]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: wait render timeout ioctl
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59
60 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61 {
62         if (obj->tiling_mode)
63                 i915_gem_release_mmap(obj);
64
65         /* As we do not have an associated fence register, we will force
66          * a tiling change if we ever need to acquire one.
67          */
68         obj->fence_dirty = false;
69         obj->fence_reg = I915_FENCE_REG_NONE;
70 }
71
72 /* some bookkeeping */
73 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74                                   size_t size)
75 {
76         dev_priv->mm.object_count++;
77         dev_priv->mm.object_memory += size;
78 }
79
80 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81                                      size_t size)
82 {
83         dev_priv->mm.object_count--;
84         dev_priv->mm.object_memory -= size;
85 }
86
87 static int
88 i915_gem_wait_for_error(struct drm_device *dev)
89 {
90         struct drm_i915_private *dev_priv = dev->dev_private;
91         struct completion *x = &dev_priv->error_completion;
92         unsigned long flags;
93         int ret;
94
95         if (!atomic_read(&dev_priv->mm.wedged))
96                 return 0;
97
98         ret = wait_for_completion_interruptible(x);
99         if (ret)
100                 return ret;
101
102         if (atomic_read(&dev_priv->mm.wedged)) {
103                 /* GPU is hung, bump the completion count to account for
104                  * the token we just consumed so that we never hit zero and
105                  * end up waiting upon a subsequent completion event that
106                  * will never happen.
107                  */
108                 spin_lock_irqsave(&x->wait.lock, flags);
109                 x->done++;
110                 spin_unlock_irqrestore(&x->wait.lock, flags);
111         }
112         return 0;
113 }
114
115 int i915_mutex_lock_interruptible(struct drm_device *dev)
116 {
117         int ret;
118
119         ret = i915_gem_wait_for_error(dev);
120         if (ret)
121                 return ret;
122
123         ret = mutex_lock_interruptible(&dev->struct_mutex);
124         if (ret)
125                 return ret;
126
127         WARN_ON(i915_verify_lists(dev));
128         return 0;
129 }
130
131 static inline bool
132 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133 {
134         return !obj->active;
135 }
136
137 int
138 i915_gem_init_ioctl(struct drm_device *dev, void *data,
139                     struct drm_file *file)
140 {
141         struct drm_i915_gem_init *args = data;
142
143         if (drm_core_check_feature(dev, DRIVER_MODESET))
144                 return -ENODEV;
145
146         if (args->gtt_start >= args->gtt_end ||
147             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148                 return -EINVAL;
149
150         /* GEM with user mode setting was never supported on ilk and later. */
151         if (INTEL_INFO(dev)->gen >= 5)
152                 return -ENODEV;
153
154         mutex_lock(&dev->struct_mutex);
155         i915_gem_init_global_gtt(dev, args->gtt_start,
156                                  args->gtt_end, args->gtt_end);
157         mutex_unlock(&dev->struct_mutex);
158
159         return 0;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174                 if (obj->pin_count)
175                         pinned += obj->gtt_space->size;
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->mm.gtt_total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_create(struct drm_file *file,
186                 struct drm_device *dev,
187                 uint64_t size,
188                 uint32_t *handle_p)
189 {
190         struct drm_i915_gem_object *obj;
191         int ret;
192         u32 handle;
193
194         size = roundup(size, PAGE_SIZE);
195         if (size == 0)
196                 return -EINVAL;
197
198         /* Allocate the new object */
199         obj = i915_gem_alloc_object(dev, size);
200         if (obj == NULL)
201                 return -ENOMEM;
202
203         ret = drm_gem_handle_create(file, &obj->base, &handle);
204         if (ret) {
205                 drm_gem_object_release(&obj->base);
206                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207                 kfree(obj);
208                 return ret;
209         }
210
211         /* drop reference from allocate - handle holds it now */
212         drm_gem_object_unreference(&obj->base);
213         trace_i915_gem_object_create(obj);
214
215         *handle_p = handle;
216         return 0;
217 }
218
219 int
220 i915_gem_dumb_create(struct drm_file *file,
221                      struct drm_device *dev,
222                      struct drm_mode_create_dumb *args)
223 {
224         /* have to work out size/pitch and return them */
225         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226         args->size = args->pitch * args->height;
227         return i915_gem_create(file, dev,
228                                args->size, &args->handle);
229 }
230
231 int i915_gem_dumb_destroy(struct drm_file *file,
232                           struct drm_device *dev,
233                           uint32_t handle)
234 {
235         return drm_gem_handle_delete(file, handle);
236 }
237
238 /**
239  * Creates a new mm object and returns a handle to it.
240  */
241 int
242 i915_gem_create_ioctl(struct drm_device *dev, void *data,
243                       struct drm_file *file)
244 {
245         struct drm_i915_gem_create *args = data;
246
247         return i915_gem_create(file, dev,
248                                args->size, &args->handle);
249 }
250
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252 {
253         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254
255         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256                 obj->tiling_mode != I915_TILING_NONE;
257 }
258
259 static inline int
260 __copy_to_user_swizzled(char __user *cpu_vaddr,
261                         const char *gpu_vaddr, int gpu_offset,
262                         int length)
263 {
264         int ret, cpu_offset = 0;
265
266         while (length > 0) {
267                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268                 int this_length = min(cacheline_end - gpu_offset, length);
269                 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272                                      gpu_vaddr + swizzled_gpu_offset,
273                                      this_length);
274                 if (ret)
275                         return ret + length;
276
277                 cpu_offset += this_length;
278                 gpu_offset += this_length;
279                 length -= this_length;
280         }
281
282         return 0;
283 }
284
285 static inline int
286 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287                           const char __user *cpu_vaddr,
288                           int length)
289 {
290         int ret, cpu_offset = 0;
291
292         while (length > 0) {
293                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294                 int this_length = min(cacheline_end - gpu_offset, length);
295                 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298                                        cpu_vaddr + cpu_offset,
299                                        this_length);
300                 if (ret)
301                         return ret + length;
302
303                 cpu_offset += this_length;
304                 gpu_offset += this_length;
305                 length -= this_length;
306         }
307
308         return 0;
309 }
310
311 /* Per-page copy function for the shmem pread fastpath.
312  * Flushes invalid cachelines before reading the target if
313  * needs_clflush is set. */
314 static int
315 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316                  char __user *user_data,
317                  bool page_do_bit17_swizzling, bool needs_clflush)
318 {
319         char *vaddr;
320         int ret;
321
322         if (unlikely(page_do_bit17_swizzling))
323                 return -EINVAL;
324
325         vaddr = kmap_atomic(page);
326         if (needs_clflush)
327                 drm_clflush_virt_range(vaddr + shmem_page_offset,
328                                        page_length);
329         ret = __copy_to_user_inatomic(user_data,
330                                       vaddr + shmem_page_offset,
331                                       page_length);
332         kunmap_atomic(vaddr);
333
334         return ret;
335 }
336
337 static void
338 shmem_clflush_swizzled_range(char *addr, unsigned long length,
339                              bool swizzled)
340 {
341         if (unlikely(swizzled)) {
342                 unsigned long start = (unsigned long) addr;
343                 unsigned long end = (unsigned long) addr + length;
344
345                 /* For swizzling simply ensure that we always flush both
346                  * channels. Lame, but simple and it works. Swizzled
347                  * pwrite/pread is far from a hotpath - current userspace
348                  * doesn't use it at all. */
349                 start = round_down(start, 128);
350                 end = round_up(end, 128);
351
352                 drm_clflush_virt_range((void *)start, end - start);
353         } else {
354                 drm_clflush_virt_range(addr, length);
355         }
356
357 }
358
359 /* Only difference to the fast-path function is that this can handle bit17
360  * and uses non-atomic copy and kmap functions. */
361 static int
362 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363                  char __user *user_data,
364                  bool page_do_bit17_swizzling, bool needs_clflush)
365 {
366         char *vaddr;
367         int ret;
368
369         vaddr = kmap(page);
370         if (needs_clflush)
371                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372                                              page_length,
373                                              page_do_bit17_swizzling);
374
375         if (page_do_bit17_swizzling)
376                 ret = __copy_to_user_swizzled(user_data,
377                                               vaddr, shmem_page_offset,
378                                               page_length);
379         else
380                 ret = __copy_to_user(user_data,
381                                      vaddr + shmem_page_offset,
382                                      page_length);
383         kunmap(page);
384
385         return ret;
386 }
387
388 static int
389 i915_gem_shmem_pread(struct drm_device *dev,
390                      struct drm_i915_gem_object *obj,
391                      struct drm_i915_gem_pread *args,
392                      struct drm_file *file)
393 {
394         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395         char __user *user_data;
396         ssize_t remain;
397         loff_t offset;
398         int shmem_page_offset, page_length, ret = 0;
399         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400         int hit_slowpath = 0;
401         int prefaulted = 0;
402         int needs_clflush = 0;
403         int release_page;
404
405         user_data = (char __user *) (uintptr_t) args->data_ptr;
406         remain = args->size;
407
408         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409
410         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411                 /* If we're not in the cpu read domain, set ourself into the gtt
412                  * read domain and manually flush cachelines (if required). This
413                  * optimizes for the case when the gpu will dirty the data
414                  * anyway again before the next pread happens. */
415                 if (obj->cache_level == I915_CACHE_NONE)
416                         needs_clflush = 1;
417                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418                 if (ret)
419                         return ret;
420         }
421
422         offset = args->offset;
423
424         while (remain > 0) {
425                 struct page *page;
426
427                 /* Operation in this page
428                  *
429                  * shmem_page_offset = offset within page in shmem file
430                  * page_length = bytes to copy for this page
431                  */
432                 shmem_page_offset = offset_in_page(offset);
433                 page_length = remain;
434                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435                         page_length = PAGE_SIZE - shmem_page_offset;
436
437                 if (obj->pages) {
438                         page = obj->pages[offset >> PAGE_SHIFT];
439                         release_page = 0;
440                 } else {
441                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442                         if (IS_ERR(page)) {
443                                 ret = PTR_ERR(page);
444                                 goto out;
445                         }
446                         release_page = 1;
447                 }
448
449                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450                         (page_to_phys(page) & (1 << 17)) != 0;
451
452                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453                                        user_data, page_do_bit17_swizzling,
454                                        needs_clflush);
455                 if (ret == 0)
456                         goto next_page;
457
458                 hit_slowpath = 1;
459                 page_cache_get(page);
460                 mutex_unlock(&dev->struct_mutex);
461
462                 if (!prefaulted) {
463                         ret = fault_in_multipages_writeable(user_data, remain);
464                         /* Userspace is tricking us, but we've already clobbered
465                          * its pages with the prefault and promised to write the
466                          * data up to the first fault. Hence ignore any errors
467                          * and just continue. */
468                         (void)ret;
469                         prefaulted = 1;
470                 }
471
472                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473                                        user_data, page_do_bit17_swizzling,
474                                        needs_clflush);
475
476                 mutex_lock(&dev->struct_mutex);
477                 page_cache_release(page);
478 next_page:
479                 mark_page_accessed(page);
480                 if (release_page)
481                         page_cache_release(page);
482
483                 if (ret) {
484                         ret = -EFAULT;
485                         goto out;
486                 }
487
488                 remain -= page_length;
489                 user_data += page_length;
490                 offset += page_length;
491         }
492
493 out:
494         if (hit_slowpath) {
495                 /* Fixup: Kill any reinstated backing storage pages */
496                 if (obj->madv == __I915_MADV_PURGED)
497                         i915_gem_object_truncate(obj);
498         }
499
500         return ret;
501 }
502
503 /**
504  * Reads data from the object referenced by handle.
505  *
506  * On error, the contents of *data are undefined.
507  */
508 int
509 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510                      struct drm_file *file)
511 {
512         struct drm_i915_gem_pread *args = data;
513         struct drm_i915_gem_object *obj;
514         int ret = 0;
515
516         if (args->size == 0)
517                 return 0;
518
519         if (!access_ok(VERIFY_WRITE,
520                        (char __user *)(uintptr_t)args->data_ptr,
521                        args->size))
522                 return -EFAULT;
523
524         ret = i915_mutex_lock_interruptible(dev);
525         if (ret)
526                 return ret;
527
528         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529         if (&obj->base == NULL) {
530                 ret = -ENOENT;
531                 goto unlock;
532         }
533
534         /* Bounds check source.  */
535         if (args->offset > obj->base.size ||
536             args->size > obj->base.size - args->offset) {
537                 ret = -EINVAL;
538                 goto out;
539         }
540
541         trace_i915_gem_object_pread(obj, args->offset, args->size);
542
543         ret = i915_gem_shmem_pread(dev, obj, args, file);
544
545 out:
546         drm_gem_object_unreference(&obj->base);
547 unlock:
548         mutex_unlock(&dev->struct_mutex);
549         return ret;
550 }
551
552 /* This is the fast write path which cannot handle
553  * page faults in the source data
554  */
555
556 static inline int
557 fast_user_write(struct io_mapping *mapping,
558                 loff_t page_base, int page_offset,
559                 char __user *user_data,
560                 int length)
561 {
562         void __iomem *vaddr_atomic;
563         void *vaddr;
564         unsigned long unwritten;
565
566         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567         /* We can use the cpu mem copy function because this is X86. */
568         vaddr = (void __force*)vaddr_atomic + page_offset;
569         unwritten = __copy_from_user_inatomic_nocache(vaddr,
570                                                       user_data, length);
571         io_mapping_unmap_atomic(vaddr_atomic);
572         return unwritten;
573 }
574
575 /**
576  * This is the fast pwrite path, where we copy the data directly from the
577  * user into the GTT, uncached.
578  */
579 static int
580 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581                          struct drm_i915_gem_object *obj,
582                          struct drm_i915_gem_pwrite *args,
583                          struct drm_file *file)
584 {
585         drm_i915_private_t *dev_priv = dev->dev_private;
586         ssize_t remain;
587         loff_t offset, page_base;
588         char __user *user_data;
589         int page_offset, page_length, ret;
590
591         ret = i915_gem_object_pin(obj, 0, true);
592         if (ret)
593                 goto out;
594
595         ret = i915_gem_object_set_to_gtt_domain(obj, true);
596         if (ret)
597                 goto out_unpin;
598
599         ret = i915_gem_object_put_fence(obj);
600         if (ret)
601                 goto out_unpin;
602
603         user_data = (char __user *) (uintptr_t) args->data_ptr;
604         remain = args->size;
605
606         offset = obj->gtt_offset + args->offset;
607
608         while (remain > 0) {
609                 /* Operation in this page
610                  *
611                  * page_base = page offset within aperture
612                  * page_offset = offset within page
613                  * page_length = bytes to copy for this page
614                  */
615                 page_base = offset & PAGE_MASK;
616                 page_offset = offset_in_page(offset);
617                 page_length = remain;
618                 if ((page_offset + remain) > PAGE_SIZE)
619                         page_length = PAGE_SIZE - page_offset;
620
621                 /* If we get a fault while copying data, then (presumably) our
622                  * source page isn't available.  Return the error and we'll
623                  * retry in the slow path.
624                  */
625                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
626                                     page_offset, user_data, page_length)) {
627                         ret = -EFAULT;
628                         goto out_unpin;
629                 }
630
631                 remain -= page_length;
632                 user_data += page_length;
633                 offset += page_length;
634         }
635
636 out_unpin:
637         i915_gem_object_unpin(obj);
638 out:
639         return ret;
640 }
641
642 /* Per-page copy function for the shmem pwrite fastpath.
643  * Flushes invalid cachelines before writing to the target if
644  * needs_clflush_before is set and flushes out any written cachelines after
645  * writing if needs_clflush is set. */
646 static int
647 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648                   char __user *user_data,
649                   bool page_do_bit17_swizzling,
650                   bool needs_clflush_before,
651                   bool needs_clflush_after)
652 {
653         char *vaddr;
654         int ret;
655
656         if (unlikely(page_do_bit17_swizzling))
657                 return -EINVAL;
658
659         vaddr = kmap_atomic(page);
660         if (needs_clflush_before)
661                 drm_clflush_virt_range(vaddr + shmem_page_offset,
662                                        page_length);
663         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664                                                 user_data,
665                                                 page_length);
666         if (needs_clflush_after)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         kunmap_atomic(vaddr);
670
671         return ret;
672 }
673
674 /* Only difference to the fast-path function is that this can handle bit17
675  * and uses non-atomic copy and kmap functions. */
676 static int
677 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678                   char __user *user_data,
679                   bool page_do_bit17_swizzling,
680                   bool needs_clflush_before,
681                   bool needs_clflush_after)
682 {
683         char *vaddr;
684         int ret;
685
686         vaddr = kmap(page);
687         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689                                              page_length,
690                                              page_do_bit17_swizzling);
691         if (page_do_bit17_swizzling)
692                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693                                                 user_data,
694                                                 page_length);
695         else
696                 ret = __copy_from_user(vaddr + shmem_page_offset,
697                                        user_data,
698                                        page_length);
699         if (needs_clflush_after)
700                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701                                              page_length,
702                                              page_do_bit17_swizzling);
703         kunmap(page);
704
705         return ret;
706 }
707
708 static int
709 i915_gem_shmem_pwrite(struct drm_device *dev,
710                       struct drm_i915_gem_object *obj,
711                       struct drm_i915_gem_pwrite *args,
712                       struct drm_file *file)
713 {
714         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715         ssize_t remain;
716         loff_t offset;
717         char __user *user_data;
718         int shmem_page_offset, page_length, ret = 0;
719         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720         int hit_slowpath = 0;
721         int needs_clflush_after = 0;
722         int needs_clflush_before = 0;
723         int release_page;
724
725         user_data = (char __user *) (uintptr_t) args->data_ptr;
726         remain = args->size;
727
728         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729
730         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731                 /* If we're not in the cpu write domain, set ourself into the gtt
732                  * write domain and manually flush cachelines (if required). This
733                  * optimizes for the case when the gpu will use the data
734                  * right away and we therefore have to clflush anyway. */
735                 if (obj->cache_level == I915_CACHE_NONE)
736                         needs_clflush_after = 1;
737                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738                 if (ret)
739                         return ret;
740         }
741         /* Same trick applies for invalidate partially written cachelines before
742          * writing.  */
743         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744             && obj->cache_level == I915_CACHE_NONE)
745                 needs_clflush_before = 1;
746
747         offset = args->offset;
748         obj->dirty = 1;
749
750         while (remain > 0) {
751                 struct page *page;
752                 int partial_cacheline_write;
753
754                 /* Operation in this page
755                  *
756                  * shmem_page_offset = offset within page in shmem file
757                  * page_length = bytes to copy for this page
758                  */
759                 shmem_page_offset = offset_in_page(offset);
760
761                 page_length = remain;
762                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763                         page_length = PAGE_SIZE - shmem_page_offset;
764
765                 /* If we don't overwrite a cacheline completely we need to be
766                  * careful to have up-to-date data by first clflushing. Don't
767                  * overcomplicate things and flush the entire patch. */
768                 partial_cacheline_write = needs_clflush_before &&
769                         ((shmem_page_offset | page_length)
770                                 & (boot_cpu_data.x86_clflush_size - 1));
771
772                 if (obj->pages) {
773                         page = obj->pages[offset >> PAGE_SHIFT];
774                         release_page = 0;
775                 } else {
776                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777                         if (IS_ERR(page)) {
778                                 ret = PTR_ERR(page);
779                                 goto out;
780                         }
781                         release_page = 1;
782                 }
783
784                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785                         (page_to_phys(page) & (1 << 17)) != 0;
786
787                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788                                         user_data, page_do_bit17_swizzling,
789                                         partial_cacheline_write,
790                                         needs_clflush_after);
791                 if (ret == 0)
792                         goto next_page;
793
794                 hit_slowpath = 1;
795                 page_cache_get(page);
796                 mutex_unlock(&dev->struct_mutex);
797
798                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799                                         user_data, page_do_bit17_swizzling,
800                                         partial_cacheline_write,
801                                         needs_clflush_after);
802
803                 mutex_lock(&dev->struct_mutex);
804                 page_cache_release(page);
805 next_page:
806                 set_page_dirty(page);
807                 mark_page_accessed(page);
808                 if (release_page)
809                         page_cache_release(page);
810
811                 if (ret) {
812                         ret = -EFAULT;
813                         goto out;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out:
822         if (hit_slowpath) {
823                 /* Fixup: Kill any reinstated backing storage pages */
824                 if (obj->madv == __I915_MADV_PURGED)
825                         i915_gem_object_truncate(obj);
826                 /* and flush dirty cachelines in case the object isn't in the cpu write
827                  * domain anymore. */
828                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829                         i915_gem_clflush_object(obj);
830                         intel_gtt_chipset_flush();
831                 }
832         }
833
834         if (needs_clflush_after)
835                 intel_gtt_chipset_flush();
836
837         return ret;
838 }
839
840 /**
841  * Writes data to the object referenced by handle.
842  *
843  * On error, the contents of the buffer that were to be modified are undefined.
844  */
845 int
846 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847                       struct drm_file *file)
848 {
849         struct drm_i915_gem_pwrite *args = data;
850         struct drm_i915_gem_object *obj;
851         int ret;
852
853         if (args->size == 0)
854                 return 0;
855
856         if (!access_ok(VERIFY_READ,
857                        (char __user *)(uintptr_t)args->data_ptr,
858                        args->size))
859                 return -EFAULT;
860
861         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862                                            args->size);
863         if (ret)
864                 return -EFAULT;
865
866         ret = i915_mutex_lock_interruptible(dev);
867         if (ret)
868                 return ret;
869
870         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871         if (&obj->base == NULL) {
872                 ret = -ENOENT;
873                 goto unlock;
874         }
875
876         /* Bounds check destination. */
877         if (args->offset > obj->base.size ||
878             args->size > obj->base.size - args->offset) {
879                 ret = -EINVAL;
880                 goto out;
881         }
882
883         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
885         ret = -EFAULT;
886         /* We can only do the GTT pwrite on untiled buffers, as otherwise
887          * it would end up going through the fenced access, and we'll get
888          * different detiling behavior between reading and writing.
889          * pread/pwrite currently are reading and writing from the CPU
890          * perspective, requiring manual detiling by the client.
891          */
892         if (obj->phys_obj) {
893                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
894                 goto out;
895         }
896
897         if (obj->gtt_space &&
898             obj->cache_level == I915_CACHE_NONE &&
899             obj->tiling_mode == I915_TILING_NONE &&
900             obj->map_and_fenceable &&
901             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
903                 /* Note that the gtt paths might fail with non-page-backed user
904                  * pointers (e.g. gtt mappings when moving data between
905                  * textures). Fallback to the shmem path in that case. */
906         }
907
908         if (ret == -EFAULT)
909                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910
911 out:
912         drm_gem_object_unreference(&obj->base);
913 unlock:
914         mutex_unlock(&dev->struct_mutex);
915         return ret;
916 }
917
918 /**
919  * Called when user space prepares to use an object with the CPU, either
920  * through the mmap ioctl's mapping or a GTT mapping.
921  */
922 int
923 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924                           struct drm_file *file)
925 {
926         struct drm_i915_gem_set_domain *args = data;
927         struct drm_i915_gem_object *obj;
928         uint32_t read_domains = args->read_domains;
929         uint32_t write_domain = args->write_domain;
930         int ret;
931
932         /* Only handle setting domains to types used by the CPU. */
933         if (write_domain & I915_GEM_GPU_DOMAINS)
934                 return -EINVAL;
935
936         if (read_domains & I915_GEM_GPU_DOMAINS)
937                 return -EINVAL;
938
939         /* Having something in the write domain implies it's in the read
940          * domain, and only that read domain.  Enforce that in the request.
941          */
942         if (write_domain != 0 && read_domains != write_domain)
943                 return -EINVAL;
944
945         ret = i915_mutex_lock_interruptible(dev);
946         if (ret)
947                 return ret;
948
949         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950         if (&obj->base == NULL) {
951                 ret = -ENOENT;
952                 goto unlock;
953         }
954
955         if (read_domains & I915_GEM_DOMAIN_GTT) {
956                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957
958                 /* Silently promote "you're not bound, there was nothing to do"
959                  * to success, since the client was just asking us to
960                  * make sure everything was done.
961                  */
962                 if (ret == -EINVAL)
963                         ret = 0;
964         } else {
965                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966         }
967
968         drm_gem_object_unreference(&obj->base);
969 unlock:
970         mutex_unlock(&dev->struct_mutex);
971         return ret;
972 }
973
974 /**
975  * Called when user space has done writes to this buffer
976  */
977 int
978 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979                          struct drm_file *file)
980 {
981         struct drm_i915_gem_sw_finish *args = data;
982         struct drm_i915_gem_object *obj;
983         int ret = 0;
984
985         ret = i915_mutex_lock_interruptible(dev);
986         if (ret)
987                 return ret;
988
989         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990         if (&obj->base == NULL) {
991                 ret = -ENOENT;
992                 goto unlock;
993         }
994
995         /* Pinned buffers may be scanout, so flush the cache */
996         if (obj->pin_count)
997                 i915_gem_object_flush_cpu_write_domain(obj);
998
999         drm_gem_object_unreference(&obj->base);
1000 unlock:
1001         mutex_unlock(&dev->struct_mutex);
1002         return ret;
1003 }
1004
1005 /**
1006  * Maps the contents of an object, returning the address it is mapped
1007  * into.
1008  *
1009  * While the mapping holds a reference on the contents of the object, it doesn't
1010  * imply a ref on the object itself.
1011  */
1012 int
1013 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014                     struct drm_file *file)
1015 {
1016         struct drm_i915_gem_mmap *args = data;
1017         struct drm_gem_object *obj;
1018         unsigned long addr;
1019
1020         obj = drm_gem_object_lookup(dev, file, args->handle);
1021         if (obj == NULL)
1022                 return -ENOENT;
1023
1024         addr = vm_mmap(obj->filp, 0, args->size,
1025                        PROT_READ | PROT_WRITE, MAP_SHARED,
1026                        args->offset);
1027         drm_gem_object_unreference_unlocked(obj);
1028         if (IS_ERR((void *)addr))
1029                 return addr;
1030
1031         args->addr_ptr = (uint64_t) addr;
1032
1033         return 0;
1034 }
1035
1036 /**
1037  * i915_gem_fault - fault a page into the GTT
1038  * vma: VMA in question
1039  * vmf: fault info
1040  *
1041  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1042  * from userspace.  The fault handler takes care of binding the object to
1043  * the GTT (if needed), allocating and programming a fence register (again,
1044  * only if needed based on whether the old reg is still valid or the object
1045  * is tiled) and inserting a new PTE into the faulting process.
1046  *
1047  * Note that the faulting process may involve evicting existing objects
1048  * from the GTT and/or fence registers to make room.  So performance may
1049  * suffer if the GTT working set is large or there are few fence registers
1050  * left.
1051  */
1052 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1053 {
1054         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1055         struct drm_device *dev = obj->base.dev;
1056         drm_i915_private_t *dev_priv = dev->dev_private;
1057         pgoff_t page_offset;
1058         unsigned long pfn;
1059         int ret = 0;
1060         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1061
1062         /* We don't use vmf->pgoff since that has the fake offset */
1063         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1064                 PAGE_SHIFT;
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret)
1068                 goto out;
1069
1070         trace_i915_gem_object_fault(obj, page_offset, true, write);
1071
1072         /* Now bind it into the GTT if needed */
1073         if (!obj->map_and_fenceable) {
1074                 ret = i915_gem_object_unbind(obj);
1075                 if (ret)
1076                         goto unlock;
1077         }
1078         if (!obj->gtt_space) {
1079                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1080                 if (ret)
1081                         goto unlock;
1082
1083                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1084                 if (ret)
1085                         goto unlock;
1086         }
1087
1088         if (!obj->has_global_gtt_mapping)
1089                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1090
1091         ret = i915_gem_object_get_fence(obj);
1092         if (ret)
1093                 goto unlock;
1094
1095         if (i915_gem_object_is_inactive(obj))
1096                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1097
1098         obj->fault_mappable = true;
1099
1100         pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1101                 page_offset;
1102
1103         /* Finally, remap it using the new GTT offset */
1104         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1105 unlock:
1106         mutex_unlock(&dev->struct_mutex);
1107 out:
1108         switch (ret) {
1109         case -EIO:
1110         case -EAGAIN:
1111                 /* Give the error handler a chance to run and move the
1112                  * objects off the GPU active list. Next time we service the
1113                  * fault, we should be able to transition the page into the
1114                  * GTT without touching the GPU (and so avoid further
1115                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1116                  * with coherency, just lost writes.
1117                  */
1118                 set_need_resched();
1119         case 0:
1120         case -ERESTARTSYS:
1121         case -EINTR:
1122                 return VM_FAULT_NOPAGE;
1123         case -ENOMEM:
1124                 return VM_FAULT_OOM;
1125         default:
1126                 return VM_FAULT_SIGBUS;
1127         }
1128 }
1129
1130 /**
1131  * i915_gem_release_mmap - remove physical page mappings
1132  * @obj: obj in question
1133  *
1134  * Preserve the reservation of the mmapping with the DRM core code, but
1135  * relinquish ownership of the pages back to the system.
1136  *
1137  * It is vital that we remove the page mapping if we have mapped a tiled
1138  * object through the GTT and then lose the fence register due to
1139  * resource pressure. Similarly if the object has been moved out of the
1140  * aperture, than pages mapped into userspace must be revoked. Removing the
1141  * mapping will then trigger a page fault on the next user access, allowing
1142  * fixup by i915_gem_fault().
1143  */
1144 void
1145 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1146 {
1147         if (!obj->fault_mappable)
1148                 return;
1149
1150         if (obj->base.dev->dev_mapping)
1151                 unmap_mapping_range(obj->base.dev->dev_mapping,
1152                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1153                                     obj->base.size, 1);
1154
1155         obj->fault_mappable = false;
1156 }
1157
1158 static uint32_t
1159 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1160 {
1161         uint32_t gtt_size;
1162
1163         if (INTEL_INFO(dev)->gen >= 4 ||
1164             tiling_mode == I915_TILING_NONE)
1165                 return size;
1166
1167         /* Previous chips need a power-of-two fence region when tiling */
1168         if (INTEL_INFO(dev)->gen == 3)
1169                 gtt_size = 1024*1024;
1170         else
1171                 gtt_size = 512*1024;
1172
1173         while (gtt_size < size)
1174                 gtt_size <<= 1;
1175
1176         return gtt_size;
1177 }
1178
1179 /**
1180  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1181  * @obj: object to check
1182  *
1183  * Return the required GTT alignment for an object, taking into account
1184  * potential fence register mapping.
1185  */
1186 static uint32_t
1187 i915_gem_get_gtt_alignment(struct drm_device *dev,
1188                            uint32_t size,
1189                            int tiling_mode)
1190 {
1191         /*
1192          * Minimum alignment is 4k (GTT page size), but might be greater
1193          * if a fence register is needed for the object.
1194          */
1195         if (INTEL_INFO(dev)->gen >= 4 ||
1196             tiling_mode == I915_TILING_NONE)
1197                 return 4096;
1198
1199         /*
1200          * Previous chips need to be aligned to the size of the smallest
1201          * fence register that can contain the object.
1202          */
1203         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1204 }
1205
1206 /**
1207  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1208  *                                       unfenced object
1209  * @dev: the device
1210  * @size: size of the object
1211  * @tiling_mode: tiling mode of the object
1212  *
1213  * Return the required GTT alignment for an object, only taking into account
1214  * unfenced tiled surface requirements.
1215  */
1216 uint32_t
1217 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1218                                     uint32_t size,
1219                                     int tiling_mode)
1220 {
1221         /*
1222          * Minimum alignment is 4k (GTT page size) for sane hw.
1223          */
1224         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1225             tiling_mode == I915_TILING_NONE)
1226                 return 4096;
1227
1228         /* Previous hardware however needs to be aligned to a power-of-two
1229          * tile height. The simplest method for determining this is to reuse
1230          * the power-of-tile object size.
1231          */
1232         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1233 }
1234
1235 int
1236 i915_gem_mmap_gtt(struct drm_file *file,
1237                   struct drm_device *dev,
1238                   uint32_t handle,
1239                   uint64_t *offset)
1240 {
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242         struct drm_i915_gem_object *obj;
1243         int ret;
1244
1245         ret = i915_mutex_lock_interruptible(dev);
1246         if (ret)
1247                 return ret;
1248
1249         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1250         if (&obj->base == NULL) {
1251                 ret = -ENOENT;
1252                 goto unlock;
1253         }
1254
1255         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1256                 ret = -E2BIG;
1257                 goto out;
1258         }
1259
1260         if (obj->madv != I915_MADV_WILLNEED) {
1261                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1262                 ret = -EINVAL;
1263                 goto out;
1264         }
1265
1266         if (!obj->base.map_list.map) {
1267                 ret = drm_gem_create_mmap_offset(&obj->base);
1268                 if (ret)
1269                         goto out;
1270         }
1271
1272         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1273
1274 out:
1275         drm_gem_object_unreference(&obj->base);
1276 unlock:
1277         mutex_unlock(&dev->struct_mutex);
1278         return ret;
1279 }
1280
1281 /**
1282  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1283  * @dev: DRM device
1284  * @data: GTT mapping ioctl data
1285  * @file: GEM object info
1286  *
1287  * Simply returns the fake offset to userspace so it can mmap it.
1288  * The mmap call will end up in drm_gem_mmap(), which will set things
1289  * up so we can get faults in the handler above.
1290  *
1291  * The fault handler will take care of binding the object into the GTT
1292  * (since it may have been evicted to make room for something), allocating
1293  * a fence register, and mapping the appropriate aperture address into
1294  * userspace.
1295  */
1296 int
1297 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1298                         struct drm_file *file)
1299 {
1300         struct drm_i915_gem_mmap_gtt *args = data;
1301
1302         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1303 }
1304
1305
1306 static int
1307 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1308                               gfp_t gfpmask)
1309 {
1310         int page_count, i;
1311         struct address_space *mapping;
1312         struct inode *inode;
1313         struct page *page;
1314
1315         /* Get the list of pages out of our struct file.  They'll be pinned
1316          * at this point until we release them.
1317          */
1318         page_count = obj->base.size / PAGE_SIZE;
1319         BUG_ON(obj->pages != NULL);
1320         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1321         if (obj->pages == NULL)
1322                 return -ENOMEM;
1323
1324         inode = obj->base.filp->f_path.dentry->d_inode;
1325         mapping = inode->i_mapping;
1326         gfpmask |= mapping_gfp_mask(mapping);
1327
1328         for (i = 0; i < page_count; i++) {
1329                 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1330                 if (IS_ERR(page))
1331                         goto err_pages;
1332
1333                 obj->pages[i] = page;
1334         }
1335
1336         if (i915_gem_object_needs_bit17_swizzle(obj))
1337                 i915_gem_object_do_bit_17_swizzle(obj);
1338
1339         return 0;
1340
1341 err_pages:
1342         while (i--)
1343                 page_cache_release(obj->pages[i]);
1344
1345         drm_free_large(obj->pages);
1346         obj->pages = NULL;
1347         return PTR_ERR(page);
1348 }
1349
1350 static void
1351 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1352 {
1353         int page_count = obj->base.size / PAGE_SIZE;
1354         int i;
1355
1356         BUG_ON(obj->madv == __I915_MADV_PURGED);
1357
1358         if (i915_gem_object_needs_bit17_swizzle(obj))
1359                 i915_gem_object_save_bit_17_swizzle(obj);
1360
1361         if (obj->madv == I915_MADV_DONTNEED)
1362                 obj->dirty = 0;
1363
1364         for (i = 0; i < page_count; i++) {
1365                 if (obj->dirty)
1366                         set_page_dirty(obj->pages[i]);
1367
1368                 if (obj->madv == I915_MADV_WILLNEED)
1369                         mark_page_accessed(obj->pages[i]);
1370
1371                 page_cache_release(obj->pages[i]);
1372         }
1373         obj->dirty = 0;
1374
1375         drm_free_large(obj->pages);
1376         obj->pages = NULL;
1377 }
1378
1379 void
1380 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1381                                struct intel_ring_buffer *ring,
1382                                u32 seqno)
1383 {
1384         struct drm_device *dev = obj->base.dev;
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386
1387         BUG_ON(ring == NULL);
1388         obj->ring = ring;
1389
1390         /* Add a reference if we're newly entering the active list. */
1391         if (!obj->active) {
1392                 drm_gem_object_reference(&obj->base);
1393                 obj->active = 1;
1394         }
1395
1396         /* Move from whatever list we were on to the tail of execution. */
1397         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1398         list_move_tail(&obj->ring_list, &ring->active_list);
1399
1400         obj->last_rendering_seqno = seqno;
1401
1402         if (obj->fenced_gpu_access) {
1403                 obj->last_fenced_seqno = seqno;
1404
1405                 /* Bump MRU to take account of the delayed flush */
1406                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1407                         struct drm_i915_fence_reg *reg;
1408
1409                         reg = &dev_priv->fence_regs[obj->fence_reg];
1410                         list_move_tail(&reg->lru_list,
1411                                        &dev_priv->mm.fence_list);
1412                 }
1413         }
1414 }
1415
1416 static void
1417 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1418 {
1419         list_del_init(&obj->ring_list);
1420         obj->last_rendering_seqno = 0;
1421         obj->last_fenced_seqno = 0;
1422 }
1423
1424 static void
1425 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1426 {
1427         struct drm_device *dev = obj->base.dev;
1428         drm_i915_private_t *dev_priv = dev->dev_private;
1429
1430         BUG_ON(!obj->active);
1431         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1432
1433         i915_gem_object_move_off_active(obj);
1434 }
1435
1436 static void
1437 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1438 {
1439         struct drm_device *dev = obj->base.dev;
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441
1442         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1443
1444         BUG_ON(!list_empty(&obj->gpu_write_list));
1445         BUG_ON(!obj->active);
1446         obj->ring = NULL;
1447
1448         i915_gem_object_move_off_active(obj);
1449         obj->fenced_gpu_access = false;
1450
1451         obj->active = 0;
1452         obj->pending_gpu_write = false;
1453         drm_gem_object_unreference(&obj->base);
1454
1455         WARN_ON(i915_verify_lists(dev));
1456 }
1457
1458 /* Immediately discard the backing storage */
1459 static void
1460 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1461 {
1462         struct inode *inode;
1463
1464         /* Our goal here is to return as much of the memory as
1465          * is possible back to the system as we are called from OOM.
1466          * To do this we must instruct the shmfs to drop all of its
1467          * backing pages, *now*.
1468          */
1469         inode = obj->base.filp->f_path.dentry->d_inode;
1470         shmem_truncate_range(inode, 0, (loff_t)-1);
1471
1472         if (obj->base.map_list.map)
1473                 drm_gem_free_mmap_offset(&obj->base);
1474
1475         obj->madv = __I915_MADV_PURGED;
1476 }
1477
1478 static inline int
1479 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1480 {
1481         return obj->madv == I915_MADV_DONTNEED;
1482 }
1483
1484 static void
1485 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486                                uint32_t flush_domains)
1487 {
1488         struct drm_i915_gem_object *obj, *next;
1489
1490         list_for_each_entry_safe(obj, next,
1491                                  &ring->gpu_write_list,
1492                                  gpu_write_list) {
1493                 if (obj->base.write_domain & flush_domains) {
1494                         uint32_t old_write_domain = obj->base.write_domain;
1495
1496                         obj->base.write_domain = 0;
1497                         list_del_init(&obj->gpu_write_list);
1498                         i915_gem_object_move_to_active(obj, ring,
1499                                                        i915_gem_next_request_seqno(ring));
1500
1501                         trace_i915_gem_object_change_domain(obj,
1502                                                             obj->base.read_domains,
1503                                                             old_write_domain);
1504                 }
1505         }
1506 }
1507
1508 static u32
1509 i915_gem_get_seqno(struct drm_device *dev)
1510 {
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         u32 seqno = dev_priv->next_seqno;
1513
1514         /* reserve 0 for non-seqno */
1515         if (++dev_priv->next_seqno == 0)
1516                 dev_priv->next_seqno = 1;
1517
1518         return seqno;
1519 }
1520
1521 u32
1522 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523 {
1524         if (ring->outstanding_lazy_request == 0)
1525                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527         return ring->outstanding_lazy_request;
1528 }
1529
1530 int
1531 i915_add_request(struct intel_ring_buffer *ring,
1532                  struct drm_file *file,
1533                  struct drm_i915_gem_request *request)
1534 {
1535         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1536         uint32_t seqno;
1537         u32 request_ring_position;
1538         int was_empty;
1539         int ret;
1540
1541         BUG_ON(request == NULL);
1542         seqno = i915_gem_next_request_seqno(ring);
1543
1544         /* Record the position of the start of the request so that
1545          * should we detect the updated seqno part-way through the
1546          * GPU processing the request, we never over-estimate the
1547          * position of the head.
1548          */
1549         request_ring_position = intel_ring_get_tail(ring);
1550
1551         ret = ring->add_request(ring, &seqno);
1552         if (ret)
1553             return ret;
1554
1555         trace_i915_gem_request_add(ring, seqno);
1556
1557         request->seqno = seqno;
1558         request->ring = ring;
1559         request->tail = request_ring_position;
1560         request->emitted_jiffies = jiffies;
1561         was_empty = list_empty(&ring->request_list);
1562         list_add_tail(&request->list, &ring->request_list);
1563
1564         if (file) {
1565                 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1567                 spin_lock(&file_priv->mm.lock);
1568                 request->file_priv = file_priv;
1569                 list_add_tail(&request->client_list,
1570                               &file_priv->mm.request_list);
1571                 spin_unlock(&file_priv->mm.lock);
1572         }
1573
1574         ring->outstanding_lazy_request = 0;
1575
1576         if (!dev_priv->mm.suspended) {
1577                 if (i915_enable_hangcheck) {
1578                         mod_timer(&dev_priv->hangcheck_timer,
1579                                   jiffies +
1580                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581                 }
1582                 if (was_empty)
1583                         queue_delayed_work(dev_priv->wq,
1584                                            &dev_priv->mm.retire_work, HZ);
1585         }
1586         return 0;
1587 }
1588
1589 static inline void
1590 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1591 {
1592         struct drm_i915_file_private *file_priv = request->file_priv;
1593
1594         if (!file_priv)
1595                 return;
1596
1597         spin_lock(&file_priv->mm.lock);
1598         if (request->file_priv) {
1599                 list_del(&request->client_list);
1600                 request->file_priv = NULL;
1601         }
1602         spin_unlock(&file_priv->mm.lock);
1603 }
1604
1605 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606                                       struct intel_ring_buffer *ring)
1607 {
1608         while (!list_empty(&ring->request_list)) {
1609                 struct drm_i915_gem_request *request;
1610
1611                 request = list_first_entry(&ring->request_list,
1612                                            struct drm_i915_gem_request,
1613                                            list);
1614
1615                 list_del(&request->list);
1616                 i915_gem_request_remove_from_client(request);
1617                 kfree(request);
1618         }
1619
1620         while (!list_empty(&ring->active_list)) {
1621                 struct drm_i915_gem_object *obj;
1622
1623                 obj = list_first_entry(&ring->active_list,
1624                                        struct drm_i915_gem_object,
1625                                        ring_list);
1626
1627                 obj->base.write_domain = 0;
1628                 list_del_init(&obj->gpu_write_list);
1629                 i915_gem_object_move_to_inactive(obj);
1630         }
1631 }
1632
1633 static void i915_gem_reset_fences(struct drm_device *dev)
1634 {
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636         int i;
1637
1638         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1639                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1640
1641                 i915_gem_write_fence(dev, i, NULL);
1642
1643                 if (reg->obj)
1644                         i915_gem_object_fence_lost(reg->obj);
1645
1646                 reg->pin_count = 0;
1647                 reg->obj = NULL;
1648                 INIT_LIST_HEAD(&reg->lru_list);
1649         }
1650
1651         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1652 }
1653
1654 void i915_gem_reset(struct drm_device *dev)
1655 {
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         struct drm_i915_gem_object *obj;
1658         struct intel_ring_buffer *ring;
1659         int i;
1660
1661         for_each_ring(ring, dev_priv, i)
1662                 i915_gem_reset_ring_lists(dev_priv, ring);
1663
1664         /* Remove anything from the flushing lists. The GPU cache is likely
1665          * to be lost on reset along with the data, so simply move the
1666          * lost bo to the inactive list.
1667          */
1668         while (!list_empty(&dev_priv->mm.flushing_list)) {
1669                 obj = list_first_entry(&dev_priv->mm.flushing_list,
1670                                       struct drm_i915_gem_object,
1671                                       mm_list);
1672
1673                 obj->base.write_domain = 0;
1674                 list_del_init(&obj->gpu_write_list);
1675                 i915_gem_object_move_to_inactive(obj);
1676         }
1677
1678         /* Move everything out of the GPU domains to ensure we do any
1679          * necessary invalidation upon reuse.
1680          */
1681         list_for_each_entry(obj,
1682                             &dev_priv->mm.inactive_list,
1683                             mm_list)
1684         {
1685                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1686         }
1687
1688         /* The fence registers are invalidated so clear them out */
1689         i915_gem_reset_fences(dev);
1690 }
1691
1692 /**
1693  * This function clears the request list as sequence numbers are passed.
1694  */
1695 void
1696 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1697 {
1698         uint32_t seqno;
1699         int i;
1700
1701         if (list_empty(&ring->request_list))
1702                 return;
1703
1704         WARN_ON(i915_verify_lists(ring->dev));
1705
1706         seqno = ring->get_seqno(ring);
1707
1708         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1709                 if (seqno >= ring->sync_seqno[i])
1710                         ring->sync_seqno[i] = 0;
1711
1712         while (!list_empty(&ring->request_list)) {
1713                 struct drm_i915_gem_request *request;
1714
1715                 request = list_first_entry(&ring->request_list,
1716                                            struct drm_i915_gem_request,
1717                                            list);
1718
1719                 if (!i915_seqno_passed(seqno, request->seqno))
1720                         break;
1721
1722                 trace_i915_gem_request_retire(ring, request->seqno);
1723                 /* We know the GPU must have read the request to have
1724                  * sent us the seqno + interrupt, so use the position
1725                  * of tail of the request to update the last known position
1726                  * of the GPU head.
1727                  */
1728                 ring->last_retired_head = request->tail;
1729
1730                 list_del(&request->list);
1731                 i915_gem_request_remove_from_client(request);
1732                 kfree(request);
1733         }
1734
1735         /* Move any buffers on the active list that are no longer referenced
1736          * by the ringbuffer to the flushing/inactive lists as appropriate.
1737          */
1738         while (!list_empty(&ring->active_list)) {
1739                 struct drm_i915_gem_object *obj;
1740
1741                 obj = list_first_entry(&ring->active_list,
1742                                       struct drm_i915_gem_object,
1743                                       ring_list);
1744
1745                 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1746                         break;
1747
1748                 if (obj->base.write_domain != 0)
1749                         i915_gem_object_move_to_flushing(obj);
1750                 else
1751                         i915_gem_object_move_to_inactive(obj);
1752         }
1753
1754         if (unlikely(ring->trace_irq_seqno &&
1755                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1756                 ring->irq_put(ring);
1757                 ring->trace_irq_seqno = 0;
1758         }
1759
1760         WARN_ON(i915_verify_lists(ring->dev));
1761 }
1762
1763 void
1764 i915_gem_retire_requests(struct drm_device *dev)
1765 {
1766         drm_i915_private_t *dev_priv = dev->dev_private;
1767         struct intel_ring_buffer *ring;
1768         int i;
1769
1770         for_each_ring(ring, dev_priv, i)
1771                 i915_gem_retire_requests_ring(ring);
1772 }
1773
1774 static void
1775 i915_gem_retire_work_handler(struct work_struct *work)
1776 {
1777         drm_i915_private_t *dev_priv;
1778         struct drm_device *dev;
1779         struct intel_ring_buffer *ring;
1780         bool idle;
1781         int i;
1782
1783         dev_priv = container_of(work, drm_i915_private_t,
1784                                 mm.retire_work.work);
1785         dev = dev_priv->dev;
1786
1787         /* Come back later if the device is busy... */
1788         if (!mutex_trylock(&dev->struct_mutex)) {
1789                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1790                 return;
1791         }
1792
1793         i915_gem_retire_requests(dev);
1794
1795         /* Send a periodic flush down the ring so we don't hold onto GEM
1796          * objects indefinitely.
1797          */
1798         idle = true;
1799         for_each_ring(ring, dev_priv, i) {
1800                 if (!list_empty(&ring->gpu_write_list)) {
1801                         struct drm_i915_gem_request *request;
1802                         int ret;
1803
1804                         ret = i915_gem_flush_ring(ring,
1805                                                   0, I915_GEM_GPU_DOMAINS);
1806                         request = kzalloc(sizeof(*request), GFP_KERNEL);
1807                         if (ret || request == NULL ||
1808                             i915_add_request(ring, NULL, request))
1809                             kfree(request);
1810                 }
1811
1812                 idle &= list_empty(&ring->request_list);
1813         }
1814
1815         if (!dev_priv->mm.suspended && !idle)
1816                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817
1818         mutex_unlock(&dev->struct_mutex);
1819 }
1820
1821 static int
1822 i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1823 {
1824         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1825
1826         if (atomic_read(&dev_priv->mm.wedged)) {
1827                 struct completion *x = &dev_priv->error_completion;
1828                 bool recovery_complete;
1829                 unsigned long flags;
1830
1831                 /* Give the error handler a chance to run. */
1832                 spin_lock_irqsave(&x->wait.lock, flags);
1833                 recovery_complete = x->done > 0;
1834                 spin_unlock_irqrestore(&x->wait.lock, flags);
1835
1836                 return recovery_complete ? -EIO : -EAGAIN;
1837         }
1838
1839         return 0;
1840 }
1841
1842 /*
1843  * Compare seqno against outstanding lazy request. Emit a request if they are
1844  * equal.
1845  */
1846 static int
1847 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1848 {
1849         int ret = 0;
1850
1851         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1852
1853         if (seqno == ring->outstanding_lazy_request) {
1854                 struct drm_i915_gem_request *request;
1855
1856                 request = kzalloc(sizeof(*request), GFP_KERNEL);
1857                 if (request == NULL)
1858                         return -ENOMEM;
1859
1860                 ret = i915_add_request(ring, NULL, request);
1861                 if (ret) {
1862                         kfree(request);
1863                         return ret;
1864                 }
1865
1866                 BUG_ON(seqno != request->seqno);
1867         }
1868
1869         return ret;
1870 }
1871
1872 /**
1873  * __wait_seqno - wait until execution of seqno has finished
1874  * @ring: the ring expected to report seqno
1875  * @seqno: duh!
1876  * @interruptible: do an interruptible wait (normally yes)
1877  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1878  *
1879  * Returns 0 if the seqno was found within the alloted time. Else returns the
1880  * errno with remaining time filled in timeout argument.
1881  */
1882 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1883                         bool interruptible, struct timespec *timeout)
1884 {
1885         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1886         struct timespec before, now, wait_time={1,0};
1887         unsigned long timeout_jiffies;
1888         long end;
1889         bool wait_forever = true;
1890
1891         if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1892                 return 0;
1893
1894         trace_i915_gem_request_wait_begin(ring, seqno);
1895
1896         if (timeout != NULL) {
1897                 wait_time = *timeout;
1898                 wait_forever = false;
1899         }
1900
1901         timeout_jiffies = timespec_to_jiffies(&wait_time);
1902
1903         if (WARN_ON(!ring->irq_get(ring)))
1904                 return -ENODEV;
1905
1906         /* Record current time in case interrupted by signal, or wedged * */
1907         getrawmonotonic(&before);
1908
1909 #define EXIT_COND \
1910         (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1911         atomic_read(&dev_priv->mm.wedged))
1912         do {
1913                 if (interruptible)
1914                         end = wait_event_interruptible_timeout(ring->irq_queue,
1915                                                                EXIT_COND,
1916                                                                timeout_jiffies);
1917                 else
1918                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1919                                                  timeout_jiffies);
1920
1921                 if (atomic_read(&dev_priv->mm.wedged))
1922                         end = -EAGAIN;
1923         } while (end == 0 && wait_forever);
1924
1925         getrawmonotonic(&now);
1926
1927         ring->irq_put(ring);
1928         trace_i915_gem_request_wait_end(ring, seqno);
1929 #undef EXIT_COND
1930
1931         if (timeout) {
1932                 struct timespec sleep_time = timespec_sub(now, before);
1933                 *timeout = timespec_sub(*timeout, sleep_time);
1934         }
1935
1936         switch (end) {
1937         case -EAGAIN: /* Wedged */
1938         case -ERESTARTSYS: /* Signal */
1939                 return (int)end;
1940         case 0: /* Timeout */
1941                 if (timeout)
1942                         set_normalized_timespec(timeout, 0, 0);
1943                 return -ETIME;
1944         default: /* Completed */
1945                 WARN_ON(end < 0); /* We're not aware of other errors */
1946                 return 0;
1947         }
1948 }
1949
1950 /**
1951  * Waits for a sequence number to be signaled, and cleans up the
1952  * request and object lists appropriately for that event.
1953  */
1954 int
1955 i915_wait_request(struct intel_ring_buffer *ring,
1956                   uint32_t seqno)
1957 {
1958         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1959         int ret = 0;
1960
1961         BUG_ON(seqno == 0);
1962
1963         ret = i915_gem_check_wedge(dev_priv);
1964         if (ret)
1965                 return ret;
1966
1967         ret = i915_gem_check_olr(ring, seqno);
1968         if (ret)
1969                 return ret;
1970
1971         ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
1972
1973         return ret;
1974 }
1975
1976 /**
1977  * Ensures that all rendering to the object has completed and the object is
1978  * safe to unbind from the GTT or access from the CPU.
1979  */
1980 int
1981 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1982 {
1983         int ret;
1984
1985         /* This function only exists to support waiting for existing rendering,
1986          * not for emitting required flushes.
1987          */
1988         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1989
1990         /* If there is rendering queued on the buffer being evicted, wait for
1991          * it.
1992          */
1993         if (obj->active) {
1994                 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1995                 if (ret)
1996                         return ret;
1997                 i915_gem_retire_requests_ring(obj->ring);
1998         }
1999
2000         return 0;
2001 }
2002
2003 /**
2004  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2005  * @DRM_IOCTL_ARGS: standard ioctl arguments
2006  *
2007  * Returns 0 if successful, else an error is returned with the remaining time in
2008  * the timeout parameter.
2009  *  -ETIME: object is still busy after timeout
2010  *  -ERESTARTSYS: signal interrupted the wait
2011  *  -ENONENT: object doesn't exist
2012  * Also possible, but rare:
2013  *  -EAGAIN: GPU wedged
2014  *  -ENOMEM: damn
2015  *  -ENODEV: Internal IRQ fail
2016  *  -E?: The add request failed
2017  *
2018  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2019  * non-zero timeout parameter the wait ioctl will wait for the given number of
2020  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2021  * without holding struct_mutex the object may become re-busied before this
2022  * function completes. A similar but shorter * race condition exists in the busy
2023  * ioctl
2024  */
2025 int
2026 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2027 {
2028         struct drm_i915_gem_wait *args = data;
2029         struct drm_i915_gem_object *obj;
2030         struct intel_ring_buffer *ring = NULL;
2031         struct timespec timeout;
2032         u32 seqno = 0;
2033         int ret = 0;
2034
2035         timeout = ns_to_timespec(args->timeout_ns);
2036
2037         ret = i915_mutex_lock_interruptible(dev);
2038         if (ret)
2039                 return ret;
2040
2041         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2042         if (&obj->base == NULL) {
2043                 mutex_unlock(&dev->struct_mutex);
2044                 return -ENOENT;
2045         }
2046
2047         /* Need to make sure the object is flushed first. This non-obvious
2048          * flush is required to enforce that (active && !olr) == no wait
2049          * necessary.
2050          */
2051         ret = i915_gem_object_flush_gpu_write_domain(obj);
2052         if (ret)
2053                 goto out;
2054
2055         if (obj->active) {
2056                 seqno = obj->last_rendering_seqno;
2057                 ring = obj->ring;
2058         }
2059
2060         if (seqno == 0)
2061                  goto out;
2062
2063         ret = i915_gem_check_olr(ring, seqno);
2064         if (ret)
2065                 goto out;
2066
2067         /* Do this after OLR check to make sure we make forward progress polling
2068          * on this IOCTL with a 0 timeout (like busy ioctl)
2069          */
2070         if (!args->timeout_ns) {
2071                 ret = -ETIME;
2072                 goto out;
2073         }
2074
2075         drm_gem_object_unreference(&obj->base);
2076         mutex_unlock(&dev->struct_mutex);
2077
2078         ret = __wait_seqno(ring, seqno, true, &timeout);
2079         WARN_ON(!timespec_valid(&timeout));
2080         args->timeout_ns = timespec_to_ns(&timeout);
2081         return ret;
2082
2083 out:
2084         drm_gem_object_unreference(&obj->base);
2085         mutex_unlock(&dev->struct_mutex);
2086         return ret;
2087 }
2088
2089 /**
2090  * i915_gem_object_sync - sync an object to a ring.
2091  *
2092  * @obj: object which may be in use on another ring.
2093  * @to: ring we wish to use the object on. May be NULL.
2094  *
2095  * This code is meant to abstract object synchronization with the GPU.
2096  * Calling with NULL implies synchronizing the object with the CPU
2097  * rather than a particular GPU ring.
2098  *
2099  * Returns 0 if successful, else propagates up the lower layer error.
2100  */
2101 int
2102 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2103                      struct intel_ring_buffer *to)
2104 {
2105         struct intel_ring_buffer *from = obj->ring;
2106         u32 seqno;
2107         int ret, idx;
2108
2109         if (from == NULL || to == from)
2110                 return 0;
2111
2112         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2113                 return i915_gem_object_wait_rendering(obj);
2114
2115         idx = intel_ring_sync_index(from, to);
2116
2117         seqno = obj->last_rendering_seqno;
2118         if (seqno <= from->sync_seqno[idx])
2119                 return 0;
2120
2121         ret = i915_gem_check_olr(obj->ring, seqno);
2122         if (ret)
2123                 return ret;
2124
2125         ret = to->sync_to(to, from, seqno);
2126         if (!ret)
2127                 from->sync_seqno[idx] = seqno;
2128
2129         return ret;
2130 }
2131
2132 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2133 {
2134         u32 old_write_domain, old_read_domains;
2135
2136         /* Act a barrier for all accesses through the GTT */
2137         mb();
2138
2139         /* Force a pagefault for domain tracking on next user access */
2140         i915_gem_release_mmap(obj);
2141
2142         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2143                 return;
2144
2145         old_read_domains = obj->base.read_domains;
2146         old_write_domain = obj->base.write_domain;
2147
2148         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2149         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2150
2151         trace_i915_gem_object_change_domain(obj,
2152                                             old_read_domains,
2153                                             old_write_domain);
2154 }
2155
2156 /**
2157  * Unbinds an object from the GTT aperture.
2158  */
2159 int
2160 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2161 {
2162         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2163         int ret = 0;
2164
2165         if (obj->gtt_space == NULL)
2166                 return 0;
2167
2168         if (obj->pin_count != 0) {
2169                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2170                 return -EINVAL;
2171         }
2172
2173         ret = i915_gem_object_finish_gpu(obj);
2174         if (ret)
2175                 return ret;
2176         /* Continue on if we fail due to EIO, the GPU is hung so we
2177          * should be safe and we need to cleanup or else we might
2178          * cause memory corruption through use-after-free.
2179          */
2180
2181         i915_gem_object_finish_gtt(obj);
2182
2183         /* Move the object to the CPU domain to ensure that
2184          * any possible CPU writes while it's not in the GTT
2185          * are flushed when we go to remap it.
2186          */
2187         if (ret == 0)
2188                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2189         if (ret == -ERESTARTSYS)
2190                 return ret;
2191         if (ret) {
2192                 /* In the event of a disaster, abandon all caches and
2193                  * hope for the best.
2194                  */
2195                 i915_gem_clflush_object(obj);
2196                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2197         }
2198
2199         /* release the fence reg _after_ flushing */
2200         ret = i915_gem_object_put_fence(obj);
2201         if (ret)
2202                 return ret;
2203
2204         trace_i915_gem_object_unbind(obj);
2205
2206         if (obj->has_global_gtt_mapping)
2207                 i915_gem_gtt_unbind_object(obj);
2208         if (obj->has_aliasing_ppgtt_mapping) {
2209                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2210                 obj->has_aliasing_ppgtt_mapping = 0;
2211         }
2212         i915_gem_gtt_finish_object(obj);
2213
2214         i915_gem_object_put_pages_gtt(obj);
2215
2216         list_del_init(&obj->gtt_list);
2217         list_del_init(&obj->mm_list);
2218         /* Avoid an unnecessary call to unbind on rebind. */
2219         obj->map_and_fenceable = true;
2220
2221         drm_mm_put_block(obj->gtt_space);
2222         obj->gtt_space = NULL;
2223         obj->gtt_offset = 0;
2224
2225         if (i915_gem_object_is_purgeable(obj))
2226                 i915_gem_object_truncate(obj);
2227
2228         return ret;
2229 }
2230
2231 int
2232 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2233                     uint32_t invalidate_domains,
2234                     uint32_t flush_domains)
2235 {
2236         int ret;
2237
2238         if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2239                 return 0;
2240
2241         trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2242
2243         ret = ring->flush(ring, invalidate_domains, flush_domains);
2244         if (ret)
2245                 return ret;
2246
2247         if (flush_domains & I915_GEM_GPU_DOMAINS)
2248                 i915_gem_process_flushing_list(ring, flush_domains);
2249
2250         return 0;
2251 }
2252
2253 static int i915_ring_idle(struct intel_ring_buffer *ring)
2254 {
2255         int ret;
2256
2257         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2258                 return 0;
2259
2260         if (!list_empty(&ring->gpu_write_list)) {
2261                 ret = i915_gem_flush_ring(ring,
2262                                     I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2263                 if (ret)
2264                         return ret;
2265         }
2266
2267         return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2268 }
2269
2270 int i915_gpu_idle(struct drm_device *dev)
2271 {
2272         drm_i915_private_t *dev_priv = dev->dev_private;
2273         struct intel_ring_buffer *ring;
2274         int ret, i;
2275
2276         /* Flush everything onto the inactive list. */
2277         for_each_ring(ring, dev_priv, i) {
2278                 ret = i915_ring_idle(ring);
2279                 if (ret)
2280                         return ret;
2281
2282                 /* Is the device fubar? */
2283                 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2284                         return -EBUSY;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2291                                         struct drm_i915_gem_object *obj)
2292 {
2293         drm_i915_private_t *dev_priv = dev->dev_private;
2294         uint64_t val;
2295
2296         if (obj) {
2297                 u32 size = obj->gtt_space->size;
2298
2299                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2300                                  0xfffff000) << 32;
2301                 val |= obj->gtt_offset & 0xfffff000;
2302                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2303                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2304
2305                 if (obj->tiling_mode == I915_TILING_Y)
2306                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2307                 val |= I965_FENCE_REG_VALID;
2308         } else
2309                 val = 0;
2310
2311         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2312         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2313 }
2314
2315 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2316                                  struct drm_i915_gem_object *obj)
2317 {
2318         drm_i915_private_t *dev_priv = dev->dev_private;
2319         uint64_t val;
2320
2321         if (obj) {
2322                 u32 size = obj->gtt_space->size;
2323
2324                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2325                                  0xfffff000) << 32;
2326                 val |= obj->gtt_offset & 0xfffff000;
2327                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2328                 if (obj->tiling_mode == I915_TILING_Y)
2329                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2330                 val |= I965_FENCE_REG_VALID;
2331         } else
2332                 val = 0;
2333
2334         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2335         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2336 }
2337
2338 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2339                                  struct drm_i915_gem_object *obj)
2340 {
2341         drm_i915_private_t *dev_priv = dev->dev_private;
2342         u32 val;
2343
2344         if (obj) {
2345                 u32 size = obj->gtt_space->size;
2346                 int pitch_val;
2347                 int tile_width;
2348
2349                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2350                      (size & -size) != size ||
2351                      (obj->gtt_offset & (size - 1)),
2352                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2353                      obj->gtt_offset, obj->map_and_fenceable, size);
2354
2355                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2356                         tile_width = 128;
2357                 else
2358                         tile_width = 512;
2359
2360                 /* Note: pitch better be a power of two tile widths */
2361                 pitch_val = obj->stride / tile_width;
2362                 pitch_val = ffs(pitch_val) - 1;
2363
2364                 val = obj->gtt_offset;
2365                 if (obj->tiling_mode == I915_TILING_Y)
2366                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2367                 val |= I915_FENCE_SIZE_BITS(size);
2368                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2369                 val |= I830_FENCE_REG_VALID;
2370         } else
2371                 val = 0;
2372
2373         if (reg < 8)
2374                 reg = FENCE_REG_830_0 + reg * 4;
2375         else
2376                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2377
2378         I915_WRITE(reg, val);
2379         POSTING_READ(reg);
2380 }
2381
2382 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2383                                 struct drm_i915_gem_object *obj)
2384 {
2385         drm_i915_private_t *dev_priv = dev->dev_private;
2386         uint32_t val;
2387
2388         if (obj) {
2389                 u32 size = obj->gtt_space->size;
2390                 uint32_t pitch_val;
2391
2392                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2393                      (size & -size) != size ||
2394                      (obj->gtt_offset & (size - 1)),
2395                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2396                      obj->gtt_offset, size);
2397
2398                 pitch_val = obj->stride / 128;
2399                 pitch_val = ffs(pitch_val) - 1;
2400
2401                 val = obj->gtt_offset;
2402                 if (obj->tiling_mode == I915_TILING_Y)
2403                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2404                 val |= I830_FENCE_SIZE_BITS(size);
2405                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2406                 val |= I830_FENCE_REG_VALID;
2407         } else
2408                 val = 0;
2409
2410         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2411         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2412 }
2413
2414 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2415                                  struct drm_i915_gem_object *obj)
2416 {
2417         switch (INTEL_INFO(dev)->gen) {
2418         case 7:
2419         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2420         case 5:
2421         case 4: i965_write_fence_reg(dev, reg, obj); break;
2422         case 3: i915_write_fence_reg(dev, reg, obj); break;
2423         case 2: i830_write_fence_reg(dev, reg, obj); break;
2424         default: break;
2425         }
2426 }
2427
2428 static inline int fence_number(struct drm_i915_private *dev_priv,
2429                                struct drm_i915_fence_reg *fence)
2430 {
2431         return fence - dev_priv->fence_regs;
2432 }
2433
2434 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2435                                          struct drm_i915_fence_reg *fence,
2436                                          bool enable)
2437 {
2438         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2439         int reg = fence_number(dev_priv, fence);
2440
2441         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2442
2443         if (enable) {
2444                 obj->fence_reg = reg;
2445                 fence->obj = obj;
2446                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2447         } else {
2448                 obj->fence_reg = I915_FENCE_REG_NONE;
2449                 fence->obj = NULL;
2450                 list_del_init(&fence->lru_list);
2451         }
2452 }
2453
2454 static int
2455 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2456 {
2457         int ret;
2458
2459         if (obj->fenced_gpu_access) {
2460                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2461                         ret = i915_gem_flush_ring(obj->ring,
2462                                                   0, obj->base.write_domain);
2463                         if (ret)
2464                                 return ret;
2465                 }
2466
2467                 obj->fenced_gpu_access = false;
2468         }
2469
2470         if (obj->last_fenced_seqno) {
2471                 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2472                 if (ret)
2473                         return ret;
2474
2475                 obj->last_fenced_seqno = 0;
2476         }
2477
2478         /* Ensure that all CPU reads are completed before installing a fence
2479          * and all writes before removing the fence.
2480          */
2481         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2482                 mb();
2483
2484         return 0;
2485 }
2486
2487 int
2488 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2489 {
2490         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2491         int ret;
2492
2493         ret = i915_gem_object_flush_fence(obj);
2494         if (ret)
2495                 return ret;
2496
2497         if (obj->fence_reg == I915_FENCE_REG_NONE)
2498                 return 0;
2499
2500         i915_gem_object_update_fence(obj,
2501                                      &dev_priv->fence_regs[obj->fence_reg],
2502                                      false);
2503         i915_gem_object_fence_lost(obj);
2504
2505         return 0;
2506 }
2507
2508 static struct drm_i915_fence_reg *
2509 i915_find_fence_reg(struct drm_device *dev)
2510 {
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512         struct drm_i915_fence_reg *reg, *avail;
2513         int i;
2514
2515         /* First try to find a free reg */
2516         avail = NULL;
2517         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2518                 reg = &dev_priv->fence_regs[i];
2519                 if (!reg->obj)
2520                         return reg;
2521
2522                 if (!reg->pin_count)
2523                         avail = reg;
2524         }
2525
2526         if (avail == NULL)
2527                 return NULL;
2528
2529         /* None available, try to steal one or wait for a user to finish */
2530         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2531                 if (reg->pin_count)
2532                         continue;
2533
2534                 return reg;
2535         }
2536
2537         return NULL;
2538 }
2539
2540 /**
2541  * i915_gem_object_get_fence - set up fencing for an object
2542  * @obj: object to map through a fence reg
2543  *
2544  * When mapping objects through the GTT, userspace wants to be able to write
2545  * to them without having to worry about swizzling if the object is tiled.
2546  * This function walks the fence regs looking for a free one for @obj,
2547  * stealing one if it can't find any.
2548  *
2549  * It then sets up the reg based on the object's properties: address, pitch
2550  * and tiling format.
2551  *
2552  * For an untiled surface, this removes any existing fence.
2553  */
2554 int
2555 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2556 {
2557         struct drm_device *dev = obj->base.dev;
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559         bool enable = obj->tiling_mode != I915_TILING_NONE;
2560         struct drm_i915_fence_reg *reg;
2561         int ret;
2562
2563         /* Have we updated the tiling parameters upon the object and so
2564          * will need to serialise the write to the associated fence register?
2565          */
2566         if (obj->fence_dirty) {
2567                 ret = i915_gem_object_flush_fence(obj);
2568                 if (ret)
2569                         return ret;
2570         }
2571
2572         /* Just update our place in the LRU if our fence is getting reused. */
2573         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2574                 reg = &dev_priv->fence_regs[obj->fence_reg];
2575                 if (!obj->fence_dirty) {
2576                         list_move_tail(&reg->lru_list,
2577                                        &dev_priv->mm.fence_list);
2578                         return 0;
2579                 }
2580         } else if (enable) {
2581                 reg = i915_find_fence_reg(dev);
2582                 if (reg == NULL)
2583                         return -EDEADLK;
2584
2585                 if (reg->obj) {
2586                         struct drm_i915_gem_object *old = reg->obj;
2587
2588                         ret = i915_gem_object_flush_fence(old);
2589                         if (ret)
2590                                 return ret;
2591
2592                         i915_gem_object_fence_lost(old);
2593                 }
2594         } else
2595                 return 0;
2596
2597         i915_gem_object_update_fence(obj, reg, enable);
2598         obj->fence_dirty = false;
2599
2600         return 0;
2601 }
2602
2603 /**
2604  * Finds free space in the GTT aperture and binds the object there.
2605  */
2606 static int
2607 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2608                             unsigned alignment,
2609                             bool map_and_fenceable)
2610 {
2611         struct drm_device *dev = obj->base.dev;
2612         drm_i915_private_t *dev_priv = dev->dev_private;
2613         struct drm_mm_node *free_space;
2614         gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2615         u32 size, fence_size, fence_alignment, unfenced_alignment;
2616         bool mappable, fenceable;
2617         int ret;
2618
2619         if (obj->madv != I915_MADV_WILLNEED) {
2620                 DRM_ERROR("Attempting to bind a purgeable object\n");
2621                 return -EINVAL;
2622         }
2623
2624         fence_size = i915_gem_get_gtt_size(dev,
2625                                            obj->base.size,
2626                                            obj->tiling_mode);
2627         fence_alignment = i915_gem_get_gtt_alignment(dev,
2628                                                      obj->base.size,
2629                                                      obj->tiling_mode);
2630         unfenced_alignment =
2631                 i915_gem_get_unfenced_gtt_alignment(dev,
2632                                                     obj->base.size,
2633                                                     obj->tiling_mode);
2634
2635         if (alignment == 0)
2636                 alignment = map_and_fenceable ? fence_alignment :
2637                                                 unfenced_alignment;
2638         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2639                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2640                 return -EINVAL;
2641         }
2642
2643         size = map_and_fenceable ? fence_size : obj->base.size;
2644
2645         /* If the object is bigger than the entire aperture, reject it early
2646          * before evicting everything in a vain attempt to find space.
2647          */
2648         if (obj->base.size >
2649             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2650                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2651                 return -E2BIG;
2652         }
2653
2654  search_free:
2655         if (map_and_fenceable)
2656                 free_space =
2657                         drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2658                                                     size, alignment, 0,
2659                                                     dev_priv->mm.gtt_mappable_end,
2660                                                     0);
2661         else
2662                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2663                                                 size, alignment, 0);
2664
2665         if (free_space != NULL) {
2666                 if (map_and_fenceable)
2667                         obj->gtt_space =
2668                                 drm_mm_get_block_range_generic(free_space,
2669                                                                size, alignment, 0,
2670                                                                dev_priv->mm.gtt_mappable_end,
2671                                                                0);
2672                 else
2673                         obj->gtt_space =
2674                                 drm_mm_get_block(free_space, size, alignment);
2675         }
2676         if (obj->gtt_space == NULL) {
2677                 /* If the gtt is empty and we're still having trouble
2678                  * fitting our object in, we're out of memory.
2679                  */
2680                 ret = i915_gem_evict_something(dev, size, alignment,
2681                                                map_and_fenceable);
2682                 if (ret)
2683                         return ret;
2684
2685                 goto search_free;
2686         }
2687
2688         ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2689         if (ret) {
2690                 drm_mm_put_block(obj->gtt_space);
2691                 obj->gtt_space = NULL;
2692
2693                 if (ret == -ENOMEM) {
2694                         /* first try to reclaim some memory by clearing the GTT */
2695                         ret = i915_gem_evict_everything(dev, false);
2696                         if (ret) {
2697                                 /* now try to shrink everyone else */
2698                                 if (gfpmask) {
2699                                         gfpmask = 0;
2700                                         goto search_free;
2701                                 }
2702
2703                                 return -ENOMEM;
2704                         }
2705
2706                         goto search_free;
2707                 }
2708
2709                 return ret;
2710         }
2711
2712         ret = i915_gem_gtt_prepare_object(obj);
2713         if (ret) {
2714                 i915_gem_object_put_pages_gtt(obj);
2715                 drm_mm_put_block(obj->gtt_space);
2716                 obj->gtt_space = NULL;
2717
2718                 if (i915_gem_evict_everything(dev, false))
2719                         return ret;
2720
2721                 goto search_free;
2722         }
2723
2724         if (!dev_priv->mm.aliasing_ppgtt)
2725                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2726
2727         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2728         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2729
2730         /* Assert that the object is not currently in any GPU domain. As it
2731          * wasn't in the GTT, there shouldn't be any way it could have been in
2732          * a GPU cache
2733          */
2734         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2735         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2736
2737         obj->gtt_offset = obj->gtt_space->start;
2738
2739         fenceable =
2740                 obj->gtt_space->size == fence_size &&
2741                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2742
2743         mappable =
2744                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2745
2746         obj->map_and_fenceable = mappable && fenceable;
2747
2748         trace_i915_gem_object_bind(obj, map_and_fenceable);
2749         return 0;
2750 }
2751
2752 void
2753 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2754 {
2755         /* If we don't have a page list set up, then we're not pinned
2756          * to GPU, and we can ignore the cache flush because it'll happen
2757          * again at bind time.
2758          */
2759         if (obj->pages == NULL)
2760                 return;
2761
2762         /* If the GPU is snooping the contents of the CPU cache,
2763          * we do not need to manually clear the CPU cache lines.  However,
2764          * the caches are only snooped when the render cache is
2765          * flushed/invalidated.  As we always have to emit invalidations
2766          * and flushes when moving into and out of the RENDER domain, correct
2767          * snooping behaviour occurs naturally as the result of our domain
2768          * tracking.
2769          */
2770         if (obj->cache_level != I915_CACHE_NONE)
2771                 return;
2772
2773         trace_i915_gem_object_clflush(obj);
2774
2775         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2776 }
2777
2778 /** Flushes any GPU write domain for the object if it's dirty. */
2779 static int
2780 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2781 {
2782         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2783                 return 0;
2784
2785         /* Queue the GPU write cache flushing we need. */
2786         return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2787 }
2788
2789 /** Flushes the GTT write domain for the object if it's dirty. */
2790 static void
2791 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2792 {
2793         uint32_t old_write_domain;
2794
2795         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2796                 return;
2797
2798         /* No actual flushing is required for the GTT write domain.  Writes
2799          * to it immediately go to main memory as far as we know, so there's
2800          * no chipset flush.  It also doesn't land in render cache.
2801          *
2802          * However, we do have to enforce the order so that all writes through
2803          * the GTT land before any writes to the device, such as updates to
2804          * the GATT itself.
2805          */
2806         wmb();
2807
2808         old_write_domain = obj->base.write_domain;
2809         obj->base.write_domain = 0;
2810
2811         trace_i915_gem_object_change_domain(obj,
2812                                             obj->base.read_domains,
2813                                             old_write_domain);
2814 }
2815
2816 /** Flushes the CPU write domain for the object if it's dirty. */
2817 static void
2818 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2819 {
2820         uint32_t old_write_domain;
2821
2822         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2823                 return;
2824
2825         i915_gem_clflush_object(obj);
2826         intel_gtt_chipset_flush();
2827         old_write_domain = obj->base.write_domain;
2828         obj->base.write_domain = 0;
2829
2830         trace_i915_gem_object_change_domain(obj,
2831                                             obj->base.read_domains,
2832                                             old_write_domain);
2833 }
2834
2835 /**
2836  * Moves a single object to the GTT read, and possibly write domain.
2837  *
2838  * This function returns when the move is complete, including waiting on
2839  * flushes to occur.
2840  */
2841 int
2842 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2843 {
2844         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2845         uint32_t old_write_domain, old_read_domains;
2846         int ret;
2847
2848         /* Not valid to be called on unbound objects. */
2849         if (obj->gtt_space == NULL)
2850                 return -EINVAL;
2851
2852         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2853                 return 0;
2854
2855         ret = i915_gem_object_flush_gpu_write_domain(obj);
2856         if (ret)
2857                 return ret;
2858
2859         if (obj->pending_gpu_write || write) {
2860                 ret = i915_gem_object_wait_rendering(obj);
2861                 if (ret)
2862                         return ret;
2863         }
2864
2865         i915_gem_object_flush_cpu_write_domain(obj);
2866
2867         old_write_domain = obj->base.write_domain;
2868         old_read_domains = obj->base.read_domains;
2869
2870         /* It should now be out of any other write domains, and we can update
2871          * the domain values for our changes.
2872          */
2873         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2874         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2875         if (write) {
2876                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2877                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2878                 obj->dirty = 1;
2879         }
2880
2881         trace_i915_gem_object_change_domain(obj,
2882                                             old_read_domains,
2883                                             old_write_domain);
2884
2885         /* And bump the LRU for this access */
2886         if (i915_gem_object_is_inactive(obj))
2887                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2888
2889         return 0;
2890 }
2891
2892 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2893                                     enum i915_cache_level cache_level)
2894 {
2895         struct drm_device *dev = obj->base.dev;
2896         drm_i915_private_t *dev_priv = dev->dev_private;
2897         int ret;
2898
2899         if (obj->cache_level == cache_level)
2900                 return 0;
2901
2902         if (obj->pin_count) {
2903                 DRM_DEBUG("can not change the cache level of pinned objects\n");
2904                 return -EBUSY;
2905         }
2906
2907         if (obj->gtt_space) {
2908                 ret = i915_gem_object_finish_gpu(obj);
2909                 if (ret)
2910                         return ret;
2911
2912                 i915_gem_object_finish_gtt(obj);
2913
2914                 /* Before SandyBridge, you could not use tiling or fence
2915                  * registers with snooped memory, so relinquish any fences
2916                  * currently pointing to our region in the aperture.
2917                  */
2918                 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2919                         ret = i915_gem_object_put_fence(obj);
2920                         if (ret)
2921                                 return ret;
2922                 }
2923
2924                 if (obj->has_global_gtt_mapping)
2925                         i915_gem_gtt_bind_object(obj, cache_level);
2926                 if (obj->has_aliasing_ppgtt_mapping)
2927                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2928                                                obj, cache_level);
2929         }
2930
2931         if (cache_level == I915_CACHE_NONE) {
2932                 u32 old_read_domains, old_write_domain;
2933
2934                 /* If we're coming from LLC cached, then we haven't
2935                  * actually been tracking whether the data is in the
2936                  * CPU cache or not, since we only allow one bit set
2937                  * in obj->write_domain and have been skipping the clflushes.
2938                  * Just set it to the CPU cache for now.
2939                  */
2940                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2941                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2942
2943                 old_read_domains = obj->base.read_domains;
2944                 old_write_domain = obj->base.write_domain;
2945
2946                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2947                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2948
2949                 trace_i915_gem_object_change_domain(obj,
2950                                                     old_read_domains,
2951                                                     old_write_domain);
2952         }
2953
2954         obj->cache_level = cache_level;
2955         return 0;
2956 }
2957
2958 /*
2959  * Prepare buffer for display plane (scanout, cursors, etc).
2960  * Can be called from an uninterruptible phase (modesetting) and allows
2961  * any flushes to be pipelined (for pageflips).
2962  */
2963 int
2964 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2965                                      u32 alignment,
2966                                      struct intel_ring_buffer *pipelined)
2967 {
2968         u32 old_read_domains, old_write_domain;
2969         int ret;
2970
2971         ret = i915_gem_object_flush_gpu_write_domain(obj);
2972         if (ret)
2973                 return ret;
2974
2975         if (pipelined != obj->ring) {
2976                 ret = i915_gem_object_sync(obj, pipelined);
2977                 if (ret)
2978                         return ret;
2979         }
2980
2981         /* The display engine is not coherent with the LLC cache on gen6.  As
2982          * a result, we make sure that the pinning that is about to occur is
2983          * done with uncached PTEs. This is lowest common denominator for all
2984          * chipsets.
2985          *
2986          * However for gen6+, we could do better by using the GFDT bit instead
2987          * of uncaching, which would allow us to flush all the LLC-cached data
2988          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2989          */
2990         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2991         if (ret)
2992                 return ret;
2993
2994         /* As the user may map the buffer once pinned in the display plane
2995          * (e.g. libkms for the bootup splash), we have to ensure that we
2996          * always use map_and_fenceable for all scanout buffers.
2997          */
2998         ret = i915_gem_object_pin(obj, alignment, true);
2999         if (ret)
3000                 return ret;
3001
3002         i915_gem_object_flush_cpu_write_domain(obj);
3003
3004         old_write_domain = obj->base.write_domain;
3005         old_read_domains = obj->base.read_domains;
3006
3007         /* It should now be out of any other write domains, and we can update
3008          * the domain values for our changes.
3009          */
3010         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3011         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3012
3013         trace_i915_gem_object_change_domain(obj,
3014                                             old_read_domains,
3015                                             old_write_domain);
3016
3017         return 0;
3018 }
3019
3020 int
3021 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3022 {
3023         int ret;
3024
3025         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3026                 return 0;
3027
3028         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3029                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3030                 if (ret)
3031                         return ret;
3032         }
3033
3034         ret = i915_gem_object_wait_rendering(obj);
3035         if (ret)
3036                 return ret;
3037
3038         /* Ensure that we invalidate the GPU's caches and TLBs. */
3039         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3040         return 0;
3041 }
3042
3043 /**
3044  * Moves a single object to the CPU read, and possibly write domain.
3045  *
3046  * This function returns when the move is complete, including waiting on
3047  * flushes to occur.
3048  */
3049 int
3050 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3051 {
3052         uint32_t old_write_domain, old_read_domains;
3053         int ret;
3054
3055         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3056                 return 0;
3057
3058         ret = i915_gem_object_flush_gpu_write_domain(obj);
3059         if (ret)
3060                 return ret;
3061
3062         if (write || obj->pending_gpu_write) {
3063                 ret = i915_gem_object_wait_rendering(obj);
3064                 if (ret)
3065                         return ret;
3066         }
3067
3068         i915_gem_object_flush_gtt_write_domain(obj);
3069
3070         old_write_domain = obj->base.write_domain;
3071         old_read_domains = obj->base.read_domains;
3072
3073         /* Flush the CPU cache if it's still invalid. */
3074         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3075                 i915_gem_clflush_object(obj);
3076
3077                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3078         }
3079
3080         /* It should now be out of any other write domains, and we can update
3081          * the domain values for our changes.
3082          */
3083         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3084
3085         /* If we're writing through the CPU, then the GPU read domains will
3086          * need to be invalidated at next use.
3087          */
3088         if (write) {
3089                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3090                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3091         }
3092
3093         trace_i915_gem_object_change_domain(obj,
3094                                             old_read_domains,
3095                                             old_write_domain);
3096
3097         return 0;
3098 }
3099
3100 /* Throttle our rendering by waiting until the ring has completed our requests
3101  * emitted over 20 msec ago.
3102  *
3103  * Note that if we were to use the current jiffies each time around the loop,
3104  * we wouldn't escape the function with any frames outstanding if the time to
3105  * render a frame was over 20ms.
3106  *
3107  * This should get us reasonable parallelism between CPU and GPU but also
3108  * relatively low latency when blocking on a particular request to finish.
3109  */
3110 static int
3111 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3112 {
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114         struct drm_i915_file_private *file_priv = file->driver_priv;
3115         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3116         struct drm_i915_gem_request *request;
3117         struct intel_ring_buffer *ring = NULL;
3118         u32 seqno = 0;
3119         int ret;
3120
3121         if (atomic_read(&dev_priv->mm.wedged))
3122                 return -EIO;
3123
3124         spin_lock(&file_priv->mm.lock);
3125         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3126                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3127                         break;
3128
3129                 ring = request->ring;
3130                 seqno = request->seqno;
3131         }
3132         spin_unlock(&file_priv->mm.lock);
3133
3134         if (seqno == 0)
3135                 return 0;
3136
3137         ret = __wait_seqno(ring, seqno, true, NULL);
3138         if (ret == 0)
3139                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3140
3141         return ret;
3142 }
3143
3144 int
3145 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3146                     uint32_t alignment,
3147                     bool map_and_fenceable)
3148 {
3149         int ret;
3150
3151         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3152
3153         if (obj->gtt_space != NULL) {
3154                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3155                     (map_and_fenceable && !obj->map_and_fenceable)) {
3156                         WARN(obj->pin_count,
3157                              "bo is already pinned with incorrect alignment:"
3158                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3159                              " obj->map_and_fenceable=%d\n",
3160                              obj->gtt_offset, alignment,
3161                              map_and_fenceable,
3162                              obj->map_and_fenceable);
3163                         ret = i915_gem_object_unbind(obj);
3164                         if (ret)
3165                                 return ret;
3166                 }
3167         }
3168
3169         if (obj->gtt_space == NULL) {
3170                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3171                                                   map_and_fenceable);
3172                 if (ret)
3173                         return ret;
3174         }
3175
3176         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3177                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3178
3179         obj->pin_count++;
3180         obj->pin_mappable |= map_and_fenceable;
3181
3182         return 0;
3183 }
3184
3185 void
3186 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3187 {
3188         BUG_ON(obj->pin_count == 0);
3189         BUG_ON(obj->gtt_space == NULL);
3190
3191         if (--obj->pin_count == 0)
3192                 obj->pin_mappable = false;
3193 }
3194
3195 int
3196 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3197                    struct drm_file *file)
3198 {
3199         struct drm_i915_gem_pin *args = data;
3200         struct drm_i915_gem_object *obj;
3201         int ret;
3202
3203         ret = i915_mutex_lock_interruptible(dev);
3204         if (ret)
3205                 return ret;
3206
3207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3208         if (&obj->base == NULL) {
3209                 ret = -ENOENT;
3210                 goto unlock;
3211         }
3212
3213         if (obj->madv != I915_MADV_WILLNEED) {
3214                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3215                 ret = -EINVAL;
3216                 goto out;
3217         }
3218
3219         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3220                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3221                           args->handle);
3222                 ret = -EINVAL;
3223                 goto out;
3224         }
3225
3226         obj->user_pin_count++;
3227         obj->pin_filp = file;
3228         if (obj->user_pin_count == 1) {
3229                 ret = i915_gem_object_pin(obj, args->alignment, true);
3230                 if (ret)
3231                         goto out;
3232         }
3233
3234         /* XXX - flush the CPU caches for pinned objects
3235          * as the X server doesn't manage domains yet
3236          */
3237         i915_gem_object_flush_cpu_write_domain(obj);
3238         args->offset = obj->gtt_offset;
3239 out:
3240         drm_gem_object_unreference(&obj->base);
3241 unlock:
3242         mutex_unlock(&dev->struct_mutex);
3243         return ret;
3244 }
3245
3246 int
3247 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3248                      struct drm_file *file)
3249 {
3250         struct drm_i915_gem_pin *args = data;
3251         struct drm_i915_gem_object *obj;
3252         int ret;
3253
3254         ret = i915_mutex_lock_interruptible(dev);
3255         if (ret)
3256                 return ret;
3257
3258         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259         if (&obj->base == NULL) {
3260                 ret = -ENOENT;
3261                 goto unlock;
3262         }
3263
3264         if (obj->pin_filp != file) {
3265                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3266                           args->handle);
3267                 ret = -EINVAL;
3268                 goto out;
3269         }
3270         obj->user_pin_count--;
3271         if (obj->user_pin_count == 0) {
3272                 obj->pin_filp = NULL;
3273                 i915_gem_object_unpin(obj);
3274         }
3275
3276 out:
3277         drm_gem_object_unreference(&obj->base);
3278 unlock:
3279         mutex_unlock(&dev->struct_mutex);
3280         return ret;
3281 }
3282
3283 int
3284 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3285                     struct drm_file *file)
3286 {
3287         struct drm_i915_gem_busy *args = data;
3288         struct drm_i915_gem_object *obj;
3289         int ret;
3290
3291         ret = i915_mutex_lock_interruptible(dev);
3292         if (ret)
3293                 return ret;
3294
3295         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3296         if (&obj->base == NULL) {
3297                 ret = -ENOENT;
3298                 goto unlock;
3299         }
3300
3301         /* Count all active objects as busy, even if they are currently not used
3302          * by the gpu. Users of this interface expect objects to eventually
3303          * become non-busy without any further actions, therefore emit any
3304          * necessary flushes here.
3305          */
3306         args->busy = obj->active;
3307         if (args->busy) {
3308                 /* Unconditionally flush objects, even when the gpu still uses this
3309                  * object. Userspace calling this function indicates that it wants to
3310                  * use this buffer rather sooner than later, so issuing the required
3311                  * flush earlier is beneficial.
3312                  */
3313                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3314                         ret = i915_gem_flush_ring(obj->ring,
3315                                                   0, obj->base.write_domain);
3316                 } else {
3317                         ret = i915_gem_check_olr(obj->ring,
3318                                                  obj->last_rendering_seqno);
3319                 }
3320
3321                 /* Update the active list for the hardware's current position.
3322                  * Otherwise this only updates on a delayed timer or when irqs
3323                  * are actually unmasked, and our working set ends up being
3324                  * larger than required.
3325                  */
3326                 i915_gem_retire_requests_ring(obj->ring);
3327
3328                 args->busy = obj->active;
3329         }
3330
3331         drm_gem_object_unreference(&obj->base);
3332 unlock:
3333         mutex_unlock(&dev->struct_mutex);
3334         return ret;
3335 }
3336
3337 int
3338 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3339                         struct drm_file *file_priv)
3340 {
3341         return i915_gem_ring_throttle(dev, file_priv);
3342 }
3343
3344 int
3345 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3346                        struct drm_file *file_priv)
3347 {
3348         struct drm_i915_gem_madvise *args = data;
3349         struct drm_i915_gem_object *obj;
3350         int ret;
3351
3352         switch (args->madv) {
3353         case I915_MADV_DONTNEED:
3354         case I915_MADV_WILLNEED:
3355             break;
3356         default:
3357             return -EINVAL;
3358         }
3359
3360         ret = i915_mutex_lock_interruptible(dev);
3361         if (ret)
3362                 return ret;
3363
3364         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3365         if (&obj->base == NULL) {
3366                 ret = -ENOENT;
3367                 goto unlock;
3368         }
3369
3370         if (obj->pin_count) {
3371                 ret = -EINVAL;
3372                 goto out;
3373         }
3374
3375         if (obj->madv != __I915_MADV_PURGED)
3376                 obj->madv = args->madv;
3377
3378         /* if the object is no longer bound, discard its backing storage */
3379         if (i915_gem_object_is_purgeable(obj) &&
3380             obj->gtt_space == NULL)
3381                 i915_gem_object_truncate(obj);
3382
3383         args->retained = obj->madv != __I915_MADV_PURGED;
3384
3385 out:
3386         drm_gem_object_unreference(&obj->base);
3387 unlock:
3388         mutex_unlock(&dev->struct_mutex);
3389         return ret;
3390 }
3391
3392 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3393                                                   size_t size)
3394 {
3395         struct drm_i915_private *dev_priv = dev->dev_private;
3396         struct drm_i915_gem_object *obj;
3397         struct address_space *mapping;
3398
3399         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3400         if (obj == NULL)
3401                 return NULL;
3402
3403         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3404                 kfree(obj);
3405                 return NULL;
3406         }
3407
3408         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3409         mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3410
3411         i915_gem_info_add_obj(dev_priv, size);
3412
3413         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3414         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3415
3416         if (HAS_LLC(dev)) {
3417                 /* On some devices, we can have the GPU use the LLC (the CPU
3418                  * cache) for about a 10% performance improvement
3419                  * compared to uncached.  Graphics requests other than
3420                  * display scanout are coherent with the CPU in
3421                  * accessing this cache.  This means in this mode we
3422                  * don't need to clflush on the CPU side, and on the
3423                  * GPU side we only need to flush internal caches to
3424                  * get data visible to the CPU.
3425                  *
3426                  * However, we maintain the display planes as UC, and so
3427                  * need to rebind when first used as such.
3428                  */
3429                 obj->cache_level = I915_CACHE_LLC;
3430         } else
3431                 obj->cache_level = I915_CACHE_NONE;
3432
3433         obj->base.driver_private = NULL;
3434         obj->fence_reg = I915_FENCE_REG_NONE;
3435         INIT_LIST_HEAD(&obj->mm_list);
3436         INIT_LIST_HEAD(&obj->gtt_list);
3437         INIT_LIST_HEAD(&obj->ring_list);
3438         INIT_LIST_HEAD(&obj->exec_list);
3439         INIT_LIST_HEAD(&obj->gpu_write_list);
3440         obj->madv = I915_MADV_WILLNEED;
3441         /* Avoid an unnecessary call to unbind on the first bind. */
3442         obj->map_and_fenceable = true;
3443
3444         return obj;
3445 }
3446
3447 int i915_gem_init_object(struct drm_gem_object *obj)
3448 {
3449         BUG();
3450
3451         return 0;
3452 }
3453
3454 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3455 {
3456         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3457         struct drm_device *dev = obj->base.dev;
3458         drm_i915_private_t *dev_priv = dev->dev_private;
3459
3460         trace_i915_gem_object_destroy(obj);
3461
3462         if (obj->phys_obj)
3463                 i915_gem_detach_phys_object(dev, obj);
3464
3465         obj->pin_count = 0;
3466         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3467                 bool was_interruptible;
3468
3469                 was_interruptible = dev_priv->mm.interruptible;
3470                 dev_priv->mm.interruptible = false;
3471
3472                 WARN_ON(i915_gem_object_unbind(obj));
3473
3474                 dev_priv->mm.interruptible = was_interruptible;
3475         }
3476
3477         if (obj->base.map_list.map)
3478                 drm_gem_free_mmap_offset(&obj->base);
3479
3480         drm_gem_object_release(&obj->base);
3481         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3482
3483         kfree(obj->bit_17);
3484         kfree(obj);
3485 }
3486
3487 int
3488 i915_gem_idle(struct drm_device *dev)
3489 {
3490         drm_i915_private_t *dev_priv = dev->dev_private;
3491         int ret;
3492
3493         mutex_lock(&dev->struct_mutex);
3494
3495         if (dev_priv->mm.suspended) {
3496                 mutex_unlock(&dev->struct_mutex);
3497                 return 0;
3498         }
3499
3500         ret = i915_gpu_idle(dev);
3501         if (ret) {
3502                 mutex_unlock(&dev->struct_mutex);
3503                 return ret;
3504         }
3505         i915_gem_retire_requests(dev);
3506
3507         /* Under UMS, be paranoid and evict. */
3508         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3509                 i915_gem_evict_everything(dev, false);
3510
3511         i915_gem_reset_fences(dev);
3512
3513         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3514          * We need to replace this with a semaphore, or something.
3515          * And not confound mm.suspended!
3516          */
3517         dev_priv->mm.suspended = 1;
3518         del_timer_sync(&dev_priv->hangcheck_timer);
3519
3520         i915_kernel_lost_context(dev);
3521         i915_gem_cleanup_ringbuffer(dev);
3522
3523         mutex_unlock(&dev->struct_mutex);
3524
3525         /* Cancel the retire work handler, which should be idle now. */
3526         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3527
3528         return 0;
3529 }
3530
3531 void i915_gem_init_swizzling(struct drm_device *dev)
3532 {
3533         drm_i915_private_t *dev_priv = dev->dev_private;
3534
3535         if (INTEL_INFO(dev)->gen < 5 ||
3536             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3537                 return;
3538
3539         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3540                                  DISP_TILE_SURFACE_SWIZZLING);
3541
3542         if (IS_GEN5(dev))
3543                 return;
3544
3545         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3546         if (IS_GEN6(dev))
3547                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3548         else
3549                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3550 }
3551
3552 void i915_gem_init_ppgtt(struct drm_device *dev)
3553 {
3554         drm_i915_private_t *dev_priv = dev->dev_private;
3555         uint32_t pd_offset;
3556         struct intel_ring_buffer *ring;
3557         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3558         uint32_t __iomem *pd_addr;
3559         uint32_t pd_entry;
3560         int i;
3561
3562         if (!dev_priv->mm.aliasing_ppgtt)
3563                 return;
3564
3565
3566         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3567         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3568                 dma_addr_t pt_addr;
3569
3570                 if (dev_priv->mm.gtt->needs_dmar)
3571                         pt_addr = ppgtt->pt_dma_addr[i];
3572                 else
3573                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3574
3575                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3576                 pd_entry |= GEN6_PDE_VALID;
3577
3578                 writel(pd_entry, pd_addr + i);
3579         }
3580         readl(pd_addr);
3581
3582         pd_offset = ppgtt->pd_offset;
3583         pd_offset /= 64; /* in cachelines, */
3584         pd_offset <<= 16;
3585
3586         if (INTEL_INFO(dev)->gen == 6) {
3587                 uint32_t ecochk, gab_ctl, ecobits;
3588
3589                 ecobits = I915_READ(GAC_ECO_BITS); 
3590                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3591
3592                 gab_ctl = I915_READ(GAB_CTL);
3593                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3594
3595                 ecochk = I915_READ(GAM_ECOCHK);
3596                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3597                                        ECOCHK_PPGTT_CACHE64B);
3598                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3599         } else if (INTEL_INFO(dev)->gen >= 7) {
3600                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3601                 /* GFX_MODE is per-ring on gen7+ */
3602         }
3603
3604         for_each_ring(ring, dev_priv, i) {
3605                 if (INTEL_INFO(dev)->gen >= 7)
3606                         I915_WRITE(RING_MODE_GEN7(ring),
3607                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3608
3609                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3610                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3611         }
3612 }
3613
3614 int
3615 i915_gem_init_hw(struct drm_device *dev)
3616 {
3617         drm_i915_private_t *dev_priv = dev->dev_private;
3618         int ret;
3619
3620         i915_gem_init_swizzling(dev);
3621
3622         ret = intel_init_render_ring_buffer(dev);
3623         if (ret)
3624                 return ret;
3625
3626         if (HAS_BSD(dev)) {
3627                 ret = intel_init_bsd_ring_buffer(dev);
3628                 if (ret)
3629                         goto cleanup_render_ring;
3630         }
3631
3632         if (HAS_BLT(dev)) {
3633                 ret = intel_init_blt_ring_buffer(dev);
3634                 if (ret)
3635                         goto cleanup_bsd_ring;
3636         }
3637
3638         dev_priv->next_seqno = 1;
3639
3640         i915_gem_init_ppgtt(dev);
3641
3642         return 0;
3643
3644 cleanup_bsd_ring:
3645         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3646 cleanup_render_ring:
3647         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3648         return ret;
3649 }
3650
3651 static bool
3652 intel_enable_ppgtt(struct drm_device *dev)
3653 {
3654         if (i915_enable_ppgtt >= 0)
3655                 return i915_enable_ppgtt;
3656
3657 #ifdef CONFIG_INTEL_IOMMU
3658         /* Disable ppgtt on SNB if VT-d is on. */
3659         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3660                 return false;
3661 #endif
3662
3663         return true;
3664 }
3665
3666 int i915_gem_init(struct drm_device *dev)
3667 {
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         unsigned long gtt_size, mappable_size;
3670         int ret;
3671
3672         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3673         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3674
3675         mutex_lock(&dev->struct_mutex);
3676         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3677                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3678                  * aperture accordingly when using aliasing ppgtt. */
3679                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3680
3681                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3682
3683                 ret = i915_gem_init_aliasing_ppgtt(dev);
3684                 if (ret) {
3685                         mutex_unlock(&dev->struct_mutex);
3686                         return ret;
3687                 }
3688         } else {
3689                 /* Let GEM Manage all of the aperture.
3690                  *
3691                  * However, leave one page at the end still bound to the scratch
3692                  * page.  There are a number of places where the hardware
3693                  * apparently prefetches past the end of the object, and we've
3694                  * seen multiple hangs with the GPU head pointer stuck in a
3695                  * batchbuffer bound at the last page of the aperture.  One page
3696                  * should be enough to keep any prefetching inside of the
3697                  * aperture.
3698                  */
3699                 i915_gem_init_global_gtt(dev, 0, mappable_size,
3700                                          gtt_size);
3701         }
3702
3703         ret = i915_gem_init_hw(dev);
3704         mutex_unlock(&dev->struct_mutex);
3705         if (ret) {
3706                 i915_gem_cleanup_aliasing_ppgtt(dev);
3707                 return ret;
3708         }
3709
3710         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3711         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3712                 dev_priv->dri1.allow_batchbuffer = 1;
3713         return 0;
3714 }
3715
3716 void
3717 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3718 {
3719         drm_i915_private_t *dev_priv = dev->dev_private;
3720         struct intel_ring_buffer *ring;
3721         int i;
3722
3723         for_each_ring(ring, dev_priv, i)
3724                 intel_cleanup_ring_buffer(ring);
3725 }
3726
3727 int
3728 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3729                        struct drm_file *file_priv)
3730 {
3731         drm_i915_private_t *dev_priv = dev->dev_private;
3732         int ret;
3733
3734         if (drm_core_check_feature(dev, DRIVER_MODESET))
3735                 return 0;
3736
3737         if (atomic_read(&dev_priv->mm.wedged)) {
3738                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3739                 atomic_set(&dev_priv->mm.wedged, 0);
3740         }
3741
3742         mutex_lock(&dev->struct_mutex);
3743         dev_priv->mm.suspended = 0;
3744
3745         ret = i915_gem_init_hw(dev);
3746         if (ret != 0) {
3747                 mutex_unlock(&dev->struct_mutex);
3748                 return ret;
3749         }
3750
3751         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3752         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3753         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3754         mutex_unlock(&dev->struct_mutex);
3755
3756         ret = drm_irq_install(dev);
3757         if (ret)
3758                 goto cleanup_ringbuffer;
3759
3760         return 0;
3761
3762 cleanup_ringbuffer:
3763         mutex_lock(&dev->struct_mutex);
3764         i915_gem_cleanup_ringbuffer(dev);
3765         dev_priv->mm.suspended = 1;
3766         mutex_unlock(&dev->struct_mutex);
3767
3768         return ret;
3769 }
3770
3771 int
3772 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3773                        struct drm_file *file_priv)
3774 {
3775         if (drm_core_check_feature(dev, DRIVER_MODESET))
3776                 return 0;
3777
3778         drm_irq_uninstall(dev);
3779         return i915_gem_idle(dev);
3780 }
3781
3782 void
3783 i915_gem_lastclose(struct drm_device *dev)
3784 {
3785         int ret;
3786
3787         if (drm_core_check_feature(dev, DRIVER_MODESET))
3788                 return;
3789
3790         ret = i915_gem_idle(dev);
3791         if (ret)
3792                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3793 }
3794
3795 static void
3796 init_ring_lists(struct intel_ring_buffer *ring)
3797 {
3798         INIT_LIST_HEAD(&ring->active_list);
3799         INIT_LIST_HEAD(&ring->request_list);
3800         INIT_LIST_HEAD(&ring->gpu_write_list);
3801 }
3802
3803 void
3804 i915_gem_load(struct drm_device *dev)
3805 {
3806         int i;
3807         drm_i915_private_t *dev_priv = dev->dev_private;
3808
3809         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3810         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3811         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3812         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3813         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3814         for (i = 0; i < I915_NUM_RINGS; i++)
3815                 init_ring_lists(&dev_priv->ring[i]);
3816         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3817                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3818         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3819                           i915_gem_retire_work_handler);
3820         init_completion(&dev_priv->error_completion);
3821
3822         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3823         if (IS_GEN3(dev)) {
3824                 I915_WRITE(MI_ARB_STATE,
3825                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3826         }
3827
3828         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3829
3830         /* Old X drivers will take 0-2 for front, back, depth buffers */
3831         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3832                 dev_priv->fence_reg_start = 3;
3833
3834         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3835                 dev_priv->num_fence_regs = 16;
3836         else
3837                 dev_priv->num_fence_regs = 8;
3838
3839         /* Initialize fence registers to zero */
3840         i915_gem_reset_fences(dev);
3841
3842         i915_gem_detect_bit_6_swizzle(dev);
3843         init_waitqueue_head(&dev_priv->pending_flip_queue);
3844
3845         dev_priv->mm.interruptible = true;
3846
3847         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3848         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3849         register_shrinker(&dev_priv->mm.inactive_shrinker);
3850 }
3851
3852 /*
3853  * Create a physically contiguous memory object for this object
3854  * e.g. for cursor + overlay regs
3855  */
3856 static int i915_gem_init_phys_object(struct drm_device *dev,
3857                                      int id, int size, int align)
3858 {
3859         drm_i915_private_t *dev_priv = dev->dev_private;
3860         struct drm_i915_gem_phys_object *phys_obj;
3861         int ret;
3862
3863         if (dev_priv->mm.phys_objs[id - 1] || !size)
3864                 return 0;
3865
3866         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3867         if (!phys_obj)
3868                 return -ENOMEM;
3869
3870         phys_obj->id = id;
3871
3872         phys_obj->handle = drm_pci_alloc(dev, size, align);
3873         if (!phys_obj->handle) {
3874                 ret = -ENOMEM;
3875                 goto kfree_obj;
3876         }
3877 #ifdef CONFIG_X86
3878         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3879 #endif
3880
3881         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3882
3883         return 0;
3884 kfree_obj:
3885         kfree(phys_obj);
3886         return ret;
3887 }
3888
3889 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3890 {
3891         drm_i915_private_t *dev_priv = dev->dev_private;
3892         struct drm_i915_gem_phys_object *phys_obj;
3893
3894         if (!dev_priv->mm.phys_objs[id - 1])
3895                 return;
3896
3897         phys_obj = dev_priv->mm.phys_objs[id - 1];
3898         if (phys_obj->cur_obj) {
3899                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3900         }
3901
3902 #ifdef CONFIG_X86
3903         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3904 #endif
3905         drm_pci_free(dev, phys_obj->handle);
3906         kfree(phys_obj);
3907         dev_priv->mm.phys_objs[id - 1] = NULL;
3908 }
3909
3910 void i915_gem_free_all_phys_object(struct drm_device *dev)
3911 {
3912         int i;
3913
3914         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3915                 i915_gem_free_phys_object(dev, i);
3916 }
3917
3918 void i915_gem_detach_phys_object(struct drm_device *dev,
3919                                  struct drm_i915_gem_object *obj)
3920 {
3921         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3922         char *vaddr;
3923         int i;
3924         int page_count;
3925
3926         if (!obj->phys_obj)
3927                 return;
3928         vaddr = obj->phys_obj->handle->vaddr;
3929
3930         page_count = obj->base.size / PAGE_SIZE;
3931         for (i = 0; i < page_count; i++) {
3932                 struct page *page = shmem_read_mapping_page(mapping, i);
3933                 if (!IS_ERR(page)) {
3934                         char *dst = kmap_atomic(page);
3935                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3936                         kunmap_atomic(dst);
3937
3938                         drm_clflush_pages(&page, 1);
3939
3940                         set_page_dirty(page);
3941                         mark_page_accessed(page);
3942                         page_cache_release(page);
3943                 }
3944         }
3945         intel_gtt_chipset_flush();
3946
3947         obj->phys_obj->cur_obj = NULL;
3948         obj->phys_obj = NULL;
3949 }
3950
3951 int
3952 i915_gem_attach_phys_object(struct drm_device *dev,
3953                             struct drm_i915_gem_object *obj,
3954                             int id,
3955                             int align)
3956 {
3957         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3958         drm_i915_private_t *dev_priv = dev->dev_private;
3959         int ret = 0;
3960         int page_count;
3961         int i;
3962
3963         if (id > I915_MAX_PHYS_OBJECT)
3964                 return -EINVAL;
3965
3966         if (obj->phys_obj) {
3967                 if (obj->phys_obj->id == id)
3968                         return 0;
3969                 i915_gem_detach_phys_object(dev, obj);
3970         }
3971
3972         /* create a new object */
3973         if (!dev_priv->mm.phys_objs[id - 1]) {
3974                 ret = i915_gem_init_phys_object(dev, id,
3975                                                 obj->base.size, align);
3976                 if (ret) {
3977                         DRM_ERROR("failed to init phys object %d size: %zu\n",
3978                                   id, obj->base.size);
3979                         return ret;
3980                 }
3981         }
3982
3983         /* bind to the object */
3984         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3985         obj->phys_obj->cur_obj = obj;
3986
3987         page_count = obj->base.size / PAGE_SIZE;
3988
3989         for (i = 0; i < page_count; i++) {
3990                 struct page *page;
3991                 char *dst, *src;
3992
3993                 page = shmem_read_mapping_page(mapping, i);
3994                 if (IS_ERR(page))
3995                         return PTR_ERR(page);
3996
3997                 src = kmap_atomic(page);
3998                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3999                 memcpy(dst, src, PAGE_SIZE);
4000                 kunmap_atomic(src);
4001
4002                 mark_page_accessed(page);
4003                 page_cache_release(page);
4004         }
4005
4006         return 0;
4007 }
4008
4009 static int
4010 i915_gem_phys_pwrite(struct drm_device *dev,
4011                      struct drm_i915_gem_object *obj,
4012                      struct drm_i915_gem_pwrite *args,
4013                      struct drm_file *file_priv)
4014 {
4015         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4016         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4017
4018         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4019                 unsigned long unwritten;
4020
4021                 /* The physical object once assigned is fixed for the lifetime
4022                  * of the obj, so we can safely drop the lock and continue
4023                  * to access vaddr.
4024                  */
4025                 mutex_unlock(&dev->struct_mutex);
4026                 unwritten = copy_from_user(vaddr, user_data, args->size);
4027                 mutex_lock(&dev->struct_mutex);
4028                 if (unwritten)
4029                         return -EFAULT;
4030         }
4031
4032         intel_gtt_chipset_flush();
4033         return 0;
4034 }
4035
4036 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4037 {
4038         struct drm_i915_file_private *file_priv = file->driver_priv;
4039
4040         /* Clean up our request list when the client is going away, so that
4041          * later retire_requests won't dereference our soon-to-be-gone
4042          * file_priv.
4043          */
4044         spin_lock(&file_priv->mm.lock);
4045         while (!list_empty(&file_priv->mm.request_list)) {
4046                 struct drm_i915_gem_request *request;
4047
4048                 request = list_first_entry(&file_priv->mm.request_list,
4049                                            struct drm_i915_gem_request,
4050                                            client_list);
4051                 list_del(&request->client_list);
4052                 request->file_priv = NULL;
4053         }
4054         spin_unlock(&file_priv->mm.lock);
4055 }
4056
4057 static int
4058 i915_gpu_is_active(struct drm_device *dev)
4059 {
4060         drm_i915_private_t *dev_priv = dev->dev_private;
4061         int lists_empty;
4062
4063         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4064                       list_empty(&dev_priv->mm.active_list);
4065
4066         return !lists_empty;
4067 }
4068
4069 static int
4070 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4071 {
4072         struct drm_i915_private *dev_priv =
4073                 container_of(shrinker,
4074                              struct drm_i915_private,
4075                              mm.inactive_shrinker);
4076         struct drm_device *dev = dev_priv->dev;
4077         struct drm_i915_gem_object *obj, *next;
4078         int nr_to_scan = sc->nr_to_scan;
4079         int cnt;
4080
4081         if (!mutex_trylock(&dev->struct_mutex))
4082                 return 0;
4083
4084         /* "fast-path" to count number of available objects */
4085         if (nr_to_scan == 0) {
4086                 cnt = 0;
4087                 list_for_each_entry(obj,
4088                                     &dev_priv->mm.inactive_list,
4089                                     mm_list)
4090                         cnt++;
4091                 mutex_unlock(&dev->struct_mutex);
4092                 return cnt / 100 * sysctl_vfs_cache_pressure;
4093         }
4094
4095 rescan:
4096         /* first scan for clean buffers */
4097         i915_gem_retire_requests(dev);
4098
4099         list_for_each_entry_safe(obj, next,
4100                                  &dev_priv->mm.inactive_list,
4101                                  mm_list) {
4102                 if (i915_gem_object_is_purgeable(obj)) {
4103                         if (i915_gem_object_unbind(obj) == 0 &&
4104                             --nr_to_scan == 0)
4105                                 break;
4106                 }
4107         }
4108
4109         /* second pass, evict/count anything still on the inactive list */
4110         cnt = 0;
4111         list_for_each_entry_safe(obj, next,
4112                                  &dev_priv->mm.inactive_list,
4113                                  mm_list) {
4114                 if (nr_to_scan &&
4115                     i915_gem_object_unbind(obj) == 0)
4116                         nr_to_scan--;
4117                 else
4118                         cnt++;
4119         }
4120
4121         if (nr_to_scan && i915_gpu_is_active(dev)) {
4122                 /*
4123                  * We are desperate for pages, so as a last resort, wait
4124                  * for the GPU to finish and discard whatever we can.
4125                  * This has a dramatic impact to reduce the number of
4126                  * OOM-killer events whilst running the GPU aggressively.
4127                  */
4128                 if (i915_gpu_idle(dev) == 0)
4129                         goto rescan;
4130         }
4131         mutex_unlock(&dev->struct_mutex);
4132         return cnt / 100 * sysctl_vfs_cache_pressure;
4133 }