]> Pileus Git - ~andy/linux/blob - drivers/firewire/fw-ohci.c
firewire: remove line breaks before function names
[~andy/linux] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         __iomem char *registers;
175         dma_addr_t self_id_bus;
176         __le32 *self_id_cpu;
177         struct tasklet_struct bus_reset_tasklet;
178         int node_id;
179         int generation;
180         int request_generation; /* for timestamping incoming requests */
181         u32 bus_seconds;
182
183         bool use_dualbuffer;
184         bool old_uninorth;
185         bool bus_reset_packet_quirk;
186
187         /*
188          * Spinlock for accessing fw_ohci data.  Never call out of
189          * this driver with this lock held.
190          */
191         spinlock_t lock;
192         u32 self_id_buffer[512];
193
194         /* Config rom buffers */
195         __be32 *config_rom;
196         dma_addr_t config_rom_bus;
197         __be32 *next_config_rom;
198         dma_addr_t next_config_rom_bus;
199         u32 next_header;
200
201         struct ar_context ar_request_ctx;
202         struct ar_context ar_response_ctx;
203         struct context at_request_ctx;
204         struct context at_response_ctx;
205
206         u32 it_context_mask;
207         struct iso_context *it_context_list;
208         u32 ir_context_mask;
209         struct iso_context *ir_context_list;
210 };
211
212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214         return container_of(card, struct fw_ohci, card);
215 }
216
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
218 #define IR_CONTEXT_BUFFER_FILL          0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
223
224 #define CONTEXT_RUN     0x8000
225 #define CONTEXT_WAKE    0x1000
226 #define CONTEXT_DEAD    0x0800
227 #define CONTEXT_ACTIVE  0x0400
228
229 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
230 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
232
233 #define FW_OHCI_MAJOR                   240
234 #define OHCI1394_REGISTER_SIZE          0x800
235 #define OHCI_LOOP_COUNT                 500
236 #define OHCI1394_PCI_HCI_Control        0x40
237 #define SELF_ID_BUF_SIZE                0x800
238 #define OHCI_TCODE_PHY_PACKET           0x0e
239 #define OHCI_VERSION_1_1                0x010010
240
241 static char ohci_driver_name[] = KBUILD_MODNAME;
242
243 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244
245 #define OHCI_PARAM_DEBUG_AT_AR          1
246 #define OHCI_PARAM_DEBUG_SELFIDS        2
247 #define OHCI_PARAM_DEBUG_IRQS           4
248 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
249
250 static int param_debug;
251 module_param_named(debug, param_debug, int, 0644);
252 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
253         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
254         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
255         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
256         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
257         ", or a combination, or all = -1)");
258
259 static void log_irqs(u32 evt)
260 {
261         if (likely(!(param_debug &
262                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
263                 return;
264
265         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
266             !(evt & OHCI1394_busReset))
267                 return;
268
269         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
270             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
271             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
272             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
273             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
274             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
275             evt & OHCI1394_isochRx              ? " IR"                 : "",
276             evt & OHCI1394_isochTx              ? " IT"                 : "",
277             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
278             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
279             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
280             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
281             evt & OHCI1394_busReset             ? " busReset"           : "",
282             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284                     OHCI1394_respTxComplete | OHCI1394_isochRx |
285                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
286                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287                     OHCI1394_regAccessFail | OHCI1394_busReset)
288                                                 ? " ?"                  : "");
289 }
290
291 static const char *speed[] = {
292         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299
300 static char _p(u32 *s, int shift)
301 {
302         return port[*s >> shift & 3];
303 }
304
305 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
306 {
307         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308                 return;
309
310         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
311                   self_id_count, generation, node_id);
312
313         for (; self_id_count--; ++s)
314                 if ((*s & 1 << 23) == 0)
315                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
316                             "%s gc=%d %s %s%s%s\n",
317                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318                             speed[*s >> 14 & 3], *s >> 16 & 63,
319                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321                 else
322                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
323                             *s, *s >> 24 & 63,
324                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
325                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
326 }
327
328 static const char *evts[] = {
329         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
330         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
331         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
332         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
333         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
334         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
335         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
336         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
337         [0x10] = "-reserved-",          [0x11] = "ack_complete",
338         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
339         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
340         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
341         [0x18] = "-reserved-",          [0x19] = "-reserved-",
342         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
343         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
344         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
345         [0x20] = "pending/cancelled",
346 };
347 static const char *tcodes[] = {
348         [0x0] = "QW req",               [0x1] = "BW req",
349         [0x2] = "W resp",               [0x3] = "-reserved-",
350         [0x4] = "QR req",               [0x5] = "BR req",
351         [0x6] = "QR resp",              [0x7] = "BR resp",
352         [0x8] = "cycle start",          [0x9] = "Lk req",
353         [0xa] = "async stream packet",  [0xb] = "Lk resp",
354         [0xc] = "-reserved-",           [0xd] = "-reserved-",
355         [0xe] = "link internal",        [0xf] = "-reserved-",
356 };
357 static const char *phys[] = {
358         [0x0] = "phy config packet",    [0x1] = "link-on packet",
359         [0x2] = "self-id packet",       [0x3] = "-reserved-",
360 };
361
362 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
363 {
364         int tcode = header[0] >> 4 & 0xf;
365         char specific[12];
366
367         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
368                 return;
369
370         if (unlikely(evt >= ARRAY_SIZE(evts)))
371                         evt = 0x1f;
372
373         if (evt == OHCI1394_evt_bus_reset) {
374                 fw_notify("A%c evt_bus_reset, generation %d\n",
375                     dir, (header[2] >> 16) & 0xff);
376                 return;
377         }
378
379         if (header[0] == ~header[1]) {
380                 fw_notify("A%c %s, %s, %08x\n",
381                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
382                 return;
383         }
384
385         switch (tcode) {
386         case 0x0: case 0x6: case 0x8:
387                 snprintf(specific, sizeof(specific), " = %08x",
388                          be32_to_cpu((__force __be32)header[3]));
389                 break;
390         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
391                 snprintf(specific, sizeof(specific), " %x,%x",
392                          header[3] >> 16, header[3] & 0xffff);
393                 break;
394         default:
395                 specific[0] = '\0';
396         }
397
398         switch (tcode) {
399         case 0xe: case 0xa:
400                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
401                 break;
402         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
403                 fw_notify("A%c spd %x tl %02x, "
404                     "%04x -> %04x, %s, "
405                     "%s, %04x%08x%s\n",
406                     dir, speed, header[0] >> 10 & 0x3f,
407                     header[1] >> 16, header[0] >> 16, evts[evt],
408                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
409                 break;
410         default:
411                 fw_notify("A%c spd %x tl %02x, "
412                     "%04x -> %04x, %s, "
413                     "%s%s\n",
414                     dir, speed, header[0] >> 10 & 0x3f,
415                     header[1] >> 16, header[0] >> 16, evts[evt],
416                     tcodes[tcode], specific);
417         }
418 }
419
420 #else
421
422 #define log_irqs(evt)
423 #define log_selfids(node_id, generation, self_id_count, sid)
424 #define log_ar_at_event(dir, speed, header, evt)
425
426 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
427
428 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
429 {
430         writel(data, ohci->registers + offset);
431 }
432
433 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
434 {
435         return readl(ohci->registers + offset);
436 }
437
438 static inline void flush_writes(const struct fw_ohci *ohci)
439 {
440         /* Do a dummy read to flush writes. */
441         reg_read(ohci, OHCI1394_Version);
442 }
443
444 static int ohci_update_phy_reg(struct fw_card *card, int addr,
445                                int clear_bits, int set_bits)
446 {
447         struct fw_ohci *ohci = fw_ohci(card);
448         u32 val, old;
449
450         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
451         flush_writes(ohci);
452         msleep(2);
453         val = reg_read(ohci, OHCI1394_PhyControl);
454         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
455                 fw_error("failed to set phy reg bits.\n");
456                 return -EBUSY;
457         }
458
459         old = OHCI1394_PhyControl_ReadData(val);
460         old = (old & ~clear_bits) | set_bits;
461         reg_write(ohci, OHCI1394_PhyControl,
462                   OHCI1394_PhyControl_Write(addr, old));
463
464         return 0;
465 }
466
467 static int ar_context_add_page(struct ar_context *ctx)
468 {
469         struct device *dev = ctx->ohci->card.device;
470         struct ar_buffer *ab;
471         dma_addr_t uninitialized_var(ab_bus);
472         size_t offset;
473
474         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
475         if (ab == NULL)
476                 return -ENOMEM;
477
478         ab->next = NULL;
479         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
480         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
481                                                     DESCRIPTOR_STATUS |
482                                                     DESCRIPTOR_BRANCH_ALWAYS);
483         offset = offsetof(struct ar_buffer, data);
484         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
485         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
486         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
487         ab->descriptor.branch_address = 0;
488
489         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
490         ctx->last_buffer->next = ab;
491         ctx->last_buffer = ab;
492
493         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
494         flush_writes(ctx->ohci);
495
496         return 0;
497 }
498
499 static void ar_context_release(struct ar_context *ctx)
500 {
501         struct ar_buffer *ab, *ab_next;
502         size_t offset;
503         dma_addr_t ab_bus;
504
505         for (ab = ctx->current_buffer; ab; ab = ab_next) {
506                 ab_next = ab->next;
507                 offset = offsetof(struct ar_buffer, data);
508                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
509                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
510                                   ab, ab_bus);
511         }
512 }
513
514 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
515 #define cond_le32_to_cpu(v) \
516         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
517 #else
518 #define cond_le32_to_cpu(v) le32_to_cpu(v)
519 #endif
520
521 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
522 {
523         struct fw_ohci *ohci = ctx->ohci;
524         struct fw_packet p;
525         u32 status, length, tcode;
526         int evt;
527
528         p.header[0] = cond_le32_to_cpu(buffer[0]);
529         p.header[1] = cond_le32_to_cpu(buffer[1]);
530         p.header[2] = cond_le32_to_cpu(buffer[2]);
531
532         tcode = (p.header[0] >> 4) & 0x0f;
533         switch (tcode) {
534         case TCODE_WRITE_QUADLET_REQUEST:
535         case TCODE_READ_QUADLET_RESPONSE:
536                 p.header[3] = (__force __u32) buffer[3];
537                 p.header_length = 16;
538                 p.payload_length = 0;
539                 break;
540
541         case TCODE_READ_BLOCK_REQUEST :
542                 p.header[3] = cond_le32_to_cpu(buffer[3]);
543                 p.header_length = 16;
544                 p.payload_length = 0;
545                 break;
546
547         case TCODE_WRITE_BLOCK_REQUEST:
548         case TCODE_READ_BLOCK_RESPONSE:
549         case TCODE_LOCK_REQUEST:
550         case TCODE_LOCK_RESPONSE:
551                 p.header[3] = cond_le32_to_cpu(buffer[3]);
552                 p.header_length = 16;
553                 p.payload_length = p.header[3] >> 16;
554                 break;
555
556         case TCODE_WRITE_RESPONSE:
557         case TCODE_READ_QUADLET_REQUEST:
558         case OHCI_TCODE_PHY_PACKET:
559                 p.header_length = 12;
560                 p.payload_length = 0;
561                 break;
562
563         default:
564                 /* FIXME: Stop context, discard everything, and restart? */
565                 p.header_length = 0;
566                 p.payload_length = 0;
567         }
568
569         p.payload = (void *) buffer + p.header_length;
570
571         /* FIXME: What to do about evt_* errors? */
572         length = (p.header_length + p.payload_length + 3) / 4;
573         status = cond_le32_to_cpu(buffer[length]);
574         evt    = (status >> 16) & 0x1f;
575
576         p.ack        = evt - 16;
577         p.speed      = (status >> 21) & 0x7;
578         p.timestamp  = status & 0xffff;
579         p.generation = ohci->request_generation;
580
581         log_ar_at_event('R', p.speed, p.header, evt);
582
583         /*
584          * The OHCI bus reset handler synthesizes a phy packet with
585          * the new generation number when a bus reset happens (see
586          * section 8.4.2.3).  This helps us determine when a request
587          * was received and make sure we send the response in the same
588          * generation.  We only need this for requests; for responses
589          * we use the unique tlabel for finding the matching
590          * request.
591          *
592          * Alas some chips sometimes emit bus reset packets with a
593          * wrong generation.  We set the correct generation for these
594          * at a slightly incorrect time (in bus_reset_tasklet).
595          */
596         if (evt == OHCI1394_evt_bus_reset) {
597                 if (!ohci->bus_reset_packet_quirk)
598                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
599         } else if (ctx == &ohci->ar_request_ctx) {
600                 fw_core_handle_request(&ohci->card, &p);
601         } else {
602                 fw_core_handle_response(&ohci->card, &p);
603         }
604
605         return buffer + length + 1;
606 }
607
608 static void ar_context_tasklet(unsigned long data)
609 {
610         struct ar_context *ctx = (struct ar_context *)data;
611         struct fw_ohci *ohci = ctx->ohci;
612         struct ar_buffer *ab;
613         struct descriptor *d;
614         void *buffer, *end;
615
616         ab = ctx->current_buffer;
617         d = &ab->descriptor;
618
619         if (d->res_count == 0) {
620                 size_t size, rest, offset;
621                 dma_addr_t start_bus;
622                 void *start;
623
624                 /*
625                  * This descriptor is finished and we may have a
626                  * packet split across this and the next buffer. We
627                  * reuse the page for reassembling the split packet.
628                  */
629
630                 offset = offsetof(struct ar_buffer, data);
631                 start = buffer = ab;
632                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
633
634                 ab = ab->next;
635                 d = &ab->descriptor;
636                 size = buffer + PAGE_SIZE - ctx->pointer;
637                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
638                 memmove(buffer, ctx->pointer, size);
639                 memcpy(buffer + size, ab->data, rest);
640                 ctx->current_buffer = ab;
641                 ctx->pointer = (void *) ab->data + rest;
642                 end = buffer + size + rest;
643
644                 while (buffer < end)
645                         buffer = handle_ar_packet(ctx, buffer);
646
647                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
648                                   start, start_bus);
649                 ar_context_add_page(ctx);
650         } else {
651                 buffer = ctx->pointer;
652                 ctx->pointer = end =
653                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
654
655                 while (buffer < end)
656                         buffer = handle_ar_packet(ctx, buffer);
657         }
658 }
659
660 static int ar_context_init(struct ar_context *ctx,
661                            struct fw_ohci *ohci, u32 regs)
662 {
663         struct ar_buffer ab;
664
665         ctx->regs        = regs;
666         ctx->ohci        = ohci;
667         ctx->last_buffer = &ab;
668         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
669
670         ar_context_add_page(ctx);
671         ar_context_add_page(ctx);
672         ctx->current_buffer = ab.next;
673         ctx->pointer = ctx->current_buffer->data;
674
675         return 0;
676 }
677
678 static void ar_context_run(struct ar_context *ctx)
679 {
680         struct ar_buffer *ab = ctx->current_buffer;
681         dma_addr_t ab_bus;
682         size_t offset;
683
684         offset = offsetof(struct ar_buffer, data);
685         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
686
687         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
688         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
689         flush_writes(ctx->ohci);
690 }
691
692 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
693 {
694         int b, key;
695
696         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
697         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
698
699         /* figure out which descriptor the branch address goes in */
700         if (z == 2 && (b == 3 || key == 2))
701                 return d;
702         else
703                 return d + z - 1;
704 }
705
706 static void context_tasklet(unsigned long data)
707 {
708         struct context *ctx = (struct context *) data;
709         struct descriptor *d, *last;
710         u32 address;
711         int z;
712         struct descriptor_buffer *desc;
713
714         desc = list_entry(ctx->buffer_list.next,
715                         struct descriptor_buffer, list);
716         last = ctx->last;
717         while (last->branch_address != 0) {
718                 struct descriptor_buffer *old_desc = desc;
719                 address = le32_to_cpu(last->branch_address);
720                 z = address & 0xf;
721                 address &= ~0xf;
722
723                 /* If the branch address points to a buffer outside of the
724                  * current buffer, advance to the next buffer. */
725                 if (address < desc->buffer_bus ||
726                                 address >= desc->buffer_bus + desc->used)
727                         desc = list_entry(desc->list.next,
728                                         struct descriptor_buffer, list);
729                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
730                 last = find_branch_descriptor(d, z);
731
732                 if (!ctx->callback(ctx, d, last))
733                         break;
734
735                 if (old_desc != desc) {
736                         /* If we've advanced to the next buffer, move the
737                          * previous buffer to the free list. */
738                         unsigned long flags;
739                         old_desc->used = 0;
740                         spin_lock_irqsave(&ctx->ohci->lock, flags);
741                         list_move_tail(&old_desc->list, &ctx->buffer_list);
742                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
743                 }
744                 ctx->last = last;
745         }
746 }
747
748 /*
749  * Allocate a new buffer and add it to the list of free buffers for this
750  * context.  Must be called with ohci->lock held.
751  */
752 static int context_add_buffer(struct context *ctx)
753 {
754         struct descriptor_buffer *desc;
755         dma_addr_t uninitialized_var(bus_addr);
756         int offset;
757
758         /*
759          * 16MB of descriptors should be far more than enough for any DMA
760          * program.  This will catch run-away userspace or DoS attacks.
761          */
762         if (ctx->total_allocation >= 16*1024*1024)
763                 return -ENOMEM;
764
765         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
766                         &bus_addr, GFP_ATOMIC);
767         if (!desc)
768                 return -ENOMEM;
769
770         offset = (void *)&desc->buffer - (void *)desc;
771         desc->buffer_size = PAGE_SIZE - offset;
772         desc->buffer_bus = bus_addr + offset;
773         desc->used = 0;
774
775         list_add_tail(&desc->list, &ctx->buffer_list);
776         ctx->total_allocation += PAGE_SIZE;
777
778         return 0;
779 }
780
781 static int context_init(struct context *ctx, struct fw_ohci *ohci,
782                         u32 regs, descriptor_callback_t callback)
783 {
784         ctx->ohci = ohci;
785         ctx->regs = regs;
786         ctx->total_allocation = 0;
787
788         INIT_LIST_HEAD(&ctx->buffer_list);
789         if (context_add_buffer(ctx) < 0)
790                 return -ENOMEM;
791
792         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
793                         struct descriptor_buffer, list);
794
795         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
796         ctx->callback = callback;
797
798         /*
799          * We put a dummy descriptor in the buffer that has a NULL
800          * branch address and looks like it's been sent.  That way we
801          * have a descriptor to append DMA programs to.
802          */
803         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
804         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
805         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
806         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
807         ctx->last = ctx->buffer_tail->buffer;
808         ctx->prev = ctx->buffer_tail->buffer;
809
810         return 0;
811 }
812
813 static void context_release(struct context *ctx)
814 {
815         struct fw_card *card = &ctx->ohci->card;
816         struct descriptor_buffer *desc, *tmp;
817
818         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
819                 dma_free_coherent(card->device, PAGE_SIZE, desc,
820                         desc->buffer_bus -
821                         ((void *)&desc->buffer - (void *)desc));
822 }
823
824 /* Must be called with ohci->lock held */
825 static struct descriptor *context_get_descriptors(struct context *ctx,
826                                                   int z, dma_addr_t *d_bus)
827 {
828         struct descriptor *d = NULL;
829         struct descriptor_buffer *desc = ctx->buffer_tail;
830
831         if (z * sizeof(*d) > desc->buffer_size)
832                 return NULL;
833
834         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
835                 /* No room for the descriptor in this buffer, so advance to the
836                  * next one. */
837
838                 if (desc->list.next == &ctx->buffer_list) {
839                         /* If there is no free buffer next in the list,
840                          * allocate one. */
841                         if (context_add_buffer(ctx) < 0)
842                                 return NULL;
843                 }
844                 desc = list_entry(desc->list.next,
845                                 struct descriptor_buffer, list);
846                 ctx->buffer_tail = desc;
847         }
848
849         d = desc->buffer + desc->used / sizeof(*d);
850         memset(d, 0, z * sizeof(*d));
851         *d_bus = desc->buffer_bus + desc->used;
852
853         return d;
854 }
855
856 static void context_run(struct context *ctx, u32 extra)
857 {
858         struct fw_ohci *ohci = ctx->ohci;
859
860         reg_write(ohci, COMMAND_PTR(ctx->regs),
861                   le32_to_cpu(ctx->last->branch_address));
862         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
863         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
864         flush_writes(ohci);
865 }
866
867 static void context_append(struct context *ctx,
868                            struct descriptor *d, int z, int extra)
869 {
870         dma_addr_t d_bus;
871         struct descriptor_buffer *desc = ctx->buffer_tail;
872
873         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
874
875         desc->used += (z + extra) * sizeof(*d);
876         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
877         ctx->prev = find_branch_descriptor(d, z);
878
879         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
880         flush_writes(ctx->ohci);
881 }
882
883 static void context_stop(struct context *ctx)
884 {
885         u32 reg;
886         int i;
887
888         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
889         flush_writes(ctx->ohci);
890
891         for (i = 0; i < 10; i++) {
892                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
893                 if ((reg & CONTEXT_ACTIVE) == 0)
894                         return;
895
896                 mdelay(1);
897         }
898         fw_error("Error: DMA context still active (0x%08x)\n", reg);
899 }
900
901 struct driver_data {
902         struct fw_packet *packet;
903 };
904
905 /*
906  * This function apppends a packet to the DMA queue for transmission.
907  * Must always be called with the ochi->lock held to ensure proper
908  * generation handling and locking around packet queue manipulation.
909  */
910 static int at_context_queue_packet(struct context *ctx,
911                                    struct fw_packet *packet)
912 {
913         struct fw_ohci *ohci = ctx->ohci;
914         dma_addr_t d_bus, uninitialized_var(payload_bus);
915         struct driver_data *driver_data;
916         struct descriptor *d, *last;
917         __le32 *header;
918         int z, tcode;
919         u32 reg;
920
921         d = context_get_descriptors(ctx, 4, &d_bus);
922         if (d == NULL) {
923                 packet->ack = RCODE_SEND_ERROR;
924                 return -1;
925         }
926
927         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
928         d[0].res_count = cpu_to_le16(packet->timestamp);
929
930         /*
931          * The DMA format for asyncronous link packets is different
932          * from the IEEE1394 layout, so shift the fields around
933          * accordingly.  If header_length is 8, it's a PHY packet, to
934          * which we need to prepend an extra quadlet.
935          */
936
937         header = (__le32 *) &d[1];
938         if (packet->header_length > 8) {
939                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
940                                         (packet->speed << 16));
941                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
942                                         (packet->header[0] & 0xffff0000));
943                 header[2] = cpu_to_le32(packet->header[2]);
944
945                 tcode = (packet->header[0] >> 4) & 0x0f;
946                 if (TCODE_IS_BLOCK_PACKET(tcode))
947                         header[3] = cpu_to_le32(packet->header[3]);
948                 else
949                         header[3] = (__force __le32) packet->header[3];
950
951                 d[0].req_count = cpu_to_le16(packet->header_length);
952         } else {
953                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
954                                         (packet->speed << 16));
955                 header[1] = cpu_to_le32(packet->header[0]);
956                 header[2] = cpu_to_le32(packet->header[1]);
957                 d[0].req_count = cpu_to_le16(12);
958         }
959
960         driver_data = (struct driver_data *) &d[3];
961         driver_data->packet = packet;
962         packet->driver_data = driver_data;
963
964         if (packet->payload_length > 0) {
965                 payload_bus =
966                         dma_map_single(ohci->card.device, packet->payload,
967                                        packet->payload_length, DMA_TO_DEVICE);
968                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
969                         packet->ack = RCODE_SEND_ERROR;
970                         return -1;
971                 }
972                 packet->payload_bus = payload_bus;
973
974                 d[2].req_count    = cpu_to_le16(packet->payload_length);
975                 d[2].data_address = cpu_to_le32(payload_bus);
976                 last = &d[2];
977                 z = 3;
978         } else {
979                 last = &d[0];
980                 z = 2;
981         }
982
983         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
984                                      DESCRIPTOR_IRQ_ALWAYS |
985                                      DESCRIPTOR_BRANCH_ALWAYS);
986
987         /*
988          * If the controller and packet generations don't match, we need to
989          * bail out and try again.  If IntEvent.busReset is set, the AT context
990          * is halted, so appending to the context and trying to run it is
991          * futile.  Most controllers do the right thing and just flush the AT
992          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
993          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
994          * up stalling out.  So we just bail out in software and try again
995          * later, and everyone is happy.
996          * FIXME: Document how the locking works.
997          */
998         if (ohci->generation != packet->generation ||
999             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1000                 if (packet->payload_length > 0)
1001                         dma_unmap_single(ohci->card.device, payload_bus,
1002                                          packet->payload_length, DMA_TO_DEVICE);
1003                 packet->ack = RCODE_GENERATION;
1004                 return -1;
1005         }
1006
1007         context_append(ctx, d, z, 4 - z);
1008
1009         /* If the context isn't already running, start it up. */
1010         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1011         if ((reg & CONTEXT_RUN) == 0)
1012                 context_run(ctx, 0);
1013
1014         return 0;
1015 }
1016
1017 static int handle_at_packet(struct context *context,
1018                             struct descriptor *d,
1019                             struct descriptor *last)
1020 {
1021         struct driver_data *driver_data;
1022         struct fw_packet *packet;
1023         struct fw_ohci *ohci = context->ohci;
1024         int evt;
1025
1026         if (last->transfer_status == 0)
1027                 /* This descriptor isn't done yet, stop iteration. */
1028                 return 0;
1029
1030         driver_data = (struct driver_data *) &d[3];
1031         packet = driver_data->packet;
1032         if (packet == NULL)
1033                 /* This packet was cancelled, just continue. */
1034                 return 1;
1035
1036         if (packet->payload_bus)
1037                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1038                                  packet->payload_length, DMA_TO_DEVICE);
1039
1040         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1041         packet->timestamp = le16_to_cpu(last->res_count);
1042
1043         log_ar_at_event('T', packet->speed, packet->header, evt);
1044
1045         switch (evt) {
1046         case OHCI1394_evt_timeout:
1047                 /* Async response transmit timed out. */
1048                 packet->ack = RCODE_CANCELLED;
1049                 break;
1050
1051         case OHCI1394_evt_flushed:
1052                 /*
1053                  * The packet was flushed should give same error as
1054                  * when we try to use a stale generation count.
1055                  */
1056                 packet->ack = RCODE_GENERATION;
1057                 break;
1058
1059         case OHCI1394_evt_missing_ack:
1060                 /*
1061                  * Using a valid (current) generation count, but the
1062                  * node is not on the bus or not sending acks.
1063                  */
1064                 packet->ack = RCODE_NO_ACK;
1065                 break;
1066
1067         case ACK_COMPLETE + 0x10:
1068         case ACK_PENDING + 0x10:
1069         case ACK_BUSY_X + 0x10:
1070         case ACK_BUSY_A + 0x10:
1071         case ACK_BUSY_B + 0x10:
1072         case ACK_DATA_ERROR + 0x10:
1073         case ACK_TYPE_ERROR + 0x10:
1074                 packet->ack = evt - 0x10;
1075                 break;
1076
1077         default:
1078                 packet->ack = RCODE_SEND_ERROR;
1079                 break;
1080         }
1081
1082         packet->callback(packet, &ohci->card, packet->ack);
1083
1084         return 1;
1085 }
1086
1087 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1088 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1089 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1090 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1091 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1092
1093 static void handle_local_rom(struct fw_ohci *ohci,
1094                              struct fw_packet *packet, u32 csr)
1095 {
1096         struct fw_packet response;
1097         int tcode, length, i;
1098
1099         tcode = HEADER_GET_TCODE(packet->header[0]);
1100         if (TCODE_IS_BLOCK_PACKET(tcode))
1101                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1102         else
1103                 length = 4;
1104
1105         i = csr - CSR_CONFIG_ROM;
1106         if (i + length > CONFIG_ROM_SIZE) {
1107                 fw_fill_response(&response, packet->header,
1108                                  RCODE_ADDRESS_ERROR, NULL, 0);
1109         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1110                 fw_fill_response(&response, packet->header,
1111                                  RCODE_TYPE_ERROR, NULL, 0);
1112         } else {
1113                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1114                                  (void *) ohci->config_rom + i, length);
1115         }
1116
1117         fw_core_handle_response(&ohci->card, &response);
1118 }
1119
1120 static void handle_local_lock(struct fw_ohci *ohci,
1121                               struct fw_packet *packet, u32 csr)
1122 {
1123         struct fw_packet response;
1124         int tcode, length, ext_tcode, sel;
1125         __be32 *payload, lock_old;
1126         u32 lock_arg, lock_data;
1127
1128         tcode = HEADER_GET_TCODE(packet->header[0]);
1129         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1130         payload = packet->payload;
1131         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1132
1133         if (tcode == TCODE_LOCK_REQUEST &&
1134             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1135                 lock_arg = be32_to_cpu(payload[0]);
1136                 lock_data = be32_to_cpu(payload[1]);
1137         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1138                 lock_arg = 0;
1139                 lock_data = 0;
1140         } else {
1141                 fw_fill_response(&response, packet->header,
1142                                  RCODE_TYPE_ERROR, NULL, 0);
1143                 goto out;
1144         }
1145
1146         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1147         reg_write(ohci, OHCI1394_CSRData, lock_data);
1148         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1149         reg_write(ohci, OHCI1394_CSRControl, sel);
1150
1151         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1152                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1153         else
1154                 fw_notify("swap not done yet\n");
1155
1156         fw_fill_response(&response, packet->header,
1157                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1158  out:
1159         fw_core_handle_response(&ohci->card, &response);
1160 }
1161
1162 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1163 {
1164         u64 offset;
1165         u32 csr;
1166
1167         if (ctx == &ctx->ohci->at_request_ctx) {
1168                 packet->ack = ACK_PENDING;
1169                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1170         }
1171
1172         offset =
1173                 ((unsigned long long)
1174                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1175                 packet->header[2];
1176         csr = offset - CSR_REGISTER_BASE;
1177
1178         /* Handle config rom reads. */
1179         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1180                 handle_local_rom(ctx->ohci, packet, csr);
1181         else switch (csr) {
1182         case CSR_BUS_MANAGER_ID:
1183         case CSR_BANDWIDTH_AVAILABLE:
1184         case CSR_CHANNELS_AVAILABLE_HI:
1185         case CSR_CHANNELS_AVAILABLE_LO:
1186                 handle_local_lock(ctx->ohci, packet, csr);
1187                 break;
1188         default:
1189                 if (ctx == &ctx->ohci->at_request_ctx)
1190                         fw_core_handle_request(&ctx->ohci->card, packet);
1191                 else
1192                         fw_core_handle_response(&ctx->ohci->card, packet);
1193                 break;
1194         }
1195
1196         if (ctx == &ctx->ohci->at_response_ctx) {
1197                 packet->ack = ACK_COMPLETE;
1198                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1199         }
1200 }
1201
1202 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1203 {
1204         unsigned long flags;
1205         int ret;
1206
1207         spin_lock_irqsave(&ctx->ohci->lock, flags);
1208
1209         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1210             ctx->ohci->generation == packet->generation) {
1211                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1212                 handle_local_request(ctx, packet);
1213                 return;
1214         }
1215
1216         ret = at_context_queue_packet(ctx, packet);
1217         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1218
1219         if (ret < 0)
1220                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1221
1222 }
1223
1224 static void bus_reset_tasklet(unsigned long data)
1225 {
1226         struct fw_ohci *ohci = (struct fw_ohci *)data;
1227         int self_id_count, i, j, reg;
1228         int generation, new_generation;
1229         unsigned long flags;
1230         void *free_rom = NULL;
1231         dma_addr_t free_rom_bus = 0;
1232
1233         reg = reg_read(ohci, OHCI1394_NodeID);
1234         if (!(reg & OHCI1394_NodeID_idValid)) {
1235                 fw_notify("node ID not valid, new bus reset in progress\n");
1236                 return;
1237         }
1238         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1239                 fw_notify("malconfigured bus\n");
1240                 return;
1241         }
1242         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1243                                OHCI1394_NodeID_nodeNumber);
1244
1245         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1246         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1247                 fw_notify("inconsistent self IDs\n");
1248                 return;
1249         }
1250         /*
1251          * The count in the SelfIDCount register is the number of
1252          * bytes in the self ID receive buffer.  Since we also receive
1253          * the inverted quadlets and a header quadlet, we shift one
1254          * bit extra to get the actual number of self IDs.
1255          */
1256         self_id_count = (reg >> 3) & 0x3ff;
1257         if (self_id_count == 0) {
1258                 fw_notify("inconsistent self IDs\n");
1259                 return;
1260         }
1261         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1262         rmb();
1263
1264         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1265                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1266                         fw_notify("inconsistent self IDs\n");
1267                         return;
1268                 }
1269                 ohci->self_id_buffer[j] =
1270                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1271         }
1272         rmb();
1273
1274         /*
1275          * Check the consistency of the self IDs we just read.  The
1276          * problem we face is that a new bus reset can start while we
1277          * read out the self IDs from the DMA buffer. If this happens,
1278          * the DMA buffer will be overwritten with new self IDs and we
1279          * will read out inconsistent data.  The OHCI specification
1280          * (section 11.2) recommends a technique similar to
1281          * linux/seqlock.h, where we remember the generation of the
1282          * self IDs in the buffer before reading them out and compare
1283          * it to the current generation after reading them out.  If
1284          * the two generations match we know we have a consistent set
1285          * of self IDs.
1286          */
1287
1288         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1289         if (new_generation != generation) {
1290                 fw_notify("recursive bus reset detected, "
1291                           "discarding self ids\n");
1292                 return;
1293         }
1294
1295         /* FIXME: Document how the locking works. */
1296         spin_lock_irqsave(&ohci->lock, flags);
1297
1298         ohci->generation = generation;
1299         context_stop(&ohci->at_request_ctx);
1300         context_stop(&ohci->at_response_ctx);
1301         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1302
1303         if (ohci->bus_reset_packet_quirk)
1304                 ohci->request_generation = generation;
1305
1306         /*
1307          * This next bit is unrelated to the AT context stuff but we
1308          * have to do it under the spinlock also.  If a new config rom
1309          * was set up before this reset, the old one is now no longer
1310          * in use and we can free it. Update the config rom pointers
1311          * to point to the current config rom and clear the
1312          * next_config_rom pointer so a new udpate can take place.
1313          */
1314
1315         if (ohci->next_config_rom != NULL) {
1316                 if (ohci->next_config_rom != ohci->config_rom) {
1317                         free_rom      = ohci->config_rom;
1318                         free_rom_bus  = ohci->config_rom_bus;
1319                 }
1320                 ohci->config_rom      = ohci->next_config_rom;
1321                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1322                 ohci->next_config_rom = NULL;
1323
1324                 /*
1325                  * Restore config_rom image and manually update
1326                  * config_rom registers.  Writing the header quadlet
1327                  * will indicate that the config rom is ready, so we
1328                  * do that last.
1329                  */
1330                 reg_write(ohci, OHCI1394_BusOptions,
1331                           be32_to_cpu(ohci->config_rom[2]));
1332                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1333                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1334         }
1335
1336 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1337         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1338         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1339 #endif
1340
1341         spin_unlock_irqrestore(&ohci->lock, flags);
1342
1343         if (free_rom)
1344                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1345                                   free_rom, free_rom_bus);
1346
1347         log_selfids(ohci->node_id, generation,
1348                     self_id_count, ohci->self_id_buffer);
1349
1350         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1351                                  self_id_count, ohci->self_id_buffer);
1352 }
1353
1354 static irqreturn_t irq_handler(int irq, void *data)
1355 {
1356         struct fw_ohci *ohci = data;
1357         u32 event, iso_event, cycle_time;
1358         int i;
1359
1360         event = reg_read(ohci, OHCI1394_IntEventClear);
1361
1362         if (!event || !~event)
1363                 return IRQ_NONE;
1364
1365         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1366         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1367         log_irqs(event);
1368
1369         if (event & OHCI1394_selfIDComplete)
1370                 tasklet_schedule(&ohci->bus_reset_tasklet);
1371
1372         if (event & OHCI1394_RQPkt)
1373                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1374
1375         if (event & OHCI1394_RSPkt)
1376                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1377
1378         if (event & OHCI1394_reqTxComplete)
1379                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1380
1381         if (event & OHCI1394_respTxComplete)
1382                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1383
1384         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1385         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1386
1387         while (iso_event) {
1388                 i = ffs(iso_event) - 1;
1389                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1390                 iso_event &= ~(1 << i);
1391         }
1392
1393         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1394         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1395
1396         while (iso_event) {
1397                 i = ffs(iso_event) - 1;
1398                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1399                 iso_event &= ~(1 << i);
1400         }
1401
1402         if (unlikely(event & OHCI1394_regAccessFail))
1403                 fw_error("Register access failure - "
1404                          "please notify linux1394-devel@lists.sf.net\n");
1405
1406         if (unlikely(event & OHCI1394_postedWriteErr))
1407                 fw_error("PCI posted write error\n");
1408
1409         if (unlikely(event & OHCI1394_cycleTooLong)) {
1410                 if (printk_ratelimit())
1411                         fw_notify("isochronous cycle too long\n");
1412                 reg_write(ohci, OHCI1394_LinkControlSet,
1413                           OHCI1394_LinkControl_cycleMaster);
1414         }
1415
1416         if (event & OHCI1394_cycle64Seconds) {
1417                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1418                 if ((cycle_time & 0x80000000) == 0)
1419                         ohci->bus_seconds++;
1420         }
1421
1422         return IRQ_HANDLED;
1423 }
1424
1425 static int software_reset(struct fw_ohci *ohci)
1426 {
1427         int i;
1428
1429         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1430
1431         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1432                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1433                      OHCI1394_HCControl_softReset) == 0)
1434                         return 0;
1435                 msleep(1);
1436         }
1437
1438         return -EBUSY;
1439 }
1440
1441 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1442 {
1443         struct fw_ohci *ohci = fw_ohci(card);
1444         struct pci_dev *dev = to_pci_dev(card->device);
1445         u32 lps;
1446         int i;
1447
1448         if (software_reset(ohci)) {
1449                 fw_error("Failed to reset ohci card.\n");
1450                 return -EBUSY;
1451         }
1452
1453         /*
1454          * Now enable LPS, which we need in order to start accessing
1455          * most of the registers.  In fact, on some cards (ALI M5251),
1456          * accessing registers in the SClk domain without LPS enabled
1457          * will lock up the machine.  Wait 50msec to make sure we have
1458          * full link enabled.  However, with some cards (well, at least
1459          * a JMicron PCIe card), we have to try again sometimes.
1460          */
1461         reg_write(ohci, OHCI1394_HCControlSet,
1462                   OHCI1394_HCControl_LPS |
1463                   OHCI1394_HCControl_postedWriteEnable);
1464         flush_writes(ohci);
1465
1466         for (lps = 0, i = 0; !lps && i < 3; i++) {
1467                 msleep(50);
1468                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1469                       OHCI1394_HCControl_LPS;
1470         }
1471
1472         if (!lps) {
1473                 fw_error("Failed to set Link Power Status\n");
1474                 return -EIO;
1475         }
1476
1477         reg_write(ohci, OHCI1394_HCControlClear,
1478                   OHCI1394_HCControl_noByteSwapData);
1479
1480         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1481         reg_write(ohci, OHCI1394_LinkControlClear,
1482                   OHCI1394_LinkControl_rcvPhyPkt);
1483         reg_write(ohci, OHCI1394_LinkControlSet,
1484                   OHCI1394_LinkControl_rcvSelfID |
1485                   OHCI1394_LinkControl_cycleTimerEnable |
1486                   OHCI1394_LinkControl_cycleMaster);
1487
1488         reg_write(ohci, OHCI1394_ATRetries,
1489                   OHCI1394_MAX_AT_REQ_RETRIES |
1490                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1491                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1492
1493         ar_context_run(&ohci->ar_request_ctx);
1494         ar_context_run(&ohci->ar_response_ctx);
1495
1496         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1497         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1498         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1499         reg_write(ohci, OHCI1394_IntMaskSet,
1500                   OHCI1394_selfIDComplete |
1501                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1502                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1503                   OHCI1394_isochRx | OHCI1394_isochTx |
1504                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1505                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1506                   OHCI1394_masterIntEnable);
1507         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1508                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1509
1510         /* Activate link_on bit and contender bit in our self ID packets.*/
1511         if (ohci_update_phy_reg(card, 4, 0,
1512                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1513                 return -EIO;
1514
1515         /*
1516          * When the link is not yet enabled, the atomic config rom
1517          * update mechanism described below in ohci_set_config_rom()
1518          * is not active.  We have to update ConfigRomHeader and
1519          * BusOptions manually, and the write to ConfigROMmap takes
1520          * effect immediately.  We tie this to the enabling of the
1521          * link, so we have a valid config rom before enabling - the
1522          * OHCI requires that ConfigROMhdr and BusOptions have valid
1523          * values before enabling.
1524          *
1525          * However, when the ConfigROMmap is written, some controllers
1526          * always read back quadlets 0 and 2 from the config rom to
1527          * the ConfigRomHeader and BusOptions registers on bus reset.
1528          * They shouldn't do that in this initial case where the link
1529          * isn't enabled.  This means we have to use the same
1530          * workaround here, setting the bus header to 0 and then write
1531          * the right values in the bus reset tasklet.
1532          */
1533
1534         if (config_rom) {
1535                 ohci->next_config_rom =
1536                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1537                                            &ohci->next_config_rom_bus,
1538                                            GFP_KERNEL);
1539                 if (ohci->next_config_rom == NULL)
1540                         return -ENOMEM;
1541
1542                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1543                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1544         } else {
1545                 /*
1546                  * In the suspend case, config_rom is NULL, which
1547                  * means that we just reuse the old config rom.
1548                  */
1549                 ohci->next_config_rom = ohci->config_rom;
1550                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1551         }
1552
1553         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1554         ohci->next_config_rom[0] = 0;
1555         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1556         reg_write(ohci, OHCI1394_BusOptions,
1557                   be32_to_cpu(ohci->next_config_rom[2]));
1558         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1559
1560         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1561
1562         if (request_irq(dev->irq, irq_handler,
1563                         IRQF_SHARED, ohci_driver_name, ohci)) {
1564                 fw_error("Failed to allocate shared interrupt %d.\n",
1565                          dev->irq);
1566                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1567                                   ohci->config_rom, ohci->config_rom_bus);
1568                 return -EIO;
1569         }
1570
1571         reg_write(ohci, OHCI1394_HCControlSet,
1572                   OHCI1394_HCControl_linkEnable |
1573                   OHCI1394_HCControl_BIBimageValid);
1574         flush_writes(ohci);
1575
1576         /*
1577          * We are ready to go, initiate bus reset to finish the
1578          * initialization.
1579          */
1580
1581         fw_core_initiate_bus_reset(&ohci->card, 1);
1582
1583         return 0;
1584 }
1585
1586 static int ohci_set_config_rom(struct fw_card *card,
1587                                u32 *config_rom, size_t length)
1588 {
1589         struct fw_ohci *ohci;
1590         unsigned long flags;
1591         int ret = -EBUSY;
1592         __be32 *next_config_rom;
1593         dma_addr_t uninitialized_var(next_config_rom_bus);
1594
1595         ohci = fw_ohci(card);
1596
1597         /*
1598          * When the OHCI controller is enabled, the config rom update
1599          * mechanism is a bit tricky, but easy enough to use.  See
1600          * section 5.5.6 in the OHCI specification.
1601          *
1602          * The OHCI controller caches the new config rom address in a
1603          * shadow register (ConfigROMmapNext) and needs a bus reset
1604          * for the changes to take place.  When the bus reset is
1605          * detected, the controller loads the new values for the
1606          * ConfigRomHeader and BusOptions registers from the specified
1607          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1608          * shadow register. All automatically and atomically.
1609          *
1610          * Now, there's a twist to this story.  The automatic load of
1611          * ConfigRomHeader and BusOptions doesn't honor the
1612          * noByteSwapData bit, so with a be32 config rom, the
1613          * controller will load be32 values in to these registers
1614          * during the atomic update, even on litte endian
1615          * architectures.  The workaround we use is to put a 0 in the
1616          * header quadlet; 0 is endian agnostic and means that the
1617          * config rom isn't ready yet.  In the bus reset tasklet we
1618          * then set up the real values for the two registers.
1619          *
1620          * We use ohci->lock to avoid racing with the code that sets
1621          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1622          */
1623
1624         next_config_rom =
1625                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1626                                    &next_config_rom_bus, GFP_KERNEL);
1627         if (next_config_rom == NULL)
1628                 return -ENOMEM;
1629
1630         spin_lock_irqsave(&ohci->lock, flags);
1631
1632         if (ohci->next_config_rom == NULL) {
1633                 ohci->next_config_rom = next_config_rom;
1634                 ohci->next_config_rom_bus = next_config_rom_bus;
1635
1636                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1637                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1638                                   length * 4);
1639
1640                 ohci->next_header = config_rom[0];
1641                 ohci->next_config_rom[0] = 0;
1642
1643                 reg_write(ohci, OHCI1394_ConfigROMmap,
1644                           ohci->next_config_rom_bus);
1645                 ret = 0;
1646         }
1647
1648         spin_unlock_irqrestore(&ohci->lock, flags);
1649
1650         /*
1651          * Now initiate a bus reset to have the changes take
1652          * effect. We clean up the old config rom memory and DMA
1653          * mappings in the bus reset tasklet, since the OHCI
1654          * controller could need to access it before the bus reset
1655          * takes effect.
1656          */
1657         if (ret == 0)
1658                 fw_core_initiate_bus_reset(&ohci->card, 1);
1659         else
1660                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1661                                   next_config_rom, next_config_rom_bus);
1662
1663         return ret;
1664 }
1665
1666 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1667 {
1668         struct fw_ohci *ohci = fw_ohci(card);
1669
1670         at_context_transmit(&ohci->at_request_ctx, packet);
1671 }
1672
1673 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1674 {
1675         struct fw_ohci *ohci = fw_ohci(card);
1676
1677         at_context_transmit(&ohci->at_response_ctx, packet);
1678 }
1679
1680 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1681 {
1682         struct fw_ohci *ohci = fw_ohci(card);
1683         struct context *ctx = &ohci->at_request_ctx;
1684         struct driver_data *driver_data = packet->driver_data;
1685         int ret = -ENOENT;
1686
1687         tasklet_disable(&ctx->tasklet);
1688
1689         if (packet->ack != 0)
1690                 goto out;
1691
1692         if (packet->payload_bus)
1693                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1694                                  packet->payload_length, DMA_TO_DEVICE);
1695
1696         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1697         driver_data->packet = NULL;
1698         packet->ack = RCODE_CANCELLED;
1699         packet->callback(packet, &ohci->card, packet->ack);
1700         ret = 0;
1701  out:
1702         tasklet_enable(&ctx->tasklet);
1703
1704         return ret;
1705 }
1706
1707 static int ohci_enable_phys_dma(struct fw_card *card,
1708                                 int node_id, int generation)
1709 {
1710 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1711         return 0;
1712 #else
1713         struct fw_ohci *ohci = fw_ohci(card);
1714         unsigned long flags;
1715         int n, ret = 0;
1716
1717         /*
1718          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1719          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1720          */
1721
1722         spin_lock_irqsave(&ohci->lock, flags);
1723
1724         if (ohci->generation != generation) {
1725                 ret = -ESTALE;
1726                 goto out;
1727         }
1728
1729         /*
1730          * Note, if the node ID contains a non-local bus ID, physical DMA is
1731          * enabled for _all_ nodes on remote buses.
1732          */
1733
1734         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1735         if (n < 32)
1736                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1737         else
1738                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1739
1740         flush_writes(ohci);
1741  out:
1742         spin_unlock_irqrestore(&ohci->lock, flags);
1743
1744         return ret;
1745 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1746 }
1747
1748 static u64 ohci_get_bus_time(struct fw_card *card)
1749 {
1750         struct fw_ohci *ohci = fw_ohci(card);
1751         u32 cycle_time;
1752         u64 bus_time;
1753
1754         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1755         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1756
1757         return bus_time;
1758 }
1759
1760 static void copy_iso_headers(struct iso_context *ctx, void *p)
1761 {
1762         int i = ctx->header_length;
1763
1764         if (i + ctx->base.header_size > PAGE_SIZE)
1765                 return;
1766
1767         /*
1768          * The iso header is byteswapped to little endian by
1769          * the controller, but the remaining header quadlets
1770          * are big endian.  We want to present all the headers
1771          * as big endian, so we have to swap the first quadlet.
1772          */
1773         if (ctx->base.header_size > 0)
1774                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1775         if (ctx->base.header_size > 4)
1776                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1777         if (ctx->base.header_size > 8)
1778                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1779         ctx->header_length += ctx->base.header_size;
1780 }
1781
1782 static int handle_ir_dualbuffer_packet(struct context *context,
1783                                        struct descriptor *d,
1784                                        struct descriptor *last)
1785 {
1786         struct iso_context *ctx =
1787                 container_of(context, struct iso_context, context);
1788         struct db_descriptor *db = (struct db_descriptor *) d;
1789         __le32 *ir_header;
1790         size_t header_length;
1791         void *p, *end;
1792
1793         if (db->first_res_count != 0 && db->second_res_count != 0) {
1794                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1795                         /* This descriptor isn't done yet, stop iteration. */
1796                         return 0;
1797                 }
1798                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1799         }
1800
1801         header_length = le16_to_cpu(db->first_req_count) -
1802                 le16_to_cpu(db->first_res_count);
1803
1804         p = db + 1;
1805         end = p + header_length;
1806         while (p < end) {
1807                 copy_iso_headers(ctx, p);
1808                 ctx->excess_bytes +=
1809                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1810                 p += max(ctx->base.header_size, (size_t)8);
1811         }
1812
1813         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1814                 le16_to_cpu(db->second_res_count);
1815
1816         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1817                 ir_header = (__le32 *) (db + 1);
1818                 ctx->base.callback(&ctx->base,
1819                                    le32_to_cpu(ir_header[0]) & 0xffff,
1820                                    ctx->header_length, ctx->header,
1821                                    ctx->base.callback_data);
1822                 ctx->header_length = 0;
1823         }
1824
1825         return 1;
1826 }
1827
1828 static int handle_ir_packet_per_buffer(struct context *context,
1829                                        struct descriptor *d,
1830                                        struct descriptor *last)
1831 {
1832         struct iso_context *ctx =
1833                 container_of(context, struct iso_context, context);
1834         struct descriptor *pd;
1835         __le32 *ir_header;
1836         void *p;
1837
1838         for (pd = d; pd <= last; pd++) {
1839                 if (pd->transfer_status)
1840                         break;
1841         }
1842         if (pd > last)
1843                 /* Descriptor(s) not done yet, stop iteration */
1844                 return 0;
1845
1846         p = last + 1;
1847         copy_iso_headers(ctx, p);
1848
1849         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1850                 ir_header = (__le32 *) p;
1851                 ctx->base.callback(&ctx->base,
1852                                    le32_to_cpu(ir_header[0]) & 0xffff,
1853                                    ctx->header_length, ctx->header,
1854                                    ctx->base.callback_data);
1855                 ctx->header_length = 0;
1856         }
1857
1858         return 1;
1859 }
1860
1861 static int handle_it_packet(struct context *context,
1862                             struct descriptor *d,
1863                             struct descriptor *last)
1864 {
1865         struct iso_context *ctx =
1866                 container_of(context, struct iso_context, context);
1867
1868         if (last->transfer_status == 0)
1869                 /* This descriptor isn't done yet, stop iteration. */
1870                 return 0;
1871
1872         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1873                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1874                                    0, NULL, ctx->base.callback_data);
1875
1876         return 1;
1877 }
1878
1879 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1880                                                 int type, size_t header_size)
1881 {
1882         struct fw_ohci *ohci = fw_ohci(card);
1883         struct iso_context *ctx, *list;
1884         descriptor_callback_t callback;
1885         u32 *mask, regs;
1886         unsigned long flags;
1887         int index, ret = -ENOMEM;
1888
1889         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1890                 mask = &ohci->it_context_mask;
1891                 list = ohci->it_context_list;
1892                 callback = handle_it_packet;
1893         } else {
1894                 mask = &ohci->ir_context_mask;
1895                 list = ohci->ir_context_list;
1896                 if (ohci->use_dualbuffer)
1897                         callback = handle_ir_dualbuffer_packet;
1898                 else
1899                         callback = handle_ir_packet_per_buffer;
1900         }
1901
1902         spin_lock_irqsave(&ohci->lock, flags);
1903         index = ffs(*mask) - 1;
1904         if (index >= 0)
1905                 *mask &= ~(1 << index);
1906         spin_unlock_irqrestore(&ohci->lock, flags);
1907
1908         if (index < 0)
1909                 return ERR_PTR(-EBUSY);
1910
1911         if (type == FW_ISO_CONTEXT_TRANSMIT)
1912                 regs = OHCI1394_IsoXmitContextBase(index);
1913         else
1914                 regs = OHCI1394_IsoRcvContextBase(index);
1915
1916         ctx = &list[index];
1917         memset(ctx, 0, sizeof(*ctx));
1918         ctx->header_length = 0;
1919         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1920         if (ctx->header == NULL)
1921                 goto out;
1922
1923         ret = context_init(&ctx->context, ohci, regs, callback);
1924         if (ret < 0)
1925                 goto out_with_header;
1926
1927         return &ctx->base;
1928
1929  out_with_header:
1930         free_page((unsigned long)ctx->header);
1931  out:
1932         spin_lock_irqsave(&ohci->lock, flags);
1933         *mask |= 1 << index;
1934         spin_unlock_irqrestore(&ohci->lock, flags);
1935
1936         return ERR_PTR(ret);
1937 }
1938
1939 static int ohci_start_iso(struct fw_iso_context *base,
1940                           s32 cycle, u32 sync, u32 tags)
1941 {
1942         struct iso_context *ctx = container_of(base, struct iso_context, base);
1943         struct fw_ohci *ohci = ctx->context.ohci;
1944         u32 control, match;
1945         int index;
1946
1947         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1948                 index = ctx - ohci->it_context_list;
1949                 match = 0;
1950                 if (cycle >= 0)
1951                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1952                                 (cycle & 0x7fff) << 16;
1953
1954                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1955                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1956                 context_run(&ctx->context, match);
1957         } else {
1958                 index = ctx - ohci->ir_context_list;
1959                 control = IR_CONTEXT_ISOCH_HEADER;
1960                 if (ohci->use_dualbuffer)
1961                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1962                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1963                 if (cycle >= 0) {
1964                         match |= (cycle & 0x07fff) << 12;
1965                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1966                 }
1967
1968                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1969                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1970                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1971                 context_run(&ctx->context, control);
1972         }
1973
1974         return 0;
1975 }
1976
1977 static int ohci_stop_iso(struct fw_iso_context *base)
1978 {
1979         struct fw_ohci *ohci = fw_ohci(base->card);
1980         struct iso_context *ctx = container_of(base, struct iso_context, base);
1981         int index;
1982
1983         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1984                 index = ctx - ohci->it_context_list;
1985                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1986         } else {
1987                 index = ctx - ohci->ir_context_list;
1988                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1989         }
1990         flush_writes(ohci);
1991         context_stop(&ctx->context);
1992
1993         return 0;
1994 }
1995
1996 static void ohci_free_iso_context(struct fw_iso_context *base)
1997 {
1998         struct fw_ohci *ohci = fw_ohci(base->card);
1999         struct iso_context *ctx = container_of(base, struct iso_context, base);
2000         unsigned long flags;
2001         int index;
2002
2003         ohci_stop_iso(base);
2004         context_release(&ctx->context);
2005         free_page((unsigned long)ctx->header);
2006
2007         spin_lock_irqsave(&ohci->lock, flags);
2008
2009         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2010                 index = ctx - ohci->it_context_list;
2011                 ohci->it_context_mask |= 1 << index;
2012         } else {
2013                 index = ctx - ohci->ir_context_list;
2014                 ohci->ir_context_mask |= 1 << index;
2015         }
2016
2017         spin_unlock_irqrestore(&ohci->lock, flags);
2018 }
2019
2020 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2021                                    struct fw_iso_packet *packet,
2022                                    struct fw_iso_buffer *buffer,
2023                                    unsigned long payload)
2024 {
2025         struct iso_context *ctx = container_of(base, struct iso_context, base);
2026         struct descriptor *d, *last, *pd;
2027         struct fw_iso_packet *p;
2028         __le32 *header;
2029         dma_addr_t d_bus, page_bus;
2030         u32 z, header_z, payload_z, irq;
2031         u32 payload_index, payload_end_index, next_page_index;
2032         int page, end_page, i, length, offset;
2033
2034         /*
2035          * FIXME: Cycle lost behavior should be configurable: lose
2036          * packet, retransmit or terminate..
2037          */
2038
2039         p = packet;
2040         payload_index = payload;
2041
2042         if (p->skip)
2043                 z = 1;
2044         else
2045                 z = 2;
2046         if (p->header_length > 0)
2047                 z++;
2048
2049         /* Determine the first page the payload isn't contained in. */
2050         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2051         if (p->payload_length > 0)
2052                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2053         else
2054                 payload_z = 0;
2055
2056         z += payload_z;
2057
2058         /* Get header size in number of descriptors. */
2059         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2060
2061         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2062         if (d == NULL)
2063                 return -ENOMEM;
2064
2065         if (!p->skip) {
2066                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2067                 d[0].req_count = cpu_to_le16(8);
2068
2069                 header = (__le32 *) &d[1];
2070                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2071                                         IT_HEADER_TAG(p->tag) |
2072                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2073                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2074                                         IT_HEADER_SPEED(ctx->base.speed));
2075                 header[1] =
2076                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2077                                                           p->payload_length));
2078         }
2079
2080         if (p->header_length > 0) {
2081                 d[2].req_count    = cpu_to_le16(p->header_length);
2082                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2083                 memcpy(&d[z], p->header, p->header_length);
2084         }
2085
2086         pd = d + z - payload_z;
2087         payload_end_index = payload_index + p->payload_length;
2088         for (i = 0; i < payload_z; i++) {
2089                 page               = payload_index >> PAGE_SHIFT;
2090                 offset             = payload_index & ~PAGE_MASK;
2091                 next_page_index    = (page + 1) << PAGE_SHIFT;
2092                 length             =
2093                         min(next_page_index, payload_end_index) - payload_index;
2094                 pd[i].req_count    = cpu_to_le16(length);
2095
2096                 page_bus = page_private(buffer->pages[page]);
2097                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2098
2099                 payload_index += length;
2100         }
2101
2102         if (p->interrupt)
2103                 irq = DESCRIPTOR_IRQ_ALWAYS;
2104         else
2105                 irq = DESCRIPTOR_NO_IRQ;
2106
2107         last = z == 2 ? d : d + z - 1;
2108         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2109                                      DESCRIPTOR_STATUS |
2110                                      DESCRIPTOR_BRANCH_ALWAYS |
2111                                      irq);
2112
2113         context_append(&ctx->context, d, z, header_z);
2114
2115         return 0;
2116 }
2117
2118 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2119                                              struct fw_iso_packet *packet,
2120                                              struct fw_iso_buffer *buffer,
2121                                              unsigned long payload)
2122 {
2123         struct iso_context *ctx = container_of(base, struct iso_context, base);
2124         struct db_descriptor *db = NULL;
2125         struct descriptor *d;
2126         struct fw_iso_packet *p;
2127         dma_addr_t d_bus, page_bus;
2128         u32 z, header_z, length, rest;
2129         int page, offset, packet_count, header_size;
2130
2131         /*
2132          * FIXME: Cycle lost behavior should be configurable: lose
2133          * packet, retransmit or terminate..
2134          */
2135
2136         p = packet;
2137         z = 2;
2138
2139         /*
2140          * The OHCI controller puts the isochronous header and trailer in the
2141          * buffer, so we need at least 8 bytes.
2142          */
2143         packet_count = p->header_length / ctx->base.header_size;
2144         header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2145
2146         /* Get header size in number of descriptors. */
2147         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2148         page     = payload >> PAGE_SHIFT;
2149         offset   = payload & ~PAGE_MASK;
2150         rest     = p->payload_length;
2151
2152         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2153         while (rest > 0) {
2154                 d = context_get_descriptors(&ctx->context,
2155                                             z + header_z, &d_bus);
2156                 if (d == NULL)
2157                         return -ENOMEM;
2158
2159                 db = (struct db_descriptor *) d;
2160                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2161                                           DESCRIPTOR_BRANCH_ALWAYS);
2162                 db->first_size =
2163                     cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2164                 if (p->skip && rest == p->payload_length) {
2165                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2166                         db->first_req_count = db->first_size;
2167                 } else {
2168                         db->first_req_count = cpu_to_le16(header_size);
2169                 }
2170                 db->first_res_count = db->first_req_count;
2171                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2172
2173                 if (p->skip && rest == p->payload_length)
2174                         length = 4;
2175                 else if (offset + rest < PAGE_SIZE)
2176                         length = rest;
2177                 else
2178                         length = PAGE_SIZE - offset;
2179
2180                 db->second_req_count = cpu_to_le16(length);
2181                 db->second_res_count = db->second_req_count;
2182                 page_bus = page_private(buffer->pages[page]);
2183                 db->second_buffer = cpu_to_le32(page_bus + offset);
2184
2185                 if (p->interrupt && length == rest)
2186                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2187
2188                 context_append(&ctx->context, d, z, header_z);
2189                 offset = (offset + length) & ~PAGE_MASK;
2190                 rest -= length;
2191                 if (offset == 0)
2192                         page++;
2193         }
2194
2195         return 0;
2196 }
2197
2198 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2199                                         struct fw_iso_packet *packet,
2200                                         struct fw_iso_buffer *buffer,
2201                                         unsigned long payload)
2202 {
2203         struct iso_context *ctx = container_of(base, struct iso_context, base);
2204         struct descriptor *d = NULL, *pd = NULL;
2205         struct fw_iso_packet *p = packet;
2206         dma_addr_t d_bus, page_bus;
2207         u32 z, header_z, rest;
2208         int i, j, length;
2209         int page, offset, packet_count, header_size, payload_per_buffer;
2210
2211         /*
2212          * The OHCI controller puts the isochronous header and trailer in the
2213          * buffer, so we need at least 8 bytes.
2214          */
2215         packet_count = p->header_length / ctx->base.header_size;
2216         header_size  = max(ctx->base.header_size, (size_t)8);
2217
2218         /* Get header size in number of descriptors. */
2219         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2220         page     = payload >> PAGE_SHIFT;
2221         offset   = payload & ~PAGE_MASK;
2222         payload_per_buffer = p->payload_length / packet_count;
2223
2224         for (i = 0; i < packet_count; i++) {
2225                 /* d points to the header descriptor */
2226                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2227                 d = context_get_descriptors(&ctx->context,
2228                                 z + header_z, &d_bus);
2229                 if (d == NULL)
2230                         return -ENOMEM;
2231
2232                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2233                                               DESCRIPTOR_INPUT_MORE);
2234                 if (p->skip && i == 0)
2235                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2236                 d->req_count    = cpu_to_le16(header_size);
2237                 d->res_count    = d->req_count;
2238                 d->transfer_status = 0;
2239                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2240
2241                 rest = payload_per_buffer;
2242                 for (j = 1; j < z; j++) {
2243                         pd = d + j;
2244                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2245                                                   DESCRIPTOR_INPUT_MORE);
2246
2247                         if (offset + rest < PAGE_SIZE)
2248                                 length = rest;
2249                         else
2250                                 length = PAGE_SIZE - offset;
2251                         pd->req_count = cpu_to_le16(length);
2252                         pd->res_count = pd->req_count;
2253                         pd->transfer_status = 0;
2254
2255                         page_bus = page_private(buffer->pages[page]);
2256                         pd->data_address = cpu_to_le32(page_bus + offset);
2257
2258                         offset = (offset + length) & ~PAGE_MASK;
2259                         rest -= length;
2260                         if (offset == 0)
2261                                 page++;
2262                 }
2263                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2264                                           DESCRIPTOR_INPUT_LAST |
2265                                           DESCRIPTOR_BRANCH_ALWAYS);
2266                 if (p->interrupt && i == packet_count - 1)
2267                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2268
2269                 context_append(&ctx->context, d, z, header_z);
2270         }
2271
2272         return 0;
2273 }
2274
2275 static int ohci_queue_iso(struct fw_iso_context *base,
2276                           struct fw_iso_packet *packet,
2277                           struct fw_iso_buffer *buffer,
2278                           unsigned long payload)
2279 {
2280         struct iso_context *ctx = container_of(base, struct iso_context, base);
2281         unsigned long flags;
2282         int ret;
2283
2284         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2285         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2286                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2287         else if (ctx->context.ohci->use_dualbuffer)
2288                 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2289                                                         buffer, payload);
2290         else
2291                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2292                                                         buffer, payload);
2293         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2294
2295         return ret;
2296 }
2297
2298 static const struct fw_card_driver ohci_driver = {
2299         .enable                 = ohci_enable,
2300         .update_phy_reg         = ohci_update_phy_reg,
2301         .set_config_rom         = ohci_set_config_rom,
2302         .send_request           = ohci_send_request,
2303         .send_response          = ohci_send_response,
2304         .cancel_packet          = ohci_cancel_packet,
2305         .enable_phys_dma        = ohci_enable_phys_dma,
2306         .get_bus_time           = ohci_get_bus_time,
2307
2308         .allocate_iso_context   = ohci_allocate_iso_context,
2309         .free_iso_context       = ohci_free_iso_context,
2310         .queue_iso              = ohci_queue_iso,
2311         .start_iso              = ohci_start_iso,
2312         .stop_iso               = ohci_stop_iso,
2313 };
2314
2315 #ifdef CONFIG_PPC_PMAC
2316 static void ohci_pmac_on(struct pci_dev *dev)
2317 {
2318         if (machine_is(powermac)) {
2319                 struct device_node *ofn = pci_device_to_OF_node(dev);
2320
2321                 if (ofn) {
2322                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2323                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2324                 }
2325         }
2326 }
2327
2328 static void ohci_pmac_off(struct pci_dev *dev)
2329 {
2330         if (machine_is(powermac)) {
2331                 struct device_node *ofn = pci_device_to_OF_node(dev);
2332
2333                 if (ofn) {
2334                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2335                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2336                 }
2337         }
2338 }
2339 #else
2340 #define ohci_pmac_on(dev)
2341 #define ohci_pmac_off(dev)
2342 #endif /* CONFIG_PPC_PMAC */
2343
2344 static int __devinit pci_probe(struct pci_dev *dev,
2345                                const struct pci_device_id *ent)
2346 {
2347         struct fw_ohci *ohci;
2348         u32 bus_options, max_receive, link_speed, version;
2349         u64 guid;
2350         int err;
2351         size_t size;
2352
2353         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2354         if (ohci == NULL) {
2355                 err = -ENOMEM;
2356                 goto fail;
2357         }
2358
2359         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2360
2361         ohci_pmac_on(dev);
2362
2363         err = pci_enable_device(dev);
2364         if (err) {
2365                 fw_error("Failed to enable OHCI hardware\n");
2366                 goto fail_free;
2367         }
2368
2369         pci_set_master(dev);
2370         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2371         pci_set_drvdata(dev, ohci);
2372
2373         spin_lock_init(&ohci->lock);
2374
2375         tasklet_init(&ohci->bus_reset_tasklet,
2376                      bus_reset_tasklet, (unsigned long)ohci);
2377
2378         err = pci_request_region(dev, 0, ohci_driver_name);
2379         if (err) {
2380                 fw_error("MMIO resource unavailable\n");
2381                 goto fail_disable;
2382         }
2383
2384         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2385         if (ohci->registers == NULL) {
2386                 fw_error("Failed to remap registers\n");
2387                 err = -ENXIO;
2388                 goto fail_iomem;
2389         }
2390
2391         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2392         ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2393
2394 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2395 #if !defined(CONFIG_X86_32)
2396         /* dual-buffer mode is broken with descriptor addresses above 2G */
2397         if (dev->vendor == PCI_VENDOR_ID_TI &&
2398             dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2399                 ohci->use_dualbuffer = false;
2400 #endif
2401
2402 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2403         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2404                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2405 #endif
2406         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2407
2408         ar_context_init(&ohci->ar_request_ctx, ohci,
2409                         OHCI1394_AsReqRcvContextControlSet);
2410
2411         ar_context_init(&ohci->ar_response_ctx, ohci,
2412                         OHCI1394_AsRspRcvContextControlSet);
2413
2414         context_init(&ohci->at_request_ctx, ohci,
2415                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2416
2417         context_init(&ohci->at_response_ctx, ohci,
2418                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2419
2420         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2421         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2422         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2423         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2424         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2425
2426         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2427         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2428         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2429         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2430         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2431
2432         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2433                 err = -ENOMEM;
2434                 goto fail_contexts;
2435         }
2436
2437         /* self-id dma buffer allocation */
2438         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2439                                                SELF_ID_BUF_SIZE,
2440                                                &ohci->self_id_bus,
2441                                                GFP_KERNEL);
2442         if (ohci->self_id_cpu == NULL) {
2443                 err = -ENOMEM;
2444                 goto fail_contexts;
2445         }
2446
2447         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2448         max_receive = (bus_options >> 12) & 0xf;
2449         link_speed = bus_options & 0x7;
2450         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2451                 reg_read(ohci, OHCI1394_GUIDLo);
2452
2453         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2454         if (err < 0)
2455                 goto fail_self_id;
2456
2457         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2458                   dev_name(&dev->dev), version >> 16, version & 0xff);
2459         return 0;
2460
2461  fail_self_id:
2462         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2463                           ohci->self_id_cpu, ohci->self_id_bus);
2464  fail_contexts:
2465         kfree(ohci->ir_context_list);
2466         kfree(ohci->it_context_list);
2467         context_release(&ohci->at_response_ctx);
2468         context_release(&ohci->at_request_ctx);
2469         ar_context_release(&ohci->ar_response_ctx);
2470         ar_context_release(&ohci->ar_request_ctx);
2471         pci_iounmap(dev, ohci->registers);
2472  fail_iomem:
2473         pci_release_region(dev, 0);
2474  fail_disable:
2475         pci_disable_device(dev);
2476  fail_free:
2477         kfree(&ohci->card);
2478         ohci_pmac_off(dev);
2479  fail:
2480         if (err == -ENOMEM)
2481                 fw_error("Out of memory\n");
2482
2483         return err;
2484 }
2485
2486 static void pci_remove(struct pci_dev *dev)
2487 {
2488         struct fw_ohci *ohci;
2489
2490         ohci = pci_get_drvdata(dev);
2491         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2492         flush_writes(ohci);
2493         fw_core_remove_card(&ohci->card);
2494
2495         /*
2496          * FIXME: Fail all pending packets here, now that the upper
2497          * layers can't queue any more.
2498          */
2499
2500         software_reset(ohci);
2501         free_irq(dev->irq, ohci);
2502
2503         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2504                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2505                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2506         if (ohci->config_rom)
2507                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2508                                   ohci->config_rom, ohci->config_rom_bus);
2509         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2510                           ohci->self_id_cpu, ohci->self_id_bus);
2511         ar_context_release(&ohci->ar_request_ctx);
2512         ar_context_release(&ohci->ar_response_ctx);
2513         context_release(&ohci->at_request_ctx);
2514         context_release(&ohci->at_response_ctx);
2515         kfree(ohci->it_context_list);
2516         kfree(ohci->ir_context_list);
2517         pci_iounmap(dev, ohci->registers);
2518         pci_release_region(dev, 0);
2519         pci_disable_device(dev);
2520         kfree(&ohci->card);
2521         ohci_pmac_off(dev);
2522
2523         fw_notify("Removed fw-ohci device.\n");
2524 }
2525
2526 #ifdef CONFIG_PM
2527 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2528 {
2529         struct fw_ohci *ohci = pci_get_drvdata(dev);
2530         int err;
2531
2532         software_reset(ohci);
2533         free_irq(dev->irq, ohci);
2534         err = pci_save_state(dev);
2535         if (err) {
2536                 fw_error("pci_save_state failed\n");
2537                 return err;
2538         }
2539         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2540         if (err)
2541                 fw_error("pci_set_power_state failed with %d\n", err);
2542         ohci_pmac_off(dev);
2543
2544         return 0;
2545 }
2546
2547 static int pci_resume(struct pci_dev *dev)
2548 {
2549         struct fw_ohci *ohci = pci_get_drvdata(dev);
2550         int err;
2551
2552         ohci_pmac_on(dev);
2553         pci_set_power_state(dev, PCI_D0);
2554         pci_restore_state(dev);
2555         err = pci_enable_device(dev);
2556         if (err) {
2557                 fw_error("pci_enable_device failed\n");
2558                 return err;
2559         }
2560
2561         return ohci_enable(&ohci->card, NULL, 0);
2562 }
2563 #endif
2564
2565 static struct pci_device_id pci_table[] = {
2566         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2567         { }
2568 };
2569
2570 MODULE_DEVICE_TABLE(pci, pci_table);
2571
2572 static struct pci_driver fw_ohci_pci_driver = {
2573         .name           = ohci_driver_name,
2574         .id_table       = pci_table,
2575         .probe          = pci_probe,
2576         .remove         = pci_remove,
2577 #ifdef CONFIG_PM
2578         .resume         = pci_resume,
2579         .suspend        = pci_suspend,
2580 #endif
2581 };
2582
2583 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2584 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2585 MODULE_LICENSE("GPL");
2586
2587 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2588 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2589 MODULE_ALIAS("ohci1394");
2590 #endif
2591
2592 static int __init fw_ohci_init(void)
2593 {
2594         return pci_register_driver(&fw_ohci_pci_driver);
2595 }
2596
2597 static void __exit fw_ohci_cleanup(void)
2598 {
2599         pci_unregister_driver(&fw_ohci_pci_driver);
2600 }
2601
2602 module_init(fw_ohci_init);
2603 module_exit(fw_ohci_cleanup);