]> Pileus Git - ~andy/linux/blob - drivers/firewire/ohci.c
firewire: tone down some diagnostic log messages
[~andy/linux] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
50
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
54
55 #include "core.h"
56 #include "ohci.h"
57
58 #define DESCRIPTOR_OUTPUT_MORE          0
59 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
60 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
61 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
62 #define DESCRIPTOR_STATUS               (1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
64 #define DESCRIPTOR_PING                 (1 << 7)
65 #define DESCRIPTOR_YY                   (1 << 6)
66 #define DESCRIPTOR_NO_IRQ               (0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
70 #define DESCRIPTOR_WAIT                 (3 << 0)
71
72 struct descriptor {
73         __le16 req_count;
74         __le16 control;
75         __le32 data_address;
76         __le32 branch_address;
77         __le16 res_count;
78         __le16 transfer_status;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 #define AR_BUFFER_SIZE  (32*1024)
87 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91 #define MAX_ASYNC_PAYLOAD       4096
92 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95 struct ar_context {
96         struct fw_ohci *ohci;
97         struct page *pages[AR_BUFFERS];
98         void *buffer;
99         struct descriptor *descriptors;
100         dma_addr_t descriptors_bus;
101         void *pointer;
102         unsigned int last_buffer_index;
103         u32 regs;
104         struct tasklet_struct tasklet;
105 };
106
107 struct context;
108
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110                                      struct descriptor *d,
111                                      struct descriptor *last);
112
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118         struct list_head list;
119         dma_addr_t buffer_bus;
120         size_t buffer_size;
121         size_t used;
122         struct descriptor buffer[0];
123 };
124
125 struct context {
126         struct fw_ohci *ohci;
127         u32 regs;
128         int total_allocation;
129         u32 current_bus;
130         bool running;
131         bool flushing;
132
133         /*
134          * List of page-sized buffers for storing DMA descriptors.
135          * Head of list contains buffers in use and tail of list contains
136          * free buffers.
137          */
138         struct list_head buffer_list;
139
140         /*
141          * Pointer to a buffer inside buffer_list that contains the tail
142          * end of the current DMA program.
143          */
144         struct descriptor_buffer *buffer_tail;
145
146         /*
147          * The descriptor containing the branch address of the first
148          * descriptor that has not yet been filled by the device.
149          */
150         struct descriptor *last;
151
152         /*
153          * The last descriptor in the DMA program.  It contains the branch
154          * address that must be updated upon appending a new descriptor.
155          */
156         struct descriptor *prev;
157
158         descriptor_callback_t callback;
159
160         struct tasklet_struct tasklet;
161 };
162
163 #define IT_HEADER_SY(v)          ((v) <<  0)
164 #define IT_HEADER_TCODE(v)       ((v) <<  4)
165 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
166 #define IT_HEADER_TAG(v)         ((v) << 14)
167 #define IT_HEADER_SPEED(v)       ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169
170 struct iso_context {
171         struct fw_iso_context base;
172         struct context context;
173         int excess_bytes;
174         void *header;
175         size_t header_length;
176
177         u8 sync;
178         u8 tags;
179 };
180
181 #define CONFIG_ROM_SIZE 1024
182
183 struct fw_ohci {
184         struct fw_card card;
185
186         __iomem char *registers;
187         int node_id;
188         int generation;
189         int request_generation; /* for timestamping incoming requests */
190         unsigned quirks;
191         unsigned int pri_req_max;
192         u32 bus_time;
193         bool is_root;
194         bool csr_state_setclear_abdicate;
195         int n_ir;
196         int n_it;
197         /*
198          * Spinlock for accessing fw_ohci data.  Never call out of
199          * this driver with this lock held.
200          */
201         spinlock_t lock;
202
203         struct mutex phy_reg_mutex;
204
205         void *misc_buffer;
206         dma_addr_t misc_buffer_bus;
207
208         struct ar_context ar_request_ctx;
209         struct ar_context ar_response_ctx;
210         struct context at_request_ctx;
211         struct context at_response_ctx;
212
213         u32 it_context_support;
214         u32 it_context_mask;     /* unoccupied IT contexts */
215         struct iso_context *it_context_list;
216         u64 ir_context_channels; /* unoccupied channels */
217         u32 ir_context_support;
218         u32 ir_context_mask;     /* unoccupied IR contexts */
219         struct iso_context *ir_context_list;
220         u64 mc_channels; /* channels in use by the multichannel IR context */
221         bool mc_allocated;
222
223         __be32    *config_rom;
224         dma_addr_t config_rom_bus;
225         __be32    *next_config_rom;
226         dma_addr_t next_config_rom_bus;
227         __be32     next_header;
228
229         __le32    *self_id_cpu;
230         dma_addr_t self_id_bus;
231         struct work_struct bus_reset_work;
232
233         u32 self_id_buffer[512];
234 };
235
236 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
237 {
238         return container_of(card, struct fw_ohci, card);
239 }
240
241 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
242 #define IR_CONTEXT_BUFFER_FILL          0x80000000
243 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
244 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
245 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
246 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
247
248 #define CONTEXT_RUN     0x8000
249 #define CONTEXT_WAKE    0x1000
250 #define CONTEXT_DEAD    0x0800
251 #define CONTEXT_ACTIVE  0x0400
252
253 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
254 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
255 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
256
257 #define OHCI1394_REGISTER_SIZE          0x800
258 #define OHCI1394_PCI_HCI_Control        0x40
259 #define SELF_ID_BUF_SIZE                0x800
260 #define OHCI_TCODE_PHY_PACKET           0x0e
261 #define OHCI_VERSION_1_1                0x010010
262
263 static char ohci_driver_name[] = KBUILD_MODNAME;
264
265 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
271
272 #define QUIRK_CYCLE_TIMER               1
273 #define QUIRK_RESET_PACKET              2
274 #define QUIRK_BE_HEADERS                4
275 #define QUIRK_NO_1394A                  8
276 #define QUIRK_NO_MSI                    16
277 #define QUIRK_TI_SLLZ059                32
278
279 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
280 static const struct {
281         unsigned short vendor, device, revision, flags;
282 } ohci_quirks[] = {
283         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
284                 QUIRK_CYCLE_TIMER},
285
286         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
287                 QUIRK_BE_HEADERS},
288
289         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
290                 QUIRK_NO_MSI},
291
292         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
293                 QUIRK_NO_MSI},
294
295         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
296                 QUIRK_CYCLE_TIMER},
297
298         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
299                 QUIRK_NO_MSI},
300
301         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
302                 QUIRK_CYCLE_TIMER},
303
304         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
305                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
306
307         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
308                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
309
310         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
311                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
312
313         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
314                 QUIRK_RESET_PACKET},
315
316         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
317                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
318 };
319
320 /* This overrides anything that was found in ohci_quirks[]. */
321 static int param_quirks;
322 module_param_named(quirks, param_quirks, int, 0644);
323 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
324         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
325         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
326         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
327         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
328         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
329         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
330         ")");
331
332 #define OHCI_PARAM_DEBUG_AT_AR          1
333 #define OHCI_PARAM_DEBUG_SELFIDS        2
334 #define OHCI_PARAM_DEBUG_IRQS           4
335 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
336
337 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
338
339 static int param_debug;
340 module_param_named(debug, param_debug, int, 0644);
341 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
342         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
343         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
344         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
345         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
346         ", or a combination, or all = -1)");
347
348 static void log_irqs(struct fw_ohci *ohci, u32 evt)
349 {
350         if (likely(!(param_debug &
351                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
352                 return;
353
354         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
355             !(evt & OHCI1394_busReset))
356                 return;
357
358         dev_notice(ohci->card.device,
359             "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
360             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
361             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
362             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
363             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
364             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
365             evt & OHCI1394_isochRx              ? " IR"                 : "",
366             evt & OHCI1394_isochTx              ? " IT"                 : "",
367             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
368             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
369             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
370             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
371             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
372             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
373             evt & OHCI1394_busReset             ? " busReset"           : "",
374             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
375                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
376                     OHCI1394_respTxComplete | OHCI1394_isochRx |
377                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
378                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
379                     OHCI1394_cycleInconsistent |
380                     OHCI1394_regAccessFail | OHCI1394_busReset)
381                                                 ? " ?"                  : "");
382 }
383
384 static const char *speed[] = {
385         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
386 };
387 static const char *power[] = {
388         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
389         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
390 };
391 static const char port[] = { '.', '-', 'p', 'c', };
392
393 static char _p(u32 *s, int shift)
394 {
395         return port[*s >> shift & 3];
396 }
397
398 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
399 {
400         u32 *s;
401
402         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
403                 return;
404
405         dev_notice(ohci->card.device,
406                    "%d selfIDs, generation %d, local node ID %04x\n",
407                    self_id_count, generation, ohci->node_id);
408
409         for (s = ohci->self_id_buffer; self_id_count--; ++s)
410                 if ((*s & 1 << 23) == 0)
411                         dev_notice(ohci->card.device,
412                             "selfID 0: %08x, phy %d [%c%c%c] "
413                             "%s gc=%d %s %s%s%s\n",
414                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
415                             speed[*s >> 14 & 3], *s >> 16 & 63,
416                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
417                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
418                 else
419                         dev_notice(ohci->card.device,
420                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
421                             *s, *s >> 24 & 63,
422                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
423                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
424 }
425
426 static const char *evts[] = {
427         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
428         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
429         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
430         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
431         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
432         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
433         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
434         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
435         [0x10] = "-reserved-",          [0x11] = "ack_complete",
436         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
437         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
438         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
439         [0x18] = "-reserved-",          [0x19] = "-reserved-",
440         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
441         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
442         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
443         [0x20] = "pending/cancelled",
444 };
445 static const char *tcodes[] = {
446         [0x0] = "QW req",               [0x1] = "BW req",
447         [0x2] = "W resp",               [0x3] = "-reserved-",
448         [0x4] = "QR req",               [0x5] = "BR req",
449         [0x6] = "QR resp",              [0x7] = "BR resp",
450         [0x8] = "cycle start",          [0x9] = "Lk req",
451         [0xa] = "async stream packet",  [0xb] = "Lk resp",
452         [0xc] = "-reserved-",           [0xd] = "-reserved-",
453         [0xe] = "link internal",        [0xf] = "-reserved-",
454 };
455
456 static void log_ar_at_event(struct fw_ohci *ohci,
457                             char dir, int speed, u32 *header, int evt)
458 {
459         int tcode = header[0] >> 4 & 0xf;
460         char specific[12];
461
462         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
463                 return;
464
465         if (unlikely(evt >= ARRAY_SIZE(evts)))
466                         evt = 0x1f;
467
468         if (evt == OHCI1394_evt_bus_reset) {
469                 dev_notice(ohci->card.device,
470                            "A%c evt_bus_reset, generation %d\n",
471                            dir, (header[2] >> 16) & 0xff);
472                 return;
473         }
474
475         switch (tcode) {
476         case 0x0: case 0x6: case 0x8:
477                 snprintf(specific, sizeof(specific), " = %08x",
478                          be32_to_cpu((__force __be32)header[3]));
479                 break;
480         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
481                 snprintf(specific, sizeof(specific), " %x,%x",
482                          header[3] >> 16, header[3] & 0xffff);
483                 break;
484         default:
485                 specific[0] = '\0';
486         }
487
488         switch (tcode) {
489         case 0xa:
490                 dev_notice(ohci->card.device,
491                            "A%c %s, %s\n",
492                            dir, evts[evt], tcodes[tcode]);
493                 break;
494         case 0xe:
495                 dev_notice(ohci->card.device,
496                            "A%c %s, PHY %08x %08x\n",
497                            dir, evts[evt], header[1], header[2]);
498                 break;
499         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
500                 dev_notice(ohci->card.device,
501                            "A%c spd %x tl %02x, "
502                            "%04x -> %04x, %s, "
503                            "%s, %04x%08x%s\n",
504                            dir, speed, header[0] >> 10 & 0x3f,
505                            header[1] >> 16, header[0] >> 16, evts[evt],
506                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
507                 break;
508         default:
509                 dev_notice(ohci->card.device,
510                            "A%c spd %x tl %02x, "
511                            "%04x -> %04x, %s, "
512                            "%s%s\n",
513                            dir, speed, header[0] >> 10 & 0x3f,
514                            header[1] >> 16, header[0] >> 16, evts[evt],
515                            tcodes[tcode], specific);
516         }
517 }
518
519 #else
520
521 #define param_debug 0
522 static inline void log_irqs(struct fw_ohci *ohci, u32 evt) {}
523 static inline void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) {}
524 static inline void log_ar_at_event(struct fw_ohci *ohci, char dir, int speed, u32 *header, int evt) {}
525
526 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
527
528 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
529 {
530         writel(data, ohci->registers + offset);
531 }
532
533 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
534 {
535         return readl(ohci->registers + offset);
536 }
537
538 static inline void flush_writes(const struct fw_ohci *ohci)
539 {
540         /* Do a dummy read to flush writes. */
541         reg_read(ohci, OHCI1394_Version);
542 }
543
544 /*
545  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
546  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
547  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
548  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
549  */
550 static int read_phy_reg(struct fw_ohci *ohci, int addr)
551 {
552         u32 val;
553         int i;
554
555         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
556         for (i = 0; i < 3 + 100; i++) {
557                 val = reg_read(ohci, OHCI1394_PhyControl);
558                 if (!~val)
559                         return -ENODEV; /* Card was ejected. */
560
561                 if (val & OHCI1394_PhyControl_ReadDone)
562                         return OHCI1394_PhyControl_ReadData(val);
563
564                 /*
565                  * Try a few times without waiting.  Sleeping is necessary
566                  * only when the link/PHY interface is busy.
567                  */
568                 if (i >= 3)
569                         msleep(1);
570         }
571         dev_err(ohci->card.device, "failed to read phy reg\n");
572
573         return -EBUSY;
574 }
575
576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578         int i;
579
580         reg_write(ohci, OHCI1394_PhyControl,
581                   OHCI1394_PhyControl_Write(addr, val));
582         for (i = 0; i < 3 + 100; i++) {
583                 val = reg_read(ohci, OHCI1394_PhyControl);
584                 if (!~val)
585                         return -ENODEV; /* Card was ejected. */
586
587                 if (!(val & OHCI1394_PhyControl_WritePending))
588                         return 0;
589
590                 if (i >= 3)
591                         msleep(1);
592         }
593         dev_err(ohci->card.device, "failed to write phy reg\n");
594
595         return -EBUSY;
596 }
597
598 static int update_phy_reg(struct fw_ohci *ohci, int addr,
599                           int clear_bits, int set_bits)
600 {
601         int ret = read_phy_reg(ohci, addr);
602         if (ret < 0)
603                 return ret;
604
605         /*
606          * The interrupt status bits are cleared by writing a one bit.
607          * Avoid clearing them unless explicitly requested in set_bits.
608          */
609         if (addr == 5)
610                 clear_bits |= PHY_INT_STATUS_BITS;
611
612         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
613 }
614
615 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
616 {
617         int ret;
618
619         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
620         if (ret < 0)
621                 return ret;
622
623         return read_phy_reg(ohci, addr);
624 }
625
626 static int ohci_read_phy_reg(struct fw_card *card, int addr)
627 {
628         struct fw_ohci *ohci = fw_ohci(card);
629         int ret;
630
631         mutex_lock(&ohci->phy_reg_mutex);
632         ret = read_phy_reg(ohci, addr);
633         mutex_unlock(&ohci->phy_reg_mutex);
634
635         return ret;
636 }
637
638 static int ohci_update_phy_reg(struct fw_card *card, int addr,
639                                int clear_bits, int set_bits)
640 {
641         struct fw_ohci *ohci = fw_ohci(card);
642         int ret;
643
644         mutex_lock(&ohci->phy_reg_mutex);
645         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
646         mutex_unlock(&ohci->phy_reg_mutex);
647
648         return ret;
649 }
650
651 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
652 {
653         return page_private(ctx->pages[i]);
654 }
655
656 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
657 {
658         struct descriptor *d;
659
660         d = &ctx->descriptors[index];
661         d->branch_address  &= cpu_to_le32(~0xf);
662         d->res_count       =  cpu_to_le16(PAGE_SIZE);
663         d->transfer_status =  0;
664
665         wmb(); /* finish init of new descriptors before branch_address update */
666         d = &ctx->descriptors[ctx->last_buffer_index];
667         d->branch_address  |= cpu_to_le32(1);
668
669         ctx->last_buffer_index = index;
670
671         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
672 }
673
674 static void ar_context_release(struct ar_context *ctx)
675 {
676         unsigned int i;
677
678         if (ctx->buffer)
679                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
680
681         for (i = 0; i < AR_BUFFERS; i++)
682                 if (ctx->pages[i]) {
683                         dma_unmap_page(ctx->ohci->card.device,
684                                        ar_buffer_bus(ctx, i),
685                                        PAGE_SIZE, DMA_FROM_DEVICE);
686                         __free_page(ctx->pages[i]);
687                 }
688 }
689
690 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
691 {
692         struct fw_ohci *ohci = ctx->ohci;
693
694         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
695                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
696                 flush_writes(ohci);
697
698                 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
699                         error_msg);
700         }
701         /* FIXME: restart? */
702 }
703
704 static inline unsigned int ar_next_buffer_index(unsigned int index)
705 {
706         return (index + 1) % AR_BUFFERS;
707 }
708
709 static inline unsigned int ar_prev_buffer_index(unsigned int index)
710 {
711         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
712 }
713
714 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
715 {
716         return ar_next_buffer_index(ctx->last_buffer_index);
717 }
718
719 /*
720  * We search for the buffer that contains the last AR packet DMA data written
721  * by the controller.
722  */
723 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
724                                                  unsigned int *buffer_offset)
725 {
726         unsigned int i, next_i, last = ctx->last_buffer_index;
727         __le16 res_count, next_res_count;
728
729         i = ar_first_buffer_index(ctx);
730         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
731
732         /* A buffer that is not yet completely filled must be the last one. */
733         while (i != last && res_count == 0) {
734
735                 /* Peek at the next descriptor. */
736                 next_i = ar_next_buffer_index(i);
737                 rmb(); /* read descriptors in order */
738                 next_res_count = ACCESS_ONCE(
739                                 ctx->descriptors[next_i].res_count);
740                 /*
741                  * If the next descriptor is still empty, we must stop at this
742                  * descriptor.
743                  */
744                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
745                         /*
746                          * The exception is when the DMA data for one packet is
747                          * split over three buffers; in this case, the middle
748                          * buffer's descriptor might be never updated by the
749                          * controller and look still empty, and we have to peek
750                          * at the third one.
751                          */
752                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
753                                 next_i = ar_next_buffer_index(next_i);
754                                 rmb();
755                                 next_res_count = ACCESS_ONCE(
756                                         ctx->descriptors[next_i].res_count);
757                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
758                                         goto next_buffer_is_active;
759                         }
760
761                         break;
762                 }
763
764 next_buffer_is_active:
765                 i = next_i;
766                 res_count = next_res_count;
767         }
768
769         rmb(); /* read res_count before the DMA data */
770
771         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
772         if (*buffer_offset > PAGE_SIZE) {
773                 *buffer_offset = 0;
774                 ar_context_abort(ctx, "corrupted descriptor");
775         }
776
777         return i;
778 }
779
780 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
781                                     unsigned int end_buffer_index,
782                                     unsigned int end_buffer_offset)
783 {
784         unsigned int i;
785
786         i = ar_first_buffer_index(ctx);
787         while (i != end_buffer_index) {
788                 dma_sync_single_for_cpu(ctx->ohci->card.device,
789                                         ar_buffer_bus(ctx, i),
790                                         PAGE_SIZE, DMA_FROM_DEVICE);
791                 i = ar_next_buffer_index(i);
792         }
793         if (end_buffer_offset > 0)
794                 dma_sync_single_for_cpu(ctx->ohci->card.device,
795                                         ar_buffer_bus(ctx, i),
796                                         end_buffer_offset, DMA_FROM_DEVICE);
797 }
798
799 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
800 #define cond_le32_to_cpu(v) \
801         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
802 #else
803 #define cond_le32_to_cpu(v) le32_to_cpu(v)
804 #endif
805
806 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
807 {
808         struct fw_ohci *ohci = ctx->ohci;
809         struct fw_packet p;
810         u32 status, length, tcode;
811         int evt;
812
813         p.header[0] = cond_le32_to_cpu(buffer[0]);
814         p.header[1] = cond_le32_to_cpu(buffer[1]);
815         p.header[2] = cond_le32_to_cpu(buffer[2]);
816
817         tcode = (p.header[0] >> 4) & 0x0f;
818         switch (tcode) {
819         case TCODE_WRITE_QUADLET_REQUEST:
820         case TCODE_READ_QUADLET_RESPONSE:
821                 p.header[3] = (__force __u32) buffer[3];
822                 p.header_length = 16;
823                 p.payload_length = 0;
824                 break;
825
826         case TCODE_READ_BLOCK_REQUEST :
827                 p.header[3] = cond_le32_to_cpu(buffer[3]);
828                 p.header_length = 16;
829                 p.payload_length = 0;
830                 break;
831
832         case TCODE_WRITE_BLOCK_REQUEST:
833         case TCODE_READ_BLOCK_RESPONSE:
834         case TCODE_LOCK_REQUEST:
835         case TCODE_LOCK_RESPONSE:
836                 p.header[3] = cond_le32_to_cpu(buffer[3]);
837                 p.header_length = 16;
838                 p.payload_length = p.header[3] >> 16;
839                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
840                         ar_context_abort(ctx, "invalid packet length");
841                         return NULL;
842                 }
843                 break;
844
845         case TCODE_WRITE_RESPONSE:
846         case TCODE_READ_QUADLET_REQUEST:
847         case OHCI_TCODE_PHY_PACKET:
848                 p.header_length = 12;
849                 p.payload_length = 0;
850                 break;
851
852         default:
853                 ar_context_abort(ctx, "invalid tcode");
854                 return NULL;
855         }
856
857         p.payload = (void *) buffer + p.header_length;
858
859         /* FIXME: What to do about evt_* errors? */
860         length = (p.header_length + p.payload_length + 3) / 4;
861         status = cond_le32_to_cpu(buffer[length]);
862         evt    = (status >> 16) & 0x1f;
863
864         p.ack        = evt - 16;
865         p.speed      = (status >> 21) & 0x7;
866         p.timestamp  = status & 0xffff;
867         p.generation = ohci->request_generation;
868
869         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
870
871         /*
872          * Several controllers, notably from NEC and VIA, forget to
873          * write ack_complete status at PHY packet reception.
874          */
875         if (evt == OHCI1394_evt_no_status &&
876             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
877                 p.ack = ACK_COMPLETE;
878
879         /*
880          * The OHCI bus reset handler synthesizes a PHY packet with
881          * the new generation number when a bus reset happens (see
882          * section 8.4.2.3).  This helps us determine when a request
883          * was received and make sure we send the response in the same
884          * generation.  We only need this for requests; for responses
885          * we use the unique tlabel for finding the matching
886          * request.
887          *
888          * Alas some chips sometimes emit bus reset packets with a
889          * wrong generation.  We set the correct generation for these
890          * at a slightly incorrect time (in bus_reset_work).
891          */
892         if (evt == OHCI1394_evt_bus_reset) {
893                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
894                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
895         } else if (ctx == &ohci->ar_request_ctx) {
896                 fw_core_handle_request(&ohci->card, &p);
897         } else {
898                 fw_core_handle_response(&ohci->card, &p);
899         }
900
901         return buffer + length + 1;
902 }
903
904 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
905 {
906         void *next;
907
908         while (p < end) {
909                 next = handle_ar_packet(ctx, p);
910                 if (!next)
911                         return p;
912                 p = next;
913         }
914
915         return p;
916 }
917
918 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
919 {
920         unsigned int i;
921
922         i = ar_first_buffer_index(ctx);
923         while (i != end_buffer) {
924                 dma_sync_single_for_device(ctx->ohci->card.device,
925                                            ar_buffer_bus(ctx, i),
926                                            PAGE_SIZE, DMA_FROM_DEVICE);
927                 ar_context_link_page(ctx, i);
928                 i = ar_next_buffer_index(i);
929         }
930 }
931
932 static void ar_context_tasklet(unsigned long data)
933 {
934         struct ar_context *ctx = (struct ar_context *)data;
935         unsigned int end_buffer_index, end_buffer_offset;
936         void *p, *end;
937
938         p = ctx->pointer;
939         if (!p)
940                 return;
941
942         end_buffer_index = ar_search_last_active_buffer(ctx,
943                                                         &end_buffer_offset);
944         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
945         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
946
947         if (end_buffer_index < ar_first_buffer_index(ctx)) {
948                 /*
949                  * The filled part of the overall buffer wraps around; handle
950                  * all packets up to the buffer end here.  If the last packet
951                  * wraps around, its tail will be visible after the buffer end
952                  * because the buffer start pages are mapped there again.
953                  */
954                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
955                 p = handle_ar_packets(ctx, p, buffer_end);
956                 if (p < buffer_end)
957                         goto error;
958                 /* adjust p to point back into the actual buffer */
959                 p -= AR_BUFFERS * PAGE_SIZE;
960         }
961
962         p = handle_ar_packets(ctx, p, end);
963         if (p != end) {
964                 if (p > end)
965                         ar_context_abort(ctx, "inconsistent descriptor");
966                 goto error;
967         }
968
969         ctx->pointer = p;
970         ar_recycle_buffers(ctx, end_buffer_index);
971
972         return;
973
974 error:
975         ctx->pointer = NULL;
976 }
977
978 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
979                            unsigned int descriptors_offset, u32 regs)
980 {
981         unsigned int i;
982         dma_addr_t dma_addr;
983         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
984         struct descriptor *d;
985
986         ctx->regs        = regs;
987         ctx->ohci        = ohci;
988         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
989
990         for (i = 0; i < AR_BUFFERS; i++) {
991                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
992                 if (!ctx->pages[i])
993                         goto out_of_memory;
994                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
995                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
996                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
997                         __free_page(ctx->pages[i]);
998                         ctx->pages[i] = NULL;
999                         goto out_of_memory;
1000                 }
1001                 set_page_private(ctx->pages[i], dma_addr);
1002         }
1003
1004         for (i = 0; i < AR_BUFFERS; i++)
1005                 pages[i]              = ctx->pages[i];
1006         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1007                 pages[AR_BUFFERS + i] = ctx->pages[i];
1008         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1009                                  -1, PAGE_KERNEL);
1010         if (!ctx->buffer)
1011                 goto out_of_memory;
1012
1013         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1014         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1015
1016         for (i = 0; i < AR_BUFFERS; i++) {
1017                 d = &ctx->descriptors[i];
1018                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1019                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1020                                                 DESCRIPTOR_STATUS |
1021                                                 DESCRIPTOR_BRANCH_ALWAYS);
1022                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1023                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1024                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1025         }
1026
1027         return 0;
1028
1029 out_of_memory:
1030         ar_context_release(ctx);
1031
1032         return -ENOMEM;
1033 }
1034
1035 static void ar_context_run(struct ar_context *ctx)
1036 {
1037         unsigned int i;
1038
1039         for (i = 0; i < AR_BUFFERS; i++)
1040                 ar_context_link_page(ctx, i);
1041
1042         ctx->pointer = ctx->buffer;
1043
1044         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1045         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1046 }
1047
1048 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1049 {
1050         __le16 branch;
1051
1052         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1053
1054         /* figure out which descriptor the branch address goes in */
1055         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1056                 return d;
1057         else
1058                 return d + z - 1;
1059 }
1060
1061 static void context_tasklet(unsigned long data)
1062 {
1063         struct context *ctx = (struct context *) data;
1064         struct descriptor *d, *last;
1065         u32 address;
1066         int z;
1067         struct descriptor_buffer *desc;
1068
1069         desc = list_entry(ctx->buffer_list.next,
1070                         struct descriptor_buffer, list);
1071         last = ctx->last;
1072         while (last->branch_address != 0) {
1073                 struct descriptor_buffer *old_desc = desc;
1074                 address = le32_to_cpu(last->branch_address);
1075                 z = address & 0xf;
1076                 address &= ~0xf;
1077                 ctx->current_bus = address;
1078
1079                 /* If the branch address points to a buffer outside of the
1080                  * current buffer, advance to the next buffer. */
1081                 if (address < desc->buffer_bus ||
1082                                 address >= desc->buffer_bus + desc->used)
1083                         desc = list_entry(desc->list.next,
1084                                         struct descriptor_buffer, list);
1085                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1086                 last = find_branch_descriptor(d, z);
1087
1088                 if (!ctx->callback(ctx, d, last))
1089                         break;
1090
1091                 if (old_desc != desc) {
1092                         /* If we've advanced to the next buffer, move the
1093                          * previous buffer to the free list. */
1094                         unsigned long flags;
1095                         old_desc->used = 0;
1096                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1097                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1098                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1099                 }
1100                 ctx->last = last;
1101         }
1102 }
1103
1104 /*
1105  * Allocate a new buffer and add it to the list of free buffers for this
1106  * context.  Must be called with ohci->lock held.
1107  */
1108 static int context_add_buffer(struct context *ctx)
1109 {
1110         struct descriptor_buffer *desc;
1111         dma_addr_t uninitialized_var(bus_addr);
1112         int offset;
1113
1114         /*
1115          * 16MB of descriptors should be far more than enough for any DMA
1116          * program.  This will catch run-away userspace or DoS attacks.
1117          */
1118         if (ctx->total_allocation >= 16*1024*1024)
1119                 return -ENOMEM;
1120
1121         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1122                         &bus_addr, GFP_ATOMIC);
1123         if (!desc)
1124                 return -ENOMEM;
1125
1126         offset = (void *)&desc->buffer - (void *)desc;
1127         desc->buffer_size = PAGE_SIZE - offset;
1128         desc->buffer_bus = bus_addr + offset;
1129         desc->used = 0;
1130
1131         list_add_tail(&desc->list, &ctx->buffer_list);
1132         ctx->total_allocation += PAGE_SIZE;
1133
1134         return 0;
1135 }
1136
1137 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1138                         u32 regs, descriptor_callback_t callback)
1139 {
1140         ctx->ohci = ohci;
1141         ctx->regs = regs;
1142         ctx->total_allocation = 0;
1143
1144         INIT_LIST_HEAD(&ctx->buffer_list);
1145         if (context_add_buffer(ctx) < 0)
1146                 return -ENOMEM;
1147
1148         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1149                         struct descriptor_buffer, list);
1150
1151         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1152         ctx->callback = callback;
1153
1154         /*
1155          * We put a dummy descriptor in the buffer that has a NULL
1156          * branch address and looks like it's been sent.  That way we
1157          * have a descriptor to append DMA programs to.
1158          */
1159         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1160         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1161         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1162         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1163         ctx->last = ctx->buffer_tail->buffer;
1164         ctx->prev = ctx->buffer_tail->buffer;
1165
1166         return 0;
1167 }
1168
1169 static void context_release(struct context *ctx)
1170 {
1171         struct fw_card *card = &ctx->ohci->card;
1172         struct descriptor_buffer *desc, *tmp;
1173
1174         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1175                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1176                         desc->buffer_bus -
1177                         ((void *)&desc->buffer - (void *)desc));
1178 }
1179
1180 /* Must be called with ohci->lock held */
1181 static struct descriptor *context_get_descriptors(struct context *ctx,
1182                                                   int z, dma_addr_t *d_bus)
1183 {
1184         struct descriptor *d = NULL;
1185         struct descriptor_buffer *desc = ctx->buffer_tail;
1186
1187         if (z * sizeof(*d) > desc->buffer_size)
1188                 return NULL;
1189
1190         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1191                 /* No room for the descriptor in this buffer, so advance to the
1192                  * next one. */
1193
1194                 if (desc->list.next == &ctx->buffer_list) {
1195                         /* If there is no free buffer next in the list,
1196                          * allocate one. */
1197                         if (context_add_buffer(ctx) < 0)
1198                                 return NULL;
1199                 }
1200                 desc = list_entry(desc->list.next,
1201                                 struct descriptor_buffer, list);
1202                 ctx->buffer_tail = desc;
1203         }
1204
1205         d = desc->buffer + desc->used / sizeof(*d);
1206         memset(d, 0, z * sizeof(*d));
1207         *d_bus = desc->buffer_bus + desc->used;
1208
1209         return d;
1210 }
1211
1212 static void context_run(struct context *ctx, u32 extra)
1213 {
1214         struct fw_ohci *ohci = ctx->ohci;
1215
1216         reg_write(ohci, COMMAND_PTR(ctx->regs),
1217                   le32_to_cpu(ctx->last->branch_address));
1218         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1219         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1220         ctx->running = true;
1221         flush_writes(ohci);
1222 }
1223
1224 static void context_append(struct context *ctx,
1225                            struct descriptor *d, int z, int extra)
1226 {
1227         dma_addr_t d_bus;
1228         struct descriptor_buffer *desc = ctx->buffer_tail;
1229
1230         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1231
1232         desc->used += (z + extra) * sizeof(*d);
1233
1234         wmb(); /* finish init of new descriptors before branch_address update */
1235         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1236         ctx->prev = find_branch_descriptor(d, z);
1237 }
1238
1239 static void context_stop(struct context *ctx)
1240 {
1241         struct fw_ohci *ohci = ctx->ohci;
1242         u32 reg;
1243         int i;
1244
1245         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1246         ctx->running = false;
1247
1248         for (i = 0; i < 1000; i++) {
1249                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1250                 if ((reg & CONTEXT_ACTIVE) == 0)
1251                         return;
1252
1253                 if (i)
1254                         udelay(10);
1255         }
1256         dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1257 }
1258
1259 struct driver_data {
1260         u8 inline_data[8];
1261         struct fw_packet *packet;
1262 };
1263
1264 /*
1265  * This function apppends a packet to the DMA queue for transmission.
1266  * Must always be called with the ochi->lock held to ensure proper
1267  * generation handling and locking around packet queue manipulation.
1268  */
1269 static int at_context_queue_packet(struct context *ctx,
1270                                    struct fw_packet *packet)
1271 {
1272         struct fw_ohci *ohci = ctx->ohci;
1273         dma_addr_t d_bus, uninitialized_var(payload_bus);
1274         struct driver_data *driver_data;
1275         struct descriptor *d, *last;
1276         __le32 *header;
1277         int z, tcode;
1278
1279         d = context_get_descriptors(ctx, 4, &d_bus);
1280         if (d == NULL) {
1281                 packet->ack = RCODE_SEND_ERROR;
1282                 return -1;
1283         }
1284
1285         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1286         d[0].res_count = cpu_to_le16(packet->timestamp);
1287
1288         /*
1289          * The DMA format for asyncronous link packets is different
1290          * from the IEEE1394 layout, so shift the fields around
1291          * accordingly.
1292          */
1293
1294         tcode = (packet->header[0] >> 4) & 0x0f;
1295         header = (__le32 *) &d[1];
1296         switch (tcode) {
1297         case TCODE_WRITE_QUADLET_REQUEST:
1298         case TCODE_WRITE_BLOCK_REQUEST:
1299         case TCODE_WRITE_RESPONSE:
1300         case TCODE_READ_QUADLET_REQUEST:
1301         case TCODE_READ_BLOCK_REQUEST:
1302         case TCODE_READ_QUADLET_RESPONSE:
1303         case TCODE_READ_BLOCK_RESPONSE:
1304         case TCODE_LOCK_REQUEST:
1305         case TCODE_LOCK_RESPONSE:
1306                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1307                                         (packet->speed << 16));
1308                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1309                                         (packet->header[0] & 0xffff0000));
1310                 header[2] = cpu_to_le32(packet->header[2]);
1311
1312                 if (TCODE_IS_BLOCK_PACKET(tcode))
1313                         header[3] = cpu_to_le32(packet->header[3]);
1314                 else
1315                         header[3] = (__force __le32) packet->header[3];
1316
1317                 d[0].req_count = cpu_to_le16(packet->header_length);
1318                 break;
1319
1320         case TCODE_LINK_INTERNAL:
1321                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1322                                         (packet->speed << 16));
1323                 header[1] = cpu_to_le32(packet->header[1]);
1324                 header[2] = cpu_to_le32(packet->header[2]);
1325                 d[0].req_count = cpu_to_le16(12);
1326
1327                 if (is_ping_packet(&packet->header[1]))
1328                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1329                 break;
1330
1331         case TCODE_STREAM_DATA:
1332                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1333                                         (packet->speed << 16));
1334                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1335                 d[0].req_count = cpu_to_le16(8);
1336                 break;
1337
1338         default:
1339                 /* BUG(); */
1340                 packet->ack = RCODE_SEND_ERROR;
1341                 return -1;
1342         }
1343
1344         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1345         driver_data = (struct driver_data *) &d[3];
1346         driver_data->packet = packet;
1347         packet->driver_data = driver_data;
1348
1349         if (packet->payload_length > 0) {
1350                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1351                         payload_bus = dma_map_single(ohci->card.device,
1352                                                      packet->payload,
1353                                                      packet->payload_length,
1354                                                      DMA_TO_DEVICE);
1355                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1356                                 packet->ack = RCODE_SEND_ERROR;
1357                                 return -1;
1358                         }
1359                         packet->payload_bus     = payload_bus;
1360                         packet->payload_mapped  = true;
1361                 } else {
1362                         memcpy(driver_data->inline_data, packet->payload,
1363                                packet->payload_length);
1364                         payload_bus = d_bus + 3 * sizeof(*d);
1365                 }
1366
1367                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1368                 d[2].data_address = cpu_to_le32(payload_bus);
1369                 last = &d[2];
1370                 z = 3;
1371         } else {
1372                 last = &d[0];
1373                 z = 2;
1374         }
1375
1376         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1377                                      DESCRIPTOR_IRQ_ALWAYS |
1378                                      DESCRIPTOR_BRANCH_ALWAYS);
1379
1380         /* FIXME: Document how the locking works. */
1381         if (ohci->generation != packet->generation) {
1382                 if (packet->payload_mapped)
1383                         dma_unmap_single(ohci->card.device, payload_bus,
1384                                          packet->payload_length, DMA_TO_DEVICE);
1385                 packet->ack = RCODE_GENERATION;
1386                 return -1;
1387         }
1388
1389         context_append(ctx, d, z, 4 - z);
1390
1391         if (ctx->running)
1392                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1393         else
1394                 context_run(ctx, 0);
1395
1396         return 0;
1397 }
1398
1399 static void at_context_flush(struct context *ctx)
1400 {
1401         tasklet_disable(&ctx->tasklet);
1402
1403         ctx->flushing = true;
1404         context_tasklet((unsigned long)ctx);
1405         ctx->flushing = false;
1406
1407         tasklet_enable(&ctx->tasklet);
1408 }
1409
1410 static int handle_at_packet(struct context *context,
1411                             struct descriptor *d,
1412                             struct descriptor *last)
1413 {
1414         struct driver_data *driver_data;
1415         struct fw_packet *packet;
1416         struct fw_ohci *ohci = context->ohci;
1417         int evt;
1418
1419         if (last->transfer_status == 0 && !context->flushing)
1420                 /* This descriptor isn't done yet, stop iteration. */
1421                 return 0;
1422
1423         driver_data = (struct driver_data *) &d[3];
1424         packet = driver_data->packet;
1425         if (packet == NULL)
1426                 /* This packet was cancelled, just continue. */
1427                 return 1;
1428
1429         if (packet->payload_mapped)
1430                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1431                                  packet->payload_length, DMA_TO_DEVICE);
1432
1433         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1434         packet->timestamp = le16_to_cpu(last->res_count);
1435
1436         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1437
1438         switch (evt) {
1439         case OHCI1394_evt_timeout:
1440                 /* Async response transmit timed out. */
1441                 packet->ack = RCODE_CANCELLED;
1442                 break;
1443
1444         case OHCI1394_evt_flushed:
1445                 /*
1446                  * The packet was flushed should give same error as
1447                  * when we try to use a stale generation count.
1448                  */
1449                 packet->ack = RCODE_GENERATION;
1450                 break;
1451
1452         case OHCI1394_evt_missing_ack:
1453                 if (context->flushing)
1454                         packet->ack = RCODE_GENERATION;
1455                 else {
1456                         /*
1457                          * Using a valid (current) generation count, but the
1458                          * node is not on the bus or not sending acks.
1459                          */
1460                         packet->ack = RCODE_NO_ACK;
1461                 }
1462                 break;
1463
1464         case ACK_COMPLETE + 0x10:
1465         case ACK_PENDING + 0x10:
1466         case ACK_BUSY_X + 0x10:
1467         case ACK_BUSY_A + 0x10:
1468         case ACK_BUSY_B + 0x10:
1469         case ACK_DATA_ERROR + 0x10:
1470         case ACK_TYPE_ERROR + 0x10:
1471                 packet->ack = evt - 0x10;
1472                 break;
1473
1474         case OHCI1394_evt_no_status:
1475                 if (context->flushing) {
1476                         packet->ack = RCODE_GENERATION;
1477                         break;
1478                 }
1479                 /* fall through */
1480
1481         default:
1482                 packet->ack = RCODE_SEND_ERROR;
1483                 break;
1484         }
1485
1486         packet->callback(packet, &ohci->card, packet->ack);
1487
1488         return 1;
1489 }
1490
1491 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1492 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1493 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1494 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1495 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1496
1497 static void handle_local_rom(struct fw_ohci *ohci,
1498                              struct fw_packet *packet, u32 csr)
1499 {
1500         struct fw_packet response;
1501         int tcode, length, i;
1502
1503         tcode = HEADER_GET_TCODE(packet->header[0]);
1504         if (TCODE_IS_BLOCK_PACKET(tcode))
1505                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1506         else
1507                 length = 4;
1508
1509         i = csr - CSR_CONFIG_ROM;
1510         if (i + length > CONFIG_ROM_SIZE) {
1511                 fw_fill_response(&response, packet->header,
1512                                  RCODE_ADDRESS_ERROR, NULL, 0);
1513         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1514                 fw_fill_response(&response, packet->header,
1515                                  RCODE_TYPE_ERROR, NULL, 0);
1516         } else {
1517                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1518                                  (void *) ohci->config_rom + i, length);
1519         }
1520
1521         fw_core_handle_response(&ohci->card, &response);
1522 }
1523
1524 static void handle_local_lock(struct fw_ohci *ohci,
1525                               struct fw_packet *packet, u32 csr)
1526 {
1527         struct fw_packet response;
1528         int tcode, length, ext_tcode, sel, try;
1529         __be32 *payload, lock_old;
1530         u32 lock_arg, lock_data;
1531
1532         tcode = HEADER_GET_TCODE(packet->header[0]);
1533         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534         payload = packet->payload;
1535         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1536
1537         if (tcode == TCODE_LOCK_REQUEST &&
1538             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1539                 lock_arg = be32_to_cpu(payload[0]);
1540                 lock_data = be32_to_cpu(payload[1]);
1541         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1542                 lock_arg = 0;
1543                 lock_data = 0;
1544         } else {
1545                 fw_fill_response(&response, packet->header,
1546                                  RCODE_TYPE_ERROR, NULL, 0);
1547                 goto out;
1548         }
1549
1550         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1551         reg_write(ohci, OHCI1394_CSRData, lock_data);
1552         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1553         reg_write(ohci, OHCI1394_CSRControl, sel);
1554
1555         for (try = 0; try < 20; try++)
1556                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1557                         lock_old = cpu_to_be32(reg_read(ohci,
1558                                                         OHCI1394_CSRData));
1559                         fw_fill_response(&response, packet->header,
1560                                          RCODE_COMPLETE,
1561                                          &lock_old, sizeof(lock_old));
1562                         goto out;
1563                 }
1564
1565         dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1566         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1567
1568  out:
1569         fw_core_handle_response(&ohci->card, &response);
1570 }
1571
1572 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1573 {
1574         u64 offset, csr;
1575
1576         if (ctx == &ctx->ohci->at_request_ctx) {
1577                 packet->ack = ACK_PENDING;
1578                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1579         }
1580
1581         offset =
1582                 ((unsigned long long)
1583                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1584                 packet->header[2];
1585         csr = offset - CSR_REGISTER_BASE;
1586
1587         /* Handle config rom reads. */
1588         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1589                 handle_local_rom(ctx->ohci, packet, csr);
1590         else switch (csr) {
1591         case CSR_BUS_MANAGER_ID:
1592         case CSR_BANDWIDTH_AVAILABLE:
1593         case CSR_CHANNELS_AVAILABLE_HI:
1594         case CSR_CHANNELS_AVAILABLE_LO:
1595                 handle_local_lock(ctx->ohci, packet, csr);
1596                 break;
1597         default:
1598                 if (ctx == &ctx->ohci->at_request_ctx)
1599                         fw_core_handle_request(&ctx->ohci->card, packet);
1600                 else
1601                         fw_core_handle_response(&ctx->ohci->card, packet);
1602                 break;
1603         }
1604
1605         if (ctx == &ctx->ohci->at_response_ctx) {
1606                 packet->ack = ACK_COMPLETE;
1607                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1608         }
1609 }
1610
1611 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1612 {
1613         unsigned long flags;
1614         int ret;
1615
1616         spin_lock_irqsave(&ctx->ohci->lock, flags);
1617
1618         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1619             ctx->ohci->generation == packet->generation) {
1620                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1621                 handle_local_request(ctx, packet);
1622                 return;
1623         }
1624
1625         ret = at_context_queue_packet(ctx, packet);
1626         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1627
1628         if (ret < 0)
1629                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1630
1631 }
1632
1633 static void detect_dead_context(struct fw_ohci *ohci,
1634                                 const char *name, unsigned int regs)
1635 {
1636         u32 ctl;
1637
1638         ctl = reg_read(ohci, CONTROL_SET(regs));
1639         if (ctl & CONTEXT_DEAD) {
1640 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1641                 dev_err(ohci->card.device,
1642                         "DMA context %s has stopped, error code: %s\n",
1643                         name, evts[ctl & 0x1f]);
1644 #else
1645                 dev_err(ohci->card.device,
1646                         "DMA context %s has stopped, error code: %#x\n",
1647                         name, ctl & 0x1f);
1648 #endif
1649         }
1650 }
1651
1652 static void handle_dead_contexts(struct fw_ohci *ohci)
1653 {
1654         unsigned int i;
1655         char name[8];
1656
1657         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1658         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1659         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1660         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1661         for (i = 0; i < 32; ++i) {
1662                 if (!(ohci->it_context_support & (1 << i)))
1663                         continue;
1664                 sprintf(name, "IT%u", i);
1665                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1666         }
1667         for (i = 0; i < 32; ++i) {
1668                 if (!(ohci->ir_context_support & (1 << i)))
1669                         continue;
1670                 sprintf(name, "IR%u", i);
1671                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1672         }
1673         /* TODO: maybe try to flush and restart the dead contexts */
1674 }
1675
1676 static u32 cycle_timer_ticks(u32 cycle_timer)
1677 {
1678         u32 ticks;
1679
1680         ticks = cycle_timer & 0xfff;
1681         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1682         ticks += (3072 * 8000) * (cycle_timer >> 25);
1683
1684         return ticks;
1685 }
1686
1687 /*
1688  * Some controllers exhibit one or more of the following bugs when updating the
1689  * iso cycle timer register:
1690  *  - When the lowest six bits are wrapping around to zero, a read that happens
1691  *    at the same time will return garbage in the lowest ten bits.
1692  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1693  *    not incremented for about 60 ns.
1694  *  - Occasionally, the entire register reads zero.
1695  *
1696  * To catch these, we read the register three times and ensure that the
1697  * difference between each two consecutive reads is approximately the same, i.e.
1698  * less than twice the other.  Furthermore, any negative difference indicates an
1699  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1700  * execute, so we have enough precision to compute the ratio of the differences.)
1701  */
1702 static u32 get_cycle_time(struct fw_ohci *ohci)
1703 {
1704         u32 c0, c1, c2;
1705         u32 t0, t1, t2;
1706         s32 diff01, diff12;
1707         int i;
1708
1709         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1710
1711         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1712                 i = 0;
1713                 c1 = c2;
1714                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1715                 do {
1716                         c0 = c1;
1717                         c1 = c2;
1718                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1719                         t0 = cycle_timer_ticks(c0);
1720                         t1 = cycle_timer_ticks(c1);
1721                         t2 = cycle_timer_ticks(c2);
1722                         diff01 = t1 - t0;
1723                         diff12 = t2 - t1;
1724                 } while ((diff01 <= 0 || diff12 <= 0 ||
1725                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1726                          && i++ < 20);
1727         }
1728
1729         return c2;
1730 }
1731
1732 /*
1733  * This function has to be called at least every 64 seconds.  The bus_time
1734  * field stores not only the upper 25 bits of the BUS_TIME register but also
1735  * the most significant bit of the cycle timer in bit 6 so that we can detect
1736  * changes in this bit.
1737  */
1738 static u32 update_bus_time(struct fw_ohci *ohci)
1739 {
1740         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1741
1742         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1743                 ohci->bus_time += 0x40;
1744
1745         return ohci->bus_time | cycle_time_seconds;
1746 }
1747
1748 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1749 {
1750         int reg;
1751
1752         mutex_lock(&ohci->phy_reg_mutex);
1753         reg = write_phy_reg(ohci, 7, port_index);
1754         if (reg >= 0)
1755                 reg = read_phy_reg(ohci, 8);
1756         mutex_unlock(&ohci->phy_reg_mutex);
1757         if (reg < 0)
1758                 return reg;
1759
1760         switch (reg & 0x0f) {
1761         case 0x06:
1762                 return 2;       /* is child node (connected to parent node) */
1763         case 0x0e:
1764                 return 3;       /* is parent node (connected to child node) */
1765         }
1766         return 1;               /* not connected */
1767 }
1768
1769 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1770         int self_id_count)
1771 {
1772         int i;
1773         u32 entry;
1774
1775         for (i = 0; i < self_id_count; i++) {
1776                 entry = ohci->self_id_buffer[i];
1777                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1778                         return -1;
1779                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1780                         return i;
1781         }
1782         return i;
1783 }
1784
1785 /*
1786  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1787  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1788  * Construct the selfID from phy register contents.
1789  * FIXME:  How to determine the selfID.i flag?
1790  */
1791 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1792 {
1793         int reg, i, pos, status;
1794         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1795         u32 self_id = 0x8040c800;
1796
1797         reg = reg_read(ohci, OHCI1394_NodeID);
1798         if (!(reg & OHCI1394_NodeID_idValid)) {
1799                 dev_notice(ohci->card.device,
1800                            "node ID not valid, new bus reset in progress\n");
1801                 return -EBUSY;
1802         }
1803         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1804
1805         reg = ohci_read_phy_reg(&ohci->card, 4);
1806         if (reg < 0)
1807                 return reg;
1808         self_id |= ((reg & 0x07) << 8); /* power class */
1809
1810         reg = ohci_read_phy_reg(&ohci->card, 1);
1811         if (reg < 0)
1812                 return reg;
1813         self_id |= ((reg & 0x3f) << 16); /* gap count */
1814
1815         for (i = 0; i < 3; i++) {
1816                 status = get_status_for_port(ohci, i);
1817                 if (status < 0)
1818                         return status;
1819                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1820         }
1821
1822         pos = get_self_id_pos(ohci, self_id, self_id_count);
1823         if (pos >= 0) {
1824                 memmove(&(ohci->self_id_buffer[pos+1]),
1825                         &(ohci->self_id_buffer[pos]),
1826                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1827                 ohci->self_id_buffer[pos] = self_id;
1828                 self_id_count++;
1829         }
1830         return self_id_count;
1831 }
1832
1833 static void bus_reset_work(struct work_struct *work)
1834 {
1835         struct fw_ohci *ohci =
1836                 container_of(work, struct fw_ohci, bus_reset_work);
1837         int self_id_count, i, j, reg;
1838         int generation, new_generation;
1839         unsigned long flags;
1840         void *free_rom = NULL;
1841         dma_addr_t free_rom_bus = 0;
1842         bool is_new_root;
1843
1844         reg = reg_read(ohci, OHCI1394_NodeID);
1845         if (!(reg & OHCI1394_NodeID_idValid)) {
1846                 dev_notice(ohci->card.device,
1847                            "node ID not valid, new bus reset in progress\n");
1848                 return;
1849         }
1850         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1851                 dev_notice(ohci->card.device, "malconfigured bus\n");
1852                 return;
1853         }
1854         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1855                                OHCI1394_NodeID_nodeNumber);
1856
1857         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1858         if (!(ohci->is_root && is_new_root))
1859                 reg_write(ohci, OHCI1394_LinkControlSet,
1860                           OHCI1394_LinkControl_cycleMaster);
1861         ohci->is_root = is_new_root;
1862
1863         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1864         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1865                 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1866                 return;
1867         }
1868         /*
1869          * The count in the SelfIDCount register is the number of
1870          * bytes in the self ID receive buffer.  Since we also receive
1871          * the inverted quadlets and a header quadlet, we shift one
1872          * bit extra to get the actual number of self IDs.
1873          */
1874         self_id_count = (reg >> 3) & 0xff;
1875
1876         if (self_id_count > 252) {
1877                 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1878                 return;
1879         }
1880
1881         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1882         rmb();
1883
1884         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1885                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1886                         /*
1887                          * If the invalid data looks like a cycle start packet,
1888                          * it's likely to be the result of the cycle master
1889                          * having a wrong gap count.  In this case, the self IDs
1890                          * so far are valid and should be processed so that the
1891                          * bus manager can then correct the gap count.
1892                          */
1893                         if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1894                                                         == 0xffff008f) {
1895                                 dev_notice(ohci->card.device,
1896                                            "ignoring spurious self IDs\n");
1897                                 self_id_count = j;
1898                                 break;
1899                         } else {
1900                                 dev_notice(ohci->card.device,
1901                                            "inconsistent self IDs\n");
1902                                 return;
1903                         }
1904                 }
1905                 ohci->self_id_buffer[j] =
1906                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1907         }
1908
1909         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1910                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1911                 if (self_id_count < 0) {
1912                         dev_notice(ohci->card.device,
1913                                    "could not construct local self ID\n");
1914                         return;
1915                 }
1916         }
1917
1918         if (self_id_count == 0) {
1919                 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1920                 return;
1921         }
1922         rmb();
1923
1924         /*
1925          * Check the consistency of the self IDs we just read.  The
1926          * problem we face is that a new bus reset can start while we
1927          * read out the self IDs from the DMA buffer. If this happens,
1928          * the DMA buffer will be overwritten with new self IDs and we
1929          * will read out inconsistent data.  The OHCI specification
1930          * (section 11.2) recommends a technique similar to
1931          * linux/seqlock.h, where we remember the generation of the
1932          * self IDs in the buffer before reading them out and compare
1933          * it to the current generation after reading them out.  If
1934          * the two generations match we know we have a consistent set
1935          * of self IDs.
1936          */
1937
1938         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1939         if (new_generation != generation) {
1940                 dev_notice(ohci->card.device,
1941                            "new bus reset, discarding self ids\n");
1942                 return;
1943         }
1944
1945         /* FIXME: Document how the locking works. */
1946         spin_lock_irqsave(&ohci->lock, flags);
1947
1948         ohci->generation = -1; /* prevent AT packet queueing */
1949         context_stop(&ohci->at_request_ctx);
1950         context_stop(&ohci->at_response_ctx);
1951
1952         spin_unlock_irqrestore(&ohci->lock, flags);
1953
1954         /*
1955          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1956          * packets in the AT queues and software needs to drain them.
1957          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1958          */
1959         at_context_flush(&ohci->at_request_ctx);
1960         at_context_flush(&ohci->at_response_ctx);
1961
1962         spin_lock_irqsave(&ohci->lock, flags);
1963
1964         ohci->generation = generation;
1965         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1966
1967         if (ohci->quirks & QUIRK_RESET_PACKET)
1968                 ohci->request_generation = generation;
1969
1970         /*
1971          * This next bit is unrelated to the AT context stuff but we
1972          * have to do it under the spinlock also.  If a new config rom
1973          * was set up before this reset, the old one is now no longer
1974          * in use and we can free it. Update the config rom pointers
1975          * to point to the current config rom and clear the
1976          * next_config_rom pointer so a new update can take place.
1977          */
1978
1979         if (ohci->next_config_rom != NULL) {
1980                 if (ohci->next_config_rom != ohci->config_rom) {
1981                         free_rom      = ohci->config_rom;
1982                         free_rom_bus  = ohci->config_rom_bus;
1983                 }
1984                 ohci->config_rom      = ohci->next_config_rom;
1985                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1986                 ohci->next_config_rom = NULL;
1987
1988                 /*
1989                  * Restore config_rom image and manually update
1990                  * config_rom registers.  Writing the header quadlet
1991                  * will indicate that the config rom is ready, so we
1992                  * do that last.
1993                  */
1994                 reg_write(ohci, OHCI1394_BusOptions,
1995                           be32_to_cpu(ohci->config_rom[2]));
1996                 ohci->config_rom[0] = ohci->next_header;
1997                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1998                           be32_to_cpu(ohci->next_header));
1999         }
2000
2001 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2002         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2003         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2004 #endif
2005
2006         spin_unlock_irqrestore(&ohci->lock, flags);
2007
2008         if (free_rom)
2009                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2010                                   free_rom, free_rom_bus);
2011
2012         log_selfids(ohci, generation, self_id_count);
2013
2014         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2015                                  self_id_count, ohci->self_id_buffer,
2016                                  ohci->csr_state_setclear_abdicate);
2017         ohci->csr_state_setclear_abdicate = false;
2018 }
2019
2020 static irqreturn_t irq_handler(int irq, void *data)
2021 {
2022         struct fw_ohci *ohci = data;
2023         u32 event, iso_event;
2024         int i;
2025
2026         event = reg_read(ohci, OHCI1394_IntEventClear);
2027
2028         if (!event || !~event)
2029                 return IRQ_NONE;
2030
2031         /*
2032          * busReset and postedWriteErr must not be cleared yet
2033          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2034          */
2035         reg_write(ohci, OHCI1394_IntEventClear,
2036                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2037         log_irqs(ohci, event);
2038
2039         if (event & OHCI1394_selfIDComplete)
2040                 queue_work(fw_workqueue, &ohci->bus_reset_work);
2041
2042         if (event & OHCI1394_RQPkt)
2043                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2044
2045         if (event & OHCI1394_RSPkt)
2046                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2047
2048         if (event & OHCI1394_reqTxComplete)
2049                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2050
2051         if (event & OHCI1394_respTxComplete)
2052                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2053
2054         if (event & OHCI1394_isochRx) {
2055                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2056                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2057
2058                 while (iso_event) {
2059                         i = ffs(iso_event) - 1;
2060                         tasklet_schedule(
2061                                 &ohci->ir_context_list[i].context.tasklet);
2062                         iso_event &= ~(1 << i);
2063                 }
2064         }
2065
2066         if (event & OHCI1394_isochTx) {
2067                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2068                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2069
2070                 while (iso_event) {
2071                         i = ffs(iso_event) - 1;
2072                         tasklet_schedule(
2073                                 &ohci->it_context_list[i].context.tasklet);
2074                         iso_event &= ~(1 << i);
2075                 }
2076         }
2077
2078         if (unlikely(event & OHCI1394_regAccessFail))
2079                 dev_err(ohci->card.device, "register access failure\n");
2080
2081         if (unlikely(event & OHCI1394_postedWriteErr)) {
2082                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2083                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2084                 reg_write(ohci, OHCI1394_IntEventClear,
2085                           OHCI1394_postedWriteErr);
2086                 if (printk_ratelimit())
2087                         dev_err(ohci->card.device, "PCI posted write error\n");
2088         }
2089
2090         if (unlikely(event & OHCI1394_cycleTooLong)) {
2091                 if (printk_ratelimit())
2092                         dev_notice(ohci->card.device,
2093                                    "isochronous cycle too long\n");
2094                 reg_write(ohci, OHCI1394_LinkControlSet,
2095                           OHCI1394_LinkControl_cycleMaster);
2096         }
2097
2098         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2099                 /*
2100                  * We need to clear this event bit in order to make
2101                  * cycleMatch isochronous I/O work.  In theory we should
2102                  * stop active cycleMatch iso contexts now and restart
2103                  * them at least two cycles later.  (FIXME?)
2104                  */
2105                 if (printk_ratelimit())
2106                         dev_notice(ohci->card.device,
2107                                    "isochronous cycle inconsistent\n");
2108         }
2109
2110         if (unlikely(event & OHCI1394_unrecoverableError))
2111                 handle_dead_contexts(ohci);
2112
2113         if (event & OHCI1394_cycle64Seconds) {
2114                 spin_lock(&ohci->lock);
2115                 update_bus_time(ohci);
2116                 spin_unlock(&ohci->lock);
2117         } else
2118                 flush_writes(ohci);
2119
2120         return IRQ_HANDLED;
2121 }
2122
2123 static int software_reset(struct fw_ohci *ohci)
2124 {
2125         u32 val;
2126         int i;
2127
2128         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2129         for (i = 0; i < 500; i++) {
2130                 val = reg_read(ohci, OHCI1394_HCControlSet);
2131                 if (!~val)
2132                         return -ENODEV; /* Card was ejected. */
2133
2134                 if (!(val & OHCI1394_HCControl_softReset))
2135                         return 0;
2136
2137                 msleep(1);
2138         }
2139
2140         return -EBUSY;
2141 }
2142
2143 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2144 {
2145         size_t size = length * 4;
2146
2147         memcpy(dest, src, size);
2148         if (size < CONFIG_ROM_SIZE)
2149                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2150 }
2151
2152 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2153 {
2154         bool enable_1394a;
2155         int ret, clear, set, offset;
2156
2157         /* Check if the driver should configure link and PHY. */
2158         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2159               OHCI1394_HCControl_programPhyEnable))
2160                 return 0;
2161
2162         /* Paranoia: check whether the PHY supports 1394a, too. */
2163         enable_1394a = false;
2164         ret = read_phy_reg(ohci, 2);
2165         if (ret < 0)
2166                 return ret;
2167         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2168                 ret = read_paged_phy_reg(ohci, 1, 8);
2169                 if (ret < 0)
2170                         return ret;
2171                 if (ret >= 1)
2172                         enable_1394a = true;
2173         }
2174
2175         if (ohci->quirks & QUIRK_NO_1394A)
2176                 enable_1394a = false;
2177
2178         /* Configure PHY and link consistently. */
2179         if (enable_1394a) {
2180                 clear = 0;
2181                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2182         } else {
2183                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2184                 set = 0;
2185         }
2186         ret = update_phy_reg(ohci, 5, clear, set);
2187         if (ret < 0)
2188                 return ret;
2189
2190         if (enable_1394a)
2191                 offset = OHCI1394_HCControlSet;
2192         else
2193                 offset = OHCI1394_HCControlClear;
2194         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2195
2196         /* Clean up: configuration has been taken care of. */
2197         reg_write(ohci, OHCI1394_HCControlClear,
2198                   OHCI1394_HCControl_programPhyEnable);
2199
2200         return 0;
2201 }
2202
2203 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2204 {
2205         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2206         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2207         int reg, i;
2208
2209         reg = read_phy_reg(ohci, 2);
2210         if (reg < 0)
2211                 return reg;
2212         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2213                 return 0;
2214
2215         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2216                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2217                 if (reg < 0)
2218                         return reg;
2219                 if (reg != id[i])
2220                         return 0;
2221         }
2222         return 1;
2223 }
2224
2225 static int ohci_enable(struct fw_card *card,
2226                        const __be32 *config_rom, size_t length)
2227 {
2228         struct fw_ohci *ohci = fw_ohci(card);
2229         struct pci_dev *dev = to_pci_dev(card->device);
2230         u32 lps, seconds, version, irqs;
2231         int i, ret;
2232
2233         if (software_reset(ohci)) {
2234                 dev_err(card->device, "failed to reset ohci card\n");
2235                 return -EBUSY;
2236         }
2237
2238         /*
2239          * Now enable LPS, which we need in order to start accessing
2240          * most of the registers.  In fact, on some cards (ALI M5251),
2241          * accessing registers in the SClk domain without LPS enabled
2242          * will lock up the machine.  Wait 50msec to make sure we have
2243          * full link enabled.  However, with some cards (well, at least
2244          * a JMicron PCIe card), we have to try again sometimes.
2245          */
2246         reg_write(ohci, OHCI1394_HCControlSet,
2247                   OHCI1394_HCControl_LPS |
2248                   OHCI1394_HCControl_postedWriteEnable);
2249         flush_writes(ohci);
2250
2251         for (lps = 0, i = 0; !lps && i < 3; i++) {
2252                 msleep(50);
2253                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2254                       OHCI1394_HCControl_LPS;
2255         }
2256
2257         if (!lps) {
2258                 dev_err(card->device, "failed to set Link Power Status\n");
2259                 return -EIO;
2260         }
2261
2262         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2263                 ret = probe_tsb41ba3d(ohci);
2264                 if (ret < 0)
2265                         return ret;
2266                 if (ret)
2267                         dev_notice(card->device, "local TSB41BA3D phy\n");
2268                 else
2269                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2270         }
2271
2272         reg_write(ohci, OHCI1394_HCControlClear,
2273                   OHCI1394_HCControl_noByteSwapData);
2274
2275         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2276         reg_write(ohci, OHCI1394_LinkControlSet,
2277                   OHCI1394_LinkControl_cycleTimerEnable |
2278                   OHCI1394_LinkControl_cycleMaster);
2279
2280         reg_write(ohci, OHCI1394_ATRetries,
2281                   OHCI1394_MAX_AT_REQ_RETRIES |
2282                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2283                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2284                   (200 << 16));
2285
2286         seconds = lower_32_bits(get_seconds());
2287         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2288         ohci->bus_time = seconds & ~0x3f;
2289
2290         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2291         if (version >= OHCI_VERSION_1_1) {
2292                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2293                           0xfffffffe);
2294                 card->broadcast_channel_auto_allocated = true;
2295         }
2296
2297         /* Get implemented bits of the priority arbitration request counter. */
2298         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2299         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2300         reg_write(ohci, OHCI1394_FairnessControl, 0);
2301         card->priority_budget_implemented = ohci->pri_req_max != 0;
2302
2303         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2304         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2305         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2306
2307         ret = configure_1394a_enhancements(ohci);
2308         if (ret < 0)
2309                 return ret;
2310
2311         /* Activate link_on bit and contender bit in our self ID packets.*/
2312         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2313         if (ret < 0)
2314                 return ret;
2315
2316         /*
2317          * When the link is not yet enabled, the atomic config rom
2318          * update mechanism described below in ohci_set_config_rom()
2319          * is not active.  We have to update ConfigRomHeader and
2320          * BusOptions manually, and the write to ConfigROMmap takes
2321          * effect immediately.  We tie this to the enabling of the
2322          * link, so we have a valid config rom before enabling - the
2323          * OHCI requires that ConfigROMhdr and BusOptions have valid
2324          * values before enabling.
2325          *
2326          * However, when the ConfigROMmap is written, some controllers
2327          * always read back quadlets 0 and 2 from the config rom to
2328          * the ConfigRomHeader and BusOptions registers on bus reset.
2329          * They shouldn't do that in this initial case where the link
2330          * isn't enabled.  This means we have to use the same
2331          * workaround here, setting the bus header to 0 and then write
2332          * the right values in the bus reset tasklet.
2333          */
2334
2335         if (config_rom) {
2336                 ohci->next_config_rom =
2337                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2338                                            &ohci->next_config_rom_bus,
2339                                            GFP_KERNEL);
2340                 if (ohci->next_config_rom == NULL)
2341                         return -ENOMEM;
2342
2343                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2344         } else {
2345                 /*
2346                  * In the suspend case, config_rom is NULL, which
2347                  * means that we just reuse the old config rom.
2348                  */
2349                 ohci->next_config_rom = ohci->config_rom;
2350                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2351         }
2352
2353         ohci->next_header = ohci->next_config_rom[0];
2354         ohci->next_config_rom[0] = 0;
2355         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2356         reg_write(ohci, OHCI1394_BusOptions,
2357                   be32_to_cpu(ohci->next_config_rom[2]));
2358         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2359
2360         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2361
2362         if (!(ohci->quirks & QUIRK_NO_MSI))
2363                 pci_enable_msi(dev);
2364         if (request_irq(dev->irq, irq_handler,
2365                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2366                         ohci_driver_name, ohci)) {
2367                 dev_err(card->device, "failed to allocate interrupt %d\n",
2368                         dev->irq);
2369                 pci_disable_msi(dev);
2370
2371                 if (config_rom) {
2372                         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2373                                           ohci->next_config_rom,
2374                                           ohci->next_config_rom_bus);
2375                         ohci->next_config_rom = NULL;
2376                 }
2377                 return -EIO;
2378         }
2379
2380         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2381                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2382                 OHCI1394_isochTx | OHCI1394_isochRx |
2383                 OHCI1394_postedWriteErr |
2384                 OHCI1394_selfIDComplete |
2385                 OHCI1394_regAccessFail |
2386                 OHCI1394_cycle64Seconds |
2387                 OHCI1394_cycleInconsistent |
2388                 OHCI1394_unrecoverableError |
2389                 OHCI1394_cycleTooLong |
2390                 OHCI1394_masterIntEnable;
2391         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2392                 irqs |= OHCI1394_busReset;
2393         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2394
2395         reg_write(ohci, OHCI1394_HCControlSet,
2396                   OHCI1394_HCControl_linkEnable |
2397                   OHCI1394_HCControl_BIBimageValid);
2398
2399         reg_write(ohci, OHCI1394_LinkControlSet,
2400                   OHCI1394_LinkControl_rcvSelfID |
2401                   OHCI1394_LinkControl_rcvPhyPkt);
2402
2403         ar_context_run(&ohci->ar_request_ctx);
2404         ar_context_run(&ohci->ar_response_ctx);
2405
2406         flush_writes(ohci);
2407
2408         /* We are ready to go, reset bus to finish initialization. */
2409         fw_schedule_bus_reset(&ohci->card, false, true);
2410
2411         return 0;
2412 }
2413
2414 static int ohci_set_config_rom(struct fw_card *card,
2415                                const __be32 *config_rom, size_t length)
2416 {
2417         struct fw_ohci *ohci;
2418         unsigned long flags;
2419         __be32 *next_config_rom;
2420         dma_addr_t uninitialized_var(next_config_rom_bus);
2421
2422         ohci = fw_ohci(card);
2423
2424         /*
2425          * When the OHCI controller is enabled, the config rom update
2426          * mechanism is a bit tricky, but easy enough to use.  See
2427          * section 5.5.6 in the OHCI specification.
2428          *
2429          * The OHCI controller caches the new config rom address in a
2430          * shadow register (ConfigROMmapNext) and needs a bus reset
2431          * for the changes to take place.  When the bus reset is
2432          * detected, the controller loads the new values for the
2433          * ConfigRomHeader and BusOptions registers from the specified
2434          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2435          * shadow register. All automatically and atomically.
2436          *
2437          * Now, there's a twist to this story.  The automatic load of
2438          * ConfigRomHeader and BusOptions doesn't honor the
2439          * noByteSwapData bit, so with a be32 config rom, the
2440          * controller will load be32 values in to these registers
2441          * during the atomic update, even on litte endian
2442          * architectures.  The workaround we use is to put a 0 in the
2443          * header quadlet; 0 is endian agnostic and means that the
2444          * config rom isn't ready yet.  In the bus reset tasklet we
2445          * then set up the real values for the two registers.
2446          *
2447          * We use ohci->lock to avoid racing with the code that sets
2448          * ohci->next_config_rom to NULL (see bus_reset_work).
2449          */
2450
2451         next_config_rom =
2452                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2453                                    &next_config_rom_bus, GFP_KERNEL);
2454         if (next_config_rom == NULL)
2455                 return -ENOMEM;
2456
2457         spin_lock_irqsave(&ohci->lock, flags);
2458
2459         /*
2460          * If there is not an already pending config_rom update,
2461          * push our new allocation into the ohci->next_config_rom
2462          * and then mark the local variable as null so that we
2463          * won't deallocate the new buffer.
2464          *
2465          * OTOH, if there is a pending config_rom update, just
2466          * use that buffer with the new config_rom data, and
2467          * let this routine free the unused DMA allocation.
2468          */
2469
2470         if (ohci->next_config_rom == NULL) {
2471                 ohci->next_config_rom = next_config_rom;
2472                 ohci->next_config_rom_bus = next_config_rom_bus;
2473                 next_config_rom = NULL;
2474         }
2475
2476         copy_config_rom(ohci->next_config_rom, config_rom, length);
2477
2478         ohci->next_header = config_rom[0];
2479         ohci->next_config_rom[0] = 0;
2480
2481         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2482
2483         spin_unlock_irqrestore(&ohci->lock, flags);
2484
2485         /* If we didn't use the DMA allocation, delete it. */
2486         if (next_config_rom != NULL)
2487                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2488                                   next_config_rom, next_config_rom_bus);
2489
2490         /*
2491          * Now initiate a bus reset to have the changes take
2492          * effect. We clean up the old config rom memory and DMA
2493          * mappings in the bus reset tasklet, since the OHCI
2494          * controller could need to access it before the bus reset
2495          * takes effect.
2496          */
2497
2498         fw_schedule_bus_reset(&ohci->card, true, true);
2499
2500         return 0;
2501 }
2502
2503 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2504 {
2505         struct fw_ohci *ohci = fw_ohci(card);
2506
2507         at_context_transmit(&ohci->at_request_ctx, packet);
2508 }
2509
2510 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2511 {
2512         struct fw_ohci *ohci = fw_ohci(card);
2513
2514         at_context_transmit(&ohci->at_response_ctx, packet);
2515 }
2516
2517 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2518 {
2519         struct fw_ohci *ohci = fw_ohci(card);
2520         struct context *ctx = &ohci->at_request_ctx;
2521         struct driver_data *driver_data = packet->driver_data;
2522         int ret = -ENOENT;
2523
2524         tasklet_disable(&ctx->tasklet);
2525
2526         if (packet->ack != 0)
2527                 goto out;
2528
2529         if (packet->payload_mapped)
2530                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2531                                  packet->payload_length, DMA_TO_DEVICE);
2532
2533         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2534         driver_data->packet = NULL;
2535         packet->ack = RCODE_CANCELLED;
2536         packet->callback(packet, &ohci->card, packet->ack);
2537         ret = 0;
2538  out:
2539         tasklet_enable(&ctx->tasklet);
2540
2541         return ret;
2542 }
2543
2544 static int ohci_enable_phys_dma(struct fw_card *card,
2545                                 int node_id, int generation)
2546 {
2547 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2548         return 0;
2549 #else
2550         struct fw_ohci *ohci = fw_ohci(card);
2551         unsigned long flags;
2552         int n, ret = 0;
2553
2554         /*
2555          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2556          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2557          */
2558
2559         spin_lock_irqsave(&ohci->lock, flags);
2560
2561         if (ohci->generation != generation) {
2562                 ret = -ESTALE;
2563                 goto out;
2564         }
2565
2566         /*
2567          * Note, if the node ID contains a non-local bus ID, physical DMA is
2568          * enabled for _all_ nodes on remote buses.
2569          */
2570
2571         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2572         if (n < 32)
2573                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2574         else
2575                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2576
2577         flush_writes(ohci);
2578  out:
2579         spin_unlock_irqrestore(&ohci->lock, flags);
2580
2581         return ret;
2582 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2583 }
2584
2585 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2586 {
2587         struct fw_ohci *ohci = fw_ohci(card);
2588         unsigned long flags;
2589         u32 value;
2590
2591         switch (csr_offset) {
2592         case CSR_STATE_CLEAR:
2593         case CSR_STATE_SET:
2594                 if (ohci->is_root &&
2595                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2596                      OHCI1394_LinkControl_cycleMaster))
2597                         value = CSR_STATE_BIT_CMSTR;
2598                 else
2599                         value = 0;
2600                 if (ohci->csr_state_setclear_abdicate)
2601                         value |= CSR_STATE_BIT_ABDICATE;
2602
2603                 return value;
2604
2605         case CSR_NODE_IDS:
2606                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2607
2608         case CSR_CYCLE_TIME:
2609                 return get_cycle_time(ohci);
2610
2611         case CSR_BUS_TIME:
2612                 /*
2613                  * We might be called just after the cycle timer has wrapped
2614                  * around but just before the cycle64Seconds handler, so we
2615                  * better check here, too, if the bus time needs to be updated.
2616                  */
2617                 spin_lock_irqsave(&ohci->lock, flags);
2618                 value = update_bus_time(ohci);
2619                 spin_unlock_irqrestore(&ohci->lock, flags);
2620                 return value;
2621
2622         case CSR_BUSY_TIMEOUT:
2623                 value = reg_read(ohci, OHCI1394_ATRetries);
2624                 return (value >> 4) & 0x0ffff00f;
2625
2626         case CSR_PRIORITY_BUDGET:
2627                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2628                         (ohci->pri_req_max << 8);
2629
2630         default:
2631                 WARN_ON(1);
2632                 return 0;
2633         }
2634 }
2635
2636 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2637 {
2638         struct fw_ohci *ohci = fw_ohci(card);
2639         unsigned long flags;
2640
2641         switch (csr_offset) {
2642         case CSR_STATE_CLEAR:
2643                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2644                         reg_write(ohci, OHCI1394_LinkControlClear,
2645                                   OHCI1394_LinkControl_cycleMaster);
2646                         flush_writes(ohci);
2647                 }
2648                 if (value & CSR_STATE_BIT_ABDICATE)
2649                         ohci->csr_state_setclear_abdicate = false;
2650                 break;
2651
2652         case CSR_STATE_SET:
2653                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2654                         reg_write(ohci, OHCI1394_LinkControlSet,
2655                                   OHCI1394_LinkControl_cycleMaster);
2656                         flush_writes(ohci);
2657                 }
2658                 if (value & CSR_STATE_BIT_ABDICATE)
2659                         ohci->csr_state_setclear_abdicate = true;
2660                 break;
2661
2662         case CSR_NODE_IDS:
2663                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2664                 flush_writes(ohci);
2665                 break;
2666
2667         case CSR_CYCLE_TIME:
2668                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2669                 reg_write(ohci, OHCI1394_IntEventSet,
2670                           OHCI1394_cycleInconsistent);
2671                 flush_writes(ohci);
2672                 break;
2673
2674         case CSR_BUS_TIME:
2675                 spin_lock_irqsave(&ohci->lock, flags);
2676                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2677                 spin_unlock_irqrestore(&ohci->lock, flags);
2678                 break;
2679
2680         case CSR_BUSY_TIMEOUT:
2681                 value = (value & 0xf) | ((value & 0xf) << 4) |
2682                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2683                 reg_write(ohci, OHCI1394_ATRetries, value);
2684                 flush_writes(ohci);
2685                 break;
2686
2687         case CSR_PRIORITY_BUDGET:
2688                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2689                 flush_writes(ohci);
2690                 break;
2691
2692         default:
2693                 WARN_ON(1);
2694                 break;
2695         }
2696 }
2697
2698 static void copy_iso_headers(struct iso_context *ctx, void *p)
2699 {
2700         int i = ctx->header_length;
2701
2702         if (i + ctx->base.header_size > PAGE_SIZE)
2703                 return;
2704
2705         /*
2706          * The iso header is byteswapped to little endian by
2707          * the controller, but the remaining header quadlets
2708          * are big endian.  We want to present all the headers
2709          * as big endian, so we have to swap the first quadlet.
2710          */
2711         if (ctx->base.header_size > 0)
2712                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2713         if (ctx->base.header_size > 4)
2714                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2715         if (ctx->base.header_size > 8)
2716                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2717         ctx->header_length += ctx->base.header_size;
2718 }
2719
2720 static int handle_ir_packet_per_buffer(struct context *context,
2721                                        struct descriptor *d,
2722                                        struct descriptor *last)
2723 {
2724         struct iso_context *ctx =
2725                 container_of(context, struct iso_context, context);
2726         struct descriptor *pd;
2727         u32 buffer_dma;
2728         __le32 *ir_header;
2729         void *p;
2730
2731         for (pd = d; pd <= last; pd++)
2732                 if (pd->transfer_status)
2733                         break;
2734         if (pd > last)
2735                 /* Descriptor(s) not done yet, stop iteration */
2736                 return 0;
2737
2738         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2739                 d++;
2740                 buffer_dma = le32_to_cpu(d->data_address);
2741                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2742                                               buffer_dma & PAGE_MASK,
2743                                               buffer_dma & ~PAGE_MASK,
2744                                               le16_to_cpu(d->req_count),
2745                                               DMA_FROM_DEVICE);
2746         }
2747
2748         p = last + 1;
2749         copy_iso_headers(ctx, p);
2750
2751         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2752                 ir_header = (__le32 *) p;
2753                 ctx->base.callback.sc(&ctx->base,
2754                                       le32_to_cpu(ir_header[0]) & 0xffff,
2755                                       ctx->header_length, ctx->header,
2756                                       ctx->base.callback_data);
2757                 ctx->header_length = 0;
2758         }
2759
2760         return 1;
2761 }
2762
2763 /* d == last because each descriptor block is only a single descriptor. */
2764 static int handle_ir_buffer_fill(struct context *context,
2765                                  struct descriptor *d,
2766                                  struct descriptor *last)
2767 {
2768         struct iso_context *ctx =
2769                 container_of(context, struct iso_context, context);
2770         u32 buffer_dma;
2771
2772         if (!last->transfer_status)
2773                 /* Descriptor(s) not done yet, stop iteration */
2774                 return 0;
2775
2776         buffer_dma = le32_to_cpu(last->data_address);
2777         dma_sync_single_range_for_cpu(context->ohci->card.device,
2778                                       buffer_dma & PAGE_MASK,
2779                                       buffer_dma & ~PAGE_MASK,
2780                                       le16_to_cpu(last->req_count),
2781                                       DMA_FROM_DEVICE);
2782
2783         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2784                 ctx->base.callback.mc(&ctx->base,
2785                                       le32_to_cpu(last->data_address) +
2786                                       le16_to_cpu(last->req_count) -
2787                                       le16_to_cpu(last->res_count),
2788                                       ctx->base.callback_data);
2789
2790         return 1;
2791 }
2792
2793 static inline void sync_it_packet_for_cpu(struct context *context,
2794                                           struct descriptor *pd)
2795 {
2796         __le16 control;
2797         u32 buffer_dma;
2798
2799         /* only packets beginning with OUTPUT_MORE* have data buffers */
2800         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2801                 return;
2802
2803         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2804         pd += 2;
2805
2806         /*
2807          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2808          * data buffer is in the context program's coherent page and must not
2809          * be synced.
2810          */
2811         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2812             (context->current_bus          & PAGE_MASK)) {
2813                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2814                         return;
2815                 pd++;
2816         }
2817
2818         do {
2819                 buffer_dma = le32_to_cpu(pd->data_address);
2820                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2821                                               buffer_dma & PAGE_MASK,
2822                                               buffer_dma & ~PAGE_MASK,
2823                                               le16_to_cpu(pd->req_count),
2824                                               DMA_TO_DEVICE);
2825                 control = pd->control;
2826                 pd++;
2827         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2828 }
2829
2830 static int handle_it_packet(struct context *context,
2831                             struct descriptor *d,
2832                             struct descriptor *last)
2833 {
2834         struct iso_context *ctx =
2835                 container_of(context, struct iso_context, context);
2836         int i;
2837         struct descriptor *pd;
2838
2839         for (pd = d; pd <= last; pd++)
2840                 if (pd->transfer_status)
2841                         break;
2842         if (pd > last)
2843                 /* Descriptor(s) not done yet, stop iteration */
2844                 return 0;
2845
2846         sync_it_packet_for_cpu(context, d);
2847
2848         i = ctx->header_length;
2849         if (i + 4 < PAGE_SIZE) {
2850                 /* Present this value as big-endian to match the receive code */
2851                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2852                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2853                                 le16_to_cpu(pd->res_count));
2854                 ctx->header_length += 4;
2855         }
2856         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2857                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2858                                       ctx->header_length, ctx->header,
2859                                       ctx->base.callback_data);
2860                 ctx->header_length = 0;
2861         }
2862         return 1;
2863 }
2864
2865 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2866 {
2867         u32 hi = channels >> 32, lo = channels;
2868
2869         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2870         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2871         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2872         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2873         mmiowb();
2874         ohci->mc_channels = channels;
2875 }
2876
2877 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2878                                 int type, int channel, size_t header_size)
2879 {
2880         struct fw_ohci *ohci = fw_ohci(card);
2881         struct iso_context *uninitialized_var(ctx);
2882         descriptor_callback_t uninitialized_var(callback);
2883         u64 *uninitialized_var(channels);
2884         u32 *uninitialized_var(mask), uninitialized_var(regs);
2885         unsigned long flags;
2886         int index, ret = -EBUSY;
2887
2888         spin_lock_irqsave(&ohci->lock, flags);
2889
2890         switch (type) {
2891         case FW_ISO_CONTEXT_TRANSMIT:
2892                 mask     = &ohci->it_context_mask;
2893                 callback = handle_it_packet;
2894                 index    = ffs(*mask) - 1;
2895                 if (index >= 0) {
2896                         *mask &= ~(1 << index);
2897                         regs = OHCI1394_IsoXmitContextBase(index);
2898                         ctx  = &ohci->it_context_list[index];
2899                 }
2900                 break;
2901
2902         case FW_ISO_CONTEXT_RECEIVE:
2903                 channels = &ohci->ir_context_channels;
2904                 mask     = &ohci->ir_context_mask;
2905                 callback = handle_ir_packet_per_buffer;
2906                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2907                 if (index >= 0) {
2908                         *channels &= ~(1ULL << channel);
2909                         *mask     &= ~(1 << index);
2910                         regs = OHCI1394_IsoRcvContextBase(index);
2911                         ctx  = &ohci->ir_context_list[index];
2912                 }
2913                 break;
2914
2915         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2916                 mask     = &ohci->ir_context_mask;
2917                 callback = handle_ir_buffer_fill;
2918                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2919                 if (index >= 0) {
2920                         ohci->mc_allocated = true;
2921                         *mask &= ~(1 << index);
2922                         regs = OHCI1394_IsoRcvContextBase(index);
2923                         ctx  = &ohci->ir_context_list[index];
2924                 }
2925                 break;
2926
2927         default:
2928                 index = -1;
2929                 ret = -ENOSYS;
2930         }
2931
2932         spin_unlock_irqrestore(&ohci->lock, flags);
2933
2934         if (index < 0)
2935                 return ERR_PTR(ret);
2936
2937         memset(ctx, 0, sizeof(*ctx));
2938         ctx->header_length = 0;
2939         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2940         if (ctx->header == NULL) {
2941                 ret = -ENOMEM;
2942                 goto out;
2943         }
2944         ret = context_init(&ctx->context, ohci, regs, callback);
2945         if (ret < 0)
2946                 goto out_with_header;
2947
2948         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2949                 set_multichannel_mask(ohci, 0);
2950
2951         return &ctx->base;
2952
2953  out_with_header:
2954         free_page((unsigned long)ctx->header);
2955  out:
2956         spin_lock_irqsave(&ohci->lock, flags);
2957
2958         switch (type) {
2959         case FW_ISO_CONTEXT_RECEIVE:
2960                 *channels |= 1ULL << channel;
2961                 break;
2962
2963         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2964                 ohci->mc_allocated = false;
2965                 break;
2966         }
2967         *mask |= 1 << index;
2968
2969         spin_unlock_irqrestore(&ohci->lock, flags);
2970
2971         return ERR_PTR(ret);
2972 }
2973
2974 static int ohci_start_iso(struct fw_iso_context *base,
2975                           s32 cycle, u32 sync, u32 tags)
2976 {
2977         struct iso_context *ctx = container_of(base, struct iso_context, base);
2978         struct fw_ohci *ohci = ctx->context.ohci;
2979         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2980         int index;
2981
2982         /* the controller cannot start without any queued packets */
2983         if (ctx->context.last->branch_address == 0)
2984                 return -ENODATA;
2985
2986         switch (ctx->base.type) {
2987         case FW_ISO_CONTEXT_TRANSMIT:
2988                 index = ctx - ohci->it_context_list;
2989                 match = 0;
2990                 if (cycle >= 0)
2991                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2992                                 (cycle & 0x7fff) << 16;
2993
2994                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2995                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2996                 context_run(&ctx->context, match);
2997                 break;
2998
2999         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3000                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3001                 /* fall through */
3002         case FW_ISO_CONTEXT_RECEIVE:
3003                 index = ctx - ohci->ir_context_list;
3004                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3005                 if (cycle >= 0) {
3006                         match |= (cycle & 0x07fff) << 12;
3007                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3008                 }
3009
3010                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3011                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3012                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3013                 context_run(&ctx->context, control);
3014
3015                 ctx->sync = sync;
3016                 ctx->tags = tags;
3017
3018                 break;
3019         }
3020
3021         return 0;
3022 }
3023
3024 static int ohci_stop_iso(struct fw_iso_context *base)
3025 {
3026         struct fw_ohci *ohci = fw_ohci(base->card);
3027         struct iso_context *ctx = container_of(base, struct iso_context, base);
3028         int index;
3029
3030         switch (ctx->base.type) {
3031         case FW_ISO_CONTEXT_TRANSMIT:
3032                 index = ctx - ohci->it_context_list;
3033                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3034                 break;
3035
3036         case FW_ISO_CONTEXT_RECEIVE:
3037         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3038                 index = ctx - ohci->ir_context_list;
3039                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3040                 break;
3041         }
3042         flush_writes(ohci);
3043         context_stop(&ctx->context);
3044         tasklet_kill(&ctx->context.tasklet);
3045
3046         return 0;
3047 }
3048
3049 static void ohci_free_iso_context(struct fw_iso_context *base)
3050 {
3051         struct fw_ohci *ohci = fw_ohci(base->card);
3052         struct iso_context *ctx = container_of(base, struct iso_context, base);
3053         unsigned long flags;
3054         int index;
3055
3056         ohci_stop_iso(base);
3057         context_release(&ctx->context);
3058         free_page((unsigned long)ctx->header);
3059
3060         spin_lock_irqsave(&ohci->lock, flags);
3061
3062         switch (base->type) {
3063         case FW_ISO_CONTEXT_TRANSMIT:
3064                 index = ctx - ohci->it_context_list;
3065                 ohci->it_context_mask |= 1 << index;
3066                 break;
3067
3068         case FW_ISO_CONTEXT_RECEIVE:
3069                 index = ctx - ohci->ir_context_list;
3070                 ohci->ir_context_mask |= 1 << index;
3071                 ohci->ir_context_channels |= 1ULL << base->channel;
3072                 break;
3073
3074         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3075                 index = ctx - ohci->ir_context_list;
3076                 ohci->ir_context_mask |= 1 << index;
3077                 ohci->ir_context_channels |= ohci->mc_channels;
3078                 ohci->mc_channels = 0;
3079                 ohci->mc_allocated = false;
3080                 break;
3081         }
3082
3083         spin_unlock_irqrestore(&ohci->lock, flags);
3084 }
3085
3086 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3087 {
3088         struct fw_ohci *ohci = fw_ohci(base->card);
3089         unsigned long flags;
3090         int ret;
3091
3092         switch (base->type) {
3093         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094
3095                 spin_lock_irqsave(&ohci->lock, flags);
3096
3097                 /* Don't allow multichannel to grab other contexts' channels. */
3098                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3099                         *channels = ohci->ir_context_channels;
3100                         ret = -EBUSY;
3101                 } else {
3102                         set_multichannel_mask(ohci, *channels);
3103                         ret = 0;
3104                 }
3105
3106                 spin_unlock_irqrestore(&ohci->lock, flags);
3107
3108                 break;
3109         default:
3110                 ret = -EINVAL;
3111         }
3112
3113         return ret;
3114 }
3115
3116 #ifdef CONFIG_PM
3117 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3118 {
3119         int i;
3120         struct iso_context *ctx;
3121
3122         for (i = 0 ; i < ohci->n_ir ; i++) {
3123                 ctx = &ohci->ir_context_list[i];
3124                 if (ctx->context.running)
3125                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3126         }
3127
3128         for (i = 0 ; i < ohci->n_it ; i++) {
3129                 ctx = &ohci->it_context_list[i];
3130                 if (ctx->context.running)
3131                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3132         }
3133 }
3134 #endif
3135
3136 static int queue_iso_transmit(struct iso_context *ctx,
3137                               struct fw_iso_packet *packet,
3138                               struct fw_iso_buffer *buffer,
3139                               unsigned long payload)
3140 {
3141         struct descriptor *d, *last, *pd;
3142         struct fw_iso_packet *p;
3143         __le32 *header;
3144         dma_addr_t d_bus, page_bus;
3145         u32 z, header_z, payload_z, irq;
3146         u32 payload_index, payload_end_index, next_page_index;
3147         int page, end_page, i, length, offset;
3148
3149         p = packet;
3150         payload_index = payload;
3151
3152         if (p->skip)
3153                 z = 1;
3154         else
3155                 z = 2;
3156         if (p->header_length > 0)
3157                 z++;
3158
3159         /* Determine the first page the payload isn't contained in. */
3160         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3161         if (p->payload_length > 0)
3162                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3163         else
3164                 payload_z = 0;
3165
3166         z += payload_z;
3167
3168         /* Get header size in number of descriptors. */
3169         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3170
3171         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3172         if (d == NULL)
3173                 return -ENOMEM;
3174
3175         if (!p->skip) {
3176                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3177                 d[0].req_count = cpu_to_le16(8);
3178                 /*
3179                  * Link the skip address to this descriptor itself.  This causes
3180                  * a context to skip a cycle whenever lost cycles or FIFO
3181                  * overruns occur, without dropping the data.  The application
3182                  * should then decide whether this is an error condition or not.
3183                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3184                  */
3185                 d[0].branch_address = cpu_to_le32(d_bus | z);
3186
3187                 header = (__le32 *) &d[1];
3188                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3189                                         IT_HEADER_TAG(p->tag) |
3190                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3191                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3192                                         IT_HEADER_SPEED(ctx->base.speed));
3193                 header[1] =
3194                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3195                                                           p->payload_length));
3196         }
3197
3198         if (p->header_length > 0) {
3199                 d[2].req_count    = cpu_to_le16(p->header_length);
3200                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3201                 memcpy(&d[z], p->header, p->header_length);
3202         }
3203
3204         pd = d + z - payload_z;
3205         payload_end_index = payload_index + p->payload_length;
3206         for (i = 0; i < payload_z; i++) {
3207                 page               = payload_index >> PAGE_SHIFT;
3208                 offset             = payload_index & ~PAGE_MASK;
3209                 next_page_index    = (page + 1) << PAGE_SHIFT;
3210                 length             =
3211                         min(next_page_index, payload_end_index) - payload_index;
3212                 pd[i].req_count    = cpu_to_le16(length);
3213
3214                 page_bus = page_private(buffer->pages[page]);
3215                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3216
3217                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3218                                                  page_bus, offset, length,
3219                                                  DMA_TO_DEVICE);
3220
3221                 payload_index += length;
3222         }
3223
3224         if (p->interrupt)
3225                 irq = DESCRIPTOR_IRQ_ALWAYS;
3226         else
3227                 irq = DESCRIPTOR_NO_IRQ;
3228
3229         last = z == 2 ? d : d + z - 1;
3230         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3231                                      DESCRIPTOR_STATUS |
3232                                      DESCRIPTOR_BRANCH_ALWAYS |
3233                                      irq);
3234
3235         context_append(&ctx->context, d, z, header_z);
3236
3237         return 0;
3238 }
3239
3240 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3241                                        struct fw_iso_packet *packet,
3242                                        struct fw_iso_buffer *buffer,
3243                                        unsigned long payload)
3244 {
3245         struct device *device = ctx->context.ohci->card.device;
3246         struct descriptor *d, *pd;
3247         dma_addr_t d_bus, page_bus;
3248         u32 z, header_z, rest;
3249         int i, j, length;
3250         int page, offset, packet_count, header_size, payload_per_buffer;
3251
3252         /*
3253          * The OHCI controller puts the isochronous header and trailer in the
3254          * buffer, so we need at least 8 bytes.
3255          */
3256         packet_count = packet->header_length / ctx->base.header_size;
3257         header_size  = max(ctx->base.header_size, (size_t)8);
3258
3259         /* Get header size in number of descriptors. */
3260         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3261         page     = payload >> PAGE_SHIFT;
3262         offset   = payload & ~PAGE_MASK;
3263         payload_per_buffer = packet->payload_length / packet_count;
3264
3265         for (i = 0; i < packet_count; i++) {
3266                 /* d points to the header descriptor */
3267                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3268                 d = context_get_descriptors(&ctx->context,
3269                                 z + header_z, &d_bus);
3270                 if (d == NULL)
3271                         return -ENOMEM;
3272
3273                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3274                                               DESCRIPTOR_INPUT_MORE);
3275                 if (packet->skip && i == 0)
3276                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3277                 d->req_count    = cpu_to_le16(header_size);
3278                 d->res_count    = d->req_count;
3279                 d->transfer_status = 0;
3280                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3281
3282                 rest = payload_per_buffer;
3283                 pd = d;
3284                 for (j = 1; j < z; j++) {
3285                         pd++;
3286                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3287                                                   DESCRIPTOR_INPUT_MORE);
3288
3289                         if (offset + rest < PAGE_SIZE)
3290                                 length = rest;
3291                         else
3292                                 length = PAGE_SIZE - offset;
3293                         pd->req_count = cpu_to_le16(length);
3294                         pd->res_count = pd->req_count;
3295                         pd->transfer_status = 0;
3296
3297                         page_bus = page_private(buffer->pages[page]);
3298                         pd->data_address = cpu_to_le32(page_bus + offset);
3299
3300                         dma_sync_single_range_for_device(device, page_bus,
3301                                                          offset, length,
3302                                                          DMA_FROM_DEVICE);
3303
3304                         offset = (offset + length) & ~PAGE_MASK;
3305                         rest -= length;
3306                         if (offset == 0)
3307                                 page++;
3308                 }
3309                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3310                                           DESCRIPTOR_INPUT_LAST |
3311                                           DESCRIPTOR_BRANCH_ALWAYS);
3312                 if (packet->interrupt && i == packet_count - 1)
3313                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3314
3315                 context_append(&ctx->context, d, z, header_z);
3316         }
3317
3318         return 0;
3319 }
3320
3321 static int queue_iso_buffer_fill(struct iso_context *ctx,
3322                                  struct fw_iso_packet *packet,
3323                                  struct fw_iso_buffer *buffer,
3324                                  unsigned long payload)
3325 {
3326         struct descriptor *d;
3327         dma_addr_t d_bus, page_bus;
3328         int page, offset, rest, z, i, length;
3329
3330         page   = payload >> PAGE_SHIFT;
3331         offset = payload & ~PAGE_MASK;
3332         rest   = packet->payload_length;
3333
3334         /* We need one descriptor for each page in the buffer. */
3335         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3336
3337         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3338                 return -EFAULT;
3339
3340         for (i = 0; i < z; i++) {
3341                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3342                 if (d == NULL)
3343                         return -ENOMEM;
3344
3345                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3346                                          DESCRIPTOR_BRANCH_ALWAYS);
3347                 if (packet->skip && i == 0)
3348                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3349                 if (packet->interrupt && i == z - 1)
3350                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3351
3352                 if (offset + rest < PAGE_SIZE)
3353                         length = rest;
3354                 else
3355                         length = PAGE_SIZE - offset;
3356                 d->req_count = cpu_to_le16(length);
3357                 d->res_count = d->req_count;
3358                 d->transfer_status = 0;
3359
3360                 page_bus = page_private(buffer->pages[page]);
3361                 d->data_address = cpu_to_le32(page_bus + offset);
3362
3363                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3364                                                  page_bus, offset, length,
3365                                                  DMA_FROM_DEVICE);
3366
3367                 rest -= length;
3368                 offset = 0;
3369                 page++;
3370
3371                 context_append(&ctx->context, d, 1, 0);
3372         }
3373
3374         return 0;
3375 }
3376
3377 static int ohci_queue_iso(struct fw_iso_context *base,
3378                           struct fw_iso_packet *packet,
3379                           struct fw_iso_buffer *buffer,
3380                           unsigned long payload)
3381 {
3382         struct iso_context *ctx = container_of(base, struct iso_context, base);
3383         unsigned long flags;
3384         int ret = -ENOSYS;
3385
3386         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3387         switch (base->type) {
3388         case FW_ISO_CONTEXT_TRANSMIT:
3389                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3390                 break;
3391         case FW_ISO_CONTEXT_RECEIVE:
3392                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3393                 break;
3394         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3395                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3396                 break;
3397         }
3398         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3399
3400         return ret;
3401 }
3402
3403 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3404 {
3405         struct context *ctx =
3406                         &container_of(base, struct iso_context, base)->context;
3407
3408         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3409 }
3410
3411 static const struct fw_card_driver ohci_driver = {
3412         .enable                 = ohci_enable,
3413         .read_phy_reg           = ohci_read_phy_reg,
3414         .update_phy_reg         = ohci_update_phy_reg,
3415         .set_config_rom         = ohci_set_config_rom,
3416         .send_request           = ohci_send_request,
3417         .send_response          = ohci_send_response,
3418         .cancel_packet          = ohci_cancel_packet,
3419         .enable_phys_dma        = ohci_enable_phys_dma,
3420         .read_csr               = ohci_read_csr,
3421         .write_csr              = ohci_write_csr,
3422
3423         .allocate_iso_context   = ohci_allocate_iso_context,
3424         .free_iso_context       = ohci_free_iso_context,
3425         .set_iso_channels       = ohci_set_iso_channels,
3426         .queue_iso              = ohci_queue_iso,
3427         .flush_queue_iso        = ohci_flush_queue_iso,
3428         .start_iso              = ohci_start_iso,
3429         .stop_iso               = ohci_stop_iso,
3430 };
3431
3432 #ifdef CONFIG_PPC_PMAC
3433 static void pmac_ohci_on(struct pci_dev *dev)
3434 {
3435         if (machine_is(powermac)) {
3436                 struct device_node *ofn = pci_device_to_OF_node(dev);
3437
3438                 if (ofn) {
3439                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3440                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3441                 }
3442         }
3443 }
3444
3445 static void pmac_ohci_off(struct pci_dev *dev)
3446 {
3447         if (machine_is(powermac)) {
3448                 struct device_node *ofn = pci_device_to_OF_node(dev);
3449
3450                 if (ofn) {
3451                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3452                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3453                 }
3454         }
3455 }
3456 #else
3457 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3458 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3459 #endif /* CONFIG_PPC_PMAC */
3460
3461 static int __devinit pci_probe(struct pci_dev *dev,
3462                                const struct pci_device_id *ent)
3463 {
3464         struct fw_ohci *ohci;
3465         u32 bus_options, max_receive, link_speed, version;
3466         u64 guid;
3467         int i, err;
3468         size_t size;
3469
3470         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3471                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3472                 return -ENOSYS;
3473         }
3474
3475         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3476         if (ohci == NULL) {
3477                 err = -ENOMEM;
3478                 goto fail;
3479         }
3480
3481         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3482
3483         pmac_ohci_on(dev);
3484
3485         err = pci_enable_device(dev);
3486         if (err) {
3487                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3488                 goto fail_free;
3489         }
3490
3491         pci_set_master(dev);
3492         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3493         pci_set_drvdata(dev, ohci);
3494
3495         spin_lock_init(&ohci->lock);
3496         mutex_init(&ohci->phy_reg_mutex);
3497
3498         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3499
3500         err = pci_request_region(dev, 0, ohci_driver_name);
3501         if (err) {
3502                 dev_err(&dev->dev, "MMIO resource unavailable\n");
3503                 goto fail_disable;
3504         }
3505
3506         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3507         if (ohci->registers == NULL) {
3508                 dev_err(&dev->dev, "failed to remap registers\n");
3509                 err = -ENXIO;
3510                 goto fail_iomem;
3511         }
3512
3513         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3514                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3515                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3516                      ohci_quirks[i].device == dev->device) &&
3517                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3518                      ohci_quirks[i].revision >= dev->revision)) {
3519                         ohci->quirks = ohci_quirks[i].flags;
3520                         break;
3521                 }
3522         if (param_quirks)
3523                 ohci->quirks = param_quirks;
3524
3525         /*
3526          * Because dma_alloc_coherent() allocates at least one page,
3527          * we save space by using a common buffer for the AR request/
3528          * response descriptors and the self IDs buffer.
3529          */
3530         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3531         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3532         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3533                                                PAGE_SIZE,
3534                                                &ohci->misc_buffer_bus,
3535                                                GFP_KERNEL);
3536         if (!ohci->misc_buffer) {
3537                 err = -ENOMEM;
3538                 goto fail_iounmap;
3539         }
3540
3541         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3542                               OHCI1394_AsReqRcvContextControlSet);
3543         if (err < 0)
3544                 goto fail_misc_buf;
3545
3546         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3547                               OHCI1394_AsRspRcvContextControlSet);
3548         if (err < 0)
3549                 goto fail_arreq_ctx;
3550
3551         err = context_init(&ohci->at_request_ctx, ohci,
3552                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3553         if (err < 0)
3554                 goto fail_arrsp_ctx;
3555
3556         err = context_init(&ohci->at_response_ctx, ohci,
3557                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3558         if (err < 0)
3559                 goto fail_atreq_ctx;
3560
3561         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3562         ohci->ir_context_channels = ~0ULL;
3563         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3564         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3565         ohci->ir_context_mask = ohci->ir_context_support;
3566         ohci->n_ir = hweight32(ohci->ir_context_mask);
3567         size = sizeof(struct iso_context) * ohci->n_ir;
3568         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3569
3570         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3571         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3572         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3573         ohci->it_context_mask = ohci->it_context_support;
3574         ohci->n_it = hweight32(ohci->it_context_mask);
3575         size = sizeof(struct iso_context) * ohci->n_it;
3576         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3577
3578         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3579                 err = -ENOMEM;
3580                 goto fail_contexts;
3581         }
3582
3583         ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3584         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3585
3586         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3587         max_receive = (bus_options >> 12) & 0xf;
3588         link_speed = bus_options & 0x7;
3589         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3590                 reg_read(ohci, OHCI1394_GUIDLo);
3591
3592         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3593         if (err)
3594                 goto fail_contexts;
3595
3596         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3597         dev_notice(&dev->dev,
3598                   "added OHCI v%x.%x device as card %d, "
3599                   "%d IR + %d IT contexts, quirks 0x%x\n",
3600                   version >> 16, version & 0xff, ohci->card.index,
3601                   ohci->n_ir, ohci->n_it, ohci->quirks);
3602
3603         return 0;
3604
3605  fail_contexts:
3606         kfree(ohci->ir_context_list);
3607         kfree(ohci->it_context_list);
3608         context_release(&ohci->at_response_ctx);
3609  fail_atreq_ctx:
3610         context_release(&ohci->at_request_ctx);
3611  fail_arrsp_ctx:
3612         ar_context_release(&ohci->ar_response_ctx);
3613  fail_arreq_ctx:
3614         ar_context_release(&ohci->ar_request_ctx);
3615  fail_misc_buf:
3616         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3617                           ohci->misc_buffer, ohci->misc_buffer_bus);
3618  fail_iounmap:
3619         pci_iounmap(dev, ohci->registers);
3620  fail_iomem:
3621         pci_release_region(dev, 0);
3622  fail_disable:
3623         pci_disable_device(dev);
3624  fail_free:
3625         kfree(ohci);
3626         pmac_ohci_off(dev);
3627  fail:
3628         if (err == -ENOMEM)
3629                 dev_err(&dev->dev, "out of memory\n");
3630
3631         return err;
3632 }
3633
3634 static void pci_remove(struct pci_dev *dev)
3635 {
3636         struct fw_ohci *ohci;
3637
3638         ohci = pci_get_drvdata(dev);
3639         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3640         flush_writes(ohci);
3641         cancel_work_sync(&ohci->bus_reset_work);
3642         fw_core_remove_card(&ohci->card);
3643
3644         /*
3645          * FIXME: Fail all pending packets here, now that the upper
3646          * layers can't queue any more.
3647          */
3648
3649         software_reset(ohci);
3650         free_irq(dev->irq, ohci);
3651
3652         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3653                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3654                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3655         if (ohci->config_rom)
3656                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3657                                   ohci->config_rom, ohci->config_rom_bus);
3658         ar_context_release(&ohci->ar_request_ctx);
3659         ar_context_release(&ohci->ar_response_ctx);
3660         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3661                           ohci->misc_buffer, ohci->misc_buffer_bus);
3662         context_release(&ohci->at_request_ctx);
3663         context_release(&ohci->at_response_ctx);
3664         kfree(ohci->it_context_list);
3665         kfree(ohci->ir_context_list);
3666         pci_disable_msi(dev);
3667         pci_iounmap(dev, ohci->registers);
3668         pci_release_region(dev, 0);
3669         pci_disable_device(dev);
3670         kfree(ohci);
3671         pmac_ohci_off(dev);
3672
3673         dev_notice(&dev->dev, "removed fw-ohci device\n");
3674 }
3675
3676 #ifdef CONFIG_PM
3677 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3678 {
3679         struct fw_ohci *ohci = pci_get_drvdata(dev);
3680         int err;
3681
3682         software_reset(ohci);
3683         free_irq(dev->irq, ohci);
3684         pci_disable_msi(dev);
3685         err = pci_save_state(dev);
3686         if (err) {
3687                 dev_err(&dev->dev, "pci_save_state failed\n");
3688                 return err;
3689         }
3690         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3691         if (err)
3692                 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3693         pmac_ohci_off(dev);
3694
3695         return 0;
3696 }
3697
3698 static int pci_resume(struct pci_dev *dev)
3699 {
3700         struct fw_ohci *ohci = pci_get_drvdata(dev);
3701         int err;
3702
3703         pmac_ohci_on(dev);
3704         pci_set_power_state(dev, PCI_D0);
3705         pci_restore_state(dev);
3706         err = pci_enable_device(dev);
3707         if (err) {
3708                 dev_err(&dev->dev, "pci_enable_device failed\n");
3709                 return err;
3710         }
3711
3712         /* Some systems don't setup GUID register on resume from ram  */
3713         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3714                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3715                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3716                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3717         }
3718
3719         err = ohci_enable(&ohci->card, NULL, 0);
3720         if (err)
3721                 return err;
3722
3723         ohci_resume_iso_dma(ohci);
3724
3725         return 0;
3726 }
3727 #endif
3728
3729 static const struct pci_device_id pci_table[] = {
3730         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3731         { }
3732 };
3733
3734 MODULE_DEVICE_TABLE(pci, pci_table);
3735
3736 static struct pci_driver fw_ohci_pci_driver = {
3737         .name           = ohci_driver_name,
3738         .id_table       = pci_table,
3739         .probe          = pci_probe,
3740         .remove         = pci_remove,
3741 #ifdef CONFIG_PM
3742         .resume         = pci_resume,
3743         .suspend        = pci_suspend,
3744 #endif
3745 };
3746
3747 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3748 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3749 MODULE_LICENSE("GPL");
3750
3751 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3752 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3753 MODULE_ALIAS("ohci1394");
3754 #endif
3755
3756 static int __init fw_ohci_init(void)
3757 {
3758         return pci_register_driver(&fw_ohci_pci_driver);
3759 }
3760
3761 static void __exit fw_ohci_cleanup(void)
3762 {
3763         pci_unregister_driver(&fw_ohci_pci_driver);
3764 }
3765
3766 module_init(fw_ohci_init);
3767 module_exit(fw_ohci_cleanup);