]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
96f65a15ffc9a4ebdfeb0696cd02742e644fdc7b
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 /**
975  * __wait_seqno - wait until execution of seqno has finished
976  * @ring: the ring expected to report seqno
977  * @seqno: duh!
978  * @reset_counter: reset sequence associated with the given seqno
979  * @interruptible: do an interruptible wait (normally yes)
980  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981  *
982  * Note: It is of utmost importance that the passed in seqno and reset_counter
983  * values have been read by the caller in an smp safe manner. Where read-side
984  * locks are involved, it is sufficient to read the reset_counter before
985  * unlocking the lock that protects the seqno. For lockless tricks, the
986  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
987  * inserted.
988  *
989  * Returns 0 if the seqno was found within the alloted time. Else returns the
990  * errno with remaining time filled in timeout argument.
991  */
992 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
993                         unsigned reset_counter,
994                         bool interruptible, struct timespec *timeout)
995 {
996         drm_i915_private_t *dev_priv = ring->dev->dev_private;
997         struct timespec before, now, wait_time={1,0};
998         unsigned long timeout_jiffies;
999         long end;
1000         bool wait_forever = true;
1001         int ret;
1002
1003         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1004
1005         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1006                 return 0;
1007
1008         trace_i915_gem_request_wait_begin(ring, seqno);
1009
1010         if (timeout != NULL) {
1011                 wait_time = *timeout;
1012                 wait_forever = false;
1013         }
1014
1015         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1016
1017         if (WARN_ON(!ring->irq_get(ring)))
1018                 return -ENODEV;
1019
1020         /* Record current time in case interrupted by signal, or wedged * */
1021         getrawmonotonic(&before);
1022
1023 #define EXIT_COND \
1024         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1025          i915_reset_in_progress(&dev_priv->gpu_error) || \
1026          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027         do {
1028                 if (interruptible)
1029                         end = wait_event_interruptible_timeout(ring->irq_queue,
1030                                                                EXIT_COND,
1031                                                                timeout_jiffies);
1032                 else
1033                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034                                                  timeout_jiffies);
1035
1036                 /* We need to check whether any gpu reset happened in between
1037                  * the caller grabbing the seqno and now ... */
1038                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1039                         end = -EAGAIN;
1040
1041                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1042                  * gone. */
1043                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1044                 if (ret)
1045                         end = ret;
1046         } while (end == 0 && wait_forever);
1047
1048         getrawmonotonic(&now);
1049
1050         ring->irq_put(ring);
1051         trace_i915_gem_request_wait_end(ring, seqno);
1052 #undef EXIT_COND
1053
1054         if (timeout) {
1055                 struct timespec sleep_time = timespec_sub(now, before);
1056                 *timeout = timespec_sub(*timeout, sleep_time);
1057                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1058                         set_normalized_timespec(timeout, 0, 0);
1059         }
1060
1061         switch (end) {
1062         case -EIO:
1063         case -EAGAIN: /* Wedged */
1064         case -ERESTARTSYS: /* Signal */
1065                 return (int)end;
1066         case 0: /* Timeout */
1067                 return -ETIME;
1068         default: /* Completed */
1069                 WARN_ON(end < 0); /* We're not aware of other errors */
1070                 return 0;
1071         }
1072 }
1073
1074 /**
1075  * Waits for a sequence number to be signaled, and cleans up the
1076  * request and object lists appropriately for that event.
1077  */
1078 int
1079 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1080 {
1081         struct drm_device *dev = ring->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         bool interruptible = dev_priv->mm.interruptible;
1084         int ret;
1085
1086         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1087         BUG_ON(seqno == 0);
1088
1089         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1090         if (ret)
1091                 return ret;
1092
1093         ret = i915_gem_check_olr(ring, seqno);
1094         if (ret)
1095                 return ret;
1096
1097         return __wait_seqno(ring, seqno,
1098                             atomic_read(&dev_priv->gpu_error.reset_counter),
1099                             interruptible, NULL);
1100 }
1101
1102 static int
1103 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1104                                      struct intel_ring_buffer *ring)
1105 {
1106         i915_gem_retire_requests_ring(ring);
1107
1108         /* Manually manage the write flush as we may have not yet
1109          * retired the buffer.
1110          *
1111          * Note that the last_write_seqno is always the earlier of
1112          * the two (read/write) seqno, so if we haved successfully waited,
1113          * we know we have passed the last write.
1114          */
1115         obj->last_write_seqno = 0;
1116         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1117
1118         return 0;
1119 }
1120
1121 /**
1122  * Ensures that all rendering to the object has completed and the object is
1123  * safe to unbind from the GTT or access from the CPU.
1124  */
1125 static __must_check int
1126 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1127                                bool readonly)
1128 {
1129         struct intel_ring_buffer *ring = obj->ring;
1130         u32 seqno;
1131         int ret;
1132
1133         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1134         if (seqno == 0)
1135                 return 0;
1136
1137         ret = i915_wait_seqno(ring, seqno);
1138         if (ret)
1139                 return ret;
1140
1141         return i915_gem_object_wait_rendering__tail(obj, ring);
1142 }
1143
1144 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1145  * as the object state may change during this call.
1146  */
1147 static __must_check int
1148 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1149                                             bool readonly)
1150 {
1151         struct drm_device *dev = obj->base.dev;
1152         struct drm_i915_private *dev_priv = dev->dev_private;
1153         struct intel_ring_buffer *ring = obj->ring;
1154         unsigned reset_counter;
1155         u32 seqno;
1156         int ret;
1157
1158         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1159         BUG_ON(!dev_priv->mm.interruptible);
1160
1161         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1162         if (seqno == 0)
1163                 return 0;
1164
1165         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1166         if (ret)
1167                 return ret;
1168
1169         ret = i915_gem_check_olr(ring, seqno);
1170         if (ret)
1171                 return ret;
1172
1173         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1174         mutex_unlock(&dev->struct_mutex);
1175         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1176         mutex_lock(&dev->struct_mutex);
1177         if (ret)
1178                 return ret;
1179
1180         return i915_gem_object_wait_rendering__tail(obj, ring);
1181 }
1182
1183 /**
1184  * Called when user space prepares to use an object with the CPU, either
1185  * through the mmap ioctl's mapping or a GTT mapping.
1186  */
1187 int
1188 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1189                           struct drm_file *file)
1190 {
1191         struct drm_i915_gem_set_domain *args = data;
1192         struct drm_i915_gem_object *obj;
1193         uint32_t read_domains = args->read_domains;
1194         uint32_t write_domain = args->write_domain;
1195         int ret;
1196
1197         /* Only handle setting domains to types used by the CPU. */
1198         if (write_domain & I915_GEM_GPU_DOMAINS)
1199                 return -EINVAL;
1200
1201         if (read_domains & I915_GEM_GPU_DOMAINS)
1202                 return -EINVAL;
1203
1204         /* Having something in the write domain implies it's in the read
1205          * domain, and only that read domain.  Enforce that in the request.
1206          */
1207         if (write_domain != 0 && read_domains != write_domain)
1208                 return -EINVAL;
1209
1210         ret = i915_mutex_lock_interruptible(dev);
1211         if (ret)
1212                 return ret;
1213
1214         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1215         if (&obj->base == NULL) {
1216                 ret = -ENOENT;
1217                 goto unlock;
1218         }
1219
1220         /* Try to flush the object off the GPU without holding the lock.
1221          * We will repeat the flush holding the lock in the normal manner
1222          * to catch cases where we are gazumped.
1223          */
1224         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225         if (ret)
1226                 goto unref;
1227
1228         if (read_domains & I915_GEM_DOMAIN_GTT) {
1229                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1230
1231                 /* Silently promote "you're not bound, there was nothing to do"
1232                  * to success, since the client was just asking us to
1233                  * make sure everything was done.
1234                  */
1235                 if (ret == -EINVAL)
1236                         ret = 0;
1237         } else {
1238                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1239         }
1240
1241 unref:
1242         drm_gem_object_unreference(&obj->base);
1243 unlock:
1244         mutex_unlock(&dev->struct_mutex);
1245         return ret;
1246 }
1247
1248 /**
1249  * Called when user space has done writes to this buffer
1250  */
1251 int
1252 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1253                          struct drm_file *file)
1254 {
1255         struct drm_i915_gem_sw_finish *args = data;
1256         struct drm_i915_gem_object *obj;
1257         int ret = 0;
1258
1259         ret = i915_mutex_lock_interruptible(dev);
1260         if (ret)
1261                 return ret;
1262
1263         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1264         if (&obj->base == NULL) {
1265                 ret = -ENOENT;
1266                 goto unlock;
1267         }
1268
1269         /* Pinned buffers may be scanout, so flush the cache */
1270         if (obj->pin_display)
1271                 i915_gem_object_flush_cpu_write_domain(obj, true);
1272
1273         drm_gem_object_unreference(&obj->base);
1274 unlock:
1275         mutex_unlock(&dev->struct_mutex);
1276         return ret;
1277 }
1278
1279 /**
1280  * Maps the contents of an object, returning the address it is mapped
1281  * into.
1282  *
1283  * While the mapping holds a reference on the contents of the object, it doesn't
1284  * imply a ref on the object itself.
1285  */
1286 int
1287 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1288                     struct drm_file *file)
1289 {
1290         struct drm_i915_gem_mmap *args = data;
1291         struct drm_gem_object *obj;
1292         unsigned long addr;
1293
1294         obj = drm_gem_object_lookup(dev, file, args->handle);
1295         if (obj == NULL)
1296                 return -ENOENT;
1297
1298         /* prime objects have no backing filp to GEM mmap
1299          * pages from.
1300          */
1301         if (!obj->filp) {
1302                 drm_gem_object_unreference_unlocked(obj);
1303                 return -EINVAL;
1304         }
1305
1306         addr = vm_mmap(obj->filp, 0, args->size,
1307                        PROT_READ | PROT_WRITE, MAP_SHARED,
1308                        args->offset);
1309         drm_gem_object_unreference_unlocked(obj);
1310         if (IS_ERR((void *)addr))
1311                 return addr;
1312
1313         args->addr_ptr = (uint64_t) addr;
1314
1315         return 0;
1316 }
1317
1318 /**
1319  * i915_gem_fault - fault a page into the GTT
1320  * vma: VMA in question
1321  * vmf: fault info
1322  *
1323  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324  * from userspace.  The fault handler takes care of binding the object to
1325  * the GTT (if needed), allocating and programming a fence register (again,
1326  * only if needed based on whether the old reg is still valid or the object
1327  * is tiled) and inserting a new PTE into the faulting process.
1328  *
1329  * Note that the faulting process may involve evicting existing objects
1330  * from the GTT and/or fence registers to make room.  So performance may
1331  * suffer if the GTT working set is large or there are few fence registers
1332  * left.
1333  */
1334 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335 {
1336         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337         struct drm_device *dev = obj->base.dev;
1338         drm_i915_private_t *dev_priv = dev->dev_private;
1339         pgoff_t page_offset;
1340         unsigned long pfn;
1341         int ret = 0;
1342         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1343
1344         /* We don't use vmf->pgoff since that has the fake offset */
1345         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346                 PAGE_SHIFT;
1347
1348         ret = i915_mutex_lock_interruptible(dev);
1349         if (ret)
1350                 goto out;
1351
1352         trace_i915_gem_object_fault(obj, page_offset, true, write);
1353
1354         /* Access to snoopable pages through the GTT is incoherent. */
1355         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356                 ret = -EINVAL;
1357                 goto unlock;
1358         }
1359
1360         /* Now bind it into the GTT if needed */
1361         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1362         if (ret)
1363                 goto unlock;
1364
1365         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366         if (ret)
1367                 goto unpin;
1368
1369         ret = i915_gem_object_get_fence(obj);
1370         if (ret)
1371                 goto unpin;
1372
1373         obj->fault_mappable = true;
1374
1375         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1376         pfn >>= PAGE_SHIFT;
1377         pfn += page_offset;
1378
1379         /* Finally, remap it using the new GTT offset */
1380         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unpin:
1382         i915_gem_object_unpin(obj);
1383 unlock:
1384         mutex_unlock(&dev->struct_mutex);
1385 out:
1386         switch (ret) {
1387         case -EIO:
1388                 /* If this -EIO is due to a gpu hang, give the reset code a
1389                  * chance to clean up the mess. Otherwise return the proper
1390                  * SIGBUS. */
1391                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1392                         return VM_FAULT_SIGBUS;
1393         case -EAGAIN:
1394                 /*
1395                  * EAGAIN means the gpu is hung and we'll wait for the error
1396                  * handler to reset everything when re-faulting in
1397                  * i915_mutex_lock_interruptible.
1398                  */
1399         case 0:
1400         case -ERESTARTSYS:
1401         case -EINTR:
1402         case -EBUSY:
1403                 /*
1404                  * EBUSY is ok: this just means that another thread
1405                  * already did the job.
1406                  */
1407                 return VM_FAULT_NOPAGE;
1408         case -ENOMEM:
1409                 return VM_FAULT_OOM;
1410         case -ENOSPC:
1411                 return VM_FAULT_SIGBUS;
1412         default:
1413                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414                 return VM_FAULT_SIGBUS;
1415         }
1416 }
1417
1418 /**
1419  * i915_gem_release_mmap - remove physical page mappings
1420  * @obj: obj in question
1421  *
1422  * Preserve the reservation of the mmapping with the DRM core code, but
1423  * relinquish ownership of the pages back to the system.
1424  *
1425  * It is vital that we remove the page mapping if we have mapped a tiled
1426  * object through the GTT and then lose the fence register due to
1427  * resource pressure. Similarly if the object has been moved out of the
1428  * aperture, than pages mapped into userspace must be revoked. Removing the
1429  * mapping will then trigger a page fault on the next user access, allowing
1430  * fixup by i915_gem_fault().
1431  */
1432 void
1433 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1434 {
1435         if (!obj->fault_mappable)
1436                 return;
1437
1438         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1439         obj->fault_mappable = false;
1440 }
1441
1442 uint32_t
1443 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1444 {
1445         uint32_t gtt_size;
1446
1447         if (INTEL_INFO(dev)->gen >= 4 ||
1448             tiling_mode == I915_TILING_NONE)
1449                 return size;
1450
1451         /* Previous chips need a power-of-two fence region when tiling */
1452         if (INTEL_INFO(dev)->gen == 3)
1453                 gtt_size = 1024*1024;
1454         else
1455                 gtt_size = 512*1024;
1456
1457         while (gtt_size < size)
1458                 gtt_size <<= 1;
1459
1460         return gtt_size;
1461 }
1462
1463 /**
1464  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1465  * @obj: object to check
1466  *
1467  * Return the required GTT alignment for an object, taking into account
1468  * potential fence register mapping.
1469  */
1470 uint32_t
1471 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1472                            int tiling_mode, bool fenced)
1473 {
1474         /*
1475          * Minimum alignment is 4k (GTT page size), but might be greater
1476          * if a fence register is needed for the object.
1477          */
1478         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1479             tiling_mode == I915_TILING_NONE)
1480                 return 4096;
1481
1482         /*
1483          * Previous chips need to be aligned to the size of the smallest
1484          * fence register that can contain the object.
1485          */
1486         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1487 }
1488
1489 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1490 {
1491         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1492         int ret;
1493
1494         if (drm_vma_node_has_offset(&obj->base.vma_node))
1495                 return 0;
1496
1497         dev_priv->mm.shrinker_no_lock_stealing = true;
1498
1499         ret = drm_gem_create_mmap_offset(&obj->base);
1500         if (ret != -ENOSPC)
1501                 goto out;
1502
1503         /* Badly fragmented mmap space? The only way we can recover
1504          * space is by destroying unwanted objects. We can't randomly release
1505          * mmap_offsets as userspace expects them to be persistent for the
1506          * lifetime of the objects. The closest we can is to release the
1507          * offsets on purgeable objects by truncating it and marking it purged,
1508          * which prevents userspace from ever using that object again.
1509          */
1510         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512         if (ret != -ENOSPC)
1513                 goto out;
1514
1515         i915_gem_shrink_all(dev_priv);
1516         ret = drm_gem_create_mmap_offset(&obj->base);
1517 out:
1518         dev_priv->mm.shrinker_no_lock_stealing = false;
1519
1520         return ret;
1521 }
1522
1523 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1524 {
1525         drm_gem_free_mmap_offset(&obj->base);
1526 }
1527
1528 int
1529 i915_gem_mmap_gtt(struct drm_file *file,
1530                   struct drm_device *dev,
1531                   uint32_t handle,
1532                   uint64_t *offset)
1533 {
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         struct drm_i915_gem_object *obj;
1536         int ret;
1537
1538         ret = i915_mutex_lock_interruptible(dev);
1539         if (ret)
1540                 return ret;
1541
1542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1543         if (&obj->base == NULL) {
1544                 ret = -ENOENT;
1545                 goto unlock;
1546         }
1547
1548         if (obj->base.size > dev_priv->gtt.mappable_end) {
1549                 ret = -E2BIG;
1550                 goto out;
1551         }
1552
1553         if (obj->madv != I915_MADV_WILLNEED) {
1554                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1555                 ret = -EINVAL;
1556                 goto out;
1557         }
1558
1559         ret = i915_gem_object_create_mmap_offset(obj);
1560         if (ret)
1561                 goto out;
1562
1563         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1564
1565 out:
1566         drm_gem_object_unreference(&obj->base);
1567 unlock:
1568         mutex_unlock(&dev->struct_mutex);
1569         return ret;
1570 }
1571
1572 /**
1573  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574  * @dev: DRM device
1575  * @data: GTT mapping ioctl data
1576  * @file: GEM object info
1577  *
1578  * Simply returns the fake offset to userspace so it can mmap it.
1579  * The mmap call will end up in drm_gem_mmap(), which will set things
1580  * up so we can get faults in the handler above.
1581  *
1582  * The fault handler will take care of binding the object into the GTT
1583  * (since it may have been evicted to make room for something), allocating
1584  * a fence register, and mapping the appropriate aperture address into
1585  * userspace.
1586  */
1587 int
1588 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589                         struct drm_file *file)
1590 {
1591         struct drm_i915_gem_mmap_gtt *args = data;
1592
1593         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594 }
1595
1596 /* Immediately discard the backing storage */
1597 static void
1598 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1599 {
1600         struct inode *inode;
1601
1602         i915_gem_object_free_mmap_offset(obj);
1603
1604         if (obj->base.filp == NULL)
1605                 return;
1606
1607         /* Our goal here is to return as much of the memory as
1608          * is possible back to the system as we are called from OOM.
1609          * To do this we must instruct the shmfs to drop all of its
1610          * backing pages, *now*.
1611          */
1612         inode = file_inode(obj->base.filp);
1613         shmem_truncate_range(inode, 0, (loff_t)-1);
1614
1615         obj->madv = __I915_MADV_PURGED;
1616 }
1617
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620 {
1621         return obj->madv == I915_MADV_DONTNEED;
1622 }
1623
1624 static void
1625 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1626 {
1627         struct sg_page_iter sg_iter;
1628         int ret;
1629
1630         BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633         if (ret) {
1634                 /* In the event of a disaster, abandon all caches and
1635                  * hope for the best.
1636                  */
1637                 WARN_ON(ret != -EIO);
1638                 i915_gem_clflush_object(obj, true);
1639                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640         }
1641
1642         if (i915_gem_object_needs_bit17_swizzle(obj))
1643                 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645         if (obj->madv == I915_MADV_DONTNEED)
1646                 obj->dirty = 0;
1647
1648         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1649                 struct page *page = sg_page_iter_page(&sg_iter);
1650
1651                 if (obj->dirty)
1652                         set_page_dirty(page);
1653
1654                 if (obj->madv == I915_MADV_WILLNEED)
1655                         mark_page_accessed(page);
1656
1657                 page_cache_release(page);
1658         }
1659         obj->dirty = 0;
1660
1661         sg_free_table(obj->pages);
1662         kfree(obj->pages);
1663 }
1664
1665 int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668         const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670         if (obj->pages == NULL)
1671                 return 0;
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         BUG_ON(i915_gem_obj_bound_any(obj));
1677
1678         /* ->put_pages might need to allocate memory for the bit17 swizzle
1679          * array, hence protect them from being reaped by removing them from gtt
1680          * lists early. */
1681         list_del(&obj->global_list);
1682
1683         ops->put_pages(obj);
1684         obj->pages = NULL;
1685
1686         if (i915_gem_object_is_purgeable(obj))
1687                 i915_gem_object_truncate(obj);
1688
1689         return 0;
1690 }
1691
1692 static long
1693 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694                   bool purgeable_only)
1695 {
1696         struct list_head still_bound_list;
1697         struct drm_i915_gem_object *obj, *next;
1698         long count = 0;
1699
1700         list_for_each_entry_safe(obj, next,
1701                                  &dev_priv->mm.unbound_list,
1702                                  global_list) {
1703                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1704                     i915_gem_object_put_pages(obj) == 0) {
1705                         count += obj->base.size >> PAGE_SHIFT;
1706                         if (count >= target)
1707                                 return count;
1708                 }
1709         }
1710
1711         /*
1712          * As we may completely rewrite the bound list whilst unbinding
1713          * (due to retiring requests) we have to strictly process only
1714          * one element of the list at the time, and recheck the list
1715          * on every iteration.
1716          */
1717         INIT_LIST_HEAD(&still_bound_list);
1718         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1719                 struct i915_vma *vma, *v;
1720
1721                 obj = list_first_entry(&dev_priv->mm.bound_list,
1722                                        typeof(*obj), global_list);
1723                 list_move_tail(&obj->global_list, &still_bound_list);
1724
1725                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1726                         continue;
1727
1728                 /*
1729                  * Hold a reference whilst we unbind this object, as we may
1730                  * end up waiting for and retiring requests. This might
1731                  * release the final reference (held by the active list)
1732                  * and result in the object being freed from under us.
1733                  * in this object being freed.
1734                  *
1735                  * Note 1: Shrinking the bound list is special since only active
1736                  * (and hence bound objects) can contain such limbo objects, so
1737                  * we don't need special tricks for shrinking the unbound list.
1738                  * The only other place where we have to be careful with active
1739                  * objects suddenly disappearing due to retiring requests is the
1740                  * eviction code.
1741                  *
1742                  * Note 2: Even though the bound list doesn't hold a reference
1743                  * to the object we can safely grab one here: The final object
1744                  * unreferencing and the bound_list are both protected by the
1745                  * dev->struct_mutex and so we won't ever be able to observe an
1746                  * object on the bound_list with a reference count equals 0.
1747                  */
1748                 drm_gem_object_reference(&obj->base);
1749
1750                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1751                         if (i915_vma_unbind(vma))
1752                                 break;
1753
1754                 if (i915_gem_object_put_pages(obj) == 0)
1755                         count += obj->base.size >> PAGE_SHIFT;
1756
1757                 drm_gem_object_unreference(&obj->base);
1758         }
1759         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1760
1761         return count;
1762 }
1763
1764 static long
1765 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1766 {
1767         return __i915_gem_shrink(dev_priv, target, true);
1768 }
1769
1770 static long
1771 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1772 {
1773         struct drm_i915_gem_object *obj, *next;
1774         long freed = 0;
1775
1776         i915_gem_evict_everything(dev_priv->dev);
1777
1778         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1779                                  global_list) {
1780                 if (obj->pages_pin_count == 0)
1781                         freed += obj->base.size >> PAGE_SHIFT;
1782                 i915_gem_object_put_pages(obj);
1783         }
1784         return freed;
1785 }
1786
1787 static int
1788 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1789 {
1790         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1791         int page_count, i;
1792         struct address_space *mapping;
1793         struct sg_table *st;
1794         struct scatterlist *sg;
1795         struct sg_page_iter sg_iter;
1796         struct page *page;
1797         unsigned long last_pfn = 0;     /* suppress gcc warning */
1798         gfp_t gfp;
1799
1800         /* Assert that the object is not currently in any GPU domain. As it
1801          * wasn't in the GTT, there shouldn't be any way it could have been in
1802          * a GPU cache
1803          */
1804         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1805         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1806
1807         st = kmalloc(sizeof(*st), GFP_KERNEL);
1808         if (st == NULL)
1809                 return -ENOMEM;
1810
1811         page_count = obj->base.size / PAGE_SIZE;
1812         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1813                 kfree(st);
1814                 return -ENOMEM;
1815         }
1816
1817         /* Get the list of pages out of our struct file.  They'll be pinned
1818          * at this point until we release them.
1819          *
1820          * Fail silently without starting the shrinker
1821          */
1822         mapping = file_inode(obj->base.filp)->i_mapping;
1823         gfp = mapping_gfp_mask(mapping);
1824         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1825         gfp &= ~(__GFP_IO | __GFP_WAIT);
1826         sg = st->sgl;
1827         st->nents = 0;
1828         for (i = 0; i < page_count; i++) {
1829                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830                 if (IS_ERR(page)) {
1831                         i915_gem_purge(dev_priv, page_count);
1832                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1833                 }
1834                 if (IS_ERR(page)) {
1835                         /* We've tried hard to allocate the memory by reaping
1836                          * our own buffer, now let the real VM do its job and
1837                          * go down in flames if truly OOM.
1838                          */
1839                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1840                         gfp |= __GFP_IO | __GFP_WAIT;
1841
1842                         i915_gem_shrink_all(dev_priv);
1843                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1844                         if (IS_ERR(page))
1845                                 goto err_pages;
1846
1847                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1848                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1849                 }
1850 #ifdef CONFIG_SWIOTLB
1851                 if (swiotlb_nr_tbl()) {
1852                         st->nents++;
1853                         sg_set_page(sg, page, PAGE_SIZE, 0);
1854                         sg = sg_next(sg);
1855                         continue;
1856                 }
1857 #endif
1858                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1859                         if (i)
1860                                 sg = sg_next(sg);
1861                         st->nents++;
1862                         sg_set_page(sg, page, PAGE_SIZE, 0);
1863                 } else {
1864                         sg->length += PAGE_SIZE;
1865                 }
1866                 last_pfn = page_to_pfn(page);
1867         }
1868 #ifdef CONFIG_SWIOTLB
1869         if (!swiotlb_nr_tbl())
1870 #endif
1871                 sg_mark_end(sg);
1872         obj->pages = st;
1873
1874         if (i915_gem_object_needs_bit17_swizzle(obj))
1875                 i915_gem_object_do_bit_17_swizzle(obj);
1876
1877         return 0;
1878
1879 err_pages:
1880         sg_mark_end(sg);
1881         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1882                 page_cache_release(sg_page_iter_page(&sg_iter));
1883         sg_free_table(st);
1884         kfree(st);
1885         return PTR_ERR(page);
1886 }
1887
1888 /* Ensure that the associated pages are gathered from the backing storage
1889  * and pinned into our object. i915_gem_object_get_pages() may be called
1890  * multiple times before they are released by a single call to
1891  * i915_gem_object_put_pages() - once the pages are no longer referenced
1892  * either as a result of memory pressure (reaping pages under the shrinker)
1893  * or as the object is itself released.
1894  */
1895 int
1896 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1897 {
1898         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1899         const struct drm_i915_gem_object_ops *ops = obj->ops;
1900         int ret;
1901
1902         if (obj->pages)
1903                 return 0;
1904
1905         if (obj->madv != I915_MADV_WILLNEED) {
1906                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1907                 return -EINVAL;
1908         }
1909
1910         BUG_ON(obj->pages_pin_count);
1911
1912         ret = ops->get_pages(obj);
1913         if (ret)
1914                 return ret;
1915
1916         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1917         return 0;
1918 }
1919
1920 void
1921 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1922                                struct intel_ring_buffer *ring)
1923 {
1924         struct drm_device *dev = obj->base.dev;
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         u32 seqno = intel_ring_get_seqno(ring);
1927
1928         BUG_ON(ring == NULL);
1929         if (obj->ring != ring && obj->last_write_seqno) {
1930                 /* Keep the seqno relative to the current ring */
1931                 obj->last_write_seqno = seqno;
1932         }
1933         obj->ring = ring;
1934
1935         /* Add a reference if we're newly entering the active list. */
1936         if (!obj->active) {
1937                 drm_gem_object_reference(&obj->base);
1938                 obj->active = 1;
1939         }
1940
1941         list_move_tail(&obj->ring_list, &ring->active_list);
1942
1943         obj->last_read_seqno = seqno;
1944
1945         if (obj->fenced_gpu_access) {
1946                 obj->last_fenced_seqno = seqno;
1947
1948                 /* Bump MRU to take account of the delayed flush */
1949                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1950                         struct drm_i915_fence_reg *reg;
1951
1952                         reg = &dev_priv->fence_regs[obj->fence_reg];
1953                         list_move_tail(&reg->lru_list,
1954                                        &dev_priv->mm.fence_list);
1955                 }
1956         }
1957 }
1958
1959 static void
1960 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1961 {
1962         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1963         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1964         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1965
1966         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1967         BUG_ON(!obj->active);
1968
1969         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1970
1971         list_del_init(&obj->ring_list);
1972         obj->ring = NULL;
1973
1974         obj->last_read_seqno = 0;
1975         obj->last_write_seqno = 0;
1976         obj->base.write_domain = 0;
1977
1978         obj->last_fenced_seqno = 0;
1979         obj->fenced_gpu_access = false;
1980
1981         obj->active = 0;
1982         drm_gem_object_unreference(&obj->base);
1983
1984         WARN_ON(i915_verify_lists(dev));
1985 }
1986
1987 static int
1988 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1989 {
1990         struct drm_i915_private *dev_priv = dev->dev_private;
1991         struct intel_ring_buffer *ring;
1992         int ret, i, j;
1993
1994         /* Carefully retire all requests without writing to the rings */
1995         for_each_ring(ring, dev_priv, i) {
1996                 ret = intel_ring_idle(ring);
1997                 if (ret)
1998                         return ret;
1999         }
2000         i915_gem_retire_requests(dev);
2001
2002         /* Finally reset hw state */
2003         for_each_ring(ring, dev_priv, i) {
2004                 intel_ring_init_seqno(ring, seqno);
2005
2006                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2007                         ring->sync_seqno[j] = 0;
2008         }
2009
2010         return 0;
2011 }
2012
2013 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2014 {
2015         struct drm_i915_private *dev_priv = dev->dev_private;
2016         int ret;
2017
2018         if (seqno == 0)
2019                 return -EINVAL;
2020
2021         /* HWS page needs to be set less than what we
2022          * will inject to ring
2023          */
2024         ret = i915_gem_init_seqno(dev, seqno - 1);
2025         if (ret)
2026                 return ret;
2027
2028         /* Carefully set the last_seqno value so that wrap
2029          * detection still works
2030          */
2031         dev_priv->next_seqno = seqno;
2032         dev_priv->last_seqno = seqno - 1;
2033         if (dev_priv->last_seqno == 0)
2034                 dev_priv->last_seqno--;
2035
2036         return 0;
2037 }
2038
2039 int
2040 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2041 {
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043
2044         /* reserve 0 for non-seqno */
2045         if (dev_priv->next_seqno == 0) {
2046                 int ret = i915_gem_init_seqno(dev, 0);
2047                 if (ret)
2048                         return ret;
2049
2050                 dev_priv->next_seqno = 1;
2051         }
2052
2053         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2054         return 0;
2055 }
2056
2057 int __i915_add_request(struct intel_ring_buffer *ring,
2058                        struct drm_file *file,
2059                        struct drm_i915_gem_object *obj,
2060                        u32 *out_seqno)
2061 {
2062         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2063         struct drm_i915_gem_request *request;
2064         u32 request_ring_position, request_start;
2065         int was_empty;
2066         int ret;
2067
2068         request_start = intel_ring_get_tail(ring);
2069         /*
2070          * Emit any outstanding flushes - execbuf can fail to emit the flush
2071          * after having emitted the batchbuffer command. Hence we need to fix
2072          * things up similar to emitting the lazy request. The difference here
2073          * is that the flush _must_ happen before the next request, no matter
2074          * what.
2075          */
2076         ret = intel_ring_flush_all_caches(ring);
2077         if (ret)
2078                 return ret;
2079
2080         request = ring->preallocated_lazy_request;
2081         if (WARN_ON(request == NULL))
2082                 return -ENOMEM;
2083
2084         /* Record the position of the start of the request so that
2085          * should we detect the updated seqno part-way through the
2086          * GPU processing the request, we never over-estimate the
2087          * position of the head.
2088          */
2089         request_ring_position = intel_ring_get_tail(ring);
2090
2091         ret = ring->add_request(ring);
2092         if (ret)
2093                 return ret;
2094
2095         request->seqno = intel_ring_get_seqno(ring);
2096         request->ring = ring;
2097         request->head = request_start;
2098         request->tail = request_ring_position;
2099
2100         /* Whilst this request exists, batch_obj will be on the
2101          * active_list, and so will hold the active reference. Only when this
2102          * request is retired will the the batch_obj be moved onto the
2103          * inactive_list and lose its active reference. Hence we do not need
2104          * to explicitly hold another reference here.
2105          */
2106         request->batch_obj = obj;
2107
2108         /* Hold a reference to the current context so that we can inspect
2109          * it later in case a hangcheck error event fires.
2110          */
2111         request->ctx = ring->last_context;
2112         if (request->ctx)
2113                 i915_gem_context_reference(request->ctx);
2114
2115         request->emitted_jiffies = jiffies;
2116         was_empty = list_empty(&ring->request_list);
2117         list_add_tail(&request->list, &ring->request_list);
2118         request->file_priv = NULL;
2119
2120         if (file) {
2121                 struct drm_i915_file_private *file_priv = file->driver_priv;
2122
2123                 spin_lock(&file_priv->mm.lock);
2124                 request->file_priv = file_priv;
2125                 list_add_tail(&request->client_list,
2126                               &file_priv->mm.request_list);
2127                 spin_unlock(&file_priv->mm.lock);
2128         }
2129
2130         trace_i915_gem_request_add(ring, request->seqno);
2131         ring->outstanding_lazy_seqno = 0;
2132         ring->preallocated_lazy_request = NULL;
2133
2134         if (!dev_priv->ums.mm_suspended) {
2135                 i915_queue_hangcheck(ring->dev);
2136
2137                 if (was_empty) {
2138                         queue_delayed_work(dev_priv->wq,
2139                                            &dev_priv->mm.retire_work,
2140                                            round_jiffies_up_relative(HZ));
2141                         intel_mark_busy(dev_priv->dev);
2142                 }
2143         }
2144
2145         if (out_seqno)
2146                 *out_seqno = request->seqno;
2147         return 0;
2148 }
2149
2150 static inline void
2151 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2152 {
2153         struct drm_i915_file_private *file_priv = request->file_priv;
2154
2155         if (!file_priv)
2156                 return;
2157
2158         spin_lock(&file_priv->mm.lock);
2159         if (request->file_priv) {
2160                 list_del(&request->client_list);
2161                 request->file_priv = NULL;
2162         }
2163         spin_unlock(&file_priv->mm.lock);
2164 }
2165
2166 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2167                                     struct i915_address_space *vm)
2168 {
2169         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2170             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2171                 return true;
2172
2173         return false;
2174 }
2175
2176 static bool i915_head_inside_request(const u32 acthd_unmasked,
2177                                      const u32 request_start,
2178                                      const u32 request_end)
2179 {
2180         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2181
2182         if (request_start < request_end) {
2183                 if (acthd >= request_start && acthd < request_end)
2184                         return true;
2185         } else if (request_start > request_end) {
2186                 if (acthd >= request_start || acthd < request_end)
2187                         return true;
2188         }
2189
2190         return false;
2191 }
2192
2193 static struct i915_address_space *
2194 request_to_vm(struct drm_i915_gem_request *request)
2195 {
2196         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2197         struct i915_address_space *vm;
2198
2199         vm = &dev_priv->gtt.base;
2200
2201         return vm;
2202 }
2203
2204 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2205                                 const u32 acthd, bool *inside)
2206 {
2207         /* There is a possibility that unmasked head address
2208          * pointing inside the ring, matches the batch_obj address range.
2209          * However this is extremely unlikely.
2210          */
2211         if (request->batch_obj) {
2212                 if (i915_head_inside_object(acthd, request->batch_obj,
2213                                             request_to_vm(request))) {
2214                         *inside = true;
2215                         return true;
2216                 }
2217         }
2218
2219         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2220                 *inside = false;
2221                 return true;
2222         }
2223
2224         return false;
2225 }
2226
2227 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2228 {
2229         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2230
2231         if (hs->banned)
2232                 return true;
2233
2234         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2235                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2236                 return true;
2237         }
2238
2239         return false;
2240 }
2241
2242 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2243                                   struct drm_i915_gem_request *request,
2244                                   u32 acthd)
2245 {
2246         struct i915_ctx_hang_stats *hs = NULL;
2247         bool inside, guilty;
2248         unsigned long offset = 0;
2249
2250         /* Innocent until proven guilty */
2251         guilty = false;
2252
2253         if (request->batch_obj)
2254                 offset = i915_gem_obj_offset(request->batch_obj,
2255                                              request_to_vm(request));
2256
2257         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2258             i915_request_guilty(request, acthd, &inside)) {
2259                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2260                           ring->name,
2261                           inside ? "inside" : "flushing",
2262                           offset,
2263                           request->ctx ? request->ctx->id : 0,
2264                           acthd);
2265
2266                 guilty = true;
2267         }
2268
2269         /* If contexts are disabled or this is the default context, use
2270          * file_priv->reset_state
2271          */
2272         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2273                 hs = &request->ctx->hang_stats;
2274         else if (request->file_priv)
2275                 hs = &request->file_priv->hang_stats;
2276
2277         if (hs) {
2278                 if (guilty) {
2279                         hs->banned = i915_context_is_banned(hs);
2280                         hs->batch_active++;
2281                         hs->guilty_ts = get_seconds();
2282                 } else {
2283                         hs->batch_pending++;
2284                 }
2285         }
2286 }
2287
2288 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289 {
2290         list_del(&request->list);
2291         i915_gem_request_remove_from_client(request);
2292
2293         if (request->ctx)
2294                 i915_gem_context_unreference(request->ctx);
2295
2296         kfree(request);
2297 }
2298
2299 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2300                                       struct intel_ring_buffer *ring)
2301 {
2302         u32 completed_seqno;
2303         u32 acthd;
2304
2305         acthd = intel_ring_get_active_head(ring);
2306         completed_seqno = ring->get_seqno(ring, false);
2307
2308         while (!list_empty(&ring->request_list)) {
2309                 struct drm_i915_gem_request *request;
2310
2311                 request = list_first_entry(&ring->request_list,
2312                                            struct drm_i915_gem_request,
2313                                            list);
2314
2315                 if (request->seqno > completed_seqno)
2316                         i915_set_reset_status(ring, request, acthd);
2317
2318                 i915_gem_free_request(request);
2319         }
2320
2321         while (!list_empty(&ring->active_list)) {
2322                 struct drm_i915_gem_object *obj;
2323
2324                 obj = list_first_entry(&ring->active_list,
2325                                        struct drm_i915_gem_object,
2326                                        ring_list);
2327
2328                 i915_gem_object_move_to_inactive(obj);
2329         }
2330 }
2331
2332 void i915_gem_restore_fences(struct drm_device *dev)
2333 {
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         int i;
2336
2337         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2338                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2339
2340                 /*
2341                  * Commit delayed tiling changes if we have an object still
2342                  * attached to the fence, otherwise just clear the fence.
2343                  */
2344                 if (reg->obj) {
2345                         i915_gem_object_update_fence(reg->obj, reg,
2346                                                      reg->obj->tiling_mode);
2347                 } else {
2348                         i915_gem_write_fence(dev, i, NULL);
2349                 }
2350         }
2351 }
2352
2353 void i915_gem_reset(struct drm_device *dev)
2354 {
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         struct intel_ring_buffer *ring;
2357         int i;
2358
2359         for_each_ring(ring, dev_priv, i)
2360                 i915_gem_reset_ring_lists(dev_priv, ring);
2361
2362         i915_gem_restore_fences(dev);
2363 }
2364
2365 /**
2366  * This function clears the request list as sequence numbers are passed.
2367  */
2368 void
2369 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2370 {
2371         uint32_t seqno;
2372
2373         if (list_empty(&ring->request_list))
2374                 return;
2375
2376         WARN_ON(i915_verify_lists(ring->dev));
2377
2378         seqno = ring->get_seqno(ring, true);
2379
2380         while (!list_empty(&ring->request_list)) {
2381                 struct drm_i915_gem_request *request;
2382
2383                 request = list_first_entry(&ring->request_list,
2384                                            struct drm_i915_gem_request,
2385                                            list);
2386
2387                 if (!i915_seqno_passed(seqno, request->seqno))
2388                         break;
2389
2390                 trace_i915_gem_request_retire(ring, request->seqno);
2391                 /* We know the GPU must have read the request to have
2392                  * sent us the seqno + interrupt, so use the position
2393                  * of tail of the request to update the last known position
2394                  * of the GPU head.
2395                  */
2396                 ring->last_retired_head = request->tail;
2397
2398                 i915_gem_free_request(request);
2399         }
2400
2401         /* Move any buffers on the active list that are no longer referenced
2402          * by the ringbuffer to the flushing/inactive lists as appropriate.
2403          */
2404         while (!list_empty(&ring->active_list)) {
2405                 struct drm_i915_gem_object *obj;
2406
2407                 obj = list_first_entry(&ring->active_list,
2408                                       struct drm_i915_gem_object,
2409                                       ring_list);
2410
2411                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2412                         break;
2413
2414                 i915_gem_object_move_to_inactive(obj);
2415         }
2416
2417         if (unlikely(ring->trace_irq_seqno &&
2418                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2419                 ring->irq_put(ring);
2420                 ring->trace_irq_seqno = 0;
2421         }
2422
2423         WARN_ON(i915_verify_lists(ring->dev));
2424 }
2425
2426 void
2427 i915_gem_retire_requests(struct drm_device *dev)
2428 {
2429         drm_i915_private_t *dev_priv = dev->dev_private;
2430         struct intel_ring_buffer *ring;
2431         int i;
2432
2433         for_each_ring(ring, dev_priv, i)
2434                 i915_gem_retire_requests_ring(ring);
2435 }
2436
2437 static void
2438 i915_gem_retire_work_handler(struct work_struct *work)
2439 {
2440         drm_i915_private_t *dev_priv;
2441         struct drm_device *dev;
2442         struct intel_ring_buffer *ring;
2443         bool idle;
2444         int i;
2445
2446         dev_priv = container_of(work, drm_i915_private_t,
2447                                 mm.retire_work.work);
2448         dev = dev_priv->dev;
2449
2450         /* Come back later if the device is busy... */
2451         if (!mutex_trylock(&dev->struct_mutex)) {
2452                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2453                                    round_jiffies_up_relative(HZ));
2454                 return;
2455         }
2456
2457         i915_gem_retire_requests(dev);
2458
2459         /* Send a periodic flush down the ring so we don't hold onto GEM
2460          * objects indefinitely.
2461          */
2462         idle = true;
2463         for_each_ring(ring, dev_priv, i) {
2464                 if (ring->gpu_caches_dirty)
2465                         i915_add_request(ring, NULL);
2466
2467                 idle &= list_empty(&ring->request_list);
2468         }
2469
2470         if (!dev_priv->ums.mm_suspended && !idle)
2471                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2472                                    round_jiffies_up_relative(HZ));
2473         if (idle)
2474                 intel_mark_idle(dev);
2475
2476         mutex_unlock(&dev->struct_mutex);
2477 }
2478
2479 /**
2480  * Ensures that an object will eventually get non-busy by flushing any required
2481  * write domains, emitting any outstanding lazy request and retiring and
2482  * completed requests.
2483  */
2484 static int
2485 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2486 {
2487         int ret;
2488
2489         if (obj->active) {
2490                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2491                 if (ret)
2492                         return ret;
2493
2494                 i915_gem_retire_requests_ring(obj->ring);
2495         }
2496
2497         return 0;
2498 }
2499
2500 /**
2501  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2502  * @DRM_IOCTL_ARGS: standard ioctl arguments
2503  *
2504  * Returns 0 if successful, else an error is returned with the remaining time in
2505  * the timeout parameter.
2506  *  -ETIME: object is still busy after timeout
2507  *  -ERESTARTSYS: signal interrupted the wait
2508  *  -ENONENT: object doesn't exist
2509  * Also possible, but rare:
2510  *  -EAGAIN: GPU wedged
2511  *  -ENOMEM: damn
2512  *  -ENODEV: Internal IRQ fail
2513  *  -E?: The add request failed
2514  *
2515  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2516  * non-zero timeout parameter the wait ioctl will wait for the given number of
2517  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2518  * without holding struct_mutex the object may become re-busied before this
2519  * function completes. A similar but shorter * race condition exists in the busy
2520  * ioctl
2521  */
2522 int
2523 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2524 {
2525         drm_i915_private_t *dev_priv = dev->dev_private;
2526         struct drm_i915_gem_wait *args = data;
2527         struct drm_i915_gem_object *obj;
2528         struct intel_ring_buffer *ring = NULL;
2529         struct timespec timeout_stack, *timeout = NULL;
2530         unsigned reset_counter;
2531         u32 seqno = 0;
2532         int ret = 0;
2533
2534         if (args->timeout_ns >= 0) {
2535                 timeout_stack = ns_to_timespec(args->timeout_ns);
2536                 timeout = &timeout_stack;
2537         }
2538
2539         ret = i915_mutex_lock_interruptible(dev);
2540         if (ret)
2541                 return ret;
2542
2543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2544         if (&obj->base == NULL) {
2545                 mutex_unlock(&dev->struct_mutex);
2546                 return -ENOENT;
2547         }
2548
2549         /* Need to make sure the object gets inactive eventually. */
2550         ret = i915_gem_object_flush_active(obj);
2551         if (ret)
2552                 goto out;
2553
2554         if (obj->active) {
2555                 seqno = obj->last_read_seqno;
2556                 ring = obj->ring;
2557         }
2558
2559         if (seqno == 0)
2560                  goto out;
2561
2562         /* Do this after OLR check to make sure we make forward progress polling
2563          * on this IOCTL with a 0 timeout (like busy ioctl)
2564          */
2565         if (!args->timeout_ns) {
2566                 ret = -ETIME;
2567                 goto out;
2568         }
2569
2570         drm_gem_object_unreference(&obj->base);
2571         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2572         mutex_unlock(&dev->struct_mutex);
2573
2574         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2575         if (timeout)
2576                 args->timeout_ns = timespec_to_ns(timeout);
2577         return ret;
2578
2579 out:
2580         drm_gem_object_unreference(&obj->base);
2581         mutex_unlock(&dev->struct_mutex);
2582         return ret;
2583 }
2584
2585 /**
2586  * i915_gem_object_sync - sync an object to a ring.
2587  *
2588  * @obj: object which may be in use on another ring.
2589  * @to: ring we wish to use the object on. May be NULL.
2590  *
2591  * This code is meant to abstract object synchronization with the GPU.
2592  * Calling with NULL implies synchronizing the object with the CPU
2593  * rather than a particular GPU ring.
2594  *
2595  * Returns 0 if successful, else propagates up the lower layer error.
2596  */
2597 int
2598 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2599                      struct intel_ring_buffer *to)
2600 {
2601         struct intel_ring_buffer *from = obj->ring;
2602         u32 seqno;
2603         int ret, idx;
2604
2605         if (from == NULL || to == from)
2606                 return 0;
2607
2608         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2609                 return i915_gem_object_wait_rendering(obj, false);
2610
2611         idx = intel_ring_sync_index(from, to);
2612
2613         seqno = obj->last_read_seqno;
2614         if (seqno <= from->sync_seqno[idx])
2615                 return 0;
2616
2617         ret = i915_gem_check_olr(obj->ring, seqno);
2618         if (ret)
2619                 return ret;
2620
2621         ret = to->sync_to(to, from, seqno);
2622         if (!ret)
2623                 /* We use last_read_seqno because sync_to()
2624                  * might have just caused seqno wrap under
2625                  * the radar.
2626                  */
2627                 from->sync_seqno[idx] = obj->last_read_seqno;
2628
2629         return ret;
2630 }
2631
2632 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2633 {
2634         u32 old_write_domain, old_read_domains;
2635
2636         /* Force a pagefault for domain tracking on next user access */
2637         i915_gem_release_mmap(obj);
2638
2639         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2640                 return;
2641
2642         /* Wait for any direct GTT access to complete */
2643         mb();
2644
2645         old_read_domains = obj->base.read_domains;
2646         old_write_domain = obj->base.write_domain;
2647
2648         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2649         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2650
2651         trace_i915_gem_object_change_domain(obj,
2652                                             old_read_domains,
2653                                             old_write_domain);
2654 }
2655
2656 int i915_vma_unbind(struct i915_vma *vma)
2657 {
2658         struct drm_i915_gem_object *obj = vma->obj;
2659         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2660         int ret;
2661
2662         /* For now we only ever use 1 vma per object */
2663         WARN_ON(!list_is_singular(&obj->vma_list));
2664
2665         if (list_empty(&vma->vma_link))
2666                 return 0;
2667
2668         if (!drm_mm_node_allocated(&vma->node)) {
2669                 i915_gem_vma_destroy(vma);
2670
2671                 return 0;
2672         }
2673
2674         if (obj->pin_count)
2675                 return -EBUSY;
2676
2677         BUG_ON(obj->pages == NULL);
2678
2679         ret = i915_gem_object_finish_gpu(obj);
2680         if (ret)
2681                 return ret;
2682         /* Continue on if we fail due to EIO, the GPU is hung so we
2683          * should be safe and we need to cleanup or else we might
2684          * cause memory corruption through use-after-free.
2685          */
2686
2687         i915_gem_object_finish_gtt(obj);
2688
2689         /* release the fence reg _after_ flushing */
2690         ret = i915_gem_object_put_fence(obj);
2691         if (ret)
2692                 return ret;
2693
2694         trace_i915_vma_unbind(vma);
2695
2696         if (obj->has_global_gtt_mapping)
2697                 i915_gem_gtt_unbind_object(obj);
2698         if (obj->has_aliasing_ppgtt_mapping) {
2699                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2700                 obj->has_aliasing_ppgtt_mapping = 0;
2701         }
2702         i915_gem_gtt_finish_object(obj);
2703         i915_gem_object_unpin_pages(obj);
2704
2705         list_del(&vma->mm_list);
2706         /* Avoid an unnecessary call to unbind on rebind. */
2707         if (i915_is_ggtt(vma->vm))
2708                 obj->map_and_fenceable = true;
2709
2710         drm_mm_remove_node(&vma->node);
2711
2712         i915_gem_vma_destroy(vma);
2713
2714         /* Since the unbound list is global, only move to that list if
2715          * no more VMAs exist. */
2716         if (list_empty(&obj->vma_list))
2717                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2718
2719         return 0;
2720 }
2721
2722 /**
2723  * Unbinds an object from the global GTT aperture.
2724  */
2725 int
2726 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2727 {
2728         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2729         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2730
2731         if (!i915_gem_obj_ggtt_bound(obj))
2732                 return 0;
2733
2734         if (obj->pin_count)
2735                 return -EBUSY;
2736
2737         BUG_ON(obj->pages == NULL);
2738
2739         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2740 }
2741
2742 int i915_gpu_idle(struct drm_device *dev)
2743 {
2744         drm_i915_private_t *dev_priv = dev->dev_private;
2745         struct intel_ring_buffer *ring;
2746         int ret, i;
2747
2748         /* Flush everything onto the inactive list. */
2749         for_each_ring(ring, dev_priv, i) {
2750                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2751                 if (ret)
2752                         return ret;
2753
2754                 ret = intel_ring_idle(ring);
2755                 if (ret)
2756                         return ret;
2757         }
2758
2759         return 0;
2760 }
2761
2762 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2763                                  struct drm_i915_gem_object *obj)
2764 {
2765         drm_i915_private_t *dev_priv = dev->dev_private;
2766         int fence_reg;
2767         int fence_pitch_shift;
2768
2769         if (INTEL_INFO(dev)->gen >= 6) {
2770                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2771                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2772         } else {
2773                 fence_reg = FENCE_REG_965_0;
2774                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2775         }
2776
2777         fence_reg += reg * 8;
2778
2779         /* To w/a incoherency with non-atomic 64-bit register updates,
2780          * we split the 64-bit update into two 32-bit writes. In order
2781          * for a partial fence not to be evaluated between writes, we
2782          * precede the update with write to turn off the fence register,
2783          * and only enable the fence as the last step.
2784          *
2785          * For extra levels of paranoia, we make sure each step lands
2786          * before applying the next step.
2787          */
2788         I915_WRITE(fence_reg, 0);
2789         POSTING_READ(fence_reg);
2790
2791         if (obj) {
2792                 u32 size = i915_gem_obj_ggtt_size(obj);
2793                 uint64_t val;
2794
2795                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2796                                  0xfffff000) << 32;
2797                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2798                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2799                 if (obj->tiling_mode == I915_TILING_Y)
2800                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2801                 val |= I965_FENCE_REG_VALID;
2802
2803                 I915_WRITE(fence_reg + 4, val >> 32);
2804                 POSTING_READ(fence_reg + 4);
2805
2806                 I915_WRITE(fence_reg + 0, val);
2807                 POSTING_READ(fence_reg);
2808         } else {
2809                 I915_WRITE(fence_reg + 4, 0);
2810                 POSTING_READ(fence_reg + 4);
2811         }
2812 }
2813
2814 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2815                                  struct drm_i915_gem_object *obj)
2816 {
2817         drm_i915_private_t *dev_priv = dev->dev_private;
2818         u32 val;
2819
2820         if (obj) {
2821                 u32 size = i915_gem_obj_ggtt_size(obj);
2822                 int pitch_val;
2823                 int tile_width;
2824
2825                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2826                      (size & -size) != size ||
2827                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2828                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2829                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2830
2831                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2832                         tile_width = 128;
2833                 else
2834                         tile_width = 512;
2835
2836                 /* Note: pitch better be a power of two tile widths */
2837                 pitch_val = obj->stride / tile_width;
2838                 pitch_val = ffs(pitch_val) - 1;
2839
2840                 val = i915_gem_obj_ggtt_offset(obj);
2841                 if (obj->tiling_mode == I915_TILING_Y)
2842                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2843                 val |= I915_FENCE_SIZE_BITS(size);
2844                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2845                 val |= I830_FENCE_REG_VALID;
2846         } else
2847                 val = 0;
2848
2849         if (reg < 8)
2850                 reg = FENCE_REG_830_0 + reg * 4;
2851         else
2852                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2853
2854         I915_WRITE(reg, val);
2855         POSTING_READ(reg);
2856 }
2857
2858 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2859                                 struct drm_i915_gem_object *obj)
2860 {
2861         drm_i915_private_t *dev_priv = dev->dev_private;
2862         uint32_t val;
2863
2864         if (obj) {
2865                 u32 size = i915_gem_obj_ggtt_size(obj);
2866                 uint32_t pitch_val;
2867
2868                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2869                      (size & -size) != size ||
2870                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2872                      i915_gem_obj_ggtt_offset(obj), size);
2873
2874                 pitch_val = obj->stride / 128;
2875                 pitch_val = ffs(pitch_val) - 1;
2876
2877                 val = i915_gem_obj_ggtt_offset(obj);
2878                 if (obj->tiling_mode == I915_TILING_Y)
2879                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2880                 val |= I830_FENCE_SIZE_BITS(size);
2881                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2882                 val |= I830_FENCE_REG_VALID;
2883         } else
2884                 val = 0;
2885
2886         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2887         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2888 }
2889
2890 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2891 {
2892         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2893 }
2894
2895 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2896                                  struct drm_i915_gem_object *obj)
2897 {
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899
2900         /* Ensure that all CPU reads are completed before installing a fence
2901          * and all writes before removing the fence.
2902          */
2903         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2904                 mb();
2905
2906         WARN(obj && (!obj->stride || !obj->tiling_mode),
2907              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2908              obj->stride, obj->tiling_mode);
2909
2910         switch (INTEL_INFO(dev)->gen) {
2911         case 7:
2912         case 6:
2913         case 5:
2914         case 4: i965_write_fence_reg(dev, reg, obj); break;
2915         case 3: i915_write_fence_reg(dev, reg, obj); break;
2916         case 2: i830_write_fence_reg(dev, reg, obj); break;
2917         default: BUG();
2918         }
2919
2920         /* And similarly be paranoid that no direct access to this region
2921          * is reordered to before the fence is installed.
2922          */
2923         if (i915_gem_object_needs_mb(obj))
2924                 mb();
2925 }
2926
2927 static inline int fence_number(struct drm_i915_private *dev_priv,
2928                                struct drm_i915_fence_reg *fence)
2929 {
2930         return fence - dev_priv->fence_regs;
2931 }
2932
2933 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2934                                          struct drm_i915_fence_reg *fence,
2935                                          bool enable)
2936 {
2937         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2938         int reg = fence_number(dev_priv, fence);
2939
2940         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2941
2942         if (enable) {
2943                 obj->fence_reg = reg;
2944                 fence->obj = obj;
2945                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2946         } else {
2947                 obj->fence_reg = I915_FENCE_REG_NONE;
2948                 fence->obj = NULL;
2949                 list_del_init(&fence->lru_list);
2950         }
2951         obj->fence_dirty = false;
2952 }
2953
2954 static int
2955 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2956 {
2957         if (obj->last_fenced_seqno) {
2958                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2959                 if (ret)
2960                         return ret;
2961
2962                 obj->last_fenced_seqno = 0;
2963         }
2964
2965         obj->fenced_gpu_access = false;
2966         return 0;
2967 }
2968
2969 int
2970 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2971 {
2972         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2973         struct drm_i915_fence_reg *fence;
2974         int ret;
2975
2976         ret = i915_gem_object_wait_fence(obj);
2977         if (ret)
2978                 return ret;
2979
2980         if (obj->fence_reg == I915_FENCE_REG_NONE)
2981                 return 0;
2982
2983         fence = &dev_priv->fence_regs[obj->fence_reg];
2984
2985         i915_gem_object_fence_lost(obj);
2986         i915_gem_object_update_fence(obj, fence, false);
2987
2988         return 0;
2989 }
2990
2991 static struct drm_i915_fence_reg *
2992 i915_find_fence_reg(struct drm_device *dev)
2993 {
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         struct drm_i915_fence_reg *reg, *avail;
2996         int i;
2997
2998         /* First try to find a free reg */
2999         avail = NULL;
3000         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3001                 reg = &dev_priv->fence_regs[i];
3002                 if (!reg->obj)
3003                         return reg;
3004
3005                 if (!reg->pin_count)
3006                         avail = reg;
3007         }
3008
3009         if (avail == NULL)
3010                 return NULL;
3011
3012         /* None available, try to steal one or wait for a user to finish */
3013         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3014                 if (reg->pin_count)
3015                         continue;
3016
3017                 return reg;
3018         }
3019
3020         return NULL;
3021 }
3022
3023 /**
3024  * i915_gem_object_get_fence - set up fencing for an object
3025  * @obj: object to map through a fence reg
3026  *
3027  * When mapping objects through the GTT, userspace wants to be able to write
3028  * to them without having to worry about swizzling if the object is tiled.
3029  * This function walks the fence regs looking for a free one for @obj,
3030  * stealing one if it can't find any.
3031  *
3032  * It then sets up the reg based on the object's properties: address, pitch
3033  * and tiling format.
3034  *
3035  * For an untiled surface, this removes any existing fence.
3036  */
3037 int
3038 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3039 {
3040         struct drm_device *dev = obj->base.dev;
3041         struct drm_i915_private *dev_priv = dev->dev_private;
3042         bool enable = obj->tiling_mode != I915_TILING_NONE;
3043         struct drm_i915_fence_reg *reg;
3044         int ret;
3045
3046         /* Have we updated the tiling parameters upon the object and so
3047          * will need to serialise the write to the associated fence register?
3048          */
3049         if (obj->fence_dirty) {
3050                 ret = i915_gem_object_wait_fence(obj);
3051                 if (ret)
3052                         return ret;
3053         }
3054
3055         /* Just update our place in the LRU if our fence is getting reused. */
3056         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3057                 reg = &dev_priv->fence_regs[obj->fence_reg];
3058                 if (!obj->fence_dirty) {
3059                         list_move_tail(&reg->lru_list,
3060                                        &dev_priv->mm.fence_list);
3061                         return 0;
3062                 }
3063         } else if (enable) {
3064                 reg = i915_find_fence_reg(dev);
3065                 if (reg == NULL)
3066                         return -EDEADLK;
3067
3068                 if (reg->obj) {
3069                         struct drm_i915_gem_object *old = reg->obj;
3070
3071                         ret = i915_gem_object_wait_fence(old);
3072                         if (ret)
3073                                 return ret;
3074
3075                         i915_gem_object_fence_lost(old);
3076                 }
3077         } else
3078                 return 0;
3079
3080         i915_gem_object_update_fence(obj, reg, enable);
3081
3082         return 0;
3083 }
3084
3085 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3086                                      struct drm_mm_node *gtt_space,
3087                                      unsigned long cache_level)
3088 {
3089         struct drm_mm_node *other;
3090
3091         /* On non-LLC machines we have to be careful when putting differing
3092          * types of snoopable memory together to avoid the prefetcher
3093          * crossing memory domains and dying.
3094          */
3095         if (HAS_LLC(dev))
3096                 return true;
3097
3098         if (!drm_mm_node_allocated(gtt_space))
3099                 return true;
3100
3101         if (list_empty(&gtt_space->node_list))
3102                 return true;
3103
3104         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3105         if (other->allocated && !other->hole_follows && other->color != cache_level)
3106                 return false;
3107
3108         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3109         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3110                 return false;
3111
3112         return true;
3113 }
3114
3115 static void i915_gem_verify_gtt(struct drm_device *dev)
3116 {
3117 #if WATCH_GTT
3118         struct drm_i915_private *dev_priv = dev->dev_private;
3119         struct drm_i915_gem_object *obj;
3120         int err = 0;
3121
3122         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3123                 if (obj->gtt_space == NULL) {
3124                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3125                         err++;
3126                         continue;
3127                 }
3128
3129                 if (obj->cache_level != obj->gtt_space->color) {
3130                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3131                                i915_gem_obj_ggtt_offset(obj),
3132                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3133                                obj->cache_level,
3134                                obj->gtt_space->color);
3135                         err++;
3136                         continue;
3137                 }
3138
3139                 if (!i915_gem_valid_gtt_space(dev,
3140                                               obj->gtt_space,
3141                                               obj->cache_level)) {
3142                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3143                                i915_gem_obj_ggtt_offset(obj),
3144                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3145                                obj->cache_level);
3146                         err++;
3147                         continue;
3148                 }
3149         }
3150
3151         WARN_ON(err);
3152 #endif
3153 }
3154
3155 /**
3156  * Finds free space in the GTT aperture and binds the object there.
3157  */
3158 static int
3159 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3160                            struct i915_address_space *vm,
3161                            unsigned alignment,
3162                            bool map_and_fenceable,
3163                            bool nonblocking)
3164 {
3165         struct drm_device *dev = obj->base.dev;
3166         drm_i915_private_t *dev_priv = dev->dev_private;
3167         u32 size, fence_size, fence_alignment, unfenced_alignment;
3168         size_t gtt_max =
3169                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3170         struct i915_vma *vma;
3171         int ret;
3172
3173         fence_size = i915_gem_get_gtt_size(dev,
3174                                            obj->base.size,
3175                                            obj->tiling_mode);
3176         fence_alignment = i915_gem_get_gtt_alignment(dev,
3177                                                      obj->base.size,
3178                                                      obj->tiling_mode, true);
3179         unfenced_alignment =
3180                 i915_gem_get_gtt_alignment(dev,
3181                                                     obj->base.size,
3182                                                     obj->tiling_mode, false);
3183
3184         if (alignment == 0)
3185                 alignment = map_and_fenceable ? fence_alignment :
3186                                                 unfenced_alignment;
3187         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3188                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3189                 return -EINVAL;
3190         }
3191
3192         size = map_and_fenceable ? fence_size : obj->base.size;
3193
3194         /* If the object is bigger than the entire aperture, reject it early
3195          * before evicting everything in a vain attempt to find space.
3196          */
3197         if (obj->base.size > gtt_max) {
3198                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3199                           obj->base.size,
3200                           map_and_fenceable ? "mappable" : "total",
3201                           gtt_max);
3202                 return -E2BIG;
3203         }
3204
3205         ret = i915_gem_object_get_pages(obj);
3206         if (ret)
3207                 return ret;
3208
3209         i915_gem_object_pin_pages(obj);
3210
3211         BUG_ON(!i915_is_ggtt(vm));
3212
3213         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3214         if (IS_ERR(vma)) {
3215                 ret = PTR_ERR(vma);
3216                 goto err_unpin;
3217         }
3218
3219         /* For now we only ever use 1 vma per object */
3220         WARN_ON(!list_is_singular(&obj->vma_list));
3221
3222 search_free:
3223         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3224                                                   size, alignment,
3225                                                   obj->cache_level, 0, gtt_max,
3226                                                   DRM_MM_SEARCH_DEFAULT);
3227         if (ret) {
3228                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3229                                                obj->cache_level,
3230                                                map_and_fenceable,
3231                                                nonblocking);
3232                 if (ret == 0)
3233                         goto search_free;
3234
3235                 goto err_free_vma;
3236         }
3237         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3238                                               obj->cache_level))) {
3239                 ret = -EINVAL;
3240                 goto err_remove_node;
3241         }
3242
3243         ret = i915_gem_gtt_prepare_object(obj);
3244         if (ret)
3245                 goto err_remove_node;
3246
3247         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3248         list_add_tail(&vma->mm_list, &vm->inactive_list);
3249
3250         if (i915_is_ggtt(vm)) {
3251                 bool mappable, fenceable;
3252
3253                 fenceable = (vma->node.size == fence_size &&
3254                              (vma->node.start & (fence_alignment - 1)) == 0);
3255
3256                 mappable = (vma->node.start + obj->base.size <=
3257                             dev_priv->gtt.mappable_end);
3258
3259                 obj->map_and_fenceable = mappable && fenceable;
3260         }
3261
3262         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3263
3264         trace_i915_vma_bind(vma, map_and_fenceable);
3265         i915_gem_verify_gtt(dev);
3266         return 0;
3267
3268 err_remove_node:
3269         drm_mm_remove_node(&vma->node);
3270 err_free_vma:
3271         i915_gem_vma_destroy(vma);
3272 err_unpin:
3273         i915_gem_object_unpin_pages(obj);
3274         return ret;
3275 }
3276
3277 bool
3278 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3279                         bool force)
3280 {
3281         /* If we don't have a page list set up, then we're not pinned
3282          * to GPU, and we can ignore the cache flush because it'll happen
3283          * again at bind time.
3284          */
3285         if (obj->pages == NULL)
3286                 return false;
3287
3288         /*
3289          * Stolen memory is always coherent with the GPU as it is explicitly
3290          * marked as wc by the system, or the system is cache-coherent.
3291          */
3292         if (obj->stolen)
3293                 return false;
3294
3295         /* If the GPU is snooping the contents of the CPU cache,
3296          * we do not need to manually clear the CPU cache lines.  However,
3297          * the caches are only snooped when the render cache is
3298          * flushed/invalidated.  As we always have to emit invalidations
3299          * and flushes when moving into and out of the RENDER domain, correct
3300          * snooping behaviour occurs naturally as the result of our domain
3301          * tracking.
3302          */
3303         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3304                 return false;
3305
3306         trace_i915_gem_object_clflush(obj);
3307         drm_clflush_sg(obj->pages);
3308
3309         return true;
3310 }
3311
3312 /** Flushes the GTT write domain for the object if it's dirty. */
3313 static void
3314 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3315 {
3316         uint32_t old_write_domain;
3317
3318         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3319                 return;
3320
3321         /* No actual flushing is required for the GTT write domain.  Writes
3322          * to it immediately go to main memory as far as we know, so there's
3323          * no chipset flush.  It also doesn't land in render cache.
3324          *
3325          * However, we do have to enforce the order so that all writes through
3326          * the GTT land before any writes to the device, such as updates to
3327          * the GATT itself.
3328          */
3329         wmb();
3330
3331         old_write_domain = obj->base.write_domain;
3332         obj->base.write_domain = 0;
3333
3334         trace_i915_gem_object_change_domain(obj,
3335                                             obj->base.read_domains,
3336                                             old_write_domain);
3337 }
3338
3339 /** Flushes the CPU write domain for the object if it's dirty. */
3340 static void
3341 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3342                                        bool force)
3343 {
3344         uint32_t old_write_domain;
3345
3346         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3347                 return;
3348
3349         if (i915_gem_clflush_object(obj, force))
3350                 i915_gem_chipset_flush(obj->base.dev);
3351
3352         old_write_domain = obj->base.write_domain;
3353         obj->base.write_domain = 0;
3354
3355         trace_i915_gem_object_change_domain(obj,
3356                                             obj->base.read_domains,
3357                                             old_write_domain);
3358 }
3359
3360 /**
3361  * Moves a single object to the GTT read, and possibly write domain.
3362  *
3363  * This function returns when the move is complete, including waiting on
3364  * flushes to occur.
3365  */
3366 int
3367 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3368 {
3369         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3370         uint32_t old_write_domain, old_read_domains;
3371         int ret;
3372
3373         /* Not valid to be called on unbound objects. */
3374         if (!i915_gem_obj_bound_any(obj))
3375                 return -EINVAL;
3376
3377         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3378                 return 0;
3379
3380         ret = i915_gem_object_wait_rendering(obj, !write);
3381         if (ret)
3382                 return ret;
3383
3384         i915_gem_object_flush_cpu_write_domain(obj, false);
3385
3386         /* Serialise direct access to this object with the barriers for
3387          * coherent writes from the GPU, by effectively invalidating the
3388          * GTT domain upon first access.
3389          */
3390         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3391                 mb();
3392
3393         old_write_domain = obj->base.write_domain;
3394         old_read_domains = obj->base.read_domains;
3395
3396         /* It should now be out of any other write domains, and we can update
3397          * the domain values for our changes.
3398          */
3399         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3400         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3401         if (write) {
3402                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3403                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3404                 obj->dirty = 1;
3405         }
3406
3407         trace_i915_gem_object_change_domain(obj,
3408                                             old_read_domains,
3409                                             old_write_domain);
3410
3411         /* And bump the LRU for this access */
3412         if (i915_gem_object_is_inactive(obj)) {
3413                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3414                                                            &dev_priv->gtt.base);
3415                 if (vma)
3416                         list_move_tail(&vma->mm_list,
3417                                        &dev_priv->gtt.base.inactive_list);
3418
3419         }
3420
3421         return 0;
3422 }
3423
3424 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3425                                     enum i915_cache_level cache_level)
3426 {
3427         struct drm_device *dev = obj->base.dev;
3428         drm_i915_private_t *dev_priv = dev->dev_private;
3429         struct i915_vma *vma;
3430         int ret;
3431
3432         if (obj->cache_level == cache_level)
3433                 return 0;
3434
3435         if (obj->pin_count) {
3436                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3437                 return -EBUSY;
3438         }
3439
3440         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3441                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3442                         ret = i915_vma_unbind(vma);
3443                         if (ret)
3444                                 return ret;
3445
3446                         break;
3447                 }
3448         }
3449
3450         if (i915_gem_obj_bound_any(obj)) {
3451                 ret = i915_gem_object_finish_gpu(obj);
3452                 if (ret)
3453                         return ret;
3454
3455                 i915_gem_object_finish_gtt(obj);
3456
3457                 /* Before SandyBridge, you could not use tiling or fence
3458                  * registers with snooped memory, so relinquish any fences
3459                  * currently pointing to our region in the aperture.
3460                  */
3461                 if (INTEL_INFO(dev)->gen < 6) {
3462                         ret = i915_gem_object_put_fence(obj);
3463                         if (ret)
3464                                 return ret;
3465                 }
3466
3467                 if (obj->has_global_gtt_mapping)
3468                         i915_gem_gtt_bind_object(obj, cache_level);
3469                 if (obj->has_aliasing_ppgtt_mapping)
3470                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3471                                                obj, cache_level);
3472         }
3473
3474         list_for_each_entry(vma, &obj->vma_list, vma_link)
3475                 vma->node.color = cache_level;
3476         obj->cache_level = cache_level;
3477
3478         if (cpu_write_needs_clflush(obj)) {
3479                 u32 old_read_domains, old_write_domain;
3480
3481                 /* If we're coming from LLC cached, then we haven't
3482                  * actually been tracking whether the data is in the
3483                  * CPU cache or not, since we only allow one bit set
3484                  * in obj->write_domain and have been skipping the clflushes.
3485                  * Just set it to the CPU cache for now.
3486                  */
3487                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3488
3489                 old_read_domains = obj->base.read_domains;
3490                 old_write_domain = obj->base.write_domain;
3491
3492                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3493                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494
3495                 trace_i915_gem_object_change_domain(obj,
3496                                                     old_read_domains,
3497                                                     old_write_domain);
3498         }
3499
3500         i915_gem_verify_gtt(dev);
3501         return 0;
3502 }
3503
3504 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3505                                struct drm_file *file)
3506 {
3507         struct drm_i915_gem_caching *args = data;
3508         struct drm_i915_gem_object *obj;
3509         int ret;
3510
3511         ret = i915_mutex_lock_interruptible(dev);
3512         if (ret)
3513                 return ret;
3514
3515         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3516         if (&obj->base == NULL) {
3517                 ret = -ENOENT;
3518                 goto unlock;
3519         }
3520
3521         switch (obj->cache_level) {
3522         case I915_CACHE_LLC:
3523         case I915_CACHE_L3_LLC:
3524                 args->caching = I915_CACHING_CACHED;
3525                 break;
3526
3527         case I915_CACHE_WT:
3528                 args->caching = I915_CACHING_DISPLAY;
3529                 break;
3530
3531         default:
3532                 args->caching = I915_CACHING_NONE;
3533                 break;
3534         }
3535
3536         drm_gem_object_unreference(&obj->base);
3537 unlock:
3538         mutex_unlock(&dev->struct_mutex);
3539         return ret;
3540 }
3541
3542 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3543                                struct drm_file *file)
3544 {
3545         struct drm_i915_gem_caching *args = data;
3546         struct drm_i915_gem_object *obj;
3547         enum i915_cache_level level;
3548         int ret;
3549
3550         switch (args->caching) {
3551         case I915_CACHING_NONE:
3552                 level = I915_CACHE_NONE;
3553                 break;
3554         case I915_CACHING_CACHED:
3555                 level = I915_CACHE_LLC;
3556                 break;
3557         case I915_CACHING_DISPLAY:
3558                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3559                 break;
3560         default:
3561                 return -EINVAL;
3562         }
3563
3564         ret = i915_mutex_lock_interruptible(dev);
3565         if (ret)
3566                 return ret;
3567
3568         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3569         if (&obj->base == NULL) {
3570                 ret = -ENOENT;
3571                 goto unlock;
3572         }
3573
3574         ret = i915_gem_object_set_cache_level(obj, level);
3575
3576         drm_gem_object_unreference(&obj->base);
3577 unlock:
3578         mutex_unlock(&dev->struct_mutex);
3579         return ret;
3580 }
3581
3582 static bool is_pin_display(struct drm_i915_gem_object *obj)
3583 {
3584         /* There are 3 sources that pin objects:
3585          *   1. The display engine (scanouts, sprites, cursors);
3586          *   2. Reservations for execbuffer;
3587          *   3. The user.
3588          *
3589          * We can ignore reservations as we hold the struct_mutex and
3590          * are only called outside of the reservation path.  The user
3591          * can only increment pin_count once, and so if after
3592          * subtracting the potential reference by the user, any pin_count
3593          * remains, it must be due to another use by the display engine.
3594          */
3595         return obj->pin_count - !!obj->user_pin_count;
3596 }
3597
3598 /*
3599  * Prepare buffer for display plane (scanout, cursors, etc).
3600  * Can be called from an uninterruptible phase (modesetting) and allows
3601  * any flushes to be pipelined (for pageflips).
3602  */
3603 int
3604 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3605                                      u32 alignment,
3606                                      struct intel_ring_buffer *pipelined)
3607 {
3608         u32 old_read_domains, old_write_domain;
3609         int ret;
3610
3611         if (pipelined != obj->ring) {
3612                 ret = i915_gem_object_sync(obj, pipelined);
3613                 if (ret)
3614                         return ret;
3615         }
3616
3617         /* Mark the pin_display early so that we account for the
3618          * display coherency whilst setting up the cache domains.
3619          */
3620         obj->pin_display = true;
3621
3622         /* The display engine is not coherent with the LLC cache on gen6.  As
3623          * a result, we make sure that the pinning that is about to occur is
3624          * done with uncached PTEs. This is lowest common denominator for all
3625          * chipsets.
3626          *
3627          * However for gen6+, we could do better by using the GFDT bit instead
3628          * of uncaching, which would allow us to flush all the LLC-cached data
3629          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3630          */
3631         ret = i915_gem_object_set_cache_level(obj,
3632                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3633         if (ret)
3634                 goto err_unpin_display;
3635
3636         /* As the user may map the buffer once pinned in the display plane
3637          * (e.g. libkms for the bootup splash), we have to ensure that we
3638          * always use map_and_fenceable for all scanout buffers.
3639          */
3640         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3641         if (ret)
3642                 goto err_unpin_display;
3643
3644         i915_gem_object_flush_cpu_write_domain(obj, true);
3645
3646         old_write_domain = obj->base.write_domain;
3647         old_read_domains = obj->base.read_domains;
3648
3649         /* It should now be out of any other write domains, and we can update
3650          * the domain values for our changes.
3651          */
3652         obj->base.write_domain = 0;
3653         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3654
3655         trace_i915_gem_object_change_domain(obj,
3656                                             old_read_domains,
3657                                             old_write_domain);
3658
3659         return 0;
3660
3661 err_unpin_display:
3662         obj->pin_display = is_pin_display(obj);
3663         return ret;
3664 }
3665
3666 void
3667 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3668 {
3669         i915_gem_object_unpin(obj);
3670         obj->pin_display = is_pin_display(obj);
3671 }
3672
3673 int
3674 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3675 {
3676         int ret;
3677
3678         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3679                 return 0;
3680
3681         ret = i915_gem_object_wait_rendering(obj, false);
3682         if (ret)
3683                 return ret;
3684
3685         /* Ensure that we invalidate the GPU's caches and TLBs. */
3686         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3687         return 0;
3688 }
3689
3690 /**
3691  * Moves a single object to the CPU read, and possibly write domain.
3692  *
3693  * This function returns when the move is complete, including waiting on
3694  * flushes to occur.
3695  */
3696 int
3697 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3698 {
3699         uint32_t old_write_domain, old_read_domains;
3700         int ret;
3701
3702         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3703                 return 0;
3704
3705         ret = i915_gem_object_wait_rendering(obj, !write);
3706         if (ret)
3707                 return ret;
3708
3709         i915_gem_object_flush_gtt_write_domain(obj);
3710
3711         old_write_domain = obj->base.write_domain;
3712         old_read_domains = obj->base.read_domains;
3713
3714         /* Flush the CPU cache if it's still invalid. */
3715         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3716                 i915_gem_clflush_object(obj, false);
3717
3718                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3719         }
3720
3721         /* It should now be out of any other write domains, and we can update
3722          * the domain values for our changes.
3723          */
3724         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3725
3726         /* If we're writing through the CPU, then the GPU read domains will
3727          * need to be invalidated at next use.
3728          */
3729         if (write) {
3730                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3731                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3732         }
3733
3734         trace_i915_gem_object_change_domain(obj,
3735                                             old_read_domains,
3736                                             old_write_domain);
3737
3738         return 0;
3739 }
3740
3741 /* Throttle our rendering by waiting until the ring has completed our requests
3742  * emitted over 20 msec ago.
3743  *
3744  * Note that if we were to use the current jiffies each time around the loop,
3745  * we wouldn't escape the function with any frames outstanding if the time to
3746  * render a frame was over 20ms.
3747  *
3748  * This should get us reasonable parallelism between CPU and GPU but also
3749  * relatively low latency when blocking on a particular request to finish.
3750  */
3751 static int
3752 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3753 {
3754         struct drm_i915_private *dev_priv = dev->dev_private;
3755         struct drm_i915_file_private *file_priv = file->driver_priv;
3756         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3757         struct drm_i915_gem_request *request;
3758         struct intel_ring_buffer *ring = NULL;
3759         unsigned reset_counter;
3760         u32 seqno = 0;
3761         int ret;
3762
3763         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3764         if (ret)
3765                 return ret;
3766
3767         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3768         if (ret)
3769                 return ret;
3770
3771         spin_lock(&file_priv->mm.lock);
3772         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3773                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3774                         break;
3775
3776                 ring = request->ring;
3777                 seqno = request->seqno;
3778         }
3779         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3780         spin_unlock(&file_priv->mm.lock);
3781
3782         if (seqno == 0)
3783                 return 0;
3784
3785         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3786         if (ret == 0)
3787                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3788
3789         return ret;
3790 }
3791
3792 int
3793 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3794                     struct i915_address_space *vm,
3795                     uint32_t alignment,
3796                     bool map_and_fenceable,
3797                     bool nonblocking)
3798 {
3799         struct i915_vma *vma;
3800         int ret;
3801
3802         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3803                 return -EBUSY;
3804
3805         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3806
3807         vma = i915_gem_obj_to_vma(obj, vm);
3808
3809         if (vma) {
3810                 if ((alignment &&
3811                      vma->node.start & (alignment - 1)) ||
3812                     (map_and_fenceable && !obj->map_and_fenceable)) {
3813                         WARN(obj->pin_count,
3814                              "bo is already pinned with incorrect alignment:"
3815                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3816                              " obj->map_and_fenceable=%d\n",
3817                              i915_gem_obj_offset(obj, vm), alignment,
3818                              map_and_fenceable,
3819                              obj->map_and_fenceable);
3820                         ret = i915_vma_unbind(vma);
3821                         if (ret)
3822                                 return ret;
3823                 }
3824         }
3825
3826         if (!i915_gem_obj_bound(obj, vm)) {
3827                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3828
3829                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3830                                                  map_and_fenceable,
3831                                                  nonblocking);
3832                 if (ret)
3833                         return ret;
3834
3835                 if (!dev_priv->mm.aliasing_ppgtt)
3836                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3837         }
3838
3839         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3840                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3841
3842         obj->pin_count++;
3843         obj->pin_mappable |= map_and_fenceable;
3844
3845         return 0;
3846 }
3847
3848 void
3849 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3850 {
3851         BUG_ON(obj->pin_count == 0);
3852         BUG_ON(!i915_gem_obj_bound_any(obj));
3853
3854         if (--obj->pin_count == 0)
3855                 obj->pin_mappable = false;
3856 }
3857
3858 int
3859 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3860                    struct drm_file *file)
3861 {
3862         struct drm_i915_gem_pin *args = data;
3863         struct drm_i915_gem_object *obj;
3864         int ret;
3865
3866         ret = i915_mutex_lock_interruptible(dev);
3867         if (ret)
3868                 return ret;
3869
3870         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3871         if (&obj->base == NULL) {
3872                 ret = -ENOENT;
3873                 goto unlock;
3874         }
3875
3876         if (obj->madv != I915_MADV_WILLNEED) {
3877                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3878                 ret = -EINVAL;
3879                 goto out;
3880         }
3881
3882         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3883                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3884                           args->handle);
3885                 ret = -EINVAL;
3886                 goto out;
3887         }
3888
3889         if (obj->user_pin_count == 0) {
3890                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3891                 if (ret)
3892                         goto out;
3893         }
3894
3895         obj->user_pin_count++;
3896         obj->pin_filp = file;
3897
3898         args->offset = i915_gem_obj_ggtt_offset(obj);
3899 out:
3900         drm_gem_object_unreference(&obj->base);
3901 unlock:
3902         mutex_unlock(&dev->struct_mutex);
3903         return ret;
3904 }
3905
3906 int
3907 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3908                      struct drm_file *file)
3909 {
3910         struct drm_i915_gem_pin *args = data;
3911         struct drm_i915_gem_object *obj;
3912         int ret;
3913
3914         ret = i915_mutex_lock_interruptible(dev);
3915         if (ret)
3916                 return ret;
3917
3918         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3919         if (&obj->base == NULL) {
3920                 ret = -ENOENT;
3921                 goto unlock;
3922         }
3923
3924         if (obj->pin_filp != file) {
3925                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3926                           args->handle);
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930         obj->user_pin_count--;
3931         if (obj->user_pin_count == 0) {
3932                 obj->pin_filp = NULL;
3933                 i915_gem_object_unpin(obj);
3934         }
3935
3936 out:
3937         drm_gem_object_unreference(&obj->base);
3938 unlock:
3939         mutex_unlock(&dev->struct_mutex);
3940         return ret;
3941 }
3942
3943 int
3944 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3945                     struct drm_file *file)
3946 {
3947         struct drm_i915_gem_busy *args = data;
3948         struct drm_i915_gem_object *obj;
3949         int ret;
3950
3951         ret = i915_mutex_lock_interruptible(dev);
3952         if (ret)
3953                 return ret;
3954
3955         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3956         if (&obj->base == NULL) {
3957                 ret = -ENOENT;
3958                 goto unlock;
3959         }
3960
3961         /* Count all active objects as busy, even if they are currently not used
3962          * by the gpu. Users of this interface expect objects to eventually
3963          * become non-busy without any further actions, therefore emit any
3964          * necessary flushes here.
3965          */
3966         ret = i915_gem_object_flush_active(obj);
3967
3968         args->busy = obj->active;
3969         if (obj->ring) {
3970                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3971                 args->busy |= intel_ring_flag(obj->ring) << 16;
3972         }
3973
3974         drm_gem_object_unreference(&obj->base);
3975 unlock:
3976         mutex_unlock(&dev->struct_mutex);
3977         return ret;
3978 }
3979
3980 int
3981 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3982                         struct drm_file *file_priv)
3983 {
3984         return i915_gem_ring_throttle(dev, file_priv);
3985 }
3986
3987 int
3988 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3989                        struct drm_file *file_priv)
3990 {
3991         struct drm_i915_gem_madvise *args = data;
3992         struct drm_i915_gem_object *obj;
3993         int ret;
3994
3995         switch (args->madv) {
3996         case I915_MADV_DONTNEED:
3997         case I915_MADV_WILLNEED:
3998             break;
3999         default:
4000             return -EINVAL;
4001         }
4002
4003         ret = i915_mutex_lock_interruptible(dev);
4004         if (ret)
4005                 return ret;
4006
4007         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4008         if (&obj->base == NULL) {
4009                 ret = -ENOENT;
4010                 goto unlock;
4011         }
4012
4013         if (obj->pin_count) {
4014                 ret = -EINVAL;
4015                 goto out;
4016         }
4017
4018         if (obj->madv != __I915_MADV_PURGED)
4019                 obj->madv = args->madv;
4020
4021         /* if the object is no longer attached, discard its backing storage */
4022         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4023                 i915_gem_object_truncate(obj);
4024
4025         args->retained = obj->madv != __I915_MADV_PURGED;
4026
4027 out:
4028         drm_gem_object_unreference(&obj->base);
4029 unlock:
4030         mutex_unlock(&dev->struct_mutex);
4031         return ret;
4032 }
4033
4034 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4035                           const struct drm_i915_gem_object_ops *ops)
4036 {
4037         INIT_LIST_HEAD(&obj->global_list);
4038         INIT_LIST_HEAD(&obj->ring_list);
4039         INIT_LIST_HEAD(&obj->obj_exec_link);
4040         INIT_LIST_HEAD(&obj->vma_list);
4041
4042         obj->ops = ops;
4043
4044         obj->fence_reg = I915_FENCE_REG_NONE;
4045         obj->madv = I915_MADV_WILLNEED;
4046         /* Avoid an unnecessary call to unbind on the first bind. */
4047         obj->map_and_fenceable = true;
4048
4049         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4050 }
4051
4052 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4053         .get_pages = i915_gem_object_get_pages_gtt,
4054         .put_pages = i915_gem_object_put_pages_gtt,
4055 };
4056
4057 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4058                                                   size_t size)
4059 {
4060         struct drm_i915_gem_object *obj;
4061         struct address_space *mapping;
4062         gfp_t mask;
4063
4064         obj = i915_gem_object_alloc(dev);
4065         if (obj == NULL)
4066                 return NULL;
4067
4068         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4069                 i915_gem_object_free(obj);
4070                 return NULL;
4071         }
4072
4073         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4074         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4075                 /* 965gm cannot relocate objects above 4GiB. */
4076                 mask &= ~__GFP_HIGHMEM;
4077                 mask |= __GFP_DMA32;
4078         }
4079
4080         mapping = file_inode(obj->base.filp)->i_mapping;
4081         mapping_set_gfp_mask(mapping, mask);
4082
4083         i915_gem_object_init(obj, &i915_gem_object_ops);
4084
4085         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4086         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4087
4088         if (HAS_LLC(dev)) {
4089                 /* On some devices, we can have the GPU use the LLC (the CPU
4090                  * cache) for about a 10% performance improvement
4091                  * compared to uncached.  Graphics requests other than
4092                  * display scanout are coherent with the CPU in
4093                  * accessing this cache.  This means in this mode we
4094                  * don't need to clflush on the CPU side, and on the
4095                  * GPU side we only need to flush internal caches to
4096                  * get data visible to the CPU.
4097                  *
4098                  * However, we maintain the display planes as UC, and so
4099                  * need to rebind when first used as such.
4100                  */
4101                 obj->cache_level = I915_CACHE_LLC;
4102         } else
4103                 obj->cache_level = I915_CACHE_NONE;
4104
4105         trace_i915_gem_object_create(obj);
4106
4107         return obj;
4108 }
4109
4110 int i915_gem_init_object(struct drm_gem_object *obj)
4111 {
4112         BUG();
4113
4114         return 0;
4115 }
4116
4117 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4118 {
4119         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4120         struct drm_device *dev = obj->base.dev;
4121         drm_i915_private_t *dev_priv = dev->dev_private;
4122         struct i915_vma *vma, *next;
4123
4124         trace_i915_gem_object_destroy(obj);
4125
4126         if (obj->phys_obj)
4127                 i915_gem_detach_phys_object(dev, obj);
4128
4129         obj->pin_count = 0;
4130         /* NB: 0 or 1 elements */
4131         WARN_ON(!list_empty(&obj->vma_list) &&
4132                 !list_is_singular(&obj->vma_list));
4133         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4134                 int ret = i915_vma_unbind(vma);
4135                 if (WARN_ON(ret == -ERESTARTSYS)) {
4136                         bool was_interruptible;
4137
4138                         was_interruptible = dev_priv->mm.interruptible;
4139                         dev_priv->mm.interruptible = false;
4140
4141                         WARN_ON(i915_vma_unbind(vma));
4142
4143                         dev_priv->mm.interruptible = was_interruptible;
4144                 }
4145         }
4146
4147         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4148          * before progressing. */
4149         if (obj->stolen)
4150                 i915_gem_object_unpin_pages(obj);
4151
4152         if (WARN_ON(obj->pages_pin_count))
4153                 obj->pages_pin_count = 0;
4154         i915_gem_object_put_pages(obj);
4155         i915_gem_object_free_mmap_offset(obj);
4156         i915_gem_object_release_stolen(obj);
4157
4158         BUG_ON(obj->pages);
4159
4160         if (obj->base.import_attach)
4161                 drm_prime_gem_destroy(&obj->base, NULL);
4162
4163         drm_gem_object_release(&obj->base);
4164         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4165
4166         kfree(obj->bit_17);
4167         i915_gem_object_free(obj);
4168 }
4169
4170 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4171                                      struct i915_address_space *vm)
4172 {
4173         struct i915_vma *vma;
4174         list_for_each_entry(vma, &obj->vma_list, vma_link)
4175                 if (vma->vm == vm)
4176                         return vma;
4177
4178         return NULL;
4179 }
4180
4181 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4182                                               struct i915_address_space *vm)
4183 {
4184         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4185         if (vma == NULL)
4186                 return ERR_PTR(-ENOMEM);
4187
4188         INIT_LIST_HEAD(&vma->vma_link);
4189         INIT_LIST_HEAD(&vma->mm_list);
4190         INIT_LIST_HEAD(&vma->exec_list);
4191         vma->vm = vm;
4192         vma->obj = obj;
4193
4194         /* Keep GGTT vmas first to make debug easier */
4195         if (i915_is_ggtt(vm))
4196                 list_add(&vma->vma_link, &obj->vma_list);
4197         else
4198                 list_add_tail(&vma->vma_link, &obj->vma_list);
4199
4200         return vma;
4201 }
4202
4203 struct i915_vma *
4204 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4205                                   struct i915_address_space *vm)
4206 {
4207         struct i915_vma *vma;
4208
4209         vma = i915_gem_obj_to_vma(obj, vm);
4210         if (!vma)
4211                 vma = __i915_gem_vma_create(obj, vm);
4212
4213         return vma;
4214 }
4215
4216 void i915_gem_vma_destroy(struct i915_vma *vma)
4217 {
4218         WARN_ON(vma->node.allocated);
4219
4220         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4221         if (!list_empty(&vma->exec_list))
4222                 return;
4223
4224         list_del(&vma->vma_link);
4225
4226         kfree(vma);
4227 }
4228
4229 int
4230 i915_gem_idle(struct drm_device *dev)
4231 {
4232         drm_i915_private_t *dev_priv = dev->dev_private;
4233         int ret;
4234
4235         if (dev_priv->ums.mm_suspended) {
4236                 mutex_unlock(&dev->struct_mutex);
4237                 return 0;
4238         }
4239
4240         ret = i915_gpu_idle(dev);
4241         if (ret) {
4242                 mutex_unlock(&dev->struct_mutex);
4243                 return ret;
4244         }
4245         i915_gem_retire_requests(dev);
4246
4247         /* Under UMS, be paranoid and evict. */
4248         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4249                 i915_gem_evict_everything(dev);
4250
4251         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4252
4253         i915_kernel_lost_context(dev);
4254         i915_gem_cleanup_ringbuffer(dev);
4255
4256         /* Cancel the retire work handler, which should be idle now. */
4257         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4258
4259         return 0;
4260 }
4261
4262 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4263 {
4264         struct drm_device *dev = ring->dev;
4265         drm_i915_private_t *dev_priv = dev->dev_private;
4266         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4267         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4268         int i, ret;
4269
4270         if (!HAS_L3_DPF(dev) || !remap_info)
4271                 return 0;
4272
4273         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4274         if (ret)
4275                 return ret;
4276
4277         /*
4278          * Note: We do not worry about the concurrent register cacheline hang
4279          * here because no other code should access these registers other than
4280          * at initialization time.
4281          */
4282         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4283                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4284                 intel_ring_emit(ring, reg_base + i);
4285                 intel_ring_emit(ring, remap_info[i/4]);
4286         }
4287
4288         intel_ring_advance(ring);
4289
4290         return ret;
4291 }
4292
4293 void i915_gem_init_swizzling(struct drm_device *dev)
4294 {
4295         drm_i915_private_t *dev_priv = dev->dev_private;
4296
4297         if (INTEL_INFO(dev)->gen < 5 ||
4298             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299                 return;
4300
4301         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302                                  DISP_TILE_SURFACE_SWIZZLING);
4303
4304         if (IS_GEN5(dev))
4305                 return;
4306
4307         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308         if (IS_GEN6(dev))
4309                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4310         else if (IS_GEN7(dev))
4311                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4312         else
4313                 BUG();
4314 }
4315
4316 static bool
4317 intel_enable_blt(struct drm_device *dev)
4318 {
4319         if (!HAS_BLT(dev))
4320                 return false;
4321
4322         /* The blitter was dysfunctional on early prototypes */
4323         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4324                 DRM_INFO("BLT not supported on this pre-production hardware;"
4325                          " graphics performance will be degraded.\n");
4326                 return false;
4327         }
4328
4329         return true;
4330 }
4331
4332 static int i915_gem_init_rings(struct drm_device *dev)
4333 {
4334         struct drm_i915_private *dev_priv = dev->dev_private;
4335         int ret;
4336
4337         ret = intel_init_render_ring_buffer(dev);
4338         if (ret)
4339                 return ret;
4340
4341         if (HAS_BSD(dev)) {
4342                 ret = intel_init_bsd_ring_buffer(dev);
4343                 if (ret)
4344                         goto cleanup_render_ring;
4345         }
4346
4347         if (intel_enable_blt(dev)) {
4348                 ret = intel_init_blt_ring_buffer(dev);
4349                 if (ret)
4350                         goto cleanup_bsd_ring;
4351         }
4352
4353         if (HAS_VEBOX(dev)) {
4354                 ret = intel_init_vebox_ring_buffer(dev);
4355                 if (ret)
4356                         goto cleanup_blt_ring;
4357         }
4358
4359
4360         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4361         if (ret)
4362                 goto cleanup_vebox_ring;
4363
4364         return 0;
4365
4366 cleanup_vebox_ring:
4367         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4368 cleanup_blt_ring:
4369         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4370 cleanup_bsd_ring:
4371         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4372 cleanup_render_ring:
4373         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4374
4375         return ret;
4376 }
4377
4378 int
4379 i915_gem_init_hw(struct drm_device *dev)
4380 {
4381         drm_i915_private_t *dev_priv = dev->dev_private;
4382         int ret, i;
4383
4384         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4385                 return -EIO;
4386
4387         if (dev_priv->ellc_size)
4388                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4389
4390         if (IS_HSW_GT3(dev))
4391                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4392         else
4393                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4394
4395         if (HAS_PCH_NOP(dev)) {
4396                 u32 temp = I915_READ(GEN7_MSG_CTL);
4397                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4398                 I915_WRITE(GEN7_MSG_CTL, temp);
4399         }
4400
4401         i915_gem_init_swizzling(dev);
4402
4403         ret = i915_gem_init_rings(dev);
4404         if (ret)
4405                 return ret;
4406
4407         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4408                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4409
4410         /*
4411          * XXX: There was some w/a described somewhere suggesting loading
4412          * contexts before PPGTT.
4413          */
4414         i915_gem_context_init(dev);
4415         if (dev_priv->mm.aliasing_ppgtt) {
4416                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4417                 if (ret) {
4418                         i915_gem_cleanup_aliasing_ppgtt(dev);
4419                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4420                 }
4421         }
4422
4423         return 0;
4424 }
4425
4426 int i915_gem_init(struct drm_device *dev)
4427 {
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429         int ret;
4430
4431         mutex_lock(&dev->struct_mutex);
4432
4433         if (IS_VALLEYVIEW(dev)) {
4434                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4435                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4436                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4437                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4438         }
4439
4440         i915_gem_init_global_gtt(dev);
4441
4442         ret = i915_gem_init_hw(dev);
4443         mutex_unlock(&dev->struct_mutex);
4444         if (ret) {
4445                 i915_gem_cleanup_aliasing_ppgtt(dev);
4446                 return ret;
4447         }
4448
4449         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4450         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4451                 dev_priv->dri1.allow_batchbuffer = 1;
4452         return 0;
4453 }
4454
4455 void
4456 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4457 {
4458         drm_i915_private_t *dev_priv = dev->dev_private;
4459         struct intel_ring_buffer *ring;
4460         int i;
4461
4462         for_each_ring(ring, dev_priv, i)
4463                 intel_cleanup_ring_buffer(ring);
4464 }
4465
4466 int
4467 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4468                        struct drm_file *file_priv)
4469 {
4470         struct drm_i915_private *dev_priv = dev->dev_private;
4471         int ret;
4472
4473         if (drm_core_check_feature(dev, DRIVER_MODESET))
4474                 return 0;
4475
4476         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4477                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4478                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4479         }
4480
4481         mutex_lock(&dev->struct_mutex);
4482         dev_priv->ums.mm_suspended = 0;
4483
4484         ret = i915_gem_init_hw(dev);
4485         if (ret != 0) {
4486                 mutex_unlock(&dev->struct_mutex);
4487                 return ret;
4488         }
4489
4490         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4491         mutex_unlock(&dev->struct_mutex);
4492
4493         ret = drm_irq_install(dev);
4494         if (ret)
4495                 goto cleanup_ringbuffer;
4496
4497         return 0;
4498
4499 cleanup_ringbuffer:
4500         mutex_lock(&dev->struct_mutex);
4501         i915_gem_cleanup_ringbuffer(dev);
4502         dev_priv->ums.mm_suspended = 1;
4503         mutex_unlock(&dev->struct_mutex);
4504
4505         return ret;
4506 }
4507
4508 int
4509 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4510                        struct drm_file *file_priv)
4511 {
4512         struct drm_i915_private *dev_priv = dev->dev_private;
4513         int ret;
4514
4515         if (drm_core_check_feature(dev, DRIVER_MODESET))
4516                 return 0;
4517
4518         drm_irq_uninstall(dev);
4519
4520         mutex_lock(&dev->struct_mutex);
4521         ret =  i915_gem_idle(dev);
4522
4523         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4524          * We need to replace this with a semaphore, or something.
4525          * And not confound ums.mm_suspended!
4526          */
4527         if (ret != 0)
4528                 dev_priv->ums.mm_suspended = 1;
4529         mutex_unlock(&dev->struct_mutex);
4530
4531         return ret;
4532 }
4533
4534 void
4535 i915_gem_lastclose(struct drm_device *dev)
4536 {
4537         int ret;
4538
4539         if (drm_core_check_feature(dev, DRIVER_MODESET))
4540                 return;
4541
4542         mutex_lock(&dev->struct_mutex);
4543         ret = i915_gem_idle(dev);
4544         if (ret)
4545                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4546         mutex_unlock(&dev->struct_mutex);
4547 }
4548
4549 static void
4550 init_ring_lists(struct intel_ring_buffer *ring)
4551 {
4552         INIT_LIST_HEAD(&ring->active_list);
4553         INIT_LIST_HEAD(&ring->request_list);
4554 }
4555
4556 static void i915_init_vm(struct drm_i915_private *dev_priv,
4557                          struct i915_address_space *vm)
4558 {
4559         vm->dev = dev_priv->dev;
4560         INIT_LIST_HEAD(&vm->active_list);
4561         INIT_LIST_HEAD(&vm->inactive_list);
4562         INIT_LIST_HEAD(&vm->global_link);
4563         list_add(&vm->global_link, &dev_priv->vm_list);
4564 }
4565
4566 void
4567 i915_gem_load(struct drm_device *dev)
4568 {
4569         drm_i915_private_t *dev_priv = dev->dev_private;
4570         int i;
4571
4572         dev_priv->slab =
4573                 kmem_cache_create("i915_gem_object",
4574                                   sizeof(struct drm_i915_gem_object), 0,
4575                                   SLAB_HWCACHE_ALIGN,
4576                                   NULL);
4577
4578         INIT_LIST_HEAD(&dev_priv->vm_list);
4579         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4580
4581         INIT_LIST_HEAD(&dev_priv->context_list);
4582         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4583         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4584         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4585         for (i = 0; i < I915_NUM_RINGS; i++)
4586                 init_ring_lists(&dev_priv->ring[i]);
4587         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4588                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4589         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4590                           i915_gem_retire_work_handler);
4591         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4592
4593         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4594         if (IS_GEN3(dev)) {
4595                 I915_WRITE(MI_ARB_STATE,
4596                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4597         }
4598
4599         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4600
4601         /* Old X drivers will take 0-2 for front, back, depth buffers */
4602         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4603                 dev_priv->fence_reg_start = 3;
4604
4605         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4606                 dev_priv->num_fence_regs = 32;
4607         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4608                 dev_priv->num_fence_regs = 16;
4609         else
4610                 dev_priv->num_fence_regs = 8;
4611
4612         /* Initialize fence registers to zero */
4613         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4614         i915_gem_restore_fences(dev);
4615
4616         i915_gem_detect_bit_6_swizzle(dev);
4617         init_waitqueue_head(&dev_priv->pending_flip_queue);
4618
4619         dev_priv->mm.interruptible = true;
4620
4621         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4622         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4623         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4624         register_shrinker(&dev_priv->mm.inactive_shrinker);
4625 }
4626
4627 /*
4628  * Create a physically contiguous memory object for this object
4629  * e.g. for cursor + overlay regs
4630  */
4631 static int i915_gem_init_phys_object(struct drm_device *dev,
4632                                      int id, int size, int align)
4633 {
4634         drm_i915_private_t *dev_priv = dev->dev_private;
4635         struct drm_i915_gem_phys_object *phys_obj;
4636         int ret;
4637
4638         if (dev_priv->mm.phys_objs[id - 1] || !size)
4639                 return 0;
4640
4641         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4642         if (!phys_obj)
4643                 return -ENOMEM;
4644
4645         phys_obj->id = id;
4646
4647         phys_obj->handle = drm_pci_alloc(dev, size, align);
4648         if (!phys_obj->handle) {
4649                 ret = -ENOMEM;
4650                 goto kfree_obj;
4651         }
4652 #ifdef CONFIG_X86
4653         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4654 #endif
4655
4656         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4657
4658         return 0;
4659 kfree_obj:
4660         kfree(phys_obj);
4661         return ret;
4662 }
4663
4664 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4665 {
4666         drm_i915_private_t *dev_priv = dev->dev_private;
4667         struct drm_i915_gem_phys_object *phys_obj;
4668
4669         if (!dev_priv->mm.phys_objs[id - 1])
4670                 return;
4671
4672         phys_obj = dev_priv->mm.phys_objs[id - 1];
4673         if (phys_obj->cur_obj) {
4674                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4675         }
4676
4677 #ifdef CONFIG_X86
4678         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679 #endif
4680         drm_pci_free(dev, phys_obj->handle);
4681         kfree(phys_obj);
4682         dev_priv->mm.phys_objs[id - 1] = NULL;
4683 }
4684
4685 void i915_gem_free_all_phys_object(struct drm_device *dev)
4686 {
4687         int i;
4688
4689         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4690                 i915_gem_free_phys_object(dev, i);
4691 }
4692
4693 void i915_gem_detach_phys_object(struct drm_device *dev,
4694                                  struct drm_i915_gem_object *obj)
4695 {
4696         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4697         char *vaddr;
4698         int i;
4699         int page_count;
4700
4701         if (!obj->phys_obj)
4702                 return;
4703         vaddr = obj->phys_obj->handle->vaddr;
4704
4705         page_count = obj->base.size / PAGE_SIZE;
4706         for (i = 0; i < page_count; i++) {
4707                 struct page *page = shmem_read_mapping_page(mapping, i);
4708                 if (!IS_ERR(page)) {
4709                         char *dst = kmap_atomic(page);
4710                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4711                         kunmap_atomic(dst);
4712
4713                         drm_clflush_pages(&page, 1);
4714
4715                         set_page_dirty(page);
4716                         mark_page_accessed(page);
4717                         page_cache_release(page);
4718                 }
4719         }
4720         i915_gem_chipset_flush(dev);
4721
4722         obj->phys_obj->cur_obj = NULL;
4723         obj->phys_obj = NULL;
4724 }
4725
4726 int
4727 i915_gem_attach_phys_object(struct drm_device *dev,
4728                             struct drm_i915_gem_object *obj,
4729                             int id,
4730                             int align)
4731 {
4732         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4733         drm_i915_private_t *dev_priv = dev->dev_private;
4734         int ret = 0;
4735         int page_count;
4736         int i;
4737
4738         if (id > I915_MAX_PHYS_OBJECT)
4739                 return -EINVAL;
4740
4741         if (obj->phys_obj) {
4742                 if (obj->phys_obj->id == id)
4743                         return 0;
4744                 i915_gem_detach_phys_object(dev, obj);
4745         }
4746
4747         /* create a new object */
4748         if (!dev_priv->mm.phys_objs[id - 1]) {
4749                 ret = i915_gem_init_phys_object(dev, id,
4750                                                 obj->base.size, align);
4751                 if (ret) {
4752                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4753                                   id, obj->base.size);
4754                         return ret;
4755                 }
4756         }
4757
4758         /* bind to the object */
4759         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4760         obj->phys_obj->cur_obj = obj;
4761
4762         page_count = obj->base.size / PAGE_SIZE;
4763
4764         for (i = 0; i < page_count; i++) {
4765                 struct page *page;
4766                 char *dst, *src;
4767
4768                 page = shmem_read_mapping_page(mapping, i);
4769                 if (IS_ERR(page))
4770                         return PTR_ERR(page);
4771
4772                 src = kmap_atomic(page);
4773                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4774                 memcpy(dst, src, PAGE_SIZE);
4775                 kunmap_atomic(src);
4776
4777                 mark_page_accessed(page);
4778                 page_cache_release(page);
4779         }
4780
4781         return 0;
4782 }
4783
4784 static int
4785 i915_gem_phys_pwrite(struct drm_device *dev,
4786                      struct drm_i915_gem_object *obj,
4787                      struct drm_i915_gem_pwrite *args,
4788                      struct drm_file *file_priv)
4789 {
4790         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4791         char __user *user_data = to_user_ptr(args->data_ptr);
4792
4793         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4794                 unsigned long unwritten;
4795
4796                 /* The physical object once assigned is fixed for the lifetime
4797                  * of the obj, so we can safely drop the lock and continue
4798                  * to access vaddr.
4799                  */
4800                 mutex_unlock(&dev->struct_mutex);
4801                 unwritten = copy_from_user(vaddr, user_data, args->size);
4802                 mutex_lock(&dev->struct_mutex);
4803                 if (unwritten)
4804                         return -EFAULT;
4805         }
4806
4807         i915_gem_chipset_flush(dev);
4808         return 0;
4809 }
4810
4811 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4812 {
4813         struct drm_i915_file_private *file_priv = file->driver_priv;
4814
4815         /* Clean up our request list when the client is going away, so that
4816          * later retire_requests won't dereference our soon-to-be-gone
4817          * file_priv.
4818          */
4819         spin_lock(&file_priv->mm.lock);
4820         while (!list_empty(&file_priv->mm.request_list)) {
4821                 struct drm_i915_gem_request *request;
4822
4823                 request = list_first_entry(&file_priv->mm.request_list,
4824                                            struct drm_i915_gem_request,
4825                                            client_list);
4826                 list_del(&request->client_list);
4827                 request->file_priv = NULL;
4828         }
4829         spin_unlock(&file_priv->mm.lock);
4830 }
4831
4832 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4833 {
4834         if (!mutex_is_locked(mutex))
4835                 return false;
4836
4837 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4838         return mutex->owner == task;
4839 #else
4840         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4841         return false;
4842 #endif
4843 }
4844
4845 static unsigned long
4846 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4847 {
4848         struct drm_i915_private *dev_priv =
4849                 container_of(shrinker,
4850                              struct drm_i915_private,
4851                              mm.inactive_shrinker);
4852         struct drm_device *dev = dev_priv->dev;
4853         struct drm_i915_gem_object *obj;
4854         bool unlock = true;
4855         unsigned long count;
4856
4857         if (!mutex_trylock(&dev->struct_mutex)) {
4858                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4859                         return 0;
4860
4861                 if (dev_priv->mm.shrinker_no_lock_stealing)
4862                         return 0;
4863
4864                 unlock = false;
4865         }
4866
4867         count = 0;
4868         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4869                 if (obj->pages_pin_count == 0)
4870                         count += obj->base.size >> PAGE_SHIFT;
4871
4872         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4873                 if (obj->active)
4874                         continue;
4875
4876                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4877                         count += obj->base.size >> PAGE_SHIFT;
4878         }
4879
4880         if (unlock)
4881                 mutex_unlock(&dev->struct_mutex);
4882         return count;
4883 }
4884
4885 /* All the new VM stuff */
4886 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4887                                   struct i915_address_space *vm)
4888 {
4889         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4890         struct i915_vma *vma;
4891
4892         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4893                 vm = &dev_priv->gtt.base;
4894
4895         BUG_ON(list_empty(&o->vma_list));
4896         list_for_each_entry(vma, &o->vma_list, vma_link) {
4897                 if (vma->vm == vm)
4898                         return vma->node.start;
4899
4900         }
4901         return -1;
4902 }
4903
4904 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4905                         struct i915_address_space *vm)
4906 {
4907         struct i915_vma *vma;
4908
4909         list_for_each_entry(vma, &o->vma_list, vma_link)
4910                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4911                         return true;
4912
4913         return false;
4914 }
4915
4916 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4917 {
4918         struct i915_vma *vma;
4919
4920         list_for_each_entry(vma, &o->vma_list, vma_link)
4921                 if (drm_mm_node_allocated(&vma->node))
4922                         return true;
4923
4924         return false;
4925 }
4926
4927 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4928                                 struct i915_address_space *vm)
4929 {
4930         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4931         struct i915_vma *vma;
4932
4933         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4934                 vm = &dev_priv->gtt.base;
4935
4936         BUG_ON(list_empty(&o->vma_list));
4937
4938         list_for_each_entry(vma, &o->vma_list, vma_link)
4939                 if (vma->vm == vm)
4940                         return vma->node.size;
4941
4942         return 0;
4943 }
4944
4945 static unsigned long
4946 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4947 {
4948         struct drm_i915_private *dev_priv =
4949                 container_of(shrinker,
4950                              struct drm_i915_private,
4951                              mm.inactive_shrinker);
4952         struct drm_device *dev = dev_priv->dev;
4953         int nr_to_scan = sc->nr_to_scan;
4954         unsigned long freed;
4955         bool unlock = true;
4956
4957         if (!mutex_trylock(&dev->struct_mutex)) {
4958                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4959                         return SHRINK_STOP;
4960
4961                 if (dev_priv->mm.shrinker_no_lock_stealing)
4962                         return SHRINK_STOP;
4963
4964                 unlock = false;
4965         }
4966
4967         freed = i915_gem_purge(dev_priv, nr_to_scan);
4968         if (freed < nr_to_scan)
4969                 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4970                                                         false);
4971         if (freed < nr_to_scan)
4972                 freed += i915_gem_shrink_all(dev_priv);
4973
4974         if (unlock)
4975                 mutex_unlock(&dev->struct_mutex);
4976         return freed;
4977 }