]> Pileus Git - ~andy/linux/blob - drivers/cpufreq/exynos-cpufreq.c
Merge tag 'drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[~andy/linux] / drivers / cpufreq / exynos-cpufreq.c
1 /*
2  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * EXYNOS - CPU frequency scaling support for EXYNOS series
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/cpufreq.h>
19 #include <linux/suspend.h>
20
21 #include <mach/cpufreq.h>
22
23 #include <plat/cpu.h>
24
25 static struct exynos_dvfs_info *exynos_info;
26
27 static struct regulator *arm_regulator;
28 static struct cpufreq_freqs freqs;
29
30 static unsigned int locking_frequency;
31 static bool frequency_locked;
32 static DEFINE_MUTEX(cpufreq_lock);
33
34 static int exynos_verify_speed(struct cpufreq_policy *policy)
35 {
36         return cpufreq_frequency_table_verify(policy,
37                                               exynos_info->freq_table);
38 }
39
40 static unsigned int exynos_getspeed(unsigned int cpu)
41 {
42         return clk_get_rate(exynos_info->cpu_clk) / 1000;
43 }
44
45 static int exynos_target(struct cpufreq_policy *policy,
46                           unsigned int target_freq,
47                           unsigned int relation)
48 {
49         unsigned int index, old_index;
50         unsigned int arm_volt, safe_arm_volt = 0;
51         int ret = 0;
52         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
53         unsigned int *volt_table = exynos_info->volt_table;
54         unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
55
56         mutex_lock(&cpufreq_lock);
57
58         freqs.old = policy->cur;
59
60         if (frequency_locked && target_freq != locking_frequency) {
61                 ret = -EAGAIN;
62                 goto out;
63         }
64
65         /*
66          * The policy max have been changed so that we cannot get proper
67          * old_index with cpufreq_frequency_table_target(). Thus, ignore
68          * policy and get the index from the raw freqeuncy table.
69          */
70         for (old_index = 0;
71                 freq_table[old_index].frequency != CPUFREQ_TABLE_END;
72                 old_index++)
73                 if (freq_table[old_index].frequency == freqs.old)
74                         break;
75
76         if (freq_table[old_index].frequency == CPUFREQ_TABLE_END) {
77                 ret = -EINVAL;
78                 goto out;
79         }
80
81         if (cpufreq_frequency_table_target(policy, freq_table,
82                                            target_freq, relation, &index)) {
83                 ret = -EINVAL;
84                 goto out;
85         }
86
87         freqs.new = freq_table[index].frequency;
88         freqs.cpu = policy->cpu;
89
90         /*
91          * ARM clock source will be changed APLL to MPLL temporary
92          * To support this level, need to control regulator for
93          * required voltage level
94          */
95         if (exynos_info->need_apll_change != NULL) {
96                 if (exynos_info->need_apll_change(old_index, index) &&
97                    (freq_table[index].frequency < mpll_freq_khz) &&
98                    (freq_table[old_index].frequency < mpll_freq_khz))
99                         safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
100         }
101         arm_volt = volt_table[index];
102
103         for_each_cpu(freqs.cpu, policy->cpus)
104                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
105
106         /* When the new frequency is higher than current frequency */
107         if ((freqs.new > freqs.old) && !safe_arm_volt) {
108                 /* Firstly, voltage up to increase frequency */
109                 regulator_set_voltage(arm_regulator, arm_volt,
110                                 arm_volt);
111         }
112
113         if (safe_arm_volt)
114                 regulator_set_voltage(arm_regulator, safe_arm_volt,
115                                       safe_arm_volt);
116         if (freqs.new != freqs.old)
117                 exynos_info->set_freq(old_index, index);
118
119         for_each_cpu(freqs.cpu, policy->cpus)
120                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
121
122         /* When the new frequency is lower than current frequency */
123         if ((freqs.new < freqs.old) ||
124            ((freqs.new > freqs.old) && safe_arm_volt)) {
125                 /* down the voltage after frequency change */
126                 regulator_set_voltage(arm_regulator, arm_volt,
127                                 arm_volt);
128         }
129
130 out:
131         mutex_unlock(&cpufreq_lock);
132
133         return ret;
134 }
135
136 #ifdef CONFIG_PM
137 static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
138 {
139         return 0;
140 }
141
142 static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
143 {
144         return 0;
145 }
146 #endif
147
148 /**
149  * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
150  *                      context
151  * @notifier
152  * @pm_event
153  * @v
154  *
155  * While frequency_locked == true, target() ignores every frequency but
156  * locking_frequency. The locking_frequency value is the initial frequency,
157  * which is set by the bootloader. In order to eliminate possible
158  * inconsistency in clock values, we save and restore frequencies during
159  * suspend and resume and block CPUFREQ activities. Note that the standard
160  * suspend/resume cannot be used as they are too deep (syscore_ops) for
161  * regulator actions.
162  */
163 static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
164                                        unsigned long pm_event, void *v)
165 {
166         struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
167         static unsigned int saved_frequency;
168         unsigned int temp;
169
170         mutex_lock(&cpufreq_lock);
171         switch (pm_event) {
172         case PM_SUSPEND_PREPARE:
173                 if (frequency_locked)
174                         goto out;
175
176                 frequency_locked = true;
177
178                 if (locking_frequency) {
179                         saved_frequency = exynos_getspeed(0);
180
181                         mutex_unlock(&cpufreq_lock);
182                         exynos_target(policy, locking_frequency,
183                                       CPUFREQ_RELATION_H);
184                         mutex_lock(&cpufreq_lock);
185                 }
186                 break;
187
188         case PM_POST_SUSPEND:
189                 if (saved_frequency) {
190                         /*
191                          * While frequency_locked, only locking_frequency
192                          * is valid for target(). In order to use
193                          * saved_frequency while keeping frequency_locked,
194                          * we temporarly overwrite locking_frequency.
195                          */
196                         temp = locking_frequency;
197                         locking_frequency = saved_frequency;
198
199                         mutex_unlock(&cpufreq_lock);
200                         exynos_target(policy, locking_frequency,
201                                       CPUFREQ_RELATION_H);
202                         mutex_lock(&cpufreq_lock);
203
204                         locking_frequency = temp;
205                 }
206                 frequency_locked = false;
207                 break;
208         }
209 out:
210         mutex_unlock(&cpufreq_lock);
211
212         return NOTIFY_OK;
213 }
214
215 static struct notifier_block exynos_cpufreq_nb = {
216         .notifier_call = exynos_cpufreq_pm_notifier,
217 };
218
219 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
220 {
221         policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
222
223         cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
224
225         locking_frequency = exynos_getspeed(0);
226
227         /* set the transition latency value */
228         policy->cpuinfo.transition_latency = 100000;
229
230         /*
231          * EXYNOS4 multi-core processors has 2 cores
232          * that the frequency cannot be set independently.
233          * Each cpu is bound to the same speed.
234          * So the affected cpu is all of the cpus.
235          */
236         if (num_online_cpus() == 1) {
237                 cpumask_copy(policy->related_cpus, cpu_possible_mask);
238                 cpumask_copy(policy->cpus, cpu_online_mask);
239         } else {
240                 policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
241                 cpumask_setall(policy->cpus);
242         }
243
244         return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
245 }
246
247 static struct cpufreq_driver exynos_driver = {
248         .flags          = CPUFREQ_STICKY,
249         .verify         = exynos_verify_speed,
250         .target         = exynos_target,
251         .get            = exynos_getspeed,
252         .init           = exynos_cpufreq_cpu_init,
253         .name           = "exynos_cpufreq",
254 #ifdef CONFIG_PM
255         .suspend        = exynos_cpufreq_suspend,
256         .resume         = exynos_cpufreq_resume,
257 #endif
258 };
259
260 static int __init exynos_cpufreq_init(void)
261 {
262         int ret = -EINVAL;
263
264         exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
265         if (!exynos_info)
266                 return -ENOMEM;
267
268         if (soc_is_exynos4210())
269                 ret = exynos4210_cpufreq_init(exynos_info);
270         else if (soc_is_exynos4212() || soc_is_exynos4412())
271                 ret = exynos4x12_cpufreq_init(exynos_info);
272         else if (soc_is_exynos5250())
273                 ret = exynos5250_cpufreq_init(exynos_info);
274         else
275                 pr_err("%s: CPU type not found\n", __func__);
276
277         if (ret)
278                 goto err_vdd_arm;
279
280         if (exynos_info->set_freq == NULL) {
281                 pr_err("%s: No set_freq function (ERR)\n", __func__);
282                 goto err_vdd_arm;
283         }
284
285         arm_regulator = regulator_get(NULL, "vdd_arm");
286         if (IS_ERR(arm_regulator)) {
287                 pr_err("%s: failed to get resource vdd_arm\n", __func__);
288                 goto err_vdd_arm;
289         }
290
291         register_pm_notifier(&exynos_cpufreq_nb);
292
293         if (cpufreq_register_driver(&exynos_driver)) {
294                 pr_err("%s: failed to register cpufreq driver\n", __func__);
295                 goto err_cpufreq;
296         }
297
298         return 0;
299 err_cpufreq:
300         unregister_pm_notifier(&exynos_cpufreq_nb);
301
302         if (!IS_ERR(arm_regulator))
303                 regulator_put(arm_regulator);
304 err_vdd_arm:
305         kfree(exynos_info);
306         pr_debug("%s: failed initialization\n", __func__);
307         return -EINVAL;
308 }
309 late_initcall(exynos_cpufreq_init);