]> Pileus Git - ~andy/linux/blob - drivers/dma/ppc4xx/adma.c
Merge commit 'dmaengine-3.13-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[~andy/linux] / drivers / dma / ppc4xx / adma.c
1 /*
2  * Copyright (C) 2006-2009 DENX Software Engineering.
3  *
4  * Author: Yuri Tikhonov <yur@emcraft.com>
5  *
6  * Further porting to arch/powerpc by
7  *      Anatolij Gustschin <agust@denx.de>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  */
26
27 /*
28  * This driver supports the asynchrounous DMA copy and RAID engines available
29  * on the AMCC PPC440SPe Processors.
30  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31  * ADMA driver written by D.Williams.
32  */
33
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49 #include "../dmaengine.h"
50
51 enum ppc_adma_init_code {
52         PPC_ADMA_INIT_OK = 0,
53         PPC_ADMA_INIT_MEMRES,
54         PPC_ADMA_INIT_MEMREG,
55         PPC_ADMA_INIT_ALLOC,
56         PPC_ADMA_INIT_COHERENT,
57         PPC_ADMA_INIT_CHANNEL,
58         PPC_ADMA_INIT_IRQ1,
59         PPC_ADMA_INIT_IRQ2,
60         PPC_ADMA_INIT_REGISTER
61 };
62
63 static char *ppc_adma_errors[] = {
64         [PPC_ADMA_INIT_OK] = "ok",
65         [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
66         [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
67         [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
68                                 "structure",
69         [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
70                                    "hardware descriptors",
71         [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
72         [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
73         [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
74         [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
75 };
76
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
79
80 struct ppc_dma_chan_ref {
81         struct dma_chan *chan;
82         struct list_head node;
83 };
84
85 /* The list of channels exported by ppc440spe ADMA */
86 struct list_head
87 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
88
89 /* This flag is set when want to refetch the xor chain in the interrupt
90  * handler
91  */
92 static u32 do_xor_refetch;
93
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf;
96
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
99 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
100
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot *xor_last_linked;
103 static struct ppc440spe_adma_desc_slot *xor_last_submit;
104
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword[16];
107
108 static atomic_t ppc440spe_adma_err_irq_ref;
109 static dcr_host_t ppc440spe_mq_dcr_host;
110 static unsigned int ppc440spe_mq_dcr_len;
111
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113  * the block size in transactions, then we do not allow to activate more than
114  * only one RXOR transactions simultaneously. So use this var to store
115  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116  * set) or not (PPC440SPE_RXOR_RUN is clear).
117  */
118 static unsigned long ppc440spe_rxor_state;
119
120 /* These are used in enable & check routines
121  */
122 static u32 ppc440spe_r6_enabled;
123 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
124 static struct completion ppc440spe_r6_test_comp;
125
126 static int ppc440spe_adma_dma2rxor_prep_src(
127                 struct ppc440spe_adma_desc_slot *desc,
128                 struct ppc440spe_rxor *cursor, int index,
129                 int src_cnt, u32 addr);
130 static void ppc440spe_adma_dma2rxor_set_src(
131                 struct ppc440spe_adma_desc_slot *desc,
132                 int index, dma_addr_t addr);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134                 struct ppc440spe_adma_desc_slot *desc,
135                 int index, u8 mult);
136
137 #ifdef ADMA_LL_DEBUG
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
139 #else
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 #endif
142
143 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
144 {
145         struct dma_cdb *cdb;
146         struct xor_cb *cb;
147         int i;
148
149         switch (chan->device->id) {
150         case 0:
151         case 1:
152                 cdb = block;
153
154                 pr_debug("CDB at %p [%d]:\n"
155                         "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156                         "\t sg1u 0x%08x sg1l 0x%08x\n"
157                         "\t sg2u 0x%08x sg2l 0x%08x\n"
158                         "\t sg3u 0x%08x sg3l 0x%08x\n",
159                         cdb, chan->device->id,
160                         cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
161                         le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
162                         le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
163                         le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
164                 );
165                 break;
166         case 2:
167                 cb = block;
168
169                 pr_debug("CB at %p [%d]:\n"
170                         "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171                         "\t cbtah 0x%08x cbtal 0x%08x\n"
172                         "\t cblah 0x%08x cblal 0x%08x\n",
173                         cb, chan->device->id,
174                         cb->cbc, cb->cbbc, cb->cbs,
175                         cb->cbtah, cb->cbtal,
176                         cb->cblah, cb->cblal);
177                 for (i = 0; i < 16; i++) {
178                         if (i && !cb->ops[i].h && !cb->ops[i].l)
179                                 continue;
180                         pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181                                 i, cb->ops[i].h, cb->ops[i].l);
182                 }
183                 break;
184         }
185 }
186
187 static void print_cb_list(struct ppc440spe_adma_chan *chan,
188                           struct ppc440spe_adma_desc_slot *iter)
189 {
190         for (; iter; iter = iter->hw_next)
191                 print_cb(chan, iter->hw_desc);
192 }
193
194 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
195                              unsigned int src_cnt)
196 {
197         int i;
198
199         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
200         for (i = 0; i < src_cnt; i++)
201                 pr_debug("\t0x%016llx ", src[i]);
202         pr_debug("dst:\n\t0x%016llx\n", dst);
203 }
204
205 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
206                             unsigned int src_cnt)
207 {
208         int i;
209
210         pr_debug("\n%s(%d):\nsrc: ", __func__, id);
211         for (i = 0; i < src_cnt; i++)
212                 pr_debug("\t0x%016llx ", src[i]);
213         pr_debug("dst: ");
214         for (i = 0; i < 2; i++)
215                 pr_debug("\t0x%016llx ", dst[i]);
216 }
217
218 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
219                                     unsigned int src_cnt,
220                                     const unsigned char *scf)
221 {
222         int i;
223
224         pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
225         if (scf) {
226                 for (i = 0; i < src_cnt; i++)
227                         pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
228         } else {
229                 for (i = 0; i < src_cnt; i++)
230                         pr_debug("\t0x%016llx(no) ", src[i]);
231         }
232
233         pr_debug("dst: ");
234         for (i = 0; i < 2; i++)
235                 pr_debug("\t0x%016llx ", src[src_cnt + i]);
236 }
237
238 /******************************************************************************
239  * Command (Descriptor) Blocks low-level routines
240  ******************************************************************************/
241 /**
242  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243  * pseudo operation
244  */
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
246                                           struct ppc440spe_adma_chan *chan)
247 {
248         struct xor_cb *p;
249
250         switch (chan->device->id) {
251         case PPC440SPE_XOR_ID:
252                 p = desc->hw_desc;
253                 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
254                 /* NOP with Command Block Complete Enable */
255                 p->cbc = XOR_CBCR_CBCE_BIT;
256                 break;
257         case PPC440SPE_DMA0_ID:
258         case PPC440SPE_DMA1_ID:
259                 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
260                 /* NOP with interrupt */
261                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
262                 break;
263         default:
264                 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
265                                 __func__);
266                 break;
267         }
268 }
269
270 /**
271  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272  * pseudo operation
273  */
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
275 {
276         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277         desc->hw_next = NULL;
278         desc->src_cnt = 0;
279         desc->dst_cnt = 1;
280 }
281
282 /**
283  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
284  */
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
286                                          int src_cnt, unsigned long flags)
287 {
288         struct xor_cb *hw_desc = desc->hw_desc;
289
290         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
291         desc->hw_next = NULL;
292         desc->src_cnt = src_cnt;
293         desc->dst_cnt = 1;
294
295         hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
296         if (flags & DMA_PREP_INTERRUPT)
297                 /* Enable interrupt on completion */
298                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
299 }
300
301 /**
302  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303  * operation in DMA2 controller
304  */
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
306                 int dst_cnt, int src_cnt, unsigned long flags)
307 {
308         struct xor_cb *hw_desc = desc->hw_desc;
309
310         memset(desc->hw_desc, 0, sizeof(struct xor_cb));
311         desc->hw_next = NULL;
312         desc->src_cnt = src_cnt;
313         desc->dst_cnt = dst_cnt;
314         memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
315         desc->descs_per_op = 0;
316
317         hw_desc->cbc = XOR_CBCR_TGT_BIT;
318         if (flags & DMA_PREP_INTERRUPT)
319                 /* Enable interrupt on completion */
320                 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
321 }
322
323 #define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
326
327 /**
328  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329  * with DMA0/1
330  */
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
332                                 int dst_cnt, int src_cnt, unsigned long flags,
333                                 unsigned long op)
334 {
335         struct dma_cdb *hw_desc;
336         struct ppc440spe_adma_desc_slot *iter;
337         u8 dopc;
338
339         /* Common initialization of a PQ descriptors chain */
340         set_bits(op, &desc->flags);
341         desc->src_cnt = src_cnt;
342         desc->dst_cnt = dst_cnt;
343
344         /* WXOR MULTICAST if both P and Q are being computed
345          * MV_SG1_SG2 if Q only
346          */
347         dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
348                 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
349
350         list_for_each_entry(iter, &desc->group_list, chain_node) {
351                 hw_desc = iter->hw_desc;
352                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
353
354                 if (likely(!list_is_last(&iter->chain_node,
355                                 &desc->group_list))) {
356                         /* set 'next' pointer */
357                         iter->hw_next = list_entry(iter->chain_node.next,
358                                 struct ppc440spe_adma_desc_slot, chain_node);
359                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
360                 } else {
361                         /* this is the last descriptor.
362                          * this slot will be pasted from ADMA level
363                          * each time it wants to configure parameters
364                          * of the transaction (src, dst, ...)
365                          */
366                         iter->hw_next = NULL;
367                         if (flags & DMA_PREP_INTERRUPT)
368                                 set_bit(PPC440SPE_DESC_INT, &iter->flags);
369                         else
370                                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
371                 }
372         }
373
374         /* Set OPS depending on WXOR/RXOR type of operation */
375         if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
376                 /* This is a WXOR only chain:
377                  * - first descriptors are for zeroing destinations
378                  *   if PPC440SPE_ZERO_P/Q set;
379                  * - descriptors remained are for GF-XOR operations.
380                  */
381                 iter = list_first_entry(&desc->group_list,
382                                         struct ppc440spe_adma_desc_slot,
383                                         chain_node);
384
385                 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
386                         hw_desc = iter->hw_desc;
387                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
388                         iter = list_first_entry(&iter->chain_node,
389                                         struct ppc440spe_adma_desc_slot,
390                                         chain_node);
391                 }
392
393                 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
394                         hw_desc = iter->hw_desc;
395                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
396                         iter = list_first_entry(&iter->chain_node,
397                                         struct ppc440spe_adma_desc_slot,
398                                         chain_node);
399                 }
400
401                 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
402                         hw_desc = iter->hw_desc;
403                         hw_desc->opc = dopc;
404                 }
405         } else {
406                 /* This is either RXOR-only or mixed RXOR/WXOR */
407
408                 /* The first 1 or 2 slots in chain are always RXOR,
409                  * if need to calculate P & Q, then there are two
410                  * RXOR slots; if only P or only Q, then there is one
411                  */
412                 iter = list_first_entry(&desc->group_list,
413                                         struct ppc440spe_adma_desc_slot,
414                                         chain_node);
415                 hw_desc = iter->hw_desc;
416                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
417
418                 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
419                         iter = list_first_entry(&iter->chain_node,
420                                                 struct ppc440spe_adma_desc_slot,
421                                                 chain_node);
422                         hw_desc = iter->hw_desc;
423                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
424                 }
425
426                 /* The remaining descs (if any) are WXORs */
427                 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
428                         iter = list_first_entry(&iter->chain_node,
429                                                 struct ppc440spe_adma_desc_slot,
430                                                 chain_node);
431                         list_for_each_entry_from(iter, &desc->group_list,
432                                                 chain_node) {
433                                 hw_desc = iter->hw_desc;
434                                 hw_desc->opc = dopc;
435                         }
436                 }
437         }
438 }
439
440 /**
441  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442  * for PQ_ZERO_SUM operation
443  */
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445                                 struct ppc440spe_adma_desc_slot *desc,
446                                 int dst_cnt, int src_cnt)
447 {
448         struct dma_cdb *hw_desc;
449         struct ppc440spe_adma_desc_slot *iter;
450         int i = 0;
451         u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
452                                    DMA_CDB_OPC_MV_SG1_SG2;
453         /*
454          * Initialize starting from 2nd or 3rd descriptor dependent
455          * on dst_cnt. First one or two slots are for cloning P
456          * and/or Q to chan->pdest and/or chan->qdest as we have
457          * to preserve original P/Q.
458          */
459         iter = list_first_entry(&desc->group_list,
460                                 struct ppc440spe_adma_desc_slot, chain_node);
461         iter = list_entry(iter->chain_node.next,
462                           struct ppc440spe_adma_desc_slot, chain_node);
463
464         if (dst_cnt > 1) {
465                 iter = list_entry(iter->chain_node.next,
466                                   struct ppc440spe_adma_desc_slot, chain_node);
467         }
468         /* initialize each source descriptor in chain */
469         list_for_each_entry_from(iter, &desc->group_list, chain_node) {
470                 hw_desc = iter->hw_desc;
471                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
472                 iter->src_cnt = 0;
473                 iter->dst_cnt = 0;
474
475                 /* This is a ZERO_SUM operation:
476                  * - <src_cnt> descriptors starting from 2nd or 3rd
477                  *   descriptor are for GF-XOR operations;
478                  * - remaining <dst_cnt> descriptors are for checking the result
479                  */
480                 if (i++ < src_cnt)
481                         /* MV_SG1_SG2 if only Q is being verified
482                          * MULTICAST if both P and Q are being verified
483                          */
484                         hw_desc->opc = dopc;
485                 else
486                         /* DMA_CDB_OPC_DCHECK128 operation */
487                         hw_desc->opc = DMA_CDB_OPC_DCHECK128;
488
489                 if (likely(!list_is_last(&iter->chain_node,
490                                          &desc->group_list))) {
491                         /* set 'next' pointer */
492                         iter->hw_next = list_entry(iter->chain_node.next,
493                                                 struct ppc440spe_adma_desc_slot,
494                                                 chain_node);
495                 } else {
496                         /* this is the last descriptor.
497                          * this slot will be pasted from ADMA level
498                          * each time it wants to configure parameters
499                          * of the transaction (src, dst, ...)
500                          */
501                         iter->hw_next = NULL;
502                         /* always enable interrupt generation since we get
503                          * the status of pqzero from the handler
504                          */
505                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
506                 }
507         }
508         desc->src_cnt = src_cnt;
509         desc->dst_cnt = dst_cnt;
510 }
511
512 /**
513  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
514  */
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
516                                         unsigned long flags)
517 {
518         struct dma_cdb *hw_desc = desc->hw_desc;
519
520         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
521         desc->hw_next = NULL;
522         desc->src_cnt = 1;
523         desc->dst_cnt = 1;
524
525         if (flags & DMA_PREP_INTERRUPT)
526                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
527         else
528                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
529
530         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
531 }
532
533 /**
534  * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
535  */
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
537                                         int value, unsigned long flags)
538 {
539         struct dma_cdb *hw_desc = desc->hw_desc;
540
541         memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
542         desc->hw_next = NULL;
543         desc->src_cnt = 1;
544         desc->dst_cnt = 1;
545
546         if (flags & DMA_PREP_INTERRUPT)
547                 set_bit(PPC440SPE_DESC_INT, &desc->flags);
548         else
549                 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
550
551         hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
552         hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
553         hw_desc->opc = DMA_CDB_OPC_DFILL128;
554 }
555
556 /**
557  * ppc440spe_desc_set_src_addr - set source address into the descriptor
558  */
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
560                                         struct ppc440spe_adma_chan *chan,
561                                         int src_idx, dma_addr_t addrh,
562                                         dma_addr_t addrl)
563 {
564         struct dma_cdb *dma_hw_desc;
565         struct xor_cb *xor_hw_desc;
566         phys_addr_t addr64, tmplow, tmphi;
567
568         switch (chan->device->id) {
569         case PPC440SPE_DMA0_ID:
570         case PPC440SPE_DMA1_ID:
571                 if (!addrh) {
572                         addr64 = addrl;
573                         tmphi = (addr64 >> 32);
574                         tmplow = (addr64 & 0xFFFFFFFF);
575                 } else {
576                         tmphi = addrh;
577                         tmplow = addrl;
578                 }
579                 dma_hw_desc = desc->hw_desc;
580                 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
581                 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
582                 break;
583         case PPC440SPE_XOR_ID:
584                 xor_hw_desc = desc->hw_desc;
585                 xor_hw_desc->ops[src_idx].l = addrl;
586                 xor_hw_desc->ops[src_idx].h |= addrh;
587                 break;
588         }
589 }
590
591 /**
592  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
593  */
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
595                         struct ppc440spe_adma_chan *chan, u32 mult_index,
596                         int sg_index, unsigned char mult_value)
597 {
598         struct dma_cdb *dma_hw_desc;
599         struct xor_cb *xor_hw_desc;
600         u32 *psgu;
601
602         switch (chan->device->id) {
603         case PPC440SPE_DMA0_ID:
604         case PPC440SPE_DMA1_ID:
605                 dma_hw_desc = desc->hw_desc;
606
607                 switch (sg_index) {
608                 /* for RXOR operations set multiplier
609                  * into source cued address
610                  */
611                 case DMA_CDB_SG_SRC:
612                         psgu = &dma_hw_desc->sg1u;
613                         break;
614                 /* for WXOR operations set multiplier
615                  * into destination cued address(es)
616                  */
617                 case DMA_CDB_SG_DST1:
618                         psgu = &dma_hw_desc->sg2u;
619                         break;
620                 case DMA_CDB_SG_DST2:
621                         psgu = &dma_hw_desc->sg3u;
622                         break;
623                 default:
624                         BUG();
625                 }
626
627                 *psgu |= cpu_to_le32(mult_value << mult_index);
628                 break;
629         case PPC440SPE_XOR_ID:
630                 xor_hw_desc = desc->hw_desc;
631                 break;
632         default:
633                 BUG();
634         }
635 }
636
637 /**
638  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
639  */
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
641                                 struct ppc440spe_adma_chan *chan,
642                                 dma_addr_t addrh, dma_addr_t addrl,
643                                 u32 dst_idx)
644 {
645         struct dma_cdb *dma_hw_desc;
646         struct xor_cb *xor_hw_desc;
647         phys_addr_t addr64, tmphi, tmplow;
648         u32 *psgu, *psgl;
649
650         switch (chan->device->id) {
651         case PPC440SPE_DMA0_ID:
652         case PPC440SPE_DMA1_ID:
653                 if (!addrh) {
654                         addr64 = addrl;
655                         tmphi = (addr64 >> 32);
656                         tmplow = (addr64 & 0xFFFFFFFF);
657                 } else {
658                         tmphi = addrh;
659                         tmplow = addrl;
660                 }
661                 dma_hw_desc = desc->hw_desc;
662
663                 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
664                 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
665
666                 *psgl = cpu_to_le32((u32)tmplow);
667                 *psgu |= cpu_to_le32((u32)tmphi);
668                 break;
669         case PPC440SPE_XOR_ID:
670                 xor_hw_desc = desc->hw_desc;
671                 xor_hw_desc->cbtal = addrl;
672                 xor_hw_desc->cbtah |= addrh;
673                 break;
674         }
675 }
676
677 /**
678  * ppc440spe_desc_set_byte_count - set number of data bytes involved
679  * into the operation
680  */
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
682                                 struct ppc440spe_adma_chan *chan,
683                                 u32 byte_count)
684 {
685         struct dma_cdb *dma_hw_desc;
686         struct xor_cb *xor_hw_desc;
687
688         switch (chan->device->id) {
689         case PPC440SPE_DMA0_ID:
690         case PPC440SPE_DMA1_ID:
691                 dma_hw_desc = desc->hw_desc;
692                 dma_hw_desc->cnt = cpu_to_le32(byte_count);
693                 break;
694         case PPC440SPE_XOR_ID:
695                 xor_hw_desc = desc->hw_desc;
696                 xor_hw_desc->cbbc = byte_count;
697                 break;
698         }
699 }
700
701 /**
702  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
703  */
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
705 {
706         /* assume that byte_count is aligned on the 512-boundary;
707          * thus write it directly to the register (bits 23:31 are
708          * reserved there).
709          */
710         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
711 }
712
713 /**
714  * ppc440spe_desc_set_dcheck - set CHECK pattern
715  */
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
717                                 struct ppc440spe_adma_chan *chan, u8 *qword)
718 {
719         struct dma_cdb *dma_hw_desc;
720
721         switch (chan->device->id) {
722         case PPC440SPE_DMA0_ID:
723         case PPC440SPE_DMA1_ID:
724                 dma_hw_desc = desc->hw_desc;
725                 iowrite32(qword[0], &dma_hw_desc->sg3l);
726                 iowrite32(qword[4], &dma_hw_desc->sg3u);
727                 iowrite32(qword[8], &dma_hw_desc->sg2l);
728                 iowrite32(qword[12], &dma_hw_desc->sg2u);
729                 break;
730         default:
731                 BUG();
732         }
733 }
734
735 /**
736  * ppc440spe_xor_set_link - set link address in xor CB
737  */
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
739                                 struct ppc440spe_adma_desc_slot *next_desc)
740 {
741         struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
742
743         if (unlikely(!next_desc || !(next_desc->phys))) {
744                 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
745                         __func__, next_desc,
746                         next_desc ? next_desc->phys : 0);
747                 BUG();
748         }
749
750         xor_hw_desc->cbs = 0;
751         xor_hw_desc->cblal = next_desc->phys;
752         xor_hw_desc->cblah = 0;
753         xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
754 }
755
756 /**
757  * ppc440spe_desc_set_link - set the address of descriptor following this
758  * descriptor in chain
759  */
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
761                                 struct ppc440spe_adma_desc_slot *prev_desc,
762                                 struct ppc440spe_adma_desc_slot *next_desc)
763 {
764         unsigned long flags;
765         struct ppc440spe_adma_desc_slot *tail = next_desc;
766
767         if (unlikely(!prev_desc || !next_desc ||
768                 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
769                 /* If previous next is overwritten something is wrong.
770                  * though we may refetch from append to initiate list
771                  * processing; in this case - it's ok.
772                  */
773                 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
774                         "prev->hw_next=0x%p\n", __func__, prev_desc,
775                         next_desc, prev_desc ? prev_desc->hw_next : 0);
776                 BUG();
777         }
778
779         local_irq_save(flags);
780
781         /* do s/w chaining both for DMA and XOR descriptors */
782         prev_desc->hw_next = next_desc;
783
784         switch (chan->device->id) {
785         case PPC440SPE_DMA0_ID:
786         case PPC440SPE_DMA1_ID:
787                 break;
788         case PPC440SPE_XOR_ID:
789                 /* bind descriptor to the chain */
790                 while (tail->hw_next)
791                         tail = tail->hw_next;
792                 xor_last_linked = tail;
793
794                 if (prev_desc == xor_last_submit)
795                         /* do not link to the last submitted CB */
796                         break;
797                 ppc440spe_xor_set_link(prev_desc, next_desc);
798                 break;
799         }
800
801         local_irq_restore(flags);
802 }
803
804 /**
805  * ppc440spe_desc_get_link - get the address of the descriptor that
806  * follows this one
807  */
808 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
809                                         struct ppc440spe_adma_chan *chan)
810 {
811         if (!desc->hw_next)
812                 return 0;
813
814         return desc->hw_next->phys;
815 }
816
817 /**
818  * ppc440spe_desc_is_aligned - check alignment
819  */
820 static inline int ppc440spe_desc_is_aligned(
821         struct ppc440spe_adma_desc_slot *desc, int num_slots)
822 {
823         return (desc->idx & (num_slots - 1)) ? 0 : 1;
824 }
825
826 /**
827  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
828  * XOR operation
829  */
830 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
831                         int *slots_per_op)
832 {
833         int slot_cnt;
834
835         /* each XOR descriptor provides up to 16 source operands */
836         slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
837
838         if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
839                 return slot_cnt;
840
841         printk(KERN_ERR "%s: len %d > max %d !!\n",
842                 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
843         BUG();
844         return slot_cnt;
845 }
846
847 /**
848  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
849  * DMA2 PQ operation
850  */
851 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
852                 int src_cnt, size_t len)
853 {
854         signed long long order = 0;
855         int state = 0;
856         int addr_count = 0;
857         int i;
858         for (i = 1; i < src_cnt; i++) {
859                 dma_addr_t cur_addr = srcs[i];
860                 dma_addr_t old_addr = srcs[i-1];
861                 switch (state) {
862                 case 0:
863                         if (cur_addr == old_addr + len) {
864                                 /* direct RXOR */
865                                 order = 1;
866                                 state = 1;
867                                 if (i == src_cnt-1)
868                                         addr_count++;
869                         } else if (old_addr == cur_addr + len) {
870                                 /* reverse RXOR */
871                                 order = -1;
872                                 state = 1;
873                                 if (i == src_cnt-1)
874                                         addr_count++;
875                         } else {
876                                 state = 3;
877                         }
878                         break;
879                 case 1:
880                         if (i == src_cnt-2 || (order == -1
881                                 && cur_addr != old_addr - len)) {
882                                 order = 0;
883                                 state = 0;
884                                 addr_count++;
885                         } else if (cur_addr == old_addr + len*order) {
886                                 state = 2;
887                                 if (i == src_cnt-1)
888                                         addr_count++;
889                         } else if (cur_addr == old_addr + 2*len) {
890                                 state = 2;
891                                 if (i == src_cnt-1)
892                                         addr_count++;
893                         } else if (cur_addr == old_addr + 3*len) {
894                                 state = 2;
895                                 if (i == src_cnt-1)
896                                         addr_count++;
897                         } else {
898                                 order = 0;
899                                 state = 0;
900                                 addr_count++;
901                         }
902                         break;
903                 case 2:
904                         order = 0;
905                         state = 0;
906                         addr_count++;
907                                 break;
908                 }
909                 if (state == 3)
910                         break;
911         }
912         if (src_cnt <= 1 || (state != 1 && state != 2)) {
913                 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
914                         __func__, src_cnt, state, addr_count, order);
915                 for (i = 0; i < src_cnt; i++)
916                         pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
917                 BUG();
918         }
919
920         return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
921 }
922
923
924 /******************************************************************************
925  * ADMA channel low-level routines
926  ******************************************************************************/
927
928 static u32
929 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
930 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
931
932 /**
933  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
934  */
935 static void ppc440spe_adma_device_clear_eot_status(
936                                         struct ppc440spe_adma_chan *chan)
937 {
938         struct dma_regs *dma_reg;
939         struct xor_regs *xor_reg;
940         u8 *p = chan->device->dma_desc_pool_virt;
941         struct dma_cdb *cdb;
942         u32 rv, i;
943
944         switch (chan->device->id) {
945         case PPC440SPE_DMA0_ID:
946         case PPC440SPE_DMA1_ID:
947                 /* read FIFO to ack */
948                 dma_reg = chan->device->dma_reg;
949                 while ((rv = ioread32(&dma_reg->csfpl))) {
950                         i = rv & DMA_CDB_ADDR_MSK;
951                         cdb = (struct dma_cdb *)&p[i -
952                             (u32)chan->device->dma_desc_pool];
953
954                         /* Clear opcode to ack. This is necessary for
955                          * ZeroSum operations only
956                          */
957                         cdb->opc = 0;
958
959                         if (test_bit(PPC440SPE_RXOR_RUN,
960                             &ppc440spe_rxor_state)) {
961                                 /* probably this is a completed RXOR op,
962                                  * get pointer to CDB using the fact that
963                                  * physical and virtual addresses of CDB
964                                  * in pools have the same offsets
965                                  */
966                                 if (le32_to_cpu(cdb->sg1u) &
967                                     DMA_CUED_XOR_BASE) {
968                                         /* this is a RXOR */
969                                         clear_bit(PPC440SPE_RXOR_RUN,
970                                                   &ppc440spe_rxor_state);
971                                 }
972                         }
973
974                         if (rv & DMA_CDB_STATUS_MSK) {
975                                 /* ZeroSum check failed
976                                  */
977                                 struct ppc440spe_adma_desc_slot *iter;
978                                 dma_addr_t phys = rv & ~DMA_CDB_MSK;
979
980                                 /*
981                                  * Update the status of corresponding
982                                  * descriptor.
983                                  */
984                                 list_for_each_entry(iter, &chan->chain,
985                                     chain_node) {
986                                         if (iter->phys == phys)
987                                                 break;
988                                 }
989                                 /*
990                                  * if cannot find the corresponding
991                                  * slot it's a bug
992                                  */
993                                 BUG_ON(&iter->chain_node == &chan->chain);
994
995                                 if (iter->xor_check_result) {
996                                         if (test_bit(PPC440SPE_DESC_PCHECK,
997                                                      &iter->flags)) {
998                                                 *iter->xor_check_result |=
999                                                         SUM_CHECK_P_RESULT;
1000                                         } else
1001                                         if (test_bit(PPC440SPE_DESC_QCHECK,
1002                                                      &iter->flags)) {
1003                                                 *iter->xor_check_result |=
1004                                                         SUM_CHECK_Q_RESULT;
1005                                         } else
1006                                                 BUG();
1007                                 }
1008                         }
1009                 }
1010
1011                 rv = ioread32(&dma_reg->dsts);
1012                 if (rv) {
1013                         pr_err("DMA%d err status: 0x%x\n",
1014                                chan->device->id, rv);
1015                         /* write back to clear */
1016                         iowrite32(rv, &dma_reg->dsts);
1017                 }
1018                 break;
1019         case PPC440SPE_XOR_ID:
1020                 /* reset status bits to ack */
1021                 xor_reg = chan->device->xor_reg;
1022                 rv = ioread32be(&xor_reg->sr);
1023                 iowrite32be(rv, &xor_reg->sr);
1024
1025                 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1026                         if (rv & XOR_IE_RPTIE_BIT) {
1027                                 /* Read PLB Timeout Error.
1028                                  * Try to resubmit the CB
1029                                  */
1030                                 u32 val = ioread32be(&xor_reg->ccbalr);
1031
1032                                 iowrite32be(val, &xor_reg->cblalr);
1033
1034                                 val = ioread32be(&xor_reg->crsr);
1035                                 iowrite32be(val | XOR_CRSR_XAE_BIT,
1036                                             &xor_reg->crsr);
1037                         } else
1038                                 pr_err("XOR ERR 0x%x status\n", rv);
1039                         break;
1040                 }
1041
1042                 /*  if the XORcore is idle, but there are unprocessed CBs
1043                  * then refetch the s/w chain here
1044                  */
1045                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1046                     do_xor_refetch)
1047                         ppc440spe_chan_append(chan);
1048                 break;
1049         }
1050 }
1051
1052 /**
1053  * ppc440spe_chan_is_busy - get the channel status
1054  */
1055 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1056 {
1057         struct dma_regs *dma_reg;
1058         struct xor_regs *xor_reg;
1059         int busy = 0;
1060
1061         switch (chan->device->id) {
1062         case PPC440SPE_DMA0_ID:
1063         case PPC440SPE_DMA1_ID:
1064                 dma_reg = chan->device->dma_reg;
1065                 /*  if command FIFO's head and tail pointers are equal and
1066                  * status tail is the same as command, then channel is free
1067                  */
1068                 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1069                     ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1070                         busy = 1;
1071                 break;
1072         case PPC440SPE_XOR_ID:
1073                 /* use the special status bit for the XORcore
1074                  */
1075                 xor_reg = chan->device->xor_reg;
1076                 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1077                 break;
1078         }
1079
1080         return busy;
1081 }
1082
1083 /**
1084  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1085  */
1086 static void ppc440spe_chan_set_first_xor_descriptor(
1087                                 struct ppc440spe_adma_chan *chan,
1088                                 struct ppc440spe_adma_desc_slot *next_desc)
1089 {
1090         struct xor_regs *xor_reg = chan->device->xor_reg;
1091
1092         if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1093                 printk(KERN_INFO "%s: Warn: XORcore is running "
1094                         "when try to set the first CDB!\n",
1095                         __func__);
1096
1097         xor_last_submit = xor_last_linked = next_desc;
1098
1099         iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1100
1101         iowrite32be(next_desc->phys, &xor_reg->cblalr);
1102         iowrite32be(0, &xor_reg->cblahr);
1103         iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1104                     &xor_reg->cbcr);
1105
1106         chan->hw_chain_inited = 1;
1107 }
1108
1109 /**
1110  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1111  * called with irqs disabled
1112  */
1113 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1114                 struct ppc440spe_adma_desc_slot *desc)
1115 {
1116         u32 pcdb;
1117         struct dma_regs *dma_reg = chan->device->dma_reg;
1118
1119         pcdb = desc->phys;
1120         if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1121                 pcdb |= DMA_CDB_NO_INT;
1122
1123         chan_last_sub[chan->device->id] = desc;
1124
1125         ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1126
1127         iowrite32(pcdb, &dma_reg->cpfpl);
1128 }
1129
1130 /**
1131  * ppc440spe_chan_append - update the h/w chain in the channel
1132  */
1133 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1134 {
1135         struct xor_regs *xor_reg;
1136         struct ppc440spe_adma_desc_slot *iter;
1137         struct xor_cb *xcb;
1138         u32 cur_desc;
1139         unsigned long flags;
1140
1141         local_irq_save(flags);
1142
1143         switch (chan->device->id) {
1144         case PPC440SPE_DMA0_ID:
1145         case PPC440SPE_DMA1_ID:
1146                 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1147
1148                 if (likely(cur_desc)) {
1149                         iter = chan_last_sub[chan->device->id];
1150                         BUG_ON(!iter);
1151                 } else {
1152                         /* first peer */
1153                         iter = chan_first_cdb[chan->device->id];
1154                         BUG_ON(!iter);
1155                         ppc440spe_dma_put_desc(chan, iter);
1156                         chan->hw_chain_inited = 1;
1157                 }
1158
1159                 /* is there something new to append */
1160                 if (!iter->hw_next)
1161                         break;
1162
1163                 /* flush descriptors from the s/w queue to fifo */
1164                 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1165                         ppc440spe_dma_put_desc(chan, iter);
1166                         if (!iter->hw_next)
1167                                 break;
1168                 }
1169                 break;
1170         case PPC440SPE_XOR_ID:
1171                 /* update h/w links and refetch */
1172                 if (!xor_last_submit->hw_next)
1173                         break;
1174
1175                 xor_reg = chan->device->xor_reg;
1176                 /* the last linked CDB has to generate an interrupt
1177                  * that we'd be able to append the next lists to h/w
1178                  * regardless of the XOR engine state at the moment of
1179                  * appending of these next lists
1180                  */
1181                 xcb = xor_last_linked->hw_desc;
1182                 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1183
1184                 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1185                         /* XORcore is idle. Refetch now */
1186                         do_xor_refetch = 0;
1187                         ppc440spe_xor_set_link(xor_last_submit,
1188                                 xor_last_submit->hw_next);
1189
1190                         ADMA_LL_DBG(print_cb_list(chan,
1191                                 xor_last_submit->hw_next));
1192
1193                         xor_last_submit = xor_last_linked;
1194                         iowrite32be(ioread32be(&xor_reg->crsr) |
1195                                     XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1196                                     &xor_reg->crsr);
1197                 } else {
1198                         /* XORcore is running. Refetch later in the handler */
1199                         do_xor_refetch = 1;
1200                 }
1201
1202                 break;
1203         }
1204
1205         local_irq_restore(flags);
1206 }
1207
1208 /**
1209  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1210  */
1211 static u32
1212 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1213 {
1214         struct dma_regs *dma_reg;
1215         struct xor_regs *xor_reg;
1216
1217         if (unlikely(!chan->hw_chain_inited))
1218                 /* h/w descriptor chain is not initialized yet */
1219                 return 0;
1220
1221         switch (chan->device->id) {
1222         case PPC440SPE_DMA0_ID:
1223         case PPC440SPE_DMA1_ID:
1224                 dma_reg = chan->device->dma_reg;
1225                 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1226         case PPC440SPE_XOR_ID:
1227                 xor_reg = chan->device->xor_reg;
1228                 return ioread32be(&xor_reg->ccbalr);
1229         }
1230         return 0;
1231 }
1232
1233 /**
1234  * ppc440spe_chan_run - enable the channel
1235  */
1236 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1237 {
1238         struct xor_regs *xor_reg;
1239
1240         switch (chan->device->id) {
1241         case PPC440SPE_DMA0_ID:
1242         case PPC440SPE_DMA1_ID:
1243                 /* DMAs are always enabled, do nothing */
1244                 break;
1245         case PPC440SPE_XOR_ID:
1246                 /* drain write buffer */
1247                 xor_reg = chan->device->xor_reg;
1248
1249                 /* fetch descriptor pointed to in <link> */
1250                 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1251                             &xor_reg->crsr);
1252                 break;
1253         }
1254 }
1255
1256 /******************************************************************************
1257  * ADMA device level
1258  ******************************************************************************/
1259
1260 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1261 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1262
1263 static dma_cookie_t
1264 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1265
1266 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1267                                     dma_addr_t addr, int index);
1268 static void
1269 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1270                                   dma_addr_t addr, int index);
1271
1272 static void
1273 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1274                            dma_addr_t *paddr, unsigned long flags);
1275 static void
1276 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1277                           dma_addr_t addr, int index);
1278 static void
1279 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1280                                unsigned char mult, int index, int dst_pos);
1281 static void
1282 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1283                                    dma_addr_t paddr, dma_addr_t qaddr);
1284
1285 static struct page *ppc440spe_rxor_srcs[32];
1286
1287 /**
1288  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1289  */
1290 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1291 {
1292         int i, order = 0, state = 0;
1293         int idx = 0;
1294
1295         if (unlikely(!(src_cnt > 1)))
1296                 return 0;
1297
1298         BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1299
1300         /* Skip holes in the source list before checking */
1301         for (i = 0; i < src_cnt; i++) {
1302                 if (!srcs[i])
1303                         continue;
1304                 ppc440spe_rxor_srcs[idx++] = srcs[i];
1305         }
1306         src_cnt = idx;
1307
1308         for (i = 1; i < src_cnt; i++) {
1309                 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1310                 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1311
1312                 switch (state) {
1313                 case 0:
1314                         if (cur_addr == old_addr + len) {
1315                                 /* direct RXOR */
1316                                 order = 1;
1317                                 state = 1;
1318                         } else if (old_addr == cur_addr + len) {
1319                                 /* reverse RXOR */
1320                                 order = -1;
1321                                 state = 1;
1322                         } else
1323                                 goto out;
1324                         break;
1325                 case 1:
1326                         if ((i == src_cnt - 2) ||
1327                             (order == -1 && cur_addr != old_addr - len)) {
1328                                 order = 0;
1329                                 state = 0;
1330                         } else if ((cur_addr == old_addr + len * order) ||
1331                                    (cur_addr == old_addr + 2 * len) ||
1332                                    (cur_addr == old_addr + 3 * len)) {
1333                                 state = 2;
1334                         } else {
1335                                 order = 0;
1336                                 state = 0;
1337                         }
1338                         break;
1339                 case 2:
1340                         order = 0;
1341                         state = 0;
1342                         break;
1343                 }
1344         }
1345
1346 out:
1347         if (state == 1 || state == 2)
1348                 return 1;
1349
1350         return 0;
1351 }
1352
1353 /**
1354  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1355  *      the operation given on this channel. It's assumed that 'chan' is
1356  *      capable to process 'cap' type of operation.
1357  * @chan: channel to use
1358  * @cap: type of transaction
1359  * @dst_lst: array of destination pointers
1360  * @dst_cnt: number of destination operands
1361  * @src_lst: array of source pointers
1362  * @src_cnt: number of source operands
1363  * @src_sz: size of each source operand
1364  */
1365 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1366         enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1367         struct page **src_lst, int src_cnt, size_t src_sz)
1368 {
1369         int ef = 1;
1370
1371         if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1372                 /* If RAID-6 capabilities were not activated don't try
1373                  * to use them
1374                  */
1375                 if (unlikely(!ppc440spe_r6_enabled))
1376                         return -1;
1377         }
1378         /*  In the current implementation of ppc440spe ADMA driver it
1379          * makes sense to pick out only pq case, because it may be
1380          * processed:
1381          * (1) either using Biskup method on DMA2;
1382          * (2) or on DMA0/1.
1383          *  Thus we give a favour to (1) if the sources are suitable;
1384          * else let it be processed on one of the DMA0/1 engines.
1385          *  In the sum_product case where destination is also the
1386          * source process it on DMA0/1 only.
1387          */
1388         if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1389
1390                 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1391                         ef = 0; /* sum_product case, process on DMA0/1 */
1392                 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1393                         ef = 3; /* override (DMA0/1 + idle) */
1394                 else
1395                         ef = 0; /* can't process on DMA2 if !rxor */
1396         }
1397
1398         /* channel idleness increases the priority */
1399         if (likely(ef) &&
1400             !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1401                 ef++;
1402
1403         return ef;
1404 }
1405
1406 struct dma_chan *
1407 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1408         struct page **dst_lst, int dst_cnt, struct page **src_lst,
1409         int src_cnt, size_t src_sz)
1410 {
1411         struct dma_chan *best_chan = NULL;
1412         struct ppc_dma_chan_ref *ref;
1413         int best_rank = -1;
1414
1415         if (unlikely(!src_sz))
1416                 return NULL;
1417         if (src_sz > PAGE_SIZE) {
1418                 /*
1419                  * should a user of the api ever pass > PAGE_SIZE requests
1420                  * we sort out cases where temporary page-sized buffers
1421                  * are used.
1422                  */
1423                 switch (cap) {
1424                 case DMA_PQ:
1425                         if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1426                                 return NULL;
1427                         if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1428                                 return NULL;
1429                         break;
1430                 case DMA_PQ_VAL:
1431                 case DMA_XOR_VAL:
1432                         return NULL;
1433                 default:
1434                         break;
1435                 }
1436         }
1437
1438         list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1439                 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1440                         int rank;
1441
1442                         rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1443                                         dst_cnt, src_lst, src_cnt, src_sz);
1444                         if (rank > best_rank) {
1445                                 best_rank = rank;
1446                                 best_chan = ref->chan;
1447                         }
1448                 }
1449         }
1450
1451         return best_chan;
1452 }
1453 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1454
1455 /**
1456  * ppc440spe_get_group_entry - get group entry with index idx
1457  * @tdesc: is the last allocated slot in the group.
1458  */
1459 static struct ppc440spe_adma_desc_slot *
1460 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1461 {
1462         struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1463         int i = 0;
1464
1465         if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1466                 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1467                         __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1468                 BUG();
1469         }
1470
1471         list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1472                 if (i++ == entry_idx)
1473                         break;
1474         }
1475         return iter;
1476 }
1477
1478 /**
1479  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1480  * @slot: Slot to free
1481  * Caller must hold &ppc440spe_chan->lock while calling this function
1482  */
1483 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1484                                       struct ppc440spe_adma_chan *chan)
1485 {
1486         int stride = slot->slots_per_op;
1487
1488         while (stride--) {
1489                 slot->slots_per_op = 0;
1490                 slot = list_entry(slot->slot_node.next,
1491                                 struct ppc440spe_adma_desc_slot,
1492                                 slot_node);
1493         }
1494 }
1495
1496 /**
1497  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1498  * upon completion
1499  */
1500 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1501                 struct ppc440spe_adma_desc_slot *desc,
1502                 struct ppc440spe_adma_chan *chan,
1503                 dma_cookie_t cookie)
1504 {
1505         int i;
1506
1507         BUG_ON(desc->async_tx.cookie < 0);
1508         if (desc->async_tx.cookie > 0) {
1509                 cookie = desc->async_tx.cookie;
1510                 desc->async_tx.cookie = 0;
1511
1512                 /* call the callback (must not sleep or submit new
1513                  * operations to this channel)
1514                  */
1515                 if (desc->async_tx.callback)
1516                         desc->async_tx.callback(
1517                                 desc->async_tx.callback_param);
1518
1519                 dma_descriptor_unmap(&desc->async_tx);
1520         }
1521
1522         /* run dependent operations */
1523         dma_run_dependencies(&desc->async_tx);
1524
1525         return cookie;
1526 }
1527
1528 /**
1529  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1530  */
1531 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1532                 struct ppc440spe_adma_chan *chan)
1533 {
1534         /* the client is allowed to attach dependent operations
1535          * until 'ack' is set
1536          */
1537         if (!async_tx_test_ack(&desc->async_tx))
1538                 return 0;
1539
1540         /* leave the last descriptor in the chain
1541          * so we can append to it
1542          */
1543         if (list_is_last(&desc->chain_node, &chan->chain) ||
1544             desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1545                 return 1;
1546
1547         if (chan->device->id != PPC440SPE_XOR_ID) {
1548                 /* our DMA interrupt handler clears opc field of
1549                  * each processed descriptor. For all types of
1550                  * operations except for ZeroSum we do not actually
1551                  * need ack from the interrupt handler. ZeroSum is a
1552                  * special case since the result of this operation
1553                  * is available from the handler only, so if we see
1554                  * such type of descriptor (which is unprocessed yet)
1555                  * then leave it in chain.
1556                  */
1557                 struct dma_cdb *cdb = desc->hw_desc;
1558                 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1559                         return 1;
1560         }
1561
1562         dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1563                 desc->phys, desc->idx, desc->slots_per_op);
1564
1565         list_del(&desc->chain_node);
1566         ppc440spe_adma_free_slots(desc, chan);
1567         return 0;
1568 }
1569
1570 /**
1571  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1572  *      which runs through the channel CDBs list until reach the descriptor
1573  *      currently processed. When routine determines that all CDBs of group
1574  *      are completed then corresponding callbacks (if any) are called and slots
1575  *      are freed.
1576  */
1577 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1578 {
1579         struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1580         dma_cookie_t cookie = 0;
1581         u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1582         int busy = ppc440spe_chan_is_busy(chan);
1583         int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1584
1585         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1586                 chan->device->id, __func__);
1587
1588         if (!current_desc) {
1589                 /*  There were no transactions yet, so
1590                  * nothing to clean
1591                  */
1592                 return;
1593         }
1594
1595         /* free completed slots from the chain starting with
1596          * the oldest descriptor
1597          */
1598         list_for_each_entry_safe(iter, _iter, &chan->chain,
1599                                         chain_node) {
1600                 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1601                     "busy: %d this_desc: %#llx next_desc: %#x "
1602                     "cur: %#x ack: %d\n",
1603                     iter->async_tx.cookie, iter->idx, busy, iter->phys,
1604                     ppc440spe_desc_get_link(iter, chan), current_desc,
1605                     async_tx_test_ack(&iter->async_tx));
1606                 prefetch(_iter);
1607                 prefetch(&_iter->async_tx);
1608
1609                 /* do not advance past the current descriptor loaded into the
1610                  * hardware channel,subsequent descriptors are either in process
1611                  * or have not been submitted
1612                  */
1613                 if (seen_current)
1614                         break;
1615
1616                 /* stop the search if we reach the current descriptor and the
1617                  * channel is busy, or if it appears that the current descriptor
1618                  * needs to be re-read (i.e. has been appended to)
1619                  */
1620                 if (iter->phys == current_desc) {
1621                         BUG_ON(seen_current++);
1622                         if (busy || ppc440spe_desc_get_link(iter, chan)) {
1623                                 /* not all descriptors of the group have
1624                                  * been completed; exit.
1625                                  */
1626                                 break;
1627                         }
1628                 }
1629
1630                 /* detect the start of a group transaction */
1631                 if (!slot_cnt && !slots_per_op) {
1632                         slot_cnt = iter->slot_cnt;
1633                         slots_per_op = iter->slots_per_op;
1634                         if (slot_cnt <= slots_per_op) {
1635                                 slot_cnt = 0;
1636                                 slots_per_op = 0;
1637                         }
1638                 }
1639
1640                 if (slot_cnt) {
1641                         if (!group_start)
1642                                 group_start = iter;
1643                         slot_cnt -= slots_per_op;
1644                 }
1645
1646                 /* all the members of a group are complete */
1647                 if (slots_per_op != 0 && slot_cnt == 0) {
1648                         struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1649                         int end_of_chain = 0;
1650
1651                         /* clean up the group */
1652                         slot_cnt = group_start->slot_cnt;
1653                         grp_iter = group_start;
1654                         list_for_each_entry_safe_from(grp_iter, _grp_iter,
1655                                 &chan->chain, chain_node) {
1656
1657                                 cookie = ppc440spe_adma_run_tx_complete_actions(
1658                                         grp_iter, chan, cookie);
1659
1660                                 slot_cnt -= slots_per_op;
1661                                 end_of_chain = ppc440spe_adma_clean_slot(
1662                                     grp_iter, chan);
1663                                 if (end_of_chain && slot_cnt) {
1664                                         /* Should wait for ZeroSum completion */
1665                                         if (cookie > 0)
1666                                                 chan->common.completed_cookie = cookie;
1667                                         return;
1668                                 }
1669
1670                                 if (slot_cnt == 0 || end_of_chain)
1671                                         break;
1672                         }
1673
1674                         /* the group should be complete at this point */
1675                         BUG_ON(slot_cnt);
1676
1677                         slots_per_op = 0;
1678                         group_start = NULL;
1679                         if (end_of_chain)
1680                                 break;
1681                         else
1682                                 continue;
1683                 } else if (slots_per_op) /* wait for group completion */
1684                         continue;
1685
1686                 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1687                     cookie);
1688
1689                 if (ppc440spe_adma_clean_slot(iter, chan))
1690                         break;
1691         }
1692
1693         BUG_ON(!seen_current);
1694
1695         if (cookie > 0) {
1696                 chan->common.completed_cookie = cookie;
1697                 pr_debug("\tcompleted cookie %d\n", cookie);
1698         }
1699
1700 }
1701
1702 /**
1703  * ppc440spe_adma_tasklet - clean up watch-dog initiator
1704  */
1705 static void ppc440spe_adma_tasklet(unsigned long data)
1706 {
1707         struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1708
1709         spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1710         __ppc440spe_adma_slot_cleanup(chan);
1711         spin_unlock(&chan->lock);
1712 }
1713
1714 /**
1715  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1716  */
1717 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1718 {
1719         spin_lock_bh(&chan->lock);
1720         __ppc440spe_adma_slot_cleanup(chan);
1721         spin_unlock_bh(&chan->lock);
1722 }
1723
1724 /**
1725  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1726  */
1727 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1728                 struct ppc440spe_adma_chan *chan, int num_slots,
1729                 int slots_per_op)
1730 {
1731         struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1732         struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1733         struct list_head chain = LIST_HEAD_INIT(chain);
1734         int slots_found, retry = 0;
1735
1736
1737         BUG_ON(!num_slots || !slots_per_op);
1738         /* start search from the last allocated descrtiptor
1739          * if a contiguous allocation can not be found start searching
1740          * from the beginning of the list
1741          */
1742 retry:
1743         slots_found = 0;
1744         if (retry == 0)
1745                 iter = chan->last_used;
1746         else
1747                 iter = list_entry(&chan->all_slots,
1748                                   struct ppc440spe_adma_desc_slot,
1749                                   slot_node);
1750         list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1751             slot_node) {
1752                 prefetch(_iter);
1753                 prefetch(&_iter->async_tx);
1754                 if (iter->slots_per_op) {
1755                         slots_found = 0;
1756                         continue;
1757                 }
1758
1759                 /* start the allocation if the slot is correctly aligned */
1760                 if (!slots_found++)
1761                         alloc_start = iter;
1762
1763                 if (slots_found == num_slots) {
1764                         struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1765                         struct ppc440spe_adma_desc_slot *last_used = NULL;
1766
1767                         iter = alloc_start;
1768                         while (num_slots) {
1769                                 int i;
1770                                 /* pre-ack all but the last descriptor */
1771                                 if (num_slots != slots_per_op)
1772                                         async_tx_ack(&iter->async_tx);
1773
1774                                 list_add_tail(&iter->chain_node, &chain);
1775                                 alloc_tail = iter;
1776                                 iter->async_tx.cookie = 0;
1777                                 iter->hw_next = NULL;
1778                                 iter->flags = 0;
1779                                 iter->slot_cnt = num_slots;
1780                                 iter->xor_check_result = NULL;
1781                                 for (i = 0; i < slots_per_op; i++) {
1782                                         iter->slots_per_op = slots_per_op - i;
1783                                         last_used = iter;
1784                                         iter = list_entry(iter->slot_node.next,
1785                                                 struct ppc440spe_adma_desc_slot,
1786                                                 slot_node);
1787                                 }
1788                                 num_slots -= slots_per_op;
1789                         }
1790                         alloc_tail->group_head = alloc_start;
1791                         alloc_tail->async_tx.cookie = -EBUSY;
1792                         list_splice(&chain, &alloc_tail->group_list);
1793                         chan->last_used = last_used;
1794                         return alloc_tail;
1795                 }
1796         }
1797         if (!retry++)
1798                 goto retry;
1799
1800         /* try to free some slots if the allocation fails */
1801         tasklet_schedule(&chan->irq_tasklet);
1802         return NULL;
1803 }
1804
1805 /**
1806  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1807  */
1808 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1809 {
1810         struct ppc440spe_adma_chan *ppc440spe_chan;
1811         struct ppc440spe_adma_desc_slot *slot = NULL;
1812         char *hw_desc;
1813         int i, db_sz;
1814         int init;
1815
1816         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1817         init = ppc440spe_chan->slots_allocated ? 0 : 1;
1818         chan->chan_id = ppc440spe_chan->device->id;
1819
1820         /* Allocate descriptor slots */
1821         i = ppc440spe_chan->slots_allocated;
1822         if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1823                 db_sz = sizeof(struct dma_cdb);
1824         else
1825                 db_sz = sizeof(struct xor_cb);
1826
1827         for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1828                 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1829                                GFP_KERNEL);
1830                 if (!slot) {
1831                         printk(KERN_INFO "SPE ADMA Channel only initialized"
1832                                 " %d descriptor slots", i--);
1833                         break;
1834                 }
1835
1836                 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1837                 slot->hw_desc = (void *) &hw_desc[i * db_sz];
1838                 dma_async_tx_descriptor_init(&slot->async_tx, chan);
1839                 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1840                 INIT_LIST_HEAD(&slot->chain_node);
1841                 INIT_LIST_HEAD(&slot->slot_node);
1842                 INIT_LIST_HEAD(&slot->group_list);
1843                 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1844                 slot->idx = i;
1845
1846                 spin_lock_bh(&ppc440spe_chan->lock);
1847                 ppc440spe_chan->slots_allocated++;
1848                 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1849                 spin_unlock_bh(&ppc440spe_chan->lock);
1850         }
1851
1852         if (i && !ppc440spe_chan->last_used) {
1853                 ppc440spe_chan->last_used =
1854                         list_entry(ppc440spe_chan->all_slots.next,
1855                                 struct ppc440spe_adma_desc_slot,
1856                                 slot_node);
1857         }
1858
1859         dev_dbg(ppc440spe_chan->device->common.dev,
1860                 "ppc440spe adma%d: allocated %d descriptor slots\n",
1861                 ppc440spe_chan->device->id, i);
1862
1863         /* initialize the channel and the chain with a null operation */
1864         if (init) {
1865                 switch (ppc440spe_chan->device->id) {
1866                 case PPC440SPE_DMA0_ID:
1867                 case PPC440SPE_DMA1_ID:
1868                         ppc440spe_chan->hw_chain_inited = 0;
1869                         /* Use WXOR for self-testing */
1870                         if (!ppc440spe_r6_tchan)
1871                                 ppc440spe_r6_tchan = ppc440spe_chan;
1872                         break;
1873                 case PPC440SPE_XOR_ID:
1874                         ppc440spe_chan_start_null_xor(ppc440spe_chan);
1875                         break;
1876                 default:
1877                         BUG();
1878                 }
1879                 ppc440spe_chan->needs_unmap = 1;
1880         }
1881
1882         return (i > 0) ? i : -ENOMEM;
1883 }
1884
1885 /**
1886  * ppc440spe_rxor_set_region_data -
1887  */
1888 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1889         u8 xor_arg_no, u32 mask)
1890 {
1891         struct xor_cb *xcb = desc->hw_desc;
1892
1893         xcb->ops[xor_arg_no].h |= mask;
1894 }
1895
1896 /**
1897  * ppc440spe_rxor_set_src -
1898  */
1899 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1900         u8 xor_arg_no, dma_addr_t addr)
1901 {
1902         struct xor_cb *xcb = desc->hw_desc;
1903
1904         xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1905         xcb->ops[xor_arg_no].l = addr;
1906 }
1907
1908 /**
1909  * ppc440spe_rxor_set_mult -
1910  */
1911 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1912         u8 xor_arg_no, u8 idx, u8 mult)
1913 {
1914         struct xor_cb *xcb = desc->hw_desc;
1915
1916         xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1917 }
1918
1919 /**
1920  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1921  *      has been achieved
1922  */
1923 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1924 {
1925         dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1926                 chan->device->id, chan->pending);
1927
1928         if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1929                 chan->pending = 0;
1930                 ppc440spe_chan_append(chan);
1931         }
1932 }
1933
1934 /**
1935  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1936  *      (it's not necessary that descriptors will be submitted to the h/w
1937  *      chains too right now)
1938  */
1939 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1940 {
1941         struct ppc440spe_adma_desc_slot *sw_desc;
1942         struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1943         struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1944         int slot_cnt;
1945         int slots_per_op;
1946         dma_cookie_t cookie;
1947
1948         sw_desc = tx_to_ppc440spe_adma_slot(tx);
1949
1950         group_start = sw_desc->group_head;
1951         slot_cnt = group_start->slot_cnt;
1952         slots_per_op = group_start->slots_per_op;
1953
1954         spin_lock_bh(&chan->lock);
1955         cookie = dma_cookie_assign(tx);
1956
1957         if (unlikely(list_empty(&chan->chain))) {
1958                 /* first peer */
1959                 list_splice_init(&sw_desc->group_list, &chan->chain);
1960                 chan_first_cdb[chan->device->id] = group_start;
1961         } else {
1962                 /* isn't first peer, bind CDBs to chain */
1963                 old_chain_tail = list_entry(chan->chain.prev,
1964                                         struct ppc440spe_adma_desc_slot,
1965                                         chain_node);
1966                 list_splice_init(&sw_desc->group_list,
1967                     &old_chain_tail->chain_node);
1968                 /* fix up the hardware chain */
1969                 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1970         }
1971
1972         /* increment the pending count by the number of operations */
1973         chan->pending += slot_cnt / slots_per_op;
1974         ppc440spe_adma_check_threshold(chan);
1975         spin_unlock_bh(&chan->lock);
1976
1977         dev_dbg(chan->device->common.dev,
1978                 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1979                 chan->device->id, __func__,
1980                 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1981
1982         return cookie;
1983 }
1984
1985 /**
1986  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1987  */
1988 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1989                 struct dma_chan *chan, unsigned long flags)
1990 {
1991         struct ppc440spe_adma_chan *ppc440spe_chan;
1992         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1993         int slot_cnt, slots_per_op;
1994
1995         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1996
1997         dev_dbg(ppc440spe_chan->device->common.dev,
1998                 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1999                 __func__);
2000
2001         spin_lock_bh(&ppc440spe_chan->lock);
2002         slot_cnt = slots_per_op = 1;
2003         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2004                         slots_per_op);
2005         if (sw_desc) {
2006                 group_start = sw_desc->group_head;
2007                 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2008                 group_start->unmap_len = 0;
2009                 sw_desc->async_tx.flags = flags;
2010         }
2011         spin_unlock_bh(&ppc440spe_chan->lock);
2012
2013         return sw_desc ? &sw_desc->async_tx : NULL;
2014 }
2015
2016 /**
2017  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2018  */
2019 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2020                 struct dma_chan *chan, dma_addr_t dma_dest,
2021                 dma_addr_t dma_src, size_t len, unsigned long flags)
2022 {
2023         struct ppc440spe_adma_chan *ppc440spe_chan;
2024         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2025         int slot_cnt, slots_per_op;
2026
2027         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2028
2029         if (unlikely(!len))
2030                 return NULL;
2031
2032         BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2033
2034         spin_lock_bh(&ppc440spe_chan->lock);
2035
2036         dev_dbg(ppc440spe_chan->device->common.dev,
2037                 "ppc440spe adma%d: %s len: %u int_en %d\n",
2038                 ppc440spe_chan->device->id, __func__, len,
2039                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2040         slot_cnt = slots_per_op = 1;
2041         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2042                 slots_per_op);
2043         if (sw_desc) {
2044                 group_start = sw_desc->group_head;
2045                 ppc440spe_desc_init_memcpy(group_start, flags);
2046                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2047                 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2048                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2049                 sw_desc->unmap_len = len;
2050                 sw_desc->async_tx.flags = flags;
2051         }
2052         spin_unlock_bh(&ppc440spe_chan->lock);
2053
2054         return sw_desc ? &sw_desc->async_tx : NULL;
2055 }
2056
2057 /**
2058  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2059  */
2060 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2061                 struct dma_chan *chan, dma_addr_t dma_dest,
2062                 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2063                 unsigned long flags)
2064 {
2065         struct ppc440spe_adma_chan *ppc440spe_chan;
2066         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2067         int slot_cnt, slots_per_op;
2068
2069         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2070
2071         ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2072                                      dma_dest, dma_src, src_cnt));
2073         if (unlikely(!len))
2074                 return NULL;
2075         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2076
2077         dev_dbg(ppc440spe_chan->device->common.dev,
2078                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2079                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2080                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2081
2082         spin_lock_bh(&ppc440spe_chan->lock);
2083         slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2084         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2085                         slots_per_op);
2086         if (sw_desc) {
2087                 group_start = sw_desc->group_head;
2088                 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2089                 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2090                 while (src_cnt--)
2091                         ppc440spe_adma_memcpy_xor_set_src(group_start,
2092                                 dma_src[src_cnt], src_cnt);
2093                 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2094                 sw_desc->unmap_len = len;
2095                 sw_desc->async_tx.flags = flags;
2096         }
2097         spin_unlock_bh(&ppc440spe_chan->lock);
2098
2099         return sw_desc ? &sw_desc->async_tx : NULL;
2100 }
2101
2102 static inline void
2103 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2104                                 int src_cnt);
2105 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2106
2107 /**
2108  * ppc440spe_adma_init_dma2rxor_slot -
2109  */
2110 static void ppc440spe_adma_init_dma2rxor_slot(
2111                 struct ppc440spe_adma_desc_slot *desc,
2112                 dma_addr_t *src, int src_cnt)
2113 {
2114         int i;
2115
2116         /* initialize CDB */
2117         for (i = 0; i < src_cnt; i++) {
2118                 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2119                                                  desc->src_cnt, (u32)src[i]);
2120         }
2121 }
2122
2123 /**
2124  * ppc440spe_dma01_prep_mult -
2125  * for Q operation where destination is also the source
2126  */
2127 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2128                 struct ppc440spe_adma_chan *ppc440spe_chan,
2129                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2130                 const unsigned char *scf, size_t len, unsigned long flags)
2131 {
2132         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2133         unsigned long op = 0;
2134         int slot_cnt;
2135
2136         set_bit(PPC440SPE_DESC_WXOR, &op);
2137         slot_cnt = 2;
2138
2139         spin_lock_bh(&ppc440spe_chan->lock);
2140
2141         /* use WXOR, each descriptor occupies one slot */
2142         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2143         if (sw_desc) {
2144                 struct ppc440spe_adma_chan *chan;
2145                 struct ppc440spe_adma_desc_slot *iter;
2146                 struct dma_cdb *hw_desc;
2147
2148                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2149                 set_bits(op, &sw_desc->flags);
2150                 sw_desc->src_cnt = src_cnt;
2151                 sw_desc->dst_cnt = dst_cnt;
2152                 /* First descriptor, zero data in the destination and copy it
2153                  * to q page using MULTICAST transfer.
2154                  */
2155                 iter = list_first_entry(&sw_desc->group_list,
2156                                         struct ppc440spe_adma_desc_slot,
2157                                         chain_node);
2158                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2159                 /* set 'next' pointer */
2160                 iter->hw_next = list_entry(iter->chain_node.next,
2161                                            struct ppc440spe_adma_desc_slot,
2162                                            chain_node);
2163                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2164                 hw_desc = iter->hw_desc;
2165                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2166
2167                 ppc440spe_desc_set_dest_addr(iter, chan,
2168                                              DMA_CUED_XOR_BASE, dst[0], 0);
2169                 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2170                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2171                                             src[0]);
2172                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2173                 iter->unmap_len = len;
2174
2175                 /*
2176                  * Second descriptor, multiply data from the q page
2177                  * and store the result in real destination.
2178                  */
2179                 iter = list_first_entry(&iter->chain_node,
2180                                         struct ppc440spe_adma_desc_slot,
2181                                         chain_node);
2182                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2183                 iter->hw_next = NULL;
2184                 if (flags & DMA_PREP_INTERRUPT)
2185                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2186                 else
2187                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2188
2189                 hw_desc = iter->hw_desc;
2190                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2191                 ppc440spe_desc_set_src_addr(iter, chan, 0,
2192                                             DMA_CUED_XOR_HB, dst[1]);
2193                 ppc440spe_desc_set_dest_addr(iter, chan,
2194                                              DMA_CUED_XOR_BASE, dst[0], 0);
2195
2196                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2197                                             DMA_CDB_SG_DST1, scf[0]);
2198                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2199                 iter->unmap_len = len;
2200                 sw_desc->async_tx.flags = flags;
2201         }
2202
2203         spin_unlock_bh(&ppc440spe_chan->lock);
2204
2205         return sw_desc;
2206 }
2207
2208 /**
2209  * ppc440spe_dma01_prep_sum_product -
2210  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2211  * the source.
2212  */
2213 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2214                 struct ppc440spe_adma_chan *ppc440spe_chan,
2215                 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2216                 const unsigned char *scf, size_t len, unsigned long flags)
2217 {
2218         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2219         unsigned long op = 0;
2220         int slot_cnt;
2221
2222         set_bit(PPC440SPE_DESC_WXOR, &op);
2223         slot_cnt = 3;
2224
2225         spin_lock_bh(&ppc440spe_chan->lock);
2226
2227         /* WXOR, each descriptor occupies one slot */
2228         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2229         if (sw_desc) {
2230                 struct ppc440spe_adma_chan *chan;
2231                 struct ppc440spe_adma_desc_slot *iter;
2232                 struct dma_cdb *hw_desc;
2233
2234                 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2235                 set_bits(op, &sw_desc->flags);
2236                 sw_desc->src_cnt = src_cnt;
2237                 sw_desc->dst_cnt = 1;
2238                 /* 1st descriptor, src[1] data to q page and zero destination */
2239                 iter = list_first_entry(&sw_desc->group_list,
2240                                         struct ppc440spe_adma_desc_slot,
2241                                         chain_node);
2242                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2243                 iter->hw_next = list_entry(iter->chain_node.next,
2244                                            struct ppc440spe_adma_desc_slot,
2245                                            chain_node);
2246                 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2247                 hw_desc = iter->hw_desc;
2248                 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2249
2250                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2251                                              *dst, 0);
2252                 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2253                                              ppc440spe_chan->qdest, 1);
2254                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2255                                             src[1]);
2256                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2257                 iter->unmap_len = len;
2258
2259                 /* 2nd descriptor, multiply src[1] data and store the
2260                  * result in destination */
2261                 iter = list_first_entry(&iter->chain_node,
2262                                         struct ppc440spe_adma_desc_slot,
2263                                         chain_node);
2264                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2265                 /* set 'next' pointer */
2266                 iter->hw_next = list_entry(iter->chain_node.next,
2267                                            struct ppc440spe_adma_desc_slot,
2268                                            chain_node);
2269                 if (flags & DMA_PREP_INTERRUPT)
2270                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2271                 else
2272                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2273
2274                 hw_desc = iter->hw_desc;
2275                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2276                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2277                                             ppc440spe_chan->qdest);
2278                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2279                                              *dst, 0);
2280                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2281                                             DMA_CDB_SG_DST1, scf[1]);
2282                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2283                 iter->unmap_len = len;
2284
2285                 /*
2286                  * 3rd descriptor, multiply src[0] data and xor it
2287                  * with destination
2288                  */
2289                 iter = list_first_entry(&iter->chain_node,
2290                                         struct ppc440spe_adma_desc_slot,
2291                                         chain_node);
2292                 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2293                 iter->hw_next = NULL;
2294                 if (flags & DMA_PREP_INTERRUPT)
2295                         set_bit(PPC440SPE_DESC_INT, &iter->flags);
2296                 else
2297                         clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2298
2299                 hw_desc = iter->hw_desc;
2300                 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2301                 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2302                                             src[0]);
2303                 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2304                                              *dst, 0);
2305                 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2306                                             DMA_CDB_SG_DST1, scf[0]);
2307                 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2308                 iter->unmap_len = len;
2309                 sw_desc->async_tx.flags = flags;
2310         }
2311
2312         spin_unlock_bh(&ppc440spe_chan->lock);
2313
2314         return sw_desc;
2315 }
2316
2317 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2318                 struct ppc440spe_adma_chan *ppc440spe_chan,
2319                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2320                 const unsigned char *scf, size_t len, unsigned long flags)
2321 {
2322         int slot_cnt;
2323         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2324         unsigned long op = 0;
2325         unsigned char mult = 1;
2326
2327         pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2328                  __func__, dst_cnt, src_cnt, len);
2329         /*  select operations WXOR/RXOR depending on the
2330          * source addresses of operators and the number
2331          * of destinations (RXOR support only Q-parity calculations)
2332          */
2333         set_bit(PPC440SPE_DESC_WXOR, &op);
2334         if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2335                 /* no active RXOR;
2336                  * do RXOR if:
2337                  * - there are more than 1 source,
2338                  * - len is aligned on 512-byte boundary,
2339                  * - source addresses fit to one of 4 possible regions.
2340                  */
2341                 if (src_cnt > 1 &&
2342                     !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2343                     (src[0] + len) == src[1]) {
2344                         /* may do RXOR R1 R2 */
2345                         set_bit(PPC440SPE_DESC_RXOR, &op);
2346                         if (src_cnt != 2) {
2347                                 /* may try to enhance region of RXOR */
2348                                 if ((src[1] + len) == src[2]) {
2349                                         /* do RXOR R1 R2 R3 */
2350                                         set_bit(PPC440SPE_DESC_RXOR123,
2351                                                 &op);
2352                                 } else if ((src[1] + len * 2) == src[2]) {
2353                                         /* do RXOR R1 R2 R4 */
2354                                         set_bit(PPC440SPE_DESC_RXOR124, &op);
2355                                 } else if ((src[1] + len * 3) == src[2]) {
2356                                         /* do RXOR R1 R2 R5 */
2357                                         set_bit(PPC440SPE_DESC_RXOR125,
2358                                                 &op);
2359                                 } else {
2360                                         /* do RXOR R1 R2 */
2361                                         set_bit(PPC440SPE_DESC_RXOR12,
2362                                                 &op);
2363                                 }
2364                         } else {
2365                                 /* do RXOR R1 R2 */
2366                                 set_bit(PPC440SPE_DESC_RXOR12, &op);
2367                         }
2368                 }
2369
2370                 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2371                         /* can not do this operation with RXOR */
2372                         clear_bit(PPC440SPE_RXOR_RUN,
2373                                 &ppc440spe_rxor_state);
2374                 } else {
2375                         /* can do; set block size right now */
2376                         ppc440spe_desc_set_rxor_block_size(len);
2377                 }
2378         }
2379
2380         /* Number of necessary slots depends on operation type selected */
2381         if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2382                 /*  This is a WXOR only chain. Need descriptors for each
2383                  * source to GF-XOR them with WXOR, and need descriptors
2384                  * for each destination to zero them with WXOR
2385                  */
2386                 slot_cnt = src_cnt;
2387
2388                 if (flags & DMA_PREP_ZERO_P) {
2389                         slot_cnt++;
2390                         set_bit(PPC440SPE_ZERO_P, &op);
2391                 }
2392                 if (flags & DMA_PREP_ZERO_Q) {
2393                         slot_cnt++;
2394                         set_bit(PPC440SPE_ZERO_Q, &op);
2395                 }
2396         } else {
2397                 /*  Need 1/2 descriptor for RXOR operation, and
2398                  * need (src_cnt - (2 or 3)) for WXOR of sources
2399                  * remained (if any)
2400                  */
2401                 slot_cnt = dst_cnt;
2402
2403                 if (flags & DMA_PREP_ZERO_P)
2404                         set_bit(PPC440SPE_ZERO_P, &op);
2405                 if (flags & DMA_PREP_ZERO_Q)
2406                         set_bit(PPC440SPE_ZERO_Q, &op);
2407
2408                 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2409                         slot_cnt += src_cnt - 2;
2410                 else
2411                         slot_cnt += src_cnt - 3;
2412
2413                 /*  Thus we have either RXOR only chain or
2414                  * mixed RXOR/WXOR
2415                  */
2416                 if (slot_cnt == dst_cnt)
2417                         /* RXOR only chain */
2418                         clear_bit(PPC440SPE_DESC_WXOR, &op);
2419         }
2420
2421         spin_lock_bh(&ppc440spe_chan->lock);
2422         /* for both RXOR/WXOR each descriptor occupies one slot */
2423         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2424         if (sw_desc) {
2425                 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2426                                 flags, op);
2427
2428                 /* setup dst/src/mult */
2429                 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2430                          __func__, dst[0], dst[1]);
2431                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2432                 while (src_cnt--) {
2433                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2434                                                   src_cnt);
2435
2436                         /* NOTE: "Multi = 0 is equivalent to = 1" as it
2437                          * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2438                          * doesn't work for RXOR with DMA0/1! Instead, multi=0
2439                          * leads to zeroing source data after RXOR.
2440                          * So, for P case set-up mult=1 explicitly.
2441                          */
2442                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2443                                 mult = scf[src_cnt];
2444                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2445                                 mult, src_cnt,  dst_cnt - 1);
2446                 }
2447
2448                 /* Setup byte count foreach slot just allocated */
2449                 sw_desc->async_tx.flags = flags;
2450                 list_for_each_entry(iter, &sw_desc->group_list,
2451                                 chain_node) {
2452                         ppc440spe_desc_set_byte_count(iter,
2453                                 ppc440spe_chan, len);
2454                         iter->unmap_len = len;
2455                 }
2456         }
2457         spin_unlock_bh(&ppc440spe_chan->lock);
2458
2459         return sw_desc;
2460 }
2461
2462 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2463                 struct ppc440spe_adma_chan *ppc440spe_chan,
2464                 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2465                 const unsigned char *scf, size_t len, unsigned long flags)
2466 {
2467         int slot_cnt, descs_per_op;
2468         struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2469         unsigned long op = 0;
2470         unsigned char mult = 1;
2471
2472         BUG_ON(!dst_cnt);
2473         /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2474                  __func__, dst_cnt, src_cnt, len);*/
2475
2476         spin_lock_bh(&ppc440spe_chan->lock);
2477         descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2478         if (descs_per_op < 0) {
2479                 spin_unlock_bh(&ppc440spe_chan->lock);
2480                 return NULL;
2481         }
2482
2483         /* depending on number of sources we have 1 or 2 RXOR chains */
2484         slot_cnt = descs_per_op * dst_cnt;
2485
2486         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2487         if (sw_desc) {
2488                 op = slot_cnt;
2489                 sw_desc->async_tx.flags = flags;
2490                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2491                         ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2492                                 --op ? 0 : flags);
2493                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2494                                 len);
2495                         iter->unmap_len = len;
2496
2497                         ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2498                         iter->rxor_cursor.len = len;
2499                         iter->descs_per_op = descs_per_op;
2500                 }
2501                 op = 0;
2502                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2503                         op++;
2504                         if (op % descs_per_op == 0)
2505                                 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2506                                                                   src_cnt);
2507                         if (likely(!list_is_last(&iter->chain_node,
2508                                                  &sw_desc->group_list))) {
2509                                 /* set 'next' pointer */
2510                                 iter->hw_next =
2511                                         list_entry(iter->chain_node.next,
2512                                                 struct ppc440spe_adma_desc_slot,
2513                                                 chain_node);
2514                                 ppc440spe_xor_set_link(iter, iter->hw_next);
2515                         } else {
2516                                 /* this is the last descriptor. */
2517                                 iter->hw_next = NULL;
2518                         }
2519                 }
2520
2521                 /* fixup head descriptor */
2522                 sw_desc->dst_cnt = dst_cnt;
2523                 if (flags & DMA_PREP_ZERO_P)
2524                         set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2525                 if (flags & DMA_PREP_ZERO_Q)
2526                         set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2527
2528                 /* setup dst/src/mult */
2529                 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2530
2531                 while (src_cnt--) {
2532                         /* handle descriptors (if dst_cnt == 2) inside
2533                          * the ppc440spe_adma_pq_set_srcxxx() functions
2534                          */
2535                         ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2536                                                   src_cnt);
2537                         if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2538                                 mult = scf[src_cnt];
2539                         ppc440spe_adma_pq_set_src_mult(sw_desc,
2540                                         mult, src_cnt, dst_cnt - 1);
2541                 }
2542         }
2543         spin_unlock_bh(&ppc440spe_chan->lock);
2544         ppc440spe_desc_set_rxor_block_size(len);
2545         return sw_desc;
2546 }
2547
2548 /**
2549  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2550  */
2551 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2552                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2553                 unsigned int src_cnt, const unsigned char *scf,
2554                 size_t len, unsigned long flags)
2555 {
2556         struct ppc440spe_adma_chan *ppc440spe_chan;
2557         struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2558         int dst_cnt = 0;
2559
2560         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2561
2562         ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2563                                     dst, src, src_cnt));
2564         BUG_ON(!len);
2565         BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2566         BUG_ON(!src_cnt);
2567
2568         if (src_cnt == 1 && dst[1] == src[0]) {
2569                 dma_addr_t dest[2];
2570
2571                 /* dst[1] is real destination (Q) */
2572                 dest[0] = dst[1];
2573                 /* this is the page to multicast source data to */
2574                 dest[1] = ppc440spe_chan->qdest;
2575                 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2576                                 dest, 2, src, src_cnt, scf, len, flags);
2577                 return sw_desc ? &sw_desc->async_tx : NULL;
2578         }
2579
2580         if (src_cnt == 2 && dst[1] == src[1]) {
2581                 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2582                                         &dst[1], src, 2, scf, len, flags);
2583                 return sw_desc ? &sw_desc->async_tx : NULL;
2584         }
2585
2586         if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2587                 BUG_ON(!dst[0]);
2588                 dst_cnt++;
2589                 flags |= DMA_PREP_ZERO_P;
2590         }
2591
2592         if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2593                 BUG_ON(!dst[1]);
2594                 dst_cnt++;
2595                 flags |= DMA_PREP_ZERO_Q;
2596         }
2597
2598         BUG_ON(!dst_cnt);
2599
2600         dev_dbg(ppc440spe_chan->device->common.dev,
2601                 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2602                 ppc440spe_chan->device->id, __func__, src_cnt, len,
2603                 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2604
2605         switch (ppc440spe_chan->device->id) {
2606         case PPC440SPE_DMA0_ID:
2607         case PPC440SPE_DMA1_ID:
2608                 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2609                                 dst, dst_cnt, src, src_cnt, scf,
2610                                 len, flags);
2611                 break;
2612
2613         case PPC440SPE_XOR_ID:
2614                 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2615                                 dst, dst_cnt, src, src_cnt, scf,
2616                                 len, flags);
2617                 break;
2618         }
2619
2620         return sw_desc ? &sw_desc->async_tx : NULL;
2621 }
2622
2623 /**
2624  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2625  * a PQ_ZERO_SUM operation
2626  */
2627 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2628                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2629                 unsigned int src_cnt, const unsigned char *scf, size_t len,
2630                 enum sum_check_flags *pqres, unsigned long flags)
2631 {
2632         struct ppc440spe_adma_chan *ppc440spe_chan;
2633         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2634         dma_addr_t pdest, qdest;
2635         int slot_cnt, slots_per_op, idst, dst_cnt;
2636
2637         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2638
2639         if (flags & DMA_PREP_PQ_DISABLE_P)
2640                 pdest = 0;
2641         else
2642                 pdest = pq[0];
2643
2644         if (flags & DMA_PREP_PQ_DISABLE_Q)
2645                 qdest = 0;
2646         else
2647                 qdest = pq[1];
2648
2649         ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2650                                             src, src_cnt, scf));
2651
2652         /* Always use WXOR for P/Q calculations (two destinations).
2653          * Need 1 or 2 extra slots to verify results are zero.
2654          */
2655         idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2656
2657         /* One additional slot per destination to clone P/Q
2658          * before calculation (we have to preserve destinations).
2659          */
2660         slot_cnt = src_cnt + dst_cnt * 2;
2661         slots_per_op = 1;
2662
2663         spin_lock_bh(&ppc440spe_chan->lock);
2664         sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2665                                              slots_per_op);
2666         if (sw_desc) {
2667                 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2668
2669                 /* Setup byte count for each slot just allocated */
2670                 sw_desc->async_tx.flags = flags;
2671                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2672                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2673                                                       len);
2674                         iter->unmap_len = len;
2675                 }
2676
2677                 if (pdest) {
2678                         struct dma_cdb *hw_desc;
2679                         struct ppc440spe_adma_chan *chan;
2680
2681                         iter = sw_desc->group_head;
2682                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2683                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2684                         iter->hw_next = list_entry(iter->chain_node.next,
2685                                                 struct ppc440spe_adma_desc_slot,
2686                                                 chain_node);
2687                         hw_desc = iter->hw_desc;
2688                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2689                         iter->src_cnt = 0;
2690                         iter->dst_cnt = 0;
2691                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
2692                                                      ppc440spe_chan->pdest, 0);
2693                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2694                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2695                                                       len);
2696                         iter->unmap_len = 0;
2697                         /* override pdest to preserve original P */
2698                         pdest = ppc440spe_chan->pdest;
2699                 }
2700                 if (qdest) {
2701                         struct dma_cdb *hw_desc;
2702                         struct ppc440spe_adma_chan *chan;
2703
2704                         iter = list_first_entry(&sw_desc->group_list,
2705                                                 struct ppc440spe_adma_desc_slot,
2706                                                 chain_node);
2707                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2708
2709                         if (pdest) {
2710                                 iter = list_entry(iter->chain_node.next,
2711                                                 struct ppc440spe_adma_desc_slot,
2712                                                 chain_node);
2713                         }
2714
2715                         memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2716                         iter->hw_next = list_entry(iter->chain_node.next,
2717                                                 struct ppc440spe_adma_desc_slot,
2718                                                 chain_node);
2719                         hw_desc = iter->hw_desc;
2720                         hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2721                         iter->src_cnt = 0;
2722                         iter->dst_cnt = 0;
2723                         ppc440spe_desc_set_dest_addr(iter, chan, 0,
2724                                                      ppc440spe_chan->qdest, 0);
2725                         ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2726                         ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2727                                                       len);
2728                         iter->unmap_len = 0;
2729                         /* override qdest to preserve original Q */
2730                         qdest = ppc440spe_chan->qdest;
2731                 }
2732
2733                 /* Setup destinations for P/Q ops */
2734                 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2735
2736                 /* Setup zero QWORDs into DCHECK CDBs */
2737                 idst = dst_cnt;
2738                 list_for_each_entry_reverse(iter, &sw_desc->group_list,
2739                                             chain_node) {
2740                         /*
2741                          * The last CDB corresponds to Q-parity check,
2742                          * the one before last CDB corresponds
2743                          * P-parity check
2744                          */
2745                         if (idst == DMA_DEST_MAX_NUM) {
2746                                 if (idst == dst_cnt) {
2747                                         set_bit(PPC440SPE_DESC_QCHECK,
2748                                                 &iter->flags);
2749                                 } else {
2750                                         set_bit(PPC440SPE_DESC_PCHECK,
2751                                                 &iter->flags);
2752                                 }
2753                         } else {
2754                                 if (qdest) {
2755                                         set_bit(PPC440SPE_DESC_QCHECK,
2756                                                 &iter->flags);
2757                                 } else {
2758                                         set_bit(PPC440SPE_DESC_PCHECK,
2759                                                 &iter->flags);
2760                                 }
2761                         }
2762                         iter->xor_check_result = pqres;
2763
2764                         /*
2765                          * set it to zero, if check fail then result will
2766                          * be updated
2767                          */
2768                         *iter->xor_check_result = 0;
2769                         ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2770                                 ppc440spe_qword);
2771
2772                         if (!(--dst_cnt))
2773                                 break;
2774                 }
2775
2776                 /* Setup sources and mults for P/Q ops */
2777                 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2778                                                      chain_node) {
2779                         struct ppc440spe_adma_chan *chan;
2780                         u32 mult_dst;
2781
2782                         chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2783                         ppc440spe_desc_set_src_addr(iter, chan, 0,
2784                                                     DMA_CUED_XOR_HB,
2785                                                     src[src_cnt - 1]);
2786                         if (qdest) {
2787                                 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2788                                                            DMA_CDB_SG_DST1;
2789                                 ppc440spe_desc_set_src_mult(iter, chan,
2790                                                             DMA_CUED_MULT1_OFF,
2791                                                             mult_dst,
2792                                                             scf[src_cnt - 1]);
2793                         }
2794                         if (!(--src_cnt))
2795                                 break;
2796                 }
2797         }
2798         spin_unlock_bh(&ppc440spe_chan->lock);
2799         return sw_desc ? &sw_desc->async_tx : NULL;
2800 }
2801
2802 /**
2803  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2804  * XOR ZERO_SUM operation
2805  */
2806 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2807                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2808                 size_t len, enum sum_check_flags *result, unsigned long flags)
2809 {
2810         struct dma_async_tx_descriptor *tx;
2811         dma_addr_t pq[2];
2812
2813         /* validate P, disable Q */
2814         pq[0] = src[0];
2815         pq[1] = 0;
2816         flags |= DMA_PREP_PQ_DISABLE_Q;
2817
2818         tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2819                                                 src_cnt - 1, 0, len,
2820                                                 result, flags);
2821         return tx;
2822 }
2823
2824 /**
2825  * ppc440spe_adma_set_dest - set destination address into descriptor
2826  */
2827 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2828                 dma_addr_t addr, int index)
2829 {
2830         struct ppc440spe_adma_chan *chan;
2831
2832         BUG_ON(index >= sw_desc->dst_cnt);
2833
2834         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2835
2836         switch (chan->device->id) {
2837         case PPC440SPE_DMA0_ID:
2838         case PPC440SPE_DMA1_ID:
2839                 /* to do: support transfers lengths >
2840                  * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2841                  */
2842                 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2843                         chan, 0, addr, index);
2844                 break;
2845         case PPC440SPE_XOR_ID:
2846                 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2847                 ppc440spe_desc_set_dest_addr(sw_desc,
2848                         chan, 0, addr, index);
2849                 break;
2850         }
2851 }
2852
2853 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2854                 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2855 {
2856         /*  To clear destinations update the descriptor
2857          * (P or Q depending on index) as follows:
2858          * addr is destination (0 corresponds to SG2):
2859          */
2860         ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2861
2862         /* ... and the addr is source: */
2863         ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2864
2865         /* addr is always SG2 then the mult is always DST1 */
2866         ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2867                                     DMA_CDB_SG_DST1, 1);
2868 }
2869
2870 /**
2871  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2872  * for the PQXOR operation
2873  */
2874 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2875                 dma_addr_t *addrs, unsigned long flags)
2876 {
2877         struct ppc440spe_adma_desc_slot *iter;
2878         struct ppc440spe_adma_chan *chan;
2879         dma_addr_t paddr, qaddr;
2880         dma_addr_t addr = 0, ppath, qpath;
2881         int index = 0, i;
2882
2883         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2884
2885         if (flags & DMA_PREP_PQ_DISABLE_P)
2886                 paddr = 0;
2887         else
2888                 paddr = addrs[0];
2889
2890         if (flags & DMA_PREP_PQ_DISABLE_Q)
2891                 qaddr = 0;
2892         else
2893                 qaddr = addrs[1];
2894
2895         if (!paddr || !qaddr)
2896                 addr = paddr ? paddr : qaddr;
2897
2898         switch (chan->device->id) {
2899         case PPC440SPE_DMA0_ID:
2900         case PPC440SPE_DMA1_ID:
2901                 /* walk through the WXOR source list and set P/Q-destinations
2902                  * for each slot:
2903                  */
2904                 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2905                         /* This is WXOR-only chain; may have 1/2 zero descs */
2906                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2907                                 index++;
2908                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2909                                 index++;
2910
2911                         iter = ppc440spe_get_group_entry(sw_desc, index);
2912                         if (addr) {
2913                                 /* one destination */
2914                                 list_for_each_entry_from(iter,
2915                                         &sw_desc->group_list, chain_node)
2916                                         ppc440spe_desc_set_dest_addr(iter, chan,
2917                                                 DMA_CUED_XOR_BASE, addr, 0);
2918                         } else {
2919                                 /* two destinations */
2920                                 list_for_each_entry_from(iter,
2921                                         &sw_desc->group_list, chain_node) {
2922                                         ppc440spe_desc_set_dest_addr(iter, chan,
2923                                                 DMA_CUED_XOR_BASE, paddr, 0);
2924                                         ppc440spe_desc_set_dest_addr(iter, chan,
2925                                                 DMA_CUED_XOR_BASE, qaddr, 1);
2926                                 }
2927                         }
2928
2929                         if (index) {
2930                                 /*  To clear destinations update the descriptor
2931                                  * (1st,2nd, or both depending on flags)
2932                                  */
2933                                 index = 0;
2934                                 if (test_bit(PPC440SPE_ZERO_P,
2935                                                 &sw_desc->flags)) {
2936                                         iter = ppc440spe_get_group_entry(
2937                                                         sw_desc, index++);
2938                                         ppc440spe_adma_pq_zero_op(iter, chan,
2939                                                         paddr);
2940                                 }
2941
2942                                 if (test_bit(PPC440SPE_ZERO_Q,
2943                                                 &sw_desc->flags)) {
2944                                         iter = ppc440spe_get_group_entry(
2945                                                         sw_desc, index++);
2946                                         ppc440spe_adma_pq_zero_op(iter, chan,
2947                                                         qaddr);
2948                                 }
2949
2950                                 return;
2951                         }
2952                 } else {
2953                         /* This is RXOR-only or RXOR/WXOR mixed chain */
2954
2955                         /* If we want to include destination into calculations,
2956                          * then make dest addresses cued with mult=1 (XOR).
2957                          */
2958                         ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2959                                         DMA_CUED_XOR_HB :
2960                                         DMA_CUED_XOR_BASE |
2961                                                 (1 << DMA_CUED_MULT1_OFF);
2962                         qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2963                                         DMA_CUED_XOR_HB :
2964                                         DMA_CUED_XOR_BASE |
2965                                                 (1 << DMA_CUED_MULT1_OFF);
2966
2967                         /* Setup destination(s) in RXOR slot(s) */
2968                         iter = ppc440spe_get_group_entry(sw_desc, index++);
2969                         ppc440spe_desc_set_dest_addr(iter, chan,
2970                                                 paddr ? ppath : qpath,
2971                                                 paddr ? paddr : qaddr, 0);
2972                         if (!addr) {
2973                                 /* two destinations */
2974                                 iter = ppc440spe_get_group_entry(sw_desc,
2975                                                                  index++);
2976                                 ppc440spe_desc_set_dest_addr(iter, chan,
2977                                                 qpath, qaddr, 0);
2978                         }
2979
2980                         if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2981                                 /* Setup destination(s) in remaining WXOR
2982                                  * slots
2983                                  */
2984                                 iter = ppc440spe_get_group_entry(sw_desc,
2985                                                                  index);
2986                                 if (addr) {
2987                                         /* one destination */
2988                                         list_for_each_entry_from(iter,
2989                                             &sw_desc->group_list,
2990                                             chain_node)
2991                                                 ppc440spe_desc_set_dest_addr(
2992                                                         iter, chan,
2993                                                         DMA_CUED_XOR_BASE,
2994                                                         addr, 0);
2995
2996                                 } else {
2997                                         /* two destinations */
2998                                         list_for_each_entry_from(iter,
2999                                             &sw_desc->group_list,
3000                                             chain_node) {
3001                                                 ppc440spe_desc_set_dest_addr(
3002                                                         iter, chan,
3003                                                         DMA_CUED_XOR_BASE,
3004                                                         paddr, 0);
3005                                                 ppc440spe_desc_set_dest_addr(
3006                                                         iter, chan,
3007                                                         DMA_CUED_XOR_BASE,
3008                                                         qaddr, 1);
3009                                         }
3010                                 }
3011                         }
3012
3013                 }
3014                 break;
3015
3016         case PPC440SPE_XOR_ID:
3017                 /* DMA2 descriptors have only 1 destination, so there are
3018                  * two chains - one for each dest.
3019                  * If we want to include destination into calculations,
3020                  * then make dest addresses cued with mult=1 (XOR).
3021                  */
3022                 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3023                                 DMA_CUED_XOR_HB :
3024                                 DMA_CUED_XOR_BASE |
3025                                         (1 << DMA_CUED_MULT1_OFF);
3026
3027                 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3028                                 DMA_CUED_XOR_HB :
3029                                 DMA_CUED_XOR_BASE |
3030                                         (1 << DMA_CUED_MULT1_OFF);
3031
3032                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3033                 for (i = 0; i < sw_desc->descs_per_op; i++) {
3034                         ppc440spe_desc_set_dest_addr(iter, chan,
3035                                 paddr ? ppath : qpath,
3036                                 paddr ? paddr : qaddr, 0);
3037                         iter = list_entry(iter->chain_node.next,
3038                                           struct ppc440spe_adma_desc_slot,
3039                                           chain_node);
3040                 }
3041
3042                 if (!addr) {
3043                         /* Two destinations; setup Q here */
3044                         iter = ppc440spe_get_group_entry(sw_desc,
3045                                 sw_desc->descs_per_op);
3046                         for (i = 0; i < sw_desc->descs_per_op; i++) {
3047                                 ppc440spe_desc_set_dest_addr(iter,
3048                                         chan, qpath, qaddr, 0);
3049                                 iter = list_entry(iter->chain_node.next,
3050                                                 struct ppc440spe_adma_desc_slot,
3051                                                 chain_node);
3052                         }
3053                 }
3054
3055                 break;
3056         }
3057 }
3058
3059 /**
3060  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3061  * for the PQ_ZERO_SUM operation
3062  */
3063 static void ppc440spe_adma_pqzero_sum_set_dest(
3064                 struct ppc440spe_adma_desc_slot *sw_desc,
3065                 dma_addr_t paddr, dma_addr_t qaddr)
3066 {
3067         struct ppc440spe_adma_desc_slot *iter, *end;
3068         struct ppc440spe_adma_chan *chan;
3069         dma_addr_t addr = 0;
3070         int idx;
3071
3072         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3073
3074         /* walk through the WXOR source list and set P/Q-destinations
3075          * for each slot
3076          */
3077         idx = (paddr && qaddr) ? 2 : 1;
3078         /* set end */
3079         list_for_each_entry_reverse(end, &sw_desc->group_list,
3080                                     chain_node) {
3081                 if (!(--idx))
3082                         break;
3083         }
3084         /* set start */
3085         idx = (paddr && qaddr) ? 2 : 1;
3086         iter = ppc440spe_get_group_entry(sw_desc, idx);
3087
3088         if (paddr && qaddr) {
3089                 /* two destinations */
3090                 list_for_each_entry_from(iter, &sw_desc->group_list,
3091                                          chain_node) {
3092                         if (unlikely(iter == end))
3093                                 break;
3094                         ppc440spe_desc_set_dest_addr(iter, chan,
3095                                                 DMA_CUED_XOR_BASE, paddr, 0);
3096                         ppc440spe_desc_set_dest_addr(iter, chan,
3097                                                 DMA_CUED_XOR_BASE, qaddr, 1);
3098                 }
3099         } else {
3100                 /* one destination */
3101                 addr = paddr ? paddr : qaddr;
3102                 list_for_each_entry_from(iter, &sw_desc->group_list,
3103                                          chain_node) {
3104                         if (unlikely(iter == end))
3105                                 break;
3106                         ppc440spe_desc_set_dest_addr(iter, chan,
3107                                                 DMA_CUED_XOR_BASE, addr, 0);
3108                 }
3109         }
3110
3111         /*  The remaining descriptors are DATACHECK. These have no need in
3112          * destination. Actually, these destinations are used there
3113          * as sources for check operation. So, set addr as source.
3114          */
3115         ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3116
3117         if (!addr) {
3118                 end = list_entry(end->chain_node.next,
3119                                  struct ppc440spe_adma_desc_slot, chain_node);
3120                 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3121         }
3122 }
3123
3124 /**
3125  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3126  */
3127 static inline void ppc440spe_desc_set_xor_src_cnt(
3128                         struct ppc440spe_adma_desc_slot *desc,
3129                         int src_cnt)
3130 {
3131         struct xor_cb *hw_desc = desc->hw_desc;
3132
3133         hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3134         hw_desc->cbc |= src_cnt;
3135 }
3136
3137 /**
3138  * ppc440spe_adma_pq_set_src - set source address into descriptor
3139  */
3140 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3141                 dma_addr_t addr, int index)
3142 {
3143         struct ppc440spe_adma_chan *chan;
3144         dma_addr_t haddr = 0;
3145         struct ppc440spe_adma_desc_slot *iter = NULL;
3146
3147         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3148
3149         switch (chan->device->id) {
3150         case PPC440SPE_DMA0_ID:
3151         case PPC440SPE_DMA1_ID:
3152                 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3153                  */
3154                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3155                         /* RXOR-only or RXOR/WXOR operation */
3156                         int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3157                                 &sw_desc->flags) ?  2 : 3;
3158
3159                         if (index == 0) {
3160                                 /* 1st slot (RXOR) */
3161                                 /* setup sources region (R1-2-3, R1-2-4,
3162                                  * or R1-2-5)
3163                                  */
3164                                 if (test_bit(PPC440SPE_DESC_RXOR12,
3165                                                 &sw_desc->flags))
3166                                         haddr = DMA_RXOR12 <<
3167                                                 DMA_CUED_REGION_OFF;
3168                                 else if (test_bit(PPC440SPE_DESC_RXOR123,
3169                                     &sw_desc->flags))
3170                                         haddr = DMA_RXOR123 <<
3171                                                 DMA_CUED_REGION_OFF;
3172                                 else if (test_bit(PPC440SPE_DESC_RXOR124,
3173                                     &sw_desc->flags))
3174                                         haddr = DMA_RXOR124 <<
3175                                                 DMA_CUED_REGION_OFF;
3176                                 else if (test_bit(PPC440SPE_DESC_RXOR125,
3177                                     &sw_desc->flags))
3178                                         haddr = DMA_RXOR125 <<
3179                                                 DMA_CUED_REGION_OFF;
3180                                 else
3181                                         BUG();
3182                                 haddr |= DMA_CUED_XOR_BASE;
3183                                 iter = ppc440spe_get_group_entry(sw_desc, 0);
3184                         } else if (index < iskip) {
3185                                 /* 1st slot (RXOR)
3186                                  * shall actually set source address only once
3187                                  * instead of first <iskip>
3188                                  */
3189                                 iter = NULL;
3190                         } else {
3191                                 /* 2nd/3d and next slots (WXOR);
3192                                  * skip first slot with RXOR
3193                                  */
3194                                 haddr = DMA_CUED_XOR_HB;
3195                                 iter = ppc440spe_get_group_entry(sw_desc,
3196                                     index - iskip + sw_desc->dst_cnt);
3197                         }
3198                 } else {
3199                         int znum = 0;
3200
3201                         /* WXOR-only operation; skip first slots with
3202                          * zeroing destinations
3203                          */
3204                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3205                                 znum++;
3206                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3207                                 znum++;
3208
3209                         haddr = DMA_CUED_XOR_HB;
3210                         iter = ppc440spe_get_group_entry(sw_desc,
3211                                         index + znum);
3212                 }
3213
3214                 if (likely(iter)) {
3215                         ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3216
3217                         if (!index &&
3218                             test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3219                             sw_desc->dst_cnt == 2) {
3220                                 /* if we have two destinations for RXOR, then
3221                                  * setup source in the second descr too
3222                                  */
3223                                 iter = ppc440spe_get_group_entry(sw_desc, 1);
3224                                 ppc440spe_desc_set_src_addr(iter, chan, 0,
3225                                         haddr, addr);
3226                         }
3227                 }
3228                 break;
3229
3230         case PPC440SPE_XOR_ID:
3231                 /* DMA2 may do Biskup */
3232                 iter = sw_desc->group_head;
3233                 if (iter->dst_cnt == 2) {
3234                         /* both P & Q calculations required; set P src here */
3235                         ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3236
3237                         /* this is for Q */
3238                         iter = ppc440spe_get_group_entry(sw_desc,
3239                                 sw_desc->descs_per_op);
3240                 }
3241                 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3242                 break;
3243         }
3244 }
3245
3246 /**
3247  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3248  */
3249 static void ppc440spe_adma_memcpy_xor_set_src(
3250                 struct ppc440spe_adma_desc_slot *sw_desc,
3251                 dma_addr_t addr, int index)
3252 {
3253         struct ppc440spe_adma_chan *chan;
3254
3255         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3256         sw_desc = sw_desc->group_head;
3257
3258         if (likely(sw_desc))
3259                 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3260 }
3261
3262 /**
3263  * ppc440spe_adma_dma2rxor_inc_addr  -
3264  */
3265 static void ppc440spe_adma_dma2rxor_inc_addr(
3266                 struct ppc440spe_adma_desc_slot *desc,
3267                 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3268 {
3269         cursor->addr_count++;
3270         if (index == src_cnt - 1) {
3271                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3272         } else if (cursor->addr_count == XOR_MAX_OPS) {
3273                 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3274                 cursor->addr_count = 0;
3275                 cursor->desc_count++;
3276         }
3277 }
3278
3279 /**
3280  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3281  */
3282 static int ppc440spe_adma_dma2rxor_prep_src(
3283                 struct ppc440spe_adma_desc_slot *hdesc,
3284                 struct ppc440spe_rxor *cursor, int index,
3285                 int src_cnt, u32 addr)
3286 {
3287         int rval = 0;
3288         u32 sign;
3289         struct ppc440spe_adma_desc_slot *desc = hdesc;
3290         int i;
3291
3292         for (i = 0; i < cursor->desc_count; i++) {
3293                 desc = list_entry(hdesc->chain_node.next,
3294                                   struct ppc440spe_adma_desc_slot,
3295                                   chain_node);
3296         }
3297
3298         switch (cursor->state) {
3299         case 0:
3300                 if (addr == cursor->addrl + cursor->len) {
3301                         /* direct RXOR */
3302                         cursor->state = 1;
3303                         cursor->xor_count++;
3304                         if (index == src_cnt-1) {
3305                                 ppc440spe_rxor_set_region(desc,
3306                                         cursor->addr_count,
3307                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3308                                 ppc440spe_adma_dma2rxor_inc_addr(
3309                                         desc, cursor, index, src_cnt);
3310                         }
3311                 } else if (cursor->addrl == addr + cursor->len) {
3312                         /* reverse RXOR */
3313                         cursor->state = 1;
3314                         cursor->xor_count++;
3315                         set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3316                         if (index == src_cnt-1) {
3317                                 ppc440spe_rxor_set_region(desc,
3318                                         cursor->addr_count,
3319                                         DMA_RXOR12 << DMA_CUED_REGION_OFF);
3320                                 ppc440spe_adma_dma2rxor_inc_addr(
3321                                         desc, cursor, index, src_cnt);
3322                         }
3323                 } else {
3324                         printk(KERN_ERR "Cannot build "
3325                                 "DMA2 RXOR command block.\n");
3326                         BUG();
3327                 }
3328                 break;
3329         case 1:
3330                 sign = test_bit(cursor->addr_count,
3331                                 desc->reverse_flags)
3332                         ? -1 : 1;
3333                 if (index == src_cnt-2 || (sign == -1
3334                         && addr != cursor->addrl - 2*cursor->len)) {
3335                         cursor->state = 0;
3336                         cursor->xor_count = 1;
3337                         cursor->addrl = addr;
3338                         ppc440spe_rxor_set_region(desc,
3339                                 cursor->addr_count,
3340                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3341                         ppc440spe_adma_dma2rxor_inc_addr(
3342                                 desc, cursor, index, src_cnt);
3343                 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3344                         cursor->state = 2;
3345                         cursor->xor_count = 0;
3346                         ppc440spe_rxor_set_region(desc,
3347                                 cursor->addr_count,
3348                                 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3349                         if (index == src_cnt-1) {
3350                                 ppc440spe_adma_dma2rxor_inc_addr(
3351                                         desc, cursor, index, src_cnt);
3352                         }
3353                 } else if (addr == cursor->addrl + 3*cursor->len) {
3354                         cursor->state = 2;
3355                         cursor->xor_count = 0;
3356                         ppc440spe_rxor_set_region(desc,
3357                                 cursor->addr_count,
3358                                 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3359                         if (index == src_cnt-1) {
3360                                 ppc440spe_adma_dma2rxor_inc_addr(
3361                                         desc, cursor, index, src_cnt);
3362                         }
3363                 } else if (addr == cursor->addrl + 4*cursor->len) {
3364                         cursor->state = 2;
3365                         cursor->xor_count = 0;
3366                         ppc440spe_rxor_set_region(desc,
3367                                 cursor->addr_count,
3368                                 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3369                         if (index == src_cnt-1) {
3370                                 ppc440spe_adma_dma2rxor_inc_addr(
3371                                         desc, cursor, index, src_cnt);
3372                         }
3373                 } else {
3374                         cursor->state = 0;
3375                         cursor->xor_count = 1;
3376                         cursor->addrl = addr;
3377                         ppc440spe_rxor_set_region(desc,
3378                                 cursor->addr_count,
3379                                 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3380                         ppc440spe_adma_dma2rxor_inc_addr(
3381                                 desc, cursor, index, src_cnt);
3382                 }
3383                 break;
3384         case 2:
3385                 cursor->state = 0;
3386                 cursor->addrl = addr;
3387                 cursor->xor_count++;
3388                 if (index) {
3389                         ppc440spe_adma_dma2rxor_inc_addr(
3390                                 desc, cursor, index, src_cnt);
3391                 }
3392                 break;
3393         }
3394
3395         return rval;
3396 }
3397
3398 /**
3399  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3400  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3401  */
3402 static void ppc440spe_adma_dma2rxor_set_src(
3403                 struct ppc440spe_adma_desc_slot *desc,
3404                 int index, dma_addr_t addr)
3405 {
3406         struct xor_cb *xcb = desc->hw_desc;
3407         int k = 0, op = 0, lop = 0;
3408
3409         /* get the RXOR operand which corresponds to index addr */
3410         while (op <= index) {
3411                 lop = op;
3412                 if (k == XOR_MAX_OPS) {
3413                         k = 0;
3414                         desc = list_entry(desc->chain_node.next,
3415                                 struct ppc440spe_adma_desc_slot, chain_node);
3416                         xcb = desc->hw_desc;
3417
3418                 }
3419                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3420                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3421                         op += 2;
3422                 else
3423                         op += 3;
3424         }
3425
3426         BUG_ON(k < 1);
3427
3428         if (test_bit(k-1, desc->reverse_flags)) {
3429                 /* reverse operand order; put last op in RXOR group */
3430                 if (index == op - 1)
3431                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3432         } else {
3433                 /* direct operand order; put first op in RXOR group */
3434                 if (index == lop)
3435                         ppc440spe_rxor_set_src(desc, k - 1, addr);
3436         }
3437 }
3438
3439 /**
3440  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3441  *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3442  */
3443 static void ppc440spe_adma_dma2rxor_set_mult(
3444                 struct ppc440spe_adma_desc_slot *desc,
3445                 int index, u8 mult)
3446 {
3447         struct xor_cb *xcb = desc->hw_desc;
3448         int k = 0, op = 0, lop = 0;
3449
3450         /* get the RXOR operand which corresponds to index mult */
3451         while (op <= index) {
3452                 lop = op;
3453                 if (k == XOR_MAX_OPS) {
3454                         k = 0;
3455                         desc = list_entry(desc->chain_node.next,
3456                                           struct ppc440spe_adma_desc_slot,
3457                                           chain_node);
3458                         xcb = desc->hw_desc;
3459
3460                 }
3461                 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3462                     (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3463                         op += 2;
3464                 else
3465                         op += 3;
3466         }
3467
3468         BUG_ON(k < 1);
3469         if (test_bit(k-1, desc->reverse_flags)) {
3470                 /* reverse order */
3471                 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3472         } else {
3473                 /* direct order */
3474                 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3475         }
3476 }
3477
3478 /**
3479  * ppc440spe_init_rxor_cursor -
3480  */
3481 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3482 {
3483         memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3484         cursor->state = 2;
3485 }
3486
3487 /**
3488  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3489  * descriptor for the PQXOR operation
3490  */
3491 static void ppc440spe_adma_pq_set_src_mult(
3492                 struct ppc440spe_adma_desc_slot *sw_desc,
3493                 unsigned char mult, int index, int dst_pos)
3494 {
3495         struct ppc440spe_adma_chan *chan;
3496         u32 mult_idx, mult_dst;
3497         struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3498
3499         chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3500
3501         switch (chan->device->id) {
3502         case PPC440SPE_DMA0_ID:
3503         case PPC440SPE_DMA1_ID:
3504                 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3505                         int region = test_bit(PPC440SPE_DESC_RXOR12,
3506                                         &sw_desc->flags) ? 2 : 3;
3507
3508                         if (index < region) {
3509                                 /* RXOR multipliers */
3510                                 iter = ppc440spe_get_group_entry(sw_desc,
3511                                         sw_desc->dst_cnt - 1);
3512                                 if (sw_desc->dst_cnt == 2)
3513                                         iter1 = ppc440spe_get_group_entry(
3514                                                         sw_desc, 0);
3515
3516                                 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3517                                 mult_dst = DMA_CDB_SG_SRC;
3518                         } else {
3519                                 /* WXOR multiplier */
3520                                 iter = ppc440spe_get_group_entry(sw_desc,
3521                                                         index - region +
3522                                                         sw_desc->dst_cnt);
3523                                 mult_idx = DMA_CUED_MULT1_OFF;
3524                                 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3525                                                      DMA_CDB_SG_DST1;
3526                         }
3527                 } else {
3528                         int znum = 0;
3529
3530                         /* WXOR-only;
3531                          * skip first slots with destinations (if ZERO_DST has
3532                          * place)
3533                          */
3534                         if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3535                                 znum++;
3536                         if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3537                                 znum++;
3538
3539                         iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3540                         mult_idx = DMA_CUED_MULT1_OFF;
3541                         mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3542                 }
3543
3544                 if (likely(iter)) {
3545                         ppc440spe_desc_set_src_mult(iter, chan,
3546                                 mult_idx, mult_dst, mult);
3547
3548                         if (unlikely(iter1)) {
3549                                 /* if we have two destinations for RXOR, then
3550                                  * we've just set Q mult. Set-up P now.
3551                                  */
3552                                 ppc440spe_desc_set_src_mult(iter1, chan,
3553                                         mult_idx, mult_dst, 1);
3554                         }
3555
3556                 }
3557                 break;
3558
3559         case PPC440SPE_XOR_ID:
3560                 iter = sw_desc->group_head;
3561                 if (sw_desc->dst_cnt == 2) {
3562                         /* both P & Q calculations required; set P mult here */
3563                         ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3564
3565                         /* and then set Q mult */
3566                         iter = ppc440spe_get_group_entry(sw_desc,
3567                                sw_desc->descs_per_op);
3568                 }
3569                 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3570                 break;
3571         }
3572 }
3573
3574 /**
3575  * ppc440spe_adma_free_chan_resources - free the resources allocated
3576  */
3577 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3578 {
3579         struct ppc440spe_adma_chan *ppc440spe_chan;
3580         struct ppc440spe_adma_desc_slot *iter, *_iter;
3581         int in_use_descs = 0;
3582
3583         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3584         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3585
3586         spin_lock_bh(&ppc440spe_chan->lock);
3587         list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3588                                         chain_node) {
3589                 in_use_descs++;
3590                 list_del(&iter->chain_node);
3591         }
3592         list_for_each_entry_safe_reverse(iter, _iter,
3593                         &ppc440spe_chan->all_slots, slot_node) {
3594                 list_del(&iter->slot_node);
3595                 kfree(iter);
3596                 ppc440spe_chan->slots_allocated--;
3597         }
3598         ppc440spe_chan->last_used = NULL;
3599
3600         dev_dbg(ppc440spe_chan->device->common.dev,
3601                 "ppc440spe adma%d %s slots_allocated %d\n",
3602                 ppc440spe_chan->device->id,
3603                 __func__, ppc440spe_chan->slots_allocated);
3604         spin_unlock_bh(&ppc440spe_chan->lock);
3605
3606         /* one is ok since we left it on there on purpose */
3607         if (in_use_descs > 1)
3608                 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3609                         in_use_descs - 1);
3610 }
3611
3612 /**
3613  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3614  * @chan: ADMA channel handle
3615  * @cookie: ADMA transaction identifier
3616  * @txstate: a holder for the current state of the channel
3617  */
3618 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3619                         dma_cookie_t cookie, struct dma_tx_state *txstate)
3620 {
3621         struct ppc440spe_adma_chan *ppc440spe_chan;
3622         enum dma_status ret;
3623
3624         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3625         ret = dma_cookie_status(chan, cookie, txstate);
3626         if (ret == DMA_COMPLETE)
3627                 return ret;
3628
3629         ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3630
3631         return dma_cookie_status(chan, cookie, txstate);
3632 }
3633
3634 /**
3635  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3636  */
3637 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3638 {
3639         struct ppc440spe_adma_chan *chan = data;
3640
3641         dev_dbg(chan->device->common.dev,
3642                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3643
3644         tasklet_schedule(&chan->irq_tasklet);
3645         ppc440spe_adma_device_clear_eot_status(chan);
3646
3647         return IRQ_HANDLED;
3648 }
3649
3650 /**
3651  * ppc440spe_adma_err_handler - DMA error interrupt handler;
3652  *      do the same things as a eot handler
3653  */
3654 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3655 {
3656         struct ppc440spe_adma_chan *chan = data;
3657
3658         dev_dbg(chan->device->common.dev,
3659                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3660
3661         tasklet_schedule(&chan->irq_tasklet);
3662         ppc440spe_adma_device_clear_eot_status(chan);
3663
3664         return IRQ_HANDLED;
3665 }
3666
3667 /**
3668  * ppc440spe_test_callback - called when test operation has been done
3669  */
3670 static void ppc440spe_test_callback(void *unused)
3671 {
3672         complete(&ppc440spe_r6_test_comp);
3673 }
3674
3675 /**
3676  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3677  */
3678 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3679 {
3680         struct ppc440spe_adma_chan *ppc440spe_chan;
3681
3682         ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3683         dev_dbg(ppc440spe_chan->device->common.dev,
3684                 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3685                 __func__, ppc440spe_chan->pending);
3686
3687         if (ppc440spe_chan->pending) {
3688                 ppc440spe_chan->pending = 0;
3689                 ppc440spe_chan_append(ppc440spe_chan);
3690         }
3691 }
3692
3693 /**
3694  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3695  *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3696  *      specific operation)
3697  */
3698 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3699 {
3700         struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3701         dma_cookie_t cookie;
3702         int slot_cnt, slots_per_op;
3703
3704         dev_dbg(chan->device->common.dev,
3705                 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3706
3707         spin_lock_bh(&chan->lock);
3708         slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3709         sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3710         if (sw_desc) {
3711                 group_start = sw_desc->group_head;
3712                 list_splice_init(&sw_desc->group_list, &chan->chain);
3713                 async_tx_ack(&sw_desc->async_tx);
3714                 ppc440spe_desc_init_null_xor(group_start);
3715
3716                 cookie = dma_cookie_assign(&sw_desc->async_tx);
3717
3718                 /* initialize the completed cookie to be less than
3719                  * the most recently used cookie
3720                  */
3721                 chan->common.completed_cookie = cookie - 1;
3722
3723                 /* channel should not be busy */
3724                 BUG_ON(ppc440spe_chan_is_busy(chan));
3725
3726                 /* set the descriptor address */
3727                 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3728
3729                 /* run the descriptor */
3730                 ppc440spe_chan_run(chan);
3731         } else
3732                 printk(KERN_ERR "ppc440spe adma%d"
3733                         " failed to allocate null descriptor\n",
3734                         chan->device->id);
3735         spin_unlock_bh(&chan->lock);
3736 }
3737
3738 /**
3739  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3740  *      For this we just perform one WXOR operation with the same source
3741  *      and destination addresses, the GF-multiplier is 1; so if RAID-6
3742  *      capabilities are enabled then we'll get src/dst filled with zero.
3743  */
3744 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3745 {
3746         struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3747         struct page *pg;
3748         char *a;
3749         dma_addr_t dma_addr, addrs[2];
3750         unsigned long op = 0;
3751         int rval = 0;
3752
3753         set_bit(PPC440SPE_DESC_WXOR, &op);
3754
3755         pg = alloc_page(GFP_KERNEL);
3756         if (!pg)
3757                 return -ENOMEM;
3758
3759         spin_lock_bh(&chan->lock);
3760         sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3761         if (sw_desc) {
3762                 /* 1 src, 1 dsr, int_ena, WXOR */
3763                 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3764                 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3765                         ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3766                         iter->unmap_len = PAGE_SIZE;
3767                 }
3768         } else {
3769                 rval = -EFAULT;
3770                 spin_unlock_bh(&chan->lock);
3771                 goto exit;
3772         }
3773         spin_unlock_bh(&chan->lock);
3774
3775         /* Fill the test page with ones */
3776         memset(page_address(pg), 0xFF, PAGE_SIZE);
3777         dma_addr = dma_map_page(chan->device->dev, pg, 0,
3778                                 PAGE_SIZE, DMA_BIDIRECTIONAL);
3779
3780         /* Setup addresses */
3781         ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3782         ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3783         addrs[0] = dma_addr;
3784         addrs[1] = 0;
3785         ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3786
3787         async_tx_ack(&sw_desc->async_tx);
3788         sw_desc->async_tx.callback = ppc440spe_test_callback;
3789         sw_desc->async_tx.callback_param = NULL;
3790
3791         init_completion(&ppc440spe_r6_test_comp);
3792
3793         ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3794         ppc440spe_adma_issue_pending(&chan->common);
3795
3796         wait_for_completion(&ppc440spe_r6_test_comp);
3797
3798         /* Now check if the test page is zeroed */
3799         a = page_address(pg);
3800         if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3801                 /* page is zero - RAID-6 enabled */
3802                 rval = 0;
3803         } else {
3804                 /* RAID-6 was not enabled */
3805                 rval = -EINVAL;
3806         }
3807 exit:
3808         __free_page(pg);
3809         return rval;
3810 }
3811
3812 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3813 {
3814         switch (adev->id) {
3815         case PPC440SPE_DMA0_ID:
3816         case PPC440SPE_DMA1_ID:
3817                 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3818                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3819                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3820                 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3821                 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3822                 break;
3823         case PPC440SPE_XOR_ID:
3824                 dma_cap_set(DMA_XOR, adev->common.cap_mask);
3825                 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3826                 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3827                 adev->common.cap_mask = adev->common.cap_mask;
3828                 break;
3829         }
3830
3831         /* Set base routines */
3832         adev->common.device_alloc_chan_resources =
3833                                 ppc440spe_adma_alloc_chan_resources;
3834         adev->common.device_free_chan_resources =
3835                                 ppc440spe_adma_free_chan_resources;
3836         adev->common.device_tx_status = ppc440spe_adma_tx_status;
3837         adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3838
3839         /* Set prep routines based on capability */
3840         if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3841                 adev->common.device_prep_dma_memcpy =
3842                         ppc440spe_adma_prep_dma_memcpy;
3843         }
3844         if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3845                 adev->common.max_xor = XOR_MAX_OPS;
3846                 adev->common.device_prep_dma_xor =
3847                         ppc440spe_adma_prep_dma_xor;
3848         }
3849         if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3850                 switch (adev->id) {
3851                 case PPC440SPE_DMA0_ID:
3852                         dma_set_maxpq(&adev->common,
3853                                 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3854                         break;
3855                 case PPC440SPE_DMA1_ID:
3856                         dma_set_maxpq(&adev->common,
3857                                 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3858                         break;
3859                 case PPC440SPE_XOR_ID:
3860                         adev->common.max_pq = XOR_MAX_OPS * 3;
3861                         break;
3862                 }
3863                 adev->common.device_prep_dma_pq =
3864                         ppc440spe_adma_prep_dma_pq;
3865         }
3866         if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3867                 switch (adev->id) {
3868                 case PPC440SPE_DMA0_ID:
3869                         adev->common.max_pq = DMA0_FIFO_SIZE /
3870                                                 sizeof(struct dma_cdb);
3871                         break;
3872                 case PPC440SPE_DMA1_ID:
3873                         adev->common.max_pq = DMA1_FIFO_SIZE /
3874                                                 sizeof(struct dma_cdb);
3875                         break;
3876                 }
3877                 adev->common.device_prep_dma_pq_val =
3878                         ppc440spe_adma_prep_dma_pqzero_sum;
3879         }
3880         if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3881                 switch (adev->id) {
3882                 case PPC440SPE_DMA0_ID:
3883                         adev->common.max_xor = DMA0_FIFO_SIZE /
3884                                                 sizeof(struct dma_cdb);
3885                         break;
3886                 case PPC440SPE_DMA1_ID:
3887                         adev->common.max_xor = DMA1_FIFO_SIZE /
3888                                                 sizeof(struct dma_cdb);
3889                         break;
3890                 }
3891                 adev->common.device_prep_dma_xor_val =
3892                         ppc440spe_adma_prep_dma_xor_zero_sum;
3893         }
3894         if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3895                 adev->common.device_prep_dma_interrupt =
3896                         ppc440spe_adma_prep_dma_interrupt;
3897         }
3898         pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3899           "( %s%s%s%s%s%s%s)\n",
3900           dev_name(adev->dev),
3901           dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3902           dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3903           dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3904           dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3905           dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3906           dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3907 }
3908
3909 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3910                                      struct ppc440spe_adma_chan *chan,
3911                                      int *initcode)
3912 {
3913         struct platform_device *ofdev;
3914         struct device_node *np;
3915         int ret;
3916
3917         ofdev = container_of(adev->dev, struct platform_device, dev);
3918         np = ofdev->dev.of_node;
3919         if (adev->id != PPC440SPE_XOR_ID) {
3920                 adev->err_irq = irq_of_parse_and_map(np, 1);
3921                 if (adev->err_irq == NO_IRQ) {
3922                         dev_warn(adev->dev, "no err irq resource?\n");
3923                         *initcode = PPC_ADMA_INIT_IRQ2;
3924                         adev->err_irq = -ENXIO;
3925                 } else
3926                         atomic_inc(&ppc440spe_adma_err_irq_ref);
3927         } else {
3928                 adev->err_irq = -ENXIO;
3929         }
3930
3931         adev->irq = irq_of_parse_and_map(np, 0);
3932         if (adev->irq == NO_IRQ) {
3933                 dev_err(adev->dev, "no irq resource\n");
3934                 *initcode = PPC_ADMA_INIT_IRQ1;
3935                 ret = -ENXIO;
3936                 goto err_irq_map;
3937         }
3938         dev_dbg(adev->dev, "irq %d, err irq %d\n",
3939                 adev->irq, adev->err_irq);
3940
3941         ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3942                           0, dev_driver_string(adev->dev), chan);
3943         if (ret) {
3944                 dev_err(adev->dev, "can't request irq %d\n",
3945                         adev->irq);
3946                 *initcode = PPC_ADMA_INIT_IRQ1;
3947                 ret = -EIO;
3948                 goto err_req1;
3949         }
3950
3951         /* only DMA engines have a separate error IRQ
3952          * so it's Ok if err_irq < 0 in XOR engine case.
3953          */
3954         if (adev->err_irq > 0) {
3955                 /* both DMA engines share common error IRQ */
3956                 ret = request_irq(adev->err_irq,
3957                                   ppc440spe_adma_err_handler,
3958                                   IRQF_SHARED,
3959                                   dev_driver_string(adev->dev),
3960                                   chan);
3961                 if (ret) {
3962                         dev_err(adev->dev, "can't request irq %d\n",
3963                                 adev->err_irq);
3964                         *initcode = PPC_ADMA_INIT_IRQ2;
3965                         ret = -EIO;
3966                         goto err_req2;
3967                 }
3968         }
3969
3970         if (adev->id == PPC440SPE_XOR_ID) {
3971                 /* enable XOR engine interrupts */
3972                 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3973                             XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3974                             &adev->xor_reg->ier);
3975         } else {
3976                 u32 mask, enable;
3977
3978                 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3979                 if (!np) {
3980                         pr_err("%s: can't find I2O device tree node\n",
3981                                 __func__);
3982                         ret = -ENODEV;
3983                         goto err_req2;
3984                 }
3985                 adev->i2o_reg = of_iomap(np, 0);
3986                 if (!adev->i2o_reg) {
3987                         pr_err("%s: failed to map I2O registers\n", __func__);
3988                         of_node_put(np);
3989                         ret = -EINVAL;
3990                         goto err_req2;
3991                 }
3992                 of_node_put(np);
3993                 /* Unmask 'CS FIFO Attention' interrupts and
3994                  * enable generating interrupts on errors
3995                  */
3996                 enable = (adev->id == PPC440SPE_DMA0_ID) ?
3997                          ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3998                          ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3999                 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4000                 iowrite32(mask, &adev->i2o_reg->iopim);
4001         }
4002         return 0;
4003
4004 err_req2:
4005         free_irq(adev->irq, chan);
4006 err_req1:
4007         irq_dispose_mapping(adev->irq);
4008 err_irq_map:
4009         if (adev->err_irq > 0) {
4010                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4011                         irq_dispose_mapping(adev->err_irq);
4012         }
4013         return ret;
4014 }
4015
4016 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4017                                         struct ppc440spe_adma_chan *chan)
4018 {
4019         u32 mask, disable;
4020
4021         if (adev->id == PPC440SPE_XOR_ID) {
4022                 /* disable XOR engine interrupts */
4023                 mask = ioread32be(&adev->xor_reg->ier);
4024                 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4025                           XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4026                 iowrite32be(mask, &adev->xor_reg->ier);
4027         } else {
4028                 /* disable DMAx engine interrupts */
4029                 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4030                           (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4031                           (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4032                 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4033                 iowrite32(mask, &adev->i2o_reg->iopim);
4034         }
4035         free_irq(adev->irq, chan);
4036         irq_dispose_mapping(adev->irq);
4037         if (adev->err_irq > 0) {
4038                 free_irq(adev->err_irq, chan);
4039                 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4040                         irq_dispose_mapping(adev->err_irq);
4041                         iounmap(adev->i2o_reg);
4042                 }
4043         }
4044 }
4045
4046 /**
4047  * ppc440spe_adma_probe - probe the asynch device
4048  */
4049 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4050 {
4051         struct device_node *np = ofdev->dev.of_node;
4052         struct resource res;
4053         struct ppc440spe_adma_device *adev;
4054         struct ppc440spe_adma_chan *chan;
4055         struct ppc_dma_chan_ref *ref, *_ref;
4056         int ret = 0, initcode = PPC_ADMA_INIT_OK;
4057         const u32 *idx;
4058         int len;
4059         void *regs;
4060         u32 id, pool_size;
4061
4062         if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4063                 id = PPC440SPE_XOR_ID;
4064                 /* As far as the XOR engine is concerned, it does not
4065                  * use FIFOs but uses linked list. So there is no dependency
4066                  * between pool size to allocate and the engine configuration.
4067                  */
4068                 pool_size = PAGE_SIZE << 1;
4069         } else {
4070                 /* it is DMA0 or DMA1 */
4071                 idx = of_get_property(np, "cell-index", &len);
4072                 if (!idx || (len != sizeof(u32))) {
4073                         dev_err(&ofdev->dev, "Device node %s has missing "
4074                                 "or invalid cell-index property\n",
4075                                 np->full_name);
4076                         return -EINVAL;
4077                 }
4078                 id = *idx;
4079                 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4080                  * should allocate the pool accordingly to size of this
4081                  * FIFO. Thus, the pool size depends on the FIFO depth:
4082                  * how much CDBs pointers the FIFO may contain then so
4083                  * much CDBs we should provide in the pool.
4084                  * That is
4085                  *   CDB size = 32B;
4086                  *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4087                  *   Pool size = CDBs number * CDB size =
4088                  *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4089                  */
4090                 pool_size = (id == PPC440SPE_DMA0_ID) ?
4091                             DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4092                 pool_size <<= 2;
4093         }
4094
4095         if (of_address_to_resource(np, 0, &res)) {
4096                 dev_err(&ofdev->dev, "failed to get memory resource\n");
4097                 initcode = PPC_ADMA_INIT_MEMRES;
4098                 ret = -ENODEV;
4099                 goto out;
4100         }
4101
4102         if (!request_mem_region(res.start, resource_size(&res),
4103                                 dev_driver_string(&ofdev->dev))) {
4104                 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4105                         &res);
4106                 initcode = PPC_ADMA_INIT_MEMREG;
4107                 ret = -EBUSY;
4108                 goto out;
4109         }
4110
4111         /* create a device */
4112         adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4113         if (!adev) {
4114                 dev_err(&ofdev->dev, "failed to allocate device\n");
4115                 initcode = PPC_ADMA_INIT_ALLOC;
4116                 ret = -ENOMEM;
4117                 goto err_adev_alloc;
4118         }
4119
4120         adev->id = id;
4121         adev->pool_size = pool_size;
4122         /* allocate coherent memory for hardware descriptors */
4123         adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4124                                         adev->pool_size, &adev->dma_desc_pool,
4125                                         GFP_KERNEL);
4126         if (adev->dma_desc_pool_virt == NULL) {
4127                 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4128                         "memory for hardware descriptors\n",
4129                         adev->pool_size);
4130                 initcode = PPC_ADMA_INIT_COHERENT;
4131                 ret = -ENOMEM;
4132                 goto err_dma_alloc;
4133         }
4134         dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4135                 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4136
4137         regs = ioremap(res.start, resource_size(&res));
4138         if (!regs) {
4139                 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4140                 goto err_regs_alloc;
4141         }
4142
4143         if (adev->id == PPC440SPE_XOR_ID) {
4144                 adev->xor_reg = regs;
4145                 /* Reset XOR */
4146                 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4147                 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4148         } else {
4149                 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4150                                    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4151                 adev->dma_reg = regs;
4152                 /* DMAx_FIFO_SIZE is defined in bytes,
4153                  * <fsiz> - is defined in number of CDB pointers (8byte).
4154                  * DMA FIFO Length = CSlength + CPlength, where
4155                  * CSlength = CPlength = (fsiz + 1) * 8.
4156                  */
4157                 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4158                           &adev->dma_reg->fsiz);
4159                 /* Configure DMA engine */
4160                 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4161                           &adev->dma_reg->cfg);
4162                 /* Clear Status */
4163                 iowrite32(~0, &adev->dma_reg->dsts);
4164         }
4165
4166         adev->dev = &ofdev->dev;
4167         adev->common.dev = &ofdev->dev;
4168         INIT_LIST_HEAD(&adev->common.channels);
4169         platform_set_drvdata(ofdev, adev);
4170
4171         /* create a channel */
4172         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4173         if (!chan) {
4174                 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4175                 initcode = PPC_ADMA_INIT_CHANNEL;
4176                 ret = -ENOMEM;
4177                 goto err_chan_alloc;
4178         }
4179
4180         spin_lock_init(&chan->lock);
4181         INIT_LIST_HEAD(&chan->chain);
4182         INIT_LIST_HEAD(&chan->all_slots);
4183         chan->device = adev;
4184         chan->common.device = &adev->common;
4185         dma_cookie_init(&chan->common);
4186         list_add_tail(&chan->common.device_node, &adev->common.channels);
4187         tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4188                      (unsigned long)chan);
4189
4190         /* allocate and map helper pages for async validation or
4191          * async_mult/async_sum_product operations on DMA0/1.
4192          */
4193         if (adev->id != PPC440SPE_XOR_ID) {
4194                 chan->pdest_page = alloc_page(GFP_KERNEL);
4195                 chan->qdest_page = alloc_page(GFP_KERNEL);
4196                 if (!chan->pdest_page ||
4197                     !chan->qdest_page) {
4198                         if (chan->pdest_page)
4199                                 __free_page(chan->pdest_page);
4200                         if (chan->qdest_page)
4201                                 __free_page(chan->qdest_page);
4202                         ret = -ENOMEM;
4203                         goto err_page_alloc;
4204                 }
4205                 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4206                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4207                 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4208                                            PAGE_SIZE, DMA_BIDIRECTIONAL);
4209         }
4210
4211         ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4212         if (ref) {
4213                 ref->chan = &chan->common;
4214                 INIT_LIST_HEAD(&ref->node);
4215                 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4216         } else {
4217                 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4218                 ret = -ENOMEM;
4219                 goto err_ref_alloc;
4220         }
4221
4222         ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4223         if (ret)
4224                 goto err_irq;
4225
4226         ppc440spe_adma_init_capabilities(adev);
4227
4228         ret = dma_async_device_register(&adev->common);
4229         if (ret) {
4230                 initcode = PPC_ADMA_INIT_REGISTER;
4231                 dev_err(&ofdev->dev, "failed to register dma device\n");
4232                 goto err_dev_reg;
4233         }
4234
4235         goto out;
4236
4237 err_dev_reg:
4238         ppc440spe_adma_release_irqs(adev, chan);
4239 err_irq:
4240         list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4241                 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4242                         list_del(&ref->node);
4243                         kfree(ref);
4244                 }
4245         }
4246 err_ref_alloc:
4247         if (adev->id != PPC440SPE_XOR_ID) {
4248                 dma_unmap_page(&ofdev->dev, chan->pdest,
4249                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4250                 dma_unmap_page(&ofdev->dev, chan->qdest,
4251                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4252                 __free_page(chan->pdest_page);
4253                 __free_page(chan->qdest_page);
4254         }
4255 err_page_alloc:
4256         kfree(chan);
4257 err_chan_alloc:
4258         if (adev->id == PPC440SPE_XOR_ID)
4259                 iounmap(adev->xor_reg);
4260         else
4261                 iounmap(adev->dma_reg);
4262 err_regs_alloc:
4263         dma_free_coherent(adev->dev, adev->pool_size,
4264                           adev->dma_desc_pool_virt,
4265                           adev->dma_desc_pool);
4266 err_dma_alloc:
4267         kfree(adev);
4268 err_adev_alloc:
4269         release_mem_region(res.start, resource_size(&res));
4270 out:
4271         if (id < PPC440SPE_ADMA_ENGINES_NUM)
4272                 ppc440spe_adma_devices[id] = initcode;
4273
4274         return ret;
4275 }
4276
4277 /**
4278  * ppc440spe_adma_remove - remove the asynch device
4279  */
4280 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4281 {
4282         struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4283         struct device_node *np = ofdev->dev.of_node;
4284         struct resource res;
4285         struct dma_chan *chan, *_chan;
4286         struct ppc_dma_chan_ref *ref, *_ref;
4287         struct ppc440spe_adma_chan *ppc440spe_chan;
4288
4289         if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4290                 ppc440spe_adma_devices[adev->id] = -1;
4291
4292         dma_async_device_unregister(&adev->common);
4293
4294         list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4295                                  device_node) {
4296                 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4297                 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4298                 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4299                 if (adev->id != PPC440SPE_XOR_ID) {
4300                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4301                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4302                         dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4303                                         PAGE_SIZE, DMA_BIDIRECTIONAL);
4304                         __free_page(ppc440spe_chan->pdest_page);
4305                         __free_page(ppc440spe_chan->qdest_page);
4306                 }
4307                 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4308                                          node) {
4309                         if (ppc440spe_chan ==
4310                             to_ppc440spe_adma_chan(ref->chan)) {
4311                                 list_del(&ref->node);
4312                                 kfree(ref);
4313                         }
4314                 }
4315                 list_del(&chan->device_node);
4316                 kfree(ppc440spe_chan);
4317         }
4318
4319         dma_free_coherent(adev->dev, adev->pool_size,
4320                           adev->dma_desc_pool_virt, adev->dma_desc_pool);
4321         if (adev->id == PPC440SPE_XOR_ID)
4322                 iounmap(adev->xor_reg);
4323         else
4324                 iounmap(adev->dma_reg);
4325         of_address_to_resource(np, 0, &res);
4326         release_mem_region(res.start, resource_size(&res));
4327         kfree(adev);
4328         return 0;
4329 }
4330
4331 /*
4332  * /sys driver interface to enable h/w RAID-6 capabilities
4333  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4334  * directory are "devices", "enable" and "poly".
4335  * "devices" shows available engines.
4336  * "enable" is used to enable RAID-6 capabilities or to check
4337  * whether these has been activated.
4338  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4339  */
4340
4341 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4342 {
4343         ssize_t size = 0;
4344         int i;
4345
4346         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4347                 if (ppc440spe_adma_devices[i] == -1)
4348                         continue;
4349                 size += snprintf(buf + size, PAGE_SIZE - size,
4350                                  "PPC440SP(E)-ADMA.%d: %s\n", i,
4351                                  ppc_adma_errors[ppc440spe_adma_devices[i]]);
4352         }
4353         return size;
4354 }
4355
4356 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4357 {
4358         return snprintf(buf, PAGE_SIZE,
4359                         "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4360                         ppc440spe_r6_enabled ? "EN" : "DIS");
4361 }
4362
4363 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4364                                         const char *buf, size_t count)
4365 {
4366         unsigned long val;
4367
4368         if (!count || count > 11)
4369                 return -EINVAL;
4370
4371         if (!ppc440spe_r6_tchan)
4372                 return -EFAULT;
4373
4374         /* Write a key */
4375         sscanf(buf, "%lx", &val);
4376         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4377         isync();
4378
4379         /* Verify whether it really works now */
4380         if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4381                 pr_info("PPC440SP(e) RAID-6 has been activated "
4382                         "successfully\n");
4383                 ppc440spe_r6_enabled = 1;
4384         } else {
4385                 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4386                         " Error key ?\n");
4387                 ppc440spe_r6_enabled = 0;
4388         }
4389         return count;
4390 }
4391
4392 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4393 {
4394         ssize_t size = 0;
4395         u32 reg;
4396
4397 #ifdef CONFIG_440SP
4398         /* 440SP has fixed polynomial */
4399         reg = 0x4d;
4400 #else
4401         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4402         reg >>= MQ0_CFBHL_POLY;
4403         reg &= 0xFF;
4404 #endif
4405
4406         size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4407                         "uses 0x1%02x polynomial.\n", reg);
4408         return size;
4409 }
4410
4411 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4412                                       const char *buf, size_t count)
4413 {
4414         unsigned long reg, val;
4415
4416 #ifdef CONFIG_440SP
4417         /* 440SP uses default 0x14D polynomial only */
4418         return -EINVAL;
4419 #endif
4420
4421         if (!count || count > 6)
4422                 return -EINVAL;
4423
4424         /* e.g., 0x14D or 0x11D */
4425         sscanf(buf, "%lx", &val);
4426
4427         if (val & ~0x1FF)
4428                 return -EINVAL;
4429
4430         val &= 0xFF;
4431         reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4432         reg &= ~(0xFF << MQ0_CFBHL_POLY);
4433         reg |= val << MQ0_CFBHL_POLY;
4434         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4435
4436         return count;
4437 }
4438
4439 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4440 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4441                    store_ppc440spe_r6enable);
4442 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4443                    store_ppc440spe_r6poly);
4444
4445 /*
4446  * Common initialisation for RAID engines; allocate memory for
4447  * DMAx FIFOs, perform configuration common for all DMA engines.
4448  * Further DMA engine specific configuration is done at probe time.
4449  */
4450 static int ppc440spe_configure_raid_devices(void)
4451 {
4452         struct device_node *np;
4453         struct resource i2o_res;
4454         struct i2o_regs __iomem *i2o_reg;
4455         dcr_host_t i2o_dcr_host;
4456         unsigned int dcr_base, dcr_len;
4457         int i, ret;
4458
4459         np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4460         if (!np) {
4461                 pr_err("%s: can't find I2O device tree node\n",
4462                         __func__);
4463                 return -ENODEV;
4464         }
4465
4466         if (of_address_to_resource(np, 0, &i2o_res)) {
4467                 of_node_put(np);
4468                 return -EINVAL;
4469         }
4470
4471         i2o_reg = of_iomap(np, 0);
4472         if (!i2o_reg) {
4473                 pr_err("%s: failed to map I2O registers\n", __func__);
4474                 of_node_put(np);
4475                 return -EINVAL;
4476         }
4477
4478         /* Get I2O DCRs base */
4479         dcr_base = dcr_resource_start(np, 0);
4480         dcr_len = dcr_resource_len(np, 0);
4481         if (!dcr_base && !dcr_len) {
4482                 pr_err("%s: can't get DCR registers base/len!\n",
4483                         np->full_name);
4484                 of_node_put(np);
4485                 iounmap(i2o_reg);
4486                 return -ENODEV;
4487         }
4488
4489         i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4490         if (!DCR_MAP_OK(i2o_dcr_host)) {
4491                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4492                 of_node_put(np);
4493                 iounmap(i2o_reg);
4494                 return -ENODEV;
4495         }
4496         of_node_put(np);
4497
4498         /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4499          * the base address of FIFO memory space.
4500          * Actually we need twice more physical memory than programmed in the
4501          * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4502          */
4503         ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4504                                          GFP_KERNEL);
4505         if (!ppc440spe_dma_fifo_buf) {
4506                 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4507                 iounmap(i2o_reg);
4508                 dcr_unmap(i2o_dcr_host, dcr_len);
4509                 return -ENOMEM;
4510         }
4511
4512         /*
4513          * Configure h/w
4514          */
4515         /* Reset I2O/DMA */
4516         mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4517         mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4518
4519         /* Setup the base address of mmaped registers */
4520         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4521         dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4522                                                 I2O_REG_ENABLE);
4523         dcr_unmap(i2o_dcr_host, dcr_len);
4524
4525         /* Setup FIFO memory space base address */
4526         iowrite32(0, &i2o_reg->ifbah);
4527         iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4528
4529         /* set zero FIFO size for I2O, so the whole
4530          * ppc440spe_dma_fifo_buf is used by DMAs.
4531          * DMAx_FIFOs will be configured while probe.
4532          */
4533         iowrite32(0, &i2o_reg->ifsiz);
4534         iounmap(i2o_reg);
4535
4536         /* To prepare WXOR/RXOR functionality we need access to
4537          * Memory Queue Module DCRs (finally it will be enabled
4538          * via /sys interface of the ppc440spe ADMA driver).
4539          */
4540         np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4541         if (!np) {
4542                 pr_err("%s: can't find MQ device tree node\n",
4543                         __func__);
4544                 ret = -ENODEV;
4545                 goto out_free;
4546         }
4547
4548         /* Get MQ DCRs base */
4549         dcr_base = dcr_resource_start(np, 0);
4550         dcr_len = dcr_resource_len(np, 0);
4551         if (!dcr_base && !dcr_len) {
4552                 pr_err("%s: can't get DCR registers base/len!\n",
4553                         np->full_name);
4554                 ret = -ENODEV;
4555                 goto out_mq;
4556         }
4557
4558         ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4559         if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4560                 pr_err("%s: failed to map DCRs!\n", np->full_name);
4561                 ret = -ENODEV;
4562                 goto out_mq;
4563         }
4564         of_node_put(np);
4565         ppc440spe_mq_dcr_len = dcr_len;
4566
4567         /* Set HB alias */
4568         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4569
4570         /* Set:
4571          * - LL transaction passing limit to 1;
4572          * - Memory controller cycle limit to 1;
4573          * - Galois Polynomial to 0x14d (default)
4574          */
4575         dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4576                   (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4577                   (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4578
4579         atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4580         for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4581                 ppc440spe_adma_devices[i] = -1;
4582
4583         return 0;
4584
4585 out_mq:
4586         of_node_put(np);
4587 out_free:
4588         kfree(ppc440spe_dma_fifo_buf);
4589         return ret;
4590 }
4591
4592 static const struct of_device_id ppc440spe_adma_of_match[] = {
4593         { .compatible   = "ibm,dma-440spe", },
4594         { .compatible   = "amcc,xor-accelerator", },
4595         {},
4596 };
4597 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4598
4599 static struct platform_driver ppc440spe_adma_driver = {
4600         .probe = ppc440spe_adma_probe,
4601         .remove = ppc440spe_adma_remove,
4602         .driver = {
4603                 .name = "PPC440SP(E)-ADMA",
4604                 .owner = THIS_MODULE,
4605                 .of_match_table = ppc440spe_adma_of_match,
4606         },
4607 };
4608
4609 static __init int ppc440spe_adma_init(void)
4610 {
4611         int ret;
4612
4613         ret = ppc440spe_configure_raid_devices();
4614         if (ret)
4615                 return ret;
4616
4617         ret = platform_driver_register(&ppc440spe_adma_driver);
4618         if (ret) {
4619                 pr_err("%s: failed to register platform driver\n",
4620                         __func__);
4621                 goto out_reg;
4622         }
4623
4624         /* Initialization status */
4625         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4626                                  &driver_attr_devices);
4627         if (ret)
4628                 goto out_dev;
4629
4630         /* RAID-6 h/w enable entry */
4631         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4632                                  &driver_attr_enable);
4633         if (ret)
4634                 goto out_en;
4635
4636         /* GF polynomial to use */
4637         ret = driver_create_file(&ppc440spe_adma_driver.driver,
4638                                  &driver_attr_poly);
4639         if (!ret)
4640                 return ret;
4641
4642         driver_remove_file(&ppc440spe_adma_driver.driver,
4643                            &driver_attr_enable);
4644 out_en:
4645         driver_remove_file(&ppc440spe_adma_driver.driver,
4646                            &driver_attr_devices);
4647 out_dev:
4648         /* User will not be able to enable h/w RAID-6 */
4649         pr_err("%s: failed to create RAID-6 driver interface\n",
4650                 __func__);
4651         platform_driver_unregister(&ppc440spe_adma_driver);
4652 out_reg:
4653         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4654         kfree(ppc440spe_dma_fifo_buf);
4655         return ret;
4656 }
4657
4658 static void __exit ppc440spe_adma_exit(void)
4659 {
4660         driver_remove_file(&ppc440spe_adma_driver.driver,
4661                            &driver_attr_poly);
4662         driver_remove_file(&ppc440spe_adma_driver.driver,
4663                            &driver_attr_enable);
4664         driver_remove_file(&ppc440spe_adma_driver.driver,
4665                            &driver_attr_devices);
4666         platform_driver_unregister(&ppc440spe_adma_driver);
4667         dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4668         kfree(ppc440spe_dma_fifo_buf);
4669 }
4670
4671 arch_initcall(ppc440spe_adma_init);
4672 module_exit(ppc440spe_adma_exit);
4673
4674 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4675 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4676 MODULE_LICENSE("GPL");