]> Pileus Git - ~andy/linux/blob - drivers/crypto/ixp4xx_crypto.c
DMA-API: crypto: fix ixp4xx crypto platform device support
[~andy/linux] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID    29
83 #define RECV_QID    30
84
85 #define CTL_FLAG_UNUSED         0x0000
86 #define CTL_FLAG_USED           0x1000
87 #define CTL_FLAG_PERFORM_ABLK   0x0001
88 #define CTL_FLAG_GEN_ICV        0x0002
89 #define CTL_FLAG_GEN_REVAES     0x0004
90 #define CTL_FLAG_PERFORM_AEAD   0x0008
91 #define CTL_FLAG_MASK           0x000f
92
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE   16
98
99 struct buffer_desc {
100         u32 phys_next;
101 #ifdef __ARMEB__
102         u16 buf_len;
103         u16 pkt_len;
104 #else
105         u16 pkt_len;
106         u16 buf_len;
107 #endif
108         u32 phys_addr;
109         u32 __reserved[4];
110         struct buffer_desc *next;
111         enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116         u8 mode;                /* NPE_OP_*  operation mode */
117         u8 init_len;
118         u16 reserved;
119 #else
120         u16 reserved;
121         u8 init_len;
122         u8 mode;                /* NPE_OP_*  operation mode */
123 #endif
124         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
125         u32 icv_rev_aes;        /* icv or rev aes */
126         u32 src_buf;
127         u32 dst_buf;
128 #ifdef __ARMEB__
129         u16 auth_offs;          /* Authentication start offset */
130         u16 auth_len;           /* Authentication data length */
131         u16 crypt_offs;         /* Cryption start offset */
132         u16 crypt_len;          /* Cryption data length */
133 #else
134         u16 auth_len;           /* Authentication data length */
135         u16 auth_offs;          /* Authentication start offset */
136         u16 crypt_len;          /* Cryption data length */
137         u16 crypt_offs;         /* Cryption start offset */
138 #endif
139         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
140         u32 crypto_ctx;         /* NPE Crypto Param structure address */
141
142         /* Used by Host: 4*4 bytes*/
143         unsigned ctl_flags;
144         union {
145                 struct ablkcipher_request *ablk_req;
146                 struct aead_request *aead_req;
147                 struct crypto_tfm *tfm;
148         } data;
149         struct buffer_desc *regist_buf;
150         u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *buffer;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned salted;
188         atomic_t configuring;
189         struct completion completion;
190 };
191
192 struct ixp_alg {
193         struct crypto_alg crypto;
194         const struct ix_hash_algo *hash;
195         u32 cfg_enc;
196         u32 cfg_dec;
197
198         int registered;
199 };
200
201 static const struct ix_hash_algo hash_alg_md5 = {
202         .cfgword        = 0xAA010004,
203         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 };
206 static const struct ix_hash_algo hash_alg_sha1 = {
207         .cfgword        = 0x00000005,
208         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
210 };
211
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
215
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
218
219 static int support_aes = 1;
220
221 #define DRIVER_NAME "ixp4xx_crypto"
222
223 static struct platform_device *pdev;
224 static struct device *dev;
225
226 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
227 {
228         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
229 }
230
231 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
232 {
233         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
234 }
235
236 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
237 {
238         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
239 }
240
241 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
242 {
243         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
244 }
245
246 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
247 {
248         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
249 }
250
251 static int setup_crypt_desc(void)
252 {
253         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
254         crypt_virt = dma_alloc_coherent(dev,
255                         NPE_QLEN * sizeof(struct crypt_ctl),
256                         &crypt_phys, GFP_ATOMIC);
257         if (!crypt_virt)
258                 return -ENOMEM;
259         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
260         return 0;
261 }
262
263 static spinlock_t desc_lock;
264 static struct crypt_ctl *get_crypt_desc(void)
265 {
266         int i;
267         static int idx = 0;
268         unsigned long flags;
269
270         spin_lock_irqsave(&desc_lock, flags);
271
272         if (unlikely(!crypt_virt))
273                 setup_crypt_desc();
274         if (unlikely(!crypt_virt)) {
275                 spin_unlock_irqrestore(&desc_lock, flags);
276                 return NULL;
277         }
278         i = idx;
279         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
280                 if (++idx >= NPE_QLEN)
281                         idx = 0;
282                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
283                 spin_unlock_irqrestore(&desc_lock, flags);
284                 return crypt_virt +i;
285         } else {
286                 spin_unlock_irqrestore(&desc_lock, flags);
287                 return NULL;
288         }
289 }
290
291 static spinlock_t emerg_lock;
292 static struct crypt_ctl *get_crypt_desc_emerg(void)
293 {
294         int i;
295         static int idx = NPE_QLEN;
296         struct crypt_ctl *desc;
297         unsigned long flags;
298
299         desc = get_crypt_desc();
300         if (desc)
301                 return desc;
302         if (unlikely(!crypt_virt))
303                 return NULL;
304
305         spin_lock_irqsave(&emerg_lock, flags);
306         i = idx;
307         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
308                 if (++idx >= NPE_QLEN_TOTAL)
309                         idx = NPE_QLEN;
310                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
311                 spin_unlock_irqrestore(&emerg_lock, flags);
312                 return crypt_virt +i;
313         } else {
314                 spin_unlock_irqrestore(&emerg_lock, flags);
315                 return NULL;
316         }
317 }
318
319 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
320 {
321         while (buf) {
322                 struct buffer_desc *buf1;
323                 u32 phys1;
324
325                 buf1 = buf->next;
326                 phys1 = buf->phys_next;
327                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
328                 dma_pool_free(buffer_pool, buf, phys);
329                 buf = buf1;
330                 phys = phys1;
331         }
332 }
333
334 static struct tasklet_struct crypto_done_tasklet;
335
336 static void finish_scattered_hmac(struct crypt_ctl *crypt)
337 {
338         struct aead_request *req = crypt->data.aead_req;
339         struct aead_ctx *req_ctx = aead_request_ctx(req);
340         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341         int authsize = crypto_aead_authsize(tfm);
342         int decryptlen = req->cryptlen - authsize;
343
344         if (req_ctx->encrypt) {
345                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
346                         req->src, decryptlen, authsize, 1);
347         }
348         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
349 }
350
351 static void one_packet(dma_addr_t phys)
352 {
353         struct crypt_ctl *crypt;
354         struct ixp_ctx *ctx;
355         int failed;
356
357         failed = phys & 0x1 ? -EBADMSG : 0;
358         phys &= ~0x3;
359         crypt = crypt_phys2virt(phys);
360
361         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
362         case CTL_FLAG_PERFORM_AEAD: {
363                 struct aead_request *req = crypt->data.aead_req;
364                 struct aead_ctx *req_ctx = aead_request_ctx(req);
365
366                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
367                 if (req_ctx->hmac_virt) {
368                         finish_scattered_hmac(crypt);
369                 }
370                 req->base.complete(&req->base, failed);
371                 break;
372         }
373         case CTL_FLAG_PERFORM_ABLK: {
374                 struct ablkcipher_request *req = crypt->data.ablk_req;
375                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
376
377                 if (req_ctx->dst) {
378                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379                 }
380                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
381                 req->base.complete(&req->base, failed);
382                 break;
383         }
384         case CTL_FLAG_GEN_ICV:
385                 ctx = crypto_tfm_ctx(crypt->data.tfm);
386                 dma_pool_free(ctx_pool, crypt->regist_ptr,
387                                 crypt->regist_buf->phys_addr);
388                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
389                 if (atomic_dec_and_test(&ctx->configuring))
390                         complete(&ctx->completion);
391                 break;
392         case CTL_FLAG_GEN_REVAES:
393                 ctx = crypto_tfm_ctx(crypt->data.tfm);
394                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
395                 if (atomic_dec_and_test(&ctx->configuring))
396                         complete(&ctx->completion);
397                 break;
398         default:
399                 BUG();
400         }
401         crypt->ctl_flags = CTL_FLAG_UNUSED;
402 }
403
404 static void irqhandler(void *_unused)
405 {
406         tasklet_schedule(&crypto_done_tasklet);
407 }
408
409 static void crypto_done_action(unsigned long arg)
410 {
411         int i;
412
413         for(i=0; i<4; i++) {
414                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
415                 if (!phys)
416                         return;
417                 one_packet(phys);
418         }
419         tasklet_schedule(&crypto_done_tasklet);
420 }
421
422 static int init_ixp_crypto(void)
423 {
424         int ret = -ENODEV;
425         u32 msg[2] = { 0, 0 };
426
427         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
428                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
429                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
430                 return ret;
431         }
432         npe_c = npe_request(NPE_ID);
433         if (!npe_c)
434                 return ret;
435
436         if (!npe_running(npe_c)) {
437                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
438                 if (ret) {
439                         return ret;
440                 }
441                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
442                         goto npe_error;
443         } else {
444                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
445                         goto npe_error;
446
447                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
448                         goto npe_error;
449         }
450
451         switch ((msg[1]>>16) & 0xff) {
452         case 3:
453                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
454                                 npe_name(npe_c));
455                 support_aes = 0;
456                 break;
457         case 4:
458         case 5:
459                 support_aes = 1;
460                 break;
461         default:
462                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
463                         npe_name(npe_c));
464                 return -ENODEV;
465         }
466         /* buffer_pool will also be used to sometimes store the hmac,
467          * so assure it is large enough
468          */
469         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
470         buffer_pool = dma_pool_create("buffer", dev,
471                         sizeof(struct buffer_desc), 32, 0);
472         ret = -ENOMEM;
473         if (!buffer_pool) {
474                 goto err;
475         }
476         ctx_pool = dma_pool_create("context", dev,
477                         NPE_CTX_LEN, 16, 0);
478         if (!ctx_pool) {
479                 goto err;
480         }
481         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
482                                  "ixp_crypto:out", NULL);
483         if (ret)
484                 goto err;
485         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
486                                  "ixp_crypto:in", NULL);
487         if (ret) {
488                 qmgr_release_queue(SEND_QID);
489                 goto err;
490         }
491         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
492         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
493
494         qmgr_enable_irq(RECV_QID);
495         return 0;
496
497 npe_error:
498         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
499         ret = -EIO;
500 err:
501         if (ctx_pool)
502                 dma_pool_destroy(ctx_pool);
503         if (buffer_pool)
504                 dma_pool_destroy(buffer_pool);
505         npe_release(npe_c);
506         return ret;
507 }
508
509 static void release_ixp_crypto(void)
510 {
511         qmgr_disable_irq(RECV_QID);
512         tasklet_kill(&crypto_done_tasklet);
513
514         qmgr_release_queue(SEND_QID);
515         qmgr_release_queue(RECV_QID);
516
517         dma_pool_destroy(ctx_pool);
518         dma_pool_destroy(buffer_pool);
519
520         npe_release(npe_c);
521
522         if (crypt_virt) {
523                 dma_free_coherent(dev,
524                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
525                         crypt_virt, crypt_phys);
526         }
527         return;
528 }
529
530 static void reset_sa_dir(struct ix_sa_dir *dir)
531 {
532         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
533         dir->npe_ctx_idx = 0;
534         dir->npe_mode = 0;
535 }
536
537 static int init_sa_dir(struct ix_sa_dir *dir)
538 {
539         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
540         if (!dir->npe_ctx) {
541                 return -ENOMEM;
542         }
543         reset_sa_dir(dir);
544         return 0;
545 }
546
547 static void free_sa_dir(struct ix_sa_dir *dir)
548 {
549         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
550         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
551 }
552
553 static int init_tfm(struct crypto_tfm *tfm)
554 {
555         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
556         int ret;
557
558         atomic_set(&ctx->configuring, 0);
559         ret = init_sa_dir(&ctx->encrypt);
560         if (ret)
561                 return ret;
562         ret = init_sa_dir(&ctx->decrypt);
563         if (ret) {
564                 free_sa_dir(&ctx->encrypt);
565         }
566         return ret;
567 }
568
569 static int init_tfm_ablk(struct crypto_tfm *tfm)
570 {
571         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
572         return init_tfm(tfm);
573 }
574
575 static int init_tfm_aead(struct crypto_tfm *tfm)
576 {
577         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
578         return init_tfm(tfm);
579 }
580
581 static void exit_tfm(struct crypto_tfm *tfm)
582 {
583         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
584         free_sa_dir(&ctx->encrypt);
585         free_sa_dir(&ctx->decrypt);
586 }
587
588 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
589                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
590 {
591         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
592         struct crypt_ctl *crypt;
593         struct buffer_desc *buf;
594         int i;
595         u8 *pad;
596         u32 pad_phys, buf_phys;
597
598         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
599         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
600         if (!pad)
601                 return -ENOMEM;
602         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
603         if (!buf) {
604                 dma_pool_free(ctx_pool, pad, pad_phys);
605                 return -ENOMEM;
606         }
607         crypt = get_crypt_desc_emerg();
608         if (!crypt) {
609                 dma_pool_free(ctx_pool, pad, pad_phys);
610                 dma_pool_free(buffer_pool, buf, buf_phys);
611                 return -EAGAIN;
612         }
613
614         memcpy(pad, key, key_len);
615         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
616         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
617                 pad[i] ^= xpad;
618         }
619
620         crypt->data.tfm = tfm;
621         crypt->regist_ptr = pad;
622         crypt->regist_buf = buf;
623
624         crypt->auth_offs = 0;
625         crypt->auth_len = HMAC_PAD_BLOCKLEN;
626         crypt->crypto_ctx = ctx_addr;
627         crypt->src_buf = buf_phys;
628         crypt->icv_rev_aes = target;
629         crypt->mode = NPE_OP_HASH_GEN_ICV;
630         crypt->init_len = init_len;
631         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
632
633         buf->next = 0;
634         buf->buf_len = HMAC_PAD_BLOCKLEN;
635         buf->pkt_len = 0;
636         buf->phys_addr = pad_phys;
637
638         atomic_inc(&ctx->configuring);
639         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
640         BUG_ON(qmgr_stat_overflow(SEND_QID));
641         return 0;
642 }
643
644 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
645                 const u8 *key, int key_len, unsigned digest_len)
646 {
647         u32 itarget, otarget, npe_ctx_addr;
648         unsigned char *cinfo;
649         int init_len, ret = 0;
650         u32 cfgword;
651         struct ix_sa_dir *dir;
652         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
653         const struct ix_hash_algo *algo;
654
655         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
656         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
657         algo = ix_hash(tfm);
658
659         /* write cfg word to cryptinfo */
660         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
661 #ifndef __ARMEB__
662         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
663 #endif
664         *(u32*)cinfo = cpu_to_be32(cfgword);
665         cinfo += sizeof(cfgword);
666
667         /* write ICV to cryptinfo */
668         memcpy(cinfo, algo->icv, digest_len);
669         cinfo += digest_len;
670
671         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
672                                 + sizeof(algo->cfgword);
673         otarget = itarget + digest_len;
674         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
675         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
676
677         dir->npe_ctx_idx += init_len;
678         dir->npe_mode |= NPE_OP_HASH_ENABLE;
679
680         if (!encrypt)
681                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
682
683         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
684                         init_len, npe_ctx_addr, key, key_len);
685         if (ret)
686                 return ret;
687         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
688                         init_len, npe_ctx_addr, key, key_len);
689 }
690
691 static int gen_rev_aes_key(struct crypto_tfm *tfm)
692 {
693         struct crypt_ctl *crypt;
694         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
695         struct ix_sa_dir *dir = &ctx->decrypt;
696
697         crypt = get_crypt_desc_emerg();
698         if (!crypt) {
699                 return -EAGAIN;
700         }
701         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
702
703         crypt->data.tfm = tfm;
704         crypt->crypt_offs = 0;
705         crypt->crypt_len = AES_BLOCK128;
706         crypt->src_buf = 0;
707         crypt->crypto_ctx = dir->npe_ctx_phys;
708         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
709         crypt->mode = NPE_OP_ENC_GEN_KEY;
710         crypt->init_len = dir->npe_ctx_idx;
711         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
712
713         atomic_inc(&ctx->configuring);
714         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
715         BUG_ON(qmgr_stat_overflow(SEND_QID));
716         return 0;
717 }
718
719 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
720                 const u8 *key, int key_len)
721 {
722         u8 *cinfo;
723         u32 cipher_cfg;
724         u32 keylen_cfg = 0;
725         struct ix_sa_dir *dir;
726         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
727         u32 *flags = &tfm->crt_flags;
728
729         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
730         cinfo = dir->npe_ctx;
731
732         if (encrypt) {
733                 cipher_cfg = cipher_cfg_enc(tfm);
734                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
735         } else {
736                 cipher_cfg = cipher_cfg_dec(tfm);
737         }
738         if (cipher_cfg & MOD_AES) {
739                 switch (key_len) {
740                 case 16: keylen_cfg = MOD_AES128; break;
741                 case 24: keylen_cfg = MOD_AES192; break;
742                 case 32: keylen_cfg = MOD_AES256; break;
743                 default:
744                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
745                         return -EINVAL;
746                 }
747                 cipher_cfg |= keylen_cfg;
748         } else if (cipher_cfg & MOD_3DES) {
749                 const u32 *K = (const u32 *)key;
750                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
751                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
752                 {
753                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
754                         return -EINVAL;
755                 }
756         } else {
757                 u32 tmp[DES_EXPKEY_WORDS];
758                 if (des_ekey(tmp, key) == 0) {
759                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
760                 }
761         }
762         /* write cfg word to cryptinfo */
763         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
764         cinfo += sizeof(cipher_cfg);
765
766         /* write cipher key to cryptinfo */
767         memcpy(cinfo, key, key_len);
768         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
769         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
770                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
771                 key_len = DES3_EDE_KEY_SIZE;
772         }
773         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
774         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
775         if ((cipher_cfg & MOD_AES) && !encrypt) {
776                 return gen_rev_aes_key(tfm);
777         }
778         return 0;
779 }
780
781 static struct buffer_desc *chainup_buffers(struct device *dev,
782                 struct scatterlist *sg, unsigned nbytes,
783                 struct buffer_desc *buf, gfp_t flags,
784                 enum dma_data_direction dir)
785 {
786         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
787                 unsigned len = min(nbytes, sg->length);
788                 struct buffer_desc *next_buf;
789                 u32 next_buf_phys;
790                 void *ptr;
791
792                 nbytes -= len;
793                 ptr = page_address(sg_page(sg)) + sg->offset;
794                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
795                 if (!next_buf) {
796                         buf = NULL;
797                         break;
798                 }
799                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
800                 buf->next = next_buf;
801                 buf->phys_next = next_buf_phys;
802                 buf = next_buf;
803
804                 buf->phys_addr = sg_dma_address(sg);
805                 buf->buf_len = len;
806                 buf->dir = dir;
807         }
808         buf->next = NULL;
809         buf->phys_next = 0;
810         return buf;
811 }
812
813 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
814                         unsigned int key_len)
815 {
816         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
817         u32 *flags = &tfm->base.crt_flags;
818         int ret;
819
820         init_completion(&ctx->completion);
821         atomic_inc(&ctx->configuring);
822
823         reset_sa_dir(&ctx->encrypt);
824         reset_sa_dir(&ctx->decrypt);
825
826         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
827         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
828
829         ret = setup_cipher(&tfm->base, 0, key, key_len);
830         if (ret)
831                 goto out;
832         ret = setup_cipher(&tfm->base, 1, key, key_len);
833         if (ret)
834                 goto out;
835
836         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
837                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
838                         ret = -EINVAL;
839                 } else {
840                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
841                 }
842         }
843 out:
844         if (!atomic_dec_and_test(&ctx->configuring))
845                 wait_for_completion(&ctx->completion);
846         return ret;
847 }
848
849 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
850                 unsigned int key_len)
851 {
852         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
853
854         /* the nonce is stored in bytes at end of key */
855         if (key_len < CTR_RFC3686_NONCE_SIZE)
856                 return -EINVAL;
857
858         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
859                         CTR_RFC3686_NONCE_SIZE);
860
861         key_len -= CTR_RFC3686_NONCE_SIZE;
862         return ablk_setkey(tfm, key, key_len);
863 }
864
865 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
866 {
867         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
868         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
869         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
870         struct ix_sa_dir *dir;
871         struct crypt_ctl *crypt;
872         unsigned int nbytes = req->nbytes;
873         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
874         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
875         struct buffer_desc src_hook;
876         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
877                                 GFP_KERNEL : GFP_ATOMIC;
878
879         if (qmgr_stat_full(SEND_QID))
880                 return -EAGAIN;
881         if (atomic_read(&ctx->configuring))
882                 return -EAGAIN;
883
884         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
885
886         crypt = get_crypt_desc();
887         if (!crypt)
888                 return -ENOMEM;
889
890         crypt->data.ablk_req = req;
891         crypt->crypto_ctx = dir->npe_ctx_phys;
892         crypt->mode = dir->npe_mode;
893         crypt->init_len = dir->npe_ctx_idx;
894
895         crypt->crypt_offs = 0;
896         crypt->crypt_len = nbytes;
897
898         BUG_ON(ivsize && !req->info);
899         memcpy(crypt->iv, req->info, ivsize);
900         if (req->src != req->dst) {
901                 struct buffer_desc dst_hook;
902                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
903                 /* This was never tested by Intel
904                  * for more than one dst buffer, I think. */
905                 BUG_ON(req->dst->length < nbytes);
906                 req_ctx->dst = NULL;
907                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
908                                         flags, DMA_FROM_DEVICE))
909                         goto free_buf_dest;
910                 src_direction = DMA_TO_DEVICE;
911                 req_ctx->dst = dst_hook.next;
912                 crypt->dst_buf = dst_hook.phys_next;
913         } else {
914                 req_ctx->dst = NULL;
915         }
916         req_ctx->src = NULL;
917         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
918                                 flags, src_direction))
919                 goto free_buf_src;
920
921         req_ctx->src = src_hook.next;
922         crypt->src_buf = src_hook.phys_next;
923         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
924         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
925         BUG_ON(qmgr_stat_overflow(SEND_QID));
926         return -EINPROGRESS;
927
928 free_buf_src:
929         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
930 free_buf_dest:
931         if (req->src != req->dst) {
932                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
933         }
934         crypt->ctl_flags = CTL_FLAG_UNUSED;
935         return -ENOMEM;
936 }
937
938 static int ablk_encrypt(struct ablkcipher_request *req)
939 {
940         return ablk_perform(req, 1);
941 }
942
943 static int ablk_decrypt(struct ablkcipher_request *req)
944 {
945         return ablk_perform(req, 0);
946 }
947
948 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
949 {
950         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
951         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
952         u8 iv[CTR_RFC3686_BLOCK_SIZE];
953         u8 *info = req->info;
954         int ret;
955
956         /* set up counter block */
957         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
958         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
959
960         /* initialize counter portion of counter block */
961         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
962                 cpu_to_be32(1);
963
964         req->info = iv;
965         ret = ablk_perform(req, 1);
966         req->info = info;
967         return ret;
968 }
969
970 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
971                 unsigned int nbytes)
972 {
973         int offset = 0;
974
975         if (!nbytes)
976                 return 0;
977
978         for (;;) {
979                 if (start < offset + sg->length)
980                         break;
981
982                 offset += sg->length;
983                 sg = scatterwalk_sg_next(sg);
984         }
985         return (start + nbytes > offset + sg->length);
986 }
987
988 static int aead_perform(struct aead_request *req, int encrypt,
989                 int cryptoffset, int eff_cryptlen, u8 *iv)
990 {
991         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
993         unsigned ivsize = crypto_aead_ivsize(tfm);
994         unsigned authsize = crypto_aead_authsize(tfm);
995         struct ix_sa_dir *dir;
996         struct crypt_ctl *crypt;
997         unsigned int cryptlen;
998         struct buffer_desc *buf, src_hook;
999         struct aead_ctx *req_ctx = aead_request_ctx(req);
1000         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1001                                 GFP_KERNEL : GFP_ATOMIC;
1002
1003         if (qmgr_stat_full(SEND_QID))
1004                 return -EAGAIN;
1005         if (atomic_read(&ctx->configuring))
1006                 return -EAGAIN;
1007
1008         if (encrypt) {
1009                 dir = &ctx->encrypt;
1010                 cryptlen = req->cryptlen;
1011         } else {
1012                 dir = &ctx->decrypt;
1013                 /* req->cryptlen includes the authsize when decrypting */
1014                 cryptlen = req->cryptlen -authsize;
1015                 eff_cryptlen -= authsize;
1016         }
1017         crypt = get_crypt_desc();
1018         if (!crypt)
1019                 return -ENOMEM;
1020
1021         crypt->data.aead_req = req;
1022         crypt->crypto_ctx = dir->npe_ctx_phys;
1023         crypt->mode = dir->npe_mode;
1024         crypt->init_len = dir->npe_ctx_idx;
1025
1026         crypt->crypt_offs = cryptoffset;
1027         crypt->crypt_len = eff_cryptlen;
1028
1029         crypt->auth_offs = 0;
1030         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1031         BUG_ON(ivsize && !req->iv);
1032         memcpy(crypt->iv, req->iv, ivsize);
1033
1034         if (req->src != req->dst) {
1035                 BUG(); /* -ENOTSUP because of my laziness */
1036         }
1037
1038         /* ASSOC data */
1039         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1040                 flags, DMA_TO_DEVICE);
1041         req_ctx->buffer = src_hook.next;
1042         crypt->src_buf = src_hook.phys_next;
1043         if (!buf)
1044                 goto out;
1045         /* IV */
1046         sg_init_table(&req_ctx->ivlist, 1);
1047         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1048         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1049                         DMA_BIDIRECTIONAL);
1050         if (!buf)
1051                 goto free_chain;
1052         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1053                 /* The 12 hmac bytes are scattered,
1054                  * we need to copy them into a safe buffer */
1055                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1056                                 &crypt->icv_rev_aes);
1057                 if (unlikely(!req_ctx->hmac_virt))
1058                         goto free_chain;
1059                 if (!encrypt) {
1060                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1061                                 req->src, cryptlen, authsize, 0);
1062                 }
1063                 req_ctx->encrypt = encrypt;
1064         } else {
1065                 req_ctx->hmac_virt = NULL;
1066         }
1067         /* Crypt */
1068         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1069                         DMA_BIDIRECTIONAL);
1070         if (!buf)
1071                 goto free_hmac_virt;
1072         if (!req_ctx->hmac_virt) {
1073                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1074         }
1075
1076         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1077         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1078         BUG_ON(qmgr_stat_overflow(SEND_QID));
1079         return -EINPROGRESS;
1080 free_hmac_virt:
1081         if (req_ctx->hmac_virt) {
1082                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1083                                 crypt->icv_rev_aes);
1084         }
1085 free_chain:
1086         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1087 out:
1088         crypt->ctl_flags = CTL_FLAG_UNUSED;
1089         return -ENOMEM;
1090 }
1091
1092 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1093 {
1094         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1095         u32 *flags = &tfm->base.crt_flags;
1096         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1097         int ret;
1098
1099         if (!ctx->enckey_len && !ctx->authkey_len)
1100                 return 0;
1101         init_completion(&ctx->completion);
1102         atomic_inc(&ctx->configuring);
1103
1104         reset_sa_dir(&ctx->encrypt);
1105         reset_sa_dir(&ctx->decrypt);
1106
1107         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1108         if (ret)
1109                 goto out;
1110         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1111         if (ret)
1112                 goto out;
1113         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1114                         ctx->authkey_len, digest_len);
1115         if (ret)
1116                 goto out;
1117         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1118                         ctx->authkey_len, digest_len);
1119         if (ret)
1120                 goto out;
1121
1122         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1123                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1124                         ret = -EINVAL;
1125                         goto out;
1126                 } else {
1127                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1128                 }
1129         }
1130 out:
1131         if (!atomic_dec_and_test(&ctx->configuring))
1132                 wait_for_completion(&ctx->completion);
1133         return ret;
1134 }
1135
1136 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1137 {
1138         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1139
1140         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1141                 return -EINVAL;
1142         return aead_setup(tfm, authsize);
1143 }
1144
1145 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1146                         unsigned int keylen)
1147 {
1148         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1149         struct rtattr *rta = (struct rtattr *)key;
1150         struct crypto_authenc_key_param *param;
1151
1152         if (!RTA_OK(rta, keylen))
1153                 goto badkey;
1154         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1155                 goto badkey;
1156         if (RTA_PAYLOAD(rta) < sizeof(*param))
1157                 goto badkey;
1158
1159         param = RTA_DATA(rta);
1160         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1161
1162         key += RTA_ALIGN(rta->rta_len);
1163         keylen -= RTA_ALIGN(rta->rta_len);
1164
1165         if (keylen < ctx->enckey_len)
1166                 goto badkey;
1167
1168         ctx->authkey_len = keylen - ctx->enckey_len;
1169         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1170         memcpy(ctx->authkey, key, ctx->authkey_len);
1171
1172         return aead_setup(tfm, crypto_aead_authsize(tfm));
1173 badkey:
1174         ctx->enckey_len = 0;
1175         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1176         return -EINVAL;
1177 }
1178
1179 static int aead_encrypt(struct aead_request *req)
1180 {
1181         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1182         return aead_perform(req, 1, req->assoclen + ivsize,
1183                         req->cryptlen, req->iv);
1184 }
1185
1186 static int aead_decrypt(struct aead_request *req)
1187 {
1188         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1189         return aead_perform(req, 0, req->assoclen + ivsize,
1190                         req->cryptlen, req->iv);
1191 }
1192
1193 static int aead_givencrypt(struct aead_givcrypt_request *req)
1194 {
1195         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1196         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1197         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1198         __be64 seq;
1199
1200         /* copied from eseqiv.c */
1201         if (!ctx->salted) {
1202                 get_random_bytes(ctx->salt, ivsize);
1203                 ctx->salted = 1;
1204         }
1205         memcpy(req->areq.iv, ctx->salt, ivsize);
1206         len = ivsize;
1207         if (ivsize > sizeof(u64)) {
1208                 memset(req->giv, 0, ivsize - sizeof(u64));
1209                 len = sizeof(u64);
1210         }
1211         seq = cpu_to_be64(req->seq);
1212         memcpy(req->giv + ivsize - len, &seq, len);
1213         return aead_perform(&req->areq, 1, req->areq.assoclen,
1214                         req->areq.cryptlen +ivsize, req->giv);
1215 }
1216
1217 static struct ixp_alg ixp4xx_algos[] = {
1218 {
1219         .crypto = {
1220                 .cra_name       = "cbc(des)",
1221                 .cra_blocksize  = DES_BLOCK_SIZE,
1222                 .cra_u          = { .ablkcipher = {
1223                         .min_keysize    = DES_KEY_SIZE,
1224                         .max_keysize    = DES_KEY_SIZE,
1225                         .ivsize         = DES_BLOCK_SIZE,
1226                         .geniv          = "eseqiv",
1227                         }
1228                 }
1229         },
1230         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1231         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1232
1233 }, {
1234         .crypto = {
1235                 .cra_name       = "ecb(des)",
1236                 .cra_blocksize  = DES_BLOCK_SIZE,
1237                 .cra_u          = { .ablkcipher = {
1238                         .min_keysize    = DES_KEY_SIZE,
1239                         .max_keysize    = DES_KEY_SIZE,
1240                         }
1241                 }
1242         },
1243         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1244         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1245 }, {
1246         .crypto = {
1247                 .cra_name       = "cbc(des3_ede)",
1248                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1249                 .cra_u          = { .ablkcipher = {
1250                         .min_keysize    = DES3_EDE_KEY_SIZE,
1251                         .max_keysize    = DES3_EDE_KEY_SIZE,
1252                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1253                         .geniv          = "eseqiv",
1254                         }
1255                 }
1256         },
1257         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1258         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1259 }, {
1260         .crypto = {
1261                 .cra_name       = "ecb(des3_ede)",
1262                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1263                 .cra_u          = { .ablkcipher = {
1264                         .min_keysize    = DES3_EDE_KEY_SIZE,
1265                         .max_keysize    = DES3_EDE_KEY_SIZE,
1266                         }
1267                 }
1268         },
1269         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1270         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1271 }, {
1272         .crypto = {
1273                 .cra_name       = "cbc(aes)",
1274                 .cra_blocksize  = AES_BLOCK_SIZE,
1275                 .cra_u          = { .ablkcipher = {
1276                         .min_keysize    = AES_MIN_KEY_SIZE,
1277                         .max_keysize    = AES_MAX_KEY_SIZE,
1278                         .ivsize         = AES_BLOCK_SIZE,
1279                         .geniv          = "eseqiv",
1280                         }
1281                 }
1282         },
1283         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1284         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1285 }, {
1286         .crypto = {
1287                 .cra_name       = "ecb(aes)",
1288                 .cra_blocksize  = AES_BLOCK_SIZE,
1289                 .cra_u          = { .ablkcipher = {
1290                         .min_keysize    = AES_MIN_KEY_SIZE,
1291                         .max_keysize    = AES_MAX_KEY_SIZE,
1292                         }
1293                 }
1294         },
1295         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1296         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1297 }, {
1298         .crypto = {
1299                 .cra_name       = "ctr(aes)",
1300                 .cra_blocksize  = AES_BLOCK_SIZE,
1301                 .cra_u          = { .ablkcipher = {
1302                         .min_keysize    = AES_MIN_KEY_SIZE,
1303                         .max_keysize    = AES_MAX_KEY_SIZE,
1304                         .ivsize         = AES_BLOCK_SIZE,
1305                         .geniv          = "eseqiv",
1306                         }
1307                 }
1308         },
1309         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1310         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1311 }, {
1312         .crypto = {
1313                 .cra_name       = "rfc3686(ctr(aes))",
1314                 .cra_blocksize  = AES_BLOCK_SIZE,
1315                 .cra_u          = { .ablkcipher = {
1316                         .min_keysize    = AES_MIN_KEY_SIZE,
1317                         .max_keysize    = AES_MAX_KEY_SIZE,
1318                         .ivsize         = AES_BLOCK_SIZE,
1319                         .geniv          = "eseqiv",
1320                         .setkey         = ablk_rfc3686_setkey,
1321                         .encrypt        = ablk_rfc3686_crypt,
1322                         .decrypt        = ablk_rfc3686_crypt }
1323                 }
1324         },
1325         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1326         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1327 }, {
1328         .crypto = {
1329                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1330                 .cra_blocksize  = DES_BLOCK_SIZE,
1331                 .cra_u          = { .aead = {
1332                         .ivsize         = DES_BLOCK_SIZE,
1333                         .maxauthsize    = MD5_DIGEST_SIZE,
1334                         }
1335                 }
1336         },
1337         .hash = &hash_alg_md5,
1338         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1339         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1340 }, {
1341         .crypto = {
1342                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1343                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1344                 .cra_u          = { .aead = {
1345                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1346                         .maxauthsize    = MD5_DIGEST_SIZE,
1347                         }
1348                 }
1349         },
1350         .hash = &hash_alg_md5,
1351         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1352         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354         .crypto = {
1355                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1356                 .cra_blocksize  = DES_BLOCK_SIZE,
1357                 .cra_u          = { .aead = {
1358                         .ivsize         = DES_BLOCK_SIZE,
1359                         .maxauthsize    = SHA1_DIGEST_SIZE,
1360                         }
1361                 }
1362         },
1363         .hash = &hash_alg_sha1,
1364         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1365         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1366 }, {
1367         .crypto = {
1368                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1369                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1370                 .cra_u          = { .aead = {
1371                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1372                         .maxauthsize    = SHA1_DIGEST_SIZE,
1373                         }
1374                 }
1375         },
1376         .hash = &hash_alg_sha1,
1377         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1378         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1379 }, {
1380         .crypto = {
1381                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1382                 .cra_blocksize  = AES_BLOCK_SIZE,
1383                 .cra_u          = { .aead = {
1384                         .ivsize         = AES_BLOCK_SIZE,
1385                         .maxauthsize    = MD5_DIGEST_SIZE,
1386                         }
1387                 }
1388         },
1389         .hash = &hash_alg_md5,
1390         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1391         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1392 }, {
1393         .crypto = {
1394                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1395                 .cra_blocksize  = AES_BLOCK_SIZE,
1396                 .cra_u          = { .aead = {
1397                         .ivsize         = AES_BLOCK_SIZE,
1398                         .maxauthsize    = SHA1_DIGEST_SIZE,
1399                         }
1400                 }
1401         },
1402         .hash = &hash_alg_sha1,
1403         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1404         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1405 } };
1406
1407 #define IXP_POSTFIX "-ixp4xx"
1408
1409 static const struct platform_device_info ixp_dev_info __initdata = {
1410         .name           = DRIVER_NAME,
1411         .id             = 0,
1412         .dma_mask       = DMA_BIT_MASK(32),
1413 };
1414
1415 static int __init ixp_module_init(void)
1416 {
1417         int num = ARRAY_SIZE(ixp4xx_algos);
1418         int i, err ;
1419
1420         pdev = platform_device_register_full(&ixp_dev_info);
1421         if (IS_ERR(pdev))
1422                 return PTR_ERR(pdev);
1423
1424         dev = &pdev->dev;
1425
1426         spin_lock_init(&desc_lock);
1427         spin_lock_init(&emerg_lock);
1428
1429         err = init_ixp_crypto();
1430         if (err) {
1431                 platform_device_unregister(pdev);
1432                 return err;
1433         }
1434         for (i=0; i< num; i++) {
1435                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1436
1437                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1438                         "%s"IXP_POSTFIX, cra->cra_name) >=
1439                         CRYPTO_MAX_ALG_NAME)
1440                 {
1441                         continue;
1442                 }
1443                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1444                         continue;
1445                 }
1446                 if (!ixp4xx_algos[i].hash) {
1447                         /* block ciphers */
1448                         cra->cra_type = &crypto_ablkcipher_type;
1449                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1450                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1451                                          CRYPTO_ALG_ASYNC;
1452                         if (!cra->cra_ablkcipher.setkey)
1453                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1454                         if (!cra->cra_ablkcipher.encrypt)
1455                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1456                         if (!cra->cra_ablkcipher.decrypt)
1457                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1458                         cra->cra_init = init_tfm_ablk;
1459                 } else {
1460                         /* authenc */
1461                         cra->cra_type = &crypto_aead_type;
1462                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1463                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1464                                          CRYPTO_ALG_ASYNC;
1465                         cra->cra_aead.setkey = aead_setkey;
1466                         cra->cra_aead.setauthsize = aead_setauthsize;
1467                         cra->cra_aead.encrypt = aead_encrypt;
1468                         cra->cra_aead.decrypt = aead_decrypt;
1469                         cra->cra_aead.givencrypt = aead_givencrypt;
1470                         cra->cra_init = init_tfm_aead;
1471                 }
1472                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1473                 cra->cra_module = THIS_MODULE;
1474                 cra->cra_alignmask = 3;
1475                 cra->cra_priority = 300;
1476                 cra->cra_exit = exit_tfm;
1477                 if (crypto_register_alg(cra))
1478                         printk(KERN_ERR "Failed to register '%s'\n",
1479                                 cra->cra_name);
1480                 else
1481                         ixp4xx_algos[i].registered = 1;
1482         }
1483         return 0;
1484 }
1485
1486 static void __exit ixp_module_exit(void)
1487 {
1488         int num = ARRAY_SIZE(ixp4xx_algos);
1489         int i;
1490
1491         for (i=0; i< num; i++) {
1492                 if (ixp4xx_algos[i].registered)
1493                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1494         }
1495         release_ixp_crypto();
1496         platform_device_unregister(pdev);
1497 }
1498
1499 module_init(ixp_module_init);
1500 module_exit(ixp_module_exit);
1501
1502 MODULE_LICENSE("GPL");
1503 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1504 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1505