]> Pileus Git - ~andy/linux/blob - drivers/cpufreq/cpufreq_ondemand.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-nmw
[~andy/linux] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* On-demand governor macros */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
32 #define DEF_SAMPLING_DOWN_FACTOR                (1)
33 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
39
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static struct od_dbs_tuners od_tuners = {
48         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
49         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
50         .adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
51                             DEF_FREQUENCY_DOWN_DIFFERENTIAL,
52         .ignore_nice = 0,
53         .powersave_bias = 0,
54 };
55
56 static void ondemand_powersave_bias_init_cpu(int cpu)
57 {
58         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
59
60         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
61         dbs_info->freq_lo = 0;
62 }
63
64 /*
65  * Not all CPUs want IO time to be accounted as busy; this depends on how
66  * efficient idling at a higher frequency/voltage is.
67  * Pavel Machek says this is not so for various generations of AMD and old
68  * Intel systems.
69  * Mike Chan (android.com) claims this is also not true for ARM.
70  * Because of this, whitelist specific known (series) of CPUs by default, and
71  * leave all others up to the user.
72  */
73 static int should_io_be_busy(void)
74 {
75 #if defined(CONFIG_X86)
76         /*
77          * For Intel, Core 2 (model 15) and later have an efficient idle.
78          */
79         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
80                         boot_cpu_data.x86 == 6 &&
81                         boot_cpu_data.x86_model >= 15)
82                 return 1;
83 #endif
84         return 0;
85 }
86
87 /*
88  * Find right freq to be set now with powersave_bias on.
89  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
90  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
91  */
92 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
93                 unsigned int freq_next, unsigned int relation)
94 {
95         unsigned int freq_req, freq_reduc, freq_avg;
96         unsigned int freq_hi, freq_lo;
97         unsigned int index = 0;
98         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
99         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
100                                                    policy->cpu);
101
102         if (!dbs_info->freq_table) {
103                 dbs_info->freq_lo = 0;
104                 dbs_info->freq_lo_jiffies = 0;
105                 return freq_next;
106         }
107
108         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
109                         relation, &index);
110         freq_req = dbs_info->freq_table[index].frequency;
111         freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
112         freq_avg = freq_req - freq_reduc;
113
114         /* Find freq bounds for freq_avg in freq_table */
115         index = 0;
116         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
117                         CPUFREQ_RELATION_H, &index);
118         freq_lo = dbs_info->freq_table[index].frequency;
119         index = 0;
120         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
121                         CPUFREQ_RELATION_L, &index);
122         freq_hi = dbs_info->freq_table[index].frequency;
123
124         /* Find out how long we have to be in hi and lo freqs */
125         if (freq_hi == freq_lo) {
126                 dbs_info->freq_lo = 0;
127                 dbs_info->freq_lo_jiffies = 0;
128                 return freq_lo;
129         }
130         jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
131         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
132         jiffies_hi += ((freq_hi - freq_lo) / 2);
133         jiffies_hi /= (freq_hi - freq_lo);
134         jiffies_lo = jiffies_total - jiffies_hi;
135         dbs_info->freq_lo = freq_lo;
136         dbs_info->freq_lo_jiffies = jiffies_lo;
137         dbs_info->freq_hi_jiffies = jiffies_hi;
138         return freq_hi;
139 }
140
141 static void ondemand_powersave_bias_init(void)
142 {
143         int i;
144         for_each_online_cpu(i) {
145                 ondemand_powersave_bias_init_cpu(i);
146         }
147 }
148
149 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
150 {
151         if (od_tuners.powersave_bias)
152                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
153         else if (p->cur == p->max)
154                 return;
155
156         __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
157                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
158 }
159
160 /*
161  * Every sampling_rate, we check, if current idle time is less than 20%
162  * (default), then we try to increase frequency. Every sampling_rate, we look
163  * for the lowest frequency which can sustain the load while keeping idle time
164  * over 30%. If such a frequency exist, we try to decrease to this frequency.
165  *
166  * Any frequency increase takes it to the maximum frequency. Frequency reduction
167  * happens at minimum steps of 5% (default) of current frequency
168  */
169 static void od_check_cpu(int cpu, unsigned int load_freq)
170 {
171         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
172         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
173
174         dbs_info->freq_lo = 0;
175
176         /* Check for frequency increase */
177         if (load_freq > od_tuners.up_threshold * policy->cur) {
178                 /* If switching to max speed, apply sampling_down_factor */
179                 if (policy->cur < policy->max)
180                         dbs_info->rate_mult =
181                                 od_tuners.sampling_down_factor;
182                 dbs_freq_increase(policy, policy->max);
183                 return;
184         }
185
186         /* Check for frequency decrease */
187         /* if we cannot reduce the frequency anymore, break out early */
188         if (policy->cur == policy->min)
189                 return;
190
191         /*
192          * The optimal frequency is the frequency that is the lowest that can
193          * support the current CPU usage without triggering the up policy. To be
194          * safe, we focus 10 points under the threshold.
195          */
196         if (load_freq < od_tuners.adj_up_threshold * policy->cur) {
197                 unsigned int freq_next;
198                 freq_next = load_freq / od_tuners.adj_up_threshold;
199
200                 /* No longer fully busy, reset rate_mult */
201                 dbs_info->rate_mult = 1;
202
203                 if (freq_next < policy->min)
204                         freq_next = policy->min;
205
206                 if (!od_tuners.powersave_bias) {
207                         __cpufreq_driver_target(policy, freq_next,
208                                         CPUFREQ_RELATION_L);
209                 } else {
210                         int freq = powersave_bias_target(policy, freq_next,
211                                         CPUFREQ_RELATION_L);
212                         __cpufreq_driver_target(policy, freq,
213                                         CPUFREQ_RELATION_L);
214                 }
215         }
216 }
217
218 static void od_dbs_timer(struct work_struct *work)
219 {
220         struct delayed_work *dw = to_delayed_work(work);
221         struct od_cpu_dbs_info_s *dbs_info =
222                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
224         struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
225                         cpu);
226         int delay, sample_type = core_dbs_info->sample_type;
227         bool eval_load;
228
229         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
230         eval_load = need_load_eval(&core_dbs_info->cdbs,
231                         od_tuners.sampling_rate);
232
233         /* Common NORMAL_SAMPLE setup */
234         core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
235         if (sample_type == OD_SUB_SAMPLE) {
236                 delay = core_dbs_info->freq_lo_jiffies;
237                 if (eval_load)
238                         __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
239                                                 core_dbs_info->freq_lo,
240                                                 CPUFREQ_RELATION_H);
241         } else {
242                 if (eval_load)
243                         dbs_check_cpu(&od_dbs_data, cpu);
244                 if (core_dbs_info->freq_lo) {
245                         /* Setup timer for SUB_SAMPLE */
246                         core_dbs_info->sample_type = OD_SUB_SAMPLE;
247                         delay = core_dbs_info->freq_hi_jiffies;
248                 } else {
249                         delay = delay_for_sampling_rate(od_tuners.sampling_rate
250                                                 * core_dbs_info->rate_mult);
251                 }
252         }
253
254         schedule_delayed_work_on(smp_processor_id(), dw, delay);
255         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
256 }
257
258 /************************** sysfs interface ************************/
259
260 static ssize_t show_sampling_rate_min(struct kobject *kobj,
261                                       struct attribute *attr, char *buf)
262 {
263         return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
264 }
265
266 /**
267  * update_sampling_rate - update sampling rate effective immediately if needed.
268  * @new_rate: new sampling rate
269  *
270  * If new rate is smaller than the old, simply updating
271  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
272  * original sampling_rate was 1 second and the requested new sampling rate is 10
273  * ms because the user needs immediate reaction from ondemand governor, but not
274  * sure if higher frequency will be required or not, then, the governor may
275  * change the sampling rate too late; up to 1 second later. Thus, if we are
276  * reducing the sampling rate, we need to make the new value effective
277  * immediately.
278  */
279 static void update_sampling_rate(unsigned int new_rate)
280 {
281         int cpu;
282
283         od_tuners.sampling_rate = new_rate = max(new_rate,
284                         od_dbs_data.min_sampling_rate);
285
286         for_each_online_cpu(cpu) {
287                 struct cpufreq_policy *policy;
288                 struct od_cpu_dbs_info_s *dbs_info;
289                 unsigned long next_sampling, appointed_at;
290
291                 policy = cpufreq_cpu_get(cpu);
292                 if (!policy)
293                         continue;
294                 if (policy->governor != &cpufreq_gov_ondemand) {
295                         cpufreq_cpu_put(policy);
296                         continue;
297                 }
298                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
299                 cpufreq_cpu_put(policy);
300
301                 mutex_lock(&dbs_info->cdbs.timer_mutex);
302
303                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
304                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
305                         continue;
306                 }
307
308                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
309                 appointed_at = dbs_info->cdbs.work.timer.expires;
310
311                 if (time_before(next_sampling, appointed_at)) {
312
313                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
314                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
315                         mutex_lock(&dbs_info->cdbs.timer_mutex);
316
317                         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
318                                         usecs_to_jiffies(new_rate));
319
320                 }
321                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
322         }
323 }
324
325 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
326                                    const char *buf, size_t count)
327 {
328         unsigned int input;
329         int ret;
330         ret = sscanf(buf, "%u", &input);
331         if (ret != 1)
332                 return -EINVAL;
333         update_sampling_rate(input);
334         return count;
335 }
336
337 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
338                                    const char *buf, size_t count)
339 {
340         unsigned int input;
341         int ret;
342
343         ret = sscanf(buf, "%u", &input);
344         if (ret != 1)
345                 return -EINVAL;
346         od_tuners.io_is_busy = !!input;
347         return count;
348 }
349
350 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
351                                   const char *buf, size_t count)
352 {
353         unsigned int input;
354         int ret;
355         ret = sscanf(buf, "%u", &input);
356
357         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
358                         input < MIN_FREQUENCY_UP_THRESHOLD) {
359                 return -EINVAL;
360         }
361         /* Calculate the new adj_up_threshold */
362         od_tuners.adj_up_threshold += input;
363         od_tuners.adj_up_threshold -= od_tuners.up_threshold;
364
365         od_tuners.up_threshold = input;
366         return count;
367 }
368
369 static ssize_t store_sampling_down_factor(struct kobject *a,
370                         struct attribute *b, const char *buf, size_t count)
371 {
372         unsigned int input, j;
373         int ret;
374         ret = sscanf(buf, "%u", &input);
375
376         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
377                 return -EINVAL;
378         od_tuners.sampling_down_factor = input;
379
380         /* Reset down sampling multiplier in case it was active */
381         for_each_online_cpu(j) {
382                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
383                                 j);
384                 dbs_info->rate_mult = 1;
385         }
386         return count;
387 }
388
389 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
390                                       const char *buf, size_t count)
391 {
392         unsigned int input;
393         int ret;
394
395         unsigned int j;
396
397         ret = sscanf(buf, "%u", &input);
398         if (ret != 1)
399                 return -EINVAL;
400
401         if (input > 1)
402                 input = 1;
403
404         if (input == od_tuners.ignore_nice) { /* nothing to do */
405                 return count;
406         }
407         od_tuners.ignore_nice = input;
408
409         /* we need to re-evaluate prev_cpu_idle */
410         for_each_online_cpu(j) {
411                 struct od_cpu_dbs_info_s *dbs_info;
412                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
413                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
414                                                 &dbs_info->cdbs.prev_cpu_wall);
415                 if (od_tuners.ignore_nice)
416                         dbs_info->cdbs.prev_cpu_nice =
417                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
418
419         }
420         return count;
421 }
422
423 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
424                                     const char *buf, size_t count)
425 {
426         unsigned int input;
427         int ret;
428         ret = sscanf(buf, "%u", &input);
429
430         if (ret != 1)
431                 return -EINVAL;
432
433         if (input > 1000)
434                 input = 1000;
435
436         od_tuners.powersave_bias = input;
437         ondemand_powersave_bias_init();
438         return count;
439 }
440
441 show_one(od, sampling_rate, sampling_rate);
442 show_one(od, io_is_busy, io_is_busy);
443 show_one(od, up_threshold, up_threshold);
444 show_one(od, sampling_down_factor, sampling_down_factor);
445 show_one(od, ignore_nice_load, ignore_nice);
446 show_one(od, powersave_bias, powersave_bias);
447
448 define_one_global_rw(sampling_rate);
449 define_one_global_rw(io_is_busy);
450 define_one_global_rw(up_threshold);
451 define_one_global_rw(sampling_down_factor);
452 define_one_global_rw(ignore_nice_load);
453 define_one_global_rw(powersave_bias);
454 define_one_global_ro(sampling_rate_min);
455
456 static struct attribute *dbs_attributes[] = {
457         &sampling_rate_min.attr,
458         &sampling_rate.attr,
459         &up_threshold.attr,
460         &sampling_down_factor.attr,
461         &ignore_nice_load.attr,
462         &powersave_bias.attr,
463         &io_is_busy.attr,
464         NULL
465 };
466
467 static struct attribute_group od_attr_group = {
468         .attrs = dbs_attributes,
469         .name = "ondemand",
470 };
471
472 /************************** sysfs end ************************/
473
474 define_get_cpu_dbs_routines(od_cpu_dbs_info);
475
476 static struct od_ops od_ops = {
477         .io_busy = should_io_be_busy,
478         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
479         .powersave_bias_target = powersave_bias_target,
480         .freq_increase = dbs_freq_increase,
481 };
482
483 static struct dbs_data od_dbs_data = {
484         .governor = GOV_ONDEMAND,
485         .attr_group = &od_attr_group,
486         .tuners = &od_tuners,
487         .get_cpu_cdbs = get_cpu_cdbs,
488         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
489         .gov_dbs_timer = od_dbs_timer,
490         .gov_check_cpu = od_check_cpu,
491         .gov_ops = &od_ops,
492 };
493
494 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
495                 unsigned int event)
496 {
497         return cpufreq_governor_dbs(&od_dbs_data, policy, event);
498 }
499
500 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
501 static
502 #endif
503 struct cpufreq_governor cpufreq_gov_ondemand = {
504         .name                   = "ondemand",
505         .governor               = od_cpufreq_governor_dbs,
506         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
507         .owner                  = THIS_MODULE,
508 };
509
510 static int __init cpufreq_gov_dbs_init(void)
511 {
512         u64 idle_time;
513         int cpu = get_cpu();
514
515         mutex_init(&od_dbs_data.mutex);
516         idle_time = get_cpu_idle_time_us(cpu, NULL);
517         put_cpu();
518         if (idle_time != -1ULL) {
519                 /* Idle micro accounting is supported. Use finer thresholds */
520                 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
521                 od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
522                                              MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
523                 /*
524                  * In nohz/micro accounting case we set the minimum frequency
525                  * not depending on HZ, but fixed (very low). The deferred
526                  * timer might skip some samples if idle/sleeping as needed.
527                 */
528                 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
529         } else {
530                 /* For correct statistics, we need 10 ticks for each measure */
531                 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
532                         jiffies_to_usecs(10);
533         }
534
535         return cpufreq_register_governor(&cpufreq_gov_ondemand);
536 }
537
538 static void __exit cpufreq_gov_dbs_exit(void)
539 {
540         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
541 }
542
543 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
544 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
545 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
546         "Low Latency Frequency Transition capable processors");
547 MODULE_LICENSE("GPL");
548
549 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
550 fs_initcall(cpufreq_gov_dbs_init);
551 #else
552 module_init(cpufreq_gov_dbs_init);
553 #endif
554 module_exit(cpufreq_gov_dbs_exit);