]> Pileus Git - ~andy/linux/blob - drivers/dma/ste_dma40.c
dmaengine: add context parameter to prep_slave_sg and prep_dma_cyclic
[~andy/linux] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21
22 #include <plat/ste_dma40.h>
23
24 #include "dmaengine.h"
25 #include "ste_dma40_ll.h"
26
27 #define D40_NAME "dma40"
28
29 #define D40_PHY_CHAN -1
30
31 /* For masking out/in 2 bit channel positions */
32 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
34
35 /* Maximum iterations taken before giving up suspending a channel */
36 #define D40_SUSPEND_MAX_IT 500
37
38 /* Milliseconds */
39 #define DMA40_AUTOSUSPEND_DELAY 100
40
41 /* Hardware requirement on LCLA alignment */
42 #define LCLA_ALIGNMENT 0x40000
43
44 /* Max number of links per event group */
45 #define D40_LCLA_LINK_PER_EVENT_GRP 128
46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
47
48 /* Attempts before giving up to trying to get pages that are aligned */
49 #define MAX_LCLA_ALLOC_ATTEMPTS 256
50
51 /* Bit markings for allocation map */
52 #define D40_ALLOC_FREE          (1 << 31)
53 #define D40_ALLOC_PHY           (1 << 30)
54 #define D40_ALLOC_LOG_FREE      0
55
56 /**
57  * enum 40_command - The different commands and/or statuses.
58  *
59  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
60  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
61  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
62  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
63  */
64 enum d40_command {
65         D40_DMA_STOP            = 0,
66         D40_DMA_RUN             = 1,
67         D40_DMA_SUSPEND_REQ     = 2,
68         D40_DMA_SUSPENDED       = 3
69 };
70
71 /*
72  * These are the registers that has to be saved and later restored
73  * when the DMA hw is powered off.
74  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
75  */
76 static u32 d40_backup_regs[] = {
77         D40_DREG_LCPA,
78         D40_DREG_LCLA,
79         D40_DREG_PRMSE,
80         D40_DREG_PRMSO,
81         D40_DREG_PRMOE,
82         D40_DREG_PRMOO,
83 };
84
85 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
86
87 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
88 static u32 d40_backup_regs_v3[] = {
89         D40_DREG_PSEG1,
90         D40_DREG_PSEG2,
91         D40_DREG_PSEG3,
92         D40_DREG_PSEG4,
93         D40_DREG_PCEG1,
94         D40_DREG_PCEG2,
95         D40_DREG_PCEG3,
96         D40_DREG_PCEG4,
97         D40_DREG_RSEG1,
98         D40_DREG_RSEG2,
99         D40_DREG_RSEG3,
100         D40_DREG_RSEG4,
101         D40_DREG_RCEG1,
102         D40_DREG_RCEG2,
103         D40_DREG_RCEG3,
104         D40_DREG_RCEG4,
105 };
106
107 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
108
109 static u32 d40_backup_regs_chan[] = {
110         D40_CHAN_REG_SSCFG,
111         D40_CHAN_REG_SSELT,
112         D40_CHAN_REG_SSPTR,
113         D40_CHAN_REG_SSLNK,
114         D40_CHAN_REG_SDCFG,
115         D40_CHAN_REG_SDELT,
116         D40_CHAN_REG_SDPTR,
117         D40_CHAN_REG_SDLNK,
118 };
119
120 /**
121  * struct d40_lli_pool - Structure for keeping LLIs in memory
122  *
123  * @base: Pointer to memory area when the pre_alloc_lli's are not large
124  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
125  * pre_alloc_lli is used.
126  * @dma_addr: DMA address, if mapped
127  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
128  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
129  * one buffer to one buffer.
130  */
131 struct d40_lli_pool {
132         void    *base;
133         int      size;
134         dma_addr_t      dma_addr;
135         /* Space for dst and src, plus an extra for padding */
136         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
137 };
138
139 /**
140  * struct d40_desc - A descriptor is one DMA job.
141  *
142  * @lli_phy: LLI settings for physical channel. Both src and dst=
143  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
144  * lli_len equals one.
145  * @lli_log: Same as above but for logical channels.
146  * @lli_pool: The pool with two entries pre-allocated.
147  * @lli_len: Number of llis of current descriptor.
148  * @lli_current: Number of transferred llis.
149  * @lcla_alloc: Number of LCLA entries allocated.
150  * @txd: DMA engine struct. Used for among other things for communication
151  * during a transfer.
152  * @node: List entry.
153  * @is_in_client_list: true if the client owns this descriptor.
154  * @cyclic: true if this is a cyclic job
155  *
156  * This descriptor is used for both logical and physical transfers.
157  */
158 struct d40_desc {
159         /* LLI physical */
160         struct d40_phy_lli_bidir         lli_phy;
161         /* LLI logical */
162         struct d40_log_lli_bidir         lli_log;
163
164         struct d40_lli_pool              lli_pool;
165         int                              lli_len;
166         int                              lli_current;
167         int                              lcla_alloc;
168
169         struct dma_async_tx_descriptor   txd;
170         struct list_head                 node;
171
172         bool                             is_in_client_list;
173         bool                             cyclic;
174 };
175
176 /**
177  * struct d40_lcla_pool - LCLA pool settings and data.
178  *
179  * @base: The virtual address of LCLA. 18 bit aligned.
180  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
181  * This pointer is only there for clean-up on error.
182  * @pages: The number of pages needed for all physical channels.
183  * Only used later for clean-up on error
184  * @lock: Lock to protect the content in this struct.
185  * @alloc_map: big map over which LCLA entry is own by which job.
186  */
187 struct d40_lcla_pool {
188         void            *base;
189         dma_addr_t      dma_addr;
190         void            *base_unaligned;
191         int              pages;
192         spinlock_t       lock;
193         struct d40_desc **alloc_map;
194 };
195
196 /**
197  * struct d40_phy_res - struct for handling eventlines mapped to physical
198  * channels.
199  *
200  * @lock: A lock protection this entity.
201  * @reserved: True if used by secure world or otherwise.
202  * @num: The physical channel number of this entity.
203  * @allocated_src: Bit mapped to show which src event line's are mapped to
204  * this physical channel. Can also be free or physically allocated.
205  * @allocated_dst: Same as for src but is dst.
206  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
207  * event line number.
208  */
209 struct d40_phy_res {
210         spinlock_t lock;
211         bool       reserved;
212         int        num;
213         u32        allocated_src;
214         u32        allocated_dst;
215 };
216
217 struct d40_base;
218
219 /**
220  * struct d40_chan - Struct that describes a channel.
221  *
222  * @lock: A spinlock to protect this struct.
223  * @log_num: The logical number, if any of this channel.
224  * @pending_tx: The number of pending transfers. Used between interrupt handler
225  * and tasklet.
226  * @busy: Set to true when transfer is ongoing on this channel.
227  * @phy_chan: Pointer to physical channel which this instance runs on. If this
228  * point is NULL, then the channel is not allocated.
229  * @chan: DMA engine handle.
230  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
231  * transfer and call client callback.
232  * @client: Cliented owned descriptor list.
233  * @pending_queue: Submitted jobs, to be issued by issue_pending()
234  * @active: Active descriptor.
235  * @queue: Queued jobs.
236  * @prepare_queue: Prepared jobs.
237  * @dma_cfg: The client configuration of this dma channel.
238  * @configured: whether the dma_cfg configuration is valid
239  * @base: Pointer to the device instance struct.
240  * @src_def_cfg: Default cfg register setting for src.
241  * @dst_def_cfg: Default cfg register setting for dst.
242  * @log_def: Default logical channel settings.
243  * @lcpa: Pointer to dst and src lcpa settings.
244  * @runtime_addr: runtime configured address.
245  * @runtime_direction: runtime configured direction.
246  *
247  * This struct can either "be" a logical or a physical channel.
248  */
249 struct d40_chan {
250         spinlock_t                       lock;
251         int                              log_num;
252         int                              pending_tx;
253         bool                             busy;
254         struct d40_phy_res              *phy_chan;
255         struct dma_chan                  chan;
256         struct tasklet_struct            tasklet;
257         struct list_head                 client;
258         struct list_head                 pending_queue;
259         struct list_head                 active;
260         struct list_head                 queue;
261         struct list_head                 prepare_queue;
262         struct stedma40_chan_cfg         dma_cfg;
263         bool                             configured;
264         struct d40_base                 *base;
265         /* Default register configurations */
266         u32                              src_def_cfg;
267         u32                              dst_def_cfg;
268         struct d40_def_lcsp              log_def;
269         struct d40_log_lli_full         *lcpa;
270         /* Runtime reconfiguration */
271         dma_addr_t                      runtime_addr;
272         enum dma_transfer_direction     runtime_direction;
273 };
274
275 /**
276  * struct d40_base - The big global struct, one for each probe'd instance.
277  *
278  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
279  * @execmd_lock: Lock for execute command usage since several channels share
280  * the same physical register.
281  * @dev: The device structure.
282  * @virtbase: The virtual base address of the DMA's register.
283  * @rev: silicon revision detected.
284  * @clk: Pointer to the DMA clock structure.
285  * @phy_start: Physical memory start of the DMA registers.
286  * @phy_size: Size of the DMA register map.
287  * @irq: The IRQ number.
288  * @num_phy_chans: The number of physical channels. Read from HW. This
289  * is the number of available channels for this driver, not counting "Secure
290  * mode" allocated physical channels.
291  * @num_log_chans: The number of logical channels. Calculated from
292  * num_phy_chans.
293  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
294  * @dma_slave: dma_device channels that can do only do slave transfers.
295  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
296  * @phy_chans: Room for all possible physical channels in system.
297  * @log_chans: Room for all possible logical channels in system.
298  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
299  * to log_chans entries.
300  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
301  * to phy_chans entries.
302  * @plat_data: Pointer to provided platform_data which is the driver
303  * configuration.
304  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
305  * @phy_res: Vector containing all physical channels.
306  * @lcla_pool: lcla pool settings and data.
307  * @lcpa_base: The virtual mapped address of LCPA.
308  * @phy_lcpa: The physical address of the LCPA.
309  * @lcpa_size: The size of the LCPA area.
310  * @desc_slab: cache for descriptors.
311  * @reg_val_backup: Here the values of some hardware registers are stored
312  * before the DMA is powered off. They are restored when the power is back on.
313  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
314  * later.
315  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
316  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
317  * @initialized: true if the dma has been initialized
318  */
319 struct d40_base {
320         spinlock_t                       interrupt_lock;
321         spinlock_t                       execmd_lock;
322         struct device                    *dev;
323         void __iomem                     *virtbase;
324         u8                                rev:4;
325         struct clk                       *clk;
326         phys_addr_t                       phy_start;
327         resource_size_t                   phy_size;
328         int                               irq;
329         int                               num_phy_chans;
330         int                               num_log_chans;
331         struct dma_device                 dma_both;
332         struct dma_device                 dma_slave;
333         struct dma_device                 dma_memcpy;
334         struct d40_chan                  *phy_chans;
335         struct d40_chan                  *log_chans;
336         struct d40_chan                 **lookup_log_chans;
337         struct d40_chan                 **lookup_phy_chans;
338         struct stedma40_platform_data    *plat_data;
339         struct regulator                 *lcpa_regulator;
340         /* Physical half channels */
341         struct d40_phy_res               *phy_res;
342         struct d40_lcla_pool              lcla_pool;
343         void                             *lcpa_base;
344         dma_addr_t                        phy_lcpa;
345         resource_size_t                   lcpa_size;
346         struct kmem_cache                *desc_slab;
347         u32                               reg_val_backup[BACKUP_REGS_SZ];
348         u32                               reg_val_backup_v3[BACKUP_REGS_SZ_V3];
349         u32                              *reg_val_backup_chan;
350         u16                               gcc_pwr_off_mask;
351         bool                              initialized;
352 };
353
354 /**
355  * struct d40_interrupt_lookup - lookup table for interrupt handler
356  *
357  * @src: Interrupt mask register.
358  * @clr: Interrupt clear register.
359  * @is_error: true if this is an error interrupt.
360  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
361  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
362  */
363 struct d40_interrupt_lookup {
364         u32 src;
365         u32 clr;
366         bool is_error;
367         int offset;
368 };
369
370 /**
371  * struct d40_reg_val - simple lookup struct
372  *
373  * @reg: The register.
374  * @val: The value that belongs to the register in reg.
375  */
376 struct d40_reg_val {
377         unsigned int reg;
378         unsigned int val;
379 };
380
381 static struct device *chan2dev(struct d40_chan *d40c)
382 {
383         return &d40c->chan.dev->device;
384 }
385
386 static bool chan_is_physical(struct d40_chan *chan)
387 {
388         return chan->log_num == D40_PHY_CHAN;
389 }
390
391 static bool chan_is_logical(struct d40_chan *chan)
392 {
393         return !chan_is_physical(chan);
394 }
395
396 static void __iomem *chan_base(struct d40_chan *chan)
397 {
398         return chan->base->virtbase + D40_DREG_PCBASE +
399                chan->phy_chan->num * D40_DREG_PCDELTA;
400 }
401
402 #define d40_err(dev, format, arg...)            \
403         dev_err(dev, "[%s] " format, __func__, ## arg)
404
405 #define chan_err(d40c, format, arg...)          \
406         d40_err(chan2dev(d40c), format, ## arg)
407
408 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
409                               int lli_len)
410 {
411         bool is_log = chan_is_logical(d40c);
412         u32 align;
413         void *base;
414
415         if (is_log)
416                 align = sizeof(struct d40_log_lli);
417         else
418                 align = sizeof(struct d40_phy_lli);
419
420         if (lli_len == 1) {
421                 base = d40d->lli_pool.pre_alloc_lli;
422                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
423                 d40d->lli_pool.base = NULL;
424         } else {
425                 d40d->lli_pool.size = lli_len * 2 * align;
426
427                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
428                 d40d->lli_pool.base = base;
429
430                 if (d40d->lli_pool.base == NULL)
431                         return -ENOMEM;
432         }
433
434         if (is_log) {
435                 d40d->lli_log.src = PTR_ALIGN(base, align);
436                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
437
438                 d40d->lli_pool.dma_addr = 0;
439         } else {
440                 d40d->lli_phy.src = PTR_ALIGN(base, align);
441                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
442
443                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
444                                                          d40d->lli_phy.src,
445                                                          d40d->lli_pool.size,
446                                                          DMA_TO_DEVICE);
447
448                 if (dma_mapping_error(d40c->base->dev,
449                                       d40d->lli_pool.dma_addr)) {
450                         kfree(d40d->lli_pool.base);
451                         d40d->lli_pool.base = NULL;
452                         d40d->lli_pool.dma_addr = 0;
453                         return -ENOMEM;
454                 }
455         }
456
457         return 0;
458 }
459
460 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
461 {
462         if (d40d->lli_pool.dma_addr)
463                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
464                                  d40d->lli_pool.size, DMA_TO_DEVICE);
465
466         kfree(d40d->lli_pool.base);
467         d40d->lli_pool.base = NULL;
468         d40d->lli_pool.size = 0;
469         d40d->lli_log.src = NULL;
470         d40d->lli_log.dst = NULL;
471         d40d->lli_phy.src = NULL;
472         d40d->lli_phy.dst = NULL;
473 }
474
475 static int d40_lcla_alloc_one(struct d40_chan *d40c,
476                               struct d40_desc *d40d)
477 {
478         unsigned long flags;
479         int i;
480         int ret = -EINVAL;
481         int p;
482
483         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
484
485         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
486
487         /*
488          * Allocate both src and dst at the same time, therefore the half
489          * start on 1 since 0 can't be used since zero is used as end marker.
490          */
491         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
492                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
493                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
494                         d40d->lcla_alloc++;
495                         ret = i;
496                         break;
497                 }
498         }
499
500         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
501
502         return ret;
503 }
504
505 static int d40_lcla_free_all(struct d40_chan *d40c,
506                              struct d40_desc *d40d)
507 {
508         unsigned long flags;
509         int i;
510         int ret = -EINVAL;
511
512         if (chan_is_physical(d40c))
513                 return 0;
514
515         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
516
517         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
518                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
519                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
520                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
521                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
522                         d40d->lcla_alloc--;
523                         if (d40d->lcla_alloc == 0) {
524                                 ret = 0;
525                                 break;
526                         }
527                 }
528         }
529
530         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
531
532         return ret;
533
534 }
535
536 static void d40_desc_remove(struct d40_desc *d40d)
537 {
538         list_del(&d40d->node);
539 }
540
541 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
542 {
543         struct d40_desc *desc = NULL;
544
545         if (!list_empty(&d40c->client)) {
546                 struct d40_desc *d;
547                 struct d40_desc *_d;
548
549                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
550                         if (async_tx_test_ack(&d->txd)) {
551                                 d40_desc_remove(d);
552                                 desc = d;
553                                 memset(desc, 0, sizeof(*desc));
554                                 break;
555                         }
556                 }
557         }
558
559         if (!desc)
560                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
561
562         if (desc)
563                 INIT_LIST_HEAD(&desc->node);
564
565         return desc;
566 }
567
568 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
569 {
570
571         d40_pool_lli_free(d40c, d40d);
572         d40_lcla_free_all(d40c, d40d);
573         kmem_cache_free(d40c->base->desc_slab, d40d);
574 }
575
576 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
577 {
578         list_add_tail(&desc->node, &d40c->active);
579 }
580
581 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
582 {
583         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
584         struct d40_phy_lli *lli_src = desc->lli_phy.src;
585         void __iomem *base = chan_base(chan);
586
587         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
588         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
589         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
590         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
591
592         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
593         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
594         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
595         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
596 }
597
598 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
599 {
600         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
601         struct d40_log_lli_bidir *lli = &desc->lli_log;
602         int lli_current = desc->lli_current;
603         int lli_len = desc->lli_len;
604         bool cyclic = desc->cyclic;
605         int curr_lcla = -EINVAL;
606         int first_lcla = 0;
607         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
608         bool linkback;
609
610         /*
611          * We may have partially running cyclic transfers, in case we did't get
612          * enough LCLA entries.
613          */
614         linkback = cyclic && lli_current == 0;
615
616         /*
617          * For linkback, we need one LCLA even with only one link, because we
618          * can't link back to the one in LCPA space
619          */
620         if (linkback || (lli_len - lli_current > 1)) {
621                 curr_lcla = d40_lcla_alloc_one(chan, desc);
622                 first_lcla = curr_lcla;
623         }
624
625         /*
626          * For linkback, we normally load the LCPA in the loop since we need to
627          * link it to the second LCLA and not the first.  However, if we
628          * couldn't even get a first LCLA, then we have to run in LCPA and
629          * reload manually.
630          */
631         if (!linkback || curr_lcla == -EINVAL) {
632                 unsigned int flags = 0;
633
634                 if (curr_lcla == -EINVAL)
635                         flags |= LLI_TERM_INT;
636
637                 d40_log_lli_lcpa_write(chan->lcpa,
638                                        &lli->dst[lli_current],
639                                        &lli->src[lli_current],
640                                        curr_lcla,
641                                        flags);
642                 lli_current++;
643         }
644
645         if (curr_lcla < 0)
646                 goto out;
647
648         for (; lli_current < lli_len; lli_current++) {
649                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
650                                            8 * curr_lcla * 2;
651                 struct d40_log_lli *lcla = pool->base + lcla_offset;
652                 unsigned int flags = 0;
653                 int next_lcla;
654
655                 if (lli_current + 1 < lli_len)
656                         next_lcla = d40_lcla_alloc_one(chan, desc);
657                 else
658                         next_lcla = linkback ? first_lcla : -EINVAL;
659
660                 if (cyclic || next_lcla == -EINVAL)
661                         flags |= LLI_TERM_INT;
662
663                 if (linkback && curr_lcla == first_lcla) {
664                         /* First link goes in both LCPA and LCLA */
665                         d40_log_lli_lcpa_write(chan->lcpa,
666                                                &lli->dst[lli_current],
667                                                &lli->src[lli_current],
668                                                next_lcla, flags);
669                 }
670
671                 /*
672                  * One unused LCLA in the cyclic case if the very first
673                  * next_lcla fails...
674                  */
675                 d40_log_lli_lcla_write(lcla,
676                                        &lli->dst[lli_current],
677                                        &lli->src[lli_current],
678                                        next_lcla, flags);
679
680                 /*
681                  * Cache maintenance is not needed if lcla is
682                  * mapped in esram
683                  */
684                 if (!use_esram_lcla) {
685                         dma_sync_single_range_for_device(chan->base->dev,
686                                                 pool->dma_addr, lcla_offset,
687                                                 2 * sizeof(struct d40_log_lli),
688                                                 DMA_TO_DEVICE);
689                 }
690                 curr_lcla = next_lcla;
691
692                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
693                         lli_current++;
694                         break;
695                 }
696         }
697
698 out:
699         desc->lli_current = lli_current;
700 }
701
702 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
703 {
704         if (chan_is_physical(d40c)) {
705                 d40_phy_lli_load(d40c, d40d);
706                 d40d->lli_current = d40d->lli_len;
707         } else
708                 d40_log_lli_to_lcxa(d40c, d40d);
709 }
710
711 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
712 {
713         struct d40_desc *d;
714
715         if (list_empty(&d40c->active))
716                 return NULL;
717
718         d = list_first_entry(&d40c->active,
719                              struct d40_desc,
720                              node);
721         return d;
722 }
723
724 /* remove desc from current queue and add it to the pending_queue */
725 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
726 {
727         d40_desc_remove(desc);
728         desc->is_in_client_list = false;
729         list_add_tail(&desc->node, &d40c->pending_queue);
730 }
731
732 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
733 {
734         struct d40_desc *d;
735
736         if (list_empty(&d40c->pending_queue))
737                 return NULL;
738
739         d = list_first_entry(&d40c->pending_queue,
740                              struct d40_desc,
741                              node);
742         return d;
743 }
744
745 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
746 {
747         struct d40_desc *d;
748
749         if (list_empty(&d40c->queue))
750                 return NULL;
751
752         d = list_first_entry(&d40c->queue,
753                              struct d40_desc,
754                              node);
755         return d;
756 }
757
758 static int d40_psize_2_burst_size(bool is_log, int psize)
759 {
760         if (is_log) {
761                 if (psize == STEDMA40_PSIZE_LOG_1)
762                         return 1;
763         } else {
764                 if (psize == STEDMA40_PSIZE_PHY_1)
765                         return 1;
766         }
767
768         return 2 << psize;
769 }
770
771 /*
772  * The dma only supports transmitting packages up to
773  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
774  * dma elements required to send the entire sg list
775  */
776 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
777 {
778         int dmalen;
779         u32 max_w = max(data_width1, data_width2);
780         u32 min_w = min(data_width1, data_width2);
781         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
782
783         if (seg_max > STEDMA40_MAX_SEG_SIZE)
784                 seg_max -= (1 << max_w);
785
786         if (!IS_ALIGNED(size, 1 << max_w))
787                 return -EINVAL;
788
789         if (size <= seg_max)
790                 dmalen = 1;
791         else {
792                 dmalen = size / seg_max;
793                 if (dmalen * seg_max < size)
794                         dmalen++;
795         }
796         return dmalen;
797 }
798
799 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
800                            u32 data_width1, u32 data_width2)
801 {
802         struct scatterlist *sg;
803         int i;
804         int len = 0;
805         int ret;
806
807         for_each_sg(sgl, sg, sg_len, i) {
808                 ret = d40_size_2_dmalen(sg_dma_len(sg),
809                                         data_width1, data_width2);
810                 if (ret < 0)
811                         return ret;
812                 len += ret;
813         }
814         return len;
815 }
816
817
818 #ifdef CONFIG_PM
819 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
820                          u32 *regaddr, int num, bool save)
821 {
822         int i;
823
824         for (i = 0; i < num; i++) {
825                 void __iomem *addr = baseaddr + regaddr[i];
826
827                 if (save)
828                         backup[i] = readl_relaxed(addr);
829                 else
830                         writel_relaxed(backup[i], addr);
831         }
832 }
833
834 static void d40_save_restore_registers(struct d40_base *base, bool save)
835 {
836         int i;
837
838         /* Save/Restore channel specific registers */
839         for (i = 0; i < base->num_phy_chans; i++) {
840                 void __iomem *addr;
841                 int idx;
842
843                 if (base->phy_res[i].reserved)
844                         continue;
845
846                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
847                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
848
849                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
850                              d40_backup_regs_chan,
851                              ARRAY_SIZE(d40_backup_regs_chan),
852                              save);
853         }
854
855         /* Save/Restore global registers */
856         dma40_backup(base->virtbase, base->reg_val_backup,
857                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
858                      save);
859
860         /* Save/Restore registers only existing on dma40 v3 and later */
861         if (base->rev >= 3)
862                 dma40_backup(base->virtbase, base->reg_val_backup_v3,
863                              d40_backup_regs_v3,
864                              ARRAY_SIZE(d40_backup_regs_v3),
865                              save);
866 }
867 #else
868 static void d40_save_restore_registers(struct d40_base *base, bool save)
869 {
870 }
871 #endif
872
873 static int d40_channel_execute_command(struct d40_chan *d40c,
874                                        enum d40_command command)
875 {
876         u32 status;
877         int i;
878         void __iomem *active_reg;
879         int ret = 0;
880         unsigned long flags;
881         u32 wmask;
882
883         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
884
885         if (d40c->phy_chan->num % 2 == 0)
886                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
887         else
888                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
889
890         if (command == D40_DMA_SUSPEND_REQ) {
891                 status = (readl(active_reg) &
892                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
893                         D40_CHAN_POS(d40c->phy_chan->num);
894
895                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
896                         goto done;
897         }
898
899         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
900         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
901                active_reg);
902
903         if (command == D40_DMA_SUSPEND_REQ) {
904
905                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
906                         status = (readl(active_reg) &
907                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
908                                 D40_CHAN_POS(d40c->phy_chan->num);
909
910                         cpu_relax();
911                         /*
912                          * Reduce the number of bus accesses while
913                          * waiting for the DMA to suspend.
914                          */
915                         udelay(3);
916
917                         if (status == D40_DMA_STOP ||
918                             status == D40_DMA_SUSPENDED)
919                                 break;
920                 }
921
922                 if (i == D40_SUSPEND_MAX_IT) {
923                         chan_err(d40c,
924                                 "unable to suspend the chl %d (log: %d) status %x\n",
925                                 d40c->phy_chan->num, d40c->log_num,
926                                 status);
927                         dump_stack();
928                         ret = -EBUSY;
929                 }
930
931         }
932 done:
933         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
934         return ret;
935 }
936
937 static void d40_term_all(struct d40_chan *d40c)
938 {
939         struct d40_desc *d40d;
940         struct d40_desc *_d;
941
942         /* Release active descriptors */
943         while ((d40d = d40_first_active_get(d40c))) {
944                 d40_desc_remove(d40d);
945                 d40_desc_free(d40c, d40d);
946         }
947
948         /* Release queued descriptors waiting for transfer */
949         while ((d40d = d40_first_queued(d40c))) {
950                 d40_desc_remove(d40d);
951                 d40_desc_free(d40c, d40d);
952         }
953
954         /* Release pending descriptors */
955         while ((d40d = d40_first_pending(d40c))) {
956                 d40_desc_remove(d40d);
957                 d40_desc_free(d40c, d40d);
958         }
959
960         /* Release client owned descriptors */
961         if (!list_empty(&d40c->client))
962                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
963                         d40_desc_remove(d40d);
964                         d40_desc_free(d40c, d40d);
965                 }
966
967         /* Release descriptors in prepare queue */
968         if (!list_empty(&d40c->prepare_queue))
969                 list_for_each_entry_safe(d40d, _d,
970                                          &d40c->prepare_queue, node) {
971                         d40_desc_remove(d40d);
972                         d40_desc_free(d40c, d40d);
973                 }
974
975         d40c->pending_tx = 0;
976         d40c->busy = false;
977 }
978
979 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
980                                    u32 event, int reg)
981 {
982         void __iomem *addr = chan_base(d40c) + reg;
983         int tries;
984
985         if (!enable) {
986                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
987                        | ~D40_EVENTLINE_MASK(event), addr);
988                 return;
989         }
990
991         /*
992          * The hardware sometimes doesn't register the enable when src and dst
993          * event lines are active on the same logical channel.  Retry to ensure
994          * it does.  Usually only one retry is sufficient.
995          */
996         tries = 100;
997         while (--tries) {
998                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
999                        | ~D40_EVENTLINE_MASK(event), addr);
1000
1001                 if (readl(addr) & D40_EVENTLINE_MASK(event))
1002                         break;
1003         }
1004
1005         if (tries != 99)
1006                 dev_dbg(chan2dev(d40c),
1007                         "[%s] workaround enable S%cLNK (%d tries)\n",
1008                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1009                         100 - tries);
1010
1011         WARN_ON(!tries);
1012 }
1013
1014 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
1015 {
1016         unsigned long flags;
1017
1018         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1019
1020         /* Enable event line connected to device (or memcpy) */
1021         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1022             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1023                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1024
1025                 __d40_config_set_event(d40c, do_enable, event,
1026                                        D40_CHAN_REG_SSLNK);
1027         }
1028
1029         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1030                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1031
1032                 __d40_config_set_event(d40c, do_enable, event,
1033                                        D40_CHAN_REG_SDLNK);
1034         }
1035
1036         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1037 }
1038
1039 static u32 d40_chan_has_events(struct d40_chan *d40c)
1040 {
1041         void __iomem *chanbase = chan_base(d40c);
1042         u32 val;
1043
1044         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1045         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1046
1047         return val;
1048 }
1049
1050 static u32 d40_get_prmo(struct d40_chan *d40c)
1051 {
1052         static const unsigned int phy_map[] = {
1053                 [STEDMA40_PCHAN_BASIC_MODE]
1054                         = D40_DREG_PRMO_PCHAN_BASIC,
1055                 [STEDMA40_PCHAN_MODULO_MODE]
1056                         = D40_DREG_PRMO_PCHAN_MODULO,
1057                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1058                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1059         };
1060         static const unsigned int log_map[] = {
1061                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1062                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1063                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1064                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1065                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1066                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1067         };
1068
1069         if (chan_is_physical(d40c))
1070                 return phy_map[d40c->dma_cfg.mode_opt];
1071         else
1072                 return log_map[d40c->dma_cfg.mode_opt];
1073 }
1074
1075 static void d40_config_write(struct d40_chan *d40c)
1076 {
1077         u32 addr_base;
1078         u32 var;
1079
1080         /* Odd addresses are even addresses + 4 */
1081         addr_base = (d40c->phy_chan->num % 2) * 4;
1082         /* Setup channel mode to logical or physical */
1083         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1084                 D40_CHAN_POS(d40c->phy_chan->num);
1085         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1086
1087         /* Setup operational mode option register */
1088         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1089
1090         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1091
1092         if (chan_is_logical(d40c)) {
1093                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1094                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1095                 void __iomem *chanbase = chan_base(d40c);
1096
1097                 /* Set default config for CFG reg */
1098                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1099                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1100
1101                 /* Set LIDX for lcla */
1102                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1103                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1104
1105                 /* Clear LNK which will be used by d40_chan_has_events() */
1106                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1107                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1108         }
1109 }
1110
1111 static u32 d40_residue(struct d40_chan *d40c)
1112 {
1113         u32 num_elt;
1114
1115         if (chan_is_logical(d40c))
1116                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1117                         >> D40_MEM_LCSP2_ECNT_POS;
1118         else {
1119                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1120                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1121                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1122         }
1123
1124         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1125 }
1126
1127 static bool d40_tx_is_linked(struct d40_chan *d40c)
1128 {
1129         bool is_link;
1130
1131         if (chan_is_logical(d40c))
1132                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1133         else
1134                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1135                           & D40_SREG_LNK_PHYS_LNK_MASK;
1136
1137         return is_link;
1138 }
1139
1140 static int d40_pause(struct d40_chan *d40c)
1141 {
1142         int res = 0;
1143         unsigned long flags;
1144
1145         if (!d40c->busy)
1146                 return 0;
1147
1148         pm_runtime_get_sync(d40c->base->dev);
1149         spin_lock_irqsave(&d40c->lock, flags);
1150
1151         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1152         if (res == 0) {
1153                 if (chan_is_logical(d40c)) {
1154                         d40_config_set_event(d40c, false);
1155                         /* Resume the other logical channels if any */
1156                         if (d40_chan_has_events(d40c))
1157                                 res = d40_channel_execute_command(d40c,
1158                                                                   D40_DMA_RUN);
1159                 }
1160         }
1161         pm_runtime_mark_last_busy(d40c->base->dev);
1162         pm_runtime_put_autosuspend(d40c->base->dev);
1163         spin_unlock_irqrestore(&d40c->lock, flags);
1164         return res;
1165 }
1166
1167 static int d40_resume(struct d40_chan *d40c)
1168 {
1169         int res = 0;
1170         unsigned long flags;
1171
1172         if (!d40c->busy)
1173                 return 0;
1174
1175         spin_lock_irqsave(&d40c->lock, flags);
1176         pm_runtime_get_sync(d40c->base->dev);
1177         if (d40c->base->rev == 0)
1178                 if (chan_is_logical(d40c)) {
1179                         res = d40_channel_execute_command(d40c,
1180                                                           D40_DMA_SUSPEND_REQ);
1181                         goto no_suspend;
1182                 }
1183
1184         /* If bytes left to transfer or linked tx resume job */
1185         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1186
1187                 if (chan_is_logical(d40c))
1188                         d40_config_set_event(d40c, true);
1189
1190                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1191         }
1192
1193 no_suspend:
1194         pm_runtime_mark_last_busy(d40c->base->dev);
1195         pm_runtime_put_autosuspend(d40c->base->dev);
1196         spin_unlock_irqrestore(&d40c->lock, flags);
1197         return res;
1198 }
1199
1200 static int d40_terminate_all(struct d40_chan *chan)
1201 {
1202         unsigned long flags;
1203         int ret = 0;
1204
1205         ret = d40_pause(chan);
1206         if (!ret && chan_is_physical(chan))
1207                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1208
1209         spin_lock_irqsave(&chan->lock, flags);
1210         d40_term_all(chan);
1211         spin_unlock_irqrestore(&chan->lock, flags);
1212
1213         return ret;
1214 }
1215
1216 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1217 {
1218         struct d40_chan *d40c = container_of(tx->chan,
1219                                              struct d40_chan,
1220                                              chan);
1221         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1222         unsigned long flags;
1223         dma_cookie_t cookie;
1224
1225         spin_lock_irqsave(&d40c->lock, flags);
1226         cookie = dma_cookie_assign(tx);
1227         d40_desc_queue(d40c, d40d);
1228         spin_unlock_irqrestore(&d40c->lock, flags);
1229
1230         return cookie;
1231 }
1232
1233 static int d40_start(struct d40_chan *d40c)
1234 {
1235         if (d40c->base->rev == 0) {
1236                 int err;
1237
1238                 if (chan_is_logical(d40c)) {
1239                         err = d40_channel_execute_command(d40c,
1240                                                           D40_DMA_SUSPEND_REQ);
1241                         if (err)
1242                                 return err;
1243                 }
1244         }
1245
1246         if (chan_is_logical(d40c))
1247                 d40_config_set_event(d40c, true);
1248
1249         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1250 }
1251
1252 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1253 {
1254         struct d40_desc *d40d;
1255         int err;
1256
1257         /* Start queued jobs, if any */
1258         d40d = d40_first_queued(d40c);
1259
1260         if (d40d != NULL) {
1261                 if (!d40c->busy)
1262                         d40c->busy = true;
1263
1264                 pm_runtime_get_sync(d40c->base->dev);
1265
1266                 /* Remove from queue */
1267                 d40_desc_remove(d40d);
1268
1269                 /* Add to active queue */
1270                 d40_desc_submit(d40c, d40d);
1271
1272                 /* Initiate DMA job */
1273                 d40_desc_load(d40c, d40d);
1274
1275                 /* Start dma job */
1276                 err = d40_start(d40c);
1277
1278                 if (err)
1279                         return NULL;
1280         }
1281
1282         return d40d;
1283 }
1284
1285 /* called from interrupt context */
1286 static void dma_tc_handle(struct d40_chan *d40c)
1287 {
1288         struct d40_desc *d40d;
1289
1290         /* Get first active entry from list */
1291         d40d = d40_first_active_get(d40c);
1292
1293         if (d40d == NULL)
1294                 return;
1295
1296         if (d40d->cyclic) {
1297                 /*
1298                  * If this was a paritially loaded list, we need to reloaded
1299                  * it, and only when the list is completed.  We need to check
1300                  * for done because the interrupt will hit for every link, and
1301                  * not just the last one.
1302                  */
1303                 if (d40d->lli_current < d40d->lli_len
1304                     && !d40_tx_is_linked(d40c)
1305                     && !d40_residue(d40c)) {
1306                         d40_lcla_free_all(d40c, d40d);
1307                         d40_desc_load(d40c, d40d);
1308                         (void) d40_start(d40c);
1309
1310                         if (d40d->lli_current == d40d->lli_len)
1311                                 d40d->lli_current = 0;
1312                 }
1313         } else {
1314                 d40_lcla_free_all(d40c, d40d);
1315
1316                 if (d40d->lli_current < d40d->lli_len) {
1317                         d40_desc_load(d40c, d40d);
1318                         /* Start dma job */
1319                         (void) d40_start(d40c);
1320                         return;
1321                 }
1322
1323                 if (d40_queue_start(d40c) == NULL)
1324                         d40c->busy = false;
1325                 pm_runtime_mark_last_busy(d40c->base->dev);
1326                 pm_runtime_put_autosuspend(d40c->base->dev);
1327         }
1328
1329         d40c->pending_tx++;
1330         tasklet_schedule(&d40c->tasklet);
1331
1332 }
1333
1334 static void dma_tasklet(unsigned long data)
1335 {
1336         struct d40_chan *d40c = (struct d40_chan *) data;
1337         struct d40_desc *d40d;
1338         unsigned long flags;
1339         dma_async_tx_callback callback;
1340         void *callback_param;
1341
1342         spin_lock_irqsave(&d40c->lock, flags);
1343
1344         /* Get first active entry from list */
1345         d40d = d40_first_active_get(d40c);
1346         if (d40d == NULL)
1347                 goto err;
1348
1349         if (!d40d->cyclic)
1350                 dma_cookie_complete(&d40d->txd);
1351
1352         /*
1353          * If terminating a channel pending_tx is set to zero.
1354          * This prevents any finished active jobs to return to the client.
1355          */
1356         if (d40c->pending_tx == 0) {
1357                 spin_unlock_irqrestore(&d40c->lock, flags);
1358                 return;
1359         }
1360
1361         /* Callback to client */
1362         callback = d40d->txd.callback;
1363         callback_param = d40d->txd.callback_param;
1364
1365         if (!d40d->cyclic) {
1366                 if (async_tx_test_ack(&d40d->txd)) {
1367                         d40_desc_remove(d40d);
1368                         d40_desc_free(d40c, d40d);
1369                 } else {
1370                         if (!d40d->is_in_client_list) {
1371                                 d40_desc_remove(d40d);
1372                                 d40_lcla_free_all(d40c, d40d);
1373                                 list_add_tail(&d40d->node, &d40c->client);
1374                                 d40d->is_in_client_list = true;
1375                         }
1376                 }
1377         }
1378
1379         d40c->pending_tx--;
1380
1381         if (d40c->pending_tx)
1382                 tasklet_schedule(&d40c->tasklet);
1383
1384         spin_unlock_irqrestore(&d40c->lock, flags);
1385
1386         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1387                 callback(callback_param);
1388
1389         return;
1390
1391  err:
1392         /* Rescue manoeuvre if receiving double interrupts */
1393         if (d40c->pending_tx > 0)
1394                 d40c->pending_tx--;
1395         spin_unlock_irqrestore(&d40c->lock, flags);
1396 }
1397
1398 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1399 {
1400         static const struct d40_interrupt_lookup il[] = {
1401                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1402                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1403                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1404                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1405                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1406                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1407                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1408                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1409                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1410                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1411         };
1412
1413         int i;
1414         u32 regs[ARRAY_SIZE(il)];
1415         u32 idx;
1416         u32 row;
1417         long chan = -1;
1418         struct d40_chan *d40c;
1419         unsigned long flags;
1420         struct d40_base *base = data;
1421
1422         spin_lock_irqsave(&base->interrupt_lock, flags);
1423
1424         /* Read interrupt status of both logical and physical channels */
1425         for (i = 0; i < ARRAY_SIZE(il); i++)
1426                 regs[i] = readl(base->virtbase + il[i].src);
1427
1428         for (;;) {
1429
1430                 chan = find_next_bit((unsigned long *)regs,
1431                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1432
1433                 /* No more set bits found? */
1434                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1435                         break;
1436
1437                 row = chan / BITS_PER_LONG;
1438                 idx = chan & (BITS_PER_LONG - 1);
1439
1440                 /* ACK interrupt */
1441                 writel(1 << idx, base->virtbase + il[row].clr);
1442
1443                 if (il[row].offset == D40_PHY_CHAN)
1444                         d40c = base->lookup_phy_chans[idx];
1445                 else
1446                         d40c = base->lookup_log_chans[il[row].offset + idx];
1447                 spin_lock(&d40c->lock);
1448
1449                 if (!il[row].is_error)
1450                         dma_tc_handle(d40c);
1451                 else
1452                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1453                                 chan, il[row].offset, idx);
1454
1455                 spin_unlock(&d40c->lock);
1456         }
1457
1458         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1459
1460         return IRQ_HANDLED;
1461 }
1462
1463 static int d40_validate_conf(struct d40_chan *d40c,
1464                              struct stedma40_chan_cfg *conf)
1465 {
1466         int res = 0;
1467         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1468         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1469         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1470
1471         if (!conf->dir) {
1472                 chan_err(d40c, "Invalid direction.\n");
1473                 res = -EINVAL;
1474         }
1475
1476         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1477             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1478             d40c->runtime_addr == 0) {
1479
1480                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1481                          conf->dst_dev_type);
1482                 res = -EINVAL;
1483         }
1484
1485         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1486             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1487             d40c->runtime_addr == 0) {
1488                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1489                         conf->src_dev_type);
1490                 res = -EINVAL;
1491         }
1492
1493         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1494             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1495                 chan_err(d40c, "Invalid dst\n");
1496                 res = -EINVAL;
1497         }
1498
1499         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1500             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1501                 chan_err(d40c, "Invalid src\n");
1502                 res = -EINVAL;
1503         }
1504
1505         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1506             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1507                 chan_err(d40c, "No event line\n");
1508                 res = -EINVAL;
1509         }
1510
1511         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1512             (src_event_group != dst_event_group)) {
1513                 chan_err(d40c, "Invalid event group\n");
1514                 res = -EINVAL;
1515         }
1516
1517         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1518                 /*
1519                  * DMAC HW supports it. Will be added to this driver,
1520                  * in case any dma client requires it.
1521                  */
1522                 chan_err(d40c, "periph to periph not supported\n");
1523                 res = -EINVAL;
1524         }
1525
1526         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1527             (1 << conf->src_info.data_width) !=
1528             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1529             (1 << conf->dst_info.data_width)) {
1530                 /*
1531                  * The DMAC hardware only supports
1532                  * src (burst x width) == dst (burst x width)
1533                  */
1534
1535                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1536                 res = -EINVAL;
1537         }
1538
1539         return res;
1540 }
1541
1542 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1543                                bool is_src, int log_event_line, bool is_log,
1544                                bool *first_user)
1545 {
1546         unsigned long flags;
1547         spin_lock_irqsave(&phy->lock, flags);
1548
1549         *first_user = ((phy->allocated_src | phy->allocated_dst)
1550                         == D40_ALLOC_FREE);
1551
1552         if (!is_log) {
1553                 /* Physical interrupts are masked per physical full channel */
1554                 if (phy->allocated_src == D40_ALLOC_FREE &&
1555                     phy->allocated_dst == D40_ALLOC_FREE) {
1556                         phy->allocated_dst = D40_ALLOC_PHY;
1557                         phy->allocated_src = D40_ALLOC_PHY;
1558                         goto found;
1559                 } else
1560                         goto not_found;
1561         }
1562
1563         /* Logical channel */
1564         if (is_src) {
1565                 if (phy->allocated_src == D40_ALLOC_PHY)
1566                         goto not_found;
1567
1568                 if (phy->allocated_src == D40_ALLOC_FREE)
1569                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1570
1571                 if (!(phy->allocated_src & (1 << log_event_line))) {
1572                         phy->allocated_src |= 1 << log_event_line;
1573                         goto found;
1574                 } else
1575                         goto not_found;
1576         } else {
1577                 if (phy->allocated_dst == D40_ALLOC_PHY)
1578                         goto not_found;
1579
1580                 if (phy->allocated_dst == D40_ALLOC_FREE)
1581                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1582
1583                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1584                         phy->allocated_dst |= 1 << log_event_line;
1585                         goto found;
1586                 } else
1587                         goto not_found;
1588         }
1589
1590 not_found:
1591         spin_unlock_irqrestore(&phy->lock, flags);
1592         return false;
1593 found:
1594         spin_unlock_irqrestore(&phy->lock, flags);
1595         return true;
1596 }
1597
1598 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1599                                int log_event_line)
1600 {
1601         unsigned long flags;
1602         bool is_free = false;
1603
1604         spin_lock_irqsave(&phy->lock, flags);
1605         if (!log_event_line) {
1606                 phy->allocated_dst = D40_ALLOC_FREE;
1607                 phy->allocated_src = D40_ALLOC_FREE;
1608                 is_free = true;
1609                 goto out;
1610         }
1611
1612         /* Logical channel */
1613         if (is_src) {
1614                 phy->allocated_src &= ~(1 << log_event_line);
1615                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1616                         phy->allocated_src = D40_ALLOC_FREE;
1617         } else {
1618                 phy->allocated_dst &= ~(1 << log_event_line);
1619                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1620                         phy->allocated_dst = D40_ALLOC_FREE;
1621         }
1622
1623         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1624                    D40_ALLOC_FREE);
1625
1626 out:
1627         spin_unlock_irqrestore(&phy->lock, flags);
1628
1629         return is_free;
1630 }
1631
1632 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1633 {
1634         int dev_type;
1635         int event_group;
1636         int event_line;
1637         struct d40_phy_res *phys;
1638         int i;
1639         int j;
1640         int log_num;
1641         bool is_src;
1642         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1643
1644         phys = d40c->base->phy_res;
1645
1646         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1647                 dev_type = d40c->dma_cfg.src_dev_type;
1648                 log_num = 2 * dev_type;
1649                 is_src = true;
1650         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1651                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1652                 /* dst event lines are used for logical memcpy */
1653                 dev_type = d40c->dma_cfg.dst_dev_type;
1654                 log_num = 2 * dev_type + 1;
1655                 is_src = false;
1656         } else
1657                 return -EINVAL;
1658
1659         event_group = D40_TYPE_TO_GROUP(dev_type);
1660         event_line = D40_TYPE_TO_EVENT(dev_type);
1661
1662         if (!is_log) {
1663                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1664                         /* Find physical half channel */
1665                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1666
1667                                 if (d40_alloc_mask_set(&phys[i], is_src,
1668                                                        0, is_log,
1669                                                        first_phy_user))
1670                                         goto found_phy;
1671                         }
1672                 } else
1673                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1674                                 int phy_num = j  + event_group * 2;
1675                                 for (i = phy_num; i < phy_num + 2; i++) {
1676                                         if (d40_alloc_mask_set(&phys[i],
1677                                                                is_src,
1678                                                                0,
1679                                                                is_log,
1680                                                                first_phy_user))
1681                                                 goto found_phy;
1682                                 }
1683                         }
1684                 return -EINVAL;
1685 found_phy:
1686                 d40c->phy_chan = &phys[i];
1687                 d40c->log_num = D40_PHY_CHAN;
1688                 goto out;
1689         }
1690         if (dev_type == -1)
1691                 return -EINVAL;
1692
1693         /* Find logical channel */
1694         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1695                 int phy_num = j + event_group * 2;
1696
1697                 if (d40c->dma_cfg.use_fixed_channel) {
1698                         i = d40c->dma_cfg.phy_channel;
1699
1700                         if ((i != phy_num) && (i != phy_num + 1)) {
1701                                 dev_err(chan2dev(d40c),
1702                                         "invalid fixed phy channel %d\n", i);
1703                                 return -EINVAL;
1704                         }
1705
1706                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1707                                                is_log, first_phy_user))
1708                                 goto found_log;
1709
1710                         dev_err(chan2dev(d40c),
1711                                 "could not allocate fixed phy channel %d\n", i);
1712                         return -EINVAL;
1713                 }
1714
1715                 /*
1716                  * Spread logical channels across all available physical rather
1717                  * than pack every logical channel at the first available phy
1718                  * channels.
1719                  */
1720                 if (is_src) {
1721                         for (i = phy_num; i < phy_num + 2; i++) {
1722                                 if (d40_alloc_mask_set(&phys[i], is_src,
1723                                                        event_line, is_log,
1724                                                        first_phy_user))
1725                                         goto found_log;
1726                         }
1727                 } else {
1728                         for (i = phy_num + 1; i >= phy_num; i--) {
1729                                 if (d40_alloc_mask_set(&phys[i], is_src,
1730                                                        event_line, is_log,
1731                                                        first_phy_user))
1732                                         goto found_log;
1733                         }
1734                 }
1735         }
1736         return -EINVAL;
1737
1738 found_log:
1739         d40c->phy_chan = &phys[i];
1740         d40c->log_num = log_num;
1741 out:
1742
1743         if (is_log)
1744                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1745         else
1746                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1747
1748         return 0;
1749
1750 }
1751
1752 static int d40_config_memcpy(struct d40_chan *d40c)
1753 {
1754         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1755
1756         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1757                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1758                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1759                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1760                         memcpy[d40c->chan.chan_id];
1761
1762         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1763                    dma_has_cap(DMA_SLAVE, cap)) {
1764                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1765         } else {
1766                 chan_err(d40c, "No memcpy\n");
1767                 return -EINVAL;
1768         }
1769
1770         return 0;
1771 }
1772
1773
1774 static int d40_free_dma(struct d40_chan *d40c)
1775 {
1776
1777         int res = 0;
1778         u32 event;
1779         struct d40_phy_res *phy = d40c->phy_chan;
1780         bool is_src;
1781
1782         /* Terminate all queued and active transfers */
1783         d40_term_all(d40c);
1784
1785         if (phy == NULL) {
1786                 chan_err(d40c, "phy == null\n");
1787                 return -EINVAL;
1788         }
1789
1790         if (phy->allocated_src == D40_ALLOC_FREE &&
1791             phy->allocated_dst == D40_ALLOC_FREE) {
1792                 chan_err(d40c, "channel already free\n");
1793                 return -EINVAL;
1794         }
1795
1796         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1797             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1798                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1799                 is_src = false;
1800         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1801                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1802                 is_src = true;
1803         } else {
1804                 chan_err(d40c, "Unknown direction\n");
1805                 return -EINVAL;
1806         }
1807
1808         pm_runtime_get_sync(d40c->base->dev);
1809         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1810         if (res) {
1811                 chan_err(d40c, "suspend failed\n");
1812                 goto out;
1813         }
1814
1815         if (chan_is_logical(d40c)) {
1816                 /* Release logical channel, deactivate the event line */
1817
1818                 d40_config_set_event(d40c, false);
1819                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1820
1821                 /*
1822                  * Check if there are more logical allocation
1823                  * on this phy channel.
1824                  */
1825                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1826                         /* Resume the other logical channels if any */
1827                         if (d40_chan_has_events(d40c)) {
1828                                 res = d40_channel_execute_command(d40c,
1829                                                                   D40_DMA_RUN);
1830                                 if (res)
1831                                         chan_err(d40c,
1832                                                 "Executing RUN command\n");
1833                         }
1834                         goto out;
1835                 }
1836         } else {
1837                 (void) d40_alloc_mask_free(phy, is_src, 0);
1838         }
1839
1840         /* Release physical channel */
1841         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1842         if (res) {
1843                 chan_err(d40c, "Failed to stop channel\n");
1844                 goto out;
1845         }
1846
1847         if (d40c->busy) {
1848                 pm_runtime_mark_last_busy(d40c->base->dev);
1849                 pm_runtime_put_autosuspend(d40c->base->dev);
1850         }
1851
1852         d40c->busy = false;
1853         d40c->phy_chan = NULL;
1854         d40c->configured = false;
1855         d40c->base->lookup_phy_chans[phy->num] = NULL;
1856 out:
1857
1858         pm_runtime_mark_last_busy(d40c->base->dev);
1859         pm_runtime_put_autosuspend(d40c->base->dev);
1860         return res;
1861 }
1862
1863 static bool d40_is_paused(struct d40_chan *d40c)
1864 {
1865         void __iomem *chanbase = chan_base(d40c);
1866         bool is_paused = false;
1867         unsigned long flags;
1868         void __iomem *active_reg;
1869         u32 status;
1870         u32 event;
1871
1872         spin_lock_irqsave(&d40c->lock, flags);
1873
1874         if (chan_is_physical(d40c)) {
1875                 if (d40c->phy_chan->num % 2 == 0)
1876                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1877                 else
1878                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1879
1880                 status = (readl(active_reg) &
1881                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1882                         D40_CHAN_POS(d40c->phy_chan->num);
1883                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1884                         is_paused = true;
1885
1886                 goto _exit;
1887         }
1888
1889         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1890             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1891                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1892                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1893         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1894                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1895                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1896         } else {
1897                 chan_err(d40c, "Unknown direction\n");
1898                 goto _exit;
1899         }
1900
1901         status = (status & D40_EVENTLINE_MASK(event)) >>
1902                 D40_EVENTLINE_POS(event);
1903
1904         if (status != D40_DMA_RUN)
1905                 is_paused = true;
1906 _exit:
1907         spin_unlock_irqrestore(&d40c->lock, flags);
1908         return is_paused;
1909
1910 }
1911
1912
1913 static u32 stedma40_residue(struct dma_chan *chan)
1914 {
1915         struct d40_chan *d40c =
1916                 container_of(chan, struct d40_chan, chan);
1917         u32 bytes_left;
1918         unsigned long flags;
1919
1920         spin_lock_irqsave(&d40c->lock, flags);
1921         bytes_left = d40_residue(d40c);
1922         spin_unlock_irqrestore(&d40c->lock, flags);
1923
1924         return bytes_left;
1925 }
1926
1927 static int
1928 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1929                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1930                 unsigned int sg_len, dma_addr_t src_dev_addr,
1931                 dma_addr_t dst_dev_addr)
1932 {
1933         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1934         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1935         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1936         int ret;
1937
1938         ret = d40_log_sg_to_lli(sg_src, sg_len,
1939                                 src_dev_addr,
1940                                 desc->lli_log.src,
1941                                 chan->log_def.lcsp1,
1942                                 src_info->data_width,
1943                                 dst_info->data_width);
1944
1945         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1946                                 dst_dev_addr,
1947                                 desc->lli_log.dst,
1948                                 chan->log_def.lcsp3,
1949                                 dst_info->data_width,
1950                                 src_info->data_width);
1951
1952         return ret < 0 ? ret : 0;
1953 }
1954
1955 static int
1956 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1957                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1958                 unsigned int sg_len, dma_addr_t src_dev_addr,
1959                 dma_addr_t dst_dev_addr)
1960 {
1961         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1962         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1963         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1964         unsigned long flags = 0;
1965         int ret;
1966
1967         if (desc->cyclic)
1968                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1969
1970         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1971                                 desc->lli_phy.src,
1972                                 virt_to_phys(desc->lli_phy.src),
1973                                 chan->src_def_cfg,
1974                                 src_info, dst_info, flags);
1975
1976         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1977                                 desc->lli_phy.dst,
1978                                 virt_to_phys(desc->lli_phy.dst),
1979                                 chan->dst_def_cfg,
1980                                 dst_info, src_info, flags);
1981
1982         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1983                                    desc->lli_pool.size, DMA_TO_DEVICE);
1984
1985         return ret < 0 ? ret : 0;
1986 }
1987
1988
1989 static struct d40_desc *
1990 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1991               unsigned int sg_len, unsigned long dma_flags)
1992 {
1993         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1994         struct d40_desc *desc;
1995         int ret;
1996
1997         desc = d40_desc_get(chan);
1998         if (!desc)
1999                 return NULL;
2000
2001         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2002                                         cfg->dst_info.data_width);
2003         if (desc->lli_len < 0) {
2004                 chan_err(chan, "Unaligned size\n");
2005                 goto err;
2006         }
2007
2008         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2009         if (ret < 0) {
2010                 chan_err(chan, "Could not allocate lli\n");
2011                 goto err;
2012         }
2013
2014
2015         desc->lli_current = 0;
2016         desc->txd.flags = dma_flags;
2017         desc->txd.tx_submit = d40_tx_submit;
2018
2019         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2020
2021         return desc;
2022
2023 err:
2024         d40_desc_free(chan, desc);
2025         return NULL;
2026 }
2027
2028 static dma_addr_t
2029 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2030 {
2031         struct stedma40_platform_data *plat = chan->base->plat_data;
2032         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2033         dma_addr_t addr = 0;
2034
2035         if (chan->runtime_addr)
2036                 return chan->runtime_addr;
2037
2038         if (direction == DMA_DEV_TO_MEM)
2039                 addr = plat->dev_rx[cfg->src_dev_type];
2040         else if (direction == DMA_MEM_TO_DEV)
2041                 addr = plat->dev_tx[cfg->dst_dev_type];
2042
2043         return addr;
2044 }
2045
2046 static struct dma_async_tx_descriptor *
2047 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2048             struct scatterlist *sg_dst, unsigned int sg_len,
2049             enum dma_transfer_direction direction, unsigned long dma_flags)
2050 {
2051         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2052         dma_addr_t src_dev_addr = 0;
2053         dma_addr_t dst_dev_addr = 0;
2054         struct d40_desc *desc;
2055         unsigned long flags;
2056         int ret;
2057
2058         if (!chan->phy_chan) {
2059                 chan_err(chan, "Cannot prepare unallocated channel\n");
2060                 return NULL;
2061         }
2062
2063
2064         spin_lock_irqsave(&chan->lock, flags);
2065
2066         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2067         if (desc == NULL)
2068                 goto err;
2069
2070         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2071                 desc->cyclic = true;
2072
2073         if (direction != DMA_NONE) {
2074                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2075
2076                 if (direction == DMA_DEV_TO_MEM)
2077                         src_dev_addr = dev_addr;
2078                 else if (direction == DMA_MEM_TO_DEV)
2079                         dst_dev_addr = dev_addr;
2080         }
2081
2082         if (chan_is_logical(chan))
2083                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2084                                       sg_len, src_dev_addr, dst_dev_addr);
2085         else
2086                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2087                                       sg_len, src_dev_addr, dst_dev_addr);
2088
2089         if (ret) {
2090                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2091                          chan_is_logical(chan) ? "log" : "phy", ret);
2092                 goto err;
2093         }
2094
2095         /*
2096          * add descriptor to the prepare queue in order to be able
2097          * to free them later in terminate_all
2098          */
2099         list_add_tail(&desc->node, &chan->prepare_queue);
2100
2101         spin_unlock_irqrestore(&chan->lock, flags);
2102
2103         return &desc->txd;
2104
2105 err:
2106         if (desc)
2107                 d40_desc_free(chan, desc);
2108         spin_unlock_irqrestore(&chan->lock, flags);
2109         return NULL;
2110 }
2111
2112 bool stedma40_filter(struct dma_chan *chan, void *data)
2113 {
2114         struct stedma40_chan_cfg *info = data;
2115         struct d40_chan *d40c =
2116                 container_of(chan, struct d40_chan, chan);
2117         int err;
2118
2119         if (data) {
2120                 err = d40_validate_conf(d40c, info);
2121                 if (!err)
2122                         d40c->dma_cfg = *info;
2123         } else
2124                 err = d40_config_memcpy(d40c);
2125
2126         if (!err)
2127                 d40c->configured = true;
2128
2129         return err == 0;
2130 }
2131 EXPORT_SYMBOL(stedma40_filter);
2132
2133 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2134 {
2135         bool realtime = d40c->dma_cfg.realtime;
2136         bool highprio = d40c->dma_cfg.high_priority;
2137         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2138         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2139         u32 event = D40_TYPE_TO_EVENT(dev_type);
2140         u32 group = D40_TYPE_TO_GROUP(dev_type);
2141         u32 bit = 1 << event;
2142
2143         /* Destination event lines are stored in the upper halfword */
2144         if (!src)
2145                 bit <<= 16;
2146
2147         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2148         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2149 }
2150
2151 static void d40_set_prio_realtime(struct d40_chan *d40c)
2152 {
2153         if (d40c->base->rev < 3)
2154                 return;
2155
2156         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2157             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2158                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2159
2160         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2161             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2162                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2163 }
2164
2165 /* DMA ENGINE functions */
2166 static int d40_alloc_chan_resources(struct dma_chan *chan)
2167 {
2168         int err;
2169         unsigned long flags;
2170         struct d40_chan *d40c =
2171                 container_of(chan, struct d40_chan, chan);
2172         bool is_free_phy;
2173         spin_lock_irqsave(&d40c->lock, flags);
2174
2175         dma_cookie_init(chan);
2176
2177         /* If no dma configuration is set use default configuration (memcpy) */
2178         if (!d40c->configured) {
2179                 err = d40_config_memcpy(d40c);
2180                 if (err) {
2181                         chan_err(d40c, "Failed to configure memcpy channel\n");
2182                         goto fail;
2183                 }
2184         }
2185
2186         err = d40_allocate_channel(d40c, &is_free_phy);
2187         if (err) {
2188                 chan_err(d40c, "Failed to allocate channel\n");
2189                 d40c->configured = false;
2190                 goto fail;
2191         }
2192
2193         pm_runtime_get_sync(d40c->base->dev);
2194         /* Fill in basic CFG register values */
2195         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2196                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2197
2198         d40_set_prio_realtime(d40c);
2199
2200         if (chan_is_logical(d40c)) {
2201                 d40_log_cfg(&d40c->dma_cfg,
2202                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2203
2204                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2205                         d40c->lcpa = d40c->base->lcpa_base +
2206                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2207                 else
2208                         d40c->lcpa = d40c->base->lcpa_base +
2209                           d40c->dma_cfg.dst_dev_type *
2210                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2211         }
2212
2213         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2214                  chan_is_logical(d40c) ? "logical" : "physical",
2215                  d40c->phy_chan->num,
2216                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2217
2218
2219         /*
2220          * Only write channel configuration to the DMA if the physical
2221          * resource is free. In case of multiple logical channels
2222          * on the same physical resource, only the first write is necessary.
2223          */
2224         if (is_free_phy)
2225                 d40_config_write(d40c);
2226 fail:
2227         pm_runtime_mark_last_busy(d40c->base->dev);
2228         pm_runtime_put_autosuspend(d40c->base->dev);
2229         spin_unlock_irqrestore(&d40c->lock, flags);
2230         return err;
2231 }
2232
2233 static void d40_free_chan_resources(struct dma_chan *chan)
2234 {
2235         struct d40_chan *d40c =
2236                 container_of(chan, struct d40_chan, chan);
2237         int err;
2238         unsigned long flags;
2239
2240         if (d40c->phy_chan == NULL) {
2241                 chan_err(d40c, "Cannot free unallocated channel\n");
2242                 return;
2243         }
2244
2245
2246         spin_lock_irqsave(&d40c->lock, flags);
2247
2248         err = d40_free_dma(d40c);
2249
2250         if (err)
2251                 chan_err(d40c, "Failed to free channel\n");
2252         spin_unlock_irqrestore(&d40c->lock, flags);
2253 }
2254
2255 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2256                                                        dma_addr_t dst,
2257                                                        dma_addr_t src,
2258                                                        size_t size,
2259                                                        unsigned long dma_flags)
2260 {
2261         struct scatterlist dst_sg;
2262         struct scatterlist src_sg;
2263
2264         sg_init_table(&dst_sg, 1);
2265         sg_init_table(&src_sg, 1);
2266
2267         sg_dma_address(&dst_sg) = dst;
2268         sg_dma_address(&src_sg) = src;
2269
2270         sg_dma_len(&dst_sg) = size;
2271         sg_dma_len(&src_sg) = size;
2272
2273         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2274 }
2275
2276 static struct dma_async_tx_descriptor *
2277 d40_prep_memcpy_sg(struct dma_chan *chan,
2278                    struct scatterlist *dst_sg, unsigned int dst_nents,
2279                    struct scatterlist *src_sg, unsigned int src_nents,
2280                    unsigned long dma_flags)
2281 {
2282         if (dst_nents != src_nents)
2283                 return NULL;
2284
2285         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2286 }
2287
2288 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2289                                                          struct scatterlist *sgl,
2290                                                          unsigned int sg_len,
2291                                                          enum dma_transfer_direction direction,
2292                                                          unsigned long dma_flags,
2293                                                          void *context)
2294 {
2295         if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2296                 return NULL;
2297
2298         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2299 }
2300
2301 static struct dma_async_tx_descriptor *
2302 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2303                      size_t buf_len, size_t period_len,
2304                      enum dma_transfer_direction direction, void *context)
2305 {
2306         unsigned int periods = buf_len / period_len;
2307         struct dma_async_tx_descriptor *txd;
2308         struct scatterlist *sg;
2309         int i;
2310
2311         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2312         for (i = 0; i < periods; i++) {
2313                 sg_dma_address(&sg[i]) = dma_addr;
2314                 sg_dma_len(&sg[i]) = period_len;
2315                 dma_addr += period_len;
2316         }
2317
2318         sg[periods].offset = 0;
2319         sg[periods].length = 0;
2320         sg[periods].page_link =
2321                 ((unsigned long)sg | 0x01) & ~0x02;
2322
2323         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2324                           DMA_PREP_INTERRUPT);
2325
2326         kfree(sg);
2327
2328         return txd;
2329 }
2330
2331 static enum dma_status d40_tx_status(struct dma_chan *chan,
2332                                      dma_cookie_t cookie,
2333                                      struct dma_tx_state *txstate)
2334 {
2335         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2336         enum dma_status ret;
2337
2338         if (d40c->phy_chan == NULL) {
2339                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2340                 return -EINVAL;
2341         }
2342
2343         ret = dma_cookie_status(chan, cookie, txstate);
2344         if (ret != DMA_SUCCESS)
2345                 dma_set_residue(txstate, stedma40_residue(chan));
2346
2347         if (d40_is_paused(d40c))
2348                 ret = DMA_PAUSED;
2349
2350         return ret;
2351 }
2352
2353 static void d40_issue_pending(struct dma_chan *chan)
2354 {
2355         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2356         unsigned long flags;
2357
2358         if (d40c->phy_chan == NULL) {
2359                 chan_err(d40c, "Channel is not allocated!\n");
2360                 return;
2361         }
2362
2363         spin_lock_irqsave(&d40c->lock, flags);
2364
2365         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2366
2367         /* Busy means that queued jobs are already being processed */
2368         if (!d40c->busy)
2369                 (void) d40_queue_start(d40c);
2370
2371         spin_unlock_irqrestore(&d40c->lock, flags);
2372 }
2373
2374 static int
2375 dma40_config_to_halfchannel(struct d40_chan *d40c,
2376                             struct stedma40_half_channel_info *info,
2377                             enum dma_slave_buswidth width,
2378                             u32 maxburst)
2379 {
2380         enum stedma40_periph_data_width addr_width;
2381         int psize;
2382
2383         switch (width) {
2384         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2385                 addr_width = STEDMA40_BYTE_WIDTH;
2386                 break;
2387         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2388                 addr_width = STEDMA40_HALFWORD_WIDTH;
2389                 break;
2390         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2391                 addr_width = STEDMA40_WORD_WIDTH;
2392                 break;
2393         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2394                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2395                 break;
2396         default:
2397                 dev_err(d40c->base->dev,
2398                         "illegal peripheral address width "
2399                         "requested (%d)\n",
2400                         width);
2401                 return -EINVAL;
2402         }
2403
2404         if (chan_is_logical(d40c)) {
2405                 if (maxburst >= 16)
2406                         psize = STEDMA40_PSIZE_LOG_16;
2407                 else if (maxburst >= 8)
2408                         psize = STEDMA40_PSIZE_LOG_8;
2409                 else if (maxburst >= 4)
2410                         psize = STEDMA40_PSIZE_LOG_4;
2411                 else
2412                         psize = STEDMA40_PSIZE_LOG_1;
2413         } else {
2414                 if (maxburst >= 16)
2415                         psize = STEDMA40_PSIZE_PHY_16;
2416                 else if (maxburst >= 8)
2417                         psize = STEDMA40_PSIZE_PHY_8;
2418                 else if (maxburst >= 4)
2419                         psize = STEDMA40_PSIZE_PHY_4;
2420                 else
2421                         psize = STEDMA40_PSIZE_PHY_1;
2422         }
2423
2424         info->data_width = addr_width;
2425         info->psize = psize;
2426         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2427
2428         return 0;
2429 }
2430
2431 /* Runtime reconfiguration extension */
2432 static int d40_set_runtime_config(struct dma_chan *chan,
2433                                   struct dma_slave_config *config)
2434 {
2435         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2436         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2437         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2438         dma_addr_t config_addr;
2439         u32 src_maxburst, dst_maxburst;
2440         int ret;
2441
2442         src_addr_width = config->src_addr_width;
2443         src_maxburst = config->src_maxburst;
2444         dst_addr_width = config->dst_addr_width;
2445         dst_maxburst = config->dst_maxburst;
2446
2447         if (config->direction == DMA_DEV_TO_MEM) {
2448                 dma_addr_t dev_addr_rx =
2449                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2450
2451                 config_addr = config->src_addr;
2452                 if (dev_addr_rx)
2453                         dev_dbg(d40c->base->dev,
2454                                 "channel has a pre-wired RX address %08x "
2455                                 "overriding with %08x\n",
2456                                 dev_addr_rx, config_addr);
2457                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2458                         dev_dbg(d40c->base->dev,
2459                                 "channel was not configured for peripheral "
2460                                 "to memory transfer (%d) overriding\n",
2461                                 cfg->dir);
2462                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2463
2464                 /* Configure the memory side */
2465                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2466                         dst_addr_width = src_addr_width;
2467                 if (dst_maxburst == 0)
2468                         dst_maxburst = src_maxburst;
2469
2470         } else if (config->direction == DMA_MEM_TO_DEV) {
2471                 dma_addr_t dev_addr_tx =
2472                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2473
2474                 config_addr = config->dst_addr;
2475                 if (dev_addr_tx)
2476                         dev_dbg(d40c->base->dev,
2477                                 "channel has a pre-wired TX address %08x "
2478                                 "overriding with %08x\n",
2479                                 dev_addr_tx, config_addr);
2480                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2481                         dev_dbg(d40c->base->dev,
2482                                 "channel was not configured for memory "
2483                                 "to peripheral transfer (%d) overriding\n",
2484                                 cfg->dir);
2485                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2486
2487                 /* Configure the memory side */
2488                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2489                         src_addr_width = dst_addr_width;
2490                 if (src_maxburst == 0)
2491                         src_maxburst = dst_maxburst;
2492         } else {
2493                 dev_err(d40c->base->dev,
2494                         "unrecognized channel direction %d\n",
2495                         config->direction);
2496                 return -EINVAL;
2497         }
2498
2499         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2500                 dev_err(d40c->base->dev,
2501                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2502                         src_maxburst,
2503                         src_addr_width,
2504                         dst_maxburst,
2505                         dst_addr_width);
2506                 return -EINVAL;
2507         }
2508
2509         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2510                                           src_addr_width,
2511                                           src_maxburst);
2512         if (ret)
2513                 return ret;
2514
2515         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2516                                           dst_addr_width,
2517                                           dst_maxburst);
2518         if (ret)
2519                 return ret;
2520
2521         /* Fill in register values */
2522         if (chan_is_logical(d40c))
2523                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2524         else
2525                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2526                             &d40c->dst_def_cfg, false);
2527
2528         /* These settings will take precedence later */
2529         d40c->runtime_addr = config_addr;
2530         d40c->runtime_direction = config->direction;
2531         dev_dbg(d40c->base->dev,
2532                 "configured channel %s for %s, data width %d/%d, "
2533                 "maxburst %d/%d elements, LE, no flow control\n",
2534                 dma_chan_name(chan),
2535                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2536                 src_addr_width, dst_addr_width,
2537                 src_maxburst, dst_maxburst);
2538
2539         return 0;
2540 }
2541
2542 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2543                        unsigned long arg)
2544 {
2545         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2546
2547         if (d40c->phy_chan == NULL) {
2548                 chan_err(d40c, "Channel is not allocated!\n");
2549                 return -EINVAL;
2550         }
2551
2552         switch (cmd) {
2553         case DMA_TERMINATE_ALL:
2554                 return d40_terminate_all(d40c);
2555         case DMA_PAUSE:
2556                 return d40_pause(d40c);
2557         case DMA_RESUME:
2558                 return d40_resume(d40c);
2559         case DMA_SLAVE_CONFIG:
2560                 return d40_set_runtime_config(chan,
2561                         (struct dma_slave_config *) arg);
2562         default:
2563                 break;
2564         }
2565
2566         /* Other commands are unimplemented */
2567         return -ENXIO;
2568 }
2569
2570 /* Initialization functions */
2571
2572 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2573                                  struct d40_chan *chans, int offset,
2574                                  int num_chans)
2575 {
2576         int i = 0;
2577         struct d40_chan *d40c;
2578
2579         INIT_LIST_HEAD(&dma->channels);
2580
2581         for (i = offset; i < offset + num_chans; i++) {
2582                 d40c = &chans[i];
2583                 d40c->base = base;
2584                 d40c->chan.device = dma;
2585
2586                 spin_lock_init(&d40c->lock);
2587
2588                 d40c->log_num = D40_PHY_CHAN;
2589
2590                 INIT_LIST_HEAD(&d40c->active);
2591                 INIT_LIST_HEAD(&d40c->queue);
2592                 INIT_LIST_HEAD(&d40c->pending_queue);
2593                 INIT_LIST_HEAD(&d40c->client);
2594                 INIT_LIST_HEAD(&d40c->prepare_queue);
2595
2596                 tasklet_init(&d40c->tasklet, dma_tasklet,
2597                              (unsigned long) d40c);
2598
2599                 list_add_tail(&d40c->chan.device_node,
2600                               &dma->channels);
2601         }
2602 }
2603
2604 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2605 {
2606         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2607                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2608
2609         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2610                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2611
2612                 /*
2613                  * This controller can only access address at even
2614                  * 32bit boundaries, i.e. 2^2
2615                  */
2616                 dev->copy_align = 2;
2617         }
2618
2619         if (dma_has_cap(DMA_SG, dev->cap_mask))
2620                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2621
2622         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2623                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2624
2625         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2626         dev->device_free_chan_resources = d40_free_chan_resources;
2627         dev->device_issue_pending = d40_issue_pending;
2628         dev->device_tx_status = d40_tx_status;
2629         dev->device_control = d40_control;
2630         dev->dev = base->dev;
2631 }
2632
2633 static int __init d40_dmaengine_init(struct d40_base *base,
2634                                      int num_reserved_chans)
2635 {
2636         int err ;
2637
2638         d40_chan_init(base, &base->dma_slave, base->log_chans,
2639                       0, base->num_log_chans);
2640
2641         dma_cap_zero(base->dma_slave.cap_mask);
2642         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2643         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2644
2645         d40_ops_init(base, &base->dma_slave);
2646
2647         err = dma_async_device_register(&base->dma_slave);
2648
2649         if (err) {
2650                 d40_err(base->dev, "Failed to register slave channels\n");
2651                 goto failure1;
2652         }
2653
2654         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2655                       base->num_log_chans, base->plat_data->memcpy_len);
2656
2657         dma_cap_zero(base->dma_memcpy.cap_mask);
2658         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2659         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2660
2661         d40_ops_init(base, &base->dma_memcpy);
2662
2663         err = dma_async_device_register(&base->dma_memcpy);
2664
2665         if (err) {
2666                 d40_err(base->dev,
2667                         "Failed to regsiter memcpy only channels\n");
2668                 goto failure2;
2669         }
2670
2671         d40_chan_init(base, &base->dma_both, base->phy_chans,
2672                       0, num_reserved_chans);
2673
2674         dma_cap_zero(base->dma_both.cap_mask);
2675         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2676         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2677         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2678         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2679
2680         d40_ops_init(base, &base->dma_both);
2681         err = dma_async_device_register(&base->dma_both);
2682
2683         if (err) {
2684                 d40_err(base->dev,
2685                         "Failed to register logical and physical capable channels\n");
2686                 goto failure3;
2687         }
2688         return 0;
2689 failure3:
2690         dma_async_device_unregister(&base->dma_memcpy);
2691 failure2:
2692         dma_async_device_unregister(&base->dma_slave);
2693 failure1:
2694         return err;
2695 }
2696
2697 /* Suspend resume functionality */
2698 #ifdef CONFIG_PM
2699 static int dma40_pm_suspend(struct device *dev)
2700 {
2701         struct platform_device *pdev = to_platform_device(dev);
2702         struct d40_base *base = platform_get_drvdata(pdev);
2703         int ret = 0;
2704         if (!pm_runtime_suspended(dev))
2705                 return -EBUSY;
2706
2707         if (base->lcpa_regulator)
2708                 ret = regulator_disable(base->lcpa_regulator);
2709         return ret;
2710 }
2711
2712 static int dma40_runtime_suspend(struct device *dev)
2713 {
2714         struct platform_device *pdev = to_platform_device(dev);
2715         struct d40_base *base = platform_get_drvdata(pdev);
2716
2717         d40_save_restore_registers(base, true);
2718
2719         /* Don't disable/enable clocks for v1 due to HW bugs */
2720         if (base->rev != 1)
2721                 writel_relaxed(base->gcc_pwr_off_mask,
2722                                base->virtbase + D40_DREG_GCC);
2723
2724         return 0;
2725 }
2726
2727 static int dma40_runtime_resume(struct device *dev)
2728 {
2729         struct platform_device *pdev = to_platform_device(dev);
2730         struct d40_base *base = platform_get_drvdata(pdev);
2731
2732         if (base->initialized)
2733                 d40_save_restore_registers(base, false);
2734
2735         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2736                        base->virtbase + D40_DREG_GCC);
2737         return 0;
2738 }
2739
2740 static int dma40_resume(struct device *dev)
2741 {
2742         struct platform_device *pdev = to_platform_device(dev);
2743         struct d40_base *base = platform_get_drvdata(pdev);
2744         int ret = 0;
2745
2746         if (base->lcpa_regulator)
2747                 ret = regulator_enable(base->lcpa_regulator);
2748
2749         return ret;
2750 }
2751
2752 static const struct dev_pm_ops dma40_pm_ops = {
2753         .suspend                = dma40_pm_suspend,
2754         .runtime_suspend        = dma40_runtime_suspend,
2755         .runtime_resume         = dma40_runtime_resume,
2756         .resume                 = dma40_resume,
2757 };
2758 #define DMA40_PM_OPS    (&dma40_pm_ops)
2759 #else
2760 #define DMA40_PM_OPS    NULL
2761 #endif
2762
2763 /* Initialization functions. */
2764
2765 static int __init d40_phy_res_init(struct d40_base *base)
2766 {
2767         int i;
2768         int num_phy_chans_avail = 0;
2769         u32 val[2];
2770         int odd_even_bit = -2;
2771         int gcc = D40_DREG_GCC_ENA;
2772
2773         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2774         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2775
2776         for (i = 0; i < base->num_phy_chans; i++) {
2777                 base->phy_res[i].num = i;
2778                 odd_even_bit += 2 * ((i % 2) == 0);
2779                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2780                         /* Mark security only channels as occupied */
2781                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2782                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2783                         base->phy_res[i].reserved = true;
2784                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2785                                                        D40_DREG_GCC_SRC);
2786                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2787                                                        D40_DREG_GCC_DST);
2788
2789
2790                 } else {
2791                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2792                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2793                         base->phy_res[i].reserved = false;
2794                         num_phy_chans_avail++;
2795                 }
2796                 spin_lock_init(&base->phy_res[i].lock);
2797         }
2798
2799         /* Mark disabled channels as occupied */
2800         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2801                 int chan = base->plat_data->disabled_channels[i];
2802
2803                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2804                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2805                 base->phy_res[chan].reserved = true;
2806                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2807                                                D40_DREG_GCC_SRC);
2808                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2809                                                D40_DREG_GCC_DST);
2810                 num_phy_chans_avail--;
2811         }
2812
2813         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2814                  num_phy_chans_avail, base->num_phy_chans);
2815
2816         /* Verify settings extended vs standard */
2817         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2818
2819         for (i = 0; i < base->num_phy_chans; i++) {
2820
2821                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2822                     (val[0] & 0x3) != 1)
2823                         dev_info(base->dev,
2824                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2825                                  __func__, i, val[0] & 0x3);
2826
2827                 val[0] = val[0] >> 2;
2828         }
2829
2830         /*
2831          * To keep things simple, Enable all clocks initially.
2832          * The clocks will get managed later post channel allocation.
2833          * The clocks for the event lines on which reserved channels exists
2834          * are not managed here.
2835          */
2836         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2837         base->gcc_pwr_off_mask = gcc;
2838
2839         return num_phy_chans_avail;
2840 }
2841
2842 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2843 {
2844         struct stedma40_platform_data *plat_data;
2845         struct clk *clk = NULL;
2846         void __iomem *virtbase = NULL;
2847         struct resource *res = NULL;
2848         struct d40_base *base = NULL;
2849         int num_log_chans = 0;
2850         int num_phy_chans;
2851         int i;
2852         u32 pid;
2853         u32 cid;
2854         u8 rev;
2855
2856         clk = clk_get(&pdev->dev, NULL);
2857
2858         if (IS_ERR(clk)) {
2859                 d40_err(&pdev->dev, "No matching clock found\n");
2860                 goto failure;
2861         }
2862
2863         clk_enable(clk);
2864
2865         /* Get IO for DMAC base address */
2866         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2867         if (!res)
2868                 goto failure;
2869
2870         if (request_mem_region(res->start, resource_size(res),
2871                                D40_NAME " I/O base") == NULL)
2872                 goto failure;
2873
2874         virtbase = ioremap(res->start, resource_size(res));
2875         if (!virtbase)
2876                 goto failure;
2877
2878         /* This is just a regular AMBA PrimeCell ID actually */
2879         for (pid = 0, i = 0; i < 4; i++)
2880                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2881                         & 255) << (i * 8);
2882         for (cid = 0, i = 0; i < 4; i++)
2883                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2884                         & 255) << (i * 8);
2885
2886         if (cid != AMBA_CID) {
2887                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2888                 goto failure;
2889         }
2890         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2891                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2892                         AMBA_MANF_BITS(pid),
2893                         AMBA_VENDOR_ST);
2894                 goto failure;
2895         }
2896         /*
2897          * HW revision:
2898          * DB8500ed has revision 0
2899          * ? has revision 1
2900          * DB8500v1 has revision 2
2901          * DB8500v2 has revision 3
2902          */
2903         rev = AMBA_REV_BITS(pid);
2904
2905         /* The number of physical channels on this HW */
2906         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2907
2908         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2909                  rev, res->start);
2910
2911         plat_data = pdev->dev.platform_data;
2912
2913         /* Count the number of logical channels in use */
2914         for (i = 0; i < plat_data->dev_len; i++)
2915                 if (plat_data->dev_rx[i] != 0)
2916                         num_log_chans++;
2917
2918         for (i = 0; i < plat_data->dev_len; i++)
2919                 if (plat_data->dev_tx[i] != 0)
2920                         num_log_chans++;
2921
2922         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2923                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2924                        sizeof(struct d40_chan), GFP_KERNEL);
2925
2926         if (base == NULL) {
2927                 d40_err(&pdev->dev, "Out of memory\n");
2928                 goto failure;
2929         }
2930
2931         base->rev = rev;
2932         base->clk = clk;
2933         base->num_phy_chans = num_phy_chans;
2934         base->num_log_chans = num_log_chans;
2935         base->phy_start = res->start;
2936         base->phy_size = resource_size(res);
2937         base->virtbase = virtbase;
2938         base->plat_data = plat_data;
2939         base->dev = &pdev->dev;
2940         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2941         base->log_chans = &base->phy_chans[num_phy_chans];
2942
2943         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2944                                 GFP_KERNEL);
2945         if (!base->phy_res)
2946                 goto failure;
2947
2948         base->lookup_phy_chans = kzalloc(num_phy_chans *
2949                                          sizeof(struct d40_chan *),
2950                                          GFP_KERNEL);
2951         if (!base->lookup_phy_chans)
2952                 goto failure;
2953
2954         if (num_log_chans + plat_data->memcpy_len) {
2955                 /*
2956                  * The max number of logical channels are event lines for all
2957                  * src devices and dst devices
2958                  */
2959                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2960                                                  sizeof(struct d40_chan *),
2961                                                  GFP_KERNEL);
2962                 if (!base->lookup_log_chans)
2963                         goto failure;
2964         }
2965
2966         base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
2967                                             sizeof(d40_backup_regs_chan),
2968                                             GFP_KERNEL);
2969         if (!base->reg_val_backup_chan)
2970                 goto failure;
2971
2972         base->lcla_pool.alloc_map =
2973                 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
2974                         * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
2975         if (!base->lcla_pool.alloc_map)
2976                 goto failure;
2977
2978         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2979                                             0, SLAB_HWCACHE_ALIGN,
2980                                             NULL);
2981         if (base->desc_slab == NULL)
2982                 goto failure;
2983
2984         return base;
2985
2986 failure:
2987         if (!IS_ERR(clk)) {
2988                 clk_disable(clk);
2989                 clk_put(clk);
2990         }
2991         if (virtbase)
2992                 iounmap(virtbase);
2993         if (res)
2994                 release_mem_region(res->start,
2995                                    resource_size(res));
2996         if (virtbase)
2997                 iounmap(virtbase);
2998
2999         if (base) {
3000                 kfree(base->lcla_pool.alloc_map);
3001                 kfree(base->lookup_log_chans);
3002                 kfree(base->lookup_phy_chans);
3003                 kfree(base->phy_res);
3004                 kfree(base);
3005         }
3006
3007         return NULL;
3008 }
3009
3010 static void __init d40_hw_init(struct d40_base *base)
3011 {
3012
3013         static struct d40_reg_val dma_init_reg[] = {
3014                 /* Clock every part of the DMA block from start */
3015                 { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3016
3017                 /* Interrupts on all logical channels */
3018                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3019                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3020                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3021                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3022                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3023                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3024                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3025                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3026                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3027                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3028                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3029                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3030         };
3031         int i;
3032         u32 prmseo[2] = {0, 0};
3033         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3034         u32 pcmis = 0;
3035         u32 pcicr = 0;
3036
3037         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3038                 writel(dma_init_reg[i].val,
3039                        base->virtbase + dma_init_reg[i].reg);
3040
3041         /* Configure all our dma channels to default settings */
3042         for (i = 0; i < base->num_phy_chans; i++) {
3043
3044                 activeo[i % 2] = activeo[i % 2] << 2;
3045
3046                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3047                     == D40_ALLOC_PHY) {
3048                         activeo[i % 2] |= 3;
3049                         continue;
3050                 }
3051
3052                 /* Enable interrupt # */
3053                 pcmis = (pcmis << 1) | 1;
3054
3055                 /* Clear interrupt # */
3056                 pcicr = (pcicr << 1) | 1;
3057
3058                 /* Set channel to physical mode */
3059                 prmseo[i % 2] = prmseo[i % 2] << 2;
3060                 prmseo[i % 2] |= 1;
3061
3062         }
3063
3064         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3065         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3066         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3067         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3068
3069         /* Write which interrupt to enable */
3070         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3071
3072         /* Write which interrupt to clear */
3073         writel(pcicr, base->virtbase + D40_DREG_PCICR);
3074
3075 }
3076
3077 static int __init d40_lcla_allocate(struct d40_base *base)
3078 {
3079         struct d40_lcla_pool *pool = &base->lcla_pool;
3080         unsigned long *page_list;
3081         int i, j;
3082         int ret = 0;
3083
3084         /*
3085          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3086          * To full fill this hardware requirement without wasting 256 kb
3087          * we allocate pages until we get an aligned one.
3088          */
3089         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3090                             GFP_KERNEL);
3091
3092         if (!page_list) {
3093                 ret = -ENOMEM;
3094                 goto failure;
3095         }
3096
3097         /* Calculating how many pages that are required */
3098         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3099
3100         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3101                 page_list[i] = __get_free_pages(GFP_KERNEL,
3102                                                 base->lcla_pool.pages);
3103                 if (!page_list[i]) {
3104
3105                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3106                                 base->lcla_pool.pages);
3107
3108                         for (j = 0; j < i; j++)
3109                                 free_pages(page_list[j], base->lcla_pool.pages);
3110                         goto failure;
3111                 }
3112
3113                 if ((virt_to_phys((void *)page_list[i]) &
3114                      (LCLA_ALIGNMENT - 1)) == 0)
3115                         break;
3116         }
3117
3118         for (j = 0; j < i; j++)
3119                 free_pages(page_list[j], base->lcla_pool.pages);
3120
3121         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3122                 base->lcla_pool.base = (void *)page_list[i];
3123         } else {
3124                 /*
3125                  * After many attempts and no succees with finding the correct
3126                  * alignment, try with allocating a big buffer.
3127                  */
3128                 dev_warn(base->dev,
3129                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3130                          __func__, base->lcla_pool.pages);
3131                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3132                                                          base->num_phy_chans +
3133                                                          LCLA_ALIGNMENT,
3134                                                          GFP_KERNEL);
3135                 if (!base->lcla_pool.base_unaligned) {
3136                         ret = -ENOMEM;
3137                         goto failure;
3138                 }
3139
3140                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3141                                                  LCLA_ALIGNMENT);
3142         }
3143
3144         pool->dma_addr = dma_map_single(base->dev, pool->base,
3145                                         SZ_1K * base->num_phy_chans,
3146                                         DMA_TO_DEVICE);
3147         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3148                 pool->dma_addr = 0;
3149                 ret = -ENOMEM;
3150                 goto failure;
3151         }
3152
3153         writel(virt_to_phys(base->lcla_pool.base),
3154                base->virtbase + D40_DREG_LCLA);
3155 failure:
3156         kfree(page_list);
3157         return ret;
3158 }
3159
3160 static int __init d40_probe(struct platform_device *pdev)
3161 {
3162         int err;
3163         int ret = -ENOENT;
3164         struct d40_base *base;
3165         struct resource *res = NULL;
3166         int num_reserved_chans;
3167         u32 val;
3168
3169         base = d40_hw_detect_init(pdev);
3170
3171         if (!base)
3172                 goto failure;
3173
3174         num_reserved_chans = d40_phy_res_init(base);
3175
3176         platform_set_drvdata(pdev, base);
3177
3178         spin_lock_init(&base->interrupt_lock);
3179         spin_lock_init(&base->execmd_lock);
3180
3181         /* Get IO for logical channel parameter address */
3182         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3183         if (!res) {
3184                 ret = -ENOENT;
3185                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3186                 goto failure;
3187         }
3188         base->lcpa_size = resource_size(res);
3189         base->phy_lcpa = res->start;
3190
3191         if (request_mem_region(res->start, resource_size(res),
3192                                D40_NAME " I/O lcpa") == NULL) {
3193                 ret = -EBUSY;
3194                 d40_err(&pdev->dev,
3195                         "Failed to request LCPA region 0x%x-0x%x\n",
3196                         res->start, res->end);
3197                 goto failure;
3198         }
3199
3200         /* We make use of ESRAM memory for this. */
3201         val = readl(base->virtbase + D40_DREG_LCPA);
3202         if (res->start != val && val != 0) {
3203                 dev_warn(&pdev->dev,
3204                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3205                          __func__, val, res->start);
3206         } else
3207                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3208
3209         base->lcpa_base = ioremap(res->start, resource_size(res));
3210         if (!base->lcpa_base) {
3211                 ret = -ENOMEM;
3212                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3213                 goto failure;
3214         }
3215         /* If lcla has to be located in ESRAM we don't need to allocate */
3216         if (base->plat_data->use_esram_lcla) {
3217                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3218                                                         "lcla_esram");
3219                 if (!res) {
3220                         ret = -ENOENT;
3221                         d40_err(&pdev->dev,
3222                                 "No \"lcla_esram\" memory resource\n");
3223                         goto failure;
3224                 }
3225                 base->lcla_pool.base = ioremap(res->start,
3226                                                 resource_size(res));
3227                 if (!base->lcla_pool.base) {
3228                         ret = -ENOMEM;
3229                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3230                         goto failure;
3231                 }
3232                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3233
3234         } else {
3235                 ret = d40_lcla_allocate(base);
3236                 if (ret) {
3237                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3238                         goto failure;
3239                 }
3240         }
3241
3242         spin_lock_init(&base->lcla_pool.lock);
3243
3244         base->irq = platform_get_irq(pdev, 0);
3245
3246         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3247         if (ret) {
3248                 d40_err(&pdev->dev, "No IRQ defined\n");
3249                 goto failure;
3250         }
3251
3252         pm_runtime_irq_safe(base->dev);
3253         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3254         pm_runtime_use_autosuspend(base->dev);
3255         pm_runtime_enable(base->dev);
3256         pm_runtime_resume(base->dev);
3257
3258         if (base->plat_data->use_esram_lcla) {
3259
3260                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3261                 if (IS_ERR(base->lcpa_regulator)) {
3262                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3263                         base->lcpa_regulator = NULL;
3264                         goto failure;
3265                 }
3266
3267                 ret = regulator_enable(base->lcpa_regulator);
3268                 if (ret) {
3269                         d40_err(&pdev->dev,
3270                                 "Failed to enable lcpa_regulator\n");
3271                         regulator_put(base->lcpa_regulator);
3272                         base->lcpa_regulator = NULL;
3273                         goto failure;
3274                 }
3275         }
3276
3277         base->initialized = true;
3278         err = d40_dmaengine_init(base, num_reserved_chans);
3279         if (err)
3280                 goto failure;
3281
3282         d40_hw_init(base);
3283
3284         dev_info(base->dev, "initialized\n");
3285         return 0;
3286
3287 failure:
3288         if (base) {
3289                 if (base->desc_slab)
3290                         kmem_cache_destroy(base->desc_slab);
3291                 if (base->virtbase)
3292                         iounmap(base->virtbase);
3293
3294                 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3295                         iounmap(base->lcla_pool.base);
3296                         base->lcla_pool.base = NULL;
3297                 }
3298
3299                 if (base->lcla_pool.dma_addr)
3300                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3301                                          SZ_1K * base->num_phy_chans,
3302                                          DMA_TO_DEVICE);
3303
3304                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3305                         free_pages((unsigned long)base->lcla_pool.base,
3306                                    base->lcla_pool.pages);
3307
3308                 kfree(base->lcla_pool.base_unaligned);
3309
3310                 if (base->phy_lcpa)
3311                         release_mem_region(base->phy_lcpa,
3312                                            base->lcpa_size);
3313                 if (base->phy_start)
3314                         release_mem_region(base->phy_start,
3315                                            base->phy_size);
3316                 if (base->clk) {
3317                         clk_disable(base->clk);
3318                         clk_put(base->clk);
3319                 }
3320
3321                 if (base->lcpa_regulator) {
3322                         regulator_disable(base->lcpa_regulator);
3323                         regulator_put(base->lcpa_regulator);
3324                 }
3325
3326                 kfree(base->lcla_pool.alloc_map);
3327                 kfree(base->lookup_log_chans);
3328                 kfree(base->lookup_phy_chans);
3329                 kfree(base->phy_res);
3330                 kfree(base);
3331         }
3332
3333         d40_err(&pdev->dev, "probe failed\n");
3334         return ret;
3335 }
3336
3337 static struct platform_driver d40_driver = {
3338         .driver = {
3339                 .owner = THIS_MODULE,
3340                 .name  = D40_NAME,
3341                 .pm = DMA40_PM_OPS,
3342         },
3343 };
3344
3345 static int __init stedma40_init(void)
3346 {
3347         return platform_driver_probe(&d40_driver, d40_probe);
3348 }
3349 subsys_initcall(stedma40_init);