]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/i915_gem.c
4755ba41bfef92ac27e72f47287bed8f37e185cb
[~andy/linux] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret) {
1204                         mutex_unlock(&dev->struct_mutex);
1205                         return VM_FAULT_SIGBUS;
1206                 }
1207                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1208
1209                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1210                 if (ret) {
1211                         mutex_unlock(&dev->struct_mutex);
1212                         return VM_FAULT_SIGBUS;
1213                 }
1214         }
1215
1216         /* Need a new fence register? */
1217         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1218                 ret = i915_gem_object_get_fence_reg(obj);
1219                 if (ret) {
1220                         mutex_unlock(&dev->struct_mutex);
1221                         return VM_FAULT_SIGBUS;
1222                 }
1223         }
1224
1225         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1226                 page_offset;
1227
1228         /* Finally, remap it using the new GTT offset */
1229         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1230
1231         mutex_unlock(&dev->struct_mutex);
1232
1233         switch (ret) {
1234         case -ENOMEM:
1235         case -EAGAIN:
1236                 return VM_FAULT_OOM;
1237         case -EFAULT:
1238         case -EINVAL:
1239                 return VM_FAULT_SIGBUS;
1240         default:
1241                 return VM_FAULT_NOPAGE;
1242         }
1243 }
1244
1245 /**
1246  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1247  * @obj: obj in question
1248  *
1249  * GEM memory mapping works by handing back to userspace a fake mmap offset
1250  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1251  * up the object based on the offset and sets up the various memory mapping
1252  * structures.
1253  *
1254  * This routine allocates and attaches a fake offset for @obj.
1255  */
1256 static int
1257 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1258 {
1259         struct drm_device *dev = obj->dev;
1260         struct drm_gem_mm *mm = dev->mm_private;
1261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262         struct drm_map_list *list;
1263         struct drm_local_map *map;
1264         int ret = 0;
1265
1266         /* Set the object up for mmap'ing */
1267         list = &obj->map_list;
1268         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1269         if (!list->map)
1270                 return -ENOMEM;
1271
1272         map = list->map;
1273         map->type = _DRM_GEM;
1274         map->size = obj->size;
1275         map->handle = obj;
1276
1277         /* Get a DRM GEM mmap offset allocated... */
1278         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1279                                                     obj->size / PAGE_SIZE, 0, 0);
1280         if (!list->file_offset_node) {
1281                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1282                 ret = -ENOMEM;
1283                 goto out_free_list;
1284         }
1285
1286         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1287                                                   obj->size / PAGE_SIZE, 0);
1288         if (!list->file_offset_node) {
1289                 ret = -ENOMEM;
1290                 goto out_free_list;
1291         }
1292
1293         list->hash.key = list->file_offset_node->start;
1294         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1295                 DRM_ERROR("failed to add to map hash\n");
1296                 goto out_free_mm;
1297         }
1298
1299         /* By now we should be all set, any drm_mmap request on the offset
1300          * below will get to our mmap & fault handler */
1301         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1302
1303         return 0;
1304
1305 out_free_mm:
1306         drm_mm_put_block(list->file_offset_node);
1307 out_free_list:
1308         kfree(list->map);
1309
1310         return ret;
1311 }
1312
1313 /**
1314  * i915_gem_release_mmap - remove physical page mappings
1315  * @obj: obj in question
1316  *
1317  * Preserve the reservation of the mmaping with the DRM core code, but
1318  * relinquish ownership of the pages back to the system.
1319  *
1320  * It is vital that we remove the page mapping if we have mapped a tiled
1321  * object through the GTT and then lose the fence register due to
1322  * resource pressure. Similarly if the object has been moved out of the
1323  * aperture, than pages mapped into userspace must be revoked. Removing the
1324  * mapping will then trigger a page fault on the next user access, allowing
1325  * fixup by i915_gem_fault().
1326  */
1327 void
1328 i915_gem_release_mmap(struct drm_gem_object *obj)
1329 {
1330         struct drm_device *dev = obj->dev;
1331         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1332
1333         if (dev->dev_mapping)
1334                 unmap_mapping_range(dev->dev_mapping,
1335                                     obj_priv->mmap_offset, obj->size, 1);
1336 }
1337
1338 static void
1339 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1340 {
1341         struct drm_device *dev = obj->dev;
1342         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1343         struct drm_gem_mm *mm = dev->mm_private;
1344         struct drm_map_list *list;
1345
1346         list = &obj->map_list;
1347         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1348
1349         if (list->file_offset_node) {
1350                 drm_mm_put_block(list->file_offset_node);
1351                 list->file_offset_node = NULL;
1352         }
1353
1354         if (list->map) {
1355                 kfree(list->map);
1356                 list->map = NULL;
1357         }
1358
1359         obj_priv->mmap_offset = 0;
1360 }
1361
1362 /**
1363  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364  * @obj: object to check
1365  *
1366  * Return the required GTT alignment for an object, taking into account
1367  * potential fence register mapping if needed.
1368  */
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1371 {
1372         struct drm_device *dev = obj->dev;
1373         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1374         int start, i;
1375
1376         /*
1377          * Minimum alignment is 4k (GTT page size), but might be greater
1378          * if a fence register is needed for the object.
1379          */
1380         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1381                 return 4096;
1382
1383         /*
1384          * Previous chips need to be aligned to the size of the smallest
1385          * fence register that can contain the object.
1386          */
1387         if (IS_I9XX(dev))
1388                 start = 1024*1024;
1389         else
1390                 start = 512*1024;
1391
1392         for (i = start; i < obj->size; i <<= 1)
1393                 ;
1394
1395         return i;
1396 }
1397
1398 /**
1399  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1400  * @dev: DRM device
1401  * @data: GTT mapping ioctl data
1402  * @file_priv: GEM object info
1403  *
1404  * Simply returns the fake offset to userspace so it can mmap it.
1405  * The mmap call will end up in drm_gem_mmap(), which will set things
1406  * up so we can get faults in the handler above.
1407  *
1408  * The fault handler will take care of binding the object into the GTT
1409  * (since it may have been evicted to make room for something), allocating
1410  * a fence register, and mapping the appropriate aperture address into
1411  * userspace.
1412  */
1413 int
1414 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1415                         struct drm_file *file_priv)
1416 {
1417         struct drm_i915_gem_mmap_gtt *args = data;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         struct drm_gem_object *obj;
1420         struct drm_i915_gem_object *obj_priv;
1421         int ret;
1422
1423         if (!(dev->driver->driver_features & DRIVER_GEM))
1424                 return -ENODEV;
1425
1426         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1427         if (obj == NULL)
1428                 return -EBADF;
1429
1430         mutex_lock(&dev->struct_mutex);
1431
1432         obj_priv = obj->driver_private;
1433
1434         if (obj_priv->madv != I915_MADV_WILLNEED) {
1435                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1436                 drm_gem_object_unreference(obj);
1437                 mutex_unlock(&dev->struct_mutex);
1438                 return -EINVAL;
1439         }
1440
1441
1442         if (!obj_priv->mmap_offset) {
1443                 ret = i915_gem_create_mmap_offset(obj);
1444                 if (ret) {
1445                         drm_gem_object_unreference(obj);
1446                         mutex_unlock(&dev->struct_mutex);
1447                         return ret;
1448                 }
1449         }
1450
1451         args->offset = obj_priv->mmap_offset;
1452
1453         /*
1454          * Pull it into the GTT so that we have a page list (makes the
1455          * initial fault faster and any subsequent flushing possible).
1456          */
1457         if (!obj_priv->agp_mem) {
1458                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1459                 if (ret) {
1460                         drm_gem_object_unreference(obj);
1461                         mutex_unlock(&dev->struct_mutex);
1462                         return ret;
1463                 }
1464                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1465         }
1466
1467         drm_gem_object_unreference(obj);
1468         mutex_unlock(&dev->struct_mutex);
1469
1470         return 0;
1471 }
1472
1473 void
1474 i915_gem_object_put_pages(struct drm_gem_object *obj)
1475 {
1476         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1477         int page_count = obj->size / PAGE_SIZE;
1478         int i;
1479
1480         BUG_ON(obj_priv->pages_refcount == 0);
1481         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1482
1483         if (--obj_priv->pages_refcount != 0)
1484                 return;
1485
1486         if (obj_priv->tiling_mode != I915_TILING_NONE)
1487                 i915_gem_object_save_bit_17_swizzle(obj);
1488
1489         if (obj_priv->madv == I915_MADV_DONTNEED)
1490                 obj_priv->dirty = 0;
1491
1492         for (i = 0; i < page_count; i++) {
1493                 if (obj_priv->pages[i] == NULL)
1494                         break;
1495
1496                 if (obj_priv->dirty)
1497                         set_page_dirty(obj_priv->pages[i]);
1498
1499                 if (obj_priv->madv == I915_MADV_WILLNEED)
1500                         mark_page_accessed(obj_priv->pages[i]);
1501
1502                 page_cache_release(obj_priv->pages[i]);
1503         }
1504         obj_priv->dirty = 0;
1505
1506         drm_free_large(obj_priv->pages);
1507         obj_priv->pages = NULL;
1508 }
1509
1510 static void
1511 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1512 {
1513         struct drm_device *dev = obj->dev;
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1516
1517         /* Add a reference if we're newly entering the active list. */
1518         if (!obj_priv->active) {
1519                 drm_gem_object_reference(obj);
1520                 obj_priv->active = 1;
1521         }
1522         /* Move from whatever list we were on to the tail of execution. */
1523         spin_lock(&dev_priv->mm.active_list_lock);
1524         list_move_tail(&obj_priv->list,
1525                        &dev_priv->mm.active_list);
1526         spin_unlock(&dev_priv->mm.active_list_lock);
1527         obj_priv->last_rendering_seqno = seqno;
1528 }
1529
1530 static void
1531 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1532 {
1533         struct drm_device *dev = obj->dev;
1534         drm_i915_private_t *dev_priv = dev->dev_private;
1535         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1536
1537         BUG_ON(!obj_priv->active);
1538         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1539         obj_priv->last_rendering_seqno = 0;
1540 }
1541
1542 /* Immediately discard the backing storage */
1543 static void
1544 i915_gem_object_truncate(struct drm_gem_object *obj)
1545 {
1546         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1547         struct inode *inode;
1548
1549         inode = obj->filp->f_path.dentry->d_inode;
1550         if (inode->i_op->truncate)
1551                 inode->i_op->truncate (inode);
1552
1553         obj_priv->madv = __I915_MADV_PURGED;
1554 }
1555
1556 static inline int
1557 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1558 {
1559         return obj_priv->madv == I915_MADV_DONTNEED;
1560 }
1561
1562 static void
1563 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1564 {
1565         struct drm_device *dev = obj->dev;
1566         drm_i915_private_t *dev_priv = dev->dev_private;
1567         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1568
1569         i915_verify_inactive(dev, __FILE__, __LINE__);
1570         if (obj_priv->pin_count != 0)
1571                 list_del_init(&obj_priv->list);
1572         else
1573                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1574
1575         obj_priv->last_rendering_seqno = 0;
1576         if (obj_priv->active) {
1577                 obj_priv->active = 0;
1578                 drm_gem_object_unreference(obj);
1579         }
1580         i915_verify_inactive(dev, __FILE__, __LINE__);
1581 }
1582
1583 /**
1584  * Creates a new sequence number, emitting a write of it to the status page
1585  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1586  *
1587  * Must be called with struct_lock held.
1588  *
1589  * Returned sequence numbers are nonzero on success.
1590  */
1591 static uint32_t
1592 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1593                  uint32_t flush_domains)
1594 {
1595         drm_i915_private_t *dev_priv = dev->dev_private;
1596         struct drm_i915_file_private *i915_file_priv = NULL;
1597         struct drm_i915_gem_request *request;
1598         uint32_t seqno;
1599         int was_empty;
1600         RING_LOCALS;
1601
1602         if (file_priv != NULL)
1603                 i915_file_priv = file_priv->driver_priv;
1604
1605         request = kzalloc(sizeof(*request), GFP_KERNEL);
1606         if (request == NULL)
1607                 return 0;
1608
1609         /* Grab the seqno we're going to make this request be, and bump the
1610          * next (skipping 0 so it can be the reserved no-seqno value).
1611          */
1612         seqno = dev_priv->mm.next_gem_seqno;
1613         dev_priv->mm.next_gem_seqno++;
1614         if (dev_priv->mm.next_gem_seqno == 0)
1615                 dev_priv->mm.next_gem_seqno++;
1616
1617         BEGIN_LP_RING(4);
1618         OUT_RING(MI_STORE_DWORD_INDEX);
1619         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1620         OUT_RING(seqno);
1621
1622         OUT_RING(MI_USER_INTERRUPT);
1623         ADVANCE_LP_RING();
1624
1625         DRM_DEBUG("%d\n", seqno);
1626
1627         request->seqno = seqno;
1628         request->emitted_jiffies = jiffies;
1629         was_empty = list_empty(&dev_priv->mm.request_list);
1630         list_add_tail(&request->list, &dev_priv->mm.request_list);
1631         if (i915_file_priv) {
1632                 list_add_tail(&request->client_list,
1633                               &i915_file_priv->mm.request_list);
1634         } else {
1635                 INIT_LIST_HEAD(&request->client_list);
1636         }
1637
1638         /* Associate any objects on the flushing list matching the write
1639          * domain we're flushing with our flush.
1640          */
1641         if (flush_domains != 0) {
1642                 struct drm_i915_gem_object *obj_priv, *next;
1643
1644                 list_for_each_entry_safe(obj_priv, next,
1645                                          &dev_priv->mm.flushing_list, list) {
1646                         struct drm_gem_object *obj = obj_priv->obj;
1647
1648                         if ((obj->write_domain & flush_domains) ==
1649                             obj->write_domain) {
1650                                 uint32_t old_write_domain = obj->write_domain;
1651
1652                                 obj->write_domain = 0;
1653                                 i915_gem_object_move_to_active(obj, seqno);
1654
1655                                 trace_i915_gem_object_change_domain(obj,
1656                                                                     obj->read_domains,
1657                                                                     old_write_domain);
1658                         }
1659                 }
1660
1661         }
1662
1663         if (!dev_priv->mm.suspended) {
1664                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1665                 if (was_empty)
1666                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1667         }
1668         return seqno;
1669 }
1670
1671 /**
1672  * Command execution barrier
1673  *
1674  * Ensures that all commands in the ring are finished
1675  * before signalling the CPU
1676  */
1677 static uint32_t
1678 i915_retire_commands(struct drm_device *dev)
1679 {
1680         drm_i915_private_t *dev_priv = dev->dev_private;
1681         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1682         uint32_t flush_domains = 0;
1683         RING_LOCALS;
1684
1685         /* The sampler always gets flushed on i965 (sigh) */
1686         if (IS_I965G(dev))
1687                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1688         BEGIN_LP_RING(2);
1689         OUT_RING(cmd);
1690         OUT_RING(0); /* noop */
1691         ADVANCE_LP_RING();
1692         return flush_domains;
1693 }
1694
1695 /**
1696  * Moves buffers associated only with the given active seqno from the active
1697  * to inactive list, potentially freeing them.
1698  */
1699 static void
1700 i915_gem_retire_request(struct drm_device *dev,
1701                         struct drm_i915_gem_request *request)
1702 {
1703         drm_i915_private_t *dev_priv = dev->dev_private;
1704
1705         trace_i915_gem_request_retire(dev, request->seqno);
1706
1707         /* Move any buffers on the active list that are no longer referenced
1708          * by the ringbuffer to the flushing/inactive lists as appropriate.
1709          */
1710         spin_lock(&dev_priv->mm.active_list_lock);
1711         while (!list_empty(&dev_priv->mm.active_list)) {
1712                 struct drm_gem_object *obj;
1713                 struct drm_i915_gem_object *obj_priv;
1714
1715                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1716                                             struct drm_i915_gem_object,
1717                                             list);
1718                 obj = obj_priv->obj;
1719
1720                 /* If the seqno being retired doesn't match the oldest in the
1721                  * list, then the oldest in the list must still be newer than
1722                  * this seqno.
1723                  */
1724                 if (obj_priv->last_rendering_seqno != request->seqno)
1725                         goto out;
1726
1727 #if WATCH_LRU
1728                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1729                          __func__, request->seqno, obj);
1730 #endif
1731
1732                 if (obj->write_domain != 0)
1733                         i915_gem_object_move_to_flushing(obj);
1734                 else {
1735                         /* Take a reference on the object so it won't be
1736                          * freed while the spinlock is held.  The list
1737                          * protection for this spinlock is safe when breaking
1738                          * the lock like this since the next thing we do
1739                          * is just get the head of the list again.
1740                          */
1741                         drm_gem_object_reference(obj);
1742                         i915_gem_object_move_to_inactive(obj);
1743                         spin_unlock(&dev_priv->mm.active_list_lock);
1744                         drm_gem_object_unreference(obj);
1745                         spin_lock(&dev_priv->mm.active_list_lock);
1746                 }
1747         }
1748 out:
1749         spin_unlock(&dev_priv->mm.active_list_lock);
1750 }
1751
1752 /**
1753  * Returns true if seq1 is later than seq2.
1754  */
1755 bool
1756 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1757 {
1758         return (int32_t)(seq1 - seq2) >= 0;
1759 }
1760
1761 uint32_t
1762 i915_get_gem_seqno(struct drm_device *dev)
1763 {
1764         drm_i915_private_t *dev_priv = dev->dev_private;
1765
1766         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1767 }
1768
1769 /**
1770  * This function clears the request list as sequence numbers are passed.
1771  */
1772 void
1773 i915_gem_retire_requests(struct drm_device *dev)
1774 {
1775         drm_i915_private_t *dev_priv = dev->dev_private;
1776         uint32_t seqno;
1777
1778         if (!dev_priv->hw_status_page)
1779                 return;
1780
1781         seqno = i915_get_gem_seqno(dev);
1782
1783         while (!list_empty(&dev_priv->mm.request_list)) {
1784                 struct drm_i915_gem_request *request;
1785                 uint32_t retiring_seqno;
1786
1787                 request = list_first_entry(&dev_priv->mm.request_list,
1788                                            struct drm_i915_gem_request,
1789                                            list);
1790                 retiring_seqno = request->seqno;
1791
1792                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1793                     atomic_read(&dev_priv->mm.wedged)) {
1794                         i915_gem_retire_request(dev, request);
1795
1796                         list_del(&request->list);
1797                         list_del(&request->client_list);
1798                         kfree(request);
1799                 } else
1800                         break;
1801         }
1802 }
1803
1804 void
1805 i915_gem_retire_work_handler(struct work_struct *work)
1806 {
1807         drm_i915_private_t *dev_priv;
1808         struct drm_device *dev;
1809
1810         dev_priv = container_of(work, drm_i915_private_t,
1811                                 mm.retire_work.work);
1812         dev = dev_priv->dev;
1813
1814         mutex_lock(&dev->struct_mutex);
1815         i915_gem_retire_requests(dev);
1816         if (!dev_priv->mm.suspended &&
1817             !list_empty(&dev_priv->mm.request_list))
1818                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1819         mutex_unlock(&dev->struct_mutex);
1820 }
1821
1822 /**
1823  * Waits for a sequence number to be signaled, and cleans up the
1824  * request and object lists appropriately for that event.
1825  */
1826 static int
1827 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1828 {
1829         drm_i915_private_t *dev_priv = dev->dev_private;
1830         u32 ier;
1831         int ret = 0;
1832
1833         BUG_ON(seqno == 0);
1834
1835         if (atomic_read(&dev_priv->mm.wedged))
1836                 return -EIO;
1837
1838         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1839                 if (IS_IGDNG(dev))
1840                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1841                 else
1842                         ier = I915_READ(IER);
1843                 if (!ier) {
1844                         DRM_ERROR("something (likely vbetool) disabled "
1845                                   "interrupts, re-enabling\n");
1846                         i915_driver_irq_preinstall(dev);
1847                         i915_driver_irq_postinstall(dev);
1848                 }
1849
1850                 trace_i915_gem_request_wait_begin(dev, seqno);
1851
1852                 dev_priv->mm.waiting_gem_seqno = seqno;
1853                 i915_user_irq_get(dev);
1854                 ret = wait_event_interruptible(dev_priv->irq_queue,
1855                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1856                                                                  seqno) ||
1857                                                atomic_read(&dev_priv->mm.wedged));
1858                 i915_user_irq_put(dev);
1859                 dev_priv->mm.waiting_gem_seqno = 0;
1860
1861                 trace_i915_gem_request_wait_end(dev, seqno);
1862         }
1863         if (atomic_read(&dev_priv->mm.wedged))
1864                 ret = -EIO;
1865
1866         if (ret && ret != -ERESTARTSYS)
1867                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1868                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1869
1870         /* Directly dispatch request retiring.  While we have the work queue
1871          * to handle this, the waiter on a request often wants an associated
1872          * buffer to have made it to the inactive list, and we would need
1873          * a separate wait queue to handle that.
1874          */
1875         if (ret == 0)
1876                 i915_gem_retire_requests(dev);
1877
1878         return ret;
1879 }
1880
1881 static void
1882 i915_gem_flush(struct drm_device *dev,
1883                uint32_t invalidate_domains,
1884                uint32_t flush_domains)
1885 {
1886         drm_i915_private_t *dev_priv = dev->dev_private;
1887         uint32_t cmd;
1888         RING_LOCALS;
1889
1890 #if WATCH_EXEC
1891         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1892                   invalidate_domains, flush_domains);
1893 #endif
1894         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1895                                      invalidate_domains, flush_domains);
1896
1897         if (flush_domains & I915_GEM_DOMAIN_CPU)
1898                 drm_agp_chipset_flush(dev);
1899
1900         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1901                 /*
1902                  * read/write caches:
1903                  *
1904                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1905                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1906                  * also flushed at 2d versus 3d pipeline switches.
1907                  *
1908                  * read-only caches:
1909                  *
1910                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1911                  * MI_READ_FLUSH is set, and is always flushed on 965.
1912                  *
1913                  * I915_GEM_DOMAIN_COMMAND may not exist?
1914                  *
1915                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1916                  * invalidated when MI_EXE_FLUSH is set.
1917                  *
1918                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1919                  * invalidated with every MI_FLUSH.
1920                  *
1921                  * TLBs:
1922                  *
1923                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1924                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1925                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1926                  * are flushed at any MI_FLUSH.
1927                  */
1928
1929                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1930                 if ((invalidate_domains|flush_domains) &
1931                     I915_GEM_DOMAIN_RENDER)
1932                         cmd &= ~MI_NO_WRITE_FLUSH;
1933                 if (!IS_I965G(dev)) {
1934                         /*
1935                          * On the 965, the sampler cache always gets flushed
1936                          * and this bit is reserved.
1937                          */
1938                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1939                                 cmd |= MI_READ_FLUSH;
1940                 }
1941                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1942                         cmd |= MI_EXE_FLUSH;
1943
1944 #if WATCH_EXEC
1945                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1946 #endif
1947                 BEGIN_LP_RING(2);
1948                 OUT_RING(cmd);
1949                 OUT_RING(0); /* noop */
1950                 ADVANCE_LP_RING();
1951         }
1952 }
1953
1954 /**
1955  * Ensures that all rendering to the object has completed and the object is
1956  * safe to unbind from the GTT or access from the CPU.
1957  */
1958 static int
1959 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1960 {
1961         struct drm_device *dev = obj->dev;
1962         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1963         int ret;
1964
1965         /* This function only exists to support waiting for existing rendering,
1966          * not for emitting required flushes.
1967          */
1968         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1969
1970         /* If there is rendering queued on the buffer being evicted, wait for
1971          * it.
1972          */
1973         if (obj_priv->active) {
1974 #if WATCH_BUF
1975                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1976                           __func__, obj, obj_priv->last_rendering_seqno);
1977 #endif
1978                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1979                 if (ret != 0)
1980                         return ret;
1981         }
1982
1983         return 0;
1984 }
1985
1986 /**
1987  * Unbinds an object from the GTT aperture.
1988  */
1989 int
1990 i915_gem_object_unbind(struct drm_gem_object *obj)
1991 {
1992         struct drm_device *dev = obj->dev;
1993         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1994         int ret = 0;
1995
1996 #if WATCH_BUF
1997         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1998         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1999 #endif
2000         if (obj_priv->gtt_space == NULL)
2001                 return 0;
2002
2003         if (obj_priv->pin_count != 0) {
2004                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2005                 return -EINVAL;
2006         }
2007
2008         /* blow away mappings if mapped through GTT */
2009         i915_gem_release_mmap(obj);
2010
2011         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2012                 i915_gem_clear_fence_reg(obj);
2013
2014         /* Move the object to the CPU domain to ensure that
2015          * any possible CPU writes while it's not in the GTT
2016          * are flushed when we go to remap it. This will
2017          * also ensure that all pending GPU writes are finished
2018          * before we unbind.
2019          */
2020         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2021         if (ret) {
2022                 if (ret != -ERESTARTSYS)
2023                         DRM_ERROR("set_domain failed: %d\n", ret);
2024                 return ret;
2025         }
2026
2027         BUG_ON(obj_priv->active);
2028
2029         if (obj_priv->agp_mem != NULL) {
2030                 drm_unbind_agp(obj_priv->agp_mem);
2031                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2032                 obj_priv->agp_mem = NULL;
2033         }
2034
2035         i915_gem_object_put_pages(obj);
2036         BUG_ON(obj_priv->pages_refcount);
2037
2038         if (obj_priv->gtt_space) {
2039                 atomic_dec(&dev->gtt_count);
2040                 atomic_sub(obj->size, &dev->gtt_memory);
2041
2042                 drm_mm_put_block(obj_priv->gtt_space);
2043                 obj_priv->gtt_space = NULL;
2044         }
2045
2046         /* Remove ourselves from the LRU list if present. */
2047         if (!list_empty(&obj_priv->list))
2048                 list_del_init(&obj_priv->list);
2049
2050         if (i915_gem_object_is_purgeable(obj_priv))
2051                 i915_gem_object_truncate(obj);
2052
2053         trace_i915_gem_object_unbind(obj);
2054
2055         return 0;
2056 }
2057
2058 static struct drm_gem_object *
2059 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2060 {
2061         drm_i915_private_t *dev_priv = dev->dev_private;
2062         struct drm_i915_gem_object *obj_priv;
2063         struct drm_gem_object *best = NULL;
2064         struct drm_gem_object *first = NULL;
2065
2066         /* Try to find the smallest clean object */
2067         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2068                 struct drm_gem_object *obj = obj_priv->obj;
2069                 if (obj->size >= min_size) {
2070                         if ((!obj_priv->dirty ||
2071                              i915_gem_object_is_purgeable(obj_priv)) &&
2072                             (!best || obj->size < best->size)) {
2073                                 best = obj;
2074                                 if (best->size == min_size)
2075                                         return best;
2076                         }
2077                         if (!first)
2078                             first = obj;
2079                 }
2080         }
2081
2082         return best ? best : first;
2083 }
2084
2085 static int
2086 i915_gem_evict_everything(struct drm_device *dev)
2087 {
2088         drm_i915_private_t *dev_priv = dev->dev_private;
2089         uint32_t seqno;
2090         int ret;
2091         bool lists_empty;
2092
2093         spin_lock(&dev_priv->mm.active_list_lock);
2094         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2095                        list_empty(&dev_priv->mm.flushing_list) &&
2096                        list_empty(&dev_priv->mm.active_list));
2097         spin_unlock(&dev_priv->mm.active_list_lock);
2098
2099         if (lists_empty)
2100                 return -ENOSPC;
2101
2102         /* Flush everything (on to the inactive lists) and evict */
2103         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2104         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2105         if (seqno == 0)
2106                 return -ENOMEM;
2107
2108         ret = i915_wait_request(dev, seqno);
2109         if (ret)
2110                 return ret;
2111
2112         ret = i915_gem_evict_from_inactive_list(dev);
2113         if (ret)
2114                 return ret;
2115
2116         spin_lock(&dev_priv->mm.active_list_lock);
2117         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2118                        list_empty(&dev_priv->mm.flushing_list) &&
2119                        list_empty(&dev_priv->mm.active_list));
2120         spin_unlock(&dev_priv->mm.active_list_lock);
2121         BUG_ON(!lists_empty);
2122
2123         return 0;
2124 }
2125
2126 static int
2127 i915_gem_evict_something(struct drm_device *dev, int min_size)
2128 {
2129         drm_i915_private_t *dev_priv = dev->dev_private;
2130         struct drm_gem_object *obj;
2131         int ret;
2132
2133         for (;;) {
2134                 i915_gem_retire_requests(dev);
2135
2136                 /* If there's an inactive buffer available now, grab it
2137                  * and be done.
2138                  */
2139                 obj = i915_gem_find_inactive_object(dev, min_size);
2140                 if (obj) {
2141                         struct drm_i915_gem_object *obj_priv;
2142
2143 #if WATCH_LRU
2144                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2145 #endif
2146                         obj_priv = obj->driver_private;
2147                         BUG_ON(obj_priv->pin_count != 0);
2148                         BUG_ON(obj_priv->active);
2149
2150                         /* Wait on the rendering and unbind the buffer. */
2151                         return i915_gem_object_unbind(obj);
2152                 }
2153
2154                 /* If we didn't get anything, but the ring is still processing
2155                  * things, wait for the next to finish and hopefully leave us
2156                  * a buffer to evict.
2157                  */
2158                 if (!list_empty(&dev_priv->mm.request_list)) {
2159                         struct drm_i915_gem_request *request;
2160
2161                         request = list_first_entry(&dev_priv->mm.request_list,
2162                                                    struct drm_i915_gem_request,
2163                                                    list);
2164
2165                         ret = i915_wait_request(dev, request->seqno);
2166                         if (ret)
2167                                 return ret;
2168
2169                         continue;
2170                 }
2171
2172                 /* If we didn't have anything on the request list but there
2173                  * are buffers awaiting a flush, emit one and try again.
2174                  * When we wait on it, those buffers waiting for that flush
2175                  * will get moved to inactive.
2176                  */
2177                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2178                         struct drm_i915_gem_object *obj_priv;
2179
2180                         /* Find an object that we can immediately reuse */
2181                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2182                                 obj = obj_priv->obj;
2183                                 if (obj->size >= min_size)
2184                                         break;
2185
2186                                 obj = NULL;
2187                         }
2188
2189                         if (obj != NULL) {
2190                                 uint32_t seqno;
2191
2192                                 i915_gem_flush(dev,
2193                                                obj->write_domain,
2194                                                obj->write_domain);
2195                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2196                                 if (seqno == 0)
2197                                         return -ENOMEM;
2198
2199                                 ret = i915_wait_request(dev, seqno);
2200                                 if (ret)
2201                                         return ret;
2202
2203                                 continue;
2204                         }
2205                 }
2206
2207                 /* If we didn't do any of the above, there's no single buffer
2208                  * large enough to swap out for the new one, so just evict
2209                  * everything and start again. (This should be rare.)
2210                  */
2211                 if (!list_empty (&dev_priv->mm.inactive_list))
2212                         return i915_gem_evict_from_inactive_list(dev);
2213                 else
2214                         return i915_gem_evict_everything(dev);
2215         }
2216 }
2217
2218 int
2219 i915_gem_object_get_pages(struct drm_gem_object *obj)
2220 {
2221         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2222         int page_count, i;
2223         struct address_space *mapping;
2224         struct inode *inode;
2225         struct page *page;
2226         int ret;
2227
2228         if (obj_priv->pages_refcount++ != 0)
2229                 return 0;
2230
2231         /* Get the list of pages out of our struct file.  They'll be pinned
2232          * at this point until we release them.
2233          */
2234         page_count = obj->size / PAGE_SIZE;
2235         BUG_ON(obj_priv->pages != NULL);
2236         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2237         if (obj_priv->pages == NULL) {
2238                 obj_priv->pages_refcount--;
2239                 return -ENOMEM;
2240         }
2241
2242         inode = obj->filp->f_path.dentry->d_inode;
2243         mapping = inode->i_mapping;
2244         for (i = 0; i < page_count; i++) {
2245                 page = read_mapping_page(mapping, i, NULL);
2246                 if (IS_ERR(page)) {
2247                         ret = PTR_ERR(page);
2248                         i915_gem_object_put_pages(obj);
2249                         return ret;
2250                 }
2251                 obj_priv->pages[i] = page;
2252         }
2253
2254         if (obj_priv->tiling_mode != I915_TILING_NONE)
2255                 i915_gem_object_do_bit_17_swizzle(obj);
2256
2257         return 0;
2258 }
2259
2260 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2261 {
2262         struct drm_gem_object *obj = reg->obj;
2263         struct drm_device *dev = obj->dev;
2264         drm_i915_private_t *dev_priv = dev->dev_private;
2265         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2266         int regnum = obj_priv->fence_reg;
2267         uint64_t val;
2268
2269         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2270                     0xfffff000) << 32;
2271         val |= obj_priv->gtt_offset & 0xfffff000;
2272         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2273         if (obj_priv->tiling_mode == I915_TILING_Y)
2274                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2275         val |= I965_FENCE_REG_VALID;
2276
2277         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2278 }
2279
2280 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2281 {
2282         struct drm_gem_object *obj = reg->obj;
2283         struct drm_device *dev = obj->dev;
2284         drm_i915_private_t *dev_priv = dev->dev_private;
2285         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2286         int regnum = obj_priv->fence_reg;
2287         int tile_width;
2288         uint32_t fence_reg, val;
2289         uint32_t pitch_val;
2290
2291         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2292             (obj_priv->gtt_offset & (obj->size - 1))) {
2293                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2294                      __func__, obj_priv->gtt_offset, obj->size);
2295                 return;
2296         }
2297
2298         if (obj_priv->tiling_mode == I915_TILING_Y &&
2299             HAS_128_BYTE_Y_TILING(dev))
2300                 tile_width = 128;
2301         else
2302                 tile_width = 512;
2303
2304         /* Note: pitch better be a power of two tile widths */
2305         pitch_val = obj_priv->stride / tile_width;
2306         pitch_val = ffs(pitch_val) - 1;
2307
2308         val = obj_priv->gtt_offset;
2309         if (obj_priv->tiling_mode == I915_TILING_Y)
2310                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2311         val |= I915_FENCE_SIZE_BITS(obj->size);
2312         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2313         val |= I830_FENCE_REG_VALID;
2314
2315         if (regnum < 8)
2316                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2317         else
2318                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2319         I915_WRITE(fence_reg, val);
2320 }
2321
2322 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2323 {
2324         struct drm_gem_object *obj = reg->obj;
2325         struct drm_device *dev = obj->dev;
2326         drm_i915_private_t *dev_priv = dev->dev_private;
2327         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2328         int regnum = obj_priv->fence_reg;
2329         uint32_t val;
2330         uint32_t pitch_val;
2331         uint32_t fence_size_bits;
2332
2333         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2334             (obj_priv->gtt_offset & (obj->size - 1))) {
2335                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2336                      __func__, obj_priv->gtt_offset);
2337                 return;
2338         }
2339
2340         pitch_val = obj_priv->stride / 128;
2341         pitch_val = ffs(pitch_val) - 1;
2342         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2343
2344         val = obj_priv->gtt_offset;
2345         if (obj_priv->tiling_mode == I915_TILING_Y)
2346                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2347         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2348         WARN_ON(fence_size_bits & ~0x00000f00);
2349         val |= fence_size_bits;
2350         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2351         val |= I830_FENCE_REG_VALID;
2352
2353         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2354 }
2355
2356 /**
2357  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2358  * @obj: object to map through a fence reg
2359  *
2360  * When mapping objects through the GTT, userspace wants to be able to write
2361  * to them without having to worry about swizzling if the object is tiled.
2362  *
2363  * This function walks the fence regs looking for a free one for @obj,
2364  * stealing one if it can't find any.
2365  *
2366  * It then sets up the reg based on the object's properties: address, pitch
2367  * and tiling format.
2368  */
2369 int
2370 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2371 {
2372         struct drm_device *dev = obj->dev;
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2375         struct drm_i915_fence_reg *reg = NULL;
2376         struct drm_i915_gem_object *old_obj_priv = NULL;
2377         int i, ret, avail;
2378
2379         /* Just update our place in the LRU if our fence is getting used. */
2380         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2381                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2382                 return 0;
2383         }
2384
2385         switch (obj_priv->tiling_mode) {
2386         case I915_TILING_NONE:
2387                 WARN(1, "allocating a fence for non-tiled object?\n");
2388                 break;
2389         case I915_TILING_X:
2390                 if (!obj_priv->stride)
2391                         return -EINVAL;
2392                 WARN((obj_priv->stride & (512 - 1)),
2393                      "object 0x%08x is X tiled but has non-512B pitch\n",
2394                      obj_priv->gtt_offset);
2395                 break;
2396         case I915_TILING_Y:
2397                 if (!obj_priv->stride)
2398                         return -EINVAL;
2399                 WARN((obj_priv->stride & (128 - 1)),
2400                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2401                      obj_priv->gtt_offset);
2402                 break;
2403         }
2404
2405         /* First try to find a free reg */
2406         avail = 0;
2407         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2408                 reg = &dev_priv->fence_regs[i];
2409                 if (!reg->obj)
2410                         break;
2411
2412                 old_obj_priv = reg->obj->driver_private;
2413                 if (!old_obj_priv->pin_count)
2414                     avail++;
2415         }
2416
2417         /* None available, try to steal one or wait for a user to finish */
2418         if (i == dev_priv->num_fence_regs) {
2419                 struct drm_gem_object *old_obj = NULL;
2420
2421                 if (avail == 0)
2422                         return -ENOSPC;
2423
2424                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2425                                     fence_list) {
2426                         old_obj = old_obj_priv->obj;
2427
2428                         if (old_obj_priv->pin_count)
2429                                 continue;
2430
2431                         /* Take a reference, as otherwise the wait_rendering
2432                          * below may cause the object to get freed out from
2433                          * under us.
2434                          */
2435                         drm_gem_object_reference(old_obj);
2436
2437                         /* i915 uses fences for GPU access to tiled buffers */
2438                         if (IS_I965G(dev) || !old_obj_priv->active)
2439                                 break;
2440
2441                         /* This brings the object to the head of the LRU if it
2442                          * had been written to.  The only way this should
2443                          * result in us waiting longer than the expected
2444                          * optimal amount of time is if there was a
2445                          * fence-using buffer later that was read-only.
2446                          */
2447                         i915_gem_object_flush_gpu_write_domain(old_obj);
2448                         ret = i915_gem_object_wait_rendering(old_obj);
2449                         if (ret != 0) {
2450                                 drm_gem_object_unreference(old_obj);
2451                                 return ret;
2452                         }
2453
2454                         break;
2455                 }
2456
2457                 /*
2458                  * Zap this virtual mapping so we can set up a fence again
2459                  * for this object next time we need it.
2460                  */
2461                 i915_gem_release_mmap(old_obj);
2462
2463                 i = old_obj_priv->fence_reg;
2464                 reg = &dev_priv->fence_regs[i];
2465
2466                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2467                 list_del_init(&old_obj_priv->fence_list);
2468
2469                 drm_gem_object_unreference(old_obj);
2470         }
2471
2472         obj_priv->fence_reg = i;
2473         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2474
2475         reg->obj = obj;
2476
2477         if (IS_I965G(dev))
2478                 i965_write_fence_reg(reg);
2479         else if (IS_I9XX(dev))
2480                 i915_write_fence_reg(reg);
2481         else
2482                 i830_write_fence_reg(reg);
2483
2484         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2485
2486         return 0;
2487 }
2488
2489 /**
2490  * i915_gem_clear_fence_reg - clear out fence register info
2491  * @obj: object to clear
2492  *
2493  * Zeroes out the fence register itself and clears out the associated
2494  * data structures in dev_priv and obj_priv.
2495  */
2496 static void
2497 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2498 {
2499         struct drm_device *dev = obj->dev;
2500         drm_i915_private_t *dev_priv = dev->dev_private;
2501         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2502
2503         if (IS_I965G(dev))
2504                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2505         else {
2506                 uint32_t fence_reg;
2507
2508                 if (obj_priv->fence_reg < 8)
2509                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2510                 else
2511                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2512                                                        8) * 4;
2513
2514                 I915_WRITE(fence_reg, 0);
2515         }
2516
2517         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2518         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2519         list_del_init(&obj_priv->fence_list);
2520 }
2521
2522 /**
2523  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2524  * to the buffer to finish, and then resets the fence register.
2525  * @obj: tiled object holding a fence register.
2526  *
2527  * Zeroes out the fence register itself and clears out the associated
2528  * data structures in dev_priv and obj_priv.
2529  */
2530 int
2531 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2532 {
2533         struct drm_device *dev = obj->dev;
2534         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2535
2536         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2537                 return 0;
2538
2539         /* On the i915, GPU access to tiled buffers is via a fence,
2540          * therefore we must wait for any outstanding access to complete
2541          * before clearing the fence.
2542          */
2543         if (!IS_I965G(dev)) {
2544                 int ret;
2545
2546                 i915_gem_object_flush_gpu_write_domain(obj);
2547                 i915_gem_object_flush_gtt_write_domain(obj);
2548                 ret = i915_gem_object_wait_rendering(obj);
2549                 if (ret != 0)
2550                         return ret;
2551         }
2552
2553         i915_gem_clear_fence_reg (obj);
2554
2555         return 0;
2556 }
2557
2558 /**
2559  * Finds free space in the GTT aperture and binds the object there.
2560  */
2561 static int
2562 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2563 {
2564         struct drm_device *dev = obj->dev;
2565         drm_i915_private_t *dev_priv = dev->dev_private;
2566         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2567         struct drm_mm_node *free_space;
2568         bool retry_alloc = false;
2569         int ret;
2570
2571         if (dev_priv->mm.suspended)
2572                 return -EBUSY;
2573
2574         if (obj_priv->madv != I915_MADV_WILLNEED) {
2575                 DRM_ERROR("Attempting to bind a purgeable object\n");
2576                 return -EINVAL;
2577         }
2578
2579         if (alignment == 0)
2580                 alignment = i915_gem_get_gtt_alignment(obj);
2581         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2582                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2583                 return -EINVAL;
2584         }
2585
2586  search_free:
2587         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2588                                         obj->size, alignment, 0);
2589         if (free_space != NULL) {
2590                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2591                                                        alignment);
2592                 if (obj_priv->gtt_space != NULL) {
2593                         obj_priv->gtt_space->private = obj;
2594                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2595                 }
2596         }
2597         if (obj_priv->gtt_space == NULL) {
2598                 /* If the gtt is empty and we're still having trouble
2599                  * fitting our object in, we're out of memory.
2600                  */
2601 #if WATCH_LRU
2602                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2603 #endif
2604                 ret = i915_gem_evict_something(dev, obj->size);
2605                 if (ret)
2606                         return ret;
2607
2608                 goto search_free;
2609         }
2610
2611 #if WATCH_BUF
2612         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2613                  obj->size, obj_priv->gtt_offset);
2614 #endif
2615         if (retry_alloc) {
2616                 i915_gem_object_set_page_gfp_mask (obj,
2617                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2618         }
2619         ret = i915_gem_object_get_pages(obj);
2620         if (retry_alloc) {
2621                 i915_gem_object_set_page_gfp_mask (obj,
2622                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2623         }
2624         if (ret) {
2625                 drm_mm_put_block(obj_priv->gtt_space);
2626                 obj_priv->gtt_space = NULL;
2627
2628                 if (ret == -ENOMEM) {
2629                         /* first try to clear up some space from the GTT */
2630                         ret = i915_gem_evict_something(dev, obj->size);
2631                         if (ret) {
2632                                 /* now try to shrink everyone else */
2633                                 if (! retry_alloc) {
2634                                     retry_alloc = true;
2635                                     goto search_free;
2636                                 }
2637
2638                                 return ret;
2639                         }
2640
2641                         goto search_free;
2642                 }
2643
2644                 return ret;
2645         }
2646
2647         /* Create an AGP memory structure pointing at our pages, and bind it
2648          * into the GTT.
2649          */
2650         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2651                                                obj_priv->pages,
2652                                                obj->size >> PAGE_SHIFT,
2653                                                obj_priv->gtt_offset,
2654                                                obj_priv->agp_type);
2655         if (obj_priv->agp_mem == NULL) {
2656                 i915_gem_object_put_pages(obj);
2657                 drm_mm_put_block(obj_priv->gtt_space);
2658                 obj_priv->gtt_space = NULL;
2659
2660                 ret = i915_gem_evict_something(dev, obj->size);
2661                 if (ret)
2662                         return ret;
2663
2664                 goto search_free;
2665         }
2666         atomic_inc(&dev->gtt_count);
2667         atomic_add(obj->size, &dev->gtt_memory);
2668
2669         /* Assert that the object is not currently in any GPU domain. As it
2670          * wasn't in the GTT, there shouldn't be any way it could have been in
2671          * a GPU cache
2672          */
2673         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2674         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2675
2676         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2677
2678         return 0;
2679 }
2680
2681 void
2682 i915_gem_clflush_object(struct drm_gem_object *obj)
2683 {
2684         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2685
2686         /* If we don't have a page list set up, then we're not pinned
2687          * to GPU, and we can ignore the cache flush because it'll happen
2688          * again at bind time.
2689          */
2690         if (obj_priv->pages == NULL)
2691                 return;
2692
2693         trace_i915_gem_object_clflush(obj);
2694
2695         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2696 }
2697
2698 /** Flushes any GPU write domain for the object if it's dirty. */
2699 static void
2700 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2701 {
2702         struct drm_device *dev = obj->dev;
2703         uint32_t seqno;
2704         uint32_t old_write_domain;
2705
2706         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2707                 return;
2708
2709         /* Queue the GPU write cache flushing we need. */
2710         old_write_domain = obj->write_domain;
2711         i915_gem_flush(dev, 0, obj->write_domain);
2712         seqno = i915_add_request(dev, NULL, obj->write_domain);
2713         obj->write_domain = 0;
2714         i915_gem_object_move_to_active(obj, seqno);
2715
2716         trace_i915_gem_object_change_domain(obj,
2717                                             obj->read_domains,
2718                                             old_write_domain);
2719 }
2720
2721 /** Flushes the GTT write domain for the object if it's dirty. */
2722 static void
2723 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2724 {
2725         uint32_t old_write_domain;
2726
2727         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2728                 return;
2729
2730         /* No actual flushing is required for the GTT write domain.   Writes
2731          * to it immediately go to main memory as far as we know, so there's
2732          * no chipset flush.  It also doesn't land in render cache.
2733          */
2734         old_write_domain = obj->write_domain;
2735         obj->write_domain = 0;
2736
2737         trace_i915_gem_object_change_domain(obj,
2738                                             obj->read_domains,
2739                                             old_write_domain);
2740 }
2741
2742 /** Flushes the CPU write domain for the object if it's dirty. */
2743 static void
2744 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2745 {
2746         struct drm_device *dev = obj->dev;
2747         uint32_t old_write_domain;
2748
2749         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2750                 return;
2751
2752         i915_gem_clflush_object(obj);
2753         drm_agp_chipset_flush(dev);
2754         old_write_domain = obj->write_domain;
2755         obj->write_domain = 0;
2756
2757         trace_i915_gem_object_change_domain(obj,
2758                                             obj->read_domains,
2759                                             old_write_domain);
2760 }
2761
2762 /**
2763  * Moves a single object to the GTT read, and possibly write domain.
2764  *
2765  * This function returns when the move is complete, including waiting on
2766  * flushes to occur.
2767  */
2768 int
2769 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2770 {
2771         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2772         uint32_t old_write_domain, old_read_domains;
2773         int ret;
2774
2775         /* Not valid to be called on unbound objects. */
2776         if (obj_priv->gtt_space == NULL)
2777                 return -EINVAL;
2778
2779         i915_gem_object_flush_gpu_write_domain(obj);
2780         /* Wait on any GPU rendering and flushing to occur. */
2781         ret = i915_gem_object_wait_rendering(obj);
2782         if (ret != 0)
2783                 return ret;
2784
2785         old_write_domain = obj->write_domain;
2786         old_read_domains = obj->read_domains;
2787
2788         /* If we're writing through the GTT domain, then CPU and GPU caches
2789          * will need to be invalidated at next use.
2790          */
2791         if (write)
2792                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2793
2794         i915_gem_object_flush_cpu_write_domain(obj);
2795
2796         /* It should now be out of any other write domains, and we can update
2797          * the domain values for our changes.
2798          */
2799         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2800         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2801         if (write) {
2802                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2803                 obj_priv->dirty = 1;
2804         }
2805
2806         trace_i915_gem_object_change_domain(obj,
2807                                             old_read_domains,
2808                                             old_write_domain);
2809
2810         return 0;
2811 }
2812
2813 /**
2814  * Moves a single object to the CPU read, and possibly write domain.
2815  *
2816  * This function returns when the move is complete, including waiting on
2817  * flushes to occur.
2818  */
2819 static int
2820 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2821 {
2822         uint32_t old_write_domain, old_read_domains;
2823         int ret;
2824
2825         i915_gem_object_flush_gpu_write_domain(obj);
2826         /* Wait on any GPU rendering and flushing to occur. */
2827         ret = i915_gem_object_wait_rendering(obj);
2828         if (ret != 0)
2829                 return ret;
2830
2831         i915_gem_object_flush_gtt_write_domain(obj);
2832
2833         /* If we have a partially-valid cache of the object in the CPU,
2834          * finish invalidating it and free the per-page flags.
2835          */
2836         i915_gem_object_set_to_full_cpu_read_domain(obj);
2837
2838         old_write_domain = obj->write_domain;
2839         old_read_domains = obj->read_domains;
2840
2841         /* Flush the CPU cache if it's still invalid. */
2842         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2843                 i915_gem_clflush_object(obj);
2844
2845                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2846         }
2847
2848         /* It should now be out of any other write domains, and we can update
2849          * the domain values for our changes.
2850          */
2851         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2852
2853         /* If we're writing through the CPU, then the GPU read domains will
2854          * need to be invalidated at next use.
2855          */
2856         if (write) {
2857                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2858                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2859         }
2860
2861         trace_i915_gem_object_change_domain(obj,
2862                                             old_read_domains,
2863                                             old_write_domain);
2864
2865         return 0;
2866 }
2867
2868 /*
2869  * Set the next domain for the specified object. This
2870  * may not actually perform the necessary flushing/invaliding though,
2871  * as that may want to be batched with other set_domain operations
2872  *
2873  * This is (we hope) the only really tricky part of gem. The goal
2874  * is fairly simple -- track which caches hold bits of the object
2875  * and make sure they remain coherent. A few concrete examples may
2876  * help to explain how it works. For shorthand, we use the notation
2877  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2878  * a pair of read and write domain masks.
2879  *
2880  * Case 1: the batch buffer
2881  *
2882  *      1. Allocated
2883  *      2. Written by CPU
2884  *      3. Mapped to GTT
2885  *      4. Read by GPU
2886  *      5. Unmapped from GTT
2887  *      6. Freed
2888  *
2889  *      Let's take these a step at a time
2890  *
2891  *      1. Allocated
2892  *              Pages allocated from the kernel may still have
2893  *              cache contents, so we set them to (CPU, CPU) always.
2894  *      2. Written by CPU (using pwrite)
2895  *              The pwrite function calls set_domain (CPU, CPU) and
2896  *              this function does nothing (as nothing changes)
2897  *      3. Mapped by GTT
2898  *              This function asserts that the object is not
2899  *              currently in any GPU-based read or write domains
2900  *      4. Read by GPU
2901  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2902  *              As write_domain is zero, this function adds in the
2903  *              current read domains (CPU+COMMAND, 0).
2904  *              flush_domains is set to CPU.
2905  *              invalidate_domains is set to COMMAND
2906  *              clflush is run to get data out of the CPU caches
2907  *              then i915_dev_set_domain calls i915_gem_flush to
2908  *              emit an MI_FLUSH and drm_agp_chipset_flush
2909  *      5. Unmapped from GTT
2910  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2911  *              flush_domains and invalidate_domains end up both zero
2912  *              so no flushing/invalidating happens
2913  *      6. Freed
2914  *              yay, done
2915  *
2916  * Case 2: The shared render buffer
2917  *
2918  *      1. Allocated
2919  *      2. Mapped to GTT
2920  *      3. Read/written by GPU
2921  *      4. set_domain to (CPU,CPU)
2922  *      5. Read/written by CPU
2923  *      6. Read/written by GPU
2924  *
2925  *      1. Allocated
2926  *              Same as last example, (CPU, CPU)
2927  *      2. Mapped to GTT
2928  *              Nothing changes (assertions find that it is not in the GPU)
2929  *      3. Read/written by GPU
2930  *              execbuffer calls set_domain (RENDER, RENDER)
2931  *              flush_domains gets CPU
2932  *              invalidate_domains gets GPU
2933  *              clflush (obj)
2934  *              MI_FLUSH and drm_agp_chipset_flush
2935  *      4. set_domain (CPU, CPU)
2936  *              flush_domains gets GPU
2937  *              invalidate_domains gets CPU
2938  *              wait_rendering (obj) to make sure all drawing is complete.
2939  *              This will include an MI_FLUSH to get the data from GPU
2940  *              to memory
2941  *              clflush (obj) to invalidate the CPU cache
2942  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2943  *      5. Read/written by CPU
2944  *              cache lines are loaded and dirtied
2945  *      6. Read written by GPU
2946  *              Same as last GPU access
2947  *
2948  * Case 3: The constant buffer
2949  *
2950  *      1. Allocated
2951  *      2. Written by CPU
2952  *      3. Read by GPU
2953  *      4. Updated (written) by CPU again
2954  *      5. Read by GPU
2955  *
2956  *      1. Allocated
2957  *              (CPU, CPU)
2958  *      2. Written by CPU
2959  *              (CPU, CPU)
2960  *      3. Read by GPU
2961  *              (CPU+RENDER, 0)
2962  *              flush_domains = CPU
2963  *              invalidate_domains = RENDER
2964  *              clflush (obj)
2965  *              MI_FLUSH
2966  *              drm_agp_chipset_flush
2967  *      4. Updated (written) by CPU again
2968  *              (CPU, CPU)
2969  *              flush_domains = 0 (no previous write domain)
2970  *              invalidate_domains = 0 (no new read domains)
2971  *      5. Read by GPU
2972  *              (CPU+RENDER, 0)
2973  *              flush_domains = CPU
2974  *              invalidate_domains = RENDER
2975  *              clflush (obj)
2976  *              MI_FLUSH
2977  *              drm_agp_chipset_flush
2978  */
2979 static void
2980 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2981 {
2982         struct drm_device               *dev = obj->dev;
2983         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2984         uint32_t                        invalidate_domains = 0;
2985         uint32_t                        flush_domains = 0;
2986         uint32_t                        old_read_domains;
2987
2988         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2989         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2990
2991         intel_mark_busy(dev, obj);
2992
2993 #if WATCH_BUF
2994         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2995                  __func__, obj,
2996                  obj->read_domains, obj->pending_read_domains,
2997                  obj->write_domain, obj->pending_write_domain);
2998 #endif
2999         /*
3000          * If the object isn't moving to a new write domain,
3001          * let the object stay in multiple read domains
3002          */
3003         if (obj->pending_write_domain == 0)
3004                 obj->pending_read_domains |= obj->read_domains;
3005         else
3006                 obj_priv->dirty = 1;
3007
3008         /*
3009          * Flush the current write domain if
3010          * the new read domains don't match. Invalidate
3011          * any read domains which differ from the old
3012          * write domain
3013          */
3014         if (obj->write_domain &&
3015             obj->write_domain != obj->pending_read_domains) {
3016                 flush_domains |= obj->write_domain;
3017                 invalidate_domains |=
3018                         obj->pending_read_domains & ~obj->write_domain;
3019         }
3020         /*
3021          * Invalidate any read caches which may have
3022          * stale data. That is, any new read domains.
3023          */
3024         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3025         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3026 #if WATCH_BUF
3027                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3028                          __func__, flush_domains, invalidate_domains);
3029 #endif
3030                 i915_gem_clflush_object(obj);
3031         }
3032
3033         old_read_domains = obj->read_domains;
3034
3035         /* The actual obj->write_domain will be updated with
3036          * pending_write_domain after we emit the accumulated flush for all
3037          * of our domain changes in execbuffers (which clears objects'
3038          * write_domains).  So if we have a current write domain that we
3039          * aren't changing, set pending_write_domain to that.
3040          */
3041         if (flush_domains == 0 && obj->pending_write_domain == 0)
3042                 obj->pending_write_domain = obj->write_domain;
3043         obj->read_domains = obj->pending_read_domains;
3044
3045         dev->invalidate_domains |= invalidate_domains;
3046         dev->flush_domains |= flush_domains;
3047 #if WATCH_BUF
3048         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3049                  __func__,
3050                  obj->read_domains, obj->write_domain,
3051                  dev->invalidate_domains, dev->flush_domains);
3052 #endif
3053
3054         trace_i915_gem_object_change_domain(obj,
3055                                             old_read_domains,
3056                                             obj->write_domain);
3057 }
3058
3059 /**
3060  * Moves the object from a partially CPU read to a full one.
3061  *
3062  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3063  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3064  */
3065 static void
3066 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3067 {
3068         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3069
3070         if (!obj_priv->page_cpu_valid)
3071                 return;
3072
3073         /* If we're partially in the CPU read domain, finish moving it in.
3074          */
3075         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3076                 int i;
3077
3078                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3079                         if (obj_priv->page_cpu_valid[i])
3080                                 continue;
3081                         drm_clflush_pages(obj_priv->pages + i, 1);
3082                 }
3083         }
3084
3085         /* Free the page_cpu_valid mappings which are now stale, whether
3086          * or not we've got I915_GEM_DOMAIN_CPU.
3087          */
3088         kfree(obj_priv->page_cpu_valid);
3089         obj_priv->page_cpu_valid = NULL;
3090 }
3091
3092 /**
3093  * Set the CPU read domain on a range of the object.
3094  *
3095  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3096  * not entirely valid.  The page_cpu_valid member of the object flags which
3097  * pages have been flushed, and will be respected by
3098  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3099  * of the whole object.
3100  *
3101  * This function returns when the move is complete, including waiting on
3102  * flushes to occur.
3103  */
3104 static int
3105 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3106                                           uint64_t offset, uint64_t size)
3107 {
3108         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3109         uint32_t old_read_domains;
3110         int i, ret;
3111
3112         if (offset == 0 && size == obj->size)
3113                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3114
3115         i915_gem_object_flush_gpu_write_domain(obj);
3116         /* Wait on any GPU rendering and flushing to occur. */
3117         ret = i915_gem_object_wait_rendering(obj);
3118         if (ret != 0)
3119                 return ret;
3120         i915_gem_object_flush_gtt_write_domain(obj);
3121
3122         /* If we're already fully in the CPU read domain, we're done. */
3123         if (obj_priv->page_cpu_valid == NULL &&
3124             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3125                 return 0;
3126
3127         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3128          * newly adding I915_GEM_DOMAIN_CPU
3129          */
3130         if (obj_priv->page_cpu_valid == NULL) {
3131                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3132                                                    GFP_KERNEL);
3133                 if (obj_priv->page_cpu_valid == NULL)
3134                         return -ENOMEM;
3135         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3136                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3137
3138         /* Flush the cache on any pages that are still invalid from the CPU's
3139          * perspective.
3140          */
3141         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3142              i++) {
3143                 if (obj_priv->page_cpu_valid[i])
3144                         continue;
3145
3146                 drm_clflush_pages(obj_priv->pages + i, 1);
3147
3148                 obj_priv->page_cpu_valid[i] = 1;
3149         }
3150
3151         /* It should now be out of any other write domains, and we can update
3152          * the domain values for our changes.
3153          */
3154         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3155
3156         old_read_domains = obj->read_domains;
3157         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3158
3159         trace_i915_gem_object_change_domain(obj,
3160                                             old_read_domains,
3161                                             obj->write_domain);
3162
3163         return 0;
3164 }
3165
3166 /**
3167  * Pin an object to the GTT and evaluate the relocations landing in it.
3168  */
3169 static int
3170 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3171                                  struct drm_file *file_priv,
3172                                  struct drm_i915_gem_exec_object *entry,
3173                                  struct drm_i915_gem_relocation_entry *relocs)
3174 {
3175         struct drm_device *dev = obj->dev;
3176         drm_i915_private_t *dev_priv = dev->dev_private;
3177         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3178         int i, ret;
3179         void __iomem *reloc_page;
3180
3181         /* Choose the GTT offset for our buffer and put it there. */
3182         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3183         if (ret)
3184                 return ret;
3185
3186         entry->offset = obj_priv->gtt_offset;
3187
3188         /* Apply the relocations, using the GTT aperture to avoid cache
3189          * flushing requirements.
3190          */
3191         for (i = 0; i < entry->relocation_count; i++) {
3192                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3193                 struct drm_gem_object *target_obj;
3194                 struct drm_i915_gem_object *target_obj_priv;
3195                 uint32_t reloc_val, reloc_offset;
3196                 uint32_t __iomem *reloc_entry;
3197
3198                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3199                                                    reloc->target_handle);
3200                 if (target_obj == NULL) {
3201                         i915_gem_object_unpin(obj);
3202                         return -EBADF;
3203                 }
3204                 target_obj_priv = target_obj->driver_private;
3205
3206 #if WATCH_RELOC
3207                 DRM_INFO("%s: obj %p offset %08x target %d "
3208                          "read %08x write %08x gtt %08x "
3209                          "presumed %08x delta %08x\n",
3210                          __func__,
3211                          obj,
3212                          (int) reloc->offset,
3213                          (int) reloc->target_handle,
3214                          (int) reloc->read_domains,
3215                          (int) reloc->write_domain,
3216                          (int) target_obj_priv->gtt_offset,
3217                          (int) reloc->presumed_offset,
3218                          reloc->delta);
3219 #endif
3220
3221                 /* The target buffer should have appeared before us in the
3222                  * exec_object list, so it should have a GTT space bound by now.
3223                  */
3224                 if (target_obj_priv->gtt_space == NULL) {
3225                         DRM_ERROR("No GTT space found for object %d\n",
3226                                   reloc->target_handle);
3227                         drm_gem_object_unreference(target_obj);
3228                         i915_gem_object_unpin(obj);
3229                         return -EINVAL;
3230                 }
3231
3232                 /* Validate that the target is in a valid r/w GPU domain */
3233                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3234                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3235                         DRM_ERROR("reloc with read/write CPU domains: "
3236                                   "obj %p target %d offset %d "
3237                                   "read %08x write %08x",
3238                                   obj, reloc->target_handle,
3239                                   (int) reloc->offset,
3240                                   reloc->read_domains,
3241                                   reloc->write_domain);
3242                         drm_gem_object_unreference(target_obj);
3243                         i915_gem_object_unpin(obj);
3244                         return -EINVAL;
3245                 }
3246                 if (reloc->write_domain && target_obj->pending_write_domain &&
3247                     reloc->write_domain != target_obj->pending_write_domain) {
3248                         DRM_ERROR("Write domain conflict: "
3249                                   "obj %p target %d offset %d "
3250                                   "new %08x old %08x\n",
3251                                   obj, reloc->target_handle,
3252                                   (int) reloc->offset,
3253                                   reloc->write_domain,
3254                                   target_obj->pending_write_domain);
3255                         drm_gem_object_unreference(target_obj);
3256                         i915_gem_object_unpin(obj);
3257                         return -EINVAL;
3258                 }
3259
3260                 target_obj->pending_read_domains |= reloc->read_domains;
3261                 target_obj->pending_write_domain |= reloc->write_domain;
3262
3263                 /* If the relocation already has the right value in it, no
3264                  * more work needs to be done.
3265                  */
3266                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3267                         drm_gem_object_unreference(target_obj);
3268                         continue;
3269                 }
3270
3271                 /* Check that the relocation address is valid... */
3272                 if (reloc->offset > obj->size - 4) {
3273                         DRM_ERROR("Relocation beyond object bounds: "
3274                                   "obj %p target %d offset %d size %d.\n",
3275                                   obj, reloc->target_handle,
3276                                   (int) reloc->offset, (int) obj->size);
3277                         drm_gem_object_unreference(target_obj);
3278                         i915_gem_object_unpin(obj);
3279                         return -EINVAL;
3280                 }
3281                 if (reloc->offset & 3) {
3282                         DRM_ERROR("Relocation not 4-byte aligned: "
3283                                   "obj %p target %d offset %d.\n",
3284                                   obj, reloc->target_handle,
3285                                   (int) reloc->offset);
3286                         drm_gem_object_unreference(target_obj);
3287                         i915_gem_object_unpin(obj);
3288                         return -EINVAL;
3289                 }
3290
3291                 /* and points to somewhere within the target object. */
3292                 if (reloc->delta >= target_obj->size) {
3293                         DRM_ERROR("Relocation beyond target object bounds: "
3294                                   "obj %p target %d delta %d size %d.\n",
3295                                   obj, reloc->target_handle,
3296                                   (int) reloc->delta, (int) target_obj->size);
3297                         drm_gem_object_unreference(target_obj);
3298                         i915_gem_object_unpin(obj);
3299                         return -EINVAL;
3300                 }
3301
3302                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3303                 if (ret != 0) {
3304                         drm_gem_object_unreference(target_obj);
3305                         i915_gem_object_unpin(obj);
3306                         return -EINVAL;
3307                 }
3308
3309                 /* Map the page containing the relocation we're going to
3310                  * perform.
3311                  */
3312                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3313                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3314                                                       (reloc_offset &
3315                                                        ~(PAGE_SIZE - 1)));
3316                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3317                                                    (reloc_offset & (PAGE_SIZE - 1)));
3318                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3319
3320 #if WATCH_BUF
3321                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3322                           obj, (unsigned int) reloc->offset,
3323                           readl(reloc_entry), reloc_val);
3324 #endif
3325                 writel(reloc_val, reloc_entry);
3326                 io_mapping_unmap_atomic(reloc_page);
3327
3328                 /* The updated presumed offset for this entry will be
3329                  * copied back out to the user.
3330                  */
3331                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3332
3333                 drm_gem_object_unreference(target_obj);
3334         }
3335
3336 #if WATCH_BUF
3337         if (0)
3338                 i915_gem_dump_object(obj, 128, __func__, ~0);
3339 #endif
3340         return 0;
3341 }
3342
3343 /** Dispatch a batchbuffer to the ring
3344  */
3345 static int
3346 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3347                               struct drm_i915_gem_execbuffer *exec,
3348                               struct drm_clip_rect *cliprects,
3349                               uint64_t exec_offset)
3350 {
3351         drm_i915_private_t *dev_priv = dev->dev_private;
3352         int nbox = exec->num_cliprects;
3353         int i = 0, count;
3354         uint32_t exec_start, exec_len;
3355         RING_LOCALS;
3356
3357         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3358         exec_len = (uint32_t) exec->batch_len;
3359
3360         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);
3361
3362         count = nbox ? nbox : 1;
3363
3364         for (i = 0; i < count; i++) {
3365                 if (i < nbox) {
3366                         int ret = i915_emit_box(dev, cliprects, i,
3367                                                 exec->DR1, exec->DR4);
3368                         if (ret)
3369                                 return ret;
3370                 }
3371
3372                 if (IS_I830(dev) || IS_845G(dev)) {
3373                         BEGIN_LP_RING(4);
3374                         OUT_RING(MI_BATCH_BUFFER);
3375                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3376                         OUT_RING(exec_start + exec_len - 4);
3377                         OUT_RING(0);
3378                         ADVANCE_LP_RING();
3379                 } else {
3380                         BEGIN_LP_RING(2);
3381                         if (IS_I965G(dev)) {
3382                                 OUT_RING(MI_BATCH_BUFFER_START |
3383                                          (2 << 6) |
3384                                          MI_BATCH_NON_SECURE_I965);
3385                                 OUT_RING(exec_start);
3386                         } else {
3387                                 OUT_RING(MI_BATCH_BUFFER_START |
3388                                          (2 << 6));
3389                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3390                         }
3391                         ADVANCE_LP_RING();
3392                 }
3393         }
3394
3395         /* XXX breadcrumb */
3396         return 0;
3397 }
3398
3399 /* Throttle our rendering by waiting until the ring has completed our requests
3400  * emitted over 20 msec ago.
3401  *
3402  * Note that if we were to use the current jiffies each time around the loop,
3403  * we wouldn't escape the function with any frames outstanding if the time to
3404  * render a frame was over 20ms.
3405  *
3406  * This should get us reasonable parallelism between CPU and GPU but also
3407  * relatively low latency when blocking on a particular request to finish.
3408  */
3409 static int
3410 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3411 {
3412         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3413         int ret = 0;
3414         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3415
3416         mutex_lock(&dev->struct_mutex);
3417         while (!list_empty(&i915_file_priv->mm.request_list)) {
3418                 struct drm_i915_gem_request *request;
3419
3420                 request = list_first_entry(&i915_file_priv->mm.request_list,
3421                                            struct drm_i915_gem_request,
3422                                            client_list);
3423
3424                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3425                         break;
3426
3427                 ret = i915_wait_request(dev, request->seqno);
3428                 if (ret != 0)
3429                         break;
3430         }
3431         mutex_unlock(&dev->struct_mutex);
3432
3433         return ret;
3434 }
3435
3436 static int
3437 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3438                               uint32_t buffer_count,
3439                               struct drm_i915_gem_relocation_entry **relocs)
3440 {
3441         uint32_t reloc_count = 0, reloc_index = 0, i;
3442         int ret;
3443
3444         *relocs = NULL;
3445         for (i = 0; i < buffer_count; i++) {
3446                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3447                         return -EINVAL;
3448                 reloc_count += exec_list[i].relocation_count;
3449         }
3450
3451         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3452         if (*relocs == NULL)
3453                 return -ENOMEM;
3454
3455         for (i = 0; i < buffer_count; i++) {
3456                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3457
3458                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3459
3460                 ret = copy_from_user(&(*relocs)[reloc_index],
3461                                      user_relocs,
3462                                      exec_list[i].relocation_count *
3463                                      sizeof(**relocs));
3464                 if (ret != 0) {
3465                         drm_free_large(*relocs);
3466                         *relocs = NULL;
3467                         return -EFAULT;
3468                 }
3469
3470                 reloc_index += exec_list[i].relocation_count;
3471         }
3472
3473         return 0;
3474 }
3475
3476 static int
3477 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3478                             uint32_t buffer_count,
3479                             struct drm_i915_gem_relocation_entry *relocs)
3480 {
3481         uint32_t reloc_count = 0, i;
3482         int ret = 0;
3483
3484         for (i = 0; i < buffer_count; i++) {
3485                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3486                 int unwritten;
3487
3488                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3489
3490                 unwritten = copy_to_user(user_relocs,
3491                                          &relocs[reloc_count],
3492                                          exec_list[i].relocation_count *
3493                                          sizeof(*relocs));
3494
3495                 if (unwritten) {
3496                         ret = -EFAULT;
3497                         goto err;
3498                 }
3499
3500                 reloc_count += exec_list[i].relocation_count;
3501         }
3502
3503 err:
3504         drm_free_large(relocs);
3505
3506         return ret;
3507 }
3508
3509 static int
3510 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3511                            uint64_t exec_offset)
3512 {
3513         uint32_t exec_start, exec_len;
3514
3515         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3516         exec_len = (uint32_t) exec->batch_len;
3517
3518         if ((exec_start | exec_len) & 0x7)
3519                 return -EINVAL;
3520
3521         if (!exec_start)
3522                 return -EINVAL;
3523
3524         return 0;
3525 }
3526
3527 int
3528 i915_gem_execbuffer(struct drm_device *dev, void *data,
3529                     struct drm_file *file_priv)
3530 {
3531         drm_i915_private_t *dev_priv = dev->dev_private;
3532         struct drm_i915_gem_execbuffer *args = data;
3533         struct drm_i915_gem_exec_object *exec_list = NULL;
3534         struct drm_gem_object **object_list = NULL;
3535         struct drm_gem_object *batch_obj;
3536         struct drm_i915_gem_object *obj_priv;
3537         struct drm_clip_rect *cliprects = NULL;
3538         struct drm_i915_gem_relocation_entry *relocs;
3539         int ret, ret2, i, pinned = 0;
3540         uint64_t exec_offset;
3541         uint32_t seqno, flush_domains, reloc_index;
3542         int pin_tries;
3543
3544 #if WATCH_EXEC
3545         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3546                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3547 #endif
3548
3549         if (args->buffer_count < 1) {
3550                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3551                 return -EINVAL;
3552         }
3553         /* Copy in the exec list from userland */
3554         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3555         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3556         if (exec_list == NULL || object_list == NULL) {
3557                 DRM_ERROR("Failed to allocate exec or object list "
3558                           "for %d buffers\n",
3559                           args->buffer_count);
3560                 ret = -ENOMEM;
3561                 goto pre_mutex_err;
3562         }
3563         ret = copy_from_user(exec_list,
3564                              (struct drm_i915_relocation_entry __user *)
3565                              (uintptr_t) args->buffers_ptr,
3566                              sizeof(*exec_list) * args->buffer_count);
3567         if (ret != 0) {
3568                 DRM_ERROR("copy %d exec entries failed %d\n",
3569                           args->buffer_count, ret);
3570                 goto pre_mutex_err;
3571         }
3572
3573         if (args->num_cliprects != 0) {
3574                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3575                                     GFP_KERNEL);
3576                 if (cliprects == NULL)
3577                         goto pre_mutex_err;
3578
3579                 ret = copy_from_user(cliprects,
3580                                      (struct drm_clip_rect __user *)
3581                                      (uintptr_t) args->cliprects_ptr,
3582                                      sizeof(*cliprects) * args->num_cliprects);
3583                 if (ret != 0) {
3584                         DRM_ERROR("copy %d cliprects failed: %d\n",
3585                                   args->num_cliprects, ret);
3586                         goto pre_mutex_err;
3587                 }
3588         }
3589
3590         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3591                                             &relocs);
3592         if (ret != 0)
3593                 goto pre_mutex_err;
3594
3595         mutex_lock(&dev->struct_mutex);
3596
3597         i915_verify_inactive(dev, __FILE__, __LINE__);
3598
3599         if (atomic_read(&dev_priv->mm.wedged)) {
3600                 DRM_ERROR("Execbuf while wedged\n");
3601                 mutex_unlock(&dev->struct_mutex);
3602                 ret = -EIO;
3603                 goto pre_mutex_err;
3604         }
3605
3606         if (dev_priv->mm.suspended) {
3607                 DRM_ERROR("Execbuf while VT-switched.\n");
3608                 mutex_unlock(&dev->struct_mutex);
3609                 ret = -EBUSY;
3610                 goto pre_mutex_err;
3611         }
3612
3613         /* Look up object handles */
3614         for (i = 0; i < args->buffer_count; i++) {
3615                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3616                                                        exec_list[i].handle);
3617                 if (object_list[i] == NULL) {
3618                         DRM_ERROR("Invalid object handle %d at index %d\n",
3619                                    exec_list[i].handle, i);
3620                         ret = -EBADF;
3621                         goto err;
3622                 }
3623
3624                 obj_priv = object_list[i]->driver_private;
3625                 if (obj_priv->in_execbuffer) {
3626                         DRM_ERROR("Object %p appears more than once in object list\n",
3627                                    object_list[i]);
3628                         ret = -EBADF;
3629                         goto err;
3630                 }
3631                 obj_priv->in_execbuffer = true;
3632         }
3633
3634         /* Pin and relocate */
3635         for (pin_tries = 0; ; pin_tries++) {
3636                 ret = 0;
3637                 reloc_index = 0;
3638
3639                 for (i = 0; i < args->buffer_count; i++) {
3640                         object_list[i]->pending_read_domains = 0;
3641                         object_list[i]->pending_write_domain = 0;
3642                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3643                                                                file_priv,
3644                                                                &exec_list[i],
3645                                                                &relocs[reloc_index]);
3646                         if (ret)
3647                                 break;
3648                         pinned = i + 1;
3649                         reloc_index += exec_list[i].relocation_count;
3650                 }
3651                 /* success */
3652                 if (ret == 0)
3653                         break;
3654
3655                 /* error other than GTT full, or we've already tried again */
3656                 if (ret != -ENOSPC || pin_tries >= 1) {
3657                         if (ret != -ERESTARTSYS) {
3658                                 unsigned long long total_size = 0;
3659                                 for (i = 0; i < args->buffer_count; i++)
3660                                         total_size += object_list[i]->size;
3661                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3662                                           pinned+1, args->buffer_count,
3663                                           total_size, ret);
3664                                 DRM_ERROR("%d objects [%d pinned], "
3665                                           "%d object bytes [%d pinned], "
3666                                           "%d/%d gtt bytes\n",
3667                                           atomic_read(&dev->object_count),
3668                                           atomic_read(&dev->pin_count),
3669                                           atomic_read(&dev->object_memory),
3670                                           atomic_read(&dev->pin_memory),
3671                                           atomic_read(&dev->gtt_memory),
3672                                           dev->gtt_total);
3673                         }
3674                         goto err;
3675                 }
3676
3677                 /* unpin all of our buffers */
3678                 for (i = 0; i < pinned; i++)
3679                         i915_gem_object_unpin(object_list[i]);
3680                 pinned = 0;
3681
3682                 /* evict everyone we can from the aperture */
3683                 ret = i915_gem_evict_everything(dev);
3684                 if (ret && ret != -ENOSPC)
3685                         goto err;
3686         }
3687
3688         /* Set the pending read domains for the batch buffer to COMMAND */
3689         batch_obj = object_list[args->buffer_count-1];
3690         if (batch_obj->pending_write_domain) {
3691                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3692                 ret = -EINVAL;
3693                 goto err;
3694         }
3695         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3696
3697         /* Sanity check the batch buffer, prior to moving objects */
3698         exec_offset = exec_list[args->buffer_count - 1].offset;
3699         ret = i915_gem_check_execbuffer (args, exec_offset);
3700         if (ret != 0) {
3701                 DRM_ERROR("execbuf with invalid offset/length\n");
3702                 goto err;
3703         }
3704
3705         i915_verify_inactive(dev, __FILE__, __LINE__);
3706
3707         /* Zero the global flush/invalidate flags. These
3708          * will be modified as new domains are computed
3709          * for each object
3710          */
3711         dev->invalidate_domains = 0;
3712         dev->flush_domains = 0;
3713
3714         for (i = 0; i < args->buffer_count; i++) {
3715                 struct drm_gem_object *obj = object_list[i];
3716
3717                 /* Compute new gpu domains and update invalidate/flush */
3718                 i915_gem_object_set_to_gpu_domain(obj);
3719         }
3720
3721         i915_verify_inactive(dev, __FILE__, __LINE__);
3722
3723         if (dev->invalidate_domains | dev->flush_domains) {
3724 #if WATCH_EXEC
3725                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3726                           __func__,
3727                          dev->invalidate_domains,
3728                          dev->flush_domains);
3729 #endif
3730                 i915_gem_flush(dev,
3731                                dev->invalidate_domains,
3732                                dev->flush_domains);
3733                 if (dev->flush_domains)
3734                         (void)i915_add_request(dev, file_priv,
3735                                                dev->flush_domains);
3736         }
3737
3738         for (i = 0; i < args->buffer_count; i++) {
3739                 struct drm_gem_object *obj = object_list[i];
3740                 uint32_t old_write_domain = obj->write_domain;
3741
3742                 obj->write_domain = obj->pending_write_domain;
3743                 trace_i915_gem_object_change_domain(obj,
3744                                                     obj->read_domains,
3745                                                     old_write_domain);
3746         }
3747
3748         i915_verify_inactive(dev, __FILE__, __LINE__);
3749
3750 #if WATCH_COHERENCY
3751         for (i = 0; i < args->buffer_count; i++) {
3752                 i915_gem_object_check_coherency(object_list[i],
3753                                                 exec_list[i].handle);
3754         }
3755 #endif
3756
3757 #if WATCH_EXEC
3758         i915_gem_dump_object(batch_obj,
3759                               args->batch_len,
3760                               __func__,
3761                               ~0);
3762 #endif
3763
3764         /* Exec the batchbuffer */
3765         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3766         if (ret) {
3767                 DRM_ERROR("dispatch failed %d\n", ret);
3768                 goto err;
3769         }
3770
3771         /*
3772          * Ensure that the commands in the batch buffer are
3773          * finished before the interrupt fires
3774          */
3775         flush_domains = i915_retire_commands(dev);
3776
3777         i915_verify_inactive(dev, __FILE__, __LINE__);
3778
3779         /*
3780          * Get a seqno representing the execution of the current buffer,
3781          * which we can wait on.  We would like to mitigate these interrupts,
3782          * likely by only creating seqnos occasionally (so that we have
3783          * *some* interrupts representing completion of buffers that we can
3784          * wait on when trying to clear up gtt space).
3785          */
3786         seqno = i915_add_request(dev, file_priv, flush_domains);
3787         BUG_ON(seqno == 0);
3788         for (i = 0; i < args->buffer_count; i++) {
3789                 struct drm_gem_object *obj = object_list[i];
3790
3791                 i915_gem_object_move_to_active(obj, seqno);
3792 #if WATCH_LRU
3793                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3794 #endif
3795         }
3796 #if WATCH_LRU
3797         i915_dump_lru(dev, __func__);
3798 #endif
3799
3800         i915_verify_inactive(dev, __FILE__, __LINE__);
3801
3802 err:
3803         for (i = 0; i < pinned; i++)
3804                 i915_gem_object_unpin(object_list[i]);
3805
3806         for (i = 0; i < args->buffer_count; i++) {
3807                 if (object_list[i]) {
3808                         obj_priv = object_list[i]->driver_private;
3809                         obj_priv->in_execbuffer = false;
3810                 }
3811                 drm_gem_object_unreference(object_list[i]);
3812         }
3813
3814         mutex_unlock(&dev->struct_mutex);
3815
3816         if (!ret) {
3817                 /* Copy the new buffer offsets back to the user's exec list. */
3818                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3819                                    (uintptr_t) args->buffers_ptr,
3820                                    exec_list,
3821                                    sizeof(*exec_list) * args->buffer_count);
3822                 if (ret) {
3823                         ret = -EFAULT;
3824                         DRM_ERROR("failed to copy %d exec entries "
3825                                   "back to user (%d)\n",
3826                                   args->buffer_count, ret);
3827                 }
3828         }
3829
3830         /* Copy the updated relocations out regardless of current error
3831          * state.  Failure to update the relocs would mean that the next
3832          * time userland calls execbuf, it would do so with presumed offset
3833          * state that didn't match the actual object state.
3834          */
3835         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3836                                            relocs);
3837         if (ret2 != 0) {
3838                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3839
3840                 if (ret == 0)
3841                         ret = ret2;
3842         }
3843
3844 pre_mutex_err:
3845         drm_free_large(object_list);
3846         drm_free_large(exec_list);
3847         kfree(cliprects);
3848
3849         return ret;
3850 }
3851
3852 int
3853 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3854 {
3855         struct drm_device *dev = obj->dev;
3856         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3857         int ret;
3858
3859         i915_verify_inactive(dev, __FILE__, __LINE__);
3860         if (obj_priv->gtt_space == NULL) {
3861                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3862                 if (ret)
3863                         return ret;
3864         }
3865         /*
3866          * Pre-965 chips need a fence register set up in order to
3867          * properly handle tiled surfaces.
3868          */
3869         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3870                 ret = i915_gem_object_get_fence_reg(obj);
3871                 if (ret != 0) {
3872                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3873                                 DRM_ERROR("Failure to install fence: %d\n",
3874                                           ret);
3875                         return ret;
3876                 }
3877         }
3878         obj_priv->pin_count++;
3879
3880         /* If the object is not active and not pending a flush,
3881          * remove it from the inactive list
3882          */
3883         if (obj_priv->pin_count == 1) {
3884                 atomic_inc(&dev->pin_count);
3885                 atomic_add(obj->size, &dev->pin_memory);
3886                 if (!obj_priv->active &&
3887                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3888                     !list_empty(&obj_priv->list))
3889                         list_del_init(&obj_priv->list);
3890         }
3891         i915_verify_inactive(dev, __FILE__, __LINE__);
3892
3893         return 0;
3894 }
3895
3896 void
3897 i915_gem_object_unpin(struct drm_gem_object *obj)
3898 {
3899         struct drm_device *dev = obj->dev;
3900         drm_i915_private_t *dev_priv = dev->dev_private;
3901         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3902
3903         i915_verify_inactive(dev, __FILE__, __LINE__);
3904         obj_priv->pin_count--;
3905         BUG_ON(obj_priv->pin_count < 0);
3906         BUG_ON(obj_priv->gtt_space == NULL);
3907
3908         /* If the object is no longer pinned, and is
3909          * neither active nor being flushed, then stick it on
3910          * the inactive list
3911          */
3912         if (obj_priv->pin_count == 0) {
3913                 if (!obj_priv->active &&
3914                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3915                         list_move_tail(&obj_priv->list,
3916                                        &dev_priv->mm.inactive_list);
3917                 atomic_dec(&dev->pin_count);
3918                 atomic_sub(obj->size, &dev->pin_memory);
3919         }
3920         i915_verify_inactive(dev, __FILE__, __LINE__);
3921 }
3922
3923 int
3924 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3925                    struct drm_file *file_priv)
3926 {
3927         struct drm_i915_gem_pin *args = data;
3928         struct drm_gem_object *obj;
3929         struct drm_i915_gem_object *obj_priv;
3930         int ret;
3931
3932         mutex_lock(&dev->struct_mutex);
3933
3934         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3935         if (obj == NULL) {
3936                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3937                           args->handle);
3938                 mutex_unlock(&dev->struct_mutex);
3939                 return -EBADF;
3940         }
3941         obj_priv = obj->driver_private;
3942
3943         if (obj_priv->madv != I915_MADV_WILLNEED) {
3944                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3945                 drm_gem_object_unreference(obj);
3946                 mutex_unlock(&dev->struct_mutex);
3947                 return -EINVAL;
3948         }
3949
3950         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3951                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3952                           args->handle);
3953                 drm_gem_object_unreference(obj);
3954                 mutex_unlock(&dev->struct_mutex);
3955                 return -EINVAL;
3956         }
3957
3958         obj_priv->user_pin_count++;
3959         obj_priv->pin_filp = file_priv;
3960         if (obj_priv->user_pin_count == 1) {
3961                 ret = i915_gem_object_pin(obj, args->alignment);
3962                 if (ret != 0) {
3963                         drm_gem_object_unreference(obj);
3964                         mutex_unlock(&dev->struct_mutex);
3965                         return ret;
3966                 }
3967         }
3968
3969         /* XXX - flush the CPU caches for pinned objects
3970          * as the X server doesn't manage domains yet
3971          */
3972         i915_gem_object_flush_cpu_write_domain(obj);
3973         args->offset = obj_priv->gtt_offset;
3974         drm_gem_object_unreference(obj);
3975         mutex_unlock(&dev->struct_mutex);
3976
3977         return 0;
3978 }
3979
3980 int
3981 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3982                      struct drm_file *file_priv)
3983 {
3984         struct drm_i915_gem_pin *args = data;
3985         struct drm_gem_object *obj;
3986         struct drm_i915_gem_object *obj_priv;
3987
3988         mutex_lock(&dev->struct_mutex);
3989
3990         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3991         if (obj == NULL) {
3992                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3993                           args->handle);
3994                 mutex_unlock(&dev->struct_mutex);
3995                 return -EBADF;
3996         }
3997
3998         obj_priv = obj->driver_private;
3999         if (obj_priv->pin_filp != file_priv) {
4000                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4001                           args->handle);
4002                 drm_gem_object_unreference(obj);
4003                 mutex_unlock(&dev->struct_mutex);
4004                 return -EINVAL;
4005         }
4006         obj_priv->user_pin_count--;
4007         if (obj_priv->user_pin_count == 0) {
4008                 obj_priv->pin_filp = NULL;
4009                 i915_gem_object_unpin(obj);
4010         }
4011
4012         drm_gem_object_unreference(obj);
4013         mutex_unlock(&dev->struct_mutex);
4014         return 0;
4015 }
4016
4017 int
4018 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4019                     struct drm_file *file_priv)
4020 {
4021         struct drm_i915_gem_busy *args = data;
4022         struct drm_gem_object *obj;
4023         struct drm_i915_gem_object *obj_priv;
4024
4025         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4026         if (obj == NULL) {
4027                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4028                           args->handle);
4029                 return -EBADF;
4030         }
4031
4032         mutex_lock(&dev->struct_mutex);
4033         /* Update the active list for the hardware's current position.
4034          * Otherwise this only updates on a delayed timer or when irqs are
4035          * actually unmasked, and our working set ends up being larger than
4036          * required.
4037          */
4038         i915_gem_retire_requests(dev);
4039
4040         obj_priv = obj->driver_private;
4041         /* Don't count being on the flushing list against the object being
4042          * done.  Otherwise, a buffer left on the flushing list but not getting
4043          * flushed (because nobody's flushing that domain) won't ever return
4044          * unbusy and get reused by libdrm's bo cache.  The other expected
4045          * consumer of this interface, OpenGL's occlusion queries, also specs
4046          * that the objects get unbusy "eventually" without any interference.
4047          */
4048         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4049
4050         drm_gem_object_unreference(obj);
4051         mutex_unlock(&dev->struct_mutex);
4052         return 0;
4053 }
4054
4055 int
4056 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4057                         struct drm_file *file_priv)
4058 {
4059     return i915_gem_ring_throttle(dev, file_priv);
4060 }
4061
4062 int
4063 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4064                        struct drm_file *file_priv)
4065 {
4066         struct drm_i915_gem_madvise *args = data;
4067         struct drm_gem_object *obj;
4068         struct drm_i915_gem_object *obj_priv;
4069
4070         switch (args->madv) {
4071         case I915_MADV_DONTNEED:
4072         case I915_MADV_WILLNEED:
4073             break;
4074         default:
4075             return -EINVAL;
4076         }
4077
4078         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4079         if (obj == NULL) {
4080                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4081                           args->handle);
4082                 return -EBADF;
4083         }
4084
4085         mutex_lock(&dev->struct_mutex);
4086         obj_priv = obj->driver_private;
4087
4088         if (obj_priv->pin_count) {
4089                 drm_gem_object_unreference(obj);
4090                 mutex_unlock(&dev->struct_mutex);
4091
4092                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4093                 return -EINVAL;
4094         }
4095
4096         if (obj_priv->madv != __I915_MADV_PURGED)
4097                 obj_priv->madv = args->madv;
4098
4099         /* if the object is no longer bound, discard its backing storage */
4100         if (i915_gem_object_is_purgeable(obj_priv) &&
4101             obj_priv->gtt_space == NULL)
4102                 i915_gem_object_truncate(obj);
4103
4104         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4105
4106         drm_gem_object_unreference(obj);
4107         mutex_unlock(&dev->struct_mutex);
4108
4109         return 0;
4110 }
4111
4112 int i915_gem_init_object(struct drm_gem_object *obj)
4113 {
4114         struct drm_i915_gem_object *obj_priv;
4115
4116         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4117         if (obj_priv == NULL)
4118                 return -ENOMEM;
4119
4120         /*
4121          * We've just allocated pages from the kernel,
4122          * so they've just been written by the CPU with
4123          * zeros. They'll need to be clflushed before we
4124          * use them with the GPU.
4125          */
4126         obj->write_domain = I915_GEM_DOMAIN_CPU;
4127         obj->read_domains = I915_GEM_DOMAIN_CPU;
4128
4129         obj_priv->agp_type = AGP_USER_MEMORY;
4130
4131         obj->driver_private = obj_priv;
4132         obj_priv->obj = obj;
4133         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4134         INIT_LIST_HEAD(&obj_priv->list);
4135         INIT_LIST_HEAD(&obj_priv->fence_list);
4136         obj_priv->madv = I915_MADV_WILLNEED;
4137
4138         trace_i915_gem_object_create(obj);
4139
4140         return 0;
4141 }
4142
4143 void i915_gem_free_object(struct drm_gem_object *obj)
4144 {
4145         struct drm_device *dev = obj->dev;
4146         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4147
4148         trace_i915_gem_object_destroy(obj);
4149
4150         while (obj_priv->pin_count > 0)
4151                 i915_gem_object_unpin(obj);
4152
4153         if (obj_priv->phys_obj)
4154                 i915_gem_detach_phys_object(dev, obj);
4155
4156         i915_gem_object_unbind(obj);
4157
4158         if (obj_priv->mmap_offset)
4159                 i915_gem_free_mmap_offset(obj);
4160
4161         kfree(obj_priv->page_cpu_valid);
4162         kfree(obj_priv->bit_17);
4163         kfree(obj->driver_private);
4164 }
4165
4166 /** Unbinds all inactive objects. */
4167 static int
4168 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4169 {
4170         drm_i915_private_t *dev_priv = dev->dev_private;
4171
4172         while (!list_empty(&dev_priv->mm.inactive_list)) {
4173                 struct drm_gem_object *obj;
4174                 int ret;
4175
4176                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4177                                        struct drm_i915_gem_object,
4178                                        list)->obj;
4179
4180                 ret = i915_gem_object_unbind(obj);
4181                 if (ret != 0) {
4182                         DRM_ERROR("Error unbinding object: %d\n", ret);
4183                         return ret;
4184                 }
4185         }
4186
4187         return 0;
4188 }
4189
4190 int
4191 i915_gem_idle(struct drm_device *dev)
4192 {
4193         drm_i915_private_t *dev_priv = dev->dev_private;
4194         uint32_t seqno, cur_seqno, last_seqno;
4195         int stuck, ret;
4196
4197         mutex_lock(&dev->struct_mutex);
4198
4199         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4200                 mutex_unlock(&dev->struct_mutex);
4201                 return 0;
4202         }
4203
4204         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4205          * We need to replace this with a semaphore, or something.
4206          */
4207         dev_priv->mm.suspended = 1;
4208         del_timer(&dev_priv->hangcheck_timer);
4209
4210         /* Cancel the retire work handler, wait for it to finish if running
4211          */
4212         mutex_unlock(&dev->struct_mutex);
4213         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4214         mutex_lock(&dev->struct_mutex);
4215
4216         i915_kernel_lost_context(dev);
4217
4218         /* Flush the GPU along with all non-CPU write domains
4219          */
4220         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4221         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4222
4223         if (seqno == 0) {
4224                 mutex_unlock(&dev->struct_mutex);
4225                 return -ENOMEM;
4226         }
4227
4228         dev_priv->mm.waiting_gem_seqno = seqno;
4229         last_seqno = 0;
4230         stuck = 0;
4231         for (;;) {
4232                 cur_seqno = i915_get_gem_seqno(dev);
4233                 if (i915_seqno_passed(cur_seqno, seqno))
4234                         break;
4235                 if (last_seqno == cur_seqno) {
4236                         if (stuck++ > 100) {
4237                                 DRM_ERROR("hardware wedged\n");
4238                                 atomic_set(&dev_priv->mm.wedged, 1);
4239                                 DRM_WAKEUP(&dev_priv->irq_queue);
4240                                 break;
4241                         }
4242                 }
4243                 msleep(10);
4244                 last_seqno = cur_seqno;
4245         }
4246         dev_priv->mm.waiting_gem_seqno = 0;
4247
4248         i915_gem_retire_requests(dev);
4249
4250         spin_lock(&dev_priv->mm.active_list_lock);
4251         if (!atomic_read(&dev_priv->mm.wedged)) {
4252                 /* Active and flushing should now be empty as we've
4253                  * waited for a sequence higher than any pending execbuffer
4254                  */
4255                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4256                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4257                 /* Request should now be empty as we've also waited
4258                  * for the last request in the list
4259                  */
4260                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4261         }
4262
4263         /* Empty the active and flushing lists to inactive.  If there's
4264          * anything left at this point, it means that we're wedged and
4265          * nothing good's going to happen by leaving them there.  So strip
4266          * the GPU domains and just stuff them onto inactive.
4267          */
4268         while (!list_empty(&dev_priv->mm.active_list)) {
4269                 struct drm_gem_object *obj;
4270                 uint32_t old_write_domain;
4271
4272                 obj = list_first_entry(&dev_priv->mm.active_list,
4273                                        struct drm_i915_gem_object,
4274                                        list)->obj;
4275                 old_write_domain = obj->write_domain;
4276                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4277                 i915_gem_object_move_to_inactive(obj);
4278
4279                 trace_i915_gem_object_change_domain(obj,
4280                                                     obj->read_domains,
4281                                                     old_write_domain);
4282         }
4283         spin_unlock(&dev_priv->mm.active_list_lock);
4284
4285         while (!list_empty(&dev_priv->mm.flushing_list)) {
4286                 struct drm_gem_object *obj;
4287                 uint32_t old_write_domain;
4288
4289                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4290                                        struct drm_i915_gem_object,
4291                                        list)->obj;
4292                 old_write_domain = obj->write_domain;
4293                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4294                 i915_gem_object_move_to_inactive(obj);
4295
4296                 trace_i915_gem_object_change_domain(obj,
4297                                                     obj->read_domains,
4298                                                     old_write_domain);
4299         }
4300
4301
4302         /* Move all inactive buffers out of the GTT. */
4303         ret = i915_gem_evict_from_inactive_list(dev);
4304         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4305         if (ret) {
4306                 mutex_unlock(&dev->struct_mutex);
4307                 return ret;
4308         }
4309
4310         i915_gem_cleanup_ringbuffer(dev);
4311         mutex_unlock(&dev->struct_mutex);
4312
4313         return 0;
4314 }
4315
4316 static int
4317 i915_gem_init_hws(struct drm_device *dev)
4318 {
4319         drm_i915_private_t *dev_priv = dev->dev_private;
4320         struct drm_gem_object *obj;
4321         struct drm_i915_gem_object *obj_priv;
4322         int ret;
4323
4324         /* If we need a physical address for the status page, it's already
4325          * initialized at driver load time.
4326          */
4327         if (!I915_NEED_GFX_HWS(dev))
4328                 return 0;
4329
4330         obj = drm_gem_object_alloc(dev, 4096);
4331         if (obj == NULL) {
4332                 DRM_ERROR("Failed to allocate status page\n");
4333                 return -ENOMEM;
4334         }
4335         obj_priv = obj->driver_private;
4336         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4337
4338         ret = i915_gem_object_pin(obj, 4096);
4339         if (ret != 0) {
4340                 drm_gem_object_unreference(obj);
4341                 return ret;
4342         }
4343
4344         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4345
4346         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4347         if (dev_priv->hw_status_page == NULL) {
4348                 DRM_ERROR("Failed to map status page.\n");
4349                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4350                 i915_gem_object_unpin(obj);
4351                 drm_gem_object_unreference(obj);
4352                 return -EINVAL;
4353         }
4354         dev_priv->hws_obj = obj;
4355         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4356         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4357         I915_READ(HWS_PGA); /* posting read */
4358         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4359
4360         return 0;
4361 }
4362
4363 static void
4364 i915_gem_cleanup_hws(struct drm_device *dev)
4365 {
4366         drm_i915_private_t *dev_priv = dev->dev_private;
4367         struct drm_gem_object *obj;
4368         struct drm_i915_gem_object *obj_priv;
4369
4370         if (dev_priv->hws_obj == NULL)
4371                 return;
4372
4373         obj = dev_priv->hws_obj;
4374         obj_priv = obj->driver_private;
4375
4376         kunmap(obj_priv->pages[0]);
4377         i915_gem_object_unpin(obj);
4378         drm_gem_object_unreference(obj);
4379         dev_priv->hws_obj = NULL;
4380
4381         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4382         dev_priv->hw_status_page = NULL;
4383
4384         /* Write high address into HWS_PGA when disabling. */
4385         I915_WRITE(HWS_PGA, 0x1ffff000);
4386 }
4387
4388 int
4389 i915_gem_init_ringbuffer(struct drm_device *dev)
4390 {
4391         drm_i915_private_t *dev_priv = dev->dev_private;
4392         struct drm_gem_object *obj;
4393         struct drm_i915_gem_object *obj_priv;
4394         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4395         int ret;
4396         u32 head;
4397
4398         ret = i915_gem_init_hws(dev);
4399         if (ret != 0)
4400                 return ret;
4401
4402         obj = drm_gem_object_alloc(dev, 128 * 1024);
4403         if (obj == NULL) {
4404                 DRM_ERROR("Failed to allocate ringbuffer\n");
4405                 i915_gem_cleanup_hws(dev);
4406                 return -ENOMEM;
4407         }
4408         obj_priv = obj->driver_private;
4409
4410         ret = i915_gem_object_pin(obj, 4096);
4411         if (ret != 0) {
4412                 drm_gem_object_unreference(obj);
4413                 i915_gem_cleanup_hws(dev);
4414                 return ret;
4415         }
4416
4417         /* Set up the kernel mapping for the ring. */
4418         ring->Size = obj->size;
4419
4420         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4421         ring->map.size = obj->size;
4422         ring->map.type = 0;
4423         ring->map.flags = 0;
4424         ring->map.mtrr = 0;
4425
4426         drm_core_ioremap_wc(&ring->map, dev);
4427         if (ring->map.handle == NULL) {
4428                 DRM_ERROR("Failed to map ringbuffer.\n");
4429                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4430                 i915_gem_object_unpin(obj);
4431                 drm_gem_object_unreference(obj);
4432                 i915_gem_cleanup_hws(dev);
4433                 return -EINVAL;
4434         }
4435         ring->ring_obj = obj;
4436         ring->virtual_start = ring->map.handle;
4437
4438         /* Stop the ring if it's running. */
4439         I915_WRITE(PRB0_CTL, 0);
4440         I915_WRITE(PRB0_TAIL, 0);
4441         I915_WRITE(PRB0_HEAD, 0);
4442
4443         /* Initialize the ring. */
4444         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4445         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4446
4447         /* G45 ring initialization fails to reset head to zero */
4448         if (head != 0) {
4449                 DRM_ERROR("Ring head not reset to zero "
4450                           "ctl %08x head %08x tail %08x start %08x\n",
4451                           I915_READ(PRB0_CTL),
4452                           I915_READ(PRB0_HEAD),
4453                           I915_READ(PRB0_TAIL),
4454                           I915_READ(PRB0_START));
4455                 I915_WRITE(PRB0_HEAD, 0);
4456
4457                 DRM_ERROR("Ring head forced to zero "
4458                           "ctl %08x head %08x tail %08x start %08x\n",
4459                           I915_READ(PRB0_CTL),
4460                           I915_READ(PRB0_HEAD),
4461                           I915_READ(PRB0_TAIL),
4462                           I915_READ(PRB0_START));
4463         }
4464
4465         I915_WRITE(PRB0_CTL,
4466                    ((obj->size - 4096) & RING_NR_PAGES) |
4467                    RING_NO_REPORT |
4468                    RING_VALID);
4469
4470         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4471
4472         /* If the head is still not zero, the ring is dead */
4473         if (head != 0) {
4474                 DRM_ERROR("Ring initialization failed "
4475                           "ctl %08x head %08x tail %08x start %08x\n",
4476                           I915_READ(PRB0_CTL),
4477                           I915_READ(PRB0_HEAD),
4478                           I915_READ(PRB0_TAIL),
4479                           I915_READ(PRB0_START));
4480                 return -EIO;
4481         }
4482
4483         /* Update our cache of the ring state */
4484         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4485                 i915_kernel_lost_context(dev);
4486         else {
4487                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4488                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4489                 ring->space = ring->head - (ring->tail + 8);
4490                 if (ring->space < 0)
4491                         ring->space += ring->Size;
4492         }
4493
4494         return 0;
4495 }
4496
4497 void
4498 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4499 {
4500         drm_i915_private_t *dev_priv = dev->dev_private;
4501
4502         if (dev_priv->ring.ring_obj == NULL)
4503                 return;
4504
4505         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4506
4507         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4508         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4509         dev_priv->ring.ring_obj = NULL;
4510         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4511
4512         i915_gem_cleanup_hws(dev);
4513 }
4514
4515 int
4516 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4517                        struct drm_file *file_priv)
4518 {
4519         drm_i915_private_t *dev_priv = dev->dev_private;
4520         int ret;
4521
4522         if (drm_core_check_feature(dev, DRIVER_MODESET))
4523                 return 0;
4524
4525         if (atomic_read(&dev_priv->mm.wedged)) {
4526                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4527                 atomic_set(&dev_priv->mm.wedged, 0);
4528         }
4529
4530         mutex_lock(&dev->struct_mutex);
4531         dev_priv->mm.suspended = 0;
4532
4533         ret = i915_gem_init_ringbuffer(dev);
4534         if (ret != 0) {
4535                 mutex_unlock(&dev->struct_mutex);
4536                 return ret;
4537         }
4538
4539         spin_lock(&dev_priv->mm.active_list_lock);
4540         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4541         spin_unlock(&dev_priv->mm.active_list_lock);
4542
4543         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4544         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4545         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4546         mutex_unlock(&dev->struct_mutex);
4547
4548         drm_irq_install(dev);
4549
4550         return 0;
4551 }
4552
4553 int
4554 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4555                        struct drm_file *file_priv)
4556 {
4557         int ret;
4558
4559         if (drm_core_check_feature(dev, DRIVER_MODESET))
4560                 return 0;
4561
4562         ret = i915_gem_idle(dev);
4563         drm_irq_uninstall(dev);
4564
4565         return ret;
4566 }
4567
4568 void
4569 i915_gem_lastclose(struct drm_device *dev)
4570 {
4571         int ret;
4572
4573         if (drm_core_check_feature(dev, DRIVER_MODESET))
4574                 return;
4575
4576         ret = i915_gem_idle(dev);
4577         if (ret)
4578                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4579 }
4580
4581 void
4582 i915_gem_load(struct drm_device *dev)
4583 {
4584         int i;
4585         drm_i915_private_t *dev_priv = dev->dev_private;
4586
4587         spin_lock_init(&dev_priv->mm.active_list_lock);
4588         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4589         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4590         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4591         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4592         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4593         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4594                           i915_gem_retire_work_handler);
4595         dev_priv->mm.next_gem_seqno = 1;
4596
4597         spin_lock(&shrink_list_lock);
4598         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4599         spin_unlock(&shrink_list_lock);
4600
4601         /* Old X drivers will take 0-2 for front, back, depth buffers */
4602         dev_priv->fence_reg_start = 3;
4603
4604         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4605                 dev_priv->num_fence_regs = 16;
4606         else
4607                 dev_priv->num_fence_regs = 8;
4608
4609         /* Initialize fence registers to zero */
4610         if (IS_I965G(dev)) {
4611                 for (i = 0; i < 16; i++)
4612                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4613         } else {
4614                 for (i = 0; i < 8; i++)
4615                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4616                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4617                         for (i = 0; i < 8; i++)
4618                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4619         }
4620
4621         i915_gem_detect_bit_6_swizzle(dev);
4622 }
4623
4624 /*
4625  * Create a physically contiguous memory object for this object
4626  * e.g. for cursor + overlay regs
4627  */
4628 int i915_gem_init_phys_object(struct drm_device *dev,
4629                               int id, int size)
4630 {
4631         drm_i915_private_t *dev_priv = dev->dev_private;
4632         struct drm_i915_gem_phys_object *phys_obj;
4633         int ret;
4634
4635         if (dev_priv->mm.phys_objs[id - 1] || !size)
4636                 return 0;
4637
4638         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4639         if (!phys_obj)
4640                 return -ENOMEM;
4641
4642         phys_obj->id = id;
4643
4644         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4645         if (!phys_obj->handle) {
4646                 ret = -ENOMEM;
4647                 goto kfree_obj;
4648         }
4649 #ifdef CONFIG_X86
4650         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4651 #endif
4652
4653         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4654
4655         return 0;
4656 kfree_obj:
4657         kfree(phys_obj);
4658         return ret;
4659 }
4660
4661 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4662 {
4663         drm_i915_private_t *dev_priv = dev->dev_private;
4664         struct drm_i915_gem_phys_object *phys_obj;
4665
4666         if (!dev_priv->mm.phys_objs[id - 1])
4667                 return;
4668
4669         phys_obj = dev_priv->mm.phys_objs[id - 1];
4670         if (phys_obj->cur_obj) {
4671                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4672         }
4673
4674 #ifdef CONFIG_X86
4675         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4676 #endif
4677         drm_pci_free(dev, phys_obj->handle);
4678         kfree(phys_obj);
4679         dev_priv->mm.phys_objs[id - 1] = NULL;
4680 }
4681
4682 void i915_gem_free_all_phys_object(struct drm_device *dev)
4683 {
4684         int i;
4685
4686         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4687                 i915_gem_free_phys_object(dev, i);
4688 }
4689
4690 void i915_gem_detach_phys_object(struct drm_device *dev,
4691                                  struct drm_gem_object *obj)
4692 {
4693         struct drm_i915_gem_object *obj_priv;
4694         int i;
4695         int ret;
4696         int page_count;
4697
4698         obj_priv = obj->driver_private;
4699         if (!obj_priv->phys_obj)
4700                 return;
4701
4702         ret = i915_gem_object_get_pages(obj);
4703         if (ret)
4704                 goto out;
4705
4706         page_count = obj->size / PAGE_SIZE;
4707
4708         for (i = 0; i < page_count; i++) {
4709                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4710                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4711
4712                 memcpy(dst, src, PAGE_SIZE);
4713                 kunmap_atomic(dst, KM_USER0);
4714         }
4715         drm_clflush_pages(obj_priv->pages, page_count);
4716         drm_agp_chipset_flush(dev);
4717
4718         i915_gem_object_put_pages(obj);
4719 out:
4720         obj_priv->phys_obj->cur_obj = NULL;
4721         obj_priv->phys_obj = NULL;
4722 }
4723
4724 int
4725 i915_gem_attach_phys_object(struct drm_device *dev,
4726                             struct drm_gem_object *obj, int id)
4727 {
4728         drm_i915_private_t *dev_priv = dev->dev_private;
4729         struct drm_i915_gem_object *obj_priv;
4730         int ret = 0;
4731         int page_count;
4732         int i;
4733
4734         if (id > I915_MAX_PHYS_OBJECT)
4735                 return -EINVAL;
4736
4737         obj_priv = obj->driver_private;
4738
4739         if (obj_priv->phys_obj) {
4740                 if (obj_priv->phys_obj->id == id)
4741                         return 0;
4742                 i915_gem_detach_phys_object(dev, obj);
4743         }
4744
4745
4746         /* create a new object */
4747         if (!dev_priv->mm.phys_objs[id - 1]) {
4748                 ret = i915_gem_init_phys_object(dev, id,
4749                                                 obj->size);
4750                 if (ret) {
4751                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4752                         goto out;
4753                 }
4754         }
4755
4756         /* bind to the object */
4757         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4758         obj_priv->phys_obj->cur_obj = obj;
4759
4760         ret = i915_gem_object_get_pages(obj);
4761         if (ret) {
4762                 DRM_ERROR("failed to get page list\n");
4763                 goto out;
4764         }
4765
4766         page_count = obj->size / PAGE_SIZE;
4767
4768         for (i = 0; i < page_count; i++) {
4769                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4770                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4771
4772                 memcpy(dst, src, PAGE_SIZE);
4773                 kunmap_atomic(src, KM_USER0);
4774         }
4775
4776         i915_gem_object_put_pages(obj);
4777
4778         return 0;
4779 out:
4780         return ret;
4781 }
4782
4783 static int
4784 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4785                      struct drm_i915_gem_pwrite *args,
4786                      struct drm_file *file_priv)
4787 {
4788         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4789         void *obj_addr;
4790         int ret;
4791         char __user *user_data;
4792
4793         user_data = (char __user *) (uintptr_t) args->data_ptr;
4794         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4795
4796         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4797         ret = copy_from_user(obj_addr, user_data, args->size);
4798         if (ret)
4799                 return -EFAULT;
4800
4801         drm_agp_chipset_flush(dev);
4802         return 0;
4803 }
4804
4805 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4806 {
4807         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4808
4809         /* Clean up our request list when the client is going away, so that
4810          * later retire_requests won't dereference our soon-to-be-gone
4811          * file_priv.
4812          */
4813         mutex_lock(&dev->struct_mutex);
4814         while (!list_empty(&i915_file_priv->mm.request_list))
4815                 list_del_init(i915_file_priv->mm.request_list.next);
4816         mutex_unlock(&dev->struct_mutex);
4817 }
4818
4819 static int
4820 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4821 {
4822         drm_i915_private_t *dev_priv, *next_dev;
4823         struct drm_i915_gem_object *obj_priv, *next_obj;
4824         int cnt = 0;
4825         int would_deadlock = 1;
4826
4827         /* "fast-path" to count number of available objects */
4828         if (nr_to_scan == 0) {
4829                 spin_lock(&shrink_list_lock);
4830                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4831                         struct drm_device *dev = dev_priv->dev;
4832
4833                         if (mutex_trylock(&dev->struct_mutex)) {
4834                                 list_for_each_entry(obj_priv,
4835                                                     &dev_priv->mm.inactive_list,
4836                                                     list)
4837                                         cnt++;
4838                                 mutex_unlock(&dev->struct_mutex);
4839                         }
4840                 }
4841                 spin_unlock(&shrink_list_lock);
4842
4843                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4844         }
4845
4846         spin_lock(&shrink_list_lock);
4847
4848         /* first scan for clean buffers */
4849         list_for_each_entry_safe(dev_priv, next_dev,
4850                                  &shrink_list, mm.shrink_list) {
4851                 struct drm_device *dev = dev_priv->dev;
4852
4853                 if (! mutex_trylock(&dev->struct_mutex))
4854                         continue;
4855
4856                 spin_unlock(&shrink_list_lock);
4857
4858                 i915_gem_retire_requests(dev);
4859
4860                 list_for_each_entry_safe(obj_priv, next_obj,
4861                                          &dev_priv->mm.inactive_list,
4862                                          list) {
4863                         if (i915_gem_object_is_purgeable(obj_priv)) {
4864                                 i915_gem_object_unbind(obj_priv->obj);
4865                                 if (--nr_to_scan <= 0)
4866                                         break;
4867                         }
4868                 }
4869
4870                 spin_lock(&shrink_list_lock);
4871                 mutex_unlock(&dev->struct_mutex);
4872
4873                 would_deadlock = 0;
4874
4875                 if (nr_to_scan <= 0)
4876                         break;
4877         }
4878
4879         /* second pass, evict/count anything still on the inactive list */
4880         list_for_each_entry_safe(dev_priv, next_dev,
4881                                  &shrink_list, mm.shrink_list) {
4882                 struct drm_device *dev = dev_priv->dev;
4883
4884                 if (! mutex_trylock(&dev->struct_mutex))
4885                         continue;
4886
4887                 spin_unlock(&shrink_list_lock);
4888
4889                 list_for_each_entry_safe(obj_priv, next_obj,
4890                                          &dev_priv->mm.inactive_list,
4891                                          list) {
4892                         if (nr_to_scan > 0) {
4893                                 i915_gem_object_unbind(obj_priv->obj);
4894                                 nr_to_scan--;
4895                         } else
4896                                 cnt++;
4897                 }
4898
4899                 spin_lock(&shrink_list_lock);
4900                 mutex_unlock(&dev->struct_mutex);
4901
4902                 would_deadlock = 0;
4903         }
4904
4905         spin_unlock(&shrink_list_lock);
4906
4907         if (would_deadlock)
4908                 return -1;
4909         else if (cnt > 0)
4910                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4911         else
4912                 return 0;
4913 }
4914
4915 static struct shrinker shrinker = {
4916         .shrink = i915_gem_shrink,
4917         .seeks = DEFAULT_SEEKS,
4918 };
4919
4920 __init void
4921 i915_gem_shrinker_init(void)
4922 {
4923     register_shrinker(&shrinker);
4924 }
4925
4926 __exit void
4927 i915_gem_shrinker_exit(void)
4928 {
4929     unregister_shrinker(&shrinker);
4930 }