]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-next-2013-06-18' of git://people.freedesktop.org/~danvet/drm...
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180                 if (obj->pin_count)
181                         pinned += obj->gtt_space->size;
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (obj->gtt_space) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = obj->gtt_offset + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (obj->gtt_space) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096                                bool readonly)
1097 {
1098         struct intel_ring_buffer *ring = obj->ring;
1099         u32 seqno;
1100         int ret;
1101
1102         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103         if (seqno == 0)
1104                 return 0;
1105
1106         ret = i915_wait_seqno(ring, seqno);
1107         if (ret)
1108                 return ret;
1109
1110         i915_gem_retire_requests_ring(ring);
1111
1112         /* Manually manage the write flush as we may have not yet
1113          * retired the buffer.
1114          */
1115         if (obj->last_write_seqno &&
1116             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117                 obj->last_write_seqno = 0;
1118                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119         }
1120
1121         return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129                                             bool readonly)
1130 {
1131         struct drm_device *dev = obj->base.dev;
1132         struct drm_i915_private *dev_priv = dev->dev_private;
1133         struct intel_ring_buffer *ring = obj->ring;
1134         unsigned reset_counter;
1135         u32 seqno;
1136         int ret;
1137
1138         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139         BUG_ON(!dev_priv->mm.interruptible);
1140
1141         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142         if (seqno == 0)
1143                 return 0;
1144
1145         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146         if (ret)
1147                 return ret;
1148
1149         ret = i915_gem_check_olr(ring, seqno);
1150         if (ret)
1151                 return ret;
1152
1153         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154         mutex_unlock(&dev->struct_mutex);
1155         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156         mutex_lock(&dev->struct_mutex);
1157
1158         i915_gem_retire_requests_ring(ring);
1159
1160         /* Manually manage the write flush as we may have not yet
1161          * retired the buffer.
1162          */
1163         if (obj->last_write_seqno &&
1164             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165                 obj->last_write_seqno = 0;
1166                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167         }
1168
1169         return ret;
1170 }
1171
1172 /**
1173  * Called when user space prepares to use an object with the CPU, either
1174  * through the mmap ioctl's mapping or a GTT mapping.
1175  */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178                           struct drm_file *file)
1179 {
1180         struct drm_i915_gem_set_domain *args = data;
1181         struct drm_i915_gem_object *obj;
1182         uint32_t read_domains = args->read_domains;
1183         uint32_t write_domain = args->write_domain;
1184         int ret;
1185
1186         /* Only handle setting domains to types used by the CPU. */
1187         if (write_domain & I915_GEM_GPU_DOMAINS)
1188                 return -EINVAL;
1189
1190         if (read_domains & I915_GEM_GPU_DOMAINS)
1191                 return -EINVAL;
1192
1193         /* Having something in the write domain implies it's in the read
1194          * domain, and only that read domain.  Enforce that in the request.
1195          */
1196         if (write_domain != 0 && read_domains != write_domain)
1197                 return -EINVAL;
1198
1199         ret = i915_mutex_lock_interruptible(dev);
1200         if (ret)
1201                 return ret;
1202
1203         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204         if (&obj->base == NULL) {
1205                 ret = -ENOENT;
1206                 goto unlock;
1207         }
1208
1209         /* Try to flush the object off the GPU without holding the lock.
1210          * We will repeat the flush holding the lock in the normal manner
1211          * to catch cases where we are gazumped.
1212          */
1213         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214         if (ret)
1215                 goto unref;
1216
1217         if (read_domains & I915_GEM_DOMAIN_GTT) {
1218                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220                 /* Silently promote "you're not bound, there was nothing to do"
1221                  * to success, since the client was just asking us to
1222                  * make sure everything was done.
1223                  */
1224                 if (ret == -EINVAL)
1225                         ret = 0;
1226         } else {
1227                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228         }
1229
1230 unref:
1231         drm_gem_object_unreference(&obj->base);
1232 unlock:
1233         mutex_unlock(&dev->struct_mutex);
1234         return ret;
1235 }
1236
1237 /**
1238  * Called when user space has done writes to this buffer
1239  */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242                          struct drm_file *file)
1243 {
1244         struct drm_i915_gem_sw_finish *args = data;
1245         struct drm_i915_gem_object *obj;
1246         int ret = 0;
1247
1248         ret = i915_mutex_lock_interruptible(dev);
1249         if (ret)
1250                 return ret;
1251
1252         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253         if (&obj->base == NULL) {
1254                 ret = -ENOENT;
1255                 goto unlock;
1256         }
1257
1258         /* Pinned buffers may be scanout, so flush the cache */
1259         if (obj->pin_count)
1260                 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262         drm_gem_object_unreference(&obj->base);
1263 unlock:
1264         mutex_unlock(&dev->struct_mutex);
1265         return ret;
1266 }
1267
1268 /**
1269  * Maps the contents of an object, returning the address it is mapped
1270  * into.
1271  *
1272  * While the mapping holds a reference on the contents of the object, it doesn't
1273  * imply a ref on the object itself.
1274  */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277                     struct drm_file *file)
1278 {
1279         struct drm_i915_gem_mmap *args = data;
1280         struct drm_gem_object *obj;
1281         unsigned long addr;
1282
1283         obj = drm_gem_object_lookup(dev, file, args->handle);
1284         if (obj == NULL)
1285                 return -ENOENT;
1286
1287         /* prime objects have no backing filp to GEM mmap
1288          * pages from.
1289          */
1290         if (!obj->filp) {
1291                 drm_gem_object_unreference_unlocked(obj);
1292                 return -EINVAL;
1293         }
1294
1295         addr = vm_mmap(obj->filp, 0, args->size,
1296                        PROT_READ | PROT_WRITE, MAP_SHARED,
1297                        args->offset);
1298         drm_gem_object_unreference_unlocked(obj);
1299         if (IS_ERR((void *)addr))
1300                 return addr;
1301
1302         args->addr_ptr = (uint64_t) addr;
1303
1304         return 0;
1305 }
1306
1307 /**
1308  * i915_gem_fault - fault a page into the GTT
1309  * vma: VMA in question
1310  * vmf: fault info
1311  *
1312  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313  * from userspace.  The fault handler takes care of binding the object to
1314  * the GTT (if needed), allocating and programming a fence register (again,
1315  * only if needed based on whether the old reg is still valid or the object
1316  * is tiled) and inserting a new PTE into the faulting process.
1317  *
1318  * Note that the faulting process may involve evicting existing objects
1319  * from the GTT and/or fence registers to make room.  So performance may
1320  * suffer if the GTT working set is large or there are few fence registers
1321  * left.
1322  */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326         struct drm_device *dev = obj->base.dev;
1327         drm_i915_private_t *dev_priv = dev->dev_private;
1328         pgoff_t page_offset;
1329         unsigned long pfn;
1330         int ret = 0;
1331         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333         /* We don't use vmf->pgoff since that has the fake offset */
1334         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335                 PAGE_SHIFT;
1336
1337         ret = i915_mutex_lock_interruptible(dev);
1338         if (ret)
1339                 goto out;
1340
1341         trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343         /* Access to snoopable pages through the GTT is incoherent. */
1344         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345                 ret = -EINVAL;
1346                 goto unlock;
1347         }
1348
1349         /* Now bind it into the GTT if needed */
1350         ret = i915_gem_object_pin(obj, 0, true, false);
1351         if (ret)
1352                 goto unlock;
1353
1354         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355         if (ret)
1356                 goto unpin;
1357
1358         ret = i915_gem_object_get_fence(obj);
1359         if (ret)
1360                 goto unpin;
1361
1362         obj->fault_mappable = true;
1363
1364         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365                 page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(obj->gtt_space);
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->global_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         long count = 0;
1696
1697         list_for_each_entry_safe(obj, next,
1698                                  &dev_priv->mm.unbound_list,
1699                                  global_list) {
1700                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701                     i915_gem_object_put_pages(obj) == 0) {
1702                         count += obj->base.size >> PAGE_SHIFT;
1703                         if (count >= target)
1704                                 return count;
1705                 }
1706         }
1707
1708         list_for_each_entry_safe(obj, next,
1709                                  &dev_priv->mm.inactive_list,
1710                                  mm_list) {
1711                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712                     i915_gem_object_unbind(obj) == 0 &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726         return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732         struct drm_i915_gem_object *obj, *next;
1733
1734         i915_gem_evict_everything(dev_priv->dev);
1735
1736         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737                                  global_list)
1738                 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745         int page_count, i;
1746         struct address_space *mapping;
1747         struct sg_table *st;
1748         struct scatterlist *sg;
1749         struct sg_page_iter sg_iter;
1750         struct page *page;
1751         unsigned long last_pfn = 0;     /* suppress gcc warning */
1752         gfp_t gfp;
1753
1754         /* Assert that the object is not currently in any GPU domain. As it
1755          * wasn't in the GTT, there shouldn't be any way it could have been in
1756          * a GPU cache
1757          */
1758         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761         st = kmalloc(sizeof(*st), GFP_KERNEL);
1762         if (st == NULL)
1763                 return -ENOMEM;
1764
1765         page_count = obj->base.size / PAGE_SIZE;
1766         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767                 sg_free_table(st);
1768                 kfree(st);
1769                 return -ENOMEM;
1770         }
1771
1772         /* Get the list of pages out of our struct file.  They'll be pinned
1773          * at this point until we release them.
1774          *
1775          * Fail silently without starting the shrinker
1776          */
1777         mapping = file_inode(obj->base.filp)->i_mapping;
1778         gfp = mapping_gfp_mask(mapping);
1779         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780         gfp &= ~(__GFP_IO | __GFP_WAIT);
1781         sg = st->sgl;
1782         st->nents = 0;
1783         for (i = 0; i < page_count; i++) {
1784                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785                 if (IS_ERR(page)) {
1786                         i915_gem_purge(dev_priv, page_count);
1787                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788                 }
1789                 if (IS_ERR(page)) {
1790                         /* We've tried hard to allocate the memory by reaping
1791                          * our own buffer, now let the real VM do its job and
1792                          * go down in flames if truly OOM.
1793                          */
1794                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795                         gfp |= __GFP_IO | __GFP_WAIT;
1796
1797                         i915_gem_shrink_all(dev_priv);
1798                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799                         if (IS_ERR(page))
1800                                 goto err_pages;
1801
1802                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1804                 }
1805
1806                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1807                         if (i)
1808                                 sg = sg_next(sg);
1809                         st->nents++;
1810                         sg_set_page(sg, page, PAGE_SIZE, 0);
1811                 } else {
1812                         sg->length += PAGE_SIZE;
1813                 }
1814                 last_pfn = page_to_pfn(page);
1815         }
1816
1817         sg_mark_end(sg);
1818         obj->pages = st;
1819
1820         if (i915_gem_object_needs_bit17_swizzle(obj))
1821                 i915_gem_object_do_bit_17_swizzle(obj);
1822
1823         return 0;
1824
1825 err_pages:
1826         sg_mark_end(sg);
1827         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1828                 page_cache_release(sg_page_iter_page(&sg_iter));
1829         sg_free_table(st);
1830         kfree(st);
1831         return PTR_ERR(page);
1832 }
1833
1834 /* Ensure that the associated pages are gathered from the backing storage
1835  * and pinned into our object. i915_gem_object_get_pages() may be called
1836  * multiple times before they are released by a single call to
1837  * i915_gem_object_put_pages() - once the pages are no longer referenced
1838  * either as a result of memory pressure (reaping pages under the shrinker)
1839  * or as the object is itself released.
1840  */
1841 int
1842 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1843 {
1844         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1845         const struct drm_i915_gem_object_ops *ops = obj->ops;
1846         int ret;
1847
1848         if (obj->pages)
1849                 return 0;
1850
1851         if (obj->madv != I915_MADV_WILLNEED) {
1852                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1853                 return -EINVAL;
1854         }
1855
1856         BUG_ON(obj->pages_pin_count);
1857
1858         ret = ops->get_pages(obj);
1859         if (ret)
1860                 return ret;
1861
1862         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1863         return 0;
1864 }
1865
1866 void
1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1868                                struct intel_ring_buffer *ring)
1869 {
1870         struct drm_device *dev = obj->base.dev;
1871         struct drm_i915_private *dev_priv = dev->dev_private;
1872         u32 seqno = intel_ring_get_seqno(ring);
1873
1874         BUG_ON(ring == NULL);
1875         obj->ring = ring;
1876
1877         /* Add a reference if we're newly entering the active list. */
1878         if (!obj->active) {
1879                 drm_gem_object_reference(&obj->base);
1880                 obj->active = 1;
1881         }
1882
1883         /* Move from whatever list we were on to the tail of execution. */
1884         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885         list_move_tail(&obj->ring_list, &ring->active_list);
1886
1887         obj->last_read_seqno = seqno;
1888
1889         if (obj->fenced_gpu_access) {
1890                 obj->last_fenced_seqno = seqno;
1891
1892                 /* Bump MRU to take account of the delayed flush */
1893                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894                         struct drm_i915_fence_reg *reg;
1895
1896                         reg = &dev_priv->fence_regs[obj->fence_reg];
1897                         list_move_tail(&reg->lru_list,
1898                                        &dev_priv->mm.fence_list);
1899                 }
1900         }
1901 }
1902
1903 static void
1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905 {
1906         struct drm_device *dev = obj->base.dev;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1910         BUG_ON(!obj->active);
1911
1912         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1913
1914         list_del_init(&obj->ring_list);
1915         obj->ring = NULL;
1916
1917         obj->last_read_seqno = 0;
1918         obj->last_write_seqno = 0;
1919         obj->base.write_domain = 0;
1920
1921         obj->last_fenced_seqno = 0;
1922         obj->fenced_gpu_access = false;
1923
1924         obj->active = 0;
1925         drm_gem_object_unreference(&obj->base);
1926
1927         WARN_ON(i915_verify_lists(dev));
1928 }
1929
1930 static int
1931 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1932 {
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         struct intel_ring_buffer *ring;
1935         int ret, i, j;
1936
1937         /* Carefully retire all requests without writing to the rings */
1938         for_each_ring(ring, dev_priv, i) {
1939                 ret = intel_ring_idle(ring);
1940                 if (ret)
1941                         return ret;
1942         }
1943         i915_gem_retire_requests(dev);
1944
1945         /* Finally reset hw state */
1946         for_each_ring(ring, dev_priv, i) {
1947                 intel_ring_init_seqno(ring, seqno);
1948
1949                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1950                         ring->sync_seqno[j] = 0;
1951         }
1952
1953         return 0;
1954 }
1955
1956 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1957 {
1958         struct drm_i915_private *dev_priv = dev->dev_private;
1959         int ret;
1960
1961         if (seqno == 0)
1962                 return -EINVAL;
1963
1964         /* HWS page needs to be set less than what we
1965          * will inject to ring
1966          */
1967         ret = i915_gem_init_seqno(dev, seqno - 1);
1968         if (ret)
1969                 return ret;
1970
1971         /* Carefully set the last_seqno value so that wrap
1972          * detection still works
1973          */
1974         dev_priv->next_seqno = seqno;
1975         dev_priv->last_seqno = seqno - 1;
1976         if (dev_priv->last_seqno == 0)
1977                 dev_priv->last_seqno--;
1978
1979         return 0;
1980 }
1981
1982 int
1983 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1984 {
1985         struct drm_i915_private *dev_priv = dev->dev_private;
1986
1987         /* reserve 0 for non-seqno */
1988         if (dev_priv->next_seqno == 0) {
1989                 int ret = i915_gem_init_seqno(dev, 0);
1990                 if (ret)
1991                         return ret;
1992
1993                 dev_priv->next_seqno = 1;
1994         }
1995
1996         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1997         return 0;
1998 }
1999
2000 int __i915_add_request(struct intel_ring_buffer *ring,
2001                        struct drm_file *file,
2002                        struct drm_i915_gem_object *obj,
2003                        u32 *out_seqno)
2004 {
2005         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2006         struct drm_i915_gem_request *request;
2007         u32 request_ring_position, request_start;
2008         int was_empty;
2009         int ret;
2010
2011         request_start = intel_ring_get_tail(ring);
2012         /*
2013          * Emit any outstanding flushes - execbuf can fail to emit the flush
2014          * after having emitted the batchbuffer command. Hence we need to fix
2015          * things up similar to emitting the lazy request. The difference here
2016          * is that the flush _must_ happen before the next request, no matter
2017          * what.
2018          */
2019         ret = intel_ring_flush_all_caches(ring);
2020         if (ret)
2021                 return ret;
2022
2023         request = kmalloc(sizeof(*request), GFP_KERNEL);
2024         if (request == NULL)
2025                 return -ENOMEM;
2026
2027
2028         /* Record the position of the start of the request so that
2029          * should we detect the updated seqno part-way through the
2030          * GPU processing the request, we never over-estimate the
2031          * position of the head.
2032          */
2033         request_ring_position = intel_ring_get_tail(ring);
2034
2035         ret = ring->add_request(ring);
2036         if (ret) {
2037                 kfree(request);
2038                 return ret;
2039         }
2040
2041         request->seqno = intel_ring_get_seqno(ring);
2042         request->ring = ring;
2043         request->head = request_start;
2044         request->tail = request_ring_position;
2045         request->ctx = ring->last_context;
2046         request->batch_obj = obj;
2047
2048         /* Whilst this request exists, batch_obj will be on the
2049          * active_list, and so will hold the active reference. Only when this
2050          * request is retired will the the batch_obj be moved onto the
2051          * inactive_list and lose its active reference. Hence we do not need
2052          * to explicitly hold another reference here.
2053          */
2054
2055         if (request->ctx)
2056                 i915_gem_context_reference(request->ctx);
2057
2058         request->emitted_jiffies = jiffies;
2059         was_empty = list_empty(&ring->request_list);
2060         list_add_tail(&request->list, &ring->request_list);
2061         request->file_priv = NULL;
2062
2063         if (file) {
2064                 struct drm_i915_file_private *file_priv = file->driver_priv;
2065
2066                 spin_lock(&file_priv->mm.lock);
2067                 request->file_priv = file_priv;
2068                 list_add_tail(&request->client_list,
2069                               &file_priv->mm.request_list);
2070                 spin_unlock(&file_priv->mm.lock);
2071         }
2072
2073         trace_i915_gem_request_add(ring, request->seqno);
2074         ring->outstanding_lazy_request = 0;
2075
2076         if (!dev_priv->mm.suspended) {
2077                 if (i915_enable_hangcheck) {
2078                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2079                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2080                 }
2081                 if (was_empty) {
2082                         queue_delayed_work(dev_priv->wq,
2083                                            &dev_priv->mm.retire_work,
2084                                            round_jiffies_up_relative(HZ));
2085                         intel_mark_busy(dev_priv->dev);
2086                 }
2087         }
2088
2089         if (out_seqno)
2090                 *out_seqno = request->seqno;
2091         return 0;
2092 }
2093
2094 static inline void
2095 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2096 {
2097         struct drm_i915_file_private *file_priv = request->file_priv;
2098
2099         if (!file_priv)
2100                 return;
2101
2102         spin_lock(&file_priv->mm.lock);
2103         if (request->file_priv) {
2104                 list_del(&request->client_list);
2105                 request->file_priv = NULL;
2106         }
2107         spin_unlock(&file_priv->mm.lock);
2108 }
2109
2110 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2111 {
2112         if (acthd >= obj->gtt_offset &&
2113             acthd < obj->gtt_offset + obj->base.size)
2114                 return true;
2115
2116         return false;
2117 }
2118
2119 static bool i915_head_inside_request(const u32 acthd_unmasked,
2120                                      const u32 request_start,
2121                                      const u32 request_end)
2122 {
2123         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2124
2125         if (request_start < request_end) {
2126                 if (acthd >= request_start && acthd < request_end)
2127                         return true;
2128         } else if (request_start > request_end) {
2129                 if (acthd >= request_start || acthd < request_end)
2130                         return true;
2131         }
2132
2133         return false;
2134 }
2135
2136 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2137                                 const u32 acthd, bool *inside)
2138 {
2139         /* There is a possibility that unmasked head address
2140          * pointing inside the ring, matches the batch_obj address range.
2141          * However this is extremely unlikely.
2142          */
2143
2144         if (request->batch_obj) {
2145                 if (i915_head_inside_object(acthd, request->batch_obj)) {
2146                         *inside = true;
2147                         return true;
2148                 }
2149         }
2150
2151         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2152                 *inside = false;
2153                 return true;
2154         }
2155
2156         return false;
2157 }
2158
2159 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2160                                   struct drm_i915_gem_request *request,
2161                                   u32 acthd)
2162 {
2163         struct i915_ctx_hang_stats *hs = NULL;
2164         bool inside, guilty;
2165
2166         /* Innocent until proven guilty */
2167         guilty = false;
2168
2169         if (ring->hangcheck.action != wait &&
2170             i915_request_guilty(request, acthd, &inside)) {
2171                 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2172                           ring->name,
2173                           inside ? "inside" : "flushing",
2174                           request->batch_obj ?
2175                           request->batch_obj->gtt_offset : 0,
2176                           request->ctx ? request->ctx->id : 0,
2177                           acthd);
2178
2179                 guilty = true;
2180         }
2181
2182         /* If contexts are disabled or this is the default context, use
2183          * file_priv->reset_state
2184          */
2185         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2186                 hs = &request->ctx->hang_stats;
2187         else if (request->file_priv)
2188                 hs = &request->file_priv->hang_stats;
2189
2190         if (hs) {
2191                 if (guilty)
2192                         hs->batch_active++;
2193                 else
2194                         hs->batch_pending++;
2195         }
2196 }
2197
2198 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2199 {
2200         list_del(&request->list);
2201         i915_gem_request_remove_from_client(request);
2202
2203         if (request->ctx)
2204                 i915_gem_context_unreference(request->ctx);
2205
2206         kfree(request);
2207 }
2208
2209 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2210                                       struct intel_ring_buffer *ring)
2211 {
2212         u32 completed_seqno;
2213         u32 acthd;
2214
2215         acthd = intel_ring_get_active_head(ring);
2216         completed_seqno = ring->get_seqno(ring, false);
2217
2218         while (!list_empty(&ring->request_list)) {
2219                 struct drm_i915_gem_request *request;
2220
2221                 request = list_first_entry(&ring->request_list,
2222                                            struct drm_i915_gem_request,
2223                                            list);
2224
2225                 if (request->seqno > completed_seqno)
2226                         i915_set_reset_status(ring, request, acthd);
2227
2228                 i915_gem_free_request(request);
2229         }
2230
2231         while (!list_empty(&ring->active_list)) {
2232                 struct drm_i915_gem_object *obj;
2233
2234                 obj = list_first_entry(&ring->active_list,
2235                                        struct drm_i915_gem_object,
2236                                        ring_list);
2237
2238                 i915_gem_object_move_to_inactive(obj);
2239         }
2240 }
2241
2242 static void i915_gem_reset_fences(struct drm_device *dev)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         int i;
2246
2247         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2248                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2249
2250                 if (reg->obj)
2251                         i915_gem_object_fence_lost(reg->obj);
2252
2253                 i915_gem_write_fence(dev, i, NULL);
2254
2255                 reg->pin_count = 0;
2256                 reg->obj = NULL;
2257                 INIT_LIST_HEAD(&reg->lru_list);
2258         }
2259
2260         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2261 }
2262
2263 void i915_gem_reset(struct drm_device *dev)
2264 {
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct drm_i915_gem_object *obj;
2267         struct intel_ring_buffer *ring;
2268         int i;
2269
2270         for_each_ring(ring, dev_priv, i)
2271                 i915_gem_reset_ring_lists(dev_priv, ring);
2272
2273         /* Move everything out of the GPU domains to ensure we do any
2274          * necessary invalidation upon reuse.
2275          */
2276         list_for_each_entry(obj,
2277                             &dev_priv->mm.inactive_list,
2278                             mm_list)
2279         {
2280                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2281         }
2282
2283         /* The fence registers are invalidated so clear them out */
2284         i915_gem_reset_fences(dev);
2285 }
2286
2287 /**
2288  * This function clears the request list as sequence numbers are passed.
2289  */
2290 void
2291 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2292 {
2293         uint32_t seqno;
2294
2295         if (list_empty(&ring->request_list))
2296                 return;
2297
2298         WARN_ON(i915_verify_lists(ring->dev));
2299
2300         seqno = ring->get_seqno(ring, true);
2301
2302         while (!list_empty(&ring->request_list)) {
2303                 struct drm_i915_gem_request *request;
2304
2305                 request = list_first_entry(&ring->request_list,
2306                                            struct drm_i915_gem_request,
2307                                            list);
2308
2309                 if (!i915_seqno_passed(seqno, request->seqno))
2310                         break;
2311
2312                 trace_i915_gem_request_retire(ring, request->seqno);
2313                 /* We know the GPU must have read the request to have
2314                  * sent us the seqno + interrupt, so use the position
2315                  * of tail of the request to update the last known position
2316                  * of the GPU head.
2317                  */
2318                 ring->last_retired_head = request->tail;
2319
2320                 i915_gem_free_request(request);
2321         }
2322
2323         /* Move any buffers on the active list that are no longer referenced
2324          * by the ringbuffer to the flushing/inactive lists as appropriate.
2325          */
2326         while (!list_empty(&ring->active_list)) {
2327                 struct drm_i915_gem_object *obj;
2328
2329                 obj = list_first_entry(&ring->active_list,
2330                                       struct drm_i915_gem_object,
2331                                       ring_list);
2332
2333                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2334                         break;
2335
2336                 i915_gem_object_move_to_inactive(obj);
2337         }
2338
2339         if (unlikely(ring->trace_irq_seqno &&
2340                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2341                 ring->irq_put(ring);
2342                 ring->trace_irq_seqno = 0;
2343         }
2344
2345         WARN_ON(i915_verify_lists(ring->dev));
2346 }
2347
2348 void
2349 i915_gem_retire_requests(struct drm_device *dev)
2350 {
2351         drm_i915_private_t *dev_priv = dev->dev_private;
2352         struct intel_ring_buffer *ring;
2353         int i;
2354
2355         for_each_ring(ring, dev_priv, i)
2356                 i915_gem_retire_requests_ring(ring);
2357 }
2358
2359 static void
2360 i915_gem_retire_work_handler(struct work_struct *work)
2361 {
2362         drm_i915_private_t *dev_priv;
2363         struct drm_device *dev;
2364         struct intel_ring_buffer *ring;
2365         bool idle;
2366         int i;
2367
2368         dev_priv = container_of(work, drm_i915_private_t,
2369                                 mm.retire_work.work);
2370         dev = dev_priv->dev;
2371
2372         /* Come back later if the device is busy... */
2373         if (!mutex_trylock(&dev->struct_mutex)) {
2374                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2375                                    round_jiffies_up_relative(HZ));
2376                 return;
2377         }
2378
2379         i915_gem_retire_requests(dev);
2380
2381         /* Send a periodic flush down the ring so we don't hold onto GEM
2382          * objects indefinitely.
2383          */
2384         idle = true;
2385         for_each_ring(ring, dev_priv, i) {
2386                 if (ring->gpu_caches_dirty)
2387                         i915_add_request(ring, NULL);
2388
2389                 idle &= list_empty(&ring->request_list);
2390         }
2391
2392         if (!dev_priv->mm.suspended && !idle)
2393                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2394                                    round_jiffies_up_relative(HZ));
2395         if (idle)
2396                 intel_mark_idle(dev);
2397
2398         mutex_unlock(&dev->struct_mutex);
2399 }
2400
2401 /**
2402  * Ensures that an object will eventually get non-busy by flushing any required
2403  * write domains, emitting any outstanding lazy request and retiring and
2404  * completed requests.
2405  */
2406 static int
2407 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2408 {
2409         int ret;
2410
2411         if (obj->active) {
2412                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2413                 if (ret)
2414                         return ret;
2415
2416                 i915_gem_retire_requests_ring(obj->ring);
2417         }
2418
2419         return 0;
2420 }
2421
2422 /**
2423  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2424  * @DRM_IOCTL_ARGS: standard ioctl arguments
2425  *
2426  * Returns 0 if successful, else an error is returned with the remaining time in
2427  * the timeout parameter.
2428  *  -ETIME: object is still busy after timeout
2429  *  -ERESTARTSYS: signal interrupted the wait
2430  *  -ENONENT: object doesn't exist
2431  * Also possible, but rare:
2432  *  -EAGAIN: GPU wedged
2433  *  -ENOMEM: damn
2434  *  -ENODEV: Internal IRQ fail
2435  *  -E?: The add request failed
2436  *
2437  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2438  * non-zero timeout parameter the wait ioctl will wait for the given number of
2439  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2440  * without holding struct_mutex the object may become re-busied before this
2441  * function completes. A similar but shorter * race condition exists in the busy
2442  * ioctl
2443  */
2444 int
2445 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2446 {
2447         drm_i915_private_t *dev_priv = dev->dev_private;
2448         struct drm_i915_gem_wait *args = data;
2449         struct drm_i915_gem_object *obj;
2450         struct intel_ring_buffer *ring = NULL;
2451         struct timespec timeout_stack, *timeout = NULL;
2452         unsigned reset_counter;
2453         u32 seqno = 0;
2454         int ret = 0;
2455
2456         if (args->timeout_ns >= 0) {
2457                 timeout_stack = ns_to_timespec(args->timeout_ns);
2458                 timeout = &timeout_stack;
2459         }
2460
2461         ret = i915_mutex_lock_interruptible(dev);
2462         if (ret)
2463                 return ret;
2464
2465         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2466         if (&obj->base == NULL) {
2467                 mutex_unlock(&dev->struct_mutex);
2468                 return -ENOENT;
2469         }
2470
2471         /* Need to make sure the object gets inactive eventually. */
2472         ret = i915_gem_object_flush_active(obj);
2473         if (ret)
2474                 goto out;
2475
2476         if (obj->active) {
2477                 seqno = obj->last_read_seqno;
2478                 ring = obj->ring;
2479         }
2480
2481         if (seqno == 0)
2482                  goto out;
2483
2484         /* Do this after OLR check to make sure we make forward progress polling
2485          * on this IOCTL with a 0 timeout (like busy ioctl)
2486          */
2487         if (!args->timeout_ns) {
2488                 ret = -ETIME;
2489                 goto out;
2490         }
2491
2492         drm_gem_object_unreference(&obj->base);
2493         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2494         mutex_unlock(&dev->struct_mutex);
2495
2496         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2497         if (timeout)
2498                 args->timeout_ns = timespec_to_ns(timeout);
2499         return ret;
2500
2501 out:
2502         drm_gem_object_unreference(&obj->base);
2503         mutex_unlock(&dev->struct_mutex);
2504         return ret;
2505 }
2506
2507 /**
2508  * i915_gem_object_sync - sync an object to a ring.
2509  *
2510  * @obj: object which may be in use on another ring.
2511  * @to: ring we wish to use the object on. May be NULL.
2512  *
2513  * This code is meant to abstract object synchronization with the GPU.
2514  * Calling with NULL implies synchronizing the object with the CPU
2515  * rather than a particular GPU ring.
2516  *
2517  * Returns 0 if successful, else propagates up the lower layer error.
2518  */
2519 int
2520 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2521                      struct intel_ring_buffer *to)
2522 {
2523         struct intel_ring_buffer *from = obj->ring;
2524         u32 seqno;
2525         int ret, idx;
2526
2527         if (from == NULL || to == from)
2528                 return 0;
2529
2530         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2531                 return i915_gem_object_wait_rendering(obj, false);
2532
2533         idx = intel_ring_sync_index(from, to);
2534
2535         seqno = obj->last_read_seqno;
2536         if (seqno <= from->sync_seqno[idx])
2537                 return 0;
2538
2539         ret = i915_gem_check_olr(obj->ring, seqno);
2540         if (ret)
2541                 return ret;
2542
2543         ret = to->sync_to(to, from, seqno);
2544         if (!ret)
2545                 /* We use last_read_seqno because sync_to()
2546                  * might have just caused seqno wrap under
2547                  * the radar.
2548                  */
2549                 from->sync_seqno[idx] = obj->last_read_seqno;
2550
2551         return ret;
2552 }
2553
2554 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2555 {
2556         u32 old_write_domain, old_read_domains;
2557
2558         /* Force a pagefault for domain tracking on next user access */
2559         i915_gem_release_mmap(obj);
2560
2561         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2562                 return;
2563
2564         /* Wait for any direct GTT access to complete */
2565         mb();
2566
2567         old_read_domains = obj->base.read_domains;
2568         old_write_domain = obj->base.write_domain;
2569
2570         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2571         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2572
2573         trace_i915_gem_object_change_domain(obj,
2574                                             old_read_domains,
2575                                             old_write_domain);
2576 }
2577
2578 /**
2579  * Unbinds an object from the GTT aperture.
2580  */
2581 int
2582 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2583 {
2584         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2585         int ret;
2586
2587         if (obj->gtt_space == NULL)
2588                 return 0;
2589
2590         if (obj->pin_count)
2591                 return -EBUSY;
2592
2593         BUG_ON(obj->pages == NULL);
2594
2595         ret = i915_gem_object_finish_gpu(obj);
2596         if (ret)
2597                 return ret;
2598         /* Continue on if we fail due to EIO, the GPU is hung so we
2599          * should be safe and we need to cleanup or else we might
2600          * cause memory corruption through use-after-free.
2601          */
2602
2603         i915_gem_object_finish_gtt(obj);
2604
2605         /* release the fence reg _after_ flushing */
2606         ret = i915_gem_object_put_fence(obj);
2607         if (ret)
2608                 return ret;
2609
2610         trace_i915_gem_object_unbind(obj);
2611
2612         if (obj->has_global_gtt_mapping)
2613                 i915_gem_gtt_unbind_object(obj);
2614         if (obj->has_aliasing_ppgtt_mapping) {
2615                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2616                 obj->has_aliasing_ppgtt_mapping = 0;
2617         }
2618         i915_gem_gtt_finish_object(obj);
2619         i915_gem_object_unpin_pages(obj);
2620
2621         list_del(&obj->mm_list);
2622         list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2623         /* Avoid an unnecessary call to unbind on rebind. */
2624         obj->map_and_fenceable = true;
2625
2626         drm_mm_put_block(obj->gtt_space);
2627         obj->gtt_space = NULL;
2628         obj->gtt_offset = 0;
2629
2630         return 0;
2631 }
2632
2633 int i915_gpu_idle(struct drm_device *dev)
2634 {
2635         drm_i915_private_t *dev_priv = dev->dev_private;
2636         struct intel_ring_buffer *ring;
2637         int ret, i;
2638
2639         /* Flush everything onto the inactive list. */
2640         for_each_ring(ring, dev_priv, i) {
2641                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2642                 if (ret)
2643                         return ret;
2644
2645                 ret = intel_ring_idle(ring);
2646                 if (ret)
2647                         return ret;
2648         }
2649
2650         return 0;
2651 }
2652
2653 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2654                                  struct drm_i915_gem_object *obj)
2655 {
2656         drm_i915_private_t *dev_priv = dev->dev_private;
2657         int fence_reg;
2658         int fence_pitch_shift;
2659         uint64_t val;
2660
2661         if (INTEL_INFO(dev)->gen >= 6) {
2662                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2663                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2664         } else {
2665                 fence_reg = FENCE_REG_965_0;
2666                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2667         }
2668
2669         if (obj) {
2670                 u32 size = obj->gtt_space->size;
2671
2672                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2673                                  0xfffff000) << 32;
2674                 val |= obj->gtt_offset & 0xfffff000;
2675                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2676                 if (obj->tiling_mode == I915_TILING_Y)
2677                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2678                 val |= I965_FENCE_REG_VALID;
2679         } else
2680                 val = 0;
2681
2682         fence_reg += reg * 8;
2683         I915_WRITE64(fence_reg, val);
2684         POSTING_READ(fence_reg);
2685 }
2686
2687 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2688                                  struct drm_i915_gem_object *obj)
2689 {
2690         drm_i915_private_t *dev_priv = dev->dev_private;
2691         u32 val;
2692
2693         if (obj) {
2694                 u32 size = obj->gtt_space->size;
2695                 int pitch_val;
2696                 int tile_width;
2697
2698                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2699                      (size & -size) != size ||
2700                      (obj->gtt_offset & (size - 1)),
2701                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2702                      obj->gtt_offset, obj->map_and_fenceable, size);
2703
2704                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2705                         tile_width = 128;
2706                 else
2707                         tile_width = 512;
2708
2709                 /* Note: pitch better be a power of two tile widths */
2710                 pitch_val = obj->stride / tile_width;
2711                 pitch_val = ffs(pitch_val) - 1;
2712
2713                 val = obj->gtt_offset;
2714                 if (obj->tiling_mode == I915_TILING_Y)
2715                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2716                 val |= I915_FENCE_SIZE_BITS(size);
2717                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2718                 val |= I830_FENCE_REG_VALID;
2719         } else
2720                 val = 0;
2721
2722         if (reg < 8)
2723                 reg = FENCE_REG_830_0 + reg * 4;
2724         else
2725                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2726
2727         I915_WRITE(reg, val);
2728         POSTING_READ(reg);
2729 }
2730
2731 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2732                                 struct drm_i915_gem_object *obj)
2733 {
2734         drm_i915_private_t *dev_priv = dev->dev_private;
2735         uint32_t val;
2736
2737         if (obj) {
2738                 u32 size = obj->gtt_space->size;
2739                 uint32_t pitch_val;
2740
2741                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2742                      (size & -size) != size ||
2743                      (obj->gtt_offset & (size - 1)),
2744                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2745                      obj->gtt_offset, size);
2746
2747                 pitch_val = obj->stride / 128;
2748                 pitch_val = ffs(pitch_val) - 1;
2749
2750                 val = obj->gtt_offset;
2751                 if (obj->tiling_mode == I915_TILING_Y)
2752                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2753                 val |= I830_FENCE_SIZE_BITS(size);
2754                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2755                 val |= I830_FENCE_REG_VALID;
2756         } else
2757                 val = 0;
2758
2759         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2760         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2761 }
2762
2763 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2764 {
2765         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2766 }
2767
2768 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2769                                  struct drm_i915_gem_object *obj)
2770 {
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772
2773         /* Ensure that all CPU reads are completed before installing a fence
2774          * and all writes before removing the fence.
2775          */
2776         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2777                 mb();
2778
2779         switch (INTEL_INFO(dev)->gen) {
2780         case 7:
2781         case 6:
2782         case 5:
2783         case 4: i965_write_fence_reg(dev, reg, obj); break;
2784         case 3: i915_write_fence_reg(dev, reg, obj); break;
2785         case 2: i830_write_fence_reg(dev, reg, obj); break;
2786         default: BUG();
2787         }
2788
2789         /* And similarly be paranoid that no direct access to this region
2790          * is reordered to before the fence is installed.
2791          */
2792         if (i915_gem_object_needs_mb(obj))
2793                 mb();
2794 }
2795
2796 static inline int fence_number(struct drm_i915_private *dev_priv,
2797                                struct drm_i915_fence_reg *fence)
2798 {
2799         return fence - dev_priv->fence_regs;
2800 }
2801
2802 struct write_fence {
2803         struct drm_device *dev;
2804         struct drm_i915_gem_object *obj;
2805         int fence;
2806 };
2807
2808 static void i915_gem_write_fence__ipi(void *data)
2809 {
2810         struct write_fence *args = data;
2811
2812         /* Required for SNB+ with LLC */
2813         wbinvd();
2814
2815         /* Required for VLV */
2816         i915_gem_write_fence(args->dev, args->fence, args->obj);
2817 }
2818
2819 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2820                                          struct drm_i915_fence_reg *fence,
2821                                          bool enable)
2822 {
2823         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2824         struct write_fence args = {
2825                 .dev = obj->base.dev,
2826                 .fence = fence_number(dev_priv, fence),
2827                 .obj = enable ? obj : NULL,
2828         };
2829
2830         /* In order to fully serialize access to the fenced region and
2831          * the update to the fence register we need to take extreme
2832          * measures on SNB+. In theory, the write to the fence register
2833          * flushes all memory transactions before, and coupled with the
2834          * mb() placed around the register write we serialise all memory
2835          * operations with respect to the changes in the tiler. Yet, on
2836          * SNB+ we need to take a step further and emit an explicit wbinvd()
2837          * on each processor in order to manually flush all memory
2838          * transactions before updating the fence register.
2839          *
2840          * However, Valleyview complicates matter. There the wbinvd is
2841          * insufficient and unlike SNB/IVB requires the serialising
2842          * register write. (Note that that register write by itself is
2843          * conversely not sufficient for SNB+.) To compromise, we do both.
2844          */
2845         if (INTEL_INFO(args.dev)->gen >= 6)
2846                 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2847         else
2848                 i915_gem_write_fence(args.dev, args.fence, args.obj);
2849
2850         if (enable) {
2851                 obj->fence_reg = args.fence;
2852                 fence->obj = obj;
2853                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2854         } else {
2855                 obj->fence_reg = I915_FENCE_REG_NONE;
2856                 fence->obj = NULL;
2857                 list_del_init(&fence->lru_list);
2858         }
2859 }
2860
2861 static int
2862 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2863 {
2864         if (obj->last_fenced_seqno) {
2865                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2866                 if (ret)
2867                         return ret;
2868
2869                 obj->last_fenced_seqno = 0;
2870         }
2871
2872         obj->fenced_gpu_access = false;
2873         return 0;
2874 }
2875
2876 int
2877 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2878 {
2879         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2880         struct drm_i915_fence_reg *fence;
2881         int ret;
2882
2883         ret = i915_gem_object_wait_fence(obj);
2884         if (ret)
2885                 return ret;
2886
2887         if (obj->fence_reg == I915_FENCE_REG_NONE)
2888                 return 0;
2889
2890         fence = &dev_priv->fence_regs[obj->fence_reg];
2891
2892         i915_gem_object_fence_lost(obj);
2893         i915_gem_object_update_fence(obj, fence, false);
2894
2895         return 0;
2896 }
2897
2898 static struct drm_i915_fence_reg *
2899 i915_find_fence_reg(struct drm_device *dev)
2900 {
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902         struct drm_i915_fence_reg *reg, *avail;
2903         int i;
2904
2905         /* First try to find a free reg */
2906         avail = NULL;
2907         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2908                 reg = &dev_priv->fence_regs[i];
2909                 if (!reg->obj)
2910                         return reg;
2911
2912                 if (!reg->pin_count)
2913                         avail = reg;
2914         }
2915
2916         if (avail == NULL)
2917                 return NULL;
2918
2919         /* None available, try to steal one or wait for a user to finish */
2920         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2921                 if (reg->pin_count)
2922                         continue;
2923
2924                 return reg;
2925         }
2926
2927         return NULL;
2928 }
2929
2930 /**
2931  * i915_gem_object_get_fence - set up fencing for an object
2932  * @obj: object to map through a fence reg
2933  *
2934  * When mapping objects through the GTT, userspace wants to be able to write
2935  * to them without having to worry about swizzling if the object is tiled.
2936  * This function walks the fence regs looking for a free one for @obj,
2937  * stealing one if it can't find any.
2938  *
2939  * It then sets up the reg based on the object's properties: address, pitch
2940  * and tiling format.
2941  *
2942  * For an untiled surface, this removes any existing fence.
2943  */
2944 int
2945 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2946 {
2947         struct drm_device *dev = obj->base.dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949         bool enable = obj->tiling_mode != I915_TILING_NONE;
2950         struct drm_i915_fence_reg *reg;
2951         int ret;
2952
2953         /* Have we updated the tiling parameters upon the object and so
2954          * will need to serialise the write to the associated fence register?
2955          */
2956         if (obj->fence_dirty) {
2957                 ret = i915_gem_object_wait_fence(obj);
2958                 if (ret)
2959                         return ret;
2960         }
2961
2962         /* Just update our place in the LRU if our fence is getting reused. */
2963         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2964                 reg = &dev_priv->fence_regs[obj->fence_reg];
2965                 if (!obj->fence_dirty) {
2966                         list_move_tail(&reg->lru_list,
2967                                        &dev_priv->mm.fence_list);
2968                         return 0;
2969                 }
2970         } else if (enable) {
2971                 reg = i915_find_fence_reg(dev);
2972                 if (reg == NULL)
2973                         return -EDEADLK;
2974
2975                 if (reg->obj) {
2976                         struct drm_i915_gem_object *old = reg->obj;
2977
2978                         ret = i915_gem_object_wait_fence(old);
2979                         if (ret)
2980                                 return ret;
2981
2982                         i915_gem_object_fence_lost(old);
2983                 }
2984         } else
2985                 return 0;
2986
2987         i915_gem_object_update_fence(obj, reg, enable);
2988         obj->fence_dirty = false;
2989
2990         return 0;
2991 }
2992
2993 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2994                                      struct drm_mm_node *gtt_space,
2995                                      unsigned long cache_level)
2996 {
2997         struct drm_mm_node *other;
2998
2999         /* On non-LLC machines we have to be careful when putting differing
3000          * types of snoopable memory together to avoid the prefetcher
3001          * crossing memory domains and dying.
3002          */
3003         if (HAS_LLC(dev))
3004                 return true;
3005
3006         if (gtt_space == NULL)
3007                 return true;
3008
3009         if (list_empty(&gtt_space->node_list))
3010                 return true;
3011
3012         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3013         if (other->allocated && !other->hole_follows && other->color != cache_level)
3014                 return false;
3015
3016         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3017         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3018                 return false;
3019
3020         return true;
3021 }
3022
3023 static void i915_gem_verify_gtt(struct drm_device *dev)
3024 {
3025 #if WATCH_GTT
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         struct drm_i915_gem_object *obj;
3028         int err = 0;
3029
3030         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031                 if (obj->gtt_space == NULL) {
3032                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3033                         err++;
3034                         continue;
3035                 }
3036
3037                 if (obj->cache_level != obj->gtt_space->color) {
3038                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3039                                obj->gtt_space->start,
3040                                obj->gtt_space->start + obj->gtt_space->size,
3041                                obj->cache_level,
3042                                obj->gtt_space->color);
3043                         err++;
3044                         continue;
3045                 }
3046
3047                 if (!i915_gem_valid_gtt_space(dev,
3048                                               obj->gtt_space,
3049                                               obj->cache_level)) {
3050                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3051                                obj->gtt_space->start,
3052                                obj->gtt_space->start + obj->gtt_space->size,
3053                                obj->cache_level);
3054                         err++;
3055                         continue;
3056                 }
3057         }
3058
3059         WARN_ON(err);
3060 #endif
3061 }
3062
3063 /**
3064  * Finds free space in the GTT aperture and binds the object there.
3065  */
3066 static int
3067 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3068                             unsigned alignment,
3069                             bool map_and_fenceable,
3070                             bool nonblocking)
3071 {
3072         struct drm_device *dev = obj->base.dev;
3073         drm_i915_private_t *dev_priv = dev->dev_private;
3074         struct drm_mm_node *node;
3075         u32 size, fence_size, fence_alignment, unfenced_alignment;
3076         bool mappable, fenceable;
3077         size_t gtt_max = map_and_fenceable ?
3078                 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3079         int ret;
3080
3081         fence_size = i915_gem_get_gtt_size(dev,
3082                                            obj->base.size,
3083                                            obj->tiling_mode);
3084         fence_alignment = i915_gem_get_gtt_alignment(dev,
3085                                                      obj->base.size,
3086                                                      obj->tiling_mode, true);
3087         unfenced_alignment =
3088                 i915_gem_get_gtt_alignment(dev,
3089                                                     obj->base.size,
3090                                                     obj->tiling_mode, false);
3091
3092         if (alignment == 0)
3093                 alignment = map_and_fenceable ? fence_alignment :
3094                                                 unfenced_alignment;
3095         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3096                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3097                 return -EINVAL;
3098         }
3099
3100         size = map_and_fenceable ? fence_size : obj->base.size;
3101
3102         /* If the object is bigger than the entire aperture, reject it early
3103          * before evicting everything in a vain attempt to find space.
3104          */
3105         if (obj->base.size > gtt_max) {
3106                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%ld\n",
3107                           obj->base.size,
3108                           map_and_fenceable ? "mappable" : "total",
3109                           gtt_max);
3110                 return -E2BIG;
3111         }
3112
3113         ret = i915_gem_object_get_pages(obj);
3114         if (ret)
3115                 return ret;
3116
3117         i915_gem_object_pin_pages(obj);
3118
3119         node = kzalloc(sizeof(*node), GFP_KERNEL);
3120         if (node == NULL) {
3121                 i915_gem_object_unpin_pages(obj);
3122                 return -ENOMEM;
3123         }
3124
3125 search_free:
3126         ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3127                                                   size, alignment,
3128                                                   obj->cache_level, 0, gtt_max);
3129         if (ret) {
3130                 ret = i915_gem_evict_something(dev, size, alignment,
3131                                                obj->cache_level,
3132                                                map_and_fenceable,
3133                                                nonblocking);
3134                 if (ret == 0)
3135                         goto search_free;
3136
3137                 i915_gem_object_unpin_pages(obj);
3138                 kfree(node);
3139                 return ret;
3140         }
3141         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3142                 i915_gem_object_unpin_pages(obj);
3143                 drm_mm_put_block(node);
3144                 return -EINVAL;
3145         }
3146
3147         ret = i915_gem_gtt_prepare_object(obj);
3148         if (ret) {
3149                 i915_gem_object_unpin_pages(obj);
3150                 drm_mm_put_block(node);
3151                 return ret;
3152         }
3153
3154         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3155         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3156
3157         obj->gtt_space = node;
3158         obj->gtt_offset = node->start;
3159
3160         fenceable =
3161                 node->size == fence_size &&
3162                 (node->start & (fence_alignment - 1)) == 0;
3163
3164         mappable =
3165                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3166
3167         obj->map_and_fenceable = mappable && fenceable;
3168
3169         trace_i915_gem_object_bind(obj, map_and_fenceable);
3170         i915_gem_verify_gtt(dev);
3171         return 0;
3172 }
3173
3174 void
3175 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3176 {
3177         /* If we don't have a page list set up, then we're not pinned
3178          * to GPU, and we can ignore the cache flush because it'll happen
3179          * again at bind time.
3180          */
3181         if (obj->pages == NULL)
3182                 return;
3183
3184         /*
3185          * Stolen memory is always coherent with the GPU as it is explicitly
3186          * marked as wc by the system, or the system is cache-coherent.
3187          */
3188         if (obj->stolen)
3189                 return;
3190
3191         /* If the GPU is snooping the contents of the CPU cache,
3192          * we do not need to manually clear the CPU cache lines.  However,
3193          * the caches are only snooped when the render cache is
3194          * flushed/invalidated.  As we always have to emit invalidations
3195          * and flushes when moving into and out of the RENDER domain, correct
3196          * snooping behaviour occurs naturally as the result of our domain
3197          * tracking.
3198          */
3199         if (obj->cache_level != I915_CACHE_NONE)
3200                 return;
3201
3202         trace_i915_gem_object_clflush(obj);
3203
3204         drm_clflush_sg(obj->pages);
3205 }
3206
3207 /** Flushes the GTT write domain for the object if it's dirty. */
3208 static void
3209 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3210 {
3211         uint32_t old_write_domain;
3212
3213         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3214                 return;
3215
3216         /* No actual flushing is required for the GTT write domain.  Writes
3217          * to it immediately go to main memory as far as we know, so there's
3218          * no chipset flush.  It also doesn't land in render cache.
3219          *
3220          * However, we do have to enforce the order so that all writes through
3221          * the GTT land before any writes to the device, such as updates to
3222          * the GATT itself.
3223          */
3224         wmb();
3225
3226         old_write_domain = obj->base.write_domain;
3227         obj->base.write_domain = 0;
3228
3229         trace_i915_gem_object_change_domain(obj,
3230                                             obj->base.read_domains,
3231                                             old_write_domain);
3232 }
3233
3234 /** Flushes the CPU write domain for the object if it's dirty. */
3235 static void
3236 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3237 {
3238         uint32_t old_write_domain;
3239
3240         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3241                 return;
3242
3243         i915_gem_clflush_object(obj);
3244         i915_gem_chipset_flush(obj->base.dev);
3245         old_write_domain = obj->base.write_domain;
3246         obj->base.write_domain = 0;
3247
3248         trace_i915_gem_object_change_domain(obj,
3249                                             obj->base.read_domains,
3250                                             old_write_domain);
3251 }
3252
3253 /**
3254  * Moves a single object to the GTT read, and possibly write domain.
3255  *
3256  * This function returns when the move is complete, including waiting on
3257  * flushes to occur.
3258  */
3259 int
3260 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3261 {
3262         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3263         uint32_t old_write_domain, old_read_domains;
3264         int ret;
3265
3266         /* Not valid to be called on unbound objects. */
3267         if (obj->gtt_space == NULL)
3268                 return -EINVAL;
3269
3270         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3271                 return 0;
3272
3273         ret = i915_gem_object_wait_rendering(obj, !write);
3274         if (ret)
3275                 return ret;
3276
3277         i915_gem_object_flush_cpu_write_domain(obj);
3278
3279         /* Serialise direct access to this object with the barriers for
3280          * coherent writes from the GPU, by effectively invalidating the
3281          * GTT domain upon first access.
3282          */
3283         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3284                 mb();
3285
3286         old_write_domain = obj->base.write_domain;
3287         old_read_domains = obj->base.read_domains;
3288
3289         /* It should now be out of any other write domains, and we can update
3290          * the domain values for our changes.
3291          */
3292         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3293         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3294         if (write) {
3295                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3296                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3297                 obj->dirty = 1;
3298         }
3299
3300         trace_i915_gem_object_change_domain(obj,
3301                                             old_read_domains,
3302                                             old_write_domain);
3303
3304         /* And bump the LRU for this access */
3305         if (i915_gem_object_is_inactive(obj))
3306                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3307
3308         return 0;
3309 }
3310
3311 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3312                                     enum i915_cache_level cache_level)
3313 {
3314         struct drm_device *dev = obj->base.dev;
3315         drm_i915_private_t *dev_priv = dev->dev_private;
3316         int ret;
3317
3318         if (obj->cache_level == cache_level)
3319                 return 0;
3320
3321         if (obj->pin_count) {
3322                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3323                 return -EBUSY;
3324         }
3325
3326         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3327                 ret = i915_gem_object_unbind(obj);
3328                 if (ret)
3329                         return ret;
3330         }
3331
3332         if (obj->gtt_space) {
3333                 ret = i915_gem_object_finish_gpu(obj);
3334                 if (ret)
3335                         return ret;
3336
3337                 i915_gem_object_finish_gtt(obj);
3338
3339                 /* Before SandyBridge, you could not use tiling or fence
3340                  * registers with snooped memory, so relinquish any fences
3341                  * currently pointing to our region in the aperture.
3342                  */
3343                 if (INTEL_INFO(dev)->gen < 6) {
3344                         ret = i915_gem_object_put_fence(obj);
3345                         if (ret)
3346                                 return ret;
3347                 }
3348
3349                 if (obj->has_global_gtt_mapping)
3350                         i915_gem_gtt_bind_object(obj, cache_level);
3351                 if (obj->has_aliasing_ppgtt_mapping)
3352                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3353                                                obj, cache_level);
3354
3355                 obj->gtt_space->color = cache_level;
3356         }
3357
3358         if (cache_level == I915_CACHE_NONE) {
3359                 u32 old_read_domains, old_write_domain;
3360
3361                 /* If we're coming from LLC cached, then we haven't
3362                  * actually been tracking whether the data is in the
3363                  * CPU cache or not, since we only allow one bit set
3364                  * in obj->write_domain and have been skipping the clflushes.
3365                  * Just set it to the CPU cache for now.
3366                  */
3367                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3368                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3369
3370                 old_read_domains = obj->base.read_domains;
3371                 old_write_domain = obj->base.write_domain;
3372
3373                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3374                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3375
3376                 trace_i915_gem_object_change_domain(obj,
3377                                                     old_read_domains,
3378                                                     old_write_domain);
3379         }
3380
3381         obj->cache_level = cache_level;
3382         i915_gem_verify_gtt(dev);
3383         return 0;
3384 }
3385
3386 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3387                                struct drm_file *file)
3388 {
3389         struct drm_i915_gem_caching *args = data;
3390         struct drm_i915_gem_object *obj;
3391         int ret;
3392
3393         ret = i915_mutex_lock_interruptible(dev);
3394         if (ret)
3395                 return ret;
3396
3397         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3398         if (&obj->base == NULL) {
3399                 ret = -ENOENT;
3400                 goto unlock;
3401         }
3402
3403         args->caching = obj->cache_level != I915_CACHE_NONE;
3404
3405         drm_gem_object_unreference(&obj->base);
3406 unlock:
3407         mutex_unlock(&dev->struct_mutex);
3408         return ret;
3409 }
3410
3411 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3412                                struct drm_file *file)
3413 {
3414         struct drm_i915_gem_caching *args = data;
3415         struct drm_i915_gem_object *obj;
3416         enum i915_cache_level level;
3417         int ret;
3418
3419         switch (args->caching) {
3420         case I915_CACHING_NONE:
3421                 level = I915_CACHE_NONE;
3422                 break;
3423         case I915_CACHING_CACHED:
3424                 level = I915_CACHE_LLC;
3425                 break;
3426         default:
3427                 return -EINVAL;
3428         }
3429
3430         ret = i915_mutex_lock_interruptible(dev);
3431         if (ret)
3432                 return ret;
3433
3434         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3435         if (&obj->base == NULL) {
3436                 ret = -ENOENT;
3437                 goto unlock;
3438         }
3439
3440         ret = i915_gem_object_set_cache_level(obj, level);
3441
3442         drm_gem_object_unreference(&obj->base);
3443 unlock:
3444         mutex_unlock(&dev->struct_mutex);
3445         return ret;
3446 }
3447
3448 /*
3449  * Prepare buffer for display plane (scanout, cursors, etc).
3450  * Can be called from an uninterruptible phase (modesetting) and allows
3451  * any flushes to be pipelined (for pageflips).
3452  */
3453 int
3454 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3455                                      u32 alignment,
3456                                      struct intel_ring_buffer *pipelined)
3457 {
3458         u32 old_read_domains, old_write_domain;
3459         int ret;
3460
3461         if (pipelined != obj->ring) {
3462                 ret = i915_gem_object_sync(obj, pipelined);
3463                 if (ret)
3464                         return ret;
3465         }
3466
3467         /* The display engine is not coherent with the LLC cache on gen6.  As
3468          * a result, we make sure that the pinning that is about to occur is
3469          * done with uncached PTEs. This is lowest common denominator for all
3470          * chipsets.
3471          *
3472          * However for gen6+, we could do better by using the GFDT bit instead
3473          * of uncaching, which would allow us to flush all the LLC-cached data
3474          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3475          */
3476         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3477         if (ret)
3478                 return ret;
3479
3480         /* As the user may map the buffer once pinned in the display plane
3481          * (e.g. libkms for the bootup splash), we have to ensure that we
3482          * always use map_and_fenceable for all scanout buffers.
3483          */
3484         ret = i915_gem_object_pin(obj, alignment, true, false);
3485         if (ret)
3486                 return ret;
3487
3488         i915_gem_object_flush_cpu_write_domain(obj);
3489
3490         old_write_domain = obj->base.write_domain;
3491         old_read_domains = obj->base.read_domains;
3492
3493         /* It should now be out of any other write domains, and we can update
3494          * the domain values for our changes.
3495          */
3496         obj->base.write_domain = 0;
3497         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3498
3499         trace_i915_gem_object_change_domain(obj,
3500                                             old_read_domains,
3501                                             old_write_domain);
3502
3503         return 0;
3504 }
3505
3506 int
3507 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3508 {
3509         int ret;
3510
3511         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3512                 return 0;
3513
3514         ret = i915_gem_object_wait_rendering(obj, false);
3515         if (ret)
3516                 return ret;
3517
3518         /* Ensure that we invalidate the GPU's caches and TLBs. */
3519         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3520         return 0;
3521 }
3522
3523 /**
3524  * Moves a single object to the CPU read, and possibly write domain.
3525  *
3526  * This function returns when the move is complete, including waiting on
3527  * flushes to occur.
3528  */
3529 int
3530 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3531 {
3532         uint32_t old_write_domain, old_read_domains;
3533         int ret;
3534
3535         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3536                 return 0;
3537
3538         ret = i915_gem_object_wait_rendering(obj, !write);
3539         if (ret)
3540                 return ret;
3541
3542         i915_gem_object_flush_gtt_write_domain(obj);
3543
3544         old_write_domain = obj->base.write_domain;
3545         old_read_domains = obj->base.read_domains;
3546
3547         /* Flush the CPU cache if it's still invalid. */
3548         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3549                 i915_gem_clflush_object(obj);
3550
3551                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3552         }
3553
3554         /* It should now be out of any other write domains, and we can update
3555          * the domain values for our changes.
3556          */
3557         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3558
3559         /* If we're writing through the CPU, then the GPU read domains will
3560          * need to be invalidated at next use.
3561          */
3562         if (write) {
3563                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3564                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3565         }
3566
3567         trace_i915_gem_object_change_domain(obj,
3568                                             old_read_domains,
3569                                             old_write_domain);
3570
3571         return 0;
3572 }
3573
3574 /* Throttle our rendering by waiting until the ring has completed our requests
3575  * emitted over 20 msec ago.
3576  *
3577  * Note that if we were to use the current jiffies each time around the loop,
3578  * we wouldn't escape the function with any frames outstanding if the time to
3579  * render a frame was over 20ms.
3580  *
3581  * This should get us reasonable parallelism between CPU and GPU but also
3582  * relatively low latency when blocking on a particular request to finish.
3583  */
3584 static int
3585 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3586 {
3587         struct drm_i915_private *dev_priv = dev->dev_private;
3588         struct drm_i915_file_private *file_priv = file->driver_priv;
3589         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3590         struct drm_i915_gem_request *request;
3591         struct intel_ring_buffer *ring = NULL;
3592         unsigned reset_counter;
3593         u32 seqno = 0;
3594         int ret;
3595
3596         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3597         if (ret)
3598                 return ret;
3599
3600         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3601         if (ret)
3602                 return ret;
3603
3604         spin_lock(&file_priv->mm.lock);
3605         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3606                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3607                         break;
3608
3609                 ring = request->ring;
3610                 seqno = request->seqno;
3611         }
3612         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3613         spin_unlock(&file_priv->mm.lock);
3614
3615         if (seqno == 0)
3616                 return 0;
3617
3618         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3619         if (ret == 0)
3620                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3621
3622         return ret;
3623 }
3624
3625 int
3626 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3627                     uint32_t alignment,
3628                     bool map_and_fenceable,
3629                     bool nonblocking)
3630 {
3631         int ret;
3632
3633         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3634                 return -EBUSY;
3635
3636         if (obj->gtt_space != NULL) {
3637                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3638                     (map_and_fenceable && !obj->map_and_fenceable)) {
3639                         WARN(obj->pin_count,
3640                              "bo is already pinned with incorrect alignment:"
3641                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3642                              " obj->map_and_fenceable=%d\n",
3643                              obj->gtt_offset, alignment,
3644                              map_and_fenceable,
3645                              obj->map_and_fenceable);
3646                         ret = i915_gem_object_unbind(obj);
3647                         if (ret)
3648                                 return ret;
3649                 }
3650         }
3651
3652         if (obj->gtt_space == NULL) {
3653                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3654
3655                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3656                                                   map_and_fenceable,
3657                                                   nonblocking);
3658                 if (ret)
3659                         return ret;
3660
3661                 if (!dev_priv->mm.aliasing_ppgtt)
3662                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3663         }
3664
3665         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3666                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3667
3668         obj->pin_count++;
3669         obj->pin_mappable |= map_and_fenceable;
3670
3671         return 0;
3672 }
3673
3674 void
3675 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3676 {
3677         BUG_ON(obj->pin_count == 0);
3678         BUG_ON(obj->gtt_space == NULL);
3679
3680         if (--obj->pin_count == 0)
3681                 obj->pin_mappable = false;
3682 }
3683
3684 int
3685 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3686                    struct drm_file *file)
3687 {
3688         struct drm_i915_gem_pin *args = data;
3689         struct drm_i915_gem_object *obj;
3690         int ret;
3691
3692         ret = i915_mutex_lock_interruptible(dev);
3693         if (ret)
3694                 return ret;
3695
3696         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3697         if (&obj->base == NULL) {
3698                 ret = -ENOENT;
3699                 goto unlock;
3700         }
3701
3702         if (obj->madv != I915_MADV_WILLNEED) {
3703                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3704                 ret = -EINVAL;
3705                 goto out;
3706         }
3707
3708         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3709                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3710                           args->handle);
3711                 ret = -EINVAL;
3712                 goto out;
3713         }
3714
3715         if (obj->user_pin_count == 0) {
3716                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3717                 if (ret)
3718                         goto out;
3719         }
3720
3721         obj->user_pin_count++;
3722         obj->pin_filp = file;
3723
3724         /* XXX - flush the CPU caches for pinned objects
3725          * as the X server doesn't manage domains yet
3726          */
3727         i915_gem_object_flush_cpu_write_domain(obj);
3728         args->offset = obj->gtt_offset;
3729 out:
3730         drm_gem_object_unreference(&obj->base);
3731 unlock:
3732         mutex_unlock(&dev->struct_mutex);
3733         return ret;
3734 }
3735
3736 int
3737 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3738                      struct drm_file *file)
3739 {
3740         struct drm_i915_gem_pin *args = data;
3741         struct drm_i915_gem_object *obj;
3742         int ret;
3743
3744         ret = i915_mutex_lock_interruptible(dev);
3745         if (ret)
3746                 return ret;
3747
3748         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3749         if (&obj->base == NULL) {
3750                 ret = -ENOENT;
3751                 goto unlock;
3752         }
3753
3754         if (obj->pin_filp != file) {
3755                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3756                           args->handle);
3757                 ret = -EINVAL;
3758                 goto out;
3759         }
3760         obj->user_pin_count--;
3761         if (obj->user_pin_count == 0) {
3762                 obj->pin_filp = NULL;
3763                 i915_gem_object_unpin(obj);
3764         }
3765
3766 out:
3767         drm_gem_object_unreference(&obj->base);
3768 unlock:
3769         mutex_unlock(&dev->struct_mutex);
3770         return ret;
3771 }
3772
3773 int
3774 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3775                     struct drm_file *file)
3776 {
3777         struct drm_i915_gem_busy *args = data;
3778         struct drm_i915_gem_object *obj;
3779         int ret;
3780
3781         ret = i915_mutex_lock_interruptible(dev);
3782         if (ret)
3783                 return ret;
3784
3785         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3786         if (&obj->base == NULL) {
3787                 ret = -ENOENT;
3788                 goto unlock;
3789         }
3790
3791         /* Count all active objects as busy, even if they are currently not used
3792          * by the gpu. Users of this interface expect objects to eventually
3793          * become non-busy without any further actions, therefore emit any
3794          * necessary flushes here.
3795          */
3796         ret = i915_gem_object_flush_active(obj);
3797
3798         args->busy = obj->active;
3799         if (obj->ring) {
3800                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3801                 args->busy |= intel_ring_flag(obj->ring) << 16;
3802         }
3803
3804         drm_gem_object_unreference(&obj->base);
3805 unlock:
3806         mutex_unlock(&dev->struct_mutex);
3807         return ret;
3808 }
3809
3810 int
3811 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3812                         struct drm_file *file_priv)
3813 {
3814         return i915_gem_ring_throttle(dev, file_priv);
3815 }
3816
3817 int
3818 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3819                        struct drm_file *file_priv)
3820 {
3821         struct drm_i915_gem_madvise *args = data;
3822         struct drm_i915_gem_object *obj;
3823         int ret;
3824
3825         switch (args->madv) {
3826         case I915_MADV_DONTNEED:
3827         case I915_MADV_WILLNEED:
3828             break;
3829         default:
3830             return -EINVAL;
3831         }
3832
3833         ret = i915_mutex_lock_interruptible(dev);
3834         if (ret)
3835                 return ret;
3836
3837         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3838         if (&obj->base == NULL) {
3839                 ret = -ENOENT;
3840                 goto unlock;
3841         }
3842
3843         if (obj->pin_count) {
3844                 ret = -EINVAL;
3845                 goto out;
3846         }
3847
3848         if (obj->madv != __I915_MADV_PURGED)
3849                 obj->madv = args->madv;
3850
3851         /* if the object is no longer attached, discard its backing storage */
3852         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3853                 i915_gem_object_truncate(obj);
3854
3855         args->retained = obj->madv != __I915_MADV_PURGED;
3856
3857 out:
3858         drm_gem_object_unreference(&obj->base);
3859 unlock:
3860         mutex_unlock(&dev->struct_mutex);
3861         return ret;
3862 }
3863
3864 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3865                           const struct drm_i915_gem_object_ops *ops)
3866 {
3867         INIT_LIST_HEAD(&obj->mm_list);
3868         INIT_LIST_HEAD(&obj->global_list);
3869         INIT_LIST_HEAD(&obj->ring_list);
3870         INIT_LIST_HEAD(&obj->exec_list);
3871
3872         obj->ops = ops;
3873
3874         obj->fence_reg = I915_FENCE_REG_NONE;
3875         obj->madv = I915_MADV_WILLNEED;
3876         /* Avoid an unnecessary call to unbind on the first bind. */
3877         obj->map_and_fenceable = true;
3878
3879         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3880 }
3881
3882 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3883         .get_pages = i915_gem_object_get_pages_gtt,
3884         .put_pages = i915_gem_object_put_pages_gtt,
3885 };
3886
3887 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3888                                                   size_t size)
3889 {
3890         struct drm_i915_gem_object *obj;
3891         struct address_space *mapping;
3892         gfp_t mask;
3893
3894         obj = i915_gem_object_alloc(dev);
3895         if (obj == NULL)
3896                 return NULL;
3897
3898         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3899                 i915_gem_object_free(obj);
3900                 return NULL;
3901         }
3902
3903         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3904         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3905                 /* 965gm cannot relocate objects above 4GiB. */
3906                 mask &= ~__GFP_HIGHMEM;
3907                 mask |= __GFP_DMA32;
3908         }
3909
3910         mapping = file_inode(obj->base.filp)->i_mapping;
3911         mapping_set_gfp_mask(mapping, mask);
3912
3913         i915_gem_object_init(obj, &i915_gem_object_ops);
3914
3915         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3916         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3917
3918         if (HAS_LLC(dev)) {
3919                 /* On some devices, we can have the GPU use the LLC (the CPU
3920                  * cache) for about a 10% performance improvement
3921                  * compared to uncached.  Graphics requests other than
3922                  * display scanout are coherent with the CPU in
3923                  * accessing this cache.  This means in this mode we
3924                  * don't need to clflush on the CPU side, and on the
3925                  * GPU side we only need to flush internal caches to
3926                  * get data visible to the CPU.
3927                  *
3928                  * However, we maintain the display planes as UC, and so
3929                  * need to rebind when first used as such.
3930                  */
3931                 obj->cache_level = I915_CACHE_LLC;
3932         } else
3933                 obj->cache_level = I915_CACHE_NONE;
3934
3935         return obj;
3936 }
3937
3938 int i915_gem_init_object(struct drm_gem_object *obj)
3939 {
3940         BUG();
3941
3942         return 0;
3943 }
3944
3945 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3946 {
3947         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3948         struct drm_device *dev = obj->base.dev;
3949         drm_i915_private_t *dev_priv = dev->dev_private;
3950
3951         trace_i915_gem_object_destroy(obj);
3952
3953         if (obj->phys_obj)
3954                 i915_gem_detach_phys_object(dev, obj);
3955
3956         obj->pin_count = 0;
3957         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3958                 bool was_interruptible;
3959
3960                 was_interruptible = dev_priv->mm.interruptible;
3961                 dev_priv->mm.interruptible = false;
3962
3963                 WARN_ON(i915_gem_object_unbind(obj));
3964
3965                 dev_priv->mm.interruptible = was_interruptible;
3966         }
3967
3968         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3969          * before progressing. */
3970         if (obj->stolen)
3971                 i915_gem_object_unpin_pages(obj);
3972
3973         if (WARN_ON(obj->pages_pin_count))
3974                 obj->pages_pin_count = 0;
3975         i915_gem_object_put_pages(obj);
3976         i915_gem_object_free_mmap_offset(obj);
3977         i915_gem_object_release_stolen(obj);
3978
3979         BUG_ON(obj->pages);
3980
3981         if (obj->base.import_attach)
3982                 drm_prime_gem_destroy(&obj->base, NULL);
3983
3984         drm_gem_object_release(&obj->base);
3985         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3986
3987         kfree(obj->bit_17);
3988         i915_gem_object_free(obj);
3989 }
3990
3991 int
3992 i915_gem_idle(struct drm_device *dev)
3993 {
3994         drm_i915_private_t *dev_priv = dev->dev_private;
3995         int ret;
3996
3997         mutex_lock(&dev->struct_mutex);
3998
3999         if (dev_priv->mm.suspended) {
4000                 mutex_unlock(&dev->struct_mutex);
4001                 return 0;
4002         }
4003
4004         ret = i915_gpu_idle(dev);
4005         if (ret) {
4006                 mutex_unlock(&dev->struct_mutex);
4007                 return ret;
4008         }
4009         i915_gem_retire_requests(dev);
4010
4011         /* Under UMS, be paranoid and evict. */
4012         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4013                 i915_gem_evict_everything(dev);
4014
4015         i915_gem_reset_fences(dev);
4016
4017         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4018          * We need to replace this with a semaphore, or something.
4019          * And not confound mm.suspended!
4020          */
4021         dev_priv->mm.suspended = 1;
4022         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4023
4024         i915_kernel_lost_context(dev);
4025         i915_gem_cleanup_ringbuffer(dev);
4026
4027         mutex_unlock(&dev->struct_mutex);
4028
4029         /* Cancel the retire work handler, which should be idle now. */
4030         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4031
4032         return 0;
4033 }
4034
4035 void i915_gem_l3_remap(struct drm_device *dev)
4036 {
4037         drm_i915_private_t *dev_priv = dev->dev_private;
4038         u32 misccpctl;
4039         int i;
4040
4041         if (!HAS_L3_GPU_CACHE(dev))
4042                 return;
4043
4044         if (!dev_priv->l3_parity.remap_info)
4045                 return;
4046
4047         misccpctl = I915_READ(GEN7_MISCCPCTL);
4048         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4049         POSTING_READ(GEN7_MISCCPCTL);
4050
4051         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4052                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4053                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4054                         DRM_DEBUG("0x%x was already programmed to %x\n",
4055                                   GEN7_L3LOG_BASE + i, remap);
4056                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4057                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4058                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4059         }
4060
4061         /* Make sure all the writes land before disabling dop clock gating */
4062         POSTING_READ(GEN7_L3LOG_BASE);
4063
4064         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4065 }
4066
4067 void i915_gem_init_swizzling(struct drm_device *dev)
4068 {
4069         drm_i915_private_t *dev_priv = dev->dev_private;
4070
4071         if (INTEL_INFO(dev)->gen < 5 ||
4072             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4073                 return;
4074
4075         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4076                                  DISP_TILE_SURFACE_SWIZZLING);
4077
4078         if (IS_GEN5(dev))
4079                 return;
4080
4081         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4082         if (IS_GEN6(dev))
4083                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4084         else if (IS_GEN7(dev))
4085                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4086         else
4087                 BUG();
4088 }
4089
4090 static bool
4091 intel_enable_blt(struct drm_device *dev)
4092 {
4093         if (!HAS_BLT(dev))
4094                 return false;
4095
4096         /* The blitter was dysfunctional on early prototypes */
4097         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4098                 DRM_INFO("BLT not supported on this pre-production hardware;"
4099                          " graphics performance will be degraded.\n");
4100                 return false;
4101         }
4102
4103         return true;
4104 }
4105
4106 static int i915_gem_init_rings(struct drm_device *dev)
4107 {
4108         struct drm_i915_private *dev_priv = dev->dev_private;
4109         int ret;
4110
4111         ret = intel_init_render_ring_buffer(dev);
4112         if (ret)
4113                 return ret;
4114
4115         if (HAS_BSD(dev)) {
4116                 ret = intel_init_bsd_ring_buffer(dev);
4117                 if (ret)
4118                         goto cleanup_render_ring;
4119         }
4120
4121         if (intel_enable_blt(dev)) {
4122                 ret = intel_init_blt_ring_buffer(dev);
4123                 if (ret)
4124                         goto cleanup_bsd_ring;
4125         }
4126
4127         if (HAS_VEBOX(dev)) {
4128                 ret = intel_init_vebox_ring_buffer(dev);
4129                 if (ret)
4130                         goto cleanup_blt_ring;
4131         }
4132
4133
4134         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4135         if (ret)
4136                 goto cleanup_vebox_ring;
4137
4138         return 0;
4139
4140 cleanup_vebox_ring:
4141         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4142 cleanup_blt_ring:
4143         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4144 cleanup_bsd_ring:
4145         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4146 cleanup_render_ring:
4147         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4148
4149         return ret;
4150 }
4151
4152 int
4153 i915_gem_init_hw(struct drm_device *dev)
4154 {
4155         drm_i915_private_t *dev_priv = dev->dev_private;
4156         int ret;
4157
4158         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4159                 return -EIO;
4160
4161         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4162                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4163
4164         if (HAS_PCH_NOP(dev)) {
4165                 u32 temp = I915_READ(GEN7_MSG_CTL);
4166                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4167                 I915_WRITE(GEN7_MSG_CTL, temp);
4168         }
4169
4170         i915_gem_l3_remap(dev);
4171
4172         i915_gem_init_swizzling(dev);
4173
4174         ret = i915_gem_init_rings(dev);
4175         if (ret)
4176                 return ret;
4177
4178         /*
4179          * XXX: There was some w/a described somewhere suggesting loading
4180          * contexts before PPGTT.
4181          */
4182         i915_gem_context_init(dev);
4183         if (dev_priv->mm.aliasing_ppgtt) {
4184                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4185                 if (ret) {
4186                         i915_gem_cleanup_aliasing_ppgtt(dev);
4187                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4188                 }
4189         }
4190
4191         return 0;
4192 }
4193
4194 int i915_gem_init(struct drm_device *dev)
4195 {
4196         struct drm_i915_private *dev_priv = dev->dev_private;
4197         int ret;
4198
4199         mutex_lock(&dev->struct_mutex);
4200
4201         if (IS_VALLEYVIEW(dev)) {
4202                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4203                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4204                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4205                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4206         }
4207
4208         i915_gem_init_global_gtt(dev);
4209
4210         ret = i915_gem_init_hw(dev);
4211         mutex_unlock(&dev->struct_mutex);
4212         if (ret) {
4213                 i915_gem_cleanup_aliasing_ppgtt(dev);
4214                 return ret;
4215         }
4216
4217         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4218         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4219                 dev_priv->dri1.allow_batchbuffer = 1;
4220         return 0;
4221 }
4222
4223 void
4224 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4225 {
4226         drm_i915_private_t *dev_priv = dev->dev_private;
4227         struct intel_ring_buffer *ring;
4228         int i;
4229
4230         for_each_ring(ring, dev_priv, i)
4231                 intel_cleanup_ring_buffer(ring);
4232 }
4233
4234 int
4235 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4236                        struct drm_file *file_priv)
4237 {
4238         drm_i915_private_t *dev_priv = dev->dev_private;
4239         int ret;
4240
4241         if (drm_core_check_feature(dev, DRIVER_MODESET))
4242                 return 0;
4243
4244         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4245                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4246                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4247         }
4248
4249         mutex_lock(&dev->struct_mutex);
4250         dev_priv->mm.suspended = 0;
4251
4252         ret = i915_gem_init_hw(dev);
4253         if (ret != 0) {
4254                 mutex_unlock(&dev->struct_mutex);
4255                 return ret;
4256         }
4257
4258         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4259         mutex_unlock(&dev->struct_mutex);
4260
4261         ret = drm_irq_install(dev);
4262         if (ret)
4263                 goto cleanup_ringbuffer;
4264
4265         return 0;
4266
4267 cleanup_ringbuffer:
4268         mutex_lock(&dev->struct_mutex);
4269         i915_gem_cleanup_ringbuffer(dev);
4270         dev_priv->mm.suspended = 1;
4271         mutex_unlock(&dev->struct_mutex);
4272
4273         return ret;
4274 }
4275
4276 int
4277 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4278                        struct drm_file *file_priv)
4279 {
4280         if (drm_core_check_feature(dev, DRIVER_MODESET))
4281                 return 0;
4282
4283         drm_irq_uninstall(dev);
4284         return i915_gem_idle(dev);
4285 }
4286
4287 void
4288 i915_gem_lastclose(struct drm_device *dev)
4289 {
4290         int ret;
4291
4292         if (drm_core_check_feature(dev, DRIVER_MODESET))
4293                 return;
4294
4295         ret = i915_gem_idle(dev);
4296         if (ret)
4297                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4298 }
4299
4300 static void
4301 init_ring_lists(struct intel_ring_buffer *ring)
4302 {
4303         INIT_LIST_HEAD(&ring->active_list);
4304         INIT_LIST_HEAD(&ring->request_list);
4305 }
4306
4307 void
4308 i915_gem_load(struct drm_device *dev)
4309 {
4310         drm_i915_private_t *dev_priv = dev->dev_private;
4311         int i;
4312
4313         dev_priv->slab =
4314                 kmem_cache_create("i915_gem_object",
4315                                   sizeof(struct drm_i915_gem_object), 0,
4316                                   SLAB_HWCACHE_ALIGN,
4317                                   NULL);
4318
4319         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4320         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4321         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4322         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4323         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4324         for (i = 0; i < I915_NUM_RINGS; i++)
4325                 init_ring_lists(&dev_priv->ring[i]);
4326         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4327                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4328         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4329                           i915_gem_retire_work_handler);
4330         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4331
4332         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4333         if (IS_GEN3(dev)) {
4334                 I915_WRITE(MI_ARB_STATE,
4335                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4336         }
4337
4338         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4339
4340         /* Old X drivers will take 0-2 for front, back, depth buffers */
4341         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4342                 dev_priv->fence_reg_start = 3;
4343
4344         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4345                 dev_priv->num_fence_regs = 32;
4346         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4347                 dev_priv->num_fence_regs = 16;
4348         else
4349                 dev_priv->num_fence_regs = 8;
4350
4351         /* Initialize fence registers to zero */
4352         i915_gem_reset_fences(dev);
4353
4354         i915_gem_detect_bit_6_swizzle(dev);
4355         init_waitqueue_head(&dev_priv->pending_flip_queue);
4356
4357         dev_priv->mm.interruptible = true;
4358
4359         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4360         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4361         register_shrinker(&dev_priv->mm.inactive_shrinker);
4362 }
4363
4364 /*
4365  * Create a physically contiguous memory object for this object
4366  * e.g. for cursor + overlay regs
4367  */
4368 static int i915_gem_init_phys_object(struct drm_device *dev,
4369                                      int id, int size, int align)
4370 {
4371         drm_i915_private_t *dev_priv = dev->dev_private;
4372         struct drm_i915_gem_phys_object *phys_obj;
4373         int ret;
4374
4375         if (dev_priv->mm.phys_objs[id - 1] || !size)
4376                 return 0;
4377
4378         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4379         if (!phys_obj)
4380                 return -ENOMEM;
4381
4382         phys_obj->id = id;
4383
4384         phys_obj->handle = drm_pci_alloc(dev, size, align);
4385         if (!phys_obj->handle) {
4386                 ret = -ENOMEM;
4387                 goto kfree_obj;
4388         }
4389 #ifdef CONFIG_X86
4390         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4391 #endif
4392
4393         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4394
4395         return 0;
4396 kfree_obj:
4397         kfree(phys_obj);
4398         return ret;
4399 }
4400
4401 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4402 {
4403         drm_i915_private_t *dev_priv = dev->dev_private;
4404         struct drm_i915_gem_phys_object *phys_obj;
4405
4406         if (!dev_priv->mm.phys_objs[id - 1])
4407                 return;
4408
4409         phys_obj = dev_priv->mm.phys_objs[id - 1];
4410         if (phys_obj->cur_obj) {
4411                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4412         }
4413
4414 #ifdef CONFIG_X86
4415         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4416 #endif
4417         drm_pci_free(dev, phys_obj->handle);
4418         kfree(phys_obj);
4419         dev_priv->mm.phys_objs[id - 1] = NULL;
4420 }
4421
4422 void i915_gem_free_all_phys_object(struct drm_device *dev)
4423 {
4424         int i;
4425
4426         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4427                 i915_gem_free_phys_object(dev, i);
4428 }
4429
4430 void i915_gem_detach_phys_object(struct drm_device *dev,
4431                                  struct drm_i915_gem_object *obj)
4432 {
4433         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4434         char *vaddr;
4435         int i;
4436         int page_count;
4437
4438         if (!obj->phys_obj)
4439                 return;
4440         vaddr = obj->phys_obj->handle->vaddr;
4441
4442         page_count = obj->base.size / PAGE_SIZE;
4443         for (i = 0; i < page_count; i++) {
4444                 struct page *page = shmem_read_mapping_page(mapping, i);
4445                 if (!IS_ERR(page)) {
4446                         char *dst = kmap_atomic(page);
4447                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4448                         kunmap_atomic(dst);
4449
4450                         drm_clflush_pages(&page, 1);
4451
4452                         set_page_dirty(page);
4453                         mark_page_accessed(page);
4454                         page_cache_release(page);
4455                 }
4456         }
4457         i915_gem_chipset_flush(dev);
4458
4459         obj->phys_obj->cur_obj = NULL;
4460         obj->phys_obj = NULL;
4461 }
4462
4463 int
4464 i915_gem_attach_phys_object(struct drm_device *dev,
4465                             struct drm_i915_gem_object *obj,
4466                             int id,
4467                             int align)
4468 {
4469         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4470         drm_i915_private_t *dev_priv = dev->dev_private;
4471         int ret = 0;
4472         int page_count;
4473         int i;
4474
4475         if (id > I915_MAX_PHYS_OBJECT)
4476                 return -EINVAL;
4477
4478         if (obj->phys_obj) {
4479                 if (obj->phys_obj->id == id)
4480                         return 0;
4481                 i915_gem_detach_phys_object(dev, obj);
4482         }
4483
4484         /* create a new object */
4485         if (!dev_priv->mm.phys_objs[id - 1]) {
4486                 ret = i915_gem_init_phys_object(dev, id,
4487                                                 obj->base.size, align);
4488                 if (ret) {
4489                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4490                                   id, obj->base.size);
4491                         return ret;
4492                 }
4493         }
4494
4495         /* bind to the object */
4496         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4497         obj->phys_obj->cur_obj = obj;
4498
4499         page_count = obj->base.size / PAGE_SIZE;
4500
4501         for (i = 0; i < page_count; i++) {
4502                 struct page *page;
4503                 char *dst, *src;
4504
4505                 page = shmem_read_mapping_page(mapping, i);
4506                 if (IS_ERR(page))
4507                         return PTR_ERR(page);
4508
4509                 src = kmap_atomic(page);
4510                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4511                 memcpy(dst, src, PAGE_SIZE);
4512                 kunmap_atomic(src);
4513
4514                 mark_page_accessed(page);
4515                 page_cache_release(page);
4516         }
4517
4518         return 0;
4519 }
4520
4521 static int
4522 i915_gem_phys_pwrite(struct drm_device *dev,
4523                      struct drm_i915_gem_object *obj,
4524                      struct drm_i915_gem_pwrite *args,
4525                      struct drm_file *file_priv)
4526 {
4527         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4528         char __user *user_data = to_user_ptr(args->data_ptr);
4529
4530         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4531                 unsigned long unwritten;
4532
4533                 /* The physical object once assigned is fixed for the lifetime
4534                  * of the obj, so we can safely drop the lock and continue
4535                  * to access vaddr.
4536                  */
4537                 mutex_unlock(&dev->struct_mutex);
4538                 unwritten = copy_from_user(vaddr, user_data, args->size);
4539                 mutex_lock(&dev->struct_mutex);
4540                 if (unwritten)
4541                         return -EFAULT;
4542         }
4543
4544         i915_gem_chipset_flush(dev);
4545         return 0;
4546 }
4547
4548 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4549 {
4550         struct drm_i915_file_private *file_priv = file->driver_priv;
4551
4552         /* Clean up our request list when the client is going away, so that
4553          * later retire_requests won't dereference our soon-to-be-gone
4554          * file_priv.
4555          */
4556         spin_lock(&file_priv->mm.lock);
4557         while (!list_empty(&file_priv->mm.request_list)) {
4558                 struct drm_i915_gem_request *request;
4559
4560                 request = list_first_entry(&file_priv->mm.request_list,
4561                                            struct drm_i915_gem_request,
4562                                            client_list);
4563                 list_del(&request->client_list);
4564                 request->file_priv = NULL;
4565         }
4566         spin_unlock(&file_priv->mm.lock);
4567 }
4568
4569 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4570 {
4571         if (!mutex_is_locked(mutex))
4572                 return false;
4573
4574 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4575         return mutex->owner == task;
4576 #else
4577         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4578         return false;
4579 #endif
4580 }
4581
4582 static int
4583 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4584 {
4585         struct drm_i915_private *dev_priv =
4586                 container_of(shrinker,
4587                              struct drm_i915_private,
4588                              mm.inactive_shrinker);
4589         struct drm_device *dev = dev_priv->dev;
4590         struct drm_i915_gem_object *obj;
4591         int nr_to_scan = sc->nr_to_scan;
4592         bool unlock = true;
4593         int cnt;
4594
4595         if (!mutex_trylock(&dev->struct_mutex)) {
4596                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4597                         return 0;
4598
4599                 if (dev_priv->mm.shrinker_no_lock_stealing)
4600                         return 0;
4601
4602                 unlock = false;
4603         }
4604
4605         if (nr_to_scan) {
4606                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4607                 if (nr_to_scan > 0)
4608                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4609                                                         false);
4610                 if (nr_to_scan > 0)
4611                         i915_gem_shrink_all(dev_priv);
4612         }
4613
4614         cnt = 0;
4615         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4616                 if (obj->pages_pin_count == 0)
4617                         cnt += obj->base.size >> PAGE_SHIFT;
4618         list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4619                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4620                         cnt += obj->base.size >> PAGE_SHIFT;
4621
4622         if (unlock)
4623                 mutex_unlock(&dev->struct_mutex);
4624         return cnt;
4625 }