]> Pileus Git - ~andy/linux/blob - drivers/char/ipmi/ipmi_si_intf.c
Merge remote-tracking branch 'regulator/fix/da9063' into regulator-linus
[~andy/linux] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC    10000
86 #define SI_USEC_PER_JIFFY       (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89                                       short timeout */
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_CLEARING_FLAGS_THEN_SET_IRQ,
97         SI_GETTING_MESSAGES,
98         SI_ENABLE_INTERRUPTS1,
99         SI_ENABLE_INTERRUPTS2,
100         SI_DISABLE_INTERRUPTS1,
101         SI_DISABLE_INTERRUPTS2
102         /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG             2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
109
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
116                                         "ACPI", "SMBIOS", "PCI",
117                                         "device-tree", "default" };
118
119 #define DEVICE_NAME "ipmi_si"
120
121 static struct platform_driver ipmi_driver;
122
123 /*
124  * Indexes into stats[] in smi_info below.
125  */
126 enum si_stat_indexes {
127         /*
128          * Number of times the driver requested a timer while an operation
129          * was in progress.
130          */
131         SI_STAT_short_timeouts = 0,
132
133         /*
134          * Number of times the driver requested a timer while nothing was in
135          * progress.
136          */
137         SI_STAT_long_timeouts,
138
139         /* Number of times the interface was idle while being polled. */
140         SI_STAT_idles,
141
142         /* Number of interrupts the driver handled. */
143         SI_STAT_interrupts,
144
145         /* Number of time the driver got an ATTN from the hardware. */
146         SI_STAT_attentions,
147
148         /* Number of times the driver requested flags from the hardware. */
149         SI_STAT_flag_fetches,
150
151         /* Number of times the hardware didn't follow the state machine. */
152         SI_STAT_hosed_count,
153
154         /* Number of completed messages. */
155         SI_STAT_complete_transactions,
156
157         /* Number of IPMI events received from the hardware. */
158         SI_STAT_events,
159
160         /* Number of watchdog pretimeouts. */
161         SI_STAT_watchdog_pretimeouts,
162
163         /* Number of asynchronous messages received. */
164         SI_STAT_incoming_messages,
165
166
167         /* This *must* remain last, add new values above this. */
168         SI_NUM_STATS
169 };
170
171 struct smi_info {
172         int                    intf_num;
173         ipmi_smi_t             intf;
174         struct si_sm_data      *si_sm;
175         struct si_sm_handlers  *handlers;
176         enum si_type           si_type;
177         spinlock_t             si_lock;
178         struct list_head       xmit_msgs;
179         struct list_head       hp_xmit_msgs;
180         struct ipmi_smi_msg    *curr_msg;
181         enum si_intf_state     si_state;
182
183         /*
184          * Used to handle the various types of I/O that can occur with
185          * IPMI
186          */
187         struct si_sm_io io;
188         int (*io_setup)(struct smi_info *info);
189         void (*io_cleanup)(struct smi_info *info);
190         int (*irq_setup)(struct smi_info *info);
191         void (*irq_cleanup)(struct smi_info *info);
192         unsigned int io_size;
193         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
194         void (*addr_source_cleanup)(struct smi_info *info);
195         void *addr_source_data;
196
197         /*
198          * Per-OEM handler, called from handle_flags().  Returns 1
199          * when handle_flags() needs to be re-run or 0 indicating it
200          * set si_state itself.
201          */
202         int (*oem_data_avail_handler)(struct smi_info *smi_info);
203
204         /*
205          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
206          * is set to hold the flags until we are done handling everything
207          * from the flags.
208          */
209 #define RECEIVE_MSG_AVAIL       0x01
210 #define EVENT_MSG_BUFFER_FULL   0x02
211 #define WDT_PRE_TIMEOUT_INT     0x08
212 #define OEM0_DATA_AVAIL     0x20
213 #define OEM1_DATA_AVAIL     0x40
214 #define OEM2_DATA_AVAIL     0x80
215 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
216                              OEM1_DATA_AVAIL | \
217                              OEM2_DATA_AVAIL)
218         unsigned char       msg_flags;
219
220         /* Does the BMC have an event buffer? */
221         char                has_event_buffer;
222
223         /*
224          * If set to true, this will request events the next time the
225          * state machine is idle.
226          */
227         atomic_t            req_events;
228
229         /*
230          * If true, run the state machine to completion on every send
231          * call.  Generally used after a panic to make sure stuff goes
232          * out.
233          */
234         int                 run_to_completion;
235
236         /* The I/O port of an SI interface. */
237         int                 port;
238
239         /*
240          * The space between start addresses of the two ports.  For
241          * instance, if the first port is 0xca2 and the spacing is 4, then
242          * the second port is 0xca6.
243          */
244         unsigned int        spacing;
245
246         /* zero if no irq; */
247         int                 irq;
248
249         /* The timer for this si. */
250         struct timer_list   si_timer;
251
252         /* The time (in jiffies) the last timeout occurred at. */
253         unsigned long       last_timeout_jiffies;
254
255         /* Used to gracefully stop the timer without race conditions. */
256         atomic_t            stop_operation;
257
258         /*
259          * The driver will disable interrupts when it gets into a
260          * situation where it cannot handle messages due to lack of
261          * memory.  Once that situation clears up, it will re-enable
262          * interrupts.
263          */
264         int interrupt_disabled;
265
266         /* From the get device id response... */
267         struct ipmi_device_id device_id;
268
269         /* Driver model stuff. */
270         struct device *dev;
271         struct platform_device *pdev;
272
273         /*
274          * True if we allocated the device, false if it came from
275          * someplace else (like PCI).
276          */
277         int dev_registered;
278
279         /* Slave address, could be reported from DMI. */
280         unsigned char slave_addr;
281
282         /* Counters and things for the proc filesystem. */
283         atomic_t stats[SI_NUM_STATS];
284
285         struct task_struct *thread;
286
287         struct list_head link;
288         union ipmi_smi_info_union addr_info;
289 };
290
291 #define smi_inc_stat(smi, stat) \
292         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
293 #define smi_get_stat(smi, stat) \
294         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
295
296 #define SI_MAX_PARMS 4
297
298 static int force_kipmid[SI_MAX_PARMS];
299 static int num_force_kipmid;
300 #ifdef CONFIG_PCI
301 static int pci_registered;
302 #endif
303 #ifdef CONFIG_ACPI
304 static int pnp_registered;
305 #endif
306 #ifdef CONFIG_PARISC
307 static int parisc_registered;
308 #endif
309
310 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
311 static int num_max_busy_us;
312
313 static int unload_when_empty = 1;
314
315 static int add_smi(struct smi_info *smi);
316 static int try_smi_init(struct smi_info *smi);
317 static void cleanup_one_si(struct smi_info *to_clean);
318 static void cleanup_ipmi_si(void);
319
320 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
321 static int register_xaction_notifier(struct notifier_block *nb)
322 {
323         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
324 }
325
326 static void deliver_recv_msg(struct smi_info *smi_info,
327                              struct ipmi_smi_msg *msg)
328 {
329         /* Deliver the message to the upper layer. */
330         ipmi_smi_msg_received(smi_info->intf, msg);
331 }
332
333 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
334 {
335         struct ipmi_smi_msg *msg = smi_info->curr_msg;
336
337         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
338                 cCode = IPMI_ERR_UNSPECIFIED;
339         /* else use it as is */
340
341         /* Make it a response */
342         msg->rsp[0] = msg->data[0] | 4;
343         msg->rsp[1] = msg->data[1];
344         msg->rsp[2] = cCode;
345         msg->rsp_size = 3;
346
347         smi_info->curr_msg = NULL;
348         deliver_recv_msg(smi_info, msg);
349 }
350
351 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
352 {
353         int              rv;
354         struct list_head *entry = NULL;
355 #ifdef DEBUG_TIMING
356         struct timeval t;
357 #endif
358
359         /* Pick the high priority queue first. */
360         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
361                 entry = smi_info->hp_xmit_msgs.next;
362         } else if (!list_empty(&(smi_info->xmit_msgs))) {
363                 entry = smi_info->xmit_msgs.next;
364         }
365
366         if (!entry) {
367                 smi_info->curr_msg = NULL;
368                 rv = SI_SM_IDLE;
369         } else {
370                 int err;
371
372                 list_del(entry);
373                 smi_info->curr_msg = list_entry(entry,
374                                                 struct ipmi_smi_msg,
375                                                 link);
376 #ifdef DEBUG_TIMING
377                 do_gettimeofday(&t);
378                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
379 #endif
380                 err = atomic_notifier_call_chain(&xaction_notifier_list,
381                                 0, smi_info);
382                 if (err & NOTIFY_STOP_MASK) {
383                         rv = SI_SM_CALL_WITHOUT_DELAY;
384                         goto out;
385                 }
386                 err = smi_info->handlers->start_transaction(
387                         smi_info->si_sm,
388                         smi_info->curr_msg->data,
389                         smi_info->curr_msg->data_size);
390                 if (err)
391                         return_hosed_msg(smi_info, err);
392
393                 rv = SI_SM_CALL_WITHOUT_DELAY;
394         }
395  out:
396         return rv;
397 }
398
399 static void start_enable_irq(struct smi_info *smi_info)
400 {
401         unsigned char msg[2];
402
403         /*
404          * If we are enabling interrupts, we have to tell the
405          * BMC to use them.
406          */
407         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
408         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
409
410         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
411         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
412 }
413
414 static void start_disable_irq(struct smi_info *smi_info)
415 {
416         unsigned char msg[2];
417
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
420
421         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
423 }
424
425 static void start_clear_flags(struct smi_info *smi_info)
426 {
427         unsigned char msg[3];
428
429         /* Make sure the watchdog pre-timeout flag is not set at startup. */
430         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
432         msg[2] = WDT_PRE_TIMEOUT_INT;
433
434         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
435         smi_info->si_state = SI_CLEARING_FLAGS;
436 }
437
438 /*
439  * When we have a situtaion where we run out of memory and cannot
440  * allocate messages, we just leave them in the BMC and run the system
441  * polled until we can allocate some memory.  Once we have some
442  * memory, we will re-enable the interrupt.
443  */
444 static inline void disable_si_irq(struct smi_info *smi_info)
445 {
446         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
447                 start_disable_irq(smi_info);
448                 smi_info->interrupt_disabled = 1;
449                 if (!atomic_read(&smi_info->stop_operation))
450                         mod_timer(&smi_info->si_timer,
451                                   jiffies + SI_TIMEOUT_JIFFIES);
452         }
453 }
454
455 static inline void enable_si_irq(struct smi_info *smi_info)
456 {
457         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
458                 start_enable_irq(smi_info);
459                 smi_info->interrupt_disabled = 0;
460         }
461 }
462
463 static void handle_flags(struct smi_info *smi_info)
464 {
465  retry:
466         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
467                 /* Watchdog pre-timeout */
468                 smi_inc_stat(smi_info, watchdog_pretimeouts);
469
470                 start_clear_flags(smi_info);
471                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
472                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
473         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
474                 /* Messages available. */
475                 smi_info->curr_msg = ipmi_alloc_smi_msg();
476                 if (!smi_info->curr_msg) {
477                         disable_si_irq(smi_info);
478                         smi_info->si_state = SI_NORMAL;
479                         return;
480                 }
481                 enable_si_irq(smi_info);
482
483                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
484                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
485                 smi_info->curr_msg->data_size = 2;
486
487                 smi_info->handlers->start_transaction(
488                         smi_info->si_sm,
489                         smi_info->curr_msg->data,
490                         smi_info->curr_msg->data_size);
491                 smi_info->si_state = SI_GETTING_MESSAGES;
492         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
493                 /* Events available. */
494                 smi_info->curr_msg = ipmi_alloc_smi_msg();
495                 if (!smi_info->curr_msg) {
496                         disable_si_irq(smi_info);
497                         smi_info->si_state = SI_NORMAL;
498                         return;
499                 }
500                 enable_si_irq(smi_info);
501
502                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
503                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
504                 smi_info->curr_msg->data_size = 2;
505
506                 smi_info->handlers->start_transaction(
507                         smi_info->si_sm,
508                         smi_info->curr_msg->data,
509                         smi_info->curr_msg->data_size);
510                 smi_info->si_state = SI_GETTING_EVENTS;
511         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
512                    smi_info->oem_data_avail_handler) {
513                 if (smi_info->oem_data_avail_handler(smi_info))
514                         goto retry;
515         } else
516                 smi_info->si_state = SI_NORMAL;
517 }
518
519 static void handle_transaction_done(struct smi_info *smi_info)
520 {
521         struct ipmi_smi_msg *msg;
522 #ifdef DEBUG_TIMING
523         struct timeval t;
524
525         do_gettimeofday(&t);
526         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
527 #endif
528         switch (smi_info->si_state) {
529         case SI_NORMAL:
530                 if (!smi_info->curr_msg)
531                         break;
532
533                 smi_info->curr_msg->rsp_size
534                         = smi_info->handlers->get_result(
535                                 smi_info->si_sm,
536                                 smi_info->curr_msg->rsp,
537                                 IPMI_MAX_MSG_LENGTH);
538
539                 /*
540                  * Do this here becase deliver_recv_msg() releases the
541                  * lock, and a new message can be put in during the
542                  * time the lock is released.
543                  */
544                 msg = smi_info->curr_msg;
545                 smi_info->curr_msg = NULL;
546                 deliver_recv_msg(smi_info, msg);
547                 break;
548
549         case SI_GETTING_FLAGS:
550         {
551                 unsigned char msg[4];
552                 unsigned int  len;
553
554                 /* We got the flags from the SMI, now handle them. */
555                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
556                 if (msg[2] != 0) {
557                         /* Error fetching flags, just give up for now. */
558                         smi_info->si_state = SI_NORMAL;
559                 } else if (len < 4) {
560                         /*
561                          * Hmm, no flags.  That's technically illegal, but
562                          * don't use uninitialized data.
563                          */
564                         smi_info->si_state = SI_NORMAL;
565                 } else {
566                         smi_info->msg_flags = msg[3];
567                         handle_flags(smi_info);
568                 }
569                 break;
570         }
571
572         case SI_CLEARING_FLAGS:
573         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
574         {
575                 unsigned char msg[3];
576
577                 /* We cleared the flags. */
578                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
579                 if (msg[2] != 0) {
580                         /* Error clearing flags */
581                         dev_warn(smi_info->dev,
582                                  "Error clearing flags: %2.2x\n", msg[2]);
583                 }
584                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
585                         start_enable_irq(smi_info);
586                 else
587                         smi_info->si_state = SI_NORMAL;
588                 break;
589         }
590
591         case SI_GETTING_EVENTS:
592         {
593                 smi_info->curr_msg->rsp_size
594                         = smi_info->handlers->get_result(
595                                 smi_info->si_sm,
596                                 smi_info->curr_msg->rsp,
597                                 IPMI_MAX_MSG_LENGTH);
598
599                 /*
600                  * Do this here becase deliver_recv_msg() releases the
601                  * lock, and a new message can be put in during the
602                  * time the lock is released.
603                  */
604                 msg = smi_info->curr_msg;
605                 smi_info->curr_msg = NULL;
606                 if (msg->rsp[2] != 0) {
607                         /* Error getting event, probably done. */
608                         msg->done(msg);
609
610                         /* Take off the event flag. */
611                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
612                         handle_flags(smi_info);
613                 } else {
614                         smi_inc_stat(smi_info, events);
615
616                         /*
617                          * Do this before we deliver the message
618                          * because delivering the message releases the
619                          * lock and something else can mess with the
620                          * state.
621                          */
622                         handle_flags(smi_info);
623
624                         deliver_recv_msg(smi_info, msg);
625                 }
626                 break;
627         }
628
629         case SI_GETTING_MESSAGES:
630         {
631                 smi_info->curr_msg->rsp_size
632                         = smi_info->handlers->get_result(
633                                 smi_info->si_sm,
634                                 smi_info->curr_msg->rsp,
635                                 IPMI_MAX_MSG_LENGTH);
636
637                 /*
638                  * Do this here becase deliver_recv_msg() releases the
639                  * lock, and a new message can be put in during the
640                  * time the lock is released.
641                  */
642                 msg = smi_info->curr_msg;
643                 smi_info->curr_msg = NULL;
644                 if (msg->rsp[2] != 0) {
645                         /* Error getting event, probably done. */
646                         msg->done(msg);
647
648                         /* Take off the msg flag. */
649                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
650                         handle_flags(smi_info);
651                 } else {
652                         smi_inc_stat(smi_info, incoming_messages);
653
654                         /*
655                          * Do this before we deliver the message
656                          * because delivering the message releases the
657                          * lock and something else can mess with the
658                          * state.
659                          */
660                         handle_flags(smi_info);
661
662                         deliver_recv_msg(smi_info, msg);
663                 }
664                 break;
665         }
666
667         case SI_ENABLE_INTERRUPTS1:
668         {
669                 unsigned char msg[4];
670
671                 /* We got the flags from the SMI, now handle them. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
673                 if (msg[2] != 0) {
674                         dev_warn(smi_info->dev,
675                                  "Couldn't get irq info: %x.\n", msg[2]);
676                         dev_warn(smi_info->dev,
677                                  "Maybe ok, but ipmi might run very slowly.\n");
678                         smi_info->si_state = SI_NORMAL;
679                 } else {
680                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
681                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
682                         msg[2] = (msg[3] |
683                                   IPMI_BMC_RCV_MSG_INTR |
684                                   IPMI_BMC_EVT_MSG_INTR);
685                         smi_info->handlers->start_transaction(
686                                 smi_info->si_sm, msg, 3);
687                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
688                 }
689                 break;
690         }
691
692         case SI_ENABLE_INTERRUPTS2:
693         {
694                 unsigned char msg[4];
695
696                 /* We got the flags from the SMI, now handle them. */
697                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698                 if (msg[2] != 0) {
699                         dev_warn(smi_info->dev,
700                                  "Couldn't set irq info: %x.\n", msg[2]);
701                         dev_warn(smi_info->dev,
702                                  "Maybe ok, but ipmi might run very slowly.\n");
703                 } else
704                         smi_info->interrupt_disabled = 0;
705                 smi_info->si_state = SI_NORMAL;
706                 break;
707         }
708
709         case SI_DISABLE_INTERRUPTS1:
710         {
711                 unsigned char msg[4];
712
713                 /* We got the flags from the SMI, now handle them. */
714                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
715                 if (msg[2] != 0) {
716                         dev_warn(smi_info->dev, "Could not disable interrupts"
717                                  ", failed get.\n");
718                         smi_info->si_state = SI_NORMAL;
719                 } else {
720                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
721                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
722                         msg[2] = (msg[3] &
723                                   ~(IPMI_BMC_RCV_MSG_INTR |
724                                     IPMI_BMC_EVT_MSG_INTR));
725                         smi_info->handlers->start_transaction(
726                                 smi_info->si_sm, msg, 3);
727                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
728                 }
729                 break;
730         }
731
732         case SI_DISABLE_INTERRUPTS2:
733         {
734                 unsigned char msg[4];
735
736                 /* We got the flags from the SMI, now handle them. */
737                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
738                 if (msg[2] != 0) {
739                         dev_warn(smi_info->dev, "Could not disable interrupts"
740                                  ", failed set.\n");
741                 }
742                 smi_info->si_state = SI_NORMAL;
743                 break;
744         }
745         }
746 }
747
748 /*
749  * Called on timeouts and events.  Timeouts should pass the elapsed
750  * time, interrupts should pass in zero.  Must be called with
751  * si_lock held and interrupts disabled.
752  */
753 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
754                                            int time)
755 {
756         enum si_sm_result si_sm_result;
757
758  restart:
759         /*
760          * There used to be a loop here that waited a little while
761          * (around 25us) before giving up.  That turned out to be
762          * pointless, the minimum delays I was seeing were in the 300us
763          * range, which is far too long to wait in an interrupt.  So
764          * we just run until the state machine tells us something
765          * happened or it needs a delay.
766          */
767         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
768         time = 0;
769         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
770                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771
772         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
773                 smi_inc_stat(smi_info, complete_transactions);
774
775                 handle_transaction_done(smi_info);
776                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
777         } else if (si_sm_result == SI_SM_HOSED) {
778                 smi_inc_stat(smi_info, hosed_count);
779
780                 /*
781                  * Do the before return_hosed_msg, because that
782                  * releases the lock.
783                  */
784                 smi_info->si_state = SI_NORMAL;
785                 if (smi_info->curr_msg != NULL) {
786                         /*
787                          * If we were handling a user message, format
788                          * a response to send to the upper layer to
789                          * tell it about the error.
790                          */
791                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
792                 }
793                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
794         }
795
796         /*
797          * We prefer handling attn over new messages.  But don't do
798          * this if there is not yet an upper layer to handle anything.
799          */
800         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
801                 unsigned char msg[2];
802
803                 smi_inc_stat(smi_info, attentions);
804
805                 /*
806                  * Got a attn, send down a get message flags to see
807                  * what's causing it.  It would be better to handle
808                  * this in the upper layer, but due to the way
809                  * interrupts work with the SMI, that's not really
810                  * possible.
811                  */
812                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
813                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
814
815                 smi_info->handlers->start_transaction(
816                         smi_info->si_sm, msg, 2);
817                 smi_info->si_state = SI_GETTING_FLAGS;
818                 goto restart;
819         }
820
821         /* If we are currently idle, try to start the next message. */
822         if (si_sm_result == SI_SM_IDLE) {
823                 smi_inc_stat(smi_info, idles);
824
825                 si_sm_result = start_next_msg(smi_info);
826                 if (si_sm_result != SI_SM_IDLE)
827                         goto restart;
828         }
829
830         if ((si_sm_result == SI_SM_IDLE)
831             && (atomic_read(&smi_info->req_events))) {
832                 /*
833                  * We are idle and the upper layer requested that I fetch
834                  * events, so do so.
835                  */
836                 atomic_set(&smi_info->req_events, 0);
837
838                 smi_info->curr_msg = ipmi_alloc_smi_msg();
839                 if (!smi_info->curr_msg)
840                         goto out;
841
842                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
843                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
844                 smi_info->curr_msg->data_size = 2;
845
846                 smi_info->handlers->start_transaction(
847                         smi_info->si_sm,
848                         smi_info->curr_msg->data,
849                         smi_info->curr_msg->data_size);
850                 smi_info->si_state = SI_GETTING_EVENTS;
851                 goto restart;
852         }
853  out:
854         return si_sm_result;
855 }
856
857 static void sender(void                *send_info,
858                    struct ipmi_smi_msg *msg,
859                    int                 priority)
860 {
861         struct smi_info   *smi_info = send_info;
862         enum si_sm_result result;
863         unsigned long     flags;
864 #ifdef DEBUG_TIMING
865         struct timeval    t;
866 #endif
867
868         if (atomic_read(&smi_info->stop_operation)) {
869                 msg->rsp[0] = msg->data[0] | 4;
870                 msg->rsp[1] = msg->data[1];
871                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
872                 msg->rsp_size = 3;
873                 deliver_recv_msg(smi_info, msg);
874                 return;
875         }
876
877 #ifdef DEBUG_TIMING
878         do_gettimeofday(&t);
879         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
880 #endif
881
882         if (smi_info->run_to_completion) {
883                 /*
884                  * If we are running to completion, then throw it in
885                  * the list and run transactions until everything is
886                  * clear.  Priority doesn't matter here.
887                  */
888
889                 /*
890                  * Run to completion means we are single-threaded, no
891                  * need for locks.
892                  */
893                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
894
895                 result = smi_event_handler(smi_info, 0);
896                 while (result != SI_SM_IDLE) {
897                         udelay(SI_SHORT_TIMEOUT_USEC);
898                         result = smi_event_handler(smi_info,
899                                                    SI_SHORT_TIMEOUT_USEC);
900                 }
901                 return;
902         }
903
904         spin_lock_irqsave(&smi_info->si_lock, flags);
905         if (priority > 0)
906                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
907         else
908                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
909
910         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
911                 /*
912                  * last_timeout_jiffies is updated here to avoid
913                  * smi_timeout() handler passing very large time_diff
914                  * value to smi_event_handler() that causes
915                  * the send command to abort.
916                  */
917                 smi_info->last_timeout_jiffies = jiffies;
918
919                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
920
921                 if (smi_info->thread)
922                         wake_up_process(smi_info->thread);
923
924                 start_next_msg(smi_info);
925                 smi_event_handler(smi_info, 0);
926         }
927         spin_unlock_irqrestore(&smi_info->si_lock, flags);
928 }
929
930 static void set_run_to_completion(void *send_info, int i_run_to_completion)
931 {
932         struct smi_info   *smi_info = send_info;
933         enum si_sm_result result;
934
935         smi_info->run_to_completion = i_run_to_completion;
936         if (i_run_to_completion) {
937                 result = smi_event_handler(smi_info, 0);
938                 while (result != SI_SM_IDLE) {
939                         udelay(SI_SHORT_TIMEOUT_USEC);
940                         result = smi_event_handler(smi_info,
941                                                    SI_SHORT_TIMEOUT_USEC);
942                 }
943         }
944 }
945
946 /*
947  * Use -1 in the nsec value of the busy waiting timespec to tell that
948  * we are spinning in kipmid looking for something and not delaying
949  * between checks
950  */
951 static inline void ipmi_si_set_not_busy(struct timespec *ts)
952 {
953         ts->tv_nsec = -1;
954 }
955 static inline int ipmi_si_is_busy(struct timespec *ts)
956 {
957         return ts->tv_nsec != -1;
958 }
959
960 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
961                                  const struct smi_info *smi_info,
962                                  struct timespec *busy_until)
963 {
964         unsigned int max_busy_us = 0;
965
966         if (smi_info->intf_num < num_max_busy_us)
967                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
968         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
969                 ipmi_si_set_not_busy(busy_until);
970         else if (!ipmi_si_is_busy(busy_until)) {
971                 getnstimeofday(busy_until);
972                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
973         } else {
974                 struct timespec now;
975                 getnstimeofday(&now);
976                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
977                         ipmi_si_set_not_busy(busy_until);
978                         return 0;
979                 }
980         }
981         return 1;
982 }
983
984
985 /*
986  * A busy-waiting loop for speeding up IPMI operation.
987  *
988  * Lousy hardware makes this hard.  This is only enabled for systems
989  * that are not BT and do not have interrupts.  It starts spinning
990  * when an operation is complete or until max_busy tells it to stop
991  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
992  * Documentation/IPMI.txt for details.
993  */
994 static int ipmi_thread(void *data)
995 {
996         struct smi_info *smi_info = data;
997         unsigned long flags;
998         enum si_sm_result smi_result;
999         struct timespec busy_until;
1000
1001         ipmi_si_set_not_busy(&busy_until);
1002         set_user_nice(current, 19);
1003         while (!kthread_should_stop()) {
1004                 int busy_wait;
1005
1006                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1007                 smi_result = smi_event_handler(smi_info, 0);
1008                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1009                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1010                                                   &busy_until);
1011                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1012                         ; /* do nothing */
1013                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1014                         schedule();
1015                 else if (smi_result == SI_SM_IDLE)
1016                         schedule_timeout_interruptible(100);
1017                 else
1018                         schedule_timeout_interruptible(1);
1019         }
1020         return 0;
1021 }
1022
1023
1024 static void poll(void *send_info)
1025 {
1026         struct smi_info *smi_info = send_info;
1027         unsigned long flags = 0;
1028         int run_to_completion = smi_info->run_to_completion;
1029
1030         /*
1031          * Make sure there is some delay in the poll loop so we can
1032          * drive time forward and timeout things.
1033          */
1034         udelay(10);
1035         if (!run_to_completion)
1036                 spin_lock_irqsave(&smi_info->si_lock, flags);
1037         smi_event_handler(smi_info, 10);
1038         if (!run_to_completion)
1039                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1040 }
1041
1042 static void request_events(void *send_info)
1043 {
1044         struct smi_info *smi_info = send_info;
1045
1046         if (atomic_read(&smi_info->stop_operation) ||
1047                                 !smi_info->has_event_buffer)
1048                 return;
1049
1050         atomic_set(&smi_info->req_events, 1);
1051 }
1052
1053 static int initialized;
1054
1055 static void smi_timeout(unsigned long data)
1056 {
1057         struct smi_info   *smi_info = (struct smi_info *) data;
1058         enum si_sm_result smi_result;
1059         unsigned long     flags;
1060         unsigned long     jiffies_now;
1061         long              time_diff;
1062         long              timeout;
1063 #ifdef DEBUG_TIMING
1064         struct timeval    t;
1065 #endif
1066
1067         spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 #ifdef DEBUG_TIMING
1069         do_gettimeofday(&t);
1070         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1071 #endif
1072         jiffies_now = jiffies;
1073         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1074                      * SI_USEC_PER_JIFFY);
1075         smi_result = smi_event_handler(smi_info, time_diff);
1076
1077         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1078
1079         smi_info->last_timeout_jiffies = jiffies_now;
1080
1081         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1082                 /* Running with interrupts, only do long timeouts. */
1083                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 goto do_mod_timer;
1086         }
1087
1088         /*
1089          * If the state machine asks for a short delay, then shorten
1090          * the timer timeout.
1091          */
1092         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1093                 smi_inc_stat(smi_info, short_timeouts);
1094                 timeout = jiffies + 1;
1095         } else {
1096                 smi_inc_stat(smi_info, long_timeouts);
1097                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1098         }
1099
1100  do_mod_timer:
1101         if (smi_result != SI_SM_IDLE)
1102                 mod_timer(&(smi_info->si_timer), timeout);
1103 }
1104
1105 static irqreturn_t si_irq_handler(int irq, void *data)
1106 {
1107         struct smi_info *smi_info = data;
1108         unsigned long   flags;
1109 #ifdef DEBUG_TIMING
1110         struct timeval  t;
1111 #endif
1112
1113         spin_lock_irqsave(&(smi_info->si_lock), flags);
1114
1115         smi_inc_stat(smi_info, interrupts);
1116
1117 #ifdef DEBUG_TIMING
1118         do_gettimeofday(&t);
1119         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1120 #endif
1121         smi_event_handler(smi_info, 0);
1122         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1123         return IRQ_HANDLED;
1124 }
1125
1126 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1127 {
1128         struct smi_info *smi_info = data;
1129         /* We need to clear the IRQ flag for the BT interface. */
1130         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1131                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1133         return si_irq_handler(irq, data);
1134 }
1135
1136 static int smi_start_processing(void       *send_info,
1137                                 ipmi_smi_t intf)
1138 {
1139         struct smi_info *new_smi = send_info;
1140         int             enable = 0;
1141
1142         new_smi->intf = intf;
1143
1144         /* Try to claim any interrupts. */
1145         if (new_smi->irq_setup)
1146                 new_smi->irq_setup(new_smi);
1147
1148         /* Set up the timer that drives the interface. */
1149         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1150         new_smi->last_timeout_jiffies = jiffies;
1151         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1152
1153         /*
1154          * Check if the user forcefully enabled the daemon.
1155          */
1156         if (new_smi->intf_num < num_force_kipmid)
1157                 enable = force_kipmid[new_smi->intf_num];
1158         /*
1159          * The BT interface is efficient enough to not need a thread,
1160          * and there is no need for a thread if we have interrupts.
1161          */
1162         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1163                 enable = 1;
1164
1165         if (enable) {
1166                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1167                                               "kipmi%d", new_smi->intf_num);
1168                 if (IS_ERR(new_smi->thread)) {
1169                         dev_notice(new_smi->dev, "Could not start"
1170                                    " kernel thread due to error %ld, only using"
1171                                    " timers to drive the interface\n",
1172                                    PTR_ERR(new_smi->thread));
1173                         new_smi->thread = NULL;
1174                 }
1175         }
1176
1177         return 0;
1178 }
1179
1180 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1181 {
1182         struct smi_info *smi = send_info;
1183
1184         data->addr_src = smi->addr_source;
1185         data->dev = smi->dev;
1186         data->addr_info = smi->addr_info;
1187         get_device(smi->dev);
1188
1189         return 0;
1190 }
1191
1192 static void set_maintenance_mode(void *send_info, int enable)
1193 {
1194         struct smi_info   *smi_info = send_info;
1195
1196         if (!enable)
1197                 atomic_set(&smi_info->req_events, 0);
1198 }
1199
1200 static struct ipmi_smi_handlers handlers = {
1201         .owner                  = THIS_MODULE,
1202         .start_processing       = smi_start_processing,
1203         .get_smi_info           = get_smi_info,
1204         .sender                 = sender,
1205         .request_events         = request_events,
1206         .set_maintenance_mode   = set_maintenance_mode,
1207         .set_run_to_completion  = set_run_to_completion,
1208         .poll                   = poll,
1209 };
1210
1211 /*
1212  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1213  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1214  */
1215
1216 static LIST_HEAD(smi_infos);
1217 static DEFINE_MUTEX(smi_infos_lock);
1218 static int smi_num; /* Used to sequence the SMIs */
1219
1220 #define DEFAULT_REGSPACING      1
1221 #define DEFAULT_REGSIZE         1
1222
1223 #ifdef CONFIG_ACPI
1224 static bool          si_tryacpi = 1;
1225 #endif
1226 #ifdef CONFIG_DMI
1227 static bool          si_trydmi = 1;
1228 #endif
1229 static bool          si_tryplatform = 1;
1230 #ifdef CONFIG_PCI
1231 static bool          si_trypci = 1;
1232 #endif
1233 static bool          si_trydefaults = 1;
1234 static char          *si_type[SI_MAX_PARMS];
1235 #define MAX_SI_TYPE_STR 30
1236 static char          si_type_str[MAX_SI_TYPE_STR];
1237 static unsigned long addrs[SI_MAX_PARMS];
1238 static unsigned int num_addrs;
1239 static unsigned int  ports[SI_MAX_PARMS];
1240 static unsigned int num_ports;
1241 static int           irqs[SI_MAX_PARMS];
1242 static unsigned int num_irqs;
1243 static int           regspacings[SI_MAX_PARMS];
1244 static unsigned int num_regspacings;
1245 static int           regsizes[SI_MAX_PARMS];
1246 static unsigned int num_regsizes;
1247 static int           regshifts[SI_MAX_PARMS];
1248 static unsigned int num_regshifts;
1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs;
1251
1252 #define IPMI_IO_ADDR_SPACE  0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str[] = { "i/o", "mem" };
1255
1256 static int hotmod_handler(const char *val, struct kernel_param *kp);
1257
1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1260                  " Documentation/IPMI.txt in the kernel sources for the"
1261                  " gory details.");
1262
1263 #ifdef CONFIG_ACPI
1264 module_param_named(tryacpi, si_tryacpi, bool, 0);
1265 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1266                  " default scan of the interfaces identified via ACPI");
1267 #endif
1268 #ifdef CONFIG_DMI
1269 module_param_named(trydmi, si_trydmi, bool, 0);
1270 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1271                  " default scan of the interfaces identified via DMI");
1272 #endif
1273 module_param_named(tryplatform, si_tryplatform, bool, 0);
1274 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1275                  " default scan of the interfaces identified via platform"
1276                  " interfaces like openfirmware");
1277 #ifdef CONFIG_PCI
1278 module_param_named(trypci, si_trypci, bool, 0);
1279 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1280                  " default scan of the interfaces identified via pci");
1281 #endif
1282 module_param_named(trydefaults, si_trydefaults, bool, 0);
1283 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1284                  " default scan of the KCS and SMIC interface at the standard"
1285                  " address");
1286 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1287 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1288                  " interface separated by commas.  The types are 'kcs',"
1289                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1290                  " the first interface to kcs and the second to bt");
1291 module_param_array(addrs, ulong, &num_addrs, 0);
1292 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1293                  " addresses separated by commas.  Only use if an interface"
1294                  " is in memory.  Otherwise, set it to zero or leave"
1295                  " it blank.");
1296 module_param_array(ports, uint, &num_ports, 0);
1297 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1298                  " addresses separated by commas.  Only use if an interface"
1299                  " is a port.  Otherwise, set it to zero or leave"
1300                  " it blank.");
1301 module_param_array(irqs, int, &num_irqs, 0);
1302 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1303                  " addresses separated by commas.  Only use if an interface"
1304                  " has an interrupt.  Otherwise, set it to zero or leave"
1305                  " it blank.");
1306 module_param_array(regspacings, int, &num_regspacings, 0);
1307 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1308                  " and each successive register used by the interface.  For"
1309                  " instance, if the start address is 0xca2 and the spacing"
1310                  " is 2, then the second address is at 0xca4.  Defaults"
1311                  " to 1.");
1312 module_param_array(regsizes, int, &num_regsizes, 0);
1313 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1314                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1315                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1316                  " the 8-bit IPMI register has to be read from a larger"
1317                  " register.");
1318 module_param_array(regshifts, int, &num_regshifts, 0);
1319 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1320                  " IPMI register, in bits.  For instance, if the data"
1321                  " is read from a 32-bit word and the IPMI data is in"
1322                  " bit 8-15, then the shift would be 8");
1323 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1324 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1325                  " the controller.  Normally this is 0x20, but can be"
1326                  " overridden by this parm.  This is an array indexed"
1327                  " by interface number.");
1328 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1329 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1330                  " disabled(0).  Normally the IPMI driver auto-detects"
1331                  " this, but the value may be overridden by this parm.");
1332 module_param(unload_when_empty, int, 0);
1333 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1334                  " specified or found, default is 1.  Setting to 0"
1335                  " is useful for hot add of devices using hotmod.");
1336 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1337 MODULE_PARM_DESC(kipmid_max_busy_us,
1338                  "Max time (in microseconds) to busy-wait for IPMI data before"
1339                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1340                  " if kipmid is using up a lot of CPU time.");
1341
1342
1343 static void std_irq_cleanup(struct smi_info *info)
1344 {
1345         if (info->si_type == SI_BT)
1346                 /* Disable the interrupt in the BT interface. */
1347                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1348         free_irq(info->irq, info);
1349 }
1350
1351 static int std_irq_setup(struct smi_info *info)
1352 {
1353         int rv;
1354
1355         if (!info->irq)
1356                 return 0;
1357
1358         if (info->si_type == SI_BT) {
1359                 rv = request_irq(info->irq,
1360                                  si_bt_irq_handler,
1361                                  IRQF_SHARED | IRQF_DISABLED,
1362                                  DEVICE_NAME,
1363                                  info);
1364                 if (!rv)
1365                         /* Enable the interrupt in the BT interface. */
1366                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1367                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1368         } else
1369                 rv = request_irq(info->irq,
1370                                  si_irq_handler,
1371                                  IRQF_SHARED | IRQF_DISABLED,
1372                                  DEVICE_NAME,
1373                                  info);
1374         if (rv) {
1375                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1376                          " running polled\n",
1377                          DEVICE_NAME, info->irq);
1378                 info->irq = 0;
1379         } else {
1380                 info->irq_cleanup = std_irq_cleanup;
1381                 dev_info(info->dev, "Using irq %d\n", info->irq);
1382         }
1383
1384         return rv;
1385 }
1386
1387 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1388 {
1389         unsigned int addr = io->addr_data;
1390
1391         return inb(addr + (offset * io->regspacing));
1392 }
1393
1394 static void port_outb(struct si_sm_io *io, unsigned int offset,
1395                       unsigned char b)
1396 {
1397         unsigned int addr = io->addr_data;
1398
1399         outb(b, addr + (offset * io->regspacing));
1400 }
1401
1402 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1403 {
1404         unsigned int addr = io->addr_data;
1405
1406         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1407 }
1408
1409 static void port_outw(struct si_sm_io *io, unsigned int offset,
1410                       unsigned char b)
1411 {
1412         unsigned int addr = io->addr_data;
1413
1414         outw(b << io->regshift, addr + (offset * io->regspacing));
1415 }
1416
1417 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1418 {
1419         unsigned int addr = io->addr_data;
1420
1421         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1422 }
1423
1424 static void port_outl(struct si_sm_io *io, unsigned int offset,
1425                       unsigned char b)
1426 {
1427         unsigned int addr = io->addr_data;
1428
1429         outl(b << io->regshift, addr+(offset * io->regspacing));
1430 }
1431
1432 static void port_cleanup(struct smi_info *info)
1433 {
1434         unsigned int addr = info->io.addr_data;
1435         int          idx;
1436
1437         if (addr) {
1438                 for (idx = 0; idx < info->io_size; idx++)
1439                         release_region(addr + idx * info->io.regspacing,
1440                                        info->io.regsize);
1441         }
1442 }
1443
1444 static int port_setup(struct smi_info *info)
1445 {
1446         unsigned int addr = info->io.addr_data;
1447         int          idx;
1448
1449         if (!addr)
1450                 return -ENODEV;
1451
1452         info->io_cleanup = port_cleanup;
1453
1454         /*
1455          * Figure out the actual inb/inw/inl/etc routine to use based
1456          * upon the register size.
1457          */
1458         switch (info->io.regsize) {
1459         case 1:
1460                 info->io.inputb = port_inb;
1461                 info->io.outputb = port_outb;
1462                 break;
1463         case 2:
1464                 info->io.inputb = port_inw;
1465                 info->io.outputb = port_outw;
1466                 break;
1467         case 4:
1468                 info->io.inputb = port_inl;
1469                 info->io.outputb = port_outl;
1470                 break;
1471         default:
1472                 dev_warn(info->dev, "Invalid register size: %d\n",
1473                          info->io.regsize);
1474                 return -EINVAL;
1475         }
1476
1477         /*
1478          * Some BIOSes reserve disjoint I/O regions in their ACPI
1479          * tables.  This causes problems when trying to register the
1480          * entire I/O region.  Therefore we must register each I/O
1481          * port separately.
1482          */
1483         for (idx = 0; idx < info->io_size; idx++) {
1484                 if (request_region(addr + idx * info->io.regspacing,
1485                                    info->io.regsize, DEVICE_NAME) == NULL) {
1486                         /* Undo allocations */
1487                         while (idx--) {
1488                                 release_region(addr + idx * info->io.regspacing,
1489                                                info->io.regsize);
1490                         }
1491                         return -EIO;
1492                 }
1493         }
1494         return 0;
1495 }
1496
1497 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1498 {
1499         return readb((io->addr)+(offset * io->regspacing));
1500 }
1501
1502 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1503                      unsigned char b)
1504 {
1505         writeb(b, (io->addr)+(offset * io->regspacing));
1506 }
1507
1508 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1509 {
1510         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511                 & 0xff;
1512 }
1513
1514 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1515                      unsigned char b)
1516 {
1517         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519
1520 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1521 {
1522         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1523                 & 0xff;
1524 }
1525
1526 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1527                      unsigned char b)
1528 {
1529         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1530 }
1531
1532 #ifdef readq
1533 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1534 {
1535         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1536                 & 0xff;
1537 }
1538
1539 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1540                      unsigned char b)
1541 {
1542         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1543 }
1544 #endif
1545
1546 static void mem_cleanup(struct smi_info *info)
1547 {
1548         unsigned long addr = info->io.addr_data;
1549         int           mapsize;
1550
1551         if (info->io.addr) {
1552                 iounmap(info->io.addr);
1553
1554                 mapsize = ((info->io_size * info->io.regspacing)
1555                            - (info->io.regspacing - info->io.regsize));
1556
1557                 release_mem_region(addr, mapsize);
1558         }
1559 }
1560
1561 static int mem_setup(struct smi_info *info)
1562 {
1563         unsigned long addr = info->io.addr_data;
1564         int           mapsize;
1565
1566         if (!addr)
1567                 return -ENODEV;
1568
1569         info->io_cleanup = mem_cleanup;
1570
1571         /*
1572          * Figure out the actual readb/readw/readl/etc routine to use based
1573          * upon the register size.
1574          */
1575         switch (info->io.regsize) {
1576         case 1:
1577                 info->io.inputb = intf_mem_inb;
1578                 info->io.outputb = intf_mem_outb;
1579                 break;
1580         case 2:
1581                 info->io.inputb = intf_mem_inw;
1582                 info->io.outputb = intf_mem_outw;
1583                 break;
1584         case 4:
1585                 info->io.inputb = intf_mem_inl;
1586                 info->io.outputb = intf_mem_outl;
1587                 break;
1588 #ifdef readq
1589         case 8:
1590                 info->io.inputb = mem_inq;
1591                 info->io.outputb = mem_outq;
1592                 break;
1593 #endif
1594         default:
1595                 dev_warn(info->dev, "Invalid register size: %d\n",
1596                          info->io.regsize);
1597                 return -EINVAL;
1598         }
1599
1600         /*
1601          * Calculate the total amount of memory to claim.  This is an
1602          * unusual looking calculation, but it avoids claiming any
1603          * more memory than it has to.  It will claim everything
1604          * between the first address to the end of the last full
1605          * register.
1606          */
1607         mapsize = ((info->io_size * info->io.regspacing)
1608                    - (info->io.regspacing - info->io.regsize));
1609
1610         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1611                 return -EIO;
1612
1613         info->io.addr = ioremap(addr, mapsize);
1614         if (info->io.addr == NULL) {
1615                 release_mem_region(addr, mapsize);
1616                 return -EIO;
1617         }
1618         return 0;
1619 }
1620
1621 /*
1622  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1623  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1624  * Options are:
1625  *   rsp=<regspacing>
1626  *   rsi=<regsize>
1627  *   rsh=<regshift>
1628  *   irq=<irq>
1629  *   ipmb=<ipmb addr>
1630  */
1631 enum hotmod_op { HM_ADD, HM_REMOVE };
1632 struct hotmod_vals {
1633         char *name;
1634         int  val;
1635 };
1636 static struct hotmod_vals hotmod_ops[] = {
1637         { "add",        HM_ADD },
1638         { "remove",     HM_REMOVE },
1639         { NULL }
1640 };
1641 static struct hotmod_vals hotmod_si[] = {
1642         { "kcs",        SI_KCS },
1643         { "smic",       SI_SMIC },
1644         { "bt",         SI_BT },
1645         { NULL }
1646 };
1647 static struct hotmod_vals hotmod_as[] = {
1648         { "mem",        IPMI_MEM_ADDR_SPACE },
1649         { "i/o",        IPMI_IO_ADDR_SPACE },
1650         { NULL }
1651 };
1652
1653 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1654 {
1655         char *s;
1656         int  i;
1657
1658         s = strchr(*curr, ',');
1659         if (!s) {
1660                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1661                 return -EINVAL;
1662         }
1663         *s = '\0';
1664         s++;
1665         for (i = 0; hotmod_ops[i].name; i++) {
1666                 if (strcmp(*curr, v[i].name) == 0) {
1667                         *val = v[i].val;
1668                         *curr = s;
1669                         return 0;
1670                 }
1671         }
1672
1673         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1674         return -EINVAL;
1675 }
1676
1677 static int check_hotmod_int_op(const char *curr, const char *option,
1678                                const char *name, int *val)
1679 {
1680         char *n;
1681
1682         if (strcmp(curr, name) == 0) {
1683                 if (!option) {
1684                         printk(KERN_WARNING PFX
1685                                "No option given for '%s'\n",
1686                                curr);
1687                         return -EINVAL;
1688                 }
1689                 *val = simple_strtoul(option, &n, 0);
1690                 if ((*n != '\0') || (*option == '\0')) {
1691                         printk(KERN_WARNING PFX
1692                                "Bad option given for '%s'\n",
1693                                curr);
1694                         return -EINVAL;
1695                 }
1696                 return 1;
1697         }
1698         return 0;
1699 }
1700
1701 static struct smi_info *smi_info_alloc(void)
1702 {
1703         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1704
1705         if (info)
1706                 spin_lock_init(&info->si_lock);
1707         return info;
1708 }
1709
1710 static int hotmod_handler(const char *val, struct kernel_param *kp)
1711 {
1712         char *str = kstrdup(val, GFP_KERNEL);
1713         int  rv;
1714         char *next, *curr, *s, *n, *o;
1715         enum hotmod_op op;
1716         enum si_type si_type;
1717         int  addr_space;
1718         unsigned long addr;
1719         int regspacing;
1720         int regsize;
1721         int regshift;
1722         int irq;
1723         int ipmb;
1724         int ival;
1725         int len;
1726         struct smi_info *info;
1727
1728         if (!str)
1729                 return -ENOMEM;
1730
1731         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1732         len = strlen(str);
1733         ival = len - 1;
1734         while ((ival >= 0) && isspace(str[ival])) {
1735                 str[ival] = '\0';
1736                 ival--;
1737         }
1738
1739         for (curr = str; curr; curr = next) {
1740                 regspacing = 1;
1741                 regsize = 1;
1742                 regshift = 0;
1743                 irq = 0;
1744                 ipmb = 0; /* Choose the default if not specified */
1745
1746                 next = strchr(curr, ':');
1747                 if (next) {
1748                         *next = '\0';
1749                         next++;
1750                 }
1751
1752                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1753                 if (rv)
1754                         break;
1755                 op = ival;
1756
1757                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1758                 if (rv)
1759                         break;
1760                 si_type = ival;
1761
1762                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1763                 if (rv)
1764                         break;
1765
1766                 s = strchr(curr, ',');
1767                 if (s) {
1768                         *s = '\0';
1769                         s++;
1770                 }
1771                 addr = simple_strtoul(curr, &n, 0);
1772                 if ((*n != '\0') || (*curr == '\0')) {
1773                         printk(KERN_WARNING PFX "Invalid hotmod address"
1774                                " '%s'\n", curr);
1775                         break;
1776                 }
1777
1778                 while (s) {
1779                         curr = s;
1780                         s = strchr(curr, ',');
1781                         if (s) {
1782                                 *s = '\0';
1783                                 s++;
1784                         }
1785                         o = strchr(curr, '=');
1786                         if (o) {
1787                                 *o = '\0';
1788                                 o++;
1789                         }
1790                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1791                         if (rv < 0)
1792                                 goto out;
1793                         else if (rv)
1794                                 continue;
1795                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1796                         if (rv < 0)
1797                                 goto out;
1798                         else if (rv)
1799                                 continue;
1800                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1801                         if (rv < 0)
1802                                 goto out;
1803                         else if (rv)
1804                                 continue;
1805                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1806                         if (rv < 0)
1807                                 goto out;
1808                         else if (rv)
1809                                 continue;
1810                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1811                         if (rv < 0)
1812                                 goto out;
1813                         else if (rv)
1814                                 continue;
1815
1816                         rv = -EINVAL;
1817                         printk(KERN_WARNING PFX
1818                                "Invalid hotmod option '%s'\n",
1819                                curr);
1820                         goto out;
1821                 }
1822
1823                 if (op == HM_ADD) {
1824                         info = smi_info_alloc();
1825                         if (!info) {
1826                                 rv = -ENOMEM;
1827                                 goto out;
1828                         }
1829
1830                         info->addr_source = SI_HOTMOD;
1831                         info->si_type = si_type;
1832                         info->io.addr_data = addr;
1833                         info->io.addr_type = addr_space;
1834                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1835                                 info->io_setup = mem_setup;
1836                         else
1837                                 info->io_setup = port_setup;
1838
1839                         info->io.addr = NULL;
1840                         info->io.regspacing = regspacing;
1841                         if (!info->io.regspacing)
1842                                 info->io.regspacing = DEFAULT_REGSPACING;
1843                         info->io.regsize = regsize;
1844                         if (!info->io.regsize)
1845                                 info->io.regsize = DEFAULT_REGSPACING;
1846                         info->io.regshift = regshift;
1847                         info->irq = irq;
1848                         if (info->irq)
1849                                 info->irq_setup = std_irq_setup;
1850                         info->slave_addr = ipmb;
1851
1852                         if (!add_smi(info)) {
1853                                 if (try_smi_init(info))
1854                                         cleanup_one_si(info);
1855                         } else {
1856                                 kfree(info);
1857                         }
1858                 } else {
1859                         /* remove */
1860                         struct smi_info *e, *tmp_e;
1861
1862                         mutex_lock(&smi_infos_lock);
1863                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1864                                 if (e->io.addr_type != addr_space)
1865                                         continue;
1866                                 if (e->si_type != si_type)
1867                                         continue;
1868                                 if (e->io.addr_data == addr)
1869                                         cleanup_one_si(e);
1870                         }
1871                         mutex_unlock(&smi_infos_lock);
1872                 }
1873         }
1874         rv = len;
1875  out:
1876         kfree(str);
1877         return rv;
1878 }
1879
1880 static int hardcode_find_bmc(void)
1881 {
1882         int ret = -ENODEV;
1883         int             i;
1884         struct smi_info *info;
1885
1886         for (i = 0; i < SI_MAX_PARMS; i++) {
1887                 if (!ports[i] && !addrs[i])
1888                         continue;
1889
1890                 info = smi_info_alloc();
1891                 if (!info)
1892                         return -ENOMEM;
1893
1894                 info->addr_source = SI_HARDCODED;
1895                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1896
1897                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1898                         info->si_type = SI_KCS;
1899                 } else if (strcmp(si_type[i], "smic") == 0) {
1900                         info->si_type = SI_SMIC;
1901                 } else if (strcmp(si_type[i], "bt") == 0) {
1902                         info->si_type = SI_BT;
1903                 } else {
1904                         printk(KERN_WARNING PFX "Interface type specified "
1905                                "for interface %d, was invalid: %s\n",
1906                                i, si_type[i]);
1907                         kfree(info);
1908                         continue;
1909                 }
1910
1911                 if (ports[i]) {
1912                         /* An I/O port */
1913                         info->io_setup = port_setup;
1914                         info->io.addr_data = ports[i];
1915                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1916                 } else if (addrs[i]) {
1917                         /* A memory port */
1918                         info->io_setup = mem_setup;
1919                         info->io.addr_data = addrs[i];
1920                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1921                 } else {
1922                         printk(KERN_WARNING PFX "Interface type specified "
1923                                "for interface %d, but port and address were "
1924                                "not set or set to zero.\n", i);
1925                         kfree(info);
1926                         continue;
1927                 }
1928
1929                 info->io.addr = NULL;
1930                 info->io.regspacing = regspacings[i];
1931                 if (!info->io.regspacing)
1932                         info->io.regspacing = DEFAULT_REGSPACING;
1933                 info->io.regsize = regsizes[i];
1934                 if (!info->io.regsize)
1935                         info->io.regsize = DEFAULT_REGSPACING;
1936                 info->io.regshift = regshifts[i];
1937                 info->irq = irqs[i];
1938                 if (info->irq)
1939                         info->irq_setup = std_irq_setup;
1940                 info->slave_addr = slave_addrs[i];
1941
1942                 if (!add_smi(info)) {
1943                         if (try_smi_init(info))
1944                                 cleanup_one_si(info);
1945                         ret = 0;
1946                 } else {
1947                         kfree(info);
1948                 }
1949         }
1950         return ret;
1951 }
1952
1953 #ifdef CONFIG_ACPI
1954
1955 #include <linux/acpi.h>
1956
1957 /*
1958  * Once we get an ACPI failure, we don't try any more, because we go
1959  * through the tables sequentially.  Once we don't find a table, there
1960  * are no more.
1961  */
1962 static int acpi_failure;
1963
1964 /* For GPE-type interrupts. */
1965 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1966         u32 gpe_number, void *context)
1967 {
1968         struct smi_info *smi_info = context;
1969         unsigned long   flags;
1970 #ifdef DEBUG_TIMING
1971         struct timeval t;
1972 #endif
1973
1974         spin_lock_irqsave(&(smi_info->si_lock), flags);
1975
1976         smi_inc_stat(smi_info, interrupts);
1977
1978 #ifdef DEBUG_TIMING
1979         do_gettimeofday(&t);
1980         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1981 #endif
1982         smi_event_handler(smi_info, 0);
1983         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1984
1985         return ACPI_INTERRUPT_HANDLED;
1986 }
1987
1988 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1989 {
1990         if (!info->irq)
1991                 return;
1992
1993         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1994 }
1995
1996 static int acpi_gpe_irq_setup(struct smi_info *info)
1997 {
1998         acpi_status status;
1999
2000         if (!info->irq)
2001                 return 0;
2002
2003         /* FIXME - is level triggered right? */
2004         status = acpi_install_gpe_handler(NULL,
2005                                           info->irq,
2006                                           ACPI_GPE_LEVEL_TRIGGERED,
2007                                           &ipmi_acpi_gpe,
2008                                           info);
2009         if (status != AE_OK) {
2010                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2011                          " running polled\n", DEVICE_NAME, info->irq);
2012                 info->irq = 0;
2013                 return -EINVAL;
2014         } else {
2015                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2016                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2017                 return 0;
2018         }
2019 }
2020
2021 /*
2022  * Defined at
2023  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2024  */
2025 struct SPMITable {
2026         s8      Signature[4];
2027         u32     Length;
2028         u8      Revision;
2029         u8      Checksum;
2030         s8      OEMID[6];
2031         s8      OEMTableID[8];
2032         s8      OEMRevision[4];
2033         s8      CreatorID[4];
2034         s8      CreatorRevision[4];
2035         u8      InterfaceType;
2036         u8      IPMIlegacy;
2037         s16     SpecificationRevision;
2038
2039         /*
2040          * Bit 0 - SCI interrupt supported
2041          * Bit 1 - I/O APIC/SAPIC
2042          */
2043         u8      InterruptType;
2044
2045         /*
2046          * If bit 0 of InterruptType is set, then this is the SCI
2047          * interrupt in the GPEx_STS register.
2048          */
2049         u8      GPE;
2050
2051         s16     Reserved;
2052
2053         /*
2054          * If bit 1 of InterruptType is set, then this is the I/O
2055          * APIC/SAPIC interrupt.
2056          */
2057         u32     GlobalSystemInterrupt;
2058
2059         /* The actual register address. */
2060         struct acpi_generic_address addr;
2061
2062         u8      UID[4];
2063
2064         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2065 };
2066
2067 static int try_init_spmi(struct SPMITable *spmi)
2068 {
2069         struct smi_info  *info;
2070
2071         if (spmi->IPMIlegacy != 1) {
2072                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2073                 return -ENODEV;
2074         }
2075
2076         info = smi_info_alloc();
2077         if (!info) {
2078                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2079                 return -ENOMEM;
2080         }
2081
2082         info->addr_source = SI_SPMI;
2083         printk(KERN_INFO PFX "probing via SPMI\n");
2084
2085         /* Figure out the interface type. */
2086         switch (spmi->InterfaceType) {
2087         case 1: /* KCS */
2088                 info->si_type = SI_KCS;
2089                 break;
2090         case 2: /* SMIC */
2091                 info->si_type = SI_SMIC;
2092                 break;
2093         case 3: /* BT */
2094                 info->si_type = SI_BT;
2095                 break;
2096         default:
2097                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2098                        spmi->InterfaceType);
2099                 kfree(info);
2100                 return -EIO;
2101         }
2102
2103         if (spmi->InterruptType & 1) {
2104                 /* We've got a GPE interrupt. */
2105                 info->irq = spmi->GPE;
2106                 info->irq_setup = acpi_gpe_irq_setup;
2107         } else if (spmi->InterruptType & 2) {
2108                 /* We've got an APIC/SAPIC interrupt. */
2109                 info->irq = spmi->GlobalSystemInterrupt;
2110                 info->irq_setup = std_irq_setup;
2111         } else {
2112                 /* Use the default interrupt setting. */
2113                 info->irq = 0;
2114                 info->irq_setup = NULL;
2115         }
2116
2117         if (spmi->addr.bit_width) {
2118                 /* A (hopefully) properly formed register bit width. */
2119                 info->io.regspacing = spmi->addr.bit_width / 8;
2120         } else {
2121                 info->io.regspacing = DEFAULT_REGSPACING;
2122         }
2123         info->io.regsize = info->io.regspacing;
2124         info->io.regshift = spmi->addr.bit_offset;
2125
2126         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2127                 info->io_setup = mem_setup;
2128                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2129         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2130                 info->io_setup = port_setup;
2131                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2132         } else {
2133                 kfree(info);
2134                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2135                 return -EIO;
2136         }
2137         info->io.addr_data = spmi->addr.address;
2138
2139         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2140                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2141                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2142                  info->irq);
2143
2144         if (add_smi(info))
2145                 kfree(info);
2146
2147         return 0;
2148 }
2149
2150 static void spmi_find_bmc(void)
2151 {
2152         acpi_status      status;
2153         struct SPMITable *spmi;
2154         int              i;
2155
2156         if (acpi_disabled)
2157                 return;
2158
2159         if (acpi_failure)
2160                 return;
2161
2162         for (i = 0; ; i++) {
2163                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2164                                         (struct acpi_table_header **)&spmi);
2165                 if (status != AE_OK)
2166                         return;
2167
2168                 try_init_spmi(spmi);
2169         }
2170 }
2171
2172 static int ipmi_pnp_probe(struct pnp_dev *dev,
2173                                     const struct pnp_device_id *dev_id)
2174 {
2175         struct acpi_device *acpi_dev;
2176         struct smi_info *info;
2177         struct resource *res, *res_second;
2178         acpi_handle handle;
2179         acpi_status status;
2180         unsigned long long tmp;
2181
2182         acpi_dev = pnp_acpi_device(dev);
2183         if (!acpi_dev)
2184                 return -ENODEV;
2185
2186         info = smi_info_alloc();
2187         if (!info)
2188                 return -ENOMEM;
2189
2190         info->addr_source = SI_ACPI;
2191         printk(KERN_INFO PFX "probing via ACPI\n");
2192
2193         handle = acpi_dev->handle;
2194         info->addr_info.acpi_info.acpi_handle = handle;
2195
2196         /* _IFT tells us the interface type: KCS, BT, etc */
2197         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2198         if (ACPI_FAILURE(status))
2199                 goto err_free;
2200
2201         switch (tmp) {
2202         case 1:
2203                 info->si_type = SI_KCS;
2204                 break;
2205         case 2:
2206                 info->si_type = SI_SMIC;
2207                 break;
2208         case 3:
2209                 info->si_type = SI_BT;
2210                 break;
2211         default:
2212                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2213                 goto err_free;
2214         }
2215
2216         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2217         if (res) {
2218                 info->io_setup = port_setup;
2219                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2220         } else {
2221                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2222                 if (res) {
2223                         info->io_setup = mem_setup;
2224                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2225                 }
2226         }
2227         if (!res) {
2228                 dev_err(&dev->dev, "no I/O or memory address\n");
2229                 goto err_free;
2230         }
2231         info->io.addr_data = res->start;
2232
2233         info->io.regspacing = DEFAULT_REGSPACING;
2234         res_second = pnp_get_resource(dev,
2235                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2236                                         IORESOURCE_IO : IORESOURCE_MEM,
2237                                1);
2238         if (res_second) {
2239                 if (res_second->start > info->io.addr_data)
2240                         info->io.regspacing = res_second->start - info->io.addr_data;
2241         }
2242         info->io.regsize = DEFAULT_REGSPACING;
2243         info->io.regshift = 0;
2244
2245         /* If _GPE exists, use it; otherwise use standard interrupts */
2246         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2247         if (ACPI_SUCCESS(status)) {
2248                 info->irq = tmp;
2249                 info->irq_setup = acpi_gpe_irq_setup;
2250         } else if (pnp_irq_valid(dev, 0)) {
2251                 info->irq = pnp_irq(dev, 0);
2252                 info->irq_setup = std_irq_setup;
2253         }
2254
2255         info->dev = &dev->dev;
2256         pnp_set_drvdata(dev, info);
2257
2258         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2259                  res, info->io.regsize, info->io.regspacing,
2260                  info->irq);
2261
2262         if (add_smi(info))
2263                 goto err_free;
2264
2265         return 0;
2266
2267 err_free:
2268         kfree(info);
2269         return -EINVAL;
2270 }
2271
2272 static void ipmi_pnp_remove(struct pnp_dev *dev)
2273 {
2274         struct smi_info *info = pnp_get_drvdata(dev);
2275
2276         cleanup_one_si(info);
2277 }
2278
2279 static const struct pnp_device_id pnp_dev_table[] = {
2280         {"IPI0001", 0},
2281         {"", 0},
2282 };
2283
2284 static struct pnp_driver ipmi_pnp_driver = {
2285         .name           = DEVICE_NAME,
2286         .probe          = ipmi_pnp_probe,
2287         .remove         = ipmi_pnp_remove,
2288         .id_table       = pnp_dev_table,
2289 };
2290
2291 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2292 #endif
2293
2294 #ifdef CONFIG_DMI
2295 struct dmi_ipmi_data {
2296         u8              type;
2297         u8              addr_space;
2298         unsigned long   base_addr;
2299         u8              irq;
2300         u8              offset;
2301         u8              slave_addr;
2302 };
2303
2304 static int decode_dmi(const struct dmi_header *dm,
2305                                 struct dmi_ipmi_data *dmi)
2306 {
2307         const u8        *data = (const u8 *)dm;
2308         unsigned long   base_addr;
2309         u8              reg_spacing;
2310         u8              len = dm->length;
2311
2312         dmi->type = data[4];
2313
2314         memcpy(&base_addr, data+8, sizeof(unsigned long));
2315         if (len >= 0x11) {
2316                 if (base_addr & 1) {
2317                         /* I/O */
2318                         base_addr &= 0xFFFE;
2319                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2320                 } else
2321                         /* Memory */
2322                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2323
2324                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2325                    is odd. */
2326                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2327
2328                 dmi->irq = data[0x11];
2329
2330                 /* The top two bits of byte 0x10 hold the register spacing. */
2331                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2332                 switch (reg_spacing) {
2333                 case 0x00: /* Byte boundaries */
2334                     dmi->offset = 1;
2335                     break;
2336                 case 0x01: /* 32-bit boundaries */
2337                     dmi->offset = 4;
2338                     break;
2339                 case 0x02: /* 16-byte boundaries */
2340                     dmi->offset = 16;
2341                     break;
2342                 default:
2343                     /* Some other interface, just ignore it. */
2344                     return -EIO;
2345                 }
2346         } else {
2347                 /* Old DMI spec. */
2348                 /*
2349                  * Note that technically, the lower bit of the base
2350                  * address should be 1 if the address is I/O and 0 if
2351                  * the address is in memory.  So many systems get that
2352                  * wrong (and all that I have seen are I/O) so we just
2353                  * ignore that bit and assume I/O.  Systems that use
2354                  * memory should use the newer spec, anyway.
2355                  */
2356                 dmi->base_addr = base_addr & 0xfffe;
2357                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2358                 dmi->offset = 1;
2359         }
2360
2361         dmi->slave_addr = data[6];
2362
2363         return 0;
2364 }
2365
2366 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2367 {
2368         struct smi_info *info;
2369
2370         info = smi_info_alloc();
2371         if (!info) {
2372                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2373                 return;
2374         }
2375
2376         info->addr_source = SI_SMBIOS;
2377         printk(KERN_INFO PFX "probing via SMBIOS\n");
2378
2379         switch (ipmi_data->type) {
2380         case 0x01: /* KCS */
2381                 info->si_type = SI_KCS;
2382                 break;
2383         case 0x02: /* SMIC */
2384                 info->si_type = SI_SMIC;
2385                 break;
2386         case 0x03: /* BT */
2387                 info->si_type = SI_BT;
2388                 break;
2389         default:
2390                 kfree(info);
2391                 return;
2392         }
2393
2394         switch (ipmi_data->addr_space) {
2395         case IPMI_MEM_ADDR_SPACE:
2396                 info->io_setup = mem_setup;
2397                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2398                 break;
2399
2400         case IPMI_IO_ADDR_SPACE:
2401                 info->io_setup = port_setup;
2402                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2403                 break;
2404
2405         default:
2406                 kfree(info);
2407                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2408                        ipmi_data->addr_space);
2409                 return;
2410         }
2411         info->io.addr_data = ipmi_data->base_addr;
2412
2413         info->io.regspacing = ipmi_data->offset;
2414         if (!info->io.regspacing)
2415                 info->io.regspacing = DEFAULT_REGSPACING;
2416         info->io.regsize = DEFAULT_REGSPACING;
2417         info->io.regshift = 0;
2418
2419         info->slave_addr = ipmi_data->slave_addr;
2420
2421         info->irq = ipmi_data->irq;
2422         if (info->irq)
2423                 info->irq_setup = std_irq_setup;
2424
2425         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2426                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2427                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2428                  info->irq);
2429
2430         if (add_smi(info))
2431                 kfree(info);
2432 }
2433
2434 static void dmi_find_bmc(void)
2435 {
2436         const struct dmi_device *dev = NULL;
2437         struct dmi_ipmi_data data;
2438         int                  rv;
2439
2440         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2441                 memset(&data, 0, sizeof(data));
2442                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2443                                 &data);
2444                 if (!rv)
2445                         try_init_dmi(&data);
2446         }
2447 }
2448 #endif /* CONFIG_DMI */
2449
2450 #ifdef CONFIG_PCI
2451
2452 #define PCI_ERMC_CLASSCODE              0x0C0700
2453 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2454 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2455 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2456 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2457 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2458
2459 #define PCI_HP_VENDOR_ID    0x103C
2460 #define PCI_MMC_DEVICE_ID   0x121A
2461 #define PCI_MMC_ADDR_CW     0x10
2462
2463 static void ipmi_pci_cleanup(struct smi_info *info)
2464 {
2465         struct pci_dev *pdev = info->addr_source_data;
2466
2467         pci_disable_device(pdev);
2468 }
2469
2470 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2471 {
2472         if (info->si_type == SI_KCS) {
2473                 unsigned char   status;
2474                 int             regspacing;
2475
2476                 info->io.regsize = DEFAULT_REGSIZE;
2477                 info->io.regshift = 0;
2478                 info->io_size = 2;
2479                 info->handlers = &kcs_smi_handlers;
2480
2481                 /* detect 1, 4, 16byte spacing */
2482                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2483                         info->io.regspacing = regspacing;
2484                         if (info->io_setup(info)) {
2485                                 dev_err(info->dev,
2486                                         "Could not setup I/O space\n");
2487                                 return DEFAULT_REGSPACING;
2488                         }
2489                         /* write invalid cmd */
2490                         info->io.outputb(&info->io, 1, 0x10);
2491                         /* read status back */
2492                         status = info->io.inputb(&info->io, 1);
2493                         info->io_cleanup(info);
2494                         if (status)
2495                                 return regspacing;
2496                         regspacing *= 4;
2497                 }
2498         }
2499         return DEFAULT_REGSPACING;
2500 }
2501
2502 static int ipmi_pci_probe(struct pci_dev *pdev,
2503                                     const struct pci_device_id *ent)
2504 {
2505         int rv;
2506         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2507         struct smi_info *info;
2508
2509         info = smi_info_alloc();
2510         if (!info)
2511                 return -ENOMEM;
2512
2513         info->addr_source = SI_PCI;
2514         dev_info(&pdev->dev, "probing via PCI");
2515
2516         switch (class_type) {
2517         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2518                 info->si_type = SI_SMIC;
2519                 break;
2520
2521         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2522                 info->si_type = SI_KCS;
2523                 break;
2524
2525         case PCI_ERMC_CLASSCODE_TYPE_BT:
2526                 info->si_type = SI_BT;
2527                 break;
2528
2529         default:
2530                 kfree(info);
2531                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2532                 return -ENOMEM;
2533         }
2534
2535         rv = pci_enable_device(pdev);
2536         if (rv) {
2537                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2538                 kfree(info);
2539                 return rv;
2540         }
2541
2542         info->addr_source_cleanup = ipmi_pci_cleanup;
2543         info->addr_source_data = pdev;
2544
2545         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2546                 info->io_setup = port_setup;
2547                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2548         } else {
2549                 info->io_setup = mem_setup;
2550                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2551         }
2552         info->io.addr_data = pci_resource_start(pdev, 0);
2553
2554         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2555         info->io.regsize = DEFAULT_REGSIZE;
2556         info->io.regshift = 0;
2557
2558         info->irq = pdev->irq;
2559         if (info->irq)
2560                 info->irq_setup = std_irq_setup;
2561
2562         info->dev = &pdev->dev;
2563         pci_set_drvdata(pdev, info);
2564
2565         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2566                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2567                 info->irq);
2568
2569         if (add_smi(info))
2570                 kfree(info);
2571
2572         return 0;
2573 }
2574
2575 static void ipmi_pci_remove(struct pci_dev *pdev)
2576 {
2577         struct smi_info *info = pci_get_drvdata(pdev);
2578         cleanup_one_si(info);
2579 }
2580
2581 static struct pci_device_id ipmi_pci_devices[] = {
2582         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2583         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2584         { 0, }
2585 };
2586 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2587
2588 static struct pci_driver ipmi_pci_driver = {
2589         .name =         DEVICE_NAME,
2590         .id_table =     ipmi_pci_devices,
2591         .probe =        ipmi_pci_probe,
2592         .remove =       ipmi_pci_remove,
2593 };
2594 #endif /* CONFIG_PCI */
2595
2596 static struct of_device_id ipmi_match[];
2597 static int ipmi_probe(struct platform_device *dev)
2598 {
2599 #ifdef CONFIG_OF
2600         const struct of_device_id *match;
2601         struct smi_info *info;
2602         struct resource resource;
2603         const __be32 *regsize, *regspacing, *regshift;
2604         struct device_node *np = dev->dev.of_node;
2605         int ret;
2606         int proplen;
2607
2608         dev_info(&dev->dev, "probing via device tree\n");
2609
2610         match = of_match_device(ipmi_match, &dev->dev);
2611         if (!match)
2612                 return -EINVAL;
2613
2614         ret = of_address_to_resource(np, 0, &resource);
2615         if (ret) {
2616                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2617                 return ret;
2618         }
2619
2620         regsize = of_get_property(np, "reg-size", &proplen);
2621         if (regsize && proplen != 4) {
2622                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2623                 return -EINVAL;
2624         }
2625
2626         regspacing = of_get_property(np, "reg-spacing", &proplen);
2627         if (regspacing && proplen != 4) {
2628                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2629                 return -EINVAL;
2630         }
2631
2632         regshift = of_get_property(np, "reg-shift", &proplen);
2633         if (regshift && proplen != 4) {
2634                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2635                 return -EINVAL;
2636         }
2637
2638         info = smi_info_alloc();
2639
2640         if (!info) {
2641                 dev_err(&dev->dev,
2642                         "could not allocate memory for OF probe\n");
2643                 return -ENOMEM;
2644         }
2645
2646         info->si_type           = (enum si_type) match->data;
2647         info->addr_source       = SI_DEVICETREE;
2648         info->irq_setup         = std_irq_setup;
2649
2650         if (resource.flags & IORESOURCE_IO) {
2651                 info->io_setup          = port_setup;
2652                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2653         } else {
2654                 info->io_setup          = mem_setup;
2655                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2656         }
2657
2658         info->io.addr_data      = resource.start;
2659
2660         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2661         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2662         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2663
2664         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2665         info->dev               = &dev->dev;
2666
2667         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2668                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2669                 info->irq);
2670
2671         dev_set_drvdata(&dev->dev, info);
2672
2673         if (add_smi(info)) {
2674                 kfree(info);
2675                 return -EBUSY;
2676         }
2677 #endif
2678         return 0;
2679 }
2680
2681 static int ipmi_remove(struct platform_device *dev)
2682 {
2683 #ifdef CONFIG_OF
2684         cleanup_one_si(dev_get_drvdata(&dev->dev));
2685 #endif
2686         return 0;
2687 }
2688
2689 static struct of_device_id ipmi_match[] =
2690 {
2691         { .type = "ipmi", .compatible = "ipmi-kcs",
2692           .data = (void *)(unsigned long) SI_KCS },
2693         { .type = "ipmi", .compatible = "ipmi-smic",
2694           .data = (void *)(unsigned long) SI_SMIC },
2695         { .type = "ipmi", .compatible = "ipmi-bt",
2696           .data = (void *)(unsigned long) SI_BT },
2697         {},
2698 };
2699
2700 static struct platform_driver ipmi_driver = {
2701         .driver = {
2702                 .name = DEVICE_NAME,
2703                 .owner = THIS_MODULE,
2704                 .of_match_table = ipmi_match,
2705         },
2706         .probe          = ipmi_probe,
2707         .remove         = ipmi_remove,
2708 };
2709
2710 #ifdef CONFIG_PARISC
2711 static int ipmi_parisc_probe(struct parisc_device *dev)
2712 {
2713         struct smi_info *info;
2714
2715         info = smi_info_alloc();
2716
2717         if (!info) {
2718                 dev_err(&dev->dev,
2719                         "could not allocate memory for PARISC probe\n");
2720                 return -ENOMEM;
2721         }
2722
2723         info->si_type           = SI_KCS;
2724         info->addr_source       = SI_DEVICETREE;
2725         info->io_setup          = mem_setup;
2726         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2727         info->io.addr_data      = dev->hpa.start;
2728         info->io.regsize        = 1;
2729         info->io.regspacing     = 1;
2730         info->io.regshift       = 0;
2731         info->irq               = 0; /* no interrupt */
2732         info->irq_setup         = NULL;
2733         info->dev               = &dev->dev;
2734
2735         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2736
2737         dev_set_drvdata(&dev->dev, info);
2738
2739         if (add_smi(info)) {
2740                 kfree(info);
2741                 return -EBUSY;
2742         }
2743
2744         return 0;
2745 }
2746
2747 static int ipmi_parisc_remove(struct parisc_device *dev)
2748 {
2749         cleanup_one_si(dev_get_drvdata(&dev->dev));
2750         return 0;
2751 }
2752
2753 static struct parisc_device_id ipmi_parisc_tbl[] = {
2754         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2755         { 0, }
2756 };
2757
2758 static struct parisc_driver ipmi_parisc_driver = {
2759         .name =         "ipmi",
2760         .id_table =     ipmi_parisc_tbl,
2761         .probe =        ipmi_parisc_probe,
2762         .remove =       ipmi_parisc_remove,
2763 };
2764 #endif /* CONFIG_PARISC */
2765
2766 static int wait_for_msg_done(struct smi_info *smi_info)
2767 {
2768         enum si_sm_result     smi_result;
2769
2770         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2771         for (;;) {
2772                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2773                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2774                         schedule_timeout_uninterruptible(1);
2775                         smi_result = smi_info->handlers->event(
2776                                 smi_info->si_sm, 100);
2777                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2778                         smi_result = smi_info->handlers->event(
2779                                 smi_info->si_sm, 0);
2780                 } else
2781                         break;
2782         }
2783         if (smi_result == SI_SM_HOSED)
2784                 /*
2785                  * We couldn't get the state machine to run, so whatever's at
2786                  * the port is probably not an IPMI SMI interface.
2787                  */
2788                 return -ENODEV;
2789
2790         return 0;
2791 }
2792
2793 static int try_get_dev_id(struct smi_info *smi_info)
2794 {
2795         unsigned char         msg[2];
2796         unsigned char         *resp;
2797         unsigned long         resp_len;
2798         int                   rv = 0;
2799
2800         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2801         if (!resp)
2802                 return -ENOMEM;
2803
2804         /*
2805          * Do a Get Device ID command, since it comes back with some
2806          * useful info.
2807          */
2808         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2809         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2810         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2811
2812         rv = wait_for_msg_done(smi_info);
2813         if (rv)
2814                 goto out;
2815
2816         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2817                                                   resp, IPMI_MAX_MSG_LENGTH);
2818
2819         /* Check and record info from the get device id, in case we need it. */
2820         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2821
2822  out:
2823         kfree(resp);
2824         return rv;
2825 }
2826
2827 static int try_enable_event_buffer(struct smi_info *smi_info)
2828 {
2829         unsigned char         msg[3];
2830         unsigned char         *resp;
2831         unsigned long         resp_len;
2832         int                   rv = 0;
2833
2834         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2835         if (!resp)
2836                 return -ENOMEM;
2837
2838         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2839         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2840         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2841
2842         rv = wait_for_msg_done(smi_info);
2843         if (rv) {
2844                 printk(KERN_WARNING PFX "Error getting response from get"
2845                        " global enables command, the event buffer is not"
2846                        " enabled.\n");
2847                 goto out;
2848         }
2849
2850         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2851                                                   resp, IPMI_MAX_MSG_LENGTH);
2852
2853         if (resp_len < 4 ||
2854                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2855                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2856                         resp[2] != 0) {
2857                 printk(KERN_WARNING PFX "Invalid return from get global"
2858                        " enables command, cannot enable the event buffer.\n");
2859                 rv = -EINVAL;
2860                 goto out;
2861         }
2862
2863         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2864                 /* buffer is already enabled, nothing to do. */
2865                 goto out;
2866
2867         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2868         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2869         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2870         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2871
2872         rv = wait_for_msg_done(smi_info);
2873         if (rv) {
2874                 printk(KERN_WARNING PFX "Error getting response from set"
2875                        " global, enables command, the event buffer is not"
2876                        " enabled.\n");
2877                 goto out;
2878         }
2879
2880         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2881                                                   resp, IPMI_MAX_MSG_LENGTH);
2882
2883         if (resp_len < 3 ||
2884                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2885                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2886                 printk(KERN_WARNING PFX "Invalid return from get global,"
2887                        "enables command, not enable the event buffer.\n");
2888                 rv = -EINVAL;
2889                 goto out;
2890         }
2891
2892         if (resp[2] != 0)
2893                 /*
2894                  * An error when setting the event buffer bit means
2895                  * that the event buffer is not supported.
2896                  */
2897                 rv = -ENOENT;
2898  out:
2899         kfree(resp);
2900         return rv;
2901 }
2902
2903 static int smi_type_proc_show(struct seq_file *m, void *v)
2904 {
2905         struct smi_info *smi = m->private;
2906
2907         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2908 }
2909
2910 static int smi_type_proc_open(struct inode *inode, struct file *file)
2911 {
2912         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2913 }
2914
2915 static const struct file_operations smi_type_proc_ops = {
2916         .open           = smi_type_proc_open,
2917         .read           = seq_read,
2918         .llseek         = seq_lseek,
2919         .release        = single_release,
2920 };
2921
2922 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2923 {
2924         struct smi_info *smi = m->private;
2925
2926         seq_printf(m, "interrupts_enabled:    %d\n",
2927                        smi->irq && !smi->interrupt_disabled);
2928         seq_printf(m, "short_timeouts:        %u\n",
2929                        smi_get_stat(smi, short_timeouts));
2930         seq_printf(m, "long_timeouts:         %u\n",
2931                        smi_get_stat(smi, long_timeouts));
2932         seq_printf(m, "idles:                 %u\n",
2933                        smi_get_stat(smi, idles));
2934         seq_printf(m, "interrupts:            %u\n",
2935                        smi_get_stat(smi, interrupts));
2936         seq_printf(m, "attentions:            %u\n",
2937                        smi_get_stat(smi, attentions));
2938         seq_printf(m, "flag_fetches:          %u\n",
2939                        smi_get_stat(smi, flag_fetches));
2940         seq_printf(m, "hosed_count:           %u\n",
2941                        smi_get_stat(smi, hosed_count));
2942         seq_printf(m, "complete_transactions: %u\n",
2943                        smi_get_stat(smi, complete_transactions));
2944         seq_printf(m, "events:                %u\n",
2945                        smi_get_stat(smi, events));
2946         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2947                        smi_get_stat(smi, watchdog_pretimeouts));
2948         seq_printf(m, "incoming_messages:     %u\n",
2949                        smi_get_stat(smi, incoming_messages));
2950         return 0;
2951 }
2952
2953 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2954 {
2955         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2956 }
2957
2958 static const struct file_operations smi_si_stats_proc_ops = {
2959         .open           = smi_si_stats_proc_open,
2960         .read           = seq_read,
2961         .llseek         = seq_lseek,
2962         .release        = single_release,
2963 };
2964
2965 static int smi_params_proc_show(struct seq_file *m, void *v)
2966 {
2967         struct smi_info *smi = m->private;
2968
2969         return seq_printf(m,
2970                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2971                        si_to_str[smi->si_type],
2972                        addr_space_to_str[smi->io.addr_type],
2973                        smi->io.addr_data,
2974                        smi->io.regspacing,
2975                        smi->io.regsize,
2976                        smi->io.regshift,
2977                        smi->irq,
2978                        smi->slave_addr);
2979 }
2980
2981 static int smi_params_proc_open(struct inode *inode, struct file *file)
2982 {
2983         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2984 }
2985
2986 static const struct file_operations smi_params_proc_ops = {
2987         .open           = smi_params_proc_open,
2988         .read           = seq_read,
2989         .llseek         = seq_lseek,
2990         .release        = single_release,
2991 };
2992
2993 /*
2994  * oem_data_avail_to_receive_msg_avail
2995  * @info - smi_info structure with msg_flags set
2996  *
2997  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2998  * Returns 1 indicating need to re-run handle_flags().
2999  */
3000 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3001 {
3002         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3003                                RECEIVE_MSG_AVAIL);
3004         return 1;
3005 }
3006
3007 /*
3008  * setup_dell_poweredge_oem_data_handler
3009  * @info - smi_info.device_id must be populated
3010  *
3011  * Systems that match, but have firmware version < 1.40 may assert
3012  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3013  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3014  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3015  * as RECEIVE_MSG_AVAIL instead.
3016  *
3017  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3018  * assert the OEM[012] bits, and if it did, the driver would have to
3019  * change to handle that properly, we don't actually check for the
3020  * firmware version.
3021  * Device ID = 0x20                BMC on PowerEdge 8G servers
3022  * Device Revision = 0x80
3023  * Firmware Revision1 = 0x01       BMC version 1.40
3024  * Firmware Revision2 = 0x40       BCD encoded
3025  * IPMI Version = 0x51             IPMI 1.5
3026  * Manufacturer ID = A2 02 00      Dell IANA
3027  *
3028  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3029  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3030  *
3031  */
3032 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3033 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3034 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3035 #define DELL_IANA_MFR_ID 0x0002a2
3036 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3037 {
3038         struct ipmi_device_id *id = &smi_info->device_id;
3039         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3040                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3041                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3042                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3043                         smi_info->oem_data_avail_handler =
3044                                 oem_data_avail_to_receive_msg_avail;
3045                 } else if (ipmi_version_major(id) < 1 ||
3046                            (ipmi_version_major(id) == 1 &&
3047                             ipmi_version_minor(id) < 5)) {
3048                         smi_info->oem_data_avail_handler =
3049                                 oem_data_avail_to_receive_msg_avail;
3050                 }
3051         }
3052 }
3053
3054 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3055 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3056 {
3057         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3058
3059         /* Make it a response */
3060         msg->rsp[0] = msg->data[0] | 4;
3061         msg->rsp[1] = msg->data[1];
3062         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3063         msg->rsp_size = 3;
3064         smi_info->curr_msg = NULL;
3065         deliver_recv_msg(smi_info, msg);
3066 }
3067
3068 /*
3069  * dell_poweredge_bt_xaction_handler
3070  * @info - smi_info.device_id must be populated
3071  *
3072  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3073  * not respond to a Get SDR command if the length of the data
3074  * requested is exactly 0x3A, which leads to command timeouts and no
3075  * data returned.  This intercepts such commands, and causes userspace
3076  * callers to try again with a different-sized buffer, which succeeds.
3077  */
3078
3079 #define STORAGE_NETFN 0x0A
3080 #define STORAGE_CMD_GET_SDR 0x23
3081 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3082                                              unsigned long unused,
3083                                              void *in)
3084 {
3085         struct smi_info *smi_info = in;
3086         unsigned char *data = smi_info->curr_msg->data;
3087         unsigned int size   = smi_info->curr_msg->data_size;
3088         if (size >= 8 &&
3089             (data[0]>>2) == STORAGE_NETFN &&
3090             data[1] == STORAGE_CMD_GET_SDR &&
3091             data[7] == 0x3A) {
3092                 return_hosed_msg_badsize(smi_info);
3093                 return NOTIFY_STOP;
3094         }
3095         return NOTIFY_DONE;
3096 }
3097
3098 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3099         .notifier_call  = dell_poweredge_bt_xaction_handler,
3100 };
3101
3102 /*
3103  * setup_dell_poweredge_bt_xaction_handler
3104  * @info - smi_info.device_id must be filled in already
3105  *
3106  * Fills in smi_info.device_id.start_transaction_pre_hook
3107  * when we know what function to use there.
3108  */
3109 static void
3110 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3111 {
3112         struct ipmi_device_id *id = &smi_info->device_id;
3113         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3114             smi_info->si_type == SI_BT)
3115                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3116 }
3117
3118 /*
3119  * setup_oem_data_handler
3120  * @info - smi_info.device_id must be filled in already
3121  *
3122  * Fills in smi_info.device_id.oem_data_available_handler
3123  * when we know what function to use there.
3124  */
3125
3126 static void setup_oem_data_handler(struct smi_info *smi_info)
3127 {
3128         setup_dell_poweredge_oem_data_handler(smi_info);
3129 }
3130
3131 static void setup_xaction_handlers(struct smi_info *smi_info)
3132 {
3133         setup_dell_poweredge_bt_xaction_handler(smi_info);
3134 }
3135
3136 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3137 {
3138         if (smi_info->intf) {
3139                 /*
3140                  * The timer and thread are only running if the
3141                  * interface has been started up and registered.
3142                  */
3143                 if (smi_info->thread != NULL)
3144                         kthread_stop(smi_info->thread);
3145                 del_timer_sync(&smi_info->si_timer);
3146         }
3147 }
3148
3149 static struct ipmi_default_vals
3150 {
3151         int type;
3152         int port;
3153 } ipmi_defaults[] =
3154 {
3155         { .type = SI_KCS, .port = 0xca2 },
3156         { .type = SI_SMIC, .port = 0xca9 },
3157         { .type = SI_BT, .port = 0xe4 },
3158         { .port = 0 }
3159 };
3160
3161 static void default_find_bmc(void)
3162 {
3163         struct smi_info *info;
3164         int             i;
3165
3166         for (i = 0; ; i++) {
3167                 if (!ipmi_defaults[i].port)
3168                         break;
3169 #ifdef CONFIG_PPC
3170                 if (check_legacy_ioport(ipmi_defaults[i].port))
3171                         continue;
3172 #endif
3173                 info = smi_info_alloc();
3174                 if (!info)
3175                         return;
3176
3177                 info->addr_source = SI_DEFAULT;
3178
3179                 info->si_type = ipmi_defaults[i].type;
3180                 info->io_setup = port_setup;
3181                 info->io.addr_data = ipmi_defaults[i].port;
3182                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3183
3184                 info->io.addr = NULL;
3185                 info->io.regspacing = DEFAULT_REGSPACING;
3186                 info->io.regsize = DEFAULT_REGSPACING;
3187                 info->io.regshift = 0;
3188
3189                 if (add_smi(info) == 0) {
3190                         if ((try_smi_init(info)) == 0) {
3191                                 /* Found one... */
3192                                 printk(KERN_INFO PFX "Found default %s"
3193                                 " state machine at %s address 0x%lx\n",
3194                                 si_to_str[info->si_type],
3195                                 addr_space_to_str[info->io.addr_type],
3196                                 info->io.addr_data);
3197                         } else
3198                                 cleanup_one_si(info);
3199                 } else {
3200                         kfree(info);
3201                 }
3202         }
3203 }
3204
3205 static int is_new_interface(struct smi_info *info)
3206 {
3207         struct smi_info *e;
3208
3209         list_for_each_entry(e, &smi_infos, link) {
3210                 if (e->io.addr_type != info->io.addr_type)
3211                         continue;
3212                 if (e->io.addr_data == info->io.addr_data)
3213                         return 0;
3214         }
3215
3216         return 1;
3217 }
3218
3219 static int add_smi(struct smi_info *new_smi)
3220 {
3221         int rv = 0;
3222
3223         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3224                         ipmi_addr_src_to_str[new_smi->addr_source],
3225                         si_to_str[new_smi->si_type]);
3226         mutex_lock(&smi_infos_lock);
3227         if (!is_new_interface(new_smi)) {
3228                 printk(KERN_CONT " duplicate interface\n");
3229                 rv = -EBUSY;
3230                 goto out_err;
3231         }
3232
3233         printk(KERN_CONT "\n");
3234
3235         /* So we know not to free it unless we have allocated one. */
3236         new_smi->intf = NULL;
3237         new_smi->si_sm = NULL;
3238         new_smi->handlers = NULL;
3239
3240         list_add_tail(&new_smi->link, &smi_infos);
3241
3242 out_err:
3243         mutex_unlock(&smi_infos_lock);
3244         return rv;
3245 }
3246
3247 static int try_smi_init(struct smi_info *new_smi)
3248 {
3249         int rv = 0;
3250         int i;
3251
3252         printk(KERN_INFO PFX "Trying %s-specified %s state"
3253                " machine at %s address 0x%lx, slave address 0x%x,"
3254                " irq %d\n",
3255                ipmi_addr_src_to_str[new_smi->addr_source],
3256                si_to_str[new_smi->si_type],
3257                addr_space_to_str[new_smi->io.addr_type],
3258                new_smi->io.addr_data,
3259                new_smi->slave_addr, new_smi->irq);
3260
3261         switch (new_smi->si_type) {
3262         case SI_KCS:
3263                 new_smi->handlers = &kcs_smi_handlers;
3264                 break;
3265
3266         case SI_SMIC:
3267                 new_smi->handlers = &smic_smi_handlers;
3268                 break;
3269
3270         case SI_BT:
3271                 new_smi->handlers = &bt_smi_handlers;
3272                 break;
3273
3274         default:
3275                 /* No support for anything else yet. */
3276                 rv = -EIO;
3277                 goto out_err;
3278         }
3279
3280         /* Allocate the state machine's data and initialize it. */
3281         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3282         if (!new_smi->si_sm) {
3283                 printk(KERN_ERR PFX
3284                        "Could not allocate state machine memory\n");
3285                 rv = -ENOMEM;
3286                 goto out_err;
3287         }
3288         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3289                                                         &new_smi->io);
3290
3291         /* Now that we know the I/O size, we can set up the I/O. */
3292         rv = new_smi->io_setup(new_smi);
3293         if (rv) {
3294                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3295                 goto out_err;
3296         }
3297
3298         /* Do low-level detection first. */
3299         if (new_smi->handlers->detect(new_smi->si_sm)) {
3300                 if (new_smi->addr_source)
3301                         printk(KERN_INFO PFX "Interface detection failed\n");
3302                 rv = -ENODEV;
3303                 goto out_err;
3304         }
3305
3306         /*
3307          * Attempt a get device id command.  If it fails, we probably
3308          * don't have a BMC here.
3309          */
3310         rv = try_get_dev_id(new_smi);
3311         if (rv) {
3312                 if (new_smi->addr_source)
3313                         printk(KERN_INFO PFX "There appears to be no BMC"
3314                                " at this location\n");
3315                 goto out_err;
3316         }
3317
3318         setup_oem_data_handler(new_smi);
3319         setup_xaction_handlers(new_smi);
3320
3321         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3322         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3323         new_smi->curr_msg = NULL;
3324         atomic_set(&new_smi->req_events, 0);
3325         new_smi->run_to_completion = 0;
3326         for (i = 0; i < SI_NUM_STATS; i++)
3327                 atomic_set(&new_smi->stats[i], 0);
3328
3329         new_smi->interrupt_disabled = 1;
3330         atomic_set(&new_smi->stop_operation, 0);
3331         new_smi->intf_num = smi_num;
3332         smi_num++;
3333
3334         rv = try_enable_event_buffer(new_smi);
3335         if (rv == 0)
3336                 new_smi->has_event_buffer = 1;
3337
3338         /*
3339          * Start clearing the flags before we enable interrupts or the
3340          * timer to avoid racing with the timer.
3341          */
3342         start_clear_flags(new_smi);
3343         /* IRQ is defined to be set when non-zero. */
3344         if (new_smi->irq)
3345                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3346
3347         if (!new_smi->dev) {
3348                 /*
3349                  * If we don't already have a device from something
3350                  * else (like PCI), then register a new one.
3351                  */
3352                 new_smi->pdev = platform_device_alloc("ipmi_si",
3353                                                       new_smi->intf_num);
3354                 if (!new_smi->pdev) {
3355                         printk(KERN_ERR PFX
3356                                "Unable to allocate platform device\n");
3357                         goto out_err;
3358                 }
3359                 new_smi->dev = &new_smi->pdev->dev;
3360                 new_smi->dev->driver = &ipmi_driver.driver;
3361
3362                 rv = platform_device_add(new_smi->pdev);
3363                 if (rv) {
3364                         printk(KERN_ERR PFX
3365                                "Unable to register system interface device:"
3366                                " %d\n",
3367                                rv);
3368                         goto out_err;
3369                 }
3370                 new_smi->dev_registered = 1;
3371         }
3372
3373         rv = ipmi_register_smi(&handlers,
3374                                new_smi,
3375                                &new_smi->device_id,
3376                                new_smi->dev,
3377                                "bmc",
3378                                new_smi->slave_addr);
3379         if (rv) {
3380                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3381                         rv);
3382                 goto out_err_stop_timer;
3383         }
3384
3385         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3386                                      &smi_type_proc_ops,
3387                                      new_smi);
3388         if (rv) {
3389                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3390                 goto out_err_stop_timer;
3391         }
3392
3393         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3394                                      &smi_si_stats_proc_ops,
3395                                      new_smi);
3396         if (rv) {
3397                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3398                 goto out_err_stop_timer;
3399         }
3400
3401         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3402                                      &smi_params_proc_ops,
3403                                      new_smi);
3404         if (rv) {
3405                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3406                 goto out_err_stop_timer;
3407         }
3408
3409         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3410                  si_to_str[new_smi->si_type]);
3411
3412         return 0;
3413
3414  out_err_stop_timer:
3415         atomic_inc(&new_smi->stop_operation);
3416         wait_for_timer_and_thread(new_smi);
3417
3418  out_err:
3419         new_smi->interrupt_disabled = 1;
3420
3421         if (new_smi->intf) {
3422                 ipmi_unregister_smi(new_smi->intf);
3423                 new_smi->intf = NULL;
3424         }
3425
3426         if (new_smi->irq_cleanup) {
3427                 new_smi->irq_cleanup(new_smi);
3428                 new_smi->irq_cleanup = NULL;
3429         }
3430
3431         /*
3432          * Wait until we know that we are out of any interrupt
3433          * handlers might have been running before we freed the
3434          * interrupt.
3435          */
3436         synchronize_sched();
3437
3438         if (new_smi->si_sm) {
3439                 if (new_smi->handlers)
3440                         new_smi->handlers->cleanup(new_smi->si_sm);
3441                 kfree(new_smi->si_sm);
3442                 new_smi->si_sm = NULL;
3443         }
3444         if (new_smi->addr_source_cleanup) {
3445                 new_smi->addr_source_cleanup(new_smi);
3446                 new_smi->addr_source_cleanup = NULL;
3447         }
3448         if (new_smi->io_cleanup) {
3449                 new_smi->io_cleanup(new_smi);
3450                 new_smi->io_cleanup = NULL;
3451         }
3452
3453         if (new_smi->dev_registered) {
3454                 platform_device_unregister(new_smi->pdev);
3455                 new_smi->dev_registered = 0;
3456         }
3457
3458         return rv;
3459 }
3460
3461 static int init_ipmi_si(void)
3462 {
3463         int  i;
3464         char *str;
3465         int  rv;
3466         struct smi_info *e;
3467         enum ipmi_addr_src type = SI_INVALID;
3468
3469         if (initialized)
3470                 return 0;
3471         initialized = 1;
3472
3473         if (si_tryplatform) {
3474                 rv = platform_driver_register(&ipmi_driver);
3475                 if (rv) {
3476                         printk(KERN_ERR PFX "Unable to register "
3477                                "driver: %d\n", rv);
3478                         return rv;
3479                 }
3480         }
3481
3482         /* Parse out the si_type string into its components. */
3483         str = si_type_str;
3484         if (*str != '\0') {
3485                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3486                         si_type[i] = str;
3487                         str = strchr(str, ',');
3488                         if (str) {
3489                                 *str = '\0';
3490                                 str++;
3491                         } else {
3492                                 break;
3493                         }
3494                 }
3495         }
3496
3497         printk(KERN_INFO "IPMI System Interface driver.\n");
3498
3499         /* If the user gave us a device, they presumably want us to use it */
3500         if (!hardcode_find_bmc())
3501                 return 0;
3502
3503 #ifdef CONFIG_PCI
3504         if (si_trypci) {
3505                 rv = pci_register_driver(&ipmi_pci_driver);
3506                 if (rv)
3507                         printk(KERN_ERR PFX "Unable to register "
3508                                "PCI driver: %d\n", rv);
3509                 else
3510                         pci_registered = 1;
3511         }
3512 #endif
3513
3514 #ifdef CONFIG_ACPI
3515         if (si_tryacpi) {
3516                 pnp_register_driver(&ipmi_pnp_driver);
3517                 pnp_registered = 1;
3518         }
3519 #endif
3520
3521 #ifdef CONFIG_DMI
3522         if (si_trydmi)
3523                 dmi_find_bmc();
3524 #endif
3525
3526 #ifdef CONFIG_ACPI
3527         if (si_tryacpi)
3528                 spmi_find_bmc();
3529 #endif
3530
3531 #ifdef CONFIG_PARISC
3532         register_parisc_driver(&ipmi_parisc_driver);
3533         parisc_registered = 1;
3534         /* poking PC IO addresses will crash machine, don't do it */
3535         si_trydefaults = 0;
3536 #endif
3537
3538         /* We prefer devices with interrupts, but in the case of a machine
3539            with multiple BMCs we assume that there will be several instances
3540            of a given type so if we succeed in registering a type then also
3541            try to register everything else of the same type */
3542
3543         mutex_lock(&smi_infos_lock);
3544         list_for_each_entry(e, &smi_infos, link) {
3545                 /* Try to register a device if it has an IRQ and we either
3546                    haven't successfully registered a device yet or this
3547                    device has the same type as one we successfully registered */
3548                 if (e->irq && (!type || e->addr_source == type)) {
3549                         if (!try_smi_init(e)) {
3550                                 type = e->addr_source;
3551                         }
3552                 }
3553         }
3554
3555         /* type will only have been set if we successfully registered an si */
3556         if (type) {
3557                 mutex_unlock(&smi_infos_lock);
3558                 return 0;
3559         }
3560
3561         /* Fall back to the preferred device */
3562
3563         list_for_each_entry(e, &smi_infos, link) {
3564                 if (!e->irq && (!type || e->addr_source == type)) {
3565                         if (!try_smi_init(e)) {
3566                                 type = e->addr_source;
3567                         }
3568                 }
3569         }
3570         mutex_unlock(&smi_infos_lock);
3571
3572         if (type)
3573                 return 0;
3574
3575         if (si_trydefaults) {
3576                 mutex_lock(&smi_infos_lock);
3577                 if (list_empty(&smi_infos)) {
3578                         /* No BMC was found, try defaults. */
3579                         mutex_unlock(&smi_infos_lock);
3580                         default_find_bmc();
3581                 } else
3582                         mutex_unlock(&smi_infos_lock);
3583         }
3584
3585         mutex_lock(&smi_infos_lock);
3586         if (unload_when_empty && list_empty(&smi_infos)) {
3587                 mutex_unlock(&smi_infos_lock);
3588                 cleanup_ipmi_si();
3589                 printk(KERN_WARNING PFX
3590                        "Unable to find any System Interface(s)\n");
3591                 return -ENODEV;
3592         } else {
3593                 mutex_unlock(&smi_infos_lock);
3594                 return 0;
3595         }
3596 }
3597 module_init(init_ipmi_si);
3598
3599 static void cleanup_one_si(struct smi_info *to_clean)
3600 {
3601         int           rv = 0;
3602         unsigned long flags;
3603
3604         if (!to_clean)
3605                 return;
3606
3607         list_del(&to_clean->link);
3608
3609         /* Tell the driver that we are shutting down. */
3610         atomic_inc(&to_clean->stop_operation);
3611
3612         /*
3613          * Make sure the timer and thread are stopped and will not run
3614          * again.
3615          */
3616         wait_for_timer_and_thread(to_clean);
3617
3618         /*
3619          * Timeouts are stopped, now make sure the interrupts are off
3620          * for the device.  A little tricky with locks to make sure
3621          * there are no races.
3622          */
3623         spin_lock_irqsave(&to_clean->si_lock, flags);
3624         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3625                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3626                 poll(to_clean);
3627                 schedule_timeout_uninterruptible(1);
3628                 spin_lock_irqsave(&to_clean->si_lock, flags);
3629         }
3630         disable_si_irq(to_clean);
3631         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3632         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3633                 poll(to_clean);
3634                 schedule_timeout_uninterruptible(1);
3635         }
3636
3637         /* Clean up interrupts and make sure that everything is done. */
3638         if (to_clean->irq_cleanup)
3639                 to_clean->irq_cleanup(to_clean);
3640         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3641                 poll(to_clean);
3642                 schedule_timeout_uninterruptible(1);
3643         }
3644
3645         if (to_clean->intf)
3646                 rv = ipmi_unregister_smi(to_clean->intf);
3647
3648         if (rv) {
3649                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3650                        rv);
3651         }
3652
3653         if (to_clean->handlers)
3654                 to_clean->handlers->cleanup(to_clean->si_sm);
3655
3656         kfree(to_clean->si_sm);
3657
3658         if (to_clean->addr_source_cleanup)
3659                 to_clean->addr_source_cleanup(to_clean);
3660         if (to_clean->io_cleanup)
3661                 to_clean->io_cleanup(to_clean);
3662
3663         if (to_clean->dev_registered)
3664                 platform_device_unregister(to_clean->pdev);
3665
3666         kfree(to_clean);
3667 }
3668
3669 static void cleanup_ipmi_si(void)
3670 {
3671         struct smi_info *e, *tmp_e;
3672
3673         if (!initialized)
3674                 return;
3675
3676 #ifdef CONFIG_PCI
3677         if (pci_registered)
3678                 pci_unregister_driver(&ipmi_pci_driver);
3679 #endif
3680 #ifdef CONFIG_ACPI
3681         if (pnp_registered)
3682                 pnp_unregister_driver(&ipmi_pnp_driver);
3683 #endif
3684 #ifdef CONFIG_PARISC
3685         if (parisc_registered)
3686                 unregister_parisc_driver(&ipmi_parisc_driver);
3687 #endif
3688
3689         platform_driver_unregister(&ipmi_driver);
3690
3691         mutex_lock(&smi_infos_lock);
3692         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3693                 cleanup_one_si(e);
3694         mutex_unlock(&smi_infos_lock);
3695 }
3696 module_exit(cleanup_ipmi_si);
3697
3698 MODULE_LICENSE("GPL");
3699 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3700 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3701                    " system interfaces.");