]> Pileus Git - ~andy/linux/blob - drivers/cpufreq/imx6q-cpufreq.c
3e396543aea4f74bb6b2d54e5a839eedf43a2c1a
[~andy/linux] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL   1250000
20 #define PU_SOC_VOLTAGE_HIGH     1275000
21 #define FREQ_1P2_GHZ            1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
38 {
39         return cpufreq_frequency_table_verify(policy, freq_table);
40 }
41
42 static unsigned int imx6q_get_speed(unsigned int cpu)
43 {
44         return clk_get_rate(arm_clk) / 1000;
45 }
46
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48                             unsigned int target_freq, unsigned int relation)
49 {
50         struct cpufreq_freqs freqs;
51         struct opp *opp;
52         unsigned long freq_hz, volt, volt_old;
53         unsigned int index;
54         int ret;
55
56         ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57                                              relation, &index);
58         if (ret) {
59                 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60                         target_freq, ret);
61                 return ret;
62         }
63
64         freqs.new = freq_table[index].frequency;
65         freq_hz = freqs.new * 1000;
66         freqs.old = clk_get_rate(arm_clk) / 1000;
67
68         if (freqs.old == freqs.new)
69                 return 0;
70
71         rcu_read_lock();
72         opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
73         if (IS_ERR(opp)) {
74                 rcu_read_unlock();
75                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76                 return PTR_ERR(opp);
77         }
78
79         volt = opp_get_voltage(opp);
80         rcu_read_unlock();
81         volt_old = regulator_get_voltage(arm_reg);
82
83         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84                 freqs.old / 1000, volt_old / 1000,
85                 freqs.new / 1000, volt / 1000);
86
87         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
88
89         /* scaling up?  scale voltage before frequency */
90         if (freqs.new > freqs.old) {
91                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
92                 if (ret) {
93                         dev_err(cpu_dev,
94                                 "failed to scale vddarm up: %d\n", ret);
95                         freqs.new = freqs.old;
96                         goto post_notify;
97                 }
98
99                 /*
100                  * Need to increase vddpu and vddsoc for safety
101                  * if we are about to run at 1.2 GHz.
102                  */
103                 if (freqs.new == FREQ_1P2_GHZ / 1000) {
104                         regulator_set_voltage_tol(pu_reg,
105                                         PU_SOC_VOLTAGE_HIGH, 0);
106                         regulator_set_voltage_tol(soc_reg,
107                                         PU_SOC_VOLTAGE_HIGH, 0);
108                 }
109         }
110
111         /*
112          * The setpoints are selected per PLL/PDF frequencies, so we need to
113          * reprogram PLL for frequency scaling.  The procedure of reprogramming
114          * PLL1 is as below.
115          *
116          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118          *  - Disable pll2_pfd2_396m_clk
119          */
120         clk_set_parent(step_clk, pll2_pfd2_396m_clk);
121         clk_set_parent(pll1_sw_clk, step_clk);
122         if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
123                 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
124                 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
125         }
126
127         /* Ensure the arm clock divider is what we expect */
128         ret = clk_set_rate(arm_clk, freqs.new * 1000);
129         if (ret) {
130                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
131                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
132                 freqs.new = freqs.old;
133                 goto post_notify;
134         }
135
136         /* scaling down?  scale voltage after frequency */
137         if (freqs.new < freqs.old) {
138                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
139                 if (ret) {
140                         dev_warn(cpu_dev,
141                                  "failed to scale vddarm down: %d\n", ret);
142                         ret = 0;
143                 }
144
145                 if (freqs.old == FREQ_1P2_GHZ / 1000) {
146                         regulator_set_voltage_tol(pu_reg,
147                                         PU_SOC_VOLTAGE_NORMAL, 0);
148                         regulator_set_voltage_tol(soc_reg,
149                                         PU_SOC_VOLTAGE_NORMAL, 0);
150                 }
151         }
152
153 post_notify:
154         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
155
156         return ret;
157 }
158
159 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
160 {
161         int ret;
162
163         ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
164         if (ret) {
165                 dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
166                 return ret;
167         }
168
169         policy->cpuinfo.transition_latency = transition_latency;
170         policy->cur = clk_get_rate(arm_clk) / 1000;
171         cpumask_setall(policy->cpus);
172         cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
173
174         return 0;
175 }
176
177 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
178 {
179         cpufreq_frequency_table_put_attr(policy->cpu);
180         return 0;
181 }
182
183 static struct freq_attr *imx6q_cpufreq_attr[] = {
184         &cpufreq_freq_attr_scaling_available_freqs,
185         NULL,
186 };
187
188 static struct cpufreq_driver imx6q_cpufreq_driver = {
189         .verify = imx6q_verify_speed,
190         .target = imx6q_set_target,
191         .get = imx6q_get_speed,
192         .init = imx6q_cpufreq_init,
193         .exit = imx6q_cpufreq_exit,
194         .name = "imx6q-cpufreq",
195         .attr = imx6q_cpufreq_attr,
196 };
197
198 static int imx6q_cpufreq_probe(struct platform_device *pdev)
199 {
200         struct device_node *np;
201         struct opp *opp;
202         unsigned long min_volt, max_volt;
203         int num, ret;
204
205         cpu_dev = &pdev->dev;
206
207         np = of_node_get(cpu_dev->of_node);
208         if (!np) {
209                 dev_err(cpu_dev, "failed to find cpu0 node\n");
210                 return -ENOENT;
211         }
212
213         arm_clk = devm_clk_get(cpu_dev, "arm");
214         pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
215         pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
216         step_clk = devm_clk_get(cpu_dev, "step");
217         pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
218         if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
219             IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
220                 dev_err(cpu_dev, "failed to get clocks\n");
221                 ret = -ENOENT;
222                 goto put_node;
223         }
224
225         arm_reg = devm_regulator_get(cpu_dev, "arm");
226         pu_reg = devm_regulator_get(cpu_dev, "pu");
227         soc_reg = devm_regulator_get(cpu_dev, "soc");
228         if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
229                 dev_err(cpu_dev, "failed to get regulators\n");
230                 ret = -ENOENT;
231                 goto put_node;
232         }
233
234         /* We expect an OPP table supplied by platform */
235         num = opp_get_opp_count(cpu_dev);
236         if (num < 0) {
237                 ret = num;
238                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
239                 goto put_node;
240         }
241
242         ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
243         if (ret) {
244                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
245                 goto put_node;
246         }
247
248         if (of_property_read_u32(np, "clock-latency", &transition_latency))
249                 transition_latency = CPUFREQ_ETERNAL;
250
251         /*
252          * OPP is maintained in order of increasing frequency, and
253          * freq_table initialised from OPP is therefore sorted in the
254          * same order.
255          */
256         rcu_read_lock();
257         opp = opp_find_freq_exact(cpu_dev,
258                                   freq_table[0].frequency * 1000, true);
259         min_volt = opp_get_voltage(opp);
260         opp = opp_find_freq_exact(cpu_dev,
261                                   freq_table[--num].frequency * 1000, true);
262         max_volt = opp_get_voltage(opp);
263         rcu_read_unlock();
264         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
265         if (ret > 0)
266                 transition_latency += ret * 1000;
267
268         /* Count vddpu and vddsoc latency in for 1.2 GHz support */
269         if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
270                 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
271                                                  PU_SOC_VOLTAGE_HIGH);
272                 if (ret > 0)
273                         transition_latency += ret * 1000;
274                 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
275                                                  PU_SOC_VOLTAGE_HIGH);
276                 if (ret > 0)
277                         transition_latency += ret * 1000;
278         }
279
280         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
281         if (ret) {
282                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
283                 goto free_freq_table;
284         }
285
286         of_node_put(np);
287         return 0;
288
289 free_freq_table:
290         opp_free_cpufreq_table(cpu_dev, &freq_table);
291 put_node:
292         of_node_put(np);
293         return ret;
294 }
295
296 static int imx6q_cpufreq_remove(struct platform_device *pdev)
297 {
298         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
299         opp_free_cpufreq_table(cpu_dev, &freq_table);
300
301         return 0;
302 }
303
304 static struct platform_driver imx6q_cpufreq_platdrv = {
305         .driver = {
306                 .name   = "imx6q-cpufreq",
307                 .owner  = THIS_MODULE,
308         },
309         .probe          = imx6q_cpufreq_probe,
310         .remove         = imx6q_cpufreq_remove,
311 };
312 module_platform_driver(imx6q_cpufreq_platdrv);
313
314 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
315 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
316 MODULE_LICENSE("GPL");