]> Pileus Git - ~andy/linux/blob - drivers/cpufreq/e_powersaver.c
[CPUFREQ] e_powersaver: Check BIOS limit for CPU frequency
[~andy/linux] / drivers / cpufreq / e_powersaver.c
1 /*
2  *  Based on documentation provided by Dave Jones. Thanks!
3  *
4  *  Licensed under the terms of the GNU GPL License version 2.
5  *
6  *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/cpufreq.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/timex.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18
19 #include <asm/msr.h>
20 #include <asm/tsc.h>
21
22 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
23 #include <linux/acpi.h>
24 #include <acpi/processor.h>
25 #endif
26
27 #define EPS_BRAND_C7M   0
28 #define EPS_BRAND_C7    1
29 #define EPS_BRAND_EDEN  2
30 #define EPS_BRAND_C3    3
31 #define EPS_BRAND_C7D   4
32
33 struct eps_cpu_data {
34         u32 fsb;
35 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
36         u32 bios_limit;
37 #endif
38         struct cpufreq_frequency_table freq_table[];
39 };
40
41 static struct eps_cpu_data *eps_cpu[NR_CPUS];
42
43 /* Module parameters */
44 static int freq_failsafe_off;
45 static int voltage_failsafe_off;
46
47 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
48 static int ignore_acpi_limit;
49
50 static struct acpi_processor_performance *eps_acpi_cpu_perf;
51
52 /* Minimum necessary to get acpi_processor_get_bios_limit() working */
53 static int eps_acpi_init(void)
54 {
55         eps_acpi_cpu_perf = kzalloc(sizeof(struct acpi_processor_performance),
56                                       GFP_KERNEL);
57         if (!eps_acpi_cpu_perf)
58                 return -ENOMEM;
59
60         if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
61                                                                 GFP_KERNEL)) {
62                 kfree(eps_acpi_cpu_perf);
63                 eps_acpi_cpu_perf = NULL;
64                 return -ENOMEM;
65         }
66
67         if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
68                 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
69                 kfree(eps_acpi_cpu_perf);
70                 eps_acpi_cpu_perf = NULL;
71                 return -EIO;
72         }
73         return 0;
74 }
75
76 static int eps_acpi_exit(struct cpufreq_policy *policy)
77 {
78         if (eps_acpi_cpu_perf) {
79                 acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
80                 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
81                 kfree(eps_acpi_cpu_perf);
82                 eps_acpi_cpu_perf = NULL;
83         }
84         return 0;
85 }
86 #endif
87
88 static unsigned int eps_get(unsigned int cpu)
89 {
90         struct eps_cpu_data *centaur;
91         u32 lo, hi;
92
93         if (cpu)
94                 return 0;
95         centaur = eps_cpu[cpu];
96         if (centaur == NULL)
97                 return 0;
98
99         /* Return current frequency */
100         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
101         return centaur->fsb * ((lo >> 8) & 0xff);
102 }
103
104 static int eps_set_state(struct eps_cpu_data *centaur,
105                          unsigned int cpu,
106                          u32 dest_state)
107 {
108         struct cpufreq_freqs freqs;
109         u32 lo, hi;
110         int err = 0;
111         int i;
112
113         freqs.old = eps_get(cpu);
114         freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
115         freqs.cpu = cpu;
116         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
117
118         /* Wait while CPU is busy */
119         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
120         i = 0;
121         while (lo & ((1 << 16) | (1 << 17))) {
122                 udelay(16);
123                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
124                 i++;
125                 if (unlikely(i > 64)) {
126                         err = -ENODEV;
127                         goto postchange;
128                 }
129         }
130         /* Set new multiplier and voltage */
131         wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
132         /* Wait until transition end */
133         i = 0;
134         do {
135                 udelay(16);
136                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
137                 i++;
138                 if (unlikely(i > 64)) {
139                         err = -ENODEV;
140                         goto postchange;
141                 }
142         } while (lo & ((1 << 16) | (1 << 17)));
143
144         /* Return current frequency */
145 postchange:
146         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
147         freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
148
149 #ifdef DEBUG
150         {
151         u8 current_multiplier, current_voltage;
152
153         /* Print voltage and multiplier */
154         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
155         current_voltage = lo & 0xff;
156         printk(KERN_INFO "eps: Current voltage = %dmV\n",
157                 current_voltage * 16 + 700);
158         current_multiplier = (lo >> 8) & 0xff;
159         printk(KERN_INFO "eps: Current multiplier = %d\n",
160                 current_multiplier);
161         }
162 #endif
163         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
164         return err;
165 }
166
167 static int eps_target(struct cpufreq_policy *policy,
168                                unsigned int target_freq,
169                                unsigned int relation)
170 {
171         struct eps_cpu_data *centaur;
172         unsigned int newstate = 0;
173         unsigned int cpu = policy->cpu;
174         unsigned int dest_state;
175         int ret;
176
177         if (unlikely(eps_cpu[cpu] == NULL))
178                 return -ENODEV;
179         centaur = eps_cpu[cpu];
180
181         if (unlikely(cpufreq_frequency_table_target(policy,
182                         &eps_cpu[cpu]->freq_table[0],
183                         target_freq,
184                         relation,
185                         &newstate))) {
186                 return -EINVAL;
187         }
188
189         /* Make frequency transition */
190         dest_state = centaur->freq_table[newstate].index & 0xffff;
191         ret = eps_set_state(centaur, cpu, dest_state);
192         if (ret)
193                 printk(KERN_ERR "eps: Timeout!\n");
194         return ret;
195 }
196
197 static int eps_verify(struct cpufreq_policy *policy)
198 {
199         return cpufreq_frequency_table_verify(policy,
200                         &eps_cpu[policy->cpu]->freq_table[0]);
201 }
202
203 static int eps_cpu_init(struct cpufreq_policy *policy)
204 {
205         unsigned int i;
206         u32 lo, hi;
207         u64 val;
208         u8 current_multiplier, current_voltage;
209         u8 max_multiplier, max_voltage;
210         u8 min_multiplier, min_voltage;
211         u8 brand = 0;
212         u32 fsb;
213         struct eps_cpu_data *centaur;
214         struct cpuinfo_x86 *c = &cpu_data(0);
215         struct cpufreq_frequency_table *f_table;
216         int k, step, voltage;
217         int ret;
218         int states;
219 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
220         unsigned int limit;
221 #endif
222
223         if (policy->cpu != 0)
224                 return -ENODEV;
225
226         /* Check brand */
227         printk(KERN_INFO "eps: Detected VIA ");
228
229         switch (c->x86_model) {
230         case 10:
231                 rdmsr(0x1153, lo, hi);
232                 brand = (((lo >> 2) ^ lo) >> 18) & 3;
233                 printk(KERN_CONT "Model A ");
234                 break;
235         case 13:
236                 rdmsr(0x1154, lo, hi);
237                 brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
238                 printk(KERN_CONT "Model D ");
239                 break;
240         }
241
242         switch (brand) {
243         case EPS_BRAND_C7M:
244                 printk(KERN_CONT "C7-M\n");
245                 break;
246         case EPS_BRAND_C7:
247                 printk(KERN_CONT "C7\n");
248                 break;
249         case EPS_BRAND_EDEN:
250                 printk(KERN_CONT "Eden\n");
251                 break;
252         case EPS_BRAND_C7D:
253                 printk(KERN_CONT "C7-D\n");
254                 break;
255         case EPS_BRAND_C3:
256                 printk(KERN_CONT "C3\n");
257                 return -ENODEV;
258                 break;
259         }
260         /* Enable Enhanced PowerSaver */
261         rdmsrl(MSR_IA32_MISC_ENABLE, val);
262         if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
263                 val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
264                 wrmsrl(MSR_IA32_MISC_ENABLE, val);
265                 /* Can be locked at 0 */
266                 rdmsrl(MSR_IA32_MISC_ENABLE, val);
267                 if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
268                         printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
269                         return -ENODEV;
270                 }
271         }
272
273         /* Print voltage and multiplier */
274         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
275         current_voltage = lo & 0xff;
276         printk(KERN_INFO "eps: Current voltage = %dmV\n",
277                         current_voltage * 16 + 700);
278         current_multiplier = (lo >> 8) & 0xff;
279         printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
280
281         /* Print limits */
282         max_voltage = hi & 0xff;
283         printk(KERN_INFO "eps: Highest voltage = %dmV\n",
284                         max_voltage * 16 + 700);
285         max_multiplier = (hi >> 8) & 0xff;
286         printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
287         min_voltage = (hi >> 16) & 0xff;
288         printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
289                         min_voltage * 16 + 700);
290         min_multiplier = (hi >> 24) & 0xff;
291         printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
292
293         /* Sanity checks */
294         if (current_multiplier == 0 || max_multiplier == 0
295             || min_multiplier == 0)
296                 return -EINVAL;
297         if (current_multiplier > max_multiplier
298             || max_multiplier <= min_multiplier)
299                 return -EINVAL;
300         if (current_voltage > 0x1f || max_voltage > 0x1f)
301                 return -EINVAL;
302         if (max_voltage < min_voltage
303             || current_voltage < min_voltage
304             || current_voltage > max_voltage)
305                 return -EINVAL;
306
307         /* Check for systems using underclocked CPU */
308         if (!freq_failsafe_off && max_multiplier != current_multiplier) {
309                 printk(KERN_INFO "eps: Your processor is running at different "
310                         "frequency then its maximum. Aborting.\n");
311                 printk(KERN_INFO "eps: You can use freq_failsafe_off option "
312                         "to disable this check.\n");
313                 return -EINVAL;
314         }
315         if (!voltage_failsafe_off && max_voltage != current_voltage) {
316                 printk(KERN_INFO "eps: Your processor is running at different "
317                         "voltage then its maximum. Aborting.\n");
318                 printk(KERN_INFO "eps: You can use voltage_failsafe_off "
319                         "option to disable this check.\n");
320                 return -EINVAL;
321         }
322
323         /* Calc FSB speed */
324         fsb = cpu_khz / current_multiplier;
325
326 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
327         /* Check for ACPI processor speed limit */
328         if (!ignore_acpi_limit && !eps_acpi_init()) {
329                 if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
330                         printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
331                                 limit/1000000,
332                                 (limit%1000000)/10000);
333                         eps_acpi_exit(policy);
334                         /* Check if max_multiplier is in BIOS limits */
335                         if (limit && max_multiplier * fsb > limit) {
336                                 printk(KERN_INFO "eps: Aborting.\n");
337                                 return -EINVAL;
338                         }
339                 }
340         }
341 #endif
342
343         /* Calc number of p-states supported */
344         if (brand == EPS_BRAND_C7M)
345                 states = max_multiplier - min_multiplier + 1;
346         else
347                 states = 2;
348
349         /* Allocate private data and frequency table for current cpu */
350         centaur = kzalloc(sizeof(struct eps_cpu_data)
351                     + (states + 1) * sizeof(struct cpufreq_frequency_table),
352                     GFP_KERNEL);
353         if (!centaur)
354                 return -ENOMEM;
355         eps_cpu[0] = centaur;
356
357         /* Copy basic values */
358         centaur->fsb = fsb;
359 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
360         centaur->bios_limit = limit;
361 #endif
362
363         /* Fill frequency and MSR value table */
364         f_table = &centaur->freq_table[0];
365         if (brand != EPS_BRAND_C7M) {
366                 f_table[0].frequency = fsb * min_multiplier;
367                 f_table[0].index = (min_multiplier << 8) | min_voltage;
368                 f_table[1].frequency = fsb * max_multiplier;
369                 f_table[1].index = (max_multiplier << 8) | max_voltage;
370                 f_table[2].frequency = CPUFREQ_TABLE_END;
371         } else {
372                 k = 0;
373                 step = ((max_voltage - min_voltage) * 256)
374                         / (max_multiplier - min_multiplier);
375                 for (i = min_multiplier; i <= max_multiplier; i++) {
376                         voltage = (k * step) / 256 + min_voltage;
377                         f_table[k].frequency = fsb * i;
378                         f_table[k].index = (i << 8) | voltage;
379                         k++;
380                 }
381                 f_table[k].frequency = CPUFREQ_TABLE_END;
382         }
383
384         policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
385         policy->cur = fsb * current_multiplier;
386
387         ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
388         if (ret) {
389                 kfree(centaur);
390                 return ret;
391         }
392
393         cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
394         return 0;
395 }
396
397 static int eps_cpu_exit(struct cpufreq_policy *policy)
398 {
399         unsigned int cpu = policy->cpu;
400
401         /* Bye */
402         cpufreq_frequency_table_put_attr(policy->cpu);
403         kfree(eps_cpu[cpu]);
404         eps_cpu[cpu] = NULL;
405         return 0;
406 }
407
408 static struct freq_attr *eps_attr[] = {
409         &cpufreq_freq_attr_scaling_available_freqs,
410         NULL,
411 };
412
413 static struct cpufreq_driver eps_driver = {
414         .verify         = eps_verify,
415         .target         = eps_target,
416         .init           = eps_cpu_init,
417         .exit           = eps_cpu_exit,
418         .get            = eps_get,
419         .name           = "e_powersaver",
420         .owner          = THIS_MODULE,
421         .attr           = eps_attr,
422 };
423
424 static int __init eps_init(void)
425 {
426         struct cpuinfo_x86 *c = &cpu_data(0);
427
428         /* This driver will work only on Centaur C7 processors with
429          * Enhanced SpeedStep/PowerSaver registers */
430         if (c->x86_vendor != X86_VENDOR_CENTAUR
431             || c->x86 != 6 || c->x86_model < 10)
432                 return -ENODEV;
433         if (!cpu_has(c, X86_FEATURE_EST))
434                 return -ENODEV;
435
436         if (cpufreq_register_driver(&eps_driver))
437                 return -EINVAL;
438         return 0;
439 }
440
441 static void __exit eps_exit(void)
442 {
443         cpufreq_unregister_driver(&eps_driver);
444 }
445
446 /* Allow user to overclock his machine or to change frequency to higher after
447  * unloading module */
448 module_param(freq_failsafe_off, int, 0644);
449 MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
450 module_param(voltage_failsafe_off, int, 0644);
451 MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
452 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
453 module_param(ignore_acpi_limit, int, 0644);
454 MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
455 #endif
456
457 MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
458 MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
459 MODULE_LICENSE("GPL");
460
461 module_init(eps_init);
462 module_exit(eps_exit);