as the object is itself released.
1839  */
1840 int
1841 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1842 {
1843         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1844         const struct drm_i915_gem_object_ops *ops = obj->ops;
1845         int ret;
1846
1847         if (obj->pages)
1848                 return 0;
1849
1850         if (obj->madv != I915_MADV_WILLNEED) {
1851                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1852                 return -EINVAL;
1853         }
1854
1855         BUG_ON(obj->pages_pin_count);
1856
1857         ret = ops->get_pages(obj);
1858         if (ret)
1859                 return ret;
1860
1861         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1862         return 0;
1863 }
1864
1865 void
1866 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1867                                struct intel_ring_buffer *ring)
1868 {
1869         struct drm_device *dev = obj->base.dev;
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871         u32 seqno = intel_ring_get_seqno(ring);
1872
1873         BUG_ON(ring == NULL);
1874         obj->ring = ring;
1875
1876         /* Add a reference if we're newly entering the active list. */
1877         if (!obj->active) {
1878                 drm_gem_object_reference(&obj->base);
1879                 obj->active = 1;
1880         }
1881
1882         /* Move from whatever list we were on to the tail of execution. */
1883         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1884         list_move_tail(&obj->ring_list, &ring->active_list);
1885
1886         obj->last_read_seqno = seqno;
1887
1888         if (obj->fenced_gpu_access) {
1889                 obj->last_fenced_seqno = seqno;
1890
1891                 /* Bump MRU to take account of the delayed flush */
1892                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1893                         struct drm_i915_fence_reg *reg;
1894
1895                         reg = &dev_priv->fence_regs[obj->fence_reg];
1896                         list_move_tail(&reg->lru_list,
1897                                        &dev_priv->mm.fence_list);
1898                 }
1899         }
1900 }
1901
1902 static void
1903 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1904 {
1905         struct drm_device *dev = obj->base.dev;
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907
1908         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1909         BUG_ON(!obj->active);
1910
1911         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1912
1913         list_del_init(&obj->ring_list);
1914         obj->ring = NULL;
1915
1916         obj->last_read_seqno = 0;
1917         obj->last_write_seqno = 0;
1918         obj->base.write_domain = 0;
1919
1920         obj->last_fenced_seqno = 0;
1921         obj->fenced_gpu_access = false;
1922
1923         obj->active = 0;
1924         drm_gem_object_unreference(&obj->base);
1925
1926         WARN_ON(i915_verify_lists(dev));
1927 }
1928
1929 static int
1930 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1931 {
1932         struct drm_i915_private *dev_priv = dev->dev_private;
1933         struct intel_ring_buffer *ring;
1934         int ret, i, j;
1935
1936         /* Carefully retire all requests without writing to the rings */
1937         for_each_ring(ring, dev_priv, i) {
1938                 ret = intel_ring_idle(ring);
1939                 if (ret)
1940                         return ret;
1941         }
1942         i915_gem_retire_requests(dev);
1943
1944         /* Finally reset hw state */
1945         for_each_ring(ring, dev_priv, i) {
1946                 intel_ring_init_seqno(ring, seqno);
1947
1948                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949                         ring->sync_seqno[j] = 0;
1950         }
1951
1952         return 0;
1953 }
1954
1955 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         int ret;
1959
1960         if (seqno == 0)
1961                 return -EINVAL;
1962
1963         /* HWS page needs to be set less than what we
1964          * will inject to ring
1965          */
1966         ret = i915_gem_init_seqno(dev, seqno - 1);
1967         if (ret)
1968                 return ret;
1969
1970         /* Carefully set the last_seqno value so that wrap
1971          * detection still works
1972          */
1973         dev_priv->next_seqno = seqno;
1974         dev_priv->last_seqno = seqno - 1;
1975         if (dev_priv->last_seqno == 0)
1976                 dev_priv->last_seqno--;
1977
1978         return 0;
1979 }
1980
1981 int
1982 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1983 {
1984         struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986         /* reserve 0 for non-seqno */
1987         if (dev_priv->next_seqno == 0) {
1988                 int ret = i915_gem_init_seqno(dev, 0);
1989                 if (ret)
1990                         return ret;
1991
1992                 dev_priv->next_seqno = 1;
1993         }
1994
1995         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1996         return 0;
1997 }
1998
1999 int
2000 i915_add_request(struct intel_ring_buffer *ring,
2001                  struct drm_file *file,
2002                  u32 *out_seqno)
2003 {
2004         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2005         struct drm_i915_gem_request *request;
2006         u32 request_ring_position;
2007         int was_empty;
2008         int ret;
2009
2010         /*
2011          * Emit any outstanding flushes - execbuf can fail to emit the flush
2012          * after having emitted the batchbuffer command. Hence we need to fix
2013          * things up similar to emitting the lazy request. The difference here
2014          * is that the flush _must_ happen before the next request, no matter
2015          * what.
2016          */
2017         ret = intel_ring_flush_all_caches(ring);
2018         if (ret)
2019                 return ret;
2020
2021         request = kmalloc(sizeof(*request), GFP_KERNEL);
2022         if (request == NULL)
2023                 return -ENOMEM;
2024
2025
2026         /* Record the position of the start of the request so that
2027          * should we detect the updated seqno part-way through the
2028          * GPU processing the request, we never over-estimate the
2029          * position of the head.
2030          */
2031         request_ring_position = intel_ring_get_tail(ring);
2032
2033         ret = ring->add_request(ring);
2034         if (ret) {
2035                 kfree(request);
2036                 return ret;
2037         }
2038
2039         request->seqno = intel_ring_get_seqno(ring);
2040         request->ring = ring;
2041         request->tail = request_ring_position;
2042         request->ctx = ring->last_context;
2043
2044         if (request->ctx)
2045                 i915_gem_context_reference(request->ctx);
2046
2047         request->emitted_jiffies = jiffies;
2048         was_empty = list_empty(&ring->request_list);
2049         list_add_tail(&request->list, &ring->request_list);
2050         request->file_priv = NULL;
2051
2052         if (file) {
2053                 struct drm_i915_file_private *file_priv = file->driver_priv;
2054
2055                 spin_lock(&file_priv->mm.lock);
2056                 request->file_priv = file_priv;
2057                 list_add_tail(&request->client_list,
2058                               &file_priv->mm.request_list);
2059                 spin_unlock(&file_priv->mm.lock);
2060         }
2061
2062         trace_i915_gem_request_add(ring, request->seqno);
2063         ring->outstanding_lazy_request = 0;
2064
2065         if (!dev_priv->mm.suspended) {
2066                 if (i915_enable_hangcheck) {
2067                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2068                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2069                 }
2070                 if (was_empty) {
2071                         queue_delayed_work(dev_priv->wq,
2072                                            &dev_priv->mm.retire_work,
2073                                            round_jiffies_up_relative(HZ));
2074                         intel_mark_busy(dev_priv->dev);
2075                 }
2076         }
2077
2078         if (out_seqno)
2079                 *out_seqno = request->seqno;
2080         return 0;
2081 }
2082
2083 static inline void
2084 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2085 {
2086         struct drm_i915_file_private *file_priv = request->file_priv;
2087
2088         if (!file_priv)
2089                 return;
2090
2091         spin_lock(&file_priv->mm.lock);
2092         if (request->file_priv) {
2093                 list_del(&request->client_list);
2094                 request->file_priv = NULL;
2095         }
2096         spin_unlock(&file_priv->mm.lock);
2097 }
2098
2099 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2100 {
2101         list_del(&request->list);
2102         i915_gem_request_remove_from_client(request);
2103
2104         if (request->ctx)
2105                 i915_gem_context_unreference(request->ctx);
2106
2107         kfree(request);
2108 }
2109
2110 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2111                                       struct intel_ring_buffer *ring)
2112 {
2113         while (!list_empty(&ring->request_list)) {
2114                 struct drm_i915_gem_request *request;
2115
2116                 request = list_first_entry(&ring->request_list,
2117                                            struct drm_i915_gem_request,
2118                                            list);
2119
2120                 i915_gem_free_request(request);
2121         }
2122
2123         while (!list_empty(&ring->active_list)) {
2124                 struct drm_i915_gem_object *obj;
2125
2126                 obj = list_first_entry(&ring->active_list,
2127                                        struct drm_i915_gem_object,
2128                                        ring_list);
2129
2130                 i915_gem_object_move_to_inactive(obj);
2131         }
2132 }
2133
2134 static void i915_gem_reset_fences(struct drm_device *dev)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         int i;
2138
2139         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2140                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2141
2142                 if (reg->obj)
2143                         i915_gem_object_fence_lost(reg->obj);
2144
2145                 i915_gem_write_fence(dev, i, NULL);
2146
2147                 reg->pin_count = 0;
2148                 reg->obj = NULL;
2149                 INIT_LIST_HEAD(&reg->lru_list);
2150         }
2151
2152         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2153 }
2154
2155 void i915_gem_reset(struct drm_device *dev)
2156 {
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         struct drm_i915_gem_object *obj;
2159         struct intel_ring_buffer *ring;
2160         int i;
2161
2162         for_each_ring(ring, dev_priv, i)
2163                 i915_gem_reset_ring_lists(dev_priv, ring);
2164
2165         /* Move everything out of the GPU domains to ensure we do any
2166          * necessary invalidation upon reuse.
2167          */
2168         list_for_each_entry(obj,
2169                             &dev_priv->mm.inactive_list,
2170                             mm_list)
2171         {
2172                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2173         }
2174
2175         /* The fence registers are invalidated so clear them out */
2176         i915_gem_reset_fences(dev);
2177 }
2178
2179 /**
2180  * This function clears the request list as sequence numbers are passed.
2181  */
2182 void
2183 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2184 {
2185         uint32_t seqno;
2186
2187         if (list_empty(&ring->request_list))
2188                 return;
2189
2190         WARN_ON(i915_verify_lists(ring->dev));
2191
2192         seqno = ring->get_seqno(ring, true);
2193
2194         while (!list_empty(&ring->request_list)) {
2195                 struct drm_i915_gem_request *request;
2196
2197                 request = list_first_entry(&ring->request_list,
2198                                            struct drm_i915_gem_request,
2199                                            list);
2200
2201                 if (!i915_seqno_passed(seqno, request->seqno))
2202                         break;
2203
2204                 trace_i915_gem_request_retire(ring, request->seqno);
2205                 /* We know the GPU must have read the request to have
2206                  * sent us the seqno + interrupt, so use the position
2207                  * of tail of the request to update the last known position
2208                  * of the GPU head.
2209                  */
2210                 ring->last_retired_head = request->tail;
2211
2212                 i915_gem_free_request(request);
2213         }
2214
2215         /* Move any buffers on the active list that are no longer referenced
2216          * by the ringbuffer to the flushing/inactive lists as appropriate.
2217          */
2218         while (!list_empty(&ring->active_list)) {
2219                 struct drm_i915_gem_object *obj;
2220
2221                 obj = list_first_entry(&ring->active_list,
2222                                       struct drm_i915_gem_object,
2223                                       ring_list);
2224
2225                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2226                         break;
2227
2228                 i915_gem_object_move_to_inactive(obj);
2229         }
2230
2231         if (unlikely(ring->trace_irq_seqno &&
2232                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2233                 ring->irq_put(ring);
2234                 ring->trace_irq_seqno = 0;
2235         }
2236
2237         WARN_ON(i915_verify_lists(ring->dev));
2238 }
2239
2240 void
2241 i915_gem_retire_requests(struct drm_device *dev)
2242 {
2243         drm_i915_private_t *dev_priv = dev->dev_private;
2244         struct intel_ring_buffer *ring;
2245         int i;
2246
2247         for_each_ring(ring, dev_priv, i)
2248                 i915_gem_retire_requests_ring(ring);
2249 }
2250
2251 static void
2252 i915_gem_retire_work_handler(struct work_struct *work)
2253 {
2254         drm_i915_private_t *dev_priv;
2255         struct drm_device *dev;
2256         struct intel_ring_buffer *ring;
2257         bool idle;
2258         int i;
2259
2260         dev_priv = container_of(work, drm_i915_private_t,
2261                                 mm.retire_work.work);
2262         dev = dev_priv->dev;
2263
2264         /* Come back later if the device is busy... */
2265         if (!mutex_trylock(&dev->struct_mutex)) {
2266                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2267                                    round_jiffies_up_relative(HZ));
2268                 return;
2269         }
2270
2271         i915_gem_retire_requests(dev);
2272
2273         /* Send a periodic flush down the ring so we don't hold onto GEM
2274          * objects indefinitely.
2275          */
2276         idle = true;
2277         for_each_ring(ring, dev_priv, i) {
2278                 if (ring->gpu_caches_dirty)
2279                         i915_add_request(ring, NULL, NULL);
2280
2281                 idle &= list_empty(&ring->request_list);
2282         }
2283
2284         if (!dev_priv->mm.suspended && !idle)
2285                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2286                                    round_jiffies_up_relative(HZ));
2287         if (idle)
2288                 intel_mark_idle(dev);
2289
2290         mutex_unlock(&dev->struct_mutex);
2291 }
2292
2293 /**
2294  * Ensures that an object will eventually get non-busy by flushing any required
2295  * write domains, emitting any outstanding lazy request and retiring and
2296  * completed requests.
2297  */
2298 static int
2299 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2300 {
2301         int ret;
2302
2303         if (obj->active) {
2304                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2305                 if (ret)
2306                         return ret;
2307
2308                 i915_gem_retire_requests_ring(obj->ring);
2309         }
2310
2311         return 0;
2312 }
2313
2314 /**
2315  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2316  * @DRM_IOCTL_ARGS: standard ioctl arguments
2317  *
2318  * Returns 0 if successful, else an error is returned with the remaining time in
2319  * the timeout parameter.
2320  *  -ETIME: object is still busy after timeout
2321  *  -ERESTARTSYS: signal interrupted the wait
2322  *  -ENONENT: object doesn't exist
2323  * Also possible, but rare:
2324  *  -EAGAIN: GPU wedged
2325  *  -ENOMEM: damn
2326  *  -ENODEV: Internal IRQ fail
2327  *  -E?: The add request failed
2328  *
2329  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2330  * non-zero timeout parameter the wait ioctl will wait for the given number of
2331  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2332  * without holding struct_mutex the object may become re-busied before this
2333  * function completes. A similar but shorter * race condition exists in the busy
2334  * ioctl
2335  */
2336 int
2337 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2338 {
2339         drm_i915_private_t *dev_priv = dev->dev_private;
2340         struct drm_i915_gem_wait *args = data;
2341         struct drm_i915_gem_object *obj;
2342         struct intel_ring_buffer *ring = NULL;
2343         struct timespec timeout_stack, *timeout = NULL;
2344         unsigned reset_counter;
2345         u32 seqno = 0;
2346         int ret = 0;
2347
2348         if (args->timeout_ns >= 0) {
2349                 timeout_stack = ns_to_timespec(args->timeout_ns);
2350                 timeout = &timeout_stack;
2351         }
2352
2353         ret = i915_mutex_lock_interruptible(dev);
2354         if (ret)
2355                 return ret;
2356
2357         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2358         if (&obj->base == NULL) {
2359                 mutex_unlock(&dev->struct_mutex);
2360                 return -ENOENT;
2361         }
2362
2363         /* Need to make sure the object gets inactive eventually. */
2364         ret = i915_gem_object_flush_active(obj);
2365         if (ret)
2366                 goto out;
2367
2368         if (obj->active) {
2369                 seqno = obj->last_read_seqno;
2370                 ring = obj->ring;
2371         }
2372
2373         if (seqno == 0)
2374                  goto out;
2375
2376         /* Do this after OLR check to make sure we make forward progress polling
2377          * on this IOCTL with a 0 timeout (like busy ioctl)
2378          */
2379         if (!args->timeout_ns) {
2380                 ret = -ETIME;
2381                 goto out;
2382         }
2383
2384         drm_gem_object_unreference(&obj->base);
2385         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2386         mutex_unlock(&dev->struct_mutex);
2387
2388         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2389         if (timeout)
2390                 args->timeout_ns = timespec_to_ns(timeout);
2391         return ret;
2392
2393 out:
2394         drm_gem_object_unreference(&obj->base);
2395         mutex_unlock(&dev->struct_mutex);
2396         return ret;
2397 }
2398
2399 /**
2400  * i915_gem_object_sync - sync an object to a ring.
2401  *
2402  * @obj: object which may be in use on another ring.
2403  * @to: ring we wish to use the object on. May be NULL.
2404  *
2405  * This code is meant to abstract object synchronization with the GPU.
2406  * Calling with NULL implies synchronizing the object with the CPU
2407  * rather than a particular GPU ring.
2408  *
2409  * Returns 0 if successful, else propagates up the lower layer error.
2410  */
2411 int
2412 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2413                      struct intel_ring_buffer *to)
2414 {
2415         struct intel_ring_buffer *from = obj->ring;
2416         u32 seqno;
2417         int ret, idx;
2418
2419         if (from == NULL || to == from)
2420                 return 0;
2421
2422         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2423                 return i915_gem_object_wait_rendering(obj, false);
2424
2425         idx = intel_ring_sync_index(from, to);
2426
2427         seqno = obj->last_read_seqno;
2428         if (seqno <= from->sync_seqno[idx])
2429                 return 0;
2430
2431         ret = i915_gem_check_olr(obj->ring, seqno);
2432         if (ret)
2433                 return ret;
2434
2435         ret = to->sync_to(to, from, seqno);
2436         if (!ret)
2437                 /* We use last_read_seqno because sync_to()
2438                  * might have just caused seqno wrap under
2439                  * the radar.
2440                  */
2441                 from->sync_seqno[idx] = obj->last_read_seqno;
2442
2443         return ret;
2444 }
2445
2446 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2447 {
2448         u32 old_write_domain, old_read_domains;
2449
2450         /* Force a pagefault for domain tracking on next user access */
2451         i915_gem_release_mmap(obj);
2452
2453         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2454                 return;
2455
2456         /* Wait for any direct GTT access to complete */
2457         mb();
2458
2459         old_read_domains = obj->base.read_domains;
2460         old_write_domain = obj->base.write_domain;
2461
2462         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2463         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2464
2465         trace_i915_gem_object_change_domain(obj,
2466                                             old_read_domains,
2467                                             old_write_domain);
2468 }
2469
2470 /**
2471  * Unbinds an object from the GTT aperture.
2472  */
2473 int
2474 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2475 {
2476         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2477         int ret;
2478
2479         if (obj->gtt_space == NULL)
2480                 return 0;
2481
2482         if (obj->pin_count)
2483                 return -EBUSY;
2484
2485         BUG_ON(obj->pages == NULL);
2486
2487         ret = i915_gem_object_finish_gpu(obj);
2488         if (ret)
2489                 return ret;
2490         /* Continue on if we fail due to EIO, the GPU is hung so we
2491          * should be safe and we need to cleanup or else we might
2492          * cause memory corruption through use-after-free.
2493          */
2494
2495         i915_gem_object_finish_gtt(obj);
2496
2497         /* release the fence reg _after_ flushing */
2498         ret = i915_gem_object_put_fence(obj);
2499         if (ret)
2500                 return ret;
2501
2502         trace_i915_gem_object_unbind(obj);
2503
2504         if (obj->has_global_gtt_mapping)
2505                 i915_gem_gtt_unbind_object(obj);
2506         if (obj->has_aliasing_ppgtt_mapping) {
2507                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2508                 obj->has_aliasing_ppgtt_mapping = 0;
2509         }
2510         i915_gem_gtt_finish_object(obj);
2511
2512         list_del(&obj->mm_list);
2513         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2514         /* Avoid an unnecessary call to unbind on rebind. */
2515         obj->map_and_fenceable = true;
2516
2517         drm_mm_put_block(obj->gtt_space);
2518         obj->gtt_space = NULL;
2519         obj->gtt_offset = 0;
2520
2521         return 0;
2522 }
2523
2524 int i915_gpu_idle(struct drm_device *dev)
2525 {
2526         drm_i915_private_t *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         int ret, i;
2529
2530         /* Flush everything onto the inactive list. */
2531         for_each_ring(ring, dev_priv, i) {
2532                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2533                 if (ret)
2534                         return ret;
2535
2536                 ret = intel_ring_idle(ring);
2537                 if (ret)
2538                         return ret;
2539         }
2540
2541         return 0;
2542 }
2543
2544 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2545                                  struct drm_i915_gem_object *obj)
2546 {
2547         drm_i915_private_t *dev_priv = dev->dev_private;
2548         int fence_reg;
2549         int fence_pitch_shift;
2550         uint64_t val;
2551
2552         if (INTEL_INFO(dev)->gen >= 6) {
2553                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2554                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2555         } else {
2556                 fence_reg = FENCE_REG_965_0;
2557                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2558         }
2559
2560         if (obj) {
2561                 u32 size = obj->gtt_space->size;
2562
2563                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2564                                  0xfffff000) << 32;
2565                 val |= obj->gtt_offset & 0xfffff000;
2566                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2567                 if (obj->tiling_mode == I915_TILING_Y)
2568                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2569                 val |= I965_FENCE_REG_VALID;
2570         } else
2571                 val = 0;
2572
2573         fence_reg += reg * 8;
2574         I915_WRITE64(fence_reg, val);
2575         POSTING_READ(fence_reg);
2576 }
2577
2578 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2579                                  struct drm_i915_gem_object *obj)
2580 {
2581         drm_i915_private_t *dev_priv = dev->dev_private;
2582         u32 val;
2583
2584         if (obj) {
2585                 u32 size = obj->gtt_space->size;
2586                 int pitch_val;
2587                 int tile_width;
2588
2589                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2590                      (size & -size) != size ||
2591                      (obj->gtt_offset & (size - 1)),
2592                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2593                      obj->gtt_offset, obj->map_and_fenceable, size);
2594
2595                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2596                         tile_width = 128;
2597                 else
2598                         tile_width = 512;
2599
2600                 /* Note: pitch better be a power of two tile widths */
2601                 pitch_val = obj->stride / tile_width;
2602                 pitch_val = ffs(pitch_val) - 1;
2603
2604                 val = obj->gtt_offset;
2605                 if (obj->tiling_mode == I915_TILING_Y)
2606                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2607                 val |= I915_FENCE_SIZE_BITS(size);
2608                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2609                 val |= I830_FENCE_REG_VALID;
2610         } else
2611                 val = 0;
2612
2613         if (reg < 8)
2614                 reg = FENCE_REG_830_0 + reg * 4;
2615         else
2616                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2617
2618         I915_WRITE(reg, val);
2619         POSTING_READ(reg);
2620 }
2621
2622 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2623                                 struct drm_i915_gem_object *obj)
2624 {
2625         drm_i915_private_t *dev_priv = dev->dev_private;
2626         uint32_t val;
2627
2628         if (obj) {
2629                 u32 size = obj->gtt_space->size;
2630                 uint32_t pitch_val;
2631
2632                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2633                      (size & -size) != size ||
2634                      (obj->gtt_offset & (size - 1)),
2635                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2636                      obj->gtt_offset, size);
2637
2638                 pitch_val = obj->stride / 128;
2639                 pitch_val = ffs(pitch_val) - 1;
2640
2641                 val = obj->gtt_offset;
2642                 if (obj->tiling_mode == I915_TILING_Y)
2643                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2644                 val |= I830_FENCE_SIZE_BITS(size);
2645                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2646                 val |= I830_FENCE_REG_VALID;
2647         } else
2648                 val = 0;
2649
2650         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2651         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2652 }
2653
2654 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2655 {
2656         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2657 }
2658
2659 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2660                                  struct drm_i915_gem_object *obj)
2661 {
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663
2664         /* Ensure that all CPU reads are completed before installing a fence
2665          * and all writes before removing the fence.
2666          */
2667         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2668                 mb();
2669
2670         switch (INTEL_INFO(dev)->gen) {
2671         case 7:
2672         case 6:
2673         case 5:
2674         case 4: i965_write_fence_reg(dev, reg, obj); break;
2675         case 3: i915_write_fence_reg(dev, reg, obj); break;
2676         case 2: i830_write_fence_reg(dev, reg, obj); break;
2677         default: BUG();
2678         }
2679
2680         /* And similarly be paranoid that no direct access to this region
2681          * is reordered to before the fence is installed.
2682          */
2683         if (i915_gem_object_needs_mb(obj))
2684                 mb();
2685 }
2686
2687 static inline int fence_number(struct drm_i915_private *dev_priv,
2688                                struct drm_i915_fence_reg *fence)
2689 {
2690         return fence - dev_priv->fence_regs;
2691 }
2692
2693 struct write_fence {
2694         struct drm_device *dev;
2695         struct drm_i915_gem_object *obj;
2696         int fence;
2697 };
2698
2699 static void i915_gem_write_fence__ipi(void *data)
2700 {
2701         struct write_fence *args = data;
2702
2703         /* Required for SNB+ with LLC */
2704         wbinvd();
2705
2706         /* Required for VLV */
2707         i915_gem_write_fence(args->dev, args->fence, args->obj);
2708 }
2709
2710 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2711                                          struct drm_i915_fence_reg *fence,
2712                                          bool enable)
2713 {
2714         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2715         struct write_fence args = {
2716                 .dev = obj->base.dev,
2717                 .fence = fence_number(dev_priv, fence),
2718                 .obj = enable ? obj : NULL,
2719         };
2720
2721         /* In order to fully serialize access to the fenced region and
2722          * the update to the fence register we need to take extreme
2723          * measures on SNB+. In theory, the write to the fence register
2724          * flushes all memory transactions before, and coupled with the
2725          * mb() placed around the register write we serialise all memory
2726          * operations with respect to the changes in the tiler. Yet, on
2727          * SNB+ we need to take a step further and emit an explicit wbinvd()
2728          * on each processor in order to manually flush all memory
2729          * transactions before updating the fence register.
2730          *
2731          * However, Valleyview complicates matter. There the wbinvd is
2732          * insufficient and unlike SNB/IVB requires the serialising
2733          * register write. (Note that that register write by itself is
2734          * conversely not sufficient for SNB+.) To compromise, we do both.
2735          */
2736         if (INTEL_INFO(args.dev)->gen >= 6)
2737                 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2738         else
2739                 i915_gem_write_fence(args.dev, args.fence, args.obj);
2740
2741         if (enable) {
2742                 obj->fence_reg = args.fence;
2743                 fence->obj = obj;
2744                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2745         } else {
2746                 obj->fence_reg = I915_FENCE_REG_NONE;
2747                 fence->obj = NULL;
2748                 list_del_init(&fence->lru_list);
2749         }
2750 }
2751
2752 static int
2753 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2754 {
2755         if (obj->last_fenced_seqno) {
2756                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2757                 if (ret)
2758                         return ret;
2759
2760                 obj->last_fenced_seqno = 0;
2761         }
2762
2763         obj->fenced_gpu_access = false;
2764         return 0;
2765 }
2766
2767 int
2768 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2769 {
2770         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771         struct drm_i915_fence_reg *fence;
2772         int ret;
2773
2774         ret = i915_gem_object_wait_fence(obj);
2775         if (ret)
2776                 return ret;
2777
2778         if (obj->fence_reg == I915_FENCE_REG_NONE)
2779                 return 0;
2780
2781         fence = &dev_priv->fence_regs[obj->fence_reg];
2782
2783         i915_gem_object_fence_lost(obj);
2784         i915_gem_object_update_fence(obj, fence, false);
2785
2786         return 0;
2787 }
2788
2789 static struct drm_i915_fence_reg *
2790 i915_find_fence_reg(struct drm_device *dev)
2791 {
2792         struct drm_i915_private *dev_priv = dev->dev_private;
2793         struct drm_i915_fence_reg *reg, *avail;
2794         int i;
2795
2796         /* First try to find a free reg */
2797         avail = NULL;
2798         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2799                 reg = &dev_priv->fence_regs[i];
2800                 if (!reg->obj)
2801                         return reg;
2802
2803                 if (!reg->pin_count)
2804                         avail = reg;
2805         }
2806
2807         if (avail == NULL)
2808                 return NULL;
2809
2810         /* None available, try to steal one or wait for a user to finish */
2811         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2812                 if (reg->pin_count)
2813                         continue;
2814
2815                 return reg;
2816         }
2817
2818         return NULL;
2819 }
2820
2821 /**
2822  * i915_gem_object_get_fence - set up fencing for an object
2823  * @obj: object to map through a fence reg
2824  *
2825  * When mapping objects through the GTT, userspace wants to be able to write
2826  * to them without having to worry about swizzling if the object is tiled.
2827  * This function walks the fence regs looking for a free one for @obj,
2828  * stealing one if it can't find any.
2829  *
2830  * It then sets up the reg based on the object's properties: address, pitch
2831  * and tiling format.
2832  *
2833  * For an untiled surface, this removes any existing fence.
2834  */
2835 int
2836 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2837 {
2838         struct drm_device *dev = obj->base.dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         bool enable = obj->tiling_mode != I915_TILING_NONE;
2841         struct drm_i915_fence_reg *reg;
2842         int ret;
2843
2844         /* Have we updated the tiling parameters upon the object and so
2845          * will need to serialise the write to the associated fence register?
2846          */
2847         if (obj->fence_dirty) {
2848                 ret = i915_gem_object_wait_fence(obj);
2849                 if (ret)
2850                         return ret;
2851         }
2852
2853         /* Just update our place in the LRU if our fence is getting reused. */
2854         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2855                 reg = &dev_priv->fence_regs[obj->fence_reg];
2856                 if (!obj->fence_dirty) {
2857                         list_move_tail(&reg->lru_list,
2858                                        &dev_priv->mm.fence_list);
2859                         return 0;
2860                 }
2861         } else if (enable) {
2862                 reg = i915_find_fence_reg(dev);
2863                 if (reg == NULL)
2864                         return -EDEADLK;
2865
2866                 if (reg->obj) {
2867                         struct drm_i915_gem_object *old = reg->obj;
2868
2869                         ret = i915_gem_object_wait_fence(old);
2870                         if (ret)
2871                                 return ret;
2872
2873                         i915_gem_object_fence_lost(old);
2874                 }
2875         } else
2876                 return 0;
2877
2878         i915_gem_object_update_fence(obj, reg, enable);
2879         obj->fence_dirty = false;
2880
2881         return 0;
2882 }
2883
2884 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2885                                      struct drm_mm_node *gtt_space,
2886                                      unsigned long cache_level)
2887 {
2888         struct drm_mm_node *other;
2889
2890         /* On non-LLC machines we have to be careful when putting differing
2891          * types of snoopable memory together to avoid the prefetcher
2892          * crossing memory domains and dying.
2893          */
2894         if (HAS_LLC(dev))
2895                 return true;
2896
2897         if (gtt_space == NULL)
2898                 return true;
2899
2900         if (list_empty(&gtt_space->node_list))
2901                 return true;
2902
2903         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2904         if (other->allocated && !other->hole_follows && other->color != cache_level)
2905                 return false;
2906
2907         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2908         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2909                 return false;
2910
2911         return true;
2912 }
2913
2914 static void i915_gem_verify_gtt(struct drm_device *dev)
2915 {
2916 #if WATCH_GTT
2917         struct drm_i915_private *dev_priv = dev->dev_private;
2918         struct drm_i915_gem_object *obj;
2919         int err = 0;
2920
2921         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2922                 if (obj->gtt_space == NULL) {
2923                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2924                         err++;
2925                         continue;
2926                 }
2927
2928                 if (obj->cache_level != obj->gtt_space->color) {
2929                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2930                                obj->gtt_space->start,
2931                                obj->gtt_space->start + obj->gtt_space->size,
2932                                obj->cache_level,
2933                                obj->gtt_space->color);
2934                         err++;
2935                         continue;
2936                 }
2937
2938                 if (!i915_gem_valid_gtt_space(dev,
2939                                               obj->gtt_space,
2940                                               obj->cache_level)) {
2941                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2942                                obj->gtt_space->start,
2943                                obj->gtt_space->start + obj->gtt_space->size,
2944                                obj->cache_level);
2945                         err++;
2946                         continue;
2947                 }
2948         }
2949
2950         WARN_ON(err);
2951 #endif
2952 }
2953
2954 /**
2955  * Finds free space in the GTT aperture and binds the object there.
2956  */
2957 static int
2958 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2959                             unsigned alignment,
2960                             bool map_and_fenceable,
2961                             bool nonblocking)
2962 {
2963         struct drm_device *dev = obj->base.dev;
2964         drm_i915_private_t *dev_priv = dev->dev_private;
2965         struct drm_mm_node *node;
2966         u32 size, fence_size, fence_alignment, unfenced_alignment;
2967         bool mappable, fenceable;
2968         size_t gtt_max = map_and_fenceable ?
2969                 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
2970         int ret;
2971
2972         fence_size = i915_gem_get_gtt_size(dev,
2973                                            obj->base.size,
2974                                            obj->tiling_mode);
2975         fence_alignment = i915_gem_get_gtt_alignment(dev,
2976                                                      obj->base.size,
2977                                                      obj->tiling_mode, true);
2978         unfenced_alignment =
2979                 i915_gem_get_gtt_alignment(dev,
2980                                                     obj->base.size,
2981                                                     obj->tiling_mode, false);
2982
2983         if (alignment == 0)
2984                 alignment = map_and_fenceable ? fence_alignment :
2985                                                 unfenced_alignment;
2986         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2987                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2988                 return -EINVAL;
2989         }
2990
2991         size = map_and_fenceable ? fence_size : obj->base.size;
2992
2993         /* If the object is bigger than the entire aperture, reject it early
2994          * before evicting everything in a vain attempt to find space.
2995          */
2996         if (obj->base.size > gtt_max) {
2997                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%ld\n",
2998                           obj->base.size,
2999                           map_and_fenceable ? "mappable" : "total",
3000                           gtt_max);
3001                 return -E2BIG;
3002         }
3003
3004         ret = i915_gem_object_get_pages(obj);
3005         if (ret)
3006                 return ret;
3007
3008         i915_gem_object_pin_pages(obj);
3009
3010         node = kzalloc(sizeof(*node), GFP_KERNEL);
3011         if (node == NULL) {
3012                 i915_gem_object_unpin_pages(obj);
3013                 return -ENOMEM;
3014         }
3015
3016 search_free:
3017         ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3018                                                   size, alignment,
3019                                                   obj->cache_level, 0, gtt_max);
3020         if (ret) {
3021                 ret = i915_gem_evict_something(dev, size, alignment,
3022                                                obj->cache_level,
3023                                                map_and_fenceable,
3024                                                nonblocking);
3025                 if (ret == 0)
3026                         goto search_free;
3027
3028                 i915_gem_object_unpin_pages(obj);
3029                 kfree(node);
3030                 return ret;
3031         }
3032         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3033                 i915_gem_object_unpin_pages(obj);
3034                 drm_mm_put_block(node);
3035                 return -EINVAL;
3036         }
3037
3038         ret = i915_gem_gtt_prepare_object(obj);
3039         if (ret) {
3040                 i915_gem_object_unpin_pages(obj);
3041                 drm_mm_put_block(node);
3042                 return ret;
3043         }
3044
3045         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3046         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3047
3048         obj->gtt_space = node;
3049         obj->gtt_offset = node->start;
3050
3051         fenceable =
3052                 node->size == fence_size &&
3053                 (node->start & (fence_alignment - 1)) == 0;
3054
3055         mappable =
3056                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3057
3058         obj->map_and_fenceable = mappable && fenceable;
3059
3060         i915_gem_object_unpin_pages(obj);
3061         trace_i915_gem_object_bind(obj, map_and_fenceable);
3062         i915_gem_verify_gtt(dev);
3063         return 0;
3064 }
3065
3066 void
3067 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3068 {
3069         /* If we don't have a page list set up, then we're not pinned
3070          * to GPU, and we can ignore the cache flush because it'll happen
3071          * again at bind time.
3072          */
3073         if (obj->pages == NULL)
3074                 return;
3075
3076         /*
3077          * Stolen memory is always coherent with the GPU as it is explicitly
3078          * marked as wc by the system, or the system is cache-coherent.
3079          */
3080         if (obj->stolen)
3081                 return;
3082
3083         /* If the GPU is snooping the contents of the CPU cache,
3084          * we do not need to manually clear the CPU cache lines.  However,
3085          * the caches are only snooped when the render cache is
3086          * flushed/invalidated.  As we always have to emit invalidations
3087          * and flushes when moving into and out of the RENDER domain, correct
3088          * snooping behaviour occurs naturally as the result of our domain
3089          * tracking.
3090          */
3091         if (obj->cache_level != I915_CACHE_NONE)
3092                 return;
3093
3094         trace_i915_gem_object_clflush(obj);
3095
3096         drm_clflush_sg(obj->pages);
3097 }
3098
3099 /** Flushes the GTT write domain for the object if it's dirty. */
3100 static void
3101 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3102 {
3103         uint32_t old_write_domain;
3104
3105         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3106                 return;
3107
3108         /* No actual flushing is required for the GTT write domain.  Writes
3109          * to it immediately go to main memory as far as we know, so there's
3110          * no chipset flush.  It also doesn't land in render cache.
3111          *
3112          * However, we do have to enforce the order so that all writes through
3113          * the GTT land before any writes to the device, such as updates to
3114          * the GATT itself.
3115          */
3116         wmb();
3117
3118         old_write_domain = obj->base.write_domain;
3119         obj->base.write_domain = 0;
3120
3121         trace_i915_gem_object_change_domain(obj,
3122                                             obj->base.read_domains,
3123                                             old_write_domain);
3124 }
3125
3126 /** Flushes the CPU write domain for the object if it's dirty. */
3127 static void
3128 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3129 {
3130         uint32_t old_write_domain;
3131
3132         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3133                 return;
3134
3135         i915_gem_clflush_object(obj);
3136         i915_gem_chipset_flush(obj->base.dev);
3137         old_write_domain = obj->base.write_domain;
3138         obj->base.write_domain = 0;
3139
3140         trace_i915_gem_object_change_domain(obj,
3141                                             obj->base.read_domains,
3142                                             old_write_domain);
3143 }
3144
3145 /**
3146  * Moves a single object to the GTT read, and possibly write domain.
3147  *
3148  * This function returns when the move is complete, including waiting on
3149  * flushes to occur.
3150  */
3151 int
3152 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3153 {
3154         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3155         uint32_t old_write_domain, old_read_domains;
3156         int ret;
3157
3158         /* Not valid to be called on unbound objects. */
3159         if (obj->gtt_space == NULL)
3160                 return -EINVAL;
3161
3162         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3163                 return 0;
3164
3165         ret = i915_gem_object_wait_rendering(obj, !write);
3166         if (ret)
3167                 return ret;
3168
3169         i915_gem_object_flush_cpu_write_domain(obj);
3170
3171         /* Serialise direct access to this object with the barriers for
3172          * coherent writes from the GPU, by effectively invalidating the
3173          * GTT domain upon first access.
3174          */
3175         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3176                 mb();
3177
3178         old_write_domain = obj->base.write_domain;
3179         old_read_domains = obj->base.read_domains;
3180
3181         /* It should now be out of any other write domains, and we can update
3182          * the domain values for our changes.
3183          */
3184         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3185         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3186         if (write) {
3187                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3188                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3189                 obj->dirty = 1;
3190         }
3191
3192         trace_i915_gem_object_change_domain(obj,
3193                                             old_read_domains,
3194                                             old_write_domain);
3195
3196         /* And bump the LRU for this access */
3197         if (i915_gem_object_is_inactive(obj))
3198                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3199
3200         return 0;
3201 }
3202
3203 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3204                                     enum i915_cache_level cache_level)
3205 {
3206         struct drm_device *dev = obj->base.dev;
3207         drm_i915_private_t *dev_priv = dev->dev_private;
3208         int ret;
3209
3210         if (obj->cache_level == cache_level)
3211                 return 0;
3212
3213         if (obj->pin_count) {
3214                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3215                 return -EBUSY;
3216         }
3217
3218         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3219                 ret = i915_gem_object_unbind(obj);
3220                 if (ret)
3221                         return ret;
3222         }
3223
3224         if (obj->gtt_space) {
3225                 ret = i915_gem_object_finish_gpu(obj);
3226                 if (ret)
3227                         return ret;
3228
3229                 i915_gem_object_finish_gtt(obj);
3230
3231                 /* Before SandyBridge, you could not use tiling or fence
3232                  * registers with snooped memory, so relinquish any fences
3233                  * currently pointing to our region in the aperture.
3234                  */
3235                 if (INTEL_INFO(dev)->gen < 6) {
3236                         ret = i915_gem_object_put_fence(obj);
3237                         if (ret)
3238                                 return ret;
3239                 }
3240
3241                 if (obj->has_global_gtt_mapping)
3242                         i915_gem_gtt_bind_object(obj, cache_level);
3243                 if (obj->has_aliasing_ppgtt_mapping)
3244                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3245                                                obj, cache_level);
3246
3247                 obj->gtt_space->color = cache_level;
3248         }
3249
3250         if (cache_level == I915_CACHE_NONE) {
3251                 u32 old_read_domains, old_write_domain;
3252
3253                 /* If we're coming from LLC cached, then we haven't
3254                  * actually been tracking whether the data is in the
3255                  * CPU cache or not, since we only allow one bit set
3256                  * in obj->write_domain and have been skipping the clflushes.
3257                  * Just set it to the CPU cache for now.
3258                  */
3259                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3260                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3261
3262                 old_read_domains = obj->base.read_domains;
3263                 old_write_domain = obj->base.write_domain;
3264
3265                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3266                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3267
3268                 trace_i915_gem_object_change_domain(obj,
3269                                                     old_read_domains,
3270                                                     old_write_domain);
3271         }
3272
3273         obj->cache_level = cache_level;
3274         i915_gem_verify_gtt(dev);
3275         return 0;
3276 }
3277
3278 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3279                                struct drm_file *file)
3280 {
3281         struct drm_i915_gem_caching *args = data;
3282         struct drm_i915_gem_object *obj;
3283         int ret;
3284
3285         ret = i915_mutex_lock_interruptible(dev);
3286         if (ret)
3287                 return ret;
3288
3289         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3290         if (&obj->base == NULL) {
3291                 ret = -ENOENT;
3292                 goto unlock;
3293         }
3294
3295         args->caching = obj->cache_level != I915_CACHE_NONE;
3296
3297         drm_gem_object_unreference(&obj->base);
3298 unlock:
3299         mutex_unlock(&dev->struct_mutex);
3300         return ret;
3301 }
3302
3303 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3304                                struct drm_file *file)
3305 {
3306         struct drm_i915_gem_caching *args = data;
3307         struct drm_i915_gem_object *obj;
3308         enum i915_cache_level level;
3309         int ret;
3310
3311         switch (args->caching) {
3312         case I915_CACHING_NONE:
3313                 level = I915_CACHE_NONE;
3314                 break;
3315         case I915_CACHING_CACHED:
3316                 level = I915_CACHE_LLC;
3317                 break;
3318         default:
3319                 return -EINVAL;
3320         }
3321
3322         ret = i915_mutex_lock_interruptible(dev);
3323         if (ret)
3324                 return ret;
3325
3326         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3327         if (&obj->base == NULL) {
3328                 ret = -ENOENT;
3329                 goto unlock;
3330         }
3331
3332         ret = i915_gem_object_set_cache_level(obj, level);
3333
3334         drm_gem_object_unreference(&obj->base);
3335 unlock:
3336         mutex_unlock(&dev->struct_mutex);
3337         return ret;
3338 }
3339
3340 /*
3341  * Prepare buffer for display plane (scanout, cursors, etc).
3342  * Can be called from an uninterruptible phase (modesetting) and allows
3343  * any flushes to be pipelined (for pageflips).
3344  */
3345 int
3346 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3347                                      u32 alignment,
3348                                      struct intel_ring_buffer *pipelined)
3349 {
3350         u32 old_read_domains, old_write_domain;
3351         int ret;
3352
3353         if (pipelined != obj->ring) {
3354                 ret = i915_gem_object_sync(obj, pipelined);
3355                 if (ret)
3356                         return ret;
3357         }
3358
3359         /* The display engine is not coherent with the LLC cache on gen6.  As
3360          * a result, we make sure that the pinning that is about to occur is
3361          * done with uncached PTEs. This is lowest common denominator for all
3362          * chipsets.
3363          *
3364          * However for gen6+, we could do better by using the GFDT bit instead
3365          * of uncaching, which would allow us to flush all the LLC-cached data
3366          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3367          */
3368         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3369         if (ret)
3370                 return ret;
3371
3372         /* As the user may map the buffer once pinned in the display plane
3373          * (e.g. libkms for the bootup splash), we have to ensure that we
3374          * always use map_and_fenceable for all scanout buffers.
3375          */
3376         ret = i915_gem_object_pin(obj, alignment, true, false);
3377         if (ret)
3378                 return ret;
3379
3380         i915_gem_object_flush_cpu_write_domain(obj);
3381
3382         old_write_domain = obj->base.write_domain;
3383         old_read_domains = obj->base.read_domains;
3384
3385         /* It should now be out of any other write domains, and we can update
3386          * the domain values for our changes.
3387          */
3388         obj->base.write_domain = 0;
3389         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3390
3391         trace_i915_gem_object_change_domain(obj,
3392                                             old_read_domains,
3393                                             old_write_domain);
3394
3395         return 0;
3396 }
3397
3398 int
3399 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3400 {
3401         int ret;
3402
3403         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3404                 return 0;
3405
3406         ret = i915_gem_object_wait_rendering(obj, false);
3407         if (ret)
3408                 return ret;
3409
3410         /* Ensure that we invalidate the GPU's caches and TLBs. */
3411         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3412         return 0;
3413 }
3414
3415 /**
3416  * Moves a single object to the CPU read, and possibly write domain.
3417  *
3418  * This function returns when the move is complete, including waiting on
3419  * flushes to occur.
3420  */
3421 int
3422 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3423 {
3424         uint32_t old_write_domain, old_read_domains;
3425         int ret;
3426
3427         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3428                 return 0;
3429
3430         ret = i915_gem_object_wait_rendering(obj, !write);
3431         if (ret)
3432                 return ret;
3433
3434         i915_gem_object_flush_gtt_write_domain(obj);
3435
3436         old_write_domain = obj->base.write_domain;
3437         old_read_domains = obj->base.read_domains;
3438
3439         /* Flush the CPU cache if it's still invalid. */
3440         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3441                 i915_gem_clflush_object(obj);
3442
3443                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3444         }
3445
3446         /* It should now be out of any other write domains, and we can update
3447          * the domain values for our changes.
3448          */
3449         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3450
3451         /* If we're writing through the CPU, then the GPU read domains will
3452          * need to be invalidated at next use.
3453          */
3454         if (write) {
3455                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3456                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3457         }
3458
3459         trace_i915_gem_object_change_domain(obj,
3460                                             old_read_domains,
3461                                             old_write_domain);
3462
3463         return 0;
3464 }
3465
3466 /* Throttle our rendering by waiting until the ring has completed our requests
3467  * emitted over 20 msec ago.
3468  *
3469  * Note that if we were to use the current jiffies each time around the loop,
3470  * we wouldn't escape the function with any frames outstanding if the time to
3471  * render a frame was over 20ms.
3472  *
3473  * This should get us reasonable parallelism between CPU and GPU but also
3474  * relatively low latency when blocking on a particular request to finish.
3475  */
3476 static int
3477 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3478 {
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480         struct drm_i915_file_private *file_priv = file->driver_priv;
3481         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3482         struct drm_i915_gem_request *request;
3483         struct intel_ring_buffer *ring = NULL;
3484         unsigned reset_counter;
3485         u32 seqno = 0;
3486         int ret;
3487
3488         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3489         if (ret)
3490                 return ret;
3491
3492         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3493         if (ret)
3494                 return ret;
3495
3496         spin_lock(&file_priv->mm.lock);
3497         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3498                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3499                         break;
3500
3501                 ring = request->ring;
3502                 seqno = request->seqno;
3503         }
3504         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3505         spin_unlock(&file_priv->mm.lock);
3506
3507         if (seqno == 0)
3508                 return 0;
3509
3510         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3511         if (ret == 0)
3512                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3513
3514         return ret;
3515 }
3516
3517 int
3518 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3519                     uint32_t alignment,
3520                     bool map_and_fenceable,
3521                     bool nonblocking)
3522 {
3523         int ret;
3524
3525         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3526                 return -EBUSY;
3527
3528         if (obj->gtt_space != NULL) {
3529                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3530                     (map_and_fenceable && !obj->map_and_fenceable)) {
3531                         WARN(obj->pin_count,
3532                              "bo is already pinned with incorrect alignment:"
3533                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3534                              " obj->map_and_fenceable=%d\n",
3535                              obj->gtt_offset, alignment,
3536                              map_and_fenceable,
3537                              obj->map_and_fenceable);
3538                         ret = i915_gem_object_unbind(obj);
3539                         if (ret)
3540                                 return ret;
3541                 }
3542         }
3543
3544         if (obj->gtt_space == NULL) {
3545                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3546
3547                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3548                                                   map_and_fenceable,
3549                                                   nonblocking);
3550                 if (ret)
3551                         return ret;
3552
3553                 if (!dev_priv->mm.aliasing_ppgtt)
3554                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3555         }
3556
3557         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3558                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3559
3560         obj->pin_count++;
3561         obj->pin_mappable |= map_and_fenceable;
3562
3563         return 0;
3564 }
3565
3566 void
3567 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3568 {
3569         BUG_ON(obj->pin_count == 0);
3570         BUG_ON(obj->gtt_space == NULL);
3571
3572         if (--obj->pin_count == 0)
3573                 obj->pin_mappable = false;
3574 }
3575
3576 int
3577 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3578                    struct drm_file *file)
3579 {
3580         struct drm_i915_gem_pin *args = data;
3581         struct drm_i915_gem_object *obj;
3582         int ret;
3583
3584         ret = i915_mutex_lock_interruptible(dev);
3585         if (ret)
3586                 return ret;
3587
3588         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3589         if (&obj->base == NULL) {
3590                 ret = -ENOENT;
3591                 goto unlock;
3592         }
3593
3594         if (obj->madv != I915_MADV_WILLNEED) {
3595                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3596                 ret = -EINVAL;
3597                 goto out;
3598         }
3599
3600         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3601                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3602                           args->handle);
3603                 ret = -EINVAL;
3604                 goto out;
3605         }
3606
3607         if (obj->user_pin_count == 0) {
3608                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3609                 if (ret)
3610                         goto out;
3611         }
3612
3613         obj->user_pin_count++;
3614         obj->pin_filp = file;
3615
3616         /* XXX - flush the CPU caches for pinned objects
3617          * as the X server doesn't manage domains yet
3618          */
3619         i915_gem_object_flush_cpu_write_domain(obj);
3620         args->offset = obj->gtt_offset;
3621 out:
3622         drm_gem_object_unreference(&obj->base);
3623 unlock:
3624         mutex_unlock(&dev->struct_mutex);
3625         return ret;
3626 }
3627
3628 int
3629 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3630                      struct drm_file *file)
3631 {
3632         struct drm_i915_gem_pin *args = data;
3633         struct drm_i915_gem_object *obj;
3634         int ret;
3635
3636         ret = i915_mutex_lock_interruptible(dev);
3637         if (ret)
3638                 return ret;
3639
3640         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3641         if (&obj->base == NULL) {
3642                 ret = -ENOENT;
3643                 goto unlock;
3644         }
3645
3646         if (obj->pin_filp != file) {
3647                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3648                           args->handle);
3649                 ret = -EINVAL;
3650                 goto out;
3651         }
3652         obj->user_pin_count--;
3653         if (obj->user_pin_count == 0) {
3654                 obj->pin_filp = NULL;
3655                 i915_gem_object_unpin(obj);
3656         }
3657
3658 out:
3659         drm_gem_object_unreference(&obj->base);
3660 unlock:
3661         mutex_unlock(&dev->struct_mutex);
3662         return ret;
3663 }
3664
3665 int
3666 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3667                     struct drm_file *file)
3668 {
3669         struct drm_i915_gem_busy *args = data;
3670         struct drm_i915_gem_object *obj;
3671         int ret;
3672
3673         ret = i915_mutex_lock_interruptible(dev);
3674         if (ret)
3675                 return ret;
3676
3677         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3678         if (&obj->base == NULL) {
3679                 ret = -ENOENT;
3680                 goto unlock;
3681         }
3682
3683         /* Count all active objects as busy, even if they are currently not used
3684          * by the gpu. Users of this interface expect objects to eventually
3685          * become non-busy without any further actions, therefore emit any
3686          * necessary flushes here.
3687          */
3688         ret = i915_gem_object_flush_active(obj);
3689
3690         args->busy = obj->active;
3691         if (obj->ring) {
3692                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3693                 args->busy |= intel_ring_flag(obj->ring) << 16;
3694         }
3695
3696         drm_gem_object_unreference(&obj->base);
3697 unlock:
3698         mutex_unlock(&dev->struct_mutex);
3699         return ret;
3700 }
3701
3702 int
3703 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3704                         struct drm_file *file_priv)
3705 {
3706         return i915_gem_ring_throttle(dev, file_priv);
3707 }
3708
3709 int
3710 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3711                        struct drm_file *file_priv)
3712 {
3713         struct drm_i915_gem_madvise *args = data;
3714         struct drm_i915_gem_object *obj;
3715         int ret;
3716
3717         switch (args->madv) {
3718         case I915_MADV_DONTNEED:
3719         case I915_MADV_WILLNEED:
3720             break;
3721         default:
3722             return -EINVAL;
3723         }
3724
3725         ret = i915_mutex_lock_interruptible(dev);
3726         if (ret)
3727                 return ret;
3728
3729         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3730         if (&obj->base == NULL) {
3731                 ret = -ENOENT;
3732                 goto unlock;
3733         }
3734
3735         if (obj->pin_count) {
3736                 ret = -EINVAL;
3737                 goto out;
3738         }
3739
3740         if (obj->madv != __I915_MADV_PURGED)
3741                 obj->madv = args->madv;
3742
3743         /* if the object is no longer attached, discard its backing storage */
3744         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3745                 i915_gem_object_truncate(obj);
3746
3747         args->retained = obj->madv != __I915_MADV_PURGED;
3748
3749 out:
3750         drm_gem_object_unreference(&obj->base);
3751 unlock:
3752         mutex_unlock(&dev->struct_mutex);
3753         return ret;
3754 }
3755
3756 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3757                           const struct drm_i915_gem_object_ops *ops)
3758 {
3759         INIT_LIST_HEAD(&obj->mm_list);
3760         INIT_LIST_HEAD(&obj->gtt_list);
3761         INIT_LIST_HEAD(&obj->ring_list);
3762         INIT_LIST_HEAD(&obj->exec_list);
3763
3764         obj->ops = ops;
3765
3766         obj->fence_reg = I915_FENCE_REG_NONE;
3767         obj->madv = I915_MADV_WILLNEED;
3768         /* Avoid an unnecessary call to unbind on the first bind. */
3769         obj->map_and_fenceable = true;
3770
3771         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3772 }
3773
3774 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3775         .get_pages = i915_gem_object_get_pages_gtt,
3776         .put_pages = i915_gem_object_put_pages_gtt,
3777 };
3778
3779 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3780                                                   size_t size)
3781 {
3782         struct drm_i915_gem_object *obj;
3783         struct address_space *mapping;
3784         gfp_t mask;
3785
3786         obj = i915_gem_object_alloc(dev);
3787         if (obj == NULL)
3788                 return NULL;
3789
3790         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3791                 i915_gem_object_free(obj);
3792                 return NULL;
3793         }
3794
3795         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3796         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3797                 /* 965gm cannot relocate objects above 4GiB. */
3798                 mask &= ~__GFP_HIGHMEM;
3799                 mask |= __GFP_DMA32;
3800         }
3801
3802         mapping = file_inode(obj->base.filp)->i_mapping;
3803         mapping_set_gfp_mask(mapping, mask);
3804
3805         i915_gem_object_init(obj, &i915_gem_object_ops);
3806
3807         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3808         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3809
3810         if (HAS_LLC(dev)) {
3811                 /* On some devices, we can have the GPU use the LLC (the CPU
3812                  * cache) for about a 10% performance improvement
3813                  * compared to uncached.  Graphics requests other than
3814                  * display scanout are coherent with the CPU in
3815                  * accessing this cache.  This means in this mode we
3816                  * don't need to clflush on the CPU side, and on the
3817                  * GPU side we only need to flush internal caches to
3818                  * get data visible to the CPU.
3819                  *
3820                  * However, we maintain the display planes as UC, and so
3821                  * need to rebind when first used as such.
3822                  */
3823                 obj->cache_level = I915_CACHE_LLC;
3824         } else
3825                 obj->cache_level = I915_CACHE_NONE;
3826
3827         return obj;
3828 }
3829
3830 int i915_gem_init_object(struct drm_gem_object *obj)
3831 {
3832         BUG();
3833
3834         return 0;
3835 }
3836
3837 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3838 {
3839         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3840         struct drm_device *dev = obj->base.dev;
3841         drm_i915_private_t *dev_priv = dev->dev_private;
3842
3843         trace_i915_gem_object_destroy(obj);
3844
3845         if (obj->phys_obj)
3846                 i915_gem_detach_phys_object(dev, obj);
3847
3848         obj->pin_count = 0;
3849         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3850                 bool was_interruptible;
3851
3852                 was_interruptible = dev_priv->mm.interruptible;
3853                 dev_priv->mm.interruptible = false;
3854
3855                 WARN_ON(i915_gem_object_unbind(obj));
3856
3857                 dev_priv->mm.interruptible = was_interruptible;
3858         }
3859
3860         obj->pages_pin_count = 0;
3861         i915_gem_object_put_pages(obj);
3862         i915_gem_object_free_mmap_offset(obj);
3863         i915_gem_object_release_stolen(obj);
3864
3865         BUG_ON(obj->pages);
3866
3867         if (obj->base.import_attach)
3868                 drm_prime_gem_destroy(&obj->base, NULL);
3869
3870         drm_gem_object_release(&obj->base);
3871         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3872
3873         kfree(obj->bit_17);
3874         i915_gem_object_free(obj);
3875 }
3876
3877 int
3878 i915_gem_idle(struct drm_device *dev)
3879 {
3880         drm_i915_private_t *dev_priv = dev->dev_private;
3881         int ret;
3882
3883         mutex_lock(&dev->struct_mutex);
3884
3885         if (dev_priv->mm.suspended) {
3886                 mutex_unlock(&dev->struct_mutex);
3887                 return 0;
3888         }
3889
3890         ret = i915_gpu_idle(dev);
3891         if (ret) {
3892                 mutex_unlock(&dev->struct_mutex);
3893                 return ret;
3894         }
3895         i915_gem_retire_requests(dev);
3896
3897         /* Under UMS, be paranoid and evict. */
3898         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3899                 i915_gem_evict_everything(dev);
3900
3901         i915_gem_reset_fences(dev);
3902
3903         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3904          * We need to replace this with a semaphore, or something.
3905          * And not confound mm.suspended!
3906          */
3907         dev_priv->mm.suspended = 1;
3908         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3909
3910         i915_kernel_lost_context(dev);
3911         i915_gem_cleanup_ringbuffer(dev);
3912
3913         mutex_unlock(&dev->struct_mutex);
3914
3915         /* Cancel the retire work handler, which should be idle now. */
3916         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3917
3918         return 0;
3919 }
3920
3921 void i915_gem_l3_remap(struct drm_device *dev)
3922 {
3923         drm_i915_private_t *dev_priv = dev->dev_private;
3924         u32 misccpctl;
3925         int i;
3926
3927         if (!HAS_L3_GPU_CACHE(dev))
3928                 return;
3929
3930         if (!dev_priv->l3_parity.remap_info)
3931                 return;
3932
3933         misccpctl = I915_READ(GEN7_MISCCPCTL);
3934         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3935         POSTING_READ(GEN7_MISCCPCTL);
3936
3937         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3938                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3939                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3940                         DRM_DEBUG("0x%x was already programmed to %x\n",
3941                                   GEN7_L3LOG_BASE + i, remap);
3942                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3943                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3944                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3945         }
3946
3947         /* Make sure all the writes land before disabling dop clock gating */
3948         POSTING_READ(GEN7_L3LOG_BASE);
3949
3950         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3951 }
3952
3953 void i915_gem_init_swizzling(struct drm_device *dev)
3954 {
3955         drm_i915_private_t *dev_priv = dev->dev_private;
3956
3957         if (INTEL_INFO(dev)->gen < 5 ||
3958             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3959                 return;
3960
3961         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3962                                  DISP_TILE_SURFACE_SWIZZLING);
3963
3964         if (IS_GEN5(dev))
3965                 return;
3966
3967         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3968         if (IS_GEN6(dev))
3969                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3970         else if (IS_GEN7(dev))
3971                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3972         else
3973                 BUG();
3974 }
3975
3976 static bool
3977 intel_enable_blt(struct drm_device *dev)
3978 {
3979         if (!HAS_BLT(dev))
3980                 return false;
3981
3982         /* The blitter was dysfunctional on early prototypes */
3983         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3984                 DRM_INFO("BLT not supported on this pre-production hardware;"
3985                          " graphics performance will be degraded.\n");
3986                 return false;
3987         }
3988
3989         return true;
3990 }
3991
3992 static int i915_gem_init_rings(struct drm_device *dev)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int ret;
3996
3997         ret = intel_init_render_ring_buffer(dev);
3998         if (ret)
3999                 return ret;
4000
4001         if (HAS_BSD(dev)) {
4002                 ret = intel_init_bsd_ring_buffer(dev);
4003                 if (ret)
4004                         goto cleanup_render_ring;
4005         }
4006
4007         if (intel_enable_blt(dev)) {
4008                 ret = intel_init_blt_ring_buffer(dev);
4009                 if (ret)
4010                         goto cleanup_bsd_ring;
4011         }
4012
4013         if (HAS_VEBOX(dev)) {
4014                 ret = intel_init_vebox_ring_buffer(dev);
4015                 if (ret)
4016                         goto cleanup_blt_ring;
4017         }
4018
4019
4020         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4021         if (ret)
4022                 goto cleanup_vebox_ring;
4023
4024         return 0;
4025
4026 cleanup_vebox_ring:
4027         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4028 cleanup_blt_ring:
4029         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4030 cleanup_bsd_ring:
4031         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4032 cleanup_render_ring:
4033         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4034
4035         return ret;
4036 }
4037
4038 int
4039 i915_gem_init_hw(struct drm_device *dev)
4040 {
4041         drm_i915_private_t *dev_priv = dev->dev_private;
4042         int ret;
4043
4044         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4045                 return -EIO;
4046
4047         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4048                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4049
4050         if (HAS_PCH_NOP(dev)) {
4051                 u32 temp = I915_READ(GEN7_MSG_CTL);
4052                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4053                 I915_WRITE(GEN7_MSG_CTL, temp);
4054         }
4055
4056         i915_gem_l3_remap(dev);
4057
4058         i915_gem_init_swizzling(dev);
4059
4060         ret = i915_gem_init_rings(dev);
4061         if (ret)
4062                 return ret;
4063
4064         /*
4065          * XXX: There was some w/a described somewhere suggesting loading
4066          * contexts before PPGTT.
4067          */
4068         i915_gem_context_init(dev);
4069         if (dev_priv->mm.aliasing_ppgtt) {
4070                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4071                 if (ret) {
4072                         i915_gem_cleanup_aliasing_ppgtt(dev);
4073                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4074                 }
4075         }
4076
4077         return 0;
4078 }
4079
4080 int i915_gem_init(struct drm_device *dev)
4081 {
4082         struct drm_i915_private *dev_priv = dev->dev_private;
4083         int ret;
4084
4085         mutex_lock(&dev->struct_mutex);
4086
4087         if (IS_VALLEYVIEW(dev)) {
4088                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4089                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4090                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4091                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4092         }
4093
4094         i915_gem_init_global_gtt(dev);
4095
4096         ret = i915_gem_init_hw(dev);
4097         mutex_unlock(&dev->struct_mutex);
4098         if (ret) {
4099                 i915_gem_cleanup_aliasing_ppgtt(dev);
4100                 return ret;
4101         }
4102
4103         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4104         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4105                 dev_priv->dri1.allow_batchbuffer = 1;
4106         return 0;
4107 }
4108
4109 void
4110 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4111 {
4112         drm_i915_private_t *dev_priv = dev->dev_private;
4113         struct intel_ring_buffer *ring;
4114         int i;
4115
4116         for_each_ring(ring, dev_priv, i)
4117                 intel_cleanup_ring_buffer(ring);
4118 }
4119
4120 int
4121 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4122                        struct drm_file *file_priv)
4123 {
4124         drm_i915_private_t *dev_priv = dev->dev_private;
4125         int ret;
4126
4127         if (drm_core_check_feature(dev, DRIVER_MODESET))
4128                 return 0;
4129
4130         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4131                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4132                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4133         }
4134
4135         mutex_lock(&dev->struct_mutex);
4136         dev_priv->mm.suspended = 0;
4137
4138         ret = i915_gem_init_hw(dev);
4139         if (ret != 0) {
4140                 mutex_unlock(&dev->struct_mutex);
4141                 return ret;
4142         }
4143
4144         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4145         mutex_unlock(&dev->struct_mutex);
4146
4147         ret = drm_irq_install(dev);
4148         if (ret)
4149                 goto cleanup_ringbuffer;
4150
4151         return 0;
4152
4153 cleanup_ringbuffer:
4154         mutex_lock(&dev->struct_mutex);
4155         i915_gem_cleanup_ringbuffer(dev);
4156         dev_priv->mm.suspended = 1;
4157         mutex_unlock(&dev->struct_mutex);
4158
4159         return ret;
4160 }
4161
4162 int
4163 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4164                        struct drm_file *file_priv)
4165 {
4166         if (drm_core_check_feature(dev, DRIVER_MODESET))
4167                 return 0;
4168
4169         drm_irq_uninstall(dev);
4170         return i915_gem_idle(dev);
4171 }
4172
4173 void
4174 i915_gem_lastclose(struct drm_device *dev)
4175 {
4176         int ret;
4177
4178         if (drm_core_check_feature(dev, DRIVER_MODESET))
4179                 return;
4180
4181         ret = i915_gem_idle(dev);
4182         if (ret)
4183                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4184 }
4185
4186 static void
4187 init_ring_lists(struct intel_ring_buffer *ring)
4188 {
4189         INIT_LIST_HEAD(&ring->active_list);
4190         INIT_LIST_HEAD(&ring->request_list);
4191 }
4192
4193 void
4194 i915_gem_load(struct drm_device *dev)
4195 {
4196         drm_i915_private_t *dev_priv = dev->dev_private;
4197         int i;
4198
4199         dev_priv->slab =
4200                 kmem_cache_create("i915_gem_object",
4201                                   sizeof(struct drm_i915_gem_object), 0,
4202                                   SLAB_HWCACHE_ALIGN,
4203                                   NULL);
4204
4205         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4206         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4207         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4208         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4209         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4210         for (i = 0; i < I915_NUM_RINGS; i++)
4211                 init_ring_lists(&dev_priv->ring[i]);
4212         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4213                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4214         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4215                           i915_gem_retire_work_handler);
4216         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4217
4218         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4219         if (IS_GEN3(dev)) {
4220                 I915_WRITE(MI_ARB_STATE,
4221                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4222         }
4223
4224         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4225
4226         /* Old X drivers will take 0-2 for front, back, depth buffers */
4227         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4228                 dev_priv->fence_reg_start = 3;
4229
4230         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4231                 dev_priv->num_fence_regs = 32;
4232         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4233                 dev_priv->num_fence_regs = 16;
4234         else
4235                 dev_priv->num_fence_regs = 8;
4236
4237         /* Initialize fence registers to zero */
4238         i915_gem_reset_fences(dev);
4239
4240         i915_gem_detect_bit_6_swizzle(dev);
4241         init_waitqueue_head(&dev_priv->pending_flip_queue);
4242
4243         dev_priv->mm.interruptible = true;
4244
4245         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4246         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4247         register_shrinker(&dev_priv->mm.inactive_shrinker);
4248 }
4249
4250 /*
4251  * Create a physically contiguous memory object for this object
4252  * e.g. for cursor + overlay regs
4253  */
4254 static int i915_gem_init_phys_object(struct drm_device *dev,
4255                                      int id, int size, int align)
4256 {
4257         drm_i915_private_t *dev_priv = dev->dev_private;
4258         struct drm_i915_gem_phys_object *phys_obj;
4259         int ret;
4260
4261         if (dev_priv->mm.phys_objs[id - 1] || !size)
4262                 return 0;
4263
4264         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4265         if (!phys_obj)
4266                 return -ENOMEM;
4267
4268         phys_obj->id = id;
4269
4270         phys_obj->handle = drm_pci_alloc(dev, size, align);
4271         if (!phys_obj->handle) {
4272                 ret = -ENOMEM;
4273                 goto kfree_obj;
4274         }
4275 #ifdef CONFIG_X86
4276         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4277 #endif
4278
4279         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4280
4281         return 0;
4282 kfree_obj:
4283         kfree(phys_obj);
4284         return ret;
4285 }
4286
4287 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4288 {
4289         drm_i915_private_t *dev_priv = dev->dev_private;
4290         struct drm_i915_gem_phys_object *phys_obj;
4291
4292         if (!dev_priv->mm.phys_objs[id - 1])
4293                 return;
4294
4295         phys_obj = dev_priv->mm.phys_objs[id - 1];
4296         if (phys_obj->cur_obj) {
4297                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4298         }
4299
4300 #ifdef CONFIG_X86
4301         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4302 #endif
4303         drm_pci_free(dev, phys_obj->handle);
4304         kfree(phys_obj);
4305         dev_priv->mm.phys_objs[id - 1] = NULL;
4306 }
4307
4308 void i915_gem_free_all_phys_object(struct drm_device *dev)
4309 {
4310         int i;
4311
4312         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4313                 i915_gem_free_phys_object(dev, i);
4314 }
4315
4316 void i915_gem_detach_phys_object(struct drm_device *dev,
4317                                  struct drm_i915_gem_object *obj)
4318 {
4319         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4320         char *vaddr;
4321         int i;
4322         int page_count;
4323
4324         if (!obj->phys_obj)
4325                 return;
4326         vaddr = obj->phys_obj->handle->vaddr;
4327
4328         page_count = obj->base.size / PAGE_SIZE;
4329         for (i = 0; i < page_count; i++) {
4330                 struct page *page = shmem_read_mapping_page(mapping, i);
4331                 if (!IS_ERR(page)) {
4332                         char *dst = kmap_atomic(page);
4333                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4334                         kunmap_atomic(dst);
4335
4336                         drm_clflush_pages(&page, 1);
4337
4338                         set_page_dirty(page);
4339                         mark_page_accessed(page);
4340                         page_cache_release(page);
4341                 }
4342         }
4343         i915_gem_chipset_flush(dev);
4344
4345         obj->phys_obj->cur_obj = NULL;
4346         obj->phys_obj = NULL;
4347 }
4348
4349 int
4350 i915_gem_attach_phys_object(struct drm_device *dev,
4351                             struct drm_i915_gem_object *obj,
4352                             int id,
4353                             int align)
4354 {
4355         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4356         drm_i915_private_t *dev_priv = dev->dev_private;
4357         int ret = 0;
4358         int page_count;
4359         int i;
4360
4361         if (id > I915_MAX_PHYS_OBJECT)
4362                 return -EINVAL;
4363
4364         if (obj->phys_obj) {
4365                 if (obj->phys_obj->id == id)
4366                         return 0;
4367                 i915_gem_detach_phys_object(dev, obj);
4368         }
4369
4370         /* create a new object */
4371         if (!dev_priv->mm.phys_objs[id - 1]) {
4372                 ret = i915_gem_init_phys_object(dev, id,
4373                                                 obj->base.size, align);
4374                 if (ret) {
4375                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4376                                   id, obj->base.size);
4377                         return ret;
4378                 }
4379         }
4380
4381         /* bind to the object */
4382         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4383         obj->phys_obj->cur_obj = obj;
4384
4385         page_count = obj->base.size / PAGE_SIZE;
4386
4387         for (i = 0; i < page_count; i++) {
4388                 struct page *page;
4389                 char *dst, *src;
4390
4391                 page = shmem_read_mapping_page(mapping, i);
4392                 if (IS_ERR(page))
4393                         return PTR_ERR(page);
4394
4395                 src = kmap_atomic(page);
4396                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4397                 memcpy(dst, src, PAGE_SIZE);
4398                 kunmap_atomic(src);
4399
4400                 mark_page_accessed(page);
4401                 page_cache_release(page);
4402         }
4403
4404         return 0;
4405 }
4406
4407 static int
4408 i915_gem_phys_pwrite(struct drm_device *dev,
4409                      struct drm_i915_gem_object *obj,
4410                      struct drm_i915_gem_pwrite *args,
4411                      struct drm_file *file_priv)
4412 {
4413         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4414         char __user *user_data = to_user_ptr(args->data_ptr);
4415
4416         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4417                 unsigned long unwritten;
4418
4419                 /* The physical object once assigned is fixed for the lifetime
4420                  * of the obj, so we can safely drop the lock and continue
4421                  * to access vaddr.
4422                  */
4423                 mutex_unlock(&dev->struct_mutex);
4424                 unwritten = copy_from_user(vaddr, user_data, args->size);
4425                 mutex_lock(&dev->struct_mutex);
4426                 if (unwritten)
4427                         return -EFAULT;
4428         }
4429
4430         i915_gem_chipset_flush(dev);
4431         return 0;
4432 }
4433
4434 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4435 {
4436         struct drm_i915_file_private *file_priv = file->driver_priv;
4437
4438         /* Clean up our request list when the client is going away, so that
4439          * later retire_requests won't dereference our soon-to-be-gone
4440          * file_priv.
4441          */
4442         spin_lock(&file_priv->mm.lock);
4443         while (!list_empty(&file_priv->mm.request_list)) {
4444                 struct drm_i915_gem_request *request;
4445
4446                 request = list_first_entry(&file_priv->mm.request_list,
4447                                            struct drm_i915_gem_request,
4448                                            client_list);
4449                 list_del(&request->client_list);
4450                 request->file_priv = NULL;
4451         }
4452         spin_unlock(&file_priv->mm.lock);
4453 }
4454
4455 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4456 {
4457         if (!mutex_is_locked(mutex))
4458                 return false;
4459
4460 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4461         return mutex->owner == task;
4462 #else
4463         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4464         return false;
4465 #endif
4466 }
4467
4468 static int
4469 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4470 {
4471         struct drm_i915_private *dev_priv =
4472                 container_of(shrinker,
4473                              struct drm_i915_private,
4474                              mm.inactive_shrinker);
4475         struct drm_device *dev = dev_priv->dev;
4476         struct drm_i915_gem_object *obj;
4477         int nr_to_scan = sc->nr_to_scan;
4478         bool unlock = true;
4479         int cnt;
4480
4481         if (!mutex_trylock(&dev->struct_mutex)) {
4482                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4483                         return 0;
4484
4485                 if (dev_priv->mm.shrinker_no_lock_stealing)
4486                         return 0;
4487
4488                 unlock = false;
4489         }
4490
4491         if (nr_to_scan) {
4492                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4493                 if (nr_to_scan > 0)
4494                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4495                                                         false);
4496                 if (nr_to_scan > 0)
4497                         i915_gem_shrink_all(dev_priv);
4498         }
4499
4500         cnt = 0;
4501         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4502                 if (obj->pages_pin_count == 0)
4503                         cnt += obj->base.size >> PAGE_SHIFT;
4504         list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4505                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4506                         cnt += obj->base.size >> PAGE_SHIFT;
4507
4508         if (unlock)
4509                 mutex_unlock(&dev->struct_mutex);
4510         return cnt;
4511 }