]> Pileus Git - ~andy/linux/blob - drivers/edac/edac_mc_sysfs.c
EDAC: Pass mci parent
[~andy/linux] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = strict_strtol(val, 0, &l);
62         if (ret == -EINVAL || ((int)l != l))
63                 return -EINVAL;
64         *((int *)kp->arg) = l;
65
66         /* notify edac_mc engine to reset the poll period */
67         edac_mc_reset_delay_period(l);
68
69         return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77                  "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80                  "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82                   &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91         [MEM_EMPTY] = "Empty",
92         [MEM_RESERVED] = "Reserved",
93         [MEM_UNKNOWN] = "Unknown",
94         [MEM_FPM] = "FPM",
95         [MEM_EDO] = "EDO",
96         [MEM_BEDO] = "BEDO",
97         [MEM_SDR] = "Unbuffered-SDR",
98         [MEM_RDR] = "Registered-SDR",
99         [MEM_DDR] = "Unbuffered-DDR",
100         [MEM_RDDR] = "Registered-DDR",
101         [MEM_RMBS] = "RMBS",
102         [MEM_DDR2] = "Unbuffered-DDR2",
103         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104         [MEM_RDDR2] = "Registered-DDR2",
105         [MEM_XDR] = "XDR",
106         [MEM_DDR3] = "Unbuffered-DDR3",
107         [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111         [DEV_UNKNOWN] = "Unknown",
112         [DEV_X1] = "x1",
113         [DEV_X2] = "x2",
114         [DEV_X4] = "x4",
115         [DEV_X8] = "x8",
116         [DEV_X16] = "x16",
117         [DEV_X32] = "x32",
118         [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122         [EDAC_UNKNOWN] = "Unknown",
123         [EDAC_NONE] = "None",
124         [EDAC_RESERVED] = "Reserved",
125         [EDAC_PARITY] = "PARITY",
126         [EDAC_EC] = "EC",
127         [EDAC_SECDED] = "SECDED",
128         [EDAC_S2ECD2ED] = "S2ECD2ED",
129         [EDAC_S4ECD4ED] = "S4ECD4ED",
130         [EDAC_S8ECD8ED] = "S8ECD8ED",
131         [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146         struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149         struct device_attribute attr;
150         int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154         struct dev_ch_attribute dev_attr_legacy_##_name = \
155                 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161                                    struct device_attribute *mattr, char *data)
162 {
163         struct csrow_info *csrow = to_csrow(dev);
164
165         return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169                                    struct device_attribute *mattr, char *data)
170 {
171         struct csrow_info *csrow = to_csrow(dev);
172
173         return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177                                struct device_attribute *mattr, char *data)
178 {
179         struct csrow_info *csrow = to_csrow(dev);
180         int i;
181         u32 nr_pages = 0;
182
183         for (i = 0; i < csrow->nr_channels; i++)
184                 nr_pages += csrow->channels[i]->dimm->nr_pages;
185         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187
188 static ssize_t csrow_mem_type_show(struct device *dev,
189                                    struct device_attribute *mattr, char *data)
190 {
191         struct csrow_info *csrow = to_csrow(dev);
192
193         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195
196 static ssize_t csrow_dev_type_show(struct device *dev,
197                                    struct device_attribute *mattr, char *data)
198 {
199         struct csrow_info *csrow = to_csrow(dev);
200
201         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205                                     struct device_attribute *mattr,
206                                     char *data)
207 {
208         struct csrow_info *csrow = to_csrow(dev);
209
210         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215                                        struct device_attribute *mattr,
216                                        char *data)
217 {
218         struct csrow_info *csrow = to_csrow(dev);
219         unsigned chan = to_channel(mattr);
220         struct rank_info *rank = csrow->channels[chan];
221
222         /* if field has not been initialized, there is nothing to send */
223         if (!rank->dimm->label[0])
224                 return 0;
225
226         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227                         rank->dimm->label);
228 }
229
230 static ssize_t channel_dimm_label_store(struct device *dev,
231                                         struct device_attribute *mattr,
232                                         const char *data, size_t count)
233 {
234         struct csrow_info *csrow = to_csrow(dev);
235         unsigned chan = to_channel(mattr);
236         struct rank_info *rank = csrow->channels[chan];
237
238         ssize_t max_size = 0;
239
240         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241         strncpy(rank->dimm->label, data, max_size);
242         rank->dimm->label[max_size] = '\0';
243
244         return max_size;
245 }
246
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249                                      struct device_attribute *mattr, char *data)
250 {
251         struct csrow_info *csrow = to_csrow(dev);
252         unsigned chan = to_channel(mattr);
253         struct rank_info *rank = csrow->channels[chan];
254
255         return sprintf(data, "%u\n", rank->ce_count);
256 }
257
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268         &dev_attr_legacy_dev_type.attr,
269         &dev_attr_legacy_mem_type.attr,
270         &dev_attr_legacy_edac_mode.attr,
271         &dev_attr_legacy_size_mb.attr,
272         &dev_attr_legacy_ue_count.attr,
273         &dev_attr_legacy_ce_count.attr,
274         NULL,
275 };
276
277 static struct attribute_group csrow_attr_grp = {
278         .attrs  = csrow_attrs,
279 };
280
281 static const struct attribute_group *csrow_attr_groups[] = {
282         &csrow_attr_grp,
283         NULL
284 };
285
286 static void csrow_attr_release(struct device *dev)
287 {
288         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289
290         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
291         kfree(csrow);
292 }
293
294 static struct device_type csrow_attr_type = {
295         .groups         = csrow_attr_groups,
296         .release        = csrow_attr_release,
297 };
298
299 /*
300  * possible dynamic channel DIMM Label attribute files
301  *
302  */
303
304 #define EDAC_NR_CHANNELS        6
305
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307         channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309         channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311         channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 5);
318
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321         &dev_attr_legacy_ch0_dimm_label.attr,
322         &dev_attr_legacy_ch1_dimm_label.attr,
323         &dev_attr_legacy_ch2_dimm_label.attr,
324         &dev_attr_legacy_ch3_dimm_label.attr,
325         &dev_attr_legacy_ch4_dimm_label.attr,
326         &dev_attr_legacy_ch5_dimm_label.attr
327 };
328
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331                    channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333                    channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335                    channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337                    channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339                    channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341                    channel_ce_count_show, NULL, 5);
342
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345         &dev_attr_legacy_ch0_ce_count.attr,
346         &dev_attr_legacy_ch1_ce_count.attr,
347         &dev_attr_legacy_ch2_ce_count.attr,
348         &dev_attr_legacy_ch3_ce_count.attr,
349         &dev_attr_legacy_ch4_ce_count.attr,
350         &dev_attr_legacy_ch5_ce_count.attr
351 };
352
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355         int chan, nr_pages = 0;
356
357         for (chan = 0; chan < csrow->nr_channels; chan++)
358                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
359
360         return nr_pages;
361 }
362
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365                                     struct csrow_info *csrow, int index)
366 {
367         int err, chan;
368
369         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370                 return -ENODEV;
371
372         csrow->dev.type = &csrow_attr_type;
373         csrow->dev.bus = &mci->bus;
374         device_initialize(&csrow->dev);
375         csrow->dev.parent = &mci->dev;
376         csrow->mci = mci;
377         dev_set_name(&csrow->dev, "csrow%d", index);
378         dev_set_drvdata(&csrow->dev, csrow);
379
380         edac_dbg(0, "creating (virtual) csrow node %s\n",
381                  dev_name(&csrow->dev));
382
383         err = device_add(&csrow->dev);
384         if (err < 0)
385                 return err;
386
387         for (chan = 0; chan < csrow->nr_channels; chan++) {
388                 /* Only expose populated DIMMs */
389                 if (!csrow->channels[chan]->dimm->nr_pages)
390                         continue;
391                 err = device_create_file(&csrow->dev,
392                                          dynamic_csrow_dimm_attr[chan]);
393                 if (err < 0)
394                         goto error;
395                 err = device_create_file(&csrow->dev,
396                                          dynamic_csrow_ce_count_attr[chan]);
397                 if (err < 0) {
398                         device_remove_file(&csrow->dev,
399                                            dynamic_csrow_dimm_attr[chan]);
400                         goto error;
401                 }
402         }
403
404         return 0;
405
406 error:
407         for (--chan; chan >= 0; chan--) {
408                 device_remove_file(&csrow->dev,
409                                         dynamic_csrow_dimm_attr[chan]);
410                 device_remove_file(&csrow->dev,
411                                            dynamic_csrow_ce_count_attr[chan]);
412         }
413         put_device(&csrow->dev);
414
415         return err;
416 }
417
418 /* Create a CSROW object under specifed edac_mc_device */
419 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
420 {
421         int err, i, chan;
422         struct csrow_info *csrow;
423
424         for (i = 0; i < mci->nr_csrows; i++) {
425                 csrow = mci->csrows[i];
426                 if (!nr_pages_per_csrow(csrow))
427                         continue;
428                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
429                 if (err < 0)
430                         goto error;
431         }
432         return 0;
433
434 error:
435         for (--i; i >= 0; i--) {
436                 csrow = mci->csrows[i];
437                 if (!nr_pages_per_csrow(csrow))
438                         continue;
439                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
440                         if (!csrow->channels[chan]->dimm->nr_pages)
441                                 continue;
442                         device_remove_file(&csrow->dev,
443                                                 dynamic_csrow_dimm_attr[chan]);
444                         device_remove_file(&csrow->dev,
445                                                 dynamic_csrow_ce_count_attr[chan]);
446                 }
447                 put_device(&mci->csrows[i]->dev);
448         }
449
450         return err;
451 }
452
453 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
454 {
455         int i, chan;
456         struct csrow_info *csrow;
457
458         for (i = mci->nr_csrows - 1; i >= 0; i--) {
459                 csrow = mci->csrows[i];
460                 if (!nr_pages_per_csrow(csrow))
461                         continue;
462                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
463                         if (!csrow->channels[chan]->dimm->nr_pages)
464                                 continue;
465                         edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
466                                  i, chan);
467                         device_remove_file(&csrow->dev,
468                                                 dynamic_csrow_dimm_attr[chan]);
469                         device_remove_file(&csrow->dev,
470                                                 dynamic_csrow_ce_count_attr[chan]);
471                 }
472                 put_device(&mci->csrows[i]->dev);
473                 device_del(&mci->csrows[i]->dev);
474         }
475 }
476 #endif
477
478 /*
479  * Per-dimm (or per-rank) devices
480  */
481
482 #define to_dimm(k) container_of(k, struct dimm_info, dev)
483
484 /* show/store functions for DIMM Label attributes */
485 static ssize_t dimmdev_location_show(struct device *dev,
486                                      struct device_attribute *mattr, char *data)
487 {
488         struct dimm_info *dimm = to_dimm(dev);
489
490         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
491 }
492
493 static ssize_t dimmdev_label_show(struct device *dev,
494                                   struct device_attribute *mattr, char *data)
495 {
496         struct dimm_info *dimm = to_dimm(dev);
497
498         /* if field has not been initialized, there is nothing to send */
499         if (!dimm->label[0])
500                 return 0;
501
502         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
503 }
504
505 static ssize_t dimmdev_label_store(struct device *dev,
506                                    struct device_attribute *mattr,
507                                    const char *data,
508                                    size_t count)
509 {
510         struct dimm_info *dimm = to_dimm(dev);
511
512         ssize_t max_size = 0;
513
514         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
515         strncpy(dimm->label, data, max_size);
516         dimm->label[max_size] = '\0';
517
518         return max_size;
519 }
520
521 static ssize_t dimmdev_size_show(struct device *dev,
522                                  struct device_attribute *mattr, char *data)
523 {
524         struct dimm_info *dimm = to_dimm(dev);
525
526         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
527 }
528
529 static ssize_t dimmdev_mem_type_show(struct device *dev,
530                                      struct device_attribute *mattr, char *data)
531 {
532         struct dimm_info *dimm = to_dimm(dev);
533
534         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
535 }
536
537 static ssize_t dimmdev_dev_type_show(struct device *dev,
538                                      struct device_attribute *mattr, char *data)
539 {
540         struct dimm_info *dimm = to_dimm(dev);
541
542         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
543 }
544
545 static ssize_t dimmdev_edac_mode_show(struct device *dev,
546                                       struct device_attribute *mattr,
547                                       char *data)
548 {
549         struct dimm_info *dimm = to_dimm(dev);
550
551         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
552 }
553
554 /* dimm/rank attribute files */
555 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
556                    dimmdev_label_show, dimmdev_label_store);
557 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
558 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
559 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
560 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
561 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
562
563 /* attributes of the dimm<id>/rank<id> object */
564 static struct attribute *dimm_attrs[] = {
565         &dev_attr_dimm_label.attr,
566         &dev_attr_dimm_location.attr,
567         &dev_attr_size.attr,
568         &dev_attr_dimm_mem_type.attr,
569         &dev_attr_dimm_dev_type.attr,
570         &dev_attr_dimm_edac_mode.attr,
571         NULL,
572 };
573
574 static struct attribute_group dimm_attr_grp = {
575         .attrs  = dimm_attrs,
576 };
577
578 static const struct attribute_group *dimm_attr_groups[] = {
579         &dimm_attr_grp,
580         NULL
581 };
582
583 static void dimm_attr_release(struct device *dev)
584 {
585         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
586
587         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
588         kfree(dimm);
589 }
590
591 static struct device_type dimm_attr_type = {
592         .groups         = dimm_attr_groups,
593         .release        = dimm_attr_release,
594 };
595
596 /* Create a DIMM object under specifed memory controller device */
597 static int edac_create_dimm_object(struct mem_ctl_info *mci,
598                                    struct dimm_info *dimm,
599                                    int index)
600 {
601         int err;
602         dimm->mci = mci;
603
604         dimm->dev.type = &dimm_attr_type;
605         dimm->dev.bus = &mci->bus;
606         device_initialize(&dimm->dev);
607
608         dimm->dev.parent = &mci->dev;
609         if (mci->mem_is_per_rank)
610                 dev_set_name(&dimm->dev, "rank%d", index);
611         else
612                 dev_set_name(&dimm->dev, "dimm%d", index);
613         dev_set_drvdata(&dimm->dev, dimm);
614         pm_runtime_forbid(&mci->dev);
615
616         err =  device_add(&dimm->dev);
617
618         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
619
620         return err;
621 }
622
623 /*
624  * Memory controller device
625  */
626
627 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
628
629 static ssize_t mci_reset_counters_store(struct device *dev,
630                                         struct device_attribute *mattr,
631                                         const char *data, size_t count)
632 {
633         struct mem_ctl_info *mci = to_mci(dev);
634         int cnt, row, chan, i;
635         mci->ue_mc = 0;
636         mci->ce_mc = 0;
637         mci->ue_noinfo_count = 0;
638         mci->ce_noinfo_count = 0;
639
640         for (row = 0; row < mci->nr_csrows; row++) {
641                 struct csrow_info *ri = mci->csrows[row];
642
643                 ri->ue_count = 0;
644                 ri->ce_count = 0;
645
646                 for (chan = 0; chan < ri->nr_channels; chan++)
647                         ri->channels[chan]->ce_count = 0;
648         }
649
650         cnt = 1;
651         for (i = 0; i < mci->n_layers; i++) {
652                 cnt *= mci->layers[i].size;
653                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
654                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
655         }
656
657         mci->start_time = jiffies;
658         return count;
659 }
660
661 /* Memory scrubbing interface:
662  *
663  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
664  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
665  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
666  *
667  * Negative value still means that an error has occurred while setting
668  * the scrub rate.
669  */
670 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
671                                           struct device_attribute *mattr,
672                                           const char *data, size_t count)
673 {
674         struct mem_ctl_info *mci = to_mci(dev);
675         unsigned long bandwidth = 0;
676         int new_bw = 0;
677
678         if (!mci->set_sdram_scrub_rate)
679                 return -ENODEV;
680
681         if (strict_strtoul(data, 10, &bandwidth) < 0)
682                 return -EINVAL;
683
684         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
685         if (new_bw < 0) {
686                 edac_printk(KERN_WARNING, EDAC_MC,
687                             "Error setting scrub rate to: %lu\n", bandwidth);
688                 return -EINVAL;
689         }
690
691         return count;
692 }
693
694 /*
695  * ->get_sdram_scrub_rate() return value semantics same as above.
696  */
697 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
698                                          struct device_attribute *mattr,
699                                          char *data)
700 {
701         struct mem_ctl_info *mci = to_mci(dev);
702         int bandwidth = 0;
703
704         if (!mci->get_sdram_scrub_rate)
705                 return -ENODEV;
706
707         bandwidth = mci->get_sdram_scrub_rate(mci);
708         if (bandwidth < 0) {
709                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
710                 return bandwidth;
711         }
712
713         return sprintf(data, "%d\n", bandwidth);
714 }
715
716 /* default attribute files for the MCI object */
717 static ssize_t mci_ue_count_show(struct device *dev,
718                                  struct device_attribute *mattr,
719                                  char *data)
720 {
721         struct mem_ctl_info *mci = to_mci(dev);
722
723         return sprintf(data, "%d\n", mci->ue_mc);
724 }
725
726 static ssize_t mci_ce_count_show(struct device *dev,
727                                  struct device_attribute *mattr,
728                                  char *data)
729 {
730         struct mem_ctl_info *mci = to_mci(dev);
731
732         return sprintf(data, "%d\n", mci->ce_mc);
733 }
734
735 static ssize_t mci_ce_noinfo_show(struct device *dev,
736                                   struct device_attribute *mattr,
737                                   char *data)
738 {
739         struct mem_ctl_info *mci = to_mci(dev);
740
741         return sprintf(data, "%d\n", mci->ce_noinfo_count);
742 }
743
744 static ssize_t mci_ue_noinfo_show(struct device *dev,
745                                   struct device_attribute *mattr,
746                                   char *data)
747 {
748         struct mem_ctl_info *mci = to_mci(dev);
749
750         return sprintf(data, "%d\n", mci->ue_noinfo_count);
751 }
752
753 static ssize_t mci_seconds_show(struct device *dev,
754                                 struct device_attribute *mattr,
755                                 char *data)
756 {
757         struct mem_ctl_info *mci = to_mci(dev);
758
759         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
760 }
761
762 static ssize_t mci_ctl_name_show(struct device *dev,
763                                  struct device_attribute *mattr,
764                                  char *data)
765 {
766         struct mem_ctl_info *mci = to_mci(dev);
767
768         return sprintf(data, "%s\n", mci->ctl_name);
769 }
770
771 static ssize_t mci_size_mb_show(struct device *dev,
772                                 struct device_attribute *mattr,
773                                 char *data)
774 {
775         struct mem_ctl_info *mci = to_mci(dev);
776         int total_pages = 0, csrow_idx, j;
777
778         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
779                 struct csrow_info *csrow = mci->csrows[csrow_idx];
780
781                 for (j = 0; j < csrow->nr_channels; j++) {
782                         struct dimm_info *dimm = csrow->channels[j]->dimm;
783
784                         total_pages += dimm->nr_pages;
785                 }
786         }
787
788         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
789 }
790
791 static ssize_t mci_max_location_show(struct device *dev,
792                                      struct device_attribute *mattr,
793                                      char *data)
794 {
795         struct mem_ctl_info *mci = to_mci(dev);
796         int i;
797         char *p = data;
798
799         for (i = 0; i < mci->n_layers; i++) {
800                 p += sprintf(p, "%s %d ",
801                              edac_layer_name[mci->layers[i].type],
802                              mci->layers[i].size - 1);
803         }
804
805         return p - data;
806 }
807
808 #ifdef CONFIG_EDAC_DEBUG
809 static ssize_t edac_fake_inject_write(struct file *file,
810                                       const char __user *data,
811                                       size_t count, loff_t *ppos)
812 {
813         struct device *dev = file->private_data;
814         struct mem_ctl_info *mci = to_mci(dev);
815         static enum hw_event_mc_err_type type;
816         u16 errcount = mci->fake_inject_count;
817
818         if (!errcount)
819                 errcount = 1;
820
821         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
822                                    : HW_EVENT_ERR_CORRECTED;
823
824         printk(KERN_DEBUG
825                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
826                 errcount,
827                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
828                 errcount > 1 ? "s" : "",
829                 mci->fake_inject_layer[0],
830                 mci->fake_inject_layer[1],
831                 mci->fake_inject_layer[2]
832                );
833         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
834                              mci->fake_inject_layer[0],
835                              mci->fake_inject_layer[1],
836                              mci->fake_inject_layer[2],
837                              "FAKE ERROR", "for EDAC testing only");
838
839         return count;
840 }
841
842 static int debugfs_open(struct inode *inode, struct file *file)
843 {
844         file->private_data = inode->i_private;
845         return 0;
846 }
847
848 static const struct file_operations debug_fake_inject_fops = {
849         .open = debugfs_open,
850         .write = edac_fake_inject_write,
851         .llseek = generic_file_llseek,
852 };
853 #endif
854
855 /* default Control file */
856 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
857
858 /* default Attribute files */
859 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
860 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
861 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
862 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
863 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
864 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
865 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
866 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
867
868 /* memory scrubber attribute file */
869 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
870         mci_sdram_scrub_rate_store);
871
872 static struct attribute *mci_attrs[] = {
873         &dev_attr_reset_counters.attr,
874         &dev_attr_mc_name.attr,
875         &dev_attr_size_mb.attr,
876         &dev_attr_seconds_since_reset.attr,
877         &dev_attr_ue_noinfo_count.attr,
878         &dev_attr_ce_noinfo_count.attr,
879         &dev_attr_ue_count.attr,
880         &dev_attr_ce_count.attr,
881         &dev_attr_sdram_scrub_rate.attr,
882         &dev_attr_max_location.attr,
883         NULL
884 };
885
886 static struct attribute_group mci_attr_grp = {
887         .attrs  = mci_attrs,
888 };
889
890 static const struct attribute_group *mci_attr_groups[] = {
891         &mci_attr_grp,
892         NULL
893 };
894
895 static void mci_attr_release(struct device *dev)
896 {
897         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
898
899         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
900         kfree(mci);
901 }
902
903 static struct device_type mci_attr_type = {
904         .groups         = mci_attr_groups,
905         .release        = mci_attr_release,
906 };
907
908 #ifdef CONFIG_EDAC_DEBUG
909 static struct dentry *edac_debugfs;
910
911 int __init edac_debugfs_init(void)
912 {
913         edac_debugfs = debugfs_create_dir("edac", NULL);
914         if (IS_ERR(edac_debugfs)) {
915                 edac_debugfs = NULL;
916                 return -ENOMEM;
917         }
918         return 0;
919 }
920
921 void __exit edac_debugfs_exit(void)
922 {
923         debugfs_remove(edac_debugfs);
924 }
925
926 int edac_create_debug_nodes(struct mem_ctl_info *mci)
927 {
928         struct dentry *d, *parent;
929         char name[80];
930         int i;
931
932         if (!edac_debugfs)
933                 return -ENODEV;
934
935         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
936         if (!d)
937                 return -ENOMEM;
938         parent = d;
939
940         for (i = 0; i < mci->n_layers; i++) {
941                 sprintf(name, "fake_inject_%s",
942                              edac_layer_name[mci->layers[i].type]);
943                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
944                                       &mci->fake_inject_layer[i]);
945                 if (!d)
946                         goto nomem;
947         }
948
949         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
950                                 &mci->fake_inject_ue);
951         if (!d)
952                 goto nomem;
953
954         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
955                                 &mci->fake_inject_count);
956         if (!d)
957                 goto nomem;
958
959         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
960                                 &mci->dev,
961                                 &debug_fake_inject_fops);
962         if (!d)
963                 goto nomem;
964
965         mci->debugfs = parent;
966         return 0;
967 nomem:
968         debugfs_remove(mci->debugfs);
969         return -ENOMEM;
970 }
971 #endif
972
973 /*
974  * Create a new Memory Controller kobject instance,
975  *      mc<id> under the 'mc' directory
976  *
977  * Return:
978  *      0       Success
979  *      !0      Failure
980  */
981 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
982 {
983         int i, err;
984
985         /*
986          * The memory controller needs its own bus, in order to avoid
987          * namespace conflicts at /sys/bus/edac.
988          */
989         mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
990         if (!mci->bus.name)
991                 return -ENOMEM;
992         edac_dbg(0, "creating bus %s\n", mci->bus.name);
993         err = bus_register(&mci->bus);
994         if (err < 0)
995                 return err;
996
997         /* get the /sys/devices/system/edac subsys reference */
998         mci->dev.type = &mci_attr_type;
999         device_initialize(&mci->dev);
1000
1001         mci->dev.parent = mci_pdev;
1002         mci->dev.bus = &mci->bus;
1003         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1004         dev_set_drvdata(&mci->dev, mci);
1005         pm_runtime_forbid(&mci->dev);
1006
1007         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008         err = device_add(&mci->dev);
1009         if (err < 0) {
1010                 bus_unregister(&mci->bus);
1011                 kfree(mci->bus.name);
1012                 return err;
1013         }
1014
1015         /*
1016          * Create the dimm/rank devices
1017          */
1018         for (i = 0; i < mci->tot_dimms; i++) {
1019                 struct dimm_info *dimm = mci->dimms[i];
1020                 /* Only expose populated DIMMs */
1021                 if (dimm->nr_pages == 0)
1022                         continue;
1023 #ifdef CONFIG_EDAC_DEBUG
1024                 edac_dbg(1, "creating dimm%d, located at ", i);
1025                 if (edac_debug_level >= 1) {
1026                         int lay;
1027                         for (lay = 0; lay < mci->n_layers; lay++)
1028                                 printk(KERN_CONT "%s %d ",
1029                                         edac_layer_name[mci->layers[lay].type],
1030                                         dimm->location[lay]);
1031                         printk(KERN_CONT "\n");
1032                 }
1033 #endif
1034                 err = edac_create_dimm_object(mci, dimm, i);
1035                 if (err) {
1036                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1037                         goto fail;
1038                 }
1039         }
1040
1041 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1042         err = edac_create_csrow_objects(mci);
1043         if (err < 0)
1044                 goto fail;
1045 #endif
1046
1047 #ifdef CONFIG_EDAC_DEBUG
1048         edac_create_debug_nodes(mci);
1049 #endif
1050         return 0;
1051
1052 fail:
1053         for (i--; i >= 0; i--) {
1054                 struct dimm_info *dimm = mci->dimms[i];
1055                 if (dimm->nr_pages == 0)
1056                         continue;
1057                 put_device(&dimm->dev);
1058                 device_del(&dimm->dev);
1059         }
1060         put_device(&mci->dev);
1061         device_del(&mci->dev);
1062         bus_unregister(&mci->bus);
1063         kfree(mci->bus.name);
1064         return err;
1065 }
1066
1067 /*
1068  * remove a Memory Controller instance
1069  */
1070 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1071 {
1072         int i;
1073
1074         edac_dbg(0, "\n");
1075
1076 #ifdef CONFIG_EDAC_DEBUG
1077         debugfs_remove(mci->debugfs);
1078 #endif
1079 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1080         edac_delete_csrow_objects(mci);
1081 #endif
1082
1083         for (i = 0; i < mci->tot_dimms; i++) {
1084                 struct dimm_info *dimm = mci->dimms[i];
1085                 if (dimm->nr_pages == 0)
1086                         continue;
1087                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1088                 put_device(&dimm->dev);
1089                 device_del(&dimm->dev);
1090         }
1091 }
1092
1093 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1094 {
1095         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1096         put_device(&mci->dev);
1097         device_del(&mci->dev);
1098         bus_unregister(&mci->bus);
1099         kfree(mci->bus.name);
1100 }
1101
1102 static void mc_attr_release(struct device *dev)
1103 {
1104         /*
1105          * There's no container structure here, as this is just the mci
1106          * parent device, used to create the /sys/devices/mc sysfs node.
1107          * So, there are no attributes on it.
1108          */
1109         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1110         kfree(dev);
1111 }
1112
1113 static struct device_type mc_attr_type = {
1114         .release        = mc_attr_release,
1115 };
1116 /*
1117  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1118  */
1119 int __init edac_mc_sysfs_init(void)
1120 {
1121         struct bus_type *edac_subsys;
1122         int err;
1123
1124         /* get the /sys/devices/system/edac subsys reference */
1125         edac_subsys = edac_get_sysfs_subsys();
1126         if (edac_subsys == NULL) {
1127                 edac_dbg(1, "no edac_subsys\n");
1128                 return -EINVAL;
1129         }
1130
1131         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1132
1133         mci_pdev->bus = edac_subsys;
1134         mci_pdev->type = &mc_attr_type;
1135         device_initialize(mci_pdev);
1136         dev_set_name(mci_pdev, "mc");
1137
1138         err = device_add(mci_pdev);
1139         if (err < 0)
1140                 return err;
1141
1142         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1143
1144         return 0;
1145 }
1146
1147 void __exit edac_mc_sysfs_exit(void)
1148 {
1149         put_device(mci_pdev);
1150         device_del(mci_pdev);
1151         edac_put_sysfs_subsys();
1152 }