]> Pileus Git - ~andy/linux/blob - drivers/char/ipmi/ipmi_si_intf.c
Merge tag 'trace-fixes-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[~andy/linux] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC    10000
86 #define SI_USEC_PER_JIFFY       (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89                                       short timeout */
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_CLEARING_FLAGS_THEN_SET_IRQ,
97         SI_GETTING_MESSAGES,
98         SI_ENABLE_INTERRUPTS1,
99         SI_ENABLE_INTERRUPTS2,
100         SI_DISABLE_INTERRUPTS1,
101         SI_DISABLE_INTERRUPTS2
102         /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG             2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
109
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
116                                         "ACPI", "SMBIOS", "PCI",
117                                         "device-tree", "default" };
118
119 #define DEVICE_NAME "ipmi_si"
120
121 static struct platform_driver ipmi_driver;
122
123 /*
124  * Indexes into stats[] in smi_info below.
125  */
126 enum si_stat_indexes {
127         /*
128          * Number of times the driver requested a timer while an operation
129          * was in progress.
130          */
131         SI_STAT_short_timeouts = 0,
132
133         /*
134          * Number of times the driver requested a timer while nothing was in
135          * progress.
136          */
137         SI_STAT_long_timeouts,
138
139         /* Number of times the interface was idle while being polled. */
140         SI_STAT_idles,
141
142         /* Number of interrupts the driver handled. */
143         SI_STAT_interrupts,
144
145         /* Number of time the driver got an ATTN from the hardware. */
146         SI_STAT_attentions,
147
148         /* Number of times the driver requested flags from the hardware. */
149         SI_STAT_flag_fetches,
150
151         /* Number of times the hardware didn't follow the state machine. */
152         SI_STAT_hosed_count,
153
154         /* Number of completed messages. */
155         SI_STAT_complete_transactions,
156
157         /* Number of IPMI events received from the hardware. */
158         SI_STAT_events,
159
160         /* Number of watchdog pretimeouts. */
161         SI_STAT_watchdog_pretimeouts,
162
163         /* Number of asynchronous messages received. */
164         SI_STAT_incoming_messages,
165
166
167         /* This *must* remain last, add new values above this. */
168         SI_NUM_STATS
169 };
170
171 struct smi_info {
172         int                    intf_num;
173         ipmi_smi_t             intf;
174         struct si_sm_data      *si_sm;
175         struct si_sm_handlers  *handlers;
176         enum si_type           si_type;
177         spinlock_t             si_lock;
178         struct list_head       xmit_msgs;
179         struct list_head       hp_xmit_msgs;
180         struct ipmi_smi_msg    *curr_msg;
181         enum si_intf_state     si_state;
182
183         /*
184          * Used to handle the various types of I/O that can occur with
185          * IPMI
186          */
187         struct si_sm_io io;
188         int (*io_setup)(struct smi_info *info);
189         void (*io_cleanup)(struct smi_info *info);
190         int (*irq_setup)(struct smi_info *info);
191         void (*irq_cleanup)(struct smi_info *info);
192         unsigned int io_size;
193         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
194         void (*addr_source_cleanup)(struct smi_info *info);
195         void *addr_source_data;
196
197         /*
198          * Per-OEM handler, called from handle_flags().  Returns 1
199          * when handle_flags() needs to be re-run or 0 indicating it
200          * set si_state itself.
201          */
202         int (*oem_data_avail_handler)(struct smi_info *smi_info);
203
204         /*
205          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
206          * is set to hold the flags until we are done handling everything
207          * from the flags.
208          */
209 #define RECEIVE_MSG_AVAIL       0x01
210 #define EVENT_MSG_BUFFER_FULL   0x02
211 #define WDT_PRE_TIMEOUT_INT     0x08
212 #define OEM0_DATA_AVAIL     0x20
213 #define OEM1_DATA_AVAIL     0x40
214 #define OEM2_DATA_AVAIL     0x80
215 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
216                              OEM1_DATA_AVAIL | \
217                              OEM2_DATA_AVAIL)
218         unsigned char       msg_flags;
219
220         /* Does the BMC have an event buffer? */
221         char                has_event_buffer;
222
223         /*
224          * If set to true, this will request events the next time the
225          * state machine is idle.
226          */
227         atomic_t            req_events;
228
229         /*
230          * If true, run the state machine to completion on every send
231          * call.  Generally used after a panic to make sure stuff goes
232          * out.
233          */
234         int                 run_to_completion;
235
236         /* The I/O port of an SI interface. */
237         int                 port;
238
239         /*
240          * The space between start addresses of the two ports.  For
241          * instance, if the first port is 0xca2 and the spacing is 4, then
242          * the second port is 0xca6.
243          */
244         unsigned int        spacing;
245
246         /* zero if no irq; */
247         int                 irq;
248
249         /* The timer for this si. */
250         struct timer_list   si_timer;
251
252         /* The time (in jiffies) the last timeout occurred at. */
253         unsigned long       last_timeout_jiffies;
254
255         /* Used to gracefully stop the timer without race conditions. */
256         atomic_t            stop_operation;
257
258         /*
259          * The driver will disable interrupts when it gets into a
260          * situation where it cannot handle messages due to lack of
261          * memory.  Once that situation clears up, it will re-enable
262          * interrupts.
263          */
264         int interrupt_disabled;
265
266         /* From the get device id response... */
267         struct ipmi_device_id device_id;
268
269         /* Driver model stuff. */
270         struct device *dev;
271         struct platform_device *pdev;
272
273         /*
274          * True if we allocated the device, false if it came from
275          * someplace else (like PCI).
276          */
277         int dev_registered;
278
279         /* Slave address, could be reported from DMI. */
280         unsigned char slave_addr;
281
282         /* Counters and things for the proc filesystem. */
283         atomic_t stats[SI_NUM_STATS];
284
285         struct task_struct *thread;
286
287         struct list_head link;
288         union ipmi_smi_info_union addr_info;
289 };
290
291 #define smi_inc_stat(smi, stat) \
292         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
293 #define smi_get_stat(smi, stat) \
294         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
295
296 #define SI_MAX_PARMS 4
297
298 static int force_kipmid[SI_MAX_PARMS];
299 static int num_force_kipmid;
300 #ifdef CONFIG_PCI
301 static int pci_registered;
302 #endif
303 #ifdef CONFIG_ACPI
304 static int pnp_registered;
305 #endif
306 #ifdef CONFIG_PARISC
307 static int parisc_registered;
308 #endif
309
310 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
311 static int num_max_busy_us;
312
313 static int unload_when_empty = 1;
314
315 static int add_smi(struct smi_info *smi);
316 static int try_smi_init(struct smi_info *smi);
317 static void cleanup_one_si(struct smi_info *to_clean);
318 static void cleanup_ipmi_si(void);
319
320 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
321 static int register_xaction_notifier(struct notifier_block *nb)
322 {
323         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
324 }
325
326 static void deliver_recv_msg(struct smi_info *smi_info,
327                              struct ipmi_smi_msg *msg)
328 {
329         /* Deliver the message to the upper layer. */
330         ipmi_smi_msg_received(smi_info->intf, msg);
331 }
332
333 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
334 {
335         struct ipmi_smi_msg *msg = smi_info->curr_msg;
336
337         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
338                 cCode = IPMI_ERR_UNSPECIFIED;
339         /* else use it as is */
340
341         /* Make it a response */
342         msg->rsp[0] = msg->data[0] | 4;
343         msg->rsp[1] = msg->data[1];
344         msg->rsp[2] = cCode;
345         msg->rsp_size = 3;
346
347         smi_info->curr_msg = NULL;
348         deliver_recv_msg(smi_info, msg);
349 }
350
351 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
352 {
353         int              rv;
354         struct list_head *entry = NULL;
355 #ifdef DEBUG_TIMING
356         struct timeval t;
357 #endif
358
359         /* Pick the high priority queue first. */
360         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
361                 entry = smi_info->hp_xmit_msgs.next;
362         } else if (!list_empty(&(smi_info->xmit_msgs))) {
363                 entry = smi_info->xmit_msgs.next;
364         }
365
366         if (!entry) {
367                 smi_info->curr_msg = NULL;
368                 rv = SI_SM_IDLE;
369         } else {
370                 int err;
371
372                 list_del(entry);
373                 smi_info->curr_msg = list_entry(entry,
374                                                 struct ipmi_smi_msg,
375                                                 link);
376 #ifdef DEBUG_TIMING
377                 do_gettimeofday(&t);
378                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
379 #endif
380                 err = atomic_notifier_call_chain(&xaction_notifier_list,
381                                 0, smi_info);
382                 if (err & NOTIFY_STOP_MASK) {
383                         rv = SI_SM_CALL_WITHOUT_DELAY;
384                         goto out;
385                 }
386                 err = smi_info->handlers->start_transaction(
387                         smi_info->si_sm,
388                         smi_info->curr_msg->data,
389                         smi_info->curr_msg->data_size);
390                 if (err)
391                         return_hosed_msg(smi_info, err);
392
393                 rv = SI_SM_CALL_WITHOUT_DELAY;
394         }
395  out:
396         return rv;
397 }
398
399 static void start_enable_irq(struct smi_info *smi_info)
400 {
401         unsigned char msg[2];
402
403         /*
404          * If we are enabling interrupts, we have to tell the
405          * BMC to use them.
406          */
407         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
408         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
409
410         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
411         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
412 }
413
414 static void start_disable_irq(struct smi_info *smi_info)
415 {
416         unsigned char msg[2];
417
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
420
421         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
423 }
424
425 static void start_clear_flags(struct smi_info *smi_info)
426 {
427         unsigned char msg[3];
428
429         /* Make sure the watchdog pre-timeout flag is not set at startup. */
430         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
432         msg[2] = WDT_PRE_TIMEOUT_INT;
433
434         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
435         smi_info->si_state = SI_CLEARING_FLAGS;
436 }
437
438 /*
439  * When we have a situtaion where we run out of memory and cannot
440  * allocate messages, we just leave them in the BMC and run the system
441  * polled until we can allocate some memory.  Once we have some
442  * memory, we will re-enable the interrupt.
443  */
444 static inline void disable_si_irq(struct smi_info *smi_info)
445 {
446         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
447                 start_disable_irq(smi_info);
448                 smi_info->interrupt_disabled = 1;
449                 if (!atomic_read(&smi_info->stop_operation))
450                         mod_timer(&smi_info->si_timer,
451                                   jiffies + SI_TIMEOUT_JIFFIES);
452         }
453 }
454
455 static inline void enable_si_irq(struct smi_info *smi_info)
456 {
457         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
458                 start_enable_irq(smi_info);
459                 smi_info->interrupt_disabled = 0;
460         }
461 }
462
463 static void handle_flags(struct smi_info *smi_info)
464 {
465  retry:
466         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
467                 /* Watchdog pre-timeout */
468                 smi_inc_stat(smi_info, watchdog_pretimeouts);
469
470                 start_clear_flags(smi_info);
471                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
472                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
473         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
474                 /* Messages available. */
475                 smi_info->curr_msg = ipmi_alloc_smi_msg();
476                 if (!smi_info->curr_msg) {
477                         disable_si_irq(smi_info);
478                         smi_info->si_state = SI_NORMAL;
479                         return;
480                 }
481                 enable_si_irq(smi_info);
482
483                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
484                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
485                 smi_info->curr_msg->data_size = 2;
486
487                 smi_info->handlers->start_transaction(
488                         smi_info->si_sm,
489                         smi_info->curr_msg->data,
490                         smi_info->curr_msg->data_size);
491                 smi_info->si_state = SI_GETTING_MESSAGES;
492         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
493                 /* Events available. */
494                 smi_info->curr_msg = ipmi_alloc_smi_msg();
495                 if (!smi_info->curr_msg) {
496                         disable_si_irq(smi_info);
497                         smi_info->si_state = SI_NORMAL;
498                         return;
499                 }
500                 enable_si_irq(smi_info);
501
502                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
503                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
504                 smi_info->curr_msg->data_size = 2;
505
506                 smi_info->handlers->start_transaction(
507                         smi_info->si_sm,
508                         smi_info->curr_msg->data,
509                         smi_info->curr_msg->data_size);
510                 smi_info->si_state = SI_GETTING_EVENTS;
511         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
512                    smi_info->oem_data_avail_handler) {
513                 if (smi_info->oem_data_avail_handler(smi_info))
514                         goto retry;
515         } else
516                 smi_info->si_state = SI_NORMAL;
517 }
518
519 static void handle_transaction_done(struct smi_info *smi_info)
520 {
521         struct ipmi_smi_msg *msg;
522 #ifdef DEBUG_TIMING
523         struct timeval t;
524
525         do_gettimeofday(&t);
526         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
527 #endif
528         switch (smi_info->si_state) {
529         case SI_NORMAL:
530                 if (!smi_info->curr_msg)
531                         break;
532
533                 smi_info->curr_msg->rsp_size
534                         = smi_info->handlers->get_result(
535                                 smi_info->si_sm,
536                                 smi_info->curr_msg->rsp,
537                                 IPMI_MAX_MSG_LENGTH);
538
539                 /*
540                  * Do this here becase deliver_recv_msg() releases the
541                  * lock, and a new message can be put in during the
542                  * time the lock is released.
543                  */
544                 msg = smi_info->curr_msg;
545                 smi_info->curr_msg = NULL;
546                 deliver_recv_msg(smi_info, msg);
547                 break;
548
549         case SI_GETTING_FLAGS:
550         {
551                 unsigned char msg[4];
552                 unsigned int  len;
553
554                 /* We got the flags from the SMI, now handle them. */
555                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
556                 if (msg[2] != 0) {
557                         /* Error fetching flags, just give up for now. */
558                         smi_info->si_state = SI_NORMAL;
559                 } else if (len < 4) {
560                         /*
561                          * Hmm, no flags.  That's technically illegal, but
562                          * don't use uninitialized data.
563                          */
564                         smi_info->si_state = SI_NORMAL;
565                 } else {
566                         smi_info->msg_flags = msg[3];
567                         handle_flags(smi_info);
568                 }
569                 break;
570         }
571
572         case SI_CLEARING_FLAGS:
573         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
574         {
575                 unsigned char msg[3];
576
577                 /* We cleared the flags. */
578                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
579                 if (msg[2] != 0) {
580                         /* Error clearing flags */
581                         dev_warn(smi_info->dev,
582                                  "Error clearing flags: %2.2x\n", msg[2]);
583                 }
584                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
585                         start_enable_irq(smi_info);
586                 else
587                         smi_info->si_state = SI_NORMAL;
588                 break;
589         }
590
591         case SI_GETTING_EVENTS:
592         {
593                 smi_info->curr_msg->rsp_size
594                         = smi_info->handlers->get_result(
595                                 smi_info->si_sm,
596                                 smi_info->curr_msg->rsp,
597                                 IPMI_MAX_MSG_LENGTH);
598
599                 /*
600                  * Do this here becase deliver_recv_msg() releases the
601                  * lock, and a new message can be put in during the
602                  * time the lock is released.
603                  */
604                 msg = smi_info->curr_msg;
605                 smi_info->curr_msg = NULL;
606                 if (msg->rsp[2] != 0) {
607                         /* Error getting event, probably done. */
608                         msg->done(msg);
609
610                         /* Take off the event flag. */
611                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
612                         handle_flags(smi_info);
613                 } else {
614                         smi_inc_stat(smi_info, events);
615
616                         /*
617                          * Do this before we deliver the message
618                          * because delivering the message releases the
619                          * lock and something else can mess with the
620                          * state.
621                          */
622                         handle_flags(smi_info);
623
624                         deliver_recv_msg(smi_info, msg);
625                 }
626                 break;
627         }
628
629         case SI_GETTING_MESSAGES:
630         {
631                 smi_info->curr_msg->rsp_size
632                         = smi_info->handlers->get_result(
633                                 smi_info->si_sm,
634                                 smi_info->curr_msg->rsp,
635                                 IPMI_MAX_MSG_LENGTH);
636
637                 /*
638                  * Do this here becase deliver_recv_msg() releases the
639                  * lock, and a new message can be put in during the
640                  * time the lock is released.
641                  */
642                 msg = smi_info->curr_msg;
643                 smi_info->curr_msg = NULL;
644                 if (msg->rsp[2] != 0) {
645                         /* Error getting event, probably done. */
646                         msg->done(msg);
647
648                         /* Take off the msg flag. */
649                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
650                         handle_flags(smi_info);
651                 } else {
652                         smi_inc_stat(smi_info, incoming_messages);
653
654                         /*
655                          * Do this before we deliver the message
656                          * because delivering the message releases the
657                          * lock and something else can mess with the
658                          * state.
659                          */
660                         handle_flags(smi_info);
661
662                         deliver_recv_msg(smi_info, msg);
663                 }
664                 break;
665         }
666
667         case SI_ENABLE_INTERRUPTS1:
668         {
669                 unsigned char msg[4];
670
671                 /* We got the flags from the SMI, now handle them. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
673                 if (msg[2] != 0) {
674                         dev_warn(smi_info->dev,
675                                  "Couldn't get irq info: %x.\n", msg[2]);
676                         dev_warn(smi_info->dev,
677                                  "Maybe ok, but ipmi might run very slowly.\n");
678                         smi_info->si_state = SI_NORMAL;
679                 } else {
680                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
681                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
682                         msg[2] = (msg[3] |
683                                   IPMI_BMC_RCV_MSG_INTR |
684                                   IPMI_BMC_EVT_MSG_INTR);
685                         smi_info->handlers->start_transaction(
686                                 smi_info->si_sm, msg, 3);
687                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
688                 }
689                 break;
690         }
691
692         case SI_ENABLE_INTERRUPTS2:
693         {
694                 unsigned char msg[4];
695
696                 /* We got the flags from the SMI, now handle them. */
697                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698                 if (msg[2] != 0) {
699                         dev_warn(smi_info->dev,
700                                  "Couldn't set irq info: %x.\n", msg[2]);
701                         dev_warn(smi_info->dev,
702                                  "Maybe ok, but ipmi might run very slowly.\n");
703                 } else
704                         smi_info->interrupt_disabled = 0;
705                 smi_info->si_state = SI_NORMAL;
706                 break;
707         }
708
709         case SI_DISABLE_INTERRUPTS1:
710         {
711                 unsigned char msg[4];
712
713                 /* We got the flags from the SMI, now handle them. */
714                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
715                 if (msg[2] != 0) {
716                         dev_warn(smi_info->dev, "Could not disable interrupts"
717                                  ", failed get.\n");
718                         smi_info->si_state = SI_NORMAL;
719                 } else {
720                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
721                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
722                         msg[2] = (msg[3] &
723                                   ~(IPMI_BMC_RCV_MSG_INTR |
724                                     IPMI_BMC_EVT_MSG_INTR));
725                         smi_info->handlers->start_transaction(
726                                 smi_info->si_sm, msg, 3);
727                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
728                 }
729                 break;
730         }
731
732         case SI_DISABLE_INTERRUPTS2:
733         {
734                 unsigned char msg[4];
735
736                 /* We got the flags from the SMI, now handle them. */
737                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
738                 if (msg[2] != 0) {
739                         dev_warn(smi_info->dev, "Could not disable interrupts"
740                                  ", failed set.\n");
741                 }
742                 smi_info->si_state = SI_NORMAL;
743                 break;
744         }
745         }
746 }
747
748 /*
749  * Called on timeouts and events.  Timeouts should pass the elapsed
750  * time, interrupts should pass in zero.  Must be called with
751  * si_lock held and interrupts disabled.
752  */
753 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
754                                            int time)
755 {
756         enum si_sm_result si_sm_result;
757
758  restart:
759         /*
760          * There used to be a loop here that waited a little while
761          * (around 25us) before giving up.  That turned out to be
762          * pointless, the minimum delays I was seeing were in the 300us
763          * range, which is far too long to wait in an interrupt.  So
764          * we just run until the state machine tells us something
765          * happened or it needs a delay.
766          */
767         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
768         time = 0;
769         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
770                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771
772         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
773                 smi_inc_stat(smi_info, complete_transactions);
774
775                 handle_transaction_done(smi_info);
776                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
777         } else if (si_sm_result == SI_SM_HOSED) {
778                 smi_inc_stat(smi_info, hosed_count);
779
780                 /*
781                  * Do the before return_hosed_msg, because that
782                  * releases the lock.
783                  */
784                 smi_info->si_state = SI_NORMAL;
785                 if (smi_info->curr_msg != NULL) {
786                         /*
787                          * If we were handling a user message, format
788                          * a response to send to the upper layer to
789                          * tell it about the error.
790                          */
791                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
792                 }
793                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
794         }
795
796         /*
797          * We prefer handling attn over new messages.  But don't do
798          * this if there is not yet an upper layer to handle anything.
799          */
800         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
801                 unsigned char msg[2];
802
803                 smi_inc_stat(smi_info, attentions);
804
805                 /*
806                  * Got a attn, send down a get message flags to see
807                  * what's causing it.  It would be better to handle
808                  * this in the upper layer, but due to the way
809                  * interrupts work with the SMI, that's not really
810                  * possible.
811                  */
812                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
813                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
814
815                 smi_info->handlers->start_transaction(
816                         smi_info->si_sm, msg, 2);
817                 smi_info->si_state = SI_GETTING_FLAGS;
818                 goto restart;
819         }
820
821         /* If we are currently idle, try to start the next message. */
822         if (si_sm_result == SI_SM_IDLE) {
823                 smi_inc_stat(smi_info, idles);
824
825                 si_sm_result = start_next_msg(smi_info);
826                 if (si_sm_result != SI_SM_IDLE)
827                         goto restart;
828         }
829
830         if ((si_sm_result == SI_SM_IDLE)
831             && (atomic_read(&smi_info->req_events))) {
832                 /*
833                  * We are idle and the upper layer requested that I fetch
834                  * events, so do so.
835                  */
836                 atomic_set(&smi_info->req_events, 0);
837
838                 smi_info->curr_msg = ipmi_alloc_smi_msg();
839                 if (!smi_info->curr_msg)
840                         goto out;
841
842                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
843                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
844                 smi_info->curr_msg->data_size = 2;
845
846                 smi_info->handlers->start_transaction(
847                         smi_info->si_sm,
848                         smi_info->curr_msg->data,
849                         smi_info->curr_msg->data_size);
850                 smi_info->si_state = SI_GETTING_EVENTS;
851                 goto restart;
852         }
853  out:
854         return si_sm_result;
855 }
856
857 static void sender(void                *send_info,
858                    struct ipmi_smi_msg *msg,
859                    int                 priority)
860 {
861         struct smi_info   *smi_info = send_info;
862         enum si_sm_result result;
863         unsigned long     flags;
864 #ifdef DEBUG_TIMING
865         struct timeval    t;
866 #endif
867
868         if (atomic_read(&smi_info->stop_operation)) {
869                 msg->rsp[0] = msg->data[0] | 4;
870                 msg->rsp[1] = msg->data[1];
871                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
872                 msg->rsp_size = 3;
873                 deliver_recv_msg(smi_info, msg);
874                 return;
875         }
876
877 #ifdef DEBUG_TIMING
878         do_gettimeofday(&t);
879         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
880 #endif
881
882         if (smi_info->run_to_completion) {
883                 /*
884                  * If we are running to completion, then throw it in
885                  * the list and run transactions until everything is
886                  * clear.  Priority doesn't matter here.
887                  */
888
889                 /*
890                  * Run to completion means we are single-threaded, no
891                  * need for locks.
892                  */
893                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
894
895                 result = smi_event_handler(smi_info, 0);
896                 while (result != SI_SM_IDLE) {
897                         udelay(SI_SHORT_TIMEOUT_USEC);
898                         result = smi_event_handler(smi_info,
899                                                    SI_SHORT_TIMEOUT_USEC);
900                 }
901                 return;
902         }
903
904         spin_lock_irqsave(&smi_info->si_lock, flags);
905         if (priority > 0)
906                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
907         else
908                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
909
910         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
911                 /*
912                  * last_timeout_jiffies is updated here to avoid
913                  * smi_timeout() handler passing very large time_diff
914                  * value to smi_event_handler() that causes
915                  * the send command to abort.
916                  */
917                 smi_info->last_timeout_jiffies = jiffies;
918
919                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
920
921                 if (smi_info->thread)
922                         wake_up_process(smi_info->thread);
923
924                 start_next_msg(smi_info);
925                 smi_event_handler(smi_info, 0);
926         }
927         spin_unlock_irqrestore(&smi_info->si_lock, flags);
928 }
929
930 static void set_run_to_completion(void *send_info, int i_run_to_completion)
931 {
932         struct smi_info   *smi_info = send_info;
933         enum si_sm_result result;
934
935         smi_info->run_to_completion = i_run_to_completion;
936         if (i_run_to_completion) {
937                 result = smi_event_handler(smi_info, 0);
938                 while (result != SI_SM_IDLE) {
939                         udelay(SI_SHORT_TIMEOUT_USEC);
940                         result = smi_event_handler(smi_info,
941                                                    SI_SHORT_TIMEOUT_USEC);
942                 }
943         }
944 }
945
946 /*
947  * Use -1 in the nsec value of the busy waiting timespec to tell that
948  * we are spinning in kipmid looking for something and not delaying
949  * between checks
950  */
951 static inline void ipmi_si_set_not_busy(struct timespec *ts)
952 {
953         ts->tv_nsec = -1;
954 }
955 static inline int ipmi_si_is_busy(struct timespec *ts)
956 {
957         return ts->tv_nsec != -1;
958 }
959
960 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
961                                  const struct smi_info *smi_info,
962                                  struct timespec *busy_until)
963 {
964         unsigned int max_busy_us = 0;
965
966         if (smi_info->intf_num < num_max_busy_us)
967                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
968         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
969                 ipmi_si_set_not_busy(busy_until);
970         else if (!ipmi_si_is_busy(busy_until)) {
971                 getnstimeofday(busy_until);
972                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
973         } else {
974                 struct timespec now;
975                 getnstimeofday(&now);
976                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
977                         ipmi_si_set_not_busy(busy_until);
978                         return 0;
979                 }
980         }
981         return 1;
982 }
983
984
985 /*
986  * A busy-waiting loop for speeding up IPMI operation.
987  *
988  * Lousy hardware makes this hard.  This is only enabled for systems
989  * that are not BT and do not have interrupts.  It starts spinning
990  * when an operation is complete or until max_busy tells it to stop
991  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
992  * Documentation/IPMI.txt for details.
993  */
994 static int ipmi_thread(void *data)
995 {
996         struct smi_info *smi_info = data;
997         unsigned long flags;
998         enum si_sm_result smi_result;
999         struct timespec busy_until;
1000
1001         ipmi_si_set_not_busy(&busy_until);
1002         set_user_nice(current, 19);
1003         while (!kthread_should_stop()) {
1004                 int busy_wait;
1005
1006                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1007                 smi_result = smi_event_handler(smi_info, 0);
1008                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1009                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1010                                                   &busy_until);
1011                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1012                         ; /* do nothing */
1013                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1014                         schedule();
1015                 else if (smi_result == SI_SM_IDLE)
1016                         schedule_timeout_interruptible(100);
1017                 else
1018                         schedule_timeout_interruptible(1);
1019         }
1020         return 0;
1021 }
1022
1023
1024 static void poll(void *send_info)
1025 {
1026         struct smi_info *smi_info = send_info;
1027         unsigned long flags = 0;
1028         int run_to_completion = smi_info->run_to_completion;
1029
1030         /*
1031          * Make sure there is some delay in the poll loop so we can
1032          * drive time forward and timeout things.
1033          */
1034         udelay(10);
1035         if (!run_to_completion)
1036                 spin_lock_irqsave(&smi_info->si_lock, flags);
1037         smi_event_handler(smi_info, 10);
1038         if (!run_to_completion)
1039                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1040 }
1041
1042 static void request_events(void *send_info)
1043 {
1044         struct smi_info *smi_info = send_info;
1045
1046         if (atomic_read(&smi_info->stop_operation) ||
1047                                 !smi_info->has_event_buffer)
1048                 return;
1049
1050         atomic_set(&smi_info->req_events, 1);
1051 }
1052
1053 static int initialized;
1054
1055 static void smi_timeout(unsigned long data)
1056 {
1057         struct smi_info   *smi_info = (struct smi_info *) data;
1058         enum si_sm_result smi_result;
1059         unsigned long     flags;
1060         unsigned long     jiffies_now;
1061         long              time_diff;
1062         long              timeout;
1063 #ifdef DEBUG_TIMING
1064         struct timeval    t;
1065 #endif
1066
1067         spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 #ifdef DEBUG_TIMING
1069         do_gettimeofday(&t);
1070         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1071 #endif
1072         jiffies_now = jiffies;
1073         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1074                      * SI_USEC_PER_JIFFY);
1075         smi_result = smi_event_handler(smi_info, time_diff);
1076
1077         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1078
1079         smi_info->last_timeout_jiffies = jiffies_now;
1080
1081         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1082                 /* Running with interrupts, only do long timeouts. */
1083                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 goto do_mod_timer;
1086         }
1087
1088         /*
1089          * If the state machine asks for a short delay, then shorten
1090          * the timer timeout.
1091          */
1092         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1093                 smi_inc_stat(smi_info, short_timeouts);
1094                 timeout = jiffies + 1;
1095         } else {
1096                 smi_inc_stat(smi_info, long_timeouts);
1097                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1098         }
1099
1100  do_mod_timer:
1101         if (smi_result != SI_SM_IDLE)
1102                 mod_timer(&(smi_info->si_timer), timeout);
1103 }
1104
1105 static irqreturn_t si_irq_handler(int irq, void *data)
1106 {
1107         struct smi_info *smi_info = data;
1108         unsigned long   flags;
1109 #ifdef DEBUG_TIMING
1110         struct timeval  t;
1111 #endif
1112
1113         spin_lock_irqsave(&(smi_info->si_lock), flags);
1114
1115         smi_inc_stat(smi_info, interrupts);
1116
1117 #ifdef DEBUG_TIMING
1118         do_gettimeofday(&t);
1119         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1120 #endif
1121         smi_event_handler(smi_info, 0);
1122         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1123         return IRQ_HANDLED;
1124 }
1125
1126 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1127 {
1128         struct smi_info *smi_info = data;
1129         /* We need to clear the IRQ flag for the BT interface. */
1130         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1131                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1133         return si_irq_handler(irq, data);
1134 }
1135
1136 static int smi_start_processing(void       *send_info,
1137                                 ipmi_smi_t intf)
1138 {
1139         struct smi_info *new_smi = send_info;
1140         int             enable = 0;
1141
1142         new_smi->intf = intf;
1143
1144         /* Try to claim any interrupts. */
1145         if (new_smi->irq_setup)
1146                 new_smi->irq_setup(new_smi);
1147
1148         /* Set up the timer that drives the interface. */
1149         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1150         new_smi->last_timeout_jiffies = jiffies;
1151         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1152
1153         /*
1154          * Check if the user forcefully enabled the daemon.
1155          */
1156         if (new_smi->intf_num < num_force_kipmid)
1157                 enable = force_kipmid[new_smi->intf_num];
1158         /*
1159          * The BT interface is efficient enough to not need a thread,
1160          * and there is no need for a thread if we have interrupts.
1161          */
1162         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1163                 enable = 1;
1164
1165         if (enable) {
1166                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1167                                               "kipmi%d", new_smi->intf_num);
1168                 if (IS_ERR(new_smi->thread)) {
1169                         dev_notice(new_smi->dev, "Could not start"
1170                                    " kernel thread due to error %ld, only using"
1171                                    " timers to drive the interface\n",
1172                                    PTR_ERR(new_smi->thread));
1173                         new_smi->thread = NULL;
1174                 }
1175         }
1176
1177         return 0;
1178 }
1179
1180 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1181 {
1182         struct smi_info *smi = send_info;
1183
1184         data->addr_src = smi->addr_source;
1185         data->dev = smi->dev;
1186         data->addr_info = smi->addr_info;
1187         get_device(smi->dev);
1188
1189         return 0;
1190 }
1191
1192 static void set_maintenance_mode(void *send_info, int enable)
1193 {
1194         struct smi_info   *smi_info = send_info;
1195
1196         if (!enable)
1197                 atomic_set(&smi_info->req_events, 0);
1198 }
1199
1200 static struct ipmi_smi_handlers handlers = {
1201         .owner                  = THIS_MODULE,
1202         .start_processing       = smi_start_processing,
1203         .get_smi_info           = get_smi_info,
1204         .sender                 = sender,
1205         .request_events         = request_events,
1206         .set_maintenance_mode   = set_maintenance_mode,
1207         .set_run_to_completion  = set_run_to_completion,
1208         .poll                   = poll,
1209 };
1210
1211 /*
1212  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1213  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1214  */
1215
1216 static LIST_HEAD(smi_infos);
1217 static DEFINE_MUTEX(smi_infos_lock);
1218 static int smi_num; /* Used to sequence the SMIs */
1219
1220 #define DEFAULT_REGSPACING      1
1221 #define DEFAULT_REGSIZE         1
1222
1223 #ifdef CONFIG_ACPI
1224 static bool          si_tryacpi = 1;
1225 #endif
1226 #ifdef CONFIG_DMI
1227 static bool          si_trydmi = 1;
1228 #endif
1229 static bool          si_tryplatform = 1;
1230 #ifdef CONFIG_PCI
1231 static bool          si_trypci = 1;
1232 #endif
1233 static bool          si_trydefaults = 1;
1234 static char          *si_type[SI_MAX_PARMS];
1235 #define MAX_SI_TYPE_STR 30
1236 static char          si_type_str[MAX_SI_TYPE_STR];
1237 static unsigned long addrs[SI_MAX_PARMS];
1238 static unsigned int num_addrs;
1239 static unsigned int  ports[SI_MAX_PARMS];
1240 static unsigned int num_ports;
1241 static int           irqs[SI_MAX_PARMS];
1242 static unsigned int num_irqs;
1243 static int           regspacings[SI_MAX_PARMS];
1244 static unsigned int num_regspacings;
1245 static int           regsizes[SI_MAX_PARMS];
1246 static unsigned int num_regsizes;
1247 static int           regshifts[SI_MAX_PARMS];
1248 static unsigned int num_regshifts;
1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs;
1251
1252 #define IPMI_IO_ADDR_SPACE  0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str[] = { "i/o", "mem" };
1255
1256 static int hotmod_handler(const char *val, struct kernel_param *kp);
1257
1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1260                  " Documentation/IPMI.txt in the kernel sources for the"
1261                  " gory details.");
1262
1263 #ifdef CONFIG_ACPI
1264 module_param_named(tryacpi, si_tryacpi, bool, 0);
1265 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1266                  " default scan of the interfaces identified via ACPI");
1267 #endif
1268 #ifdef CONFIG_DMI
1269 module_param_named(trydmi, si_trydmi, bool, 0);
1270 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1271                  " default scan of the interfaces identified via DMI");
1272 #endif
1273 module_param_named(tryplatform, si_tryplatform, bool, 0);
1274 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1275                  " default scan of the interfaces identified via platform"
1276                  " interfaces like openfirmware");
1277 #ifdef CONFIG_PCI
1278 module_param_named(trypci, si_trypci, bool, 0);
1279 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1280                  " default scan of the interfaces identified via pci");
1281 #endif
1282 module_param_named(trydefaults, si_trydefaults, bool, 0);
1283 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1284                  " default scan of the KCS and SMIC interface at the standard"
1285                  " address");
1286 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1287 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1288                  " interface separated by commas.  The types are 'kcs',"
1289                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1290                  " the first interface to kcs and the second to bt");
1291 module_param_array(addrs, ulong, &num_addrs, 0);
1292 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1293                  " addresses separated by commas.  Only use if an interface"
1294                  " is in memory.  Otherwise, set it to zero or leave"
1295                  " it blank.");
1296 module_param_array(ports, uint, &num_ports, 0);
1297 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1298                  " addresses separated by commas.  Only use if an interface"
1299                  " is a port.  Otherwise, set it to zero or leave"
1300                  " it blank.");
1301 module_param_array(irqs, int, &num_irqs, 0);
1302 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1303                  " addresses separated by commas.  Only use if an interface"
1304                  " has an interrupt.  Otherwise, set it to zero or leave"
1305                  " it blank.");
1306 module_param_array(regspacings, int, &num_regspacings, 0);
1307 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1308                  " and each successive register used by the interface.  For"
1309                  " instance, if the start address is 0xca2 and the spacing"
1310                  " is 2, then the second address is at 0xca4.  Defaults"
1311                  " to 1.");
1312 module_param_array(regsizes, int, &num_regsizes, 0);
1313 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1314                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1315                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1316                  " the 8-bit IPMI register has to be read from a larger"
1317                  " register.");
1318 module_param_array(regshifts, int, &num_regshifts, 0);
1319 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1320                  " IPMI register, in bits.  For instance, if the data"
1321                  " is read from a 32-bit word and the IPMI data is in"
1322                  " bit 8-15, then the shift would be 8");
1323 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1324 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1325                  " the controller.  Normally this is 0x20, but can be"
1326                  " overridden by this parm.  This is an array indexed"
1327                  " by interface number.");
1328 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1329 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1330                  " disabled(0).  Normally the IPMI driver auto-detects"
1331                  " this, but the value may be overridden by this parm.");
1332 module_param(unload_when_empty, int, 0);
1333 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1334                  " specified or found, default is 1.  Setting to 0"
1335                  " is useful for hot add of devices using hotmod.");
1336 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1337 MODULE_PARM_DESC(kipmid_max_busy_us,
1338                  "Max time (in microseconds) to busy-wait for IPMI data before"
1339                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1340                  " if kipmid is using up a lot of CPU time.");
1341
1342
1343 static void std_irq_cleanup(struct smi_info *info)
1344 {
1345         if (info->si_type == SI_BT)
1346                 /* Disable the interrupt in the BT interface. */
1347                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1348         free_irq(info->irq, info);
1349 }
1350
1351 static int std_irq_setup(struct smi_info *info)
1352 {
1353         int rv;
1354
1355         if (!info->irq)
1356                 return 0;
1357
1358         if (info->si_type == SI_BT) {
1359                 rv = request_irq(info->irq,
1360                                  si_bt_irq_handler,
1361                                  IRQF_SHARED,
1362                                  DEVICE_NAME,
1363                                  info);
1364                 if (!rv)
1365                         /* Enable the interrupt in the BT interface. */
1366                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1367                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1368         } else
1369                 rv = request_irq(info->irq,
1370                                  si_irq_handler,
1371                                  IRQF_SHARED,
1372                                  DEVICE_NAME,
1373                                  info);
1374         if (rv) {
1375                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1376                          " running polled\n",
1377                          DEVICE_NAME, info->irq);
1378                 info->irq = 0;
1379         } else {
1380                 info->irq_cleanup = std_irq_cleanup;
1381                 dev_info(info->dev, "Using irq %d\n", info->irq);
1382         }
1383
1384         return rv;
1385 }
1386
1387 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1388 {
1389         unsigned int addr = io->addr_data;
1390
1391         return inb(addr + (offset * io->regspacing));
1392 }
1393
1394 static void port_outb(struct si_sm_io *io, unsigned int offset,
1395                       unsigned char b)
1396 {
1397         unsigned int addr = io->addr_data;
1398
1399         outb(b, addr + (offset * io->regspacing));
1400 }
1401
1402 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1403 {
1404         unsigned int addr = io->addr_data;
1405
1406         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1407 }
1408
1409 static void port_outw(struct si_sm_io *io, unsigned int offset,
1410                       unsigned char b)
1411 {
1412         unsigned int addr = io->addr_data;
1413
1414         outw(b << io->regshift, addr + (offset * io->regspacing));
1415 }
1416
1417 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1418 {
1419         unsigned int addr = io->addr_data;
1420
1421         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1422 }
1423
1424 static void port_outl(struct si_sm_io *io, unsigned int offset,
1425                       unsigned char b)
1426 {
1427         unsigned int addr = io->addr_data;
1428
1429         outl(b << io->regshift, addr+(offset * io->regspacing));
1430 }
1431
1432 static void port_cleanup(struct smi_info *info)
1433 {
1434         unsigned int addr = info->io.addr_data;
1435         int          idx;
1436
1437         if (addr) {
1438                 for (idx = 0; idx < info->io_size; idx++)
1439                         release_region(addr + idx * info->io.regspacing,
1440                                        info->io.regsize);
1441         }
1442 }
1443
1444 static int port_setup(struct smi_info *info)
1445 {
1446         unsigned int addr = info->io.addr_data;
1447         int          idx;
1448
1449         if (!addr)
1450                 return -ENODEV;
1451
1452         info->io_cleanup = port_cleanup;
1453
1454         /*
1455          * Figure out the actual inb/inw/inl/etc routine to use based
1456          * upon the register size.
1457          */
1458         switch (info->io.regsize) {
1459         case 1:
1460                 info->io.inputb = port_inb;
1461                 info->io.outputb = port_outb;
1462                 break;
1463         case 2:
1464                 info->io.inputb = port_inw;
1465                 info->io.outputb = port_outw;
1466                 break;
1467         case 4:
1468                 info->io.inputb = port_inl;
1469                 info->io.outputb = port_outl;
1470                 break;
1471         default:
1472                 dev_warn(info->dev, "Invalid register size: %d\n",
1473                          info->io.regsize);
1474                 return -EINVAL;
1475         }
1476
1477         /*
1478          * Some BIOSes reserve disjoint I/O regions in their ACPI
1479          * tables.  This causes problems when trying to register the
1480          * entire I/O region.  Therefore we must register each I/O
1481          * port separately.
1482          */
1483         for (idx = 0; idx < info->io_size; idx++) {
1484                 if (request_region(addr + idx * info->io.regspacing,
1485                                    info->io.regsize, DEVICE_NAME) == NULL) {
1486                         /* Undo allocations */
1487                         while (idx--) {
1488                                 release_region(addr + idx * info->io.regspacing,
1489                                                info->io.regsize);
1490                         }
1491                         return -EIO;
1492                 }
1493         }
1494         return 0;
1495 }
1496
1497 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1498 {
1499         return readb((io->addr)+(offset * io->regspacing));
1500 }
1501
1502 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1503                      unsigned char b)
1504 {
1505         writeb(b, (io->addr)+(offset * io->regspacing));
1506 }
1507
1508 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1509 {
1510         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511                 & 0xff;
1512 }
1513
1514 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1515                      unsigned char b)
1516 {
1517         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519
1520 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1521 {
1522         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1523                 & 0xff;
1524 }
1525
1526 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1527                      unsigned char b)
1528 {
1529         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1530 }
1531
1532 #ifdef readq
1533 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1534 {
1535         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1536                 & 0xff;
1537 }
1538
1539 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1540                      unsigned char b)
1541 {
1542         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1543 }
1544 #endif
1545
1546 static void mem_cleanup(struct smi_info *info)
1547 {
1548         unsigned long addr = info->io.addr_data;
1549         int           mapsize;
1550
1551         if (info->io.addr) {
1552                 iounmap(info->io.addr);
1553
1554                 mapsize = ((info->io_size * info->io.regspacing)
1555                            - (info->io.regspacing - info->io.regsize));
1556
1557                 release_mem_region(addr, mapsize);
1558         }
1559 }
1560
1561 static int mem_setup(struct smi_info *info)
1562 {
1563         unsigned long addr = info->io.addr_data;
1564         int           mapsize;
1565
1566         if (!addr)
1567                 return -ENODEV;
1568
1569         info->io_cleanup = mem_cleanup;
1570
1571         /*
1572          * Figure out the actual readb/readw/readl/etc routine to use based
1573          * upon the register size.
1574          */
1575         switch (info->io.regsize) {
1576         case 1:
1577                 info->io.inputb = intf_mem_inb;
1578                 info->io.outputb = intf_mem_outb;
1579                 break;
1580         case 2:
1581                 info->io.inputb = intf_mem_inw;
1582                 info->io.outputb = intf_mem_outw;
1583                 break;
1584         case 4:
1585                 info->io.inputb = intf_mem_inl;
1586                 info->io.outputb = intf_mem_outl;
1587                 break;
1588 #ifdef readq
1589         case 8:
1590                 info->io.inputb = mem_inq;
1591                 info->io.outputb = mem_outq;
1592                 break;
1593 #endif
1594         default:
1595                 dev_warn(info->dev, "Invalid register size: %d\n",
1596                          info->io.regsize);
1597                 return -EINVAL;
1598         }
1599
1600         /*
1601          * Calculate the total amount of memory to claim.  This is an
1602          * unusual looking calculation, but it avoids claiming any
1603          * more memory than it has to.  It will claim everything
1604          * between the first address to the end of the last full
1605          * register.
1606          */
1607         mapsize = ((info->io_size * info->io.regspacing)
1608                    - (info->io.regspacing - info->io.regsize));
1609
1610         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1611                 return -EIO;
1612
1613         info->io.addr = ioremap(addr, mapsize);
1614         if (info->io.addr == NULL) {
1615                 release_mem_region(addr, mapsize);
1616                 return -EIO;
1617         }
1618         return 0;
1619 }
1620
1621 /*
1622  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1623  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1624  * Options are:
1625  *   rsp=<regspacing>
1626  *   rsi=<regsize>
1627  *   rsh=<regshift>
1628  *   irq=<irq>
1629  *   ipmb=<ipmb addr>
1630  */
1631 enum hotmod_op { HM_ADD, HM_REMOVE };
1632 struct hotmod_vals {
1633         char *name;
1634         int  val;
1635 };
1636 static struct hotmod_vals hotmod_ops[] = {
1637         { "add",        HM_ADD },
1638         { "remove",     HM_REMOVE },
1639         { NULL }
1640 };
1641 static struct hotmod_vals hotmod_si[] = {
1642         { "kcs",        SI_KCS },
1643         { "smic",       SI_SMIC },
1644         { "bt",         SI_BT },
1645         { NULL }
1646 };
1647 static struct hotmod_vals hotmod_as[] = {
1648         { "mem",        IPMI_MEM_ADDR_SPACE },
1649         { "i/o",        IPMI_IO_ADDR_SPACE },
1650         { NULL }
1651 };
1652
1653 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1654 {
1655         char *s;
1656         int  i;
1657
1658         s = strchr(*curr, ',');
1659         if (!s) {
1660                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1661                 return -EINVAL;
1662         }
1663         *s = '\0';
1664         s++;
1665         for (i = 0; hotmod_ops[i].name; i++) {
1666                 if (strcmp(*curr, v[i].name) == 0) {
1667                         *val = v[i].val;
1668                         *curr = s;
1669                         return 0;
1670                 }
1671         }
1672
1673         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1674         return -EINVAL;
1675 }
1676
1677 static int check_hotmod_int_op(const char *curr, const char *option,
1678                                const char *name, int *val)
1679 {
1680         char *n;
1681
1682         if (strcmp(curr, name) == 0) {
1683                 if (!option) {
1684                         printk(KERN_WARNING PFX
1685                                "No option given for '%s'\n",
1686                                curr);
1687                         return -EINVAL;
1688                 }
1689                 *val = simple_strtoul(option, &n, 0);
1690                 if ((*n != '\0') || (*option == '\0')) {
1691                         printk(KERN_WARNING PFX
1692                                "Bad option given for '%s'\n",
1693                                curr);
1694                         return -EINVAL;
1695                 }
1696                 return 1;
1697         }
1698         return 0;
1699 }
1700
1701 static struct smi_info *smi_info_alloc(void)
1702 {
1703         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1704
1705         if (info)
1706                 spin_lock_init(&info->si_lock);
1707         return info;
1708 }
1709
1710 static int hotmod_handler(const char *val, struct kernel_param *kp)
1711 {
1712         char *str = kstrdup(val, GFP_KERNEL);
1713         int  rv;
1714         char *next, *curr, *s, *n, *o;
1715         enum hotmod_op op;
1716         enum si_type si_type;
1717         int  addr_space;
1718         unsigned long addr;
1719         int regspacing;
1720         int regsize;
1721         int regshift;
1722         int irq;
1723         int ipmb;
1724         int ival;
1725         int len;
1726         struct smi_info *info;
1727
1728         if (!str)
1729                 return -ENOMEM;
1730
1731         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1732         len = strlen(str);
1733         ival = len - 1;
1734         while ((ival >= 0) && isspace(str[ival])) {
1735                 str[ival] = '\0';
1736                 ival--;
1737         }
1738
1739         for (curr = str; curr; curr = next) {
1740                 regspacing = 1;
1741                 regsize = 1;
1742                 regshift = 0;
1743                 irq = 0;
1744                 ipmb = 0; /* Choose the default if not specified */
1745
1746                 next = strchr(curr, ':');
1747                 if (next) {
1748                         *next = '\0';
1749                         next++;
1750                 }
1751
1752                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1753                 if (rv)
1754                         break;
1755                 op = ival;
1756
1757                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1758                 if (rv)
1759                         break;
1760                 si_type = ival;
1761
1762                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1763                 if (rv)
1764                         break;
1765
1766                 s = strchr(curr, ',');
1767                 if (s) {
1768                         *s = '\0';
1769                         s++;
1770                 }
1771                 addr = simple_strtoul(curr, &n, 0);
1772                 if ((*n != '\0') || (*curr == '\0')) {
1773                         printk(KERN_WARNING PFX "Invalid hotmod address"
1774                                " '%s'\n", curr);
1775                         break;
1776                 }
1777
1778                 while (s) {
1779                         curr = s;
1780                         s = strchr(curr, ',');
1781                         if (s) {
1782                                 *s = '\0';
1783                                 s++;
1784                         }
1785                         o = strchr(curr, '=');
1786                         if (o) {
1787                                 *o = '\0';
1788                                 o++;
1789                         }
1790                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1791                         if (rv < 0)
1792                                 goto out;
1793                         else if (rv)
1794                                 continue;
1795                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1796                         if (rv < 0)
1797                                 goto out;
1798                         else if (rv)
1799                                 continue;
1800                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1801                         if (rv < 0)
1802                                 goto out;
1803                         else if (rv)
1804                                 continue;
1805                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1806                         if (rv < 0)
1807                                 goto out;
1808                         else if (rv)
1809                                 continue;
1810                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1811                         if (rv < 0)
1812                                 goto out;
1813                         else if (rv)
1814                                 continue;
1815
1816                         rv = -EINVAL;
1817                         printk(KERN_WARNING PFX
1818                                "Invalid hotmod option '%s'\n",
1819                                curr);
1820                         goto out;
1821                 }
1822
1823                 if (op == HM_ADD) {
1824                         info = smi_info_alloc();
1825                         if (!info) {
1826                                 rv = -ENOMEM;
1827                                 goto out;
1828                         }
1829
1830                         info->addr_source = SI_HOTMOD;
1831                         info->si_type = si_type;
1832                         info->io.addr_data = addr;
1833                         info->io.addr_type = addr_space;
1834                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1835                                 info->io_setup = mem_setup;
1836                         else
1837                                 info->io_setup = port_setup;
1838
1839                         info->io.addr = NULL;
1840                         info->io.regspacing = regspacing;
1841                         if (!info->io.regspacing)
1842                                 info->io.regspacing = DEFAULT_REGSPACING;
1843                         info->io.regsize = regsize;
1844                         if (!info->io.regsize)
1845                                 info->io.regsize = DEFAULT_REGSPACING;
1846                         info->io.regshift = regshift;
1847                         info->irq = irq;
1848                         if (info->irq)
1849                                 info->irq_setup = std_irq_setup;
1850                         info->slave_addr = ipmb;
1851
1852                         rv = add_smi(info);
1853                         if (rv) {
1854                                 kfree(info);
1855                                 goto out;
1856                         }
1857                         rv = try_smi_init(info);
1858                         if (rv) {
1859                                 cleanup_one_si(info);
1860                                 goto out;
1861                         }
1862                 } else {
1863                         /* remove */
1864                         struct smi_info *e, *tmp_e;
1865
1866                         mutex_lock(&smi_infos_lock);
1867                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1868                                 if (e->io.addr_type != addr_space)
1869                                         continue;
1870                                 if (e->si_type != si_type)
1871                                         continue;
1872                                 if (e->io.addr_data == addr)
1873                                         cleanup_one_si(e);
1874                         }
1875                         mutex_unlock(&smi_infos_lock);
1876                 }
1877         }
1878         rv = len;
1879  out:
1880         kfree(str);
1881         return rv;
1882 }
1883
1884 static int hardcode_find_bmc(void)
1885 {
1886         int ret = -ENODEV;
1887         int             i;
1888         struct smi_info *info;
1889
1890         for (i = 0; i < SI_MAX_PARMS; i++) {
1891                 if (!ports[i] && !addrs[i])
1892                         continue;
1893
1894                 info = smi_info_alloc();
1895                 if (!info)
1896                         return -ENOMEM;
1897
1898                 info->addr_source = SI_HARDCODED;
1899                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1900
1901                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1902                         info->si_type = SI_KCS;
1903                 } else if (strcmp(si_type[i], "smic") == 0) {
1904                         info->si_type = SI_SMIC;
1905                 } else if (strcmp(si_type[i], "bt") == 0) {
1906                         info->si_type = SI_BT;
1907                 } else {
1908                         printk(KERN_WARNING PFX "Interface type specified "
1909                                "for interface %d, was invalid: %s\n",
1910                                i, si_type[i]);
1911                         kfree(info);
1912                         continue;
1913                 }
1914
1915                 if (ports[i]) {
1916                         /* An I/O port */
1917                         info->io_setup = port_setup;
1918                         info->io.addr_data = ports[i];
1919                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1920                 } else if (addrs[i]) {
1921                         /* A memory port */
1922                         info->io_setup = mem_setup;
1923                         info->io.addr_data = addrs[i];
1924                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1925                 } else {
1926                         printk(KERN_WARNING PFX "Interface type specified "
1927                                "for interface %d, but port and address were "
1928                                "not set or set to zero.\n", i);
1929                         kfree(info);
1930                         continue;
1931                 }
1932
1933                 info->io.addr = NULL;
1934                 info->io.regspacing = regspacings[i];
1935                 if (!info->io.regspacing)
1936                         info->io.regspacing = DEFAULT_REGSPACING;
1937                 info->io.regsize = regsizes[i];
1938                 if (!info->io.regsize)
1939                         info->io.regsize = DEFAULT_REGSPACING;
1940                 info->io.regshift = regshifts[i];
1941                 info->irq = irqs[i];
1942                 if (info->irq)
1943                         info->irq_setup = std_irq_setup;
1944                 info->slave_addr = slave_addrs[i];
1945
1946                 if (!add_smi(info)) {
1947                         if (try_smi_init(info))
1948                                 cleanup_one_si(info);
1949                         ret = 0;
1950                 } else {
1951                         kfree(info);
1952                 }
1953         }
1954         return ret;
1955 }
1956
1957 #ifdef CONFIG_ACPI
1958
1959 #include <linux/acpi.h>
1960
1961 /*
1962  * Once we get an ACPI failure, we don't try any more, because we go
1963  * through the tables sequentially.  Once we don't find a table, there
1964  * are no more.
1965  */
1966 static int acpi_failure;
1967
1968 /* For GPE-type interrupts. */
1969 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1970         u32 gpe_number, void *context)
1971 {
1972         struct smi_info *smi_info = context;
1973         unsigned long   flags;
1974 #ifdef DEBUG_TIMING
1975         struct timeval t;
1976 #endif
1977
1978         spin_lock_irqsave(&(smi_info->si_lock), flags);
1979
1980         smi_inc_stat(smi_info, interrupts);
1981
1982 #ifdef DEBUG_TIMING
1983         do_gettimeofday(&t);
1984         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1985 #endif
1986         smi_event_handler(smi_info, 0);
1987         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1988
1989         return ACPI_INTERRUPT_HANDLED;
1990 }
1991
1992 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1993 {
1994         if (!info->irq)
1995                 return;
1996
1997         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1998 }
1999
2000 static int acpi_gpe_irq_setup(struct smi_info *info)
2001 {
2002         acpi_status status;
2003
2004         if (!info->irq)
2005                 return 0;
2006
2007         /* FIXME - is level triggered right? */
2008         status = acpi_install_gpe_handler(NULL,
2009                                           info->irq,
2010                                           ACPI_GPE_LEVEL_TRIGGERED,
2011                                           &ipmi_acpi_gpe,
2012                                           info);
2013         if (status != AE_OK) {
2014                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2015                          " running polled\n", DEVICE_NAME, info->irq);
2016                 info->irq = 0;
2017                 return -EINVAL;
2018         } else {
2019                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2020                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2021                 return 0;
2022         }
2023 }
2024
2025 /*
2026  * Defined at
2027  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2028  */
2029 struct SPMITable {
2030         s8      Signature[4];
2031         u32     Length;
2032         u8      Revision;
2033         u8      Checksum;
2034         s8      OEMID[6];
2035         s8      OEMTableID[8];
2036         s8      OEMRevision[4];
2037         s8      CreatorID[4];
2038         s8      CreatorRevision[4];
2039         u8      InterfaceType;
2040         u8      IPMIlegacy;
2041         s16     SpecificationRevision;
2042
2043         /*
2044          * Bit 0 - SCI interrupt supported
2045          * Bit 1 - I/O APIC/SAPIC
2046          */
2047         u8      InterruptType;
2048
2049         /*
2050          * If bit 0 of InterruptType is set, then this is the SCI
2051          * interrupt in the GPEx_STS register.
2052          */
2053         u8      GPE;
2054
2055         s16     Reserved;
2056
2057         /*
2058          * If bit 1 of InterruptType is set, then this is the I/O
2059          * APIC/SAPIC interrupt.
2060          */
2061         u32     GlobalSystemInterrupt;
2062
2063         /* The actual register address. */
2064         struct acpi_generic_address addr;
2065
2066         u8      UID[4];
2067
2068         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2069 };
2070
2071 static int try_init_spmi(struct SPMITable *spmi)
2072 {
2073         struct smi_info  *info;
2074         int rv;
2075
2076         if (spmi->IPMIlegacy != 1) {
2077                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2078                 return -ENODEV;
2079         }
2080
2081         info = smi_info_alloc();
2082         if (!info) {
2083                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2084                 return -ENOMEM;
2085         }
2086
2087         info->addr_source = SI_SPMI;
2088         printk(KERN_INFO PFX "probing via SPMI\n");
2089
2090         /* Figure out the interface type. */
2091         switch (spmi->InterfaceType) {
2092         case 1: /* KCS */
2093                 info->si_type = SI_KCS;
2094                 break;
2095         case 2: /* SMIC */
2096                 info->si_type = SI_SMIC;
2097                 break;
2098         case 3: /* BT */
2099                 info->si_type = SI_BT;
2100                 break;
2101         default:
2102                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2103                        spmi->InterfaceType);
2104                 kfree(info);
2105                 return -EIO;
2106         }
2107
2108         if (spmi->InterruptType & 1) {
2109                 /* We've got a GPE interrupt. */
2110                 info->irq = spmi->GPE;
2111                 info->irq_setup = acpi_gpe_irq_setup;
2112         } else if (spmi->InterruptType & 2) {
2113                 /* We've got an APIC/SAPIC interrupt. */
2114                 info->irq = spmi->GlobalSystemInterrupt;
2115                 info->irq_setup = std_irq_setup;
2116         } else {
2117                 /* Use the default interrupt setting. */
2118                 info->irq = 0;
2119                 info->irq_setup = NULL;
2120         }
2121
2122         if (spmi->addr.bit_width) {
2123                 /* A (hopefully) properly formed register bit width. */
2124                 info->io.regspacing = spmi->addr.bit_width / 8;
2125         } else {
2126                 info->io.regspacing = DEFAULT_REGSPACING;
2127         }
2128         info->io.regsize = info->io.regspacing;
2129         info->io.regshift = spmi->addr.bit_offset;
2130
2131         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2132                 info->io_setup = mem_setup;
2133                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2134         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2135                 info->io_setup = port_setup;
2136                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137         } else {
2138                 kfree(info);
2139                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2140                 return -EIO;
2141         }
2142         info->io.addr_data = spmi->addr.address;
2143
2144         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2145                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2146                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2147                  info->irq);
2148
2149         rv = add_smi(info);
2150         if (rv)
2151                 kfree(info);
2152
2153         return rv;
2154 }
2155
2156 static void spmi_find_bmc(void)
2157 {
2158         acpi_status      status;
2159         struct SPMITable *spmi;
2160         int              i;
2161
2162         if (acpi_disabled)
2163                 return;
2164
2165         if (acpi_failure)
2166                 return;
2167
2168         for (i = 0; ; i++) {
2169                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2170                                         (struct acpi_table_header **)&spmi);
2171                 if (status != AE_OK)
2172                         return;
2173
2174                 try_init_spmi(spmi);
2175         }
2176 }
2177
2178 static int ipmi_pnp_probe(struct pnp_dev *dev,
2179                                     const struct pnp_device_id *dev_id)
2180 {
2181         struct acpi_device *acpi_dev;
2182         struct smi_info *info;
2183         struct resource *res, *res_second;
2184         acpi_handle handle;
2185         acpi_status status;
2186         unsigned long long tmp;
2187         int rv;
2188
2189         acpi_dev = pnp_acpi_device(dev);
2190         if (!acpi_dev)
2191                 return -ENODEV;
2192
2193         info = smi_info_alloc();
2194         if (!info)
2195                 return -ENOMEM;
2196
2197         info->addr_source = SI_ACPI;
2198         printk(KERN_INFO PFX "probing via ACPI\n");
2199
2200         handle = acpi_dev->handle;
2201         info->addr_info.acpi_info.acpi_handle = handle;
2202
2203         /* _IFT tells us the interface type: KCS, BT, etc */
2204         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2205         if (ACPI_FAILURE(status))
2206                 goto err_free;
2207
2208         switch (tmp) {
2209         case 1:
2210                 info->si_type = SI_KCS;
2211                 break;
2212         case 2:
2213                 info->si_type = SI_SMIC;
2214                 break;
2215         case 3:
2216                 info->si_type = SI_BT;
2217                 break;
2218         default:
2219                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2220                 goto err_free;
2221         }
2222
2223         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2224         if (res) {
2225                 info->io_setup = port_setup;
2226                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2227         } else {
2228                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2229                 if (res) {
2230                         info->io_setup = mem_setup;
2231                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232                 }
2233         }
2234         if (!res) {
2235                 dev_err(&dev->dev, "no I/O or memory address\n");
2236                 goto err_free;
2237         }
2238         info->io.addr_data = res->start;
2239
2240         info->io.regspacing = DEFAULT_REGSPACING;
2241         res_second = pnp_get_resource(dev,
2242                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2243                                         IORESOURCE_IO : IORESOURCE_MEM,
2244                                1);
2245         if (res_second) {
2246                 if (res_second->start > info->io.addr_data)
2247                         info->io.regspacing = res_second->start - info->io.addr_data;
2248         }
2249         info->io.regsize = DEFAULT_REGSPACING;
2250         info->io.regshift = 0;
2251
2252         /* If _GPE exists, use it; otherwise use standard interrupts */
2253         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2254         if (ACPI_SUCCESS(status)) {
2255                 info->irq = tmp;
2256                 info->irq_setup = acpi_gpe_irq_setup;
2257         } else if (pnp_irq_valid(dev, 0)) {
2258                 info->irq = pnp_irq(dev, 0);
2259                 info->irq_setup = std_irq_setup;
2260         }
2261
2262         info->dev = &dev->dev;
2263         pnp_set_drvdata(dev, info);
2264
2265         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2266                  res, info->io.regsize, info->io.regspacing,
2267                  info->irq);
2268
2269         rv = add_smi(info);
2270         if (rv)
2271                 kfree(info);
2272
2273         return rv;
2274
2275 err_free:
2276         kfree(info);
2277         return -EINVAL;
2278 }
2279
2280 static void ipmi_pnp_remove(struct pnp_dev *dev)
2281 {
2282         struct smi_info *info = pnp_get_drvdata(dev);
2283
2284         cleanup_one_si(info);
2285 }
2286
2287 static const struct pnp_device_id pnp_dev_table[] = {
2288         {"IPI0001", 0},
2289         {"", 0},
2290 };
2291
2292 static struct pnp_driver ipmi_pnp_driver = {
2293         .name           = DEVICE_NAME,
2294         .probe          = ipmi_pnp_probe,
2295         .remove         = ipmi_pnp_remove,
2296         .id_table       = pnp_dev_table,
2297 };
2298
2299 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2300 #endif
2301
2302 #ifdef CONFIG_DMI
2303 struct dmi_ipmi_data {
2304         u8              type;
2305         u8              addr_space;
2306         unsigned long   base_addr;
2307         u8              irq;
2308         u8              offset;
2309         u8              slave_addr;
2310 };
2311
2312 static int decode_dmi(const struct dmi_header *dm,
2313                                 struct dmi_ipmi_data *dmi)
2314 {
2315         const u8        *data = (const u8 *)dm;
2316         unsigned long   base_addr;
2317         u8              reg_spacing;
2318         u8              len = dm->length;
2319
2320         dmi->type = data[4];
2321
2322         memcpy(&base_addr, data+8, sizeof(unsigned long));
2323         if (len >= 0x11) {
2324                 if (base_addr & 1) {
2325                         /* I/O */
2326                         base_addr &= 0xFFFE;
2327                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2328                 } else
2329                         /* Memory */
2330                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2331
2332                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2333                    is odd. */
2334                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2335
2336                 dmi->irq = data[0x11];
2337
2338                 /* The top two bits of byte 0x10 hold the register spacing. */
2339                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2340                 switch (reg_spacing) {
2341                 case 0x00: /* Byte boundaries */
2342                     dmi->offset = 1;
2343                     break;
2344                 case 0x01: /* 32-bit boundaries */
2345                     dmi->offset = 4;
2346                     break;
2347                 case 0x02: /* 16-byte boundaries */
2348                     dmi->offset = 16;
2349                     break;
2350                 default:
2351                     /* Some other interface, just ignore it. */
2352                     return -EIO;
2353                 }
2354         } else {
2355                 /* Old DMI spec. */
2356                 /*
2357                  * Note that technically, the lower bit of the base
2358                  * address should be 1 if the address is I/O and 0 if
2359                  * the address is in memory.  So many systems get that
2360                  * wrong (and all that I have seen are I/O) so we just
2361                  * ignore that bit and assume I/O.  Systems that use
2362                  * memory should use the newer spec, anyway.
2363                  */
2364                 dmi->base_addr = base_addr & 0xfffe;
2365                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2366                 dmi->offset = 1;
2367         }
2368
2369         dmi->slave_addr = data[6];
2370
2371         return 0;
2372 }
2373
2374 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2375 {
2376         struct smi_info *info;
2377
2378         info = smi_info_alloc();
2379         if (!info) {
2380                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2381                 return;
2382         }
2383
2384         info->addr_source = SI_SMBIOS;
2385         printk(KERN_INFO PFX "probing via SMBIOS\n");
2386
2387         switch (ipmi_data->type) {
2388         case 0x01: /* KCS */
2389                 info->si_type = SI_KCS;
2390                 break;
2391         case 0x02: /* SMIC */
2392                 info->si_type = SI_SMIC;
2393                 break;
2394         case 0x03: /* BT */
2395                 info->si_type = SI_BT;
2396                 break;
2397         default:
2398                 kfree(info);
2399                 return;
2400         }
2401
2402         switch (ipmi_data->addr_space) {
2403         case IPMI_MEM_ADDR_SPACE:
2404                 info->io_setup = mem_setup;
2405                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2406                 break;
2407
2408         case IPMI_IO_ADDR_SPACE:
2409                 info->io_setup = port_setup;
2410                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2411                 break;
2412
2413         default:
2414                 kfree(info);
2415                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2416                        ipmi_data->addr_space);
2417                 return;
2418         }
2419         info->io.addr_data = ipmi_data->base_addr;
2420
2421         info->io.regspacing = ipmi_data->offset;
2422         if (!info->io.regspacing)
2423                 info->io.regspacing = DEFAULT_REGSPACING;
2424         info->io.regsize = DEFAULT_REGSPACING;
2425         info->io.regshift = 0;
2426
2427         info->slave_addr = ipmi_data->slave_addr;
2428
2429         info->irq = ipmi_data->irq;
2430         if (info->irq)
2431                 info->irq_setup = std_irq_setup;
2432
2433         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2434                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2435                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2436                  info->irq);
2437
2438         if (add_smi(info))
2439                 kfree(info);
2440 }
2441
2442 static void dmi_find_bmc(void)
2443 {
2444         const struct dmi_device *dev = NULL;
2445         struct dmi_ipmi_data data;
2446         int                  rv;
2447
2448         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2449                 memset(&data, 0, sizeof(data));
2450                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2451                                 &data);
2452                 if (!rv)
2453                         try_init_dmi(&data);
2454         }
2455 }
2456 #endif /* CONFIG_DMI */
2457
2458 #ifdef CONFIG_PCI
2459
2460 #define PCI_ERMC_CLASSCODE              0x0C0700
2461 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2462 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2463 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2464 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2465 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2466
2467 #define PCI_HP_VENDOR_ID    0x103C
2468 #define PCI_MMC_DEVICE_ID   0x121A
2469 #define PCI_MMC_ADDR_CW     0x10
2470
2471 static void ipmi_pci_cleanup(struct smi_info *info)
2472 {
2473         struct pci_dev *pdev = info->addr_source_data;
2474
2475         pci_disable_device(pdev);
2476 }
2477
2478 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2479 {
2480         if (info->si_type == SI_KCS) {
2481                 unsigned char   status;
2482                 int             regspacing;
2483
2484                 info->io.regsize = DEFAULT_REGSIZE;
2485                 info->io.regshift = 0;
2486                 info->io_size = 2;
2487                 info->handlers = &kcs_smi_handlers;
2488
2489                 /* detect 1, 4, 16byte spacing */
2490                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2491                         info->io.regspacing = regspacing;
2492                         if (info->io_setup(info)) {
2493                                 dev_err(info->dev,
2494                                         "Could not setup I/O space\n");
2495                                 return DEFAULT_REGSPACING;
2496                         }
2497                         /* write invalid cmd */
2498                         info->io.outputb(&info->io, 1, 0x10);
2499                         /* read status back */
2500                         status = info->io.inputb(&info->io, 1);
2501                         info->io_cleanup(info);
2502                         if (status)
2503                                 return regspacing;
2504                         regspacing *= 4;
2505                 }
2506         }
2507         return DEFAULT_REGSPACING;
2508 }
2509
2510 static int ipmi_pci_probe(struct pci_dev *pdev,
2511                                     const struct pci_device_id *ent)
2512 {
2513         int rv;
2514         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2515         struct smi_info *info;
2516
2517         info = smi_info_alloc();
2518         if (!info)
2519                 return -ENOMEM;
2520
2521         info->addr_source = SI_PCI;
2522         dev_info(&pdev->dev, "probing via PCI");
2523
2524         switch (class_type) {
2525         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2526                 info->si_type = SI_SMIC;
2527                 break;
2528
2529         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2530                 info->si_type = SI_KCS;
2531                 break;
2532
2533         case PCI_ERMC_CLASSCODE_TYPE_BT:
2534                 info->si_type = SI_BT;
2535                 break;
2536
2537         default:
2538                 kfree(info);
2539                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2540                 return -ENOMEM;
2541         }
2542
2543         rv = pci_enable_device(pdev);
2544         if (rv) {
2545                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2546                 kfree(info);
2547                 return rv;
2548         }
2549
2550         info->addr_source_cleanup = ipmi_pci_cleanup;
2551         info->addr_source_data = pdev;
2552
2553         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2554                 info->io_setup = port_setup;
2555                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2556         } else {
2557                 info->io_setup = mem_setup;
2558                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2559         }
2560         info->io.addr_data = pci_resource_start(pdev, 0);
2561
2562         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2563         info->io.regsize = DEFAULT_REGSIZE;
2564         info->io.regshift = 0;
2565
2566         info->irq = pdev->irq;
2567         if (info->irq)
2568                 info->irq_setup = std_irq_setup;
2569
2570         info->dev = &pdev->dev;
2571         pci_set_drvdata(pdev, info);
2572
2573         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2574                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2575                 info->irq);
2576
2577         rv = add_smi(info);
2578         if (rv) {
2579                 kfree(info);
2580                 pci_disable_device(pdev);
2581         }
2582
2583         return rv;
2584 }
2585
2586 static void ipmi_pci_remove(struct pci_dev *pdev)
2587 {
2588         struct smi_info *info = pci_get_drvdata(pdev);
2589         cleanup_one_si(info);
2590         pci_disable_device(pdev);
2591 }
2592
2593 static struct pci_device_id ipmi_pci_devices[] = {
2594         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2595         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2596         { 0, }
2597 };
2598 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2599
2600 static struct pci_driver ipmi_pci_driver = {
2601         .name =         DEVICE_NAME,
2602         .id_table =     ipmi_pci_devices,
2603         .probe =        ipmi_pci_probe,
2604         .remove =       ipmi_pci_remove,
2605 };
2606 #endif /* CONFIG_PCI */
2607
2608 static struct of_device_id ipmi_match[];
2609 static int ipmi_probe(struct platform_device *dev)
2610 {
2611 #ifdef CONFIG_OF
2612         const struct of_device_id *match;
2613         struct smi_info *info;
2614         struct resource resource;
2615         const __be32 *regsize, *regspacing, *regshift;
2616         struct device_node *np = dev->dev.of_node;
2617         int ret;
2618         int proplen;
2619
2620         dev_info(&dev->dev, "probing via device tree\n");
2621
2622         match = of_match_device(ipmi_match, &dev->dev);
2623         if (!match)
2624                 return -EINVAL;
2625
2626         ret = of_address_to_resource(np, 0, &resource);
2627         if (ret) {
2628                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2629                 return ret;
2630         }
2631
2632         regsize = of_get_property(np, "reg-size", &proplen);
2633         if (regsize && proplen != 4) {
2634                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2635                 return -EINVAL;
2636         }
2637
2638         regspacing = of_get_property(np, "reg-spacing", &proplen);
2639         if (regspacing && proplen != 4) {
2640                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2641                 return -EINVAL;
2642         }
2643
2644         regshift = of_get_property(np, "reg-shift", &proplen);
2645         if (regshift && proplen != 4) {
2646                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2647                 return -EINVAL;
2648         }
2649
2650         info = smi_info_alloc();
2651
2652         if (!info) {
2653                 dev_err(&dev->dev,
2654                         "could not allocate memory for OF probe\n");
2655                 return -ENOMEM;
2656         }
2657
2658         info->si_type           = (enum si_type) match->data;
2659         info->addr_source       = SI_DEVICETREE;
2660         info->irq_setup         = std_irq_setup;
2661
2662         if (resource.flags & IORESOURCE_IO) {
2663                 info->io_setup          = port_setup;
2664                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2665         } else {
2666                 info->io_setup          = mem_setup;
2667                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2668         }
2669
2670         info->io.addr_data      = resource.start;
2671
2672         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2673         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2674         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2675
2676         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2677         info->dev               = &dev->dev;
2678
2679         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2680                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2681                 info->irq);
2682
2683         dev_set_drvdata(&dev->dev, info);
2684
2685         ret = add_smi(info);
2686         if (ret) {
2687                 kfree(info);
2688                 return ret;
2689         }
2690 #endif
2691         return 0;
2692 }
2693
2694 static int ipmi_remove(struct platform_device *dev)
2695 {
2696 #ifdef CONFIG_OF
2697         cleanup_one_si(dev_get_drvdata(&dev->dev));
2698 #endif
2699         return 0;
2700 }
2701
2702 static struct of_device_id ipmi_match[] =
2703 {
2704         { .type = "ipmi", .compatible = "ipmi-kcs",
2705           .data = (void *)(unsigned long) SI_KCS },
2706         { .type = "ipmi", .compatible = "ipmi-smic",
2707           .data = (void *)(unsigned long) SI_SMIC },
2708         { .type = "ipmi", .compatible = "ipmi-bt",
2709           .data = (void *)(unsigned long) SI_BT },
2710         {},
2711 };
2712
2713 static struct platform_driver ipmi_driver = {
2714         .driver = {
2715                 .name = DEVICE_NAME,
2716                 .owner = THIS_MODULE,
2717                 .of_match_table = ipmi_match,
2718         },
2719         .probe          = ipmi_probe,
2720         .remove         = ipmi_remove,
2721 };
2722
2723 #ifdef CONFIG_PARISC
2724 static int ipmi_parisc_probe(struct parisc_device *dev)
2725 {
2726         struct smi_info *info;
2727
2728         info = smi_info_alloc();
2729
2730         if (!info) {
2731                 dev_err(&dev->dev,
2732                         "could not allocate memory for PARISC probe\n");
2733                 return -ENOMEM;
2734         }
2735
2736         info->si_type           = SI_KCS;
2737         info->addr_source       = SI_DEVICETREE;
2738         info->io_setup          = mem_setup;
2739         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2740         info->io.addr_data      = dev->hpa.start;
2741         info->io.regsize        = 1;
2742         info->io.regspacing     = 1;
2743         info->io.regshift       = 0;
2744         info->irq               = 0; /* no interrupt */
2745         info->irq_setup         = NULL;
2746         info->dev               = &dev->dev;
2747
2748         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2749
2750         dev_set_drvdata(&dev->dev, info);
2751
2752         rv = add_smi(info);
2753         if (rv) {
2754                 kfree(info);
2755                 return rv;
2756         }
2757
2758         return 0;
2759 }
2760
2761 static int ipmi_parisc_remove(struct parisc_device *dev)
2762 {
2763         cleanup_one_si(dev_get_drvdata(&dev->dev));
2764         return 0;
2765 }
2766
2767 static struct parisc_device_id ipmi_parisc_tbl[] = {
2768         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2769         { 0, }
2770 };
2771
2772 static struct parisc_driver ipmi_parisc_driver = {
2773         .name =         "ipmi",
2774         .id_table =     ipmi_parisc_tbl,
2775         .probe =        ipmi_parisc_probe,
2776         .remove =       ipmi_parisc_remove,
2777 };
2778 #endif /* CONFIG_PARISC */
2779
2780 static int wait_for_msg_done(struct smi_info *smi_info)
2781 {
2782         enum si_sm_result     smi_result;
2783
2784         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2785         for (;;) {
2786                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2787                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2788                         schedule_timeout_uninterruptible(1);
2789                         smi_result = smi_info->handlers->event(
2790                                 smi_info->si_sm, jiffies_to_usecs(1));
2791                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2792                         smi_result = smi_info->handlers->event(
2793                                 smi_info->si_sm, 0);
2794                 } else
2795                         break;
2796         }
2797         if (smi_result == SI_SM_HOSED)
2798                 /*
2799                  * We couldn't get the state machine to run, so whatever's at
2800                  * the port is probably not an IPMI SMI interface.
2801                  */
2802                 return -ENODEV;
2803
2804         return 0;
2805 }
2806
2807 static int try_get_dev_id(struct smi_info *smi_info)
2808 {
2809         unsigned char         msg[2];
2810         unsigned char         *resp;
2811         unsigned long         resp_len;
2812         int                   rv = 0;
2813
2814         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2815         if (!resp)
2816                 return -ENOMEM;
2817
2818         /*
2819          * Do a Get Device ID command, since it comes back with some
2820          * useful info.
2821          */
2822         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2823         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2824         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2825
2826         rv = wait_for_msg_done(smi_info);
2827         if (rv)
2828                 goto out;
2829
2830         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2831                                                   resp, IPMI_MAX_MSG_LENGTH);
2832
2833         /* Check and record info from the get device id, in case we need it. */
2834         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2835
2836  out:
2837         kfree(resp);
2838         return rv;
2839 }
2840
2841 static int try_enable_event_buffer(struct smi_info *smi_info)
2842 {
2843         unsigned char         msg[3];
2844         unsigned char         *resp;
2845         unsigned long         resp_len;
2846         int                   rv = 0;
2847
2848         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2849         if (!resp)
2850                 return -ENOMEM;
2851
2852         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2853         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2854         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2855
2856         rv = wait_for_msg_done(smi_info);
2857         if (rv) {
2858                 printk(KERN_WARNING PFX "Error getting response from get"
2859                        " global enables command, the event buffer is not"
2860                        " enabled.\n");
2861                 goto out;
2862         }
2863
2864         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2865                                                   resp, IPMI_MAX_MSG_LENGTH);
2866
2867         if (resp_len < 4 ||
2868                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2869                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2870                         resp[2] != 0) {
2871                 printk(KERN_WARNING PFX "Invalid return from get global"
2872                        " enables command, cannot enable the event buffer.\n");
2873                 rv = -EINVAL;
2874                 goto out;
2875         }
2876
2877         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2878                 /* buffer is already enabled, nothing to do. */
2879                 goto out;
2880
2881         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2882         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2883         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2884         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2885
2886         rv = wait_for_msg_done(smi_info);
2887         if (rv) {
2888                 printk(KERN_WARNING PFX "Error getting response from set"
2889                        " global, enables command, the event buffer is not"
2890                        " enabled.\n");
2891                 goto out;
2892         }
2893
2894         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2895                                                   resp, IPMI_MAX_MSG_LENGTH);
2896
2897         if (resp_len < 3 ||
2898                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2899                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2900                 printk(KERN_WARNING PFX "Invalid return from get global,"
2901                        "enables command, not enable the event buffer.\n");
2902                 rv = -EINVAL;
2903                 goto out;
2904         }
2905
2906         if (resp[2] != 0)
2907                 /*
2908                  * An error when setting the event buffer bit means
2909                  * that the event buffer is not supported.
2910                  */
2911                 rv = -ENOENT;
2912  out:
2913         kfree(resp);
2914         return rv;
2915 }
2916
2917 static int smi_type_proc_show(struct seq_file *m, void *v)
2918 {
2919         struct smi_info *smi = m->private;
2920
2921         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2922 }
2923
2924 static int smi_type_proc_open(struct inode *inode, struct file *file)
2925 {
2926         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2927 }
2928
2929 static const struct file_operations smi_type_proc_ops = {
2930         .open           = smi_type_proc_open,
2931         .read           = seq_read,
2932         .llseek         = seq_lseek,
2933         .release        = single_release,
2934 };
2935
2936 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2937 {
2938         struct smi_info *smi = m->private;
2939
2940         seq_printf(m, "interrupts_enabled:    %d\n",
2941                        smi->irq && !smi->interrupt_disabled);
2942         seq_printf(m, "short_timeouts:        %u\n",
2943                        smi_get_stat(smi, short_timeouts));
2944         seq_printf(m, "long_timeouts:         %u\n",
2945                        smi_get_stat(smi, long_timeouts));
2946         seq_printf(m, "idles:                 %u\n",
2947                        smi_get_stat(smi, idles));
2948         seq_printf(m, "interrupts:            %u\n",
2949                        smi_get_stat(smi, interrupts));
2950         seq_printf(m, "attentions:            %u\n",
2951                        smi_get_stat(smi, attentions));
2952         seq_printf(m, "flag_fetches:          %u\n",
2953                        smi_get_stat(smi, flag_fetches));
2954         seq_printf(m, "hosed_count:           %u\n",
2955                        smi_get_stat(smi, hosed_count));
2956         seq_printf(m, "complete_transactions: %u\n",
2957                        smi_get_stat(smi, complete_transactions));
2958         seq_printf(m, "events:                %u\n",
2959                        smi_get_stat(smi, events));
2960         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2961                        smi_get_stat(smi, watchdog_pretimeouts));
2962         seq_printf(m, "incoming_messages:     %u\n",
2963                        smi_get_stat(smi, incoming_messages));
2964         return 0;
2965 }
2966
2967 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2968 {
2969         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2970 }
2971
2972 static const struct file_operations smi_si_stats_proc_ops = {
2973         .open           = smi_si_stats_proc_open,
2974         .read           = seq_read,
2975         .llseek         = seq_lseek,
2976         .release        = single_release,
2977 };
2978
2979 static int smi_params_proc_show(struct seq_file *m, void *v)
2980 {
2981         struct smi_info *smi = m->private;
2982
2983         return seq_printf(m,
2984                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2985                        si_to_str[smi->si_type],
2986                        addr_space_to_str[smi->io.addr_type],
2987                        smi->io.addr_data,
2988                        smi->io.regspacing,
2989                        smi->io.regsize,
2990                        smi->io.regshift,
2991                        smi->irq,
2992                        smi->slave_addr);
2993 }
2994
2995 static int smi_params_proc_open(struct inode *inode, struct file *file)
2996 {
2997         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2998 }
2999
3000 static const struct file_operations smi_params_proc_ops = {
3001         .open           = smi_params_proc_open,
3002         .read           = seq_read,
3003         .llseek         = seq_lseek,
3004         .release        = single_release,
3005 };
3006
3007 /*
3008  * oem_data_avail_to_receive_msg_avail
3009  * @info - smi_info structure with msg_flags set
3010  *
3011  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3012  * Returns 1 indicating need to re-run handle_flags().
3013  */
3014 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3015 {
3016         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3017                                RECEIVE_MSG_AVAIL);
3018         return 1;
3019 }
3020
3021 /*
3022  * setup_dell_poweredge_oem_data_handler
3023  * @info - smi_info.device_id must be populated
3024  *
3025  * Systems that match, but have firmware version < 1.40 may assert
3026  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3027  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3028  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3029  * as RECEIVE_MSG_AVAIL instead.
3030  *
3031  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3032  * assert the OEM[012] bits, and if it did, the driver would have to
3033  * change to handle that properly, we don't actually check for the
3034  * firmware version.
3035  * Device ID = 0x20                BMC on PowerEdge 8G servers
3036  * Device Revision = 0x80
3037  * Firmware Revision1 = 0x01       BMC version 1.40
3038  * Firmware Revision2 = 0x40       BCD encoded
3039  * IPMI Version = 0x51             IPMI 1.5
3040  * Manufacturer ID = A2 02 00      Dell IANA
3041  *
3042  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3043  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3044  *
3045  */
3046 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3047 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3048 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3049 #define DELL_IANA_MFR_ID 0x0002a2
3050 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3051 {
3052         struct ipmi_device_id *id = &smi_info->device_id;
3053         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3054                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3055                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3056                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3057                         smi_info->oem_data_avail_handler =
3058                                 oem_data_avail_to_receive_msg_avail;
3059                 } else if (ipmi_version_major(id) < 1 ||
3060                            (ipmi_version_major(id) == 1 &&
3061                             ipmi_version_minor(id) < 5)) {
3062                         smi_info->oem_data_avail_handler =
3063                                 oem_data_avail_to_receive_msg_avail;
3064                 }
3065         }
3066 }
3067
3068 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3069 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3070 {
3071         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3072
3073         /* Make it a response */
3074         msg->rsp[0] = msg->data[0] | 4;
3075         msg->rsp[1] = msg->data[1];
3076         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3077         msg->rsp_size = 3;
3078         smi_info->curr_msg = NULL;
3079         deliver_recv_msg(smi_info, msg);
3080 }
3081
3082 /*
3083  * dell_poweredge_bt_xaction_handler
3084  * @info - smi_info.device_id must be populated
3085  *
3086  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3087  * not respond to a Get SDR command if the length of the data
3088  * requested is exactly 0x3A, which leads to command timeouts and no
3089  * data returned.  This intercepts such commands, and causes userspace
3090  * callers to try again with a different-sized buffer, which succeeds.
3091  */
3092
3093 #define STORAGE_NETFN 0x0A
3094 #define STORAGE_CMD_GET_SDR 0x23
3095 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3096                                              unsigned long unused,
3097                                              void *in)
3098 {
3099         struct smi_info *smi_info = in;
3100         unsigned char *data = smi_info->curr_msg->data;
3101         unsigned int size   = smi_info->curr_msg->data_size;
3102         if (size >= 8 &&
3103             (data[0]>>2) == STORAGE_NETFN &&
3104             data[1] == STORAGE_CMD_GET_SDR &&
3105             data[7] == 0x3A) {
3106                 return_hosed_msg_badsize(smi_info);
3107                 return NOTIFY_STOP;
3108         }
3109         return NOTIFY_DONE;
3110 }
3111
3112 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3113         .notifier_call  = dell_poweredge_bt_xaction_handler,
3114 };
3115
3116 /*
3117  * setup_dell_poweredge_bt_xaction_handler
3118  * @info - smi_info.device_id must be filled in already
3119  *
3120  * Fills in smi_info.device_id.start_transaction_pre_hook
3121  * when we know what function to use there.
3122  */
3123 static void
3124 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3125 {
3126         struct ipmi_device_id *id = &smi_info->device_id;
3127         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3128             smi_info->si_type == SI_BT)
3129                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3130 }
3131
3132 /*
3133  * setup_oem_data_handler
3134  * @info - smi_info.device_id must be filled in already
3135  *
3136  * Fills in smi_info.device_id.oem_data_available_handler
3137  * when we know what function to use there.
3138  */
3139
3140 static void setup_oem_data_handler(struct smi_info *smi_info)
3141 {
3142         setup_dell_poweredge_oem_data_handler(smi_info);
3143 }
3144
3145 static void setup_xaction_handlers(struct smi_info *smi_info)
3146 {
3147         setup_dell_poweredge_bt_xaction_handler(smi_info);
3148 }
3149
3150 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3151 {
3152         if (smi_info->intf) {
3153                 /*
3154                  * The timer and thread are only running if the
3155                  * interface has been started up and registered.
3156                  */
3157                 if (smi_info->thread != NULL)
3158                         kthread_stop(smi_info->thread);
3159                 del_timer_sync(&smi_info->si_timer);
3160         }
3161 }
3162
3163 static struct ipmi_default_vals
3164 {
3165         int type;
3166         int port;
3167 } ipmi_defaults[] =
3168 {
3169         { .type = SI_KCS, .port = 0xca2 },
3170         { .type = SI_SMIC, .port = 0xca9 },
3171         { .type = SI_BT, .port = 0xe4 },
3172         { .port = 0 }
3173 };
3174
3175 static void default_find_bmc(void)
3176 {
3177         struct smi_info *info;
3178         int             i;
3179
3180         for (i = 0; ; i++) {
3181                 if (!ipmi_defaults[i].port)
3182                         break;
3183 #ifdef CONFIG_PPC
3184                 if (check_legacy_ioport(ipmi_defaults[i].port))
3185                         continue;
3186 #endif
3187                 info = smi_info_alloc();
3188                 if (!info)
3189                         return;
3190
3191                 info->addr_source = SI_DEFAULT;
3192
3193                 info->si_type = ipmi_defaults[i].type;
3194                 info->io_setup = port_setup;
3195                 info->io.addr_data = ipmi_defaults[i].port;
3196                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3197
3198                 info->io.addr = NULL;
3199                 info->io.regspacing = DEFAULT_REGSPACING;
3200                 info->io.regsize = DEFAULT_REGSPACING;
3201                 info->io.regshift = 0;
3202
3203                 if (add_smi(info) == 0) {
3204                         if ((try_smi_init(info)) == 0) {
3205                                 /* Found one... */
3206                                 printk(KERN_INFO PFX "Found default %s"
3207                                 " state machine at %s address 0x%lx\n",
3208                                 si_to_str[info->si_type],
3209                                 addr_space_to_str[info->io.addr_type],
3210                                 info->io.addr_data);
3211                         } else
3212                                 cleanup_one_si(info);
3213                 } else {
3214                         kfree(info);
3215                 }
3216         }
3217 }
3218
3219 static int is_new_interface(struct smi_info *info)
3220 {
3221         struct smi_info *e;
3222
3223         list_for_each_entry(e, &smi_infos, link) {
3224                 if (e->io.addr_type != info->io.addr_type)
3225                         continue;
3226                 if (e->io.addr_data == info->io.addr_data)
3227                         return 0;
3228         }
3229
3230         return 1;
3231 }
3232
3233 static int add_smi(struct smi_info *new_smi)
3234 {
3235         int rv = 0;
3236
3237         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3238                         ipmi_addr_src_to_str[new_smi->addr_source],
3239                         si_to_str[new_smi->si_type]);
3240         mutex_lock(&smi_infos_lock);
3241         if (!is_new_interface(new_smi)) {
3242                 printk(KERN_CONT " duplicate interface\n");
3243                 rv = -EBUSY;
3244                 goto out_err;
3245         }
3246
3247         printk(KERN_CONT "\n");
3248
3249         /* So we know not to free it unless we have allocated one. */
3250         new_smi->intf = NULL;
3251         new_smi->si_sm = NULL;
3252         new_smi->handlers = NULL;
3253
3254         list_add_tail(&new_smi->link, &smi_infos);
3255
3256 out_err:
3257         mutex_unlock(&smi_infos_lock);
3258         return rv;
3259 }
3260
3261 static int try_smi_init(struct smi_info *new_smi)
3262 {
3263         int rv = 0;
3264         int i;
3265
3266         printk(KERN_INFO PFX "Trying %s-specified %s state"
3267                " machine at %s address 0x%lx, slave address 0x%x,"
3268                " irq %d\n",
3269                ipmi_addr_src_to_str[new_smi->addr_source],
3270                si_to_str[new_smi->si_type],
3271                addr_space_to_str[new_smi->io.addr_type],
3272                new_smi->io.addr_data,
3273                new_smi->slave_addr, new_smi->irq);
3274
3275         switch (new_smi->si_type) {
3276         case SI_KCS:
3277                 new_smi->handlers = &kcs_smi_handlers;
3278                 break;
3279
3280         case SI_SMIC:
3281                 new_smi->handlers = &smic_smi_handlers;
3282                 break;
3283
3284         case SI_BT:
3285                 new_smi->handlers = &bt_smi_handlers;
3286                 break;
3287
3288         default:
3289                 /* No support for anything else yet. */
3290                 rv = -EIO;
3291                 goto out_err;
3292         }
3293
3294         /* Allocate the state machine's data and initialize it. */
3295         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3296         if (!new_smi->si_sm) {
3297                 printk(KERN_ERR PFX
3298                        "Could not allocate state machine memory\n");
3299                 rv = -ENOMEM;
3300                 goto out_err;
3301         }
3302         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3303                                                         &new_smi->io);
3304
3305         /* Now that we know the I/O size, we can set up the I/O. */
3306         rv = new_smi->io_setup(new_smi);
3307         if (rv) {
3308                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3309                 goto out_err;
3310         }
3311
3312         /* Do low-level detection first. */
3313         if (new_smi->handlers->detect(new_smi->si_sm)) {
3314                 if (new_smi->addr_source)
3315                         printk(KERN_INFO PFX "Interface detection failed\n");
3316                 rv = -ENODEV;
3317                 goto out_err;
3318         }
3319
3320         /*
3321          * Attempt a get device id command.  If it fails, we probably
3322          * don't have a BMC here.
3323          */
3324         rv = try_get_dev_id(new_smi);
3325         if (rv) {
3326                 if (new_smi->addr_source)
3327                         printk(KERN_INFO PFX "There appears to be no BMC"
3328                                " at this location\n");
3329                 goto out_err;
3330         }
3331
3332         setup_oem_data_handler(new_smi);
3333         setup_xaction_handlers(new_smi);
3334
3335         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3336         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3337         new_smi->curr_msg = NULL;
3338         atomic_set(&new_smi->req_events, 0);
3339         new_smi->run_to_completion = 0;
3340         for (i = 0; i < SI_NUM_STATS; i++)
3341                 atomic_set(&new_smi->stats[i], 0);
3342
3343         new_smi->interrupt_disabled = 1;
3344         atomic_set(&new_smi->stop_operation, 0);
3345         new_smi->intf_num = smi_num;
3346         smi_num++;
3347
3348         rv = try_enable_event_buffer(new_smi);
3349         if (rv == 0)
3350                 new_smi->has_event_buffer = 1;
3351
3352         /*
3353          * Start clearing the flags before we enable interrupts or the
3354          * timer to avoid racing with the timer.
3355          */
3356         start_clear_flags(new_smi);
3357         /* IRQ is defined to be set when non-zero. */
3358         if (new_smi->irq)
3359                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3360
3361         if (!new_smi->dev) {
3362                 /*
3363                  * If we don't already have a device from something
3364                  * else (like PCI), then register a new one.
3365                  */
3366                 new_smi->pdev = platform_device_alloc("ipmi_si",
3367                                                       new_smi->intf_num);
3368                 if (!new_smi->pdev) {
3369                         printk(KERN_ERR PFX
3370                                "Unable to allocate platform device\n");
3371                         goto out_err;
3372                 }
3373                 new_smi->dev = &new_smi->pdev->dev;
3374                 new_smi->dev->driver = &ipmi_driver.driver;
3375
3376                 rv = platform_device_add(new_smi->pdev);
3377                 if (rv) {
3378                         printk(KERN_ERR PFX
3379                                "Unable to register system interface device:"
3380                                " %d\n",
3381                                rv);
3382                         goto out_err;
3383                 }
3384                 new_smi->dev_registered = 1;
3385         }
3386
3387         rv = ipmi_register_smi(&handlers,
3388                                new_smi,
3389                                &new_smi->device_id,
3390                                new_smi->dev,
3391                                "bmc",
3392                                new_smi->slave_addr);
3393         if (rv) {
3394                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3395                         rv);
3396                 goto out_err_stop_timer;
3397         }
3398
3399         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3400                                      &smi_type_proc_ops,
3401                                      new_smi);
3402         if (rv) {
3403                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3404                 goto out_err_stop_timer;
3405         }
3406
3407         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3408                                      &smi_si_stats_proc_ops,
3409                                      new_smi);
3410         if (rv) {
3411                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3412                 goto out_err_stop_timer;
3413         }
3414
3415         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3416                                      &smi_params_proc_ops,
3417                                      new_smi);
3418         if (rv) {
3419                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3420                 goto out_err_stop_timer;
3421         }
3422
3423         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3424                  si_to_str[new_smi->si_type]);
3425
3426         return 0;
3427
3428  out_err_stop_timer:
3429         atomic_inc(&new_smi->stop_operation);
3430         wait_for_timer_and_thread(new_smi);
3431
3432  out_err:
3433         new_smi->interrupt_disabled = 1;
3434
3435         if (new_smi->intf) {
3436                 ipmi_unregister_smi(new_smi->intf);
3437                 new_smi->intf = NULL;
3438         }
3439
3440         if (new_smi->irq_cleanup) {
3441                 new_smi->irq_cleanup(new_smi);
3442                 new_smi->irq_cleanup = NULL;
3443         }
3444
3445         /*
3446          * Wait until we know that we are out of any interrupt
3447          * handlers might have been running before we freed the
3448          * interrupt.
3449          */
3450         synchronize_sched();
3451
3452         if (new_smi->si_sm) {
3453                 if (new_smi->handlers)
3454                         new_smi->handlers->cleanup(new_smi->si_sm);
3455                 kfree(new_smi->si_sm);
3456                 new_smi->si_sm = NULL;
3457         }
3458         if (new_smi->addr_source_cleanup) {
3459                 new_smi->addr_source_cleanup(new_smi);
3460                 new_smi->addr_source_cleanup = NULL;
3461         }
3462         if (new_smi->io_cleanup) {
3463                 new_smi->io_cleanup(new_smi);
3464                 new_smi->io_cleanup = NULL;
3465         }
3466
3467         if (new_smi->dev_registered) {
3468                 platform_device_unregister(new_smi->pdev);
3469                 new_smi->dev_registered = 0;
3470         }
3471
3472         return rv;
3473 }
3474
3475 static int init_ipmi_si(void)
3476 {
3477         int  i;
3478         char *str;
3479         int  rv;
3480         struct smi_info *e;
3481         enum ipmi_addr_src type = SI_INVALID;
3482
3483         if (initialized)
3484                 return 0;
3485         initialized = 1;
3486
3487         if (si_tryplatform) {
3488                 rv = platform_driver_register(&ipmi_driver);
3489                 if (rv) {
3490                         printk(KERN_ERR PFX "Unable to register "
3491                                "driver: %d\n", rv);
3492                         return rv;
3493                 }
3494         }
3495
3496         /* Parse out the si_type string into its components. */
3497         str = si_type_str;
3498         if (*str != '\0') {
3499                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3500                         si_type[i] = str;
3501                         str = strchr(str, ',');
3502                         if (str) {
3503                                 *str = '\0';
3504                                 str++;
3505                         } else {
3506                                 break;
3507                         }
3508                 }
3509         }
3510
3511         printk(KERN_INFO "IPMI System Interface driver.\n");
3512
3513         /* If the user gave us a device, they presumably want us to use it */
3514         if (!hardcode_find_bmc())
3515                 return 0;
3516
3517 #ifdef CONFIG_PCI
3518         if (si_trypci) {
3519                 rv = pci_register_driver(&ipmi_pci_driver);
3520                 if (rv)
3521                         printk(KERN_ERR PFX "Unable to register "
3522                                "PCI driver: %d\n", rv);
3523                 else
3524                         pci_registered = 1;
3525         }
3526 #endif
3527
3528 #ifdef CONFIG_ACPI
3529         if (si_tryacpi) {
3530                 pnp_register_driver(&ipmi_pnp_driver);
3531                 pnp_registered = 1;
3532         }
3533 #endif
3534
3535 #ifdef CONFIG_DMI
3536         if (si_trydmi)
3537                 dmi_find_bmc();
3538 #endif
3539
3540 #ifdef CONFIG_ACPI
3541         if (si_tryacpi)
3542                 spmi_find_bmc();
3543 #endif
3544
3545 #ifdef CONFIG_PARISC
3546         register_parisc_driver(&ipmi_parisc_driver);
3547         parisc_registered = 1;
3548         /* poking PC IO addresses will crash machine, don't do it */
3549         si_trydefaults = 0;
3550 #endif
3551
3552         /* We prefer devices with interrupts, but in the case of a machine
3553            with multiple BMCs we assume that there will be several instances
3554            of a given type so if we succeed in registering a type then also
3555            try to register everything else of the same type */
3556
3557         mutex_lock(&smi_infos_lock);
3558         list_for_each_entry(e, &smi_infos, link) {
3559                 /* Try to register a device if it has an IRQ and we either
3560                    haven't successfully registered a device yet or this
3561                    device has the same type as one we successfully registered */
3562                 if (e->irq && (!type || e->addr_source == type)) {
3563                         if (!try_smi_init(e)) {
3564                                 type = e->addr_source;
3565                         }
3566                 }
3567         }
3568
3569         /* type will only have been set if we successfully registered an si */
3570         if (type) {
3571                 mutex_unlock(&smi_infos_lock);
3572                 return 0;
3573         }
3574
3575         /* Fall back to the preferred device */
3576
3577         list_for_each_entry(e, &smi_infos, link) {
3578                 if (!e->irq && (!type || e->addr_source == type)) {
3579                         if (!try_smi_init(e)) {
3580                                 type = e->addr_source;
3581                         }
3582                 }
3583         }
3584         mutex_unlock(&smi_infos_lock);
3585
3586         if (type)
3587                 return 0;
3588
3589         if (si_trydefaults) {
3590                 mutex_lock(&smi_infos_lock);
3591                 if (list_empty(&smi_infos)) {
3592                         /* No BMC was found, try defaults. */
3593                         mutex_unlock(&smi_infos_lock);
3594                         default_find_bmc();
3595                 } else
3596                         mutex_unlock(&smi_infos_lock);
3597         }
3598
3599         mutex_lock(&smi_infos_lock);
3600         if (unload_when_empty && list_empty(&smi_infos)) {
3601                 mutex_unlock(&smi_infos_lock);
3602                 cleanup_ipmi_si();
3603                 printk(KERN_WARNING PFX
3604                        "Unable to find any System Interface(s)\n");
3605                 return -ENODEV;
3606         } else {
3607                 mutex_unlock(&smi_infos_lock);
3608                 return 0;
3609         }
3610 }
3611 module_init(init_ipmi_si);
3612
3613 static void cleanup_one_si(struct smi_info *to_clean)
3614 {
3615         int           rv = 0;
3616         unsigned long flags;
3617
3618         if (!to_clean)
3619                 return;
3620
3621         list_del(&to_clean->link);
3622
3623         /* Tell the driver that we are shutting down. */
3624         atomic_inc(&to_clean->stop_operation);
3625
3626         /*
3627          * Make sure the timer and thread are stopped and will not run
3628          * again.
3629          */
3630         wait_for_timer_and_thread(to_clean);
3631
3632         /*
3633          * Timeouts are stopped, now make sure the interrupts are off
3634          * for the device.  A little tricky with locks to make sure
3635          * there are no races.
3636          */
3637         spin_lock_irqsave(&to_clean->si_lock, flags);
3638         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3639                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3640                 poll(to_clean);
3641                 schedule_timeout_uninterruptible(1);
3642                 spin_lock_irqsave(&to_clean->si_lock, flags);
3643         }
3644         disable_si_irq(to_clean);
3645         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3646         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3647                 poll(to_clean);
3648                 schedule_timeout_uninterruptible(1);
3649         }
3650
3651         /* Clean up interrupts and make sure that everything is done. */
3652         if (to_clean->irq_cleanup)
3653                 to_clean->irq_cleanup(to_clean);
3654         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3655                 poll(to_clean);
3656                 schedule_timeout_uninterruptible(1);
3657         }
3658
3659         if (to_clean->intf)
3660                 rv = ipmi_unregister_smi(to_clean->intf);
3661
3662         if (rv) {
3663                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3664                        rv);
3665         }
3666
3667         if (to_clean->handlers)
3668                 to_clean->handlers->cleanup(to_clean->si_sm);
3669
3670         kfree(to_clean->si_sm);
3671
3672         if (to_clean->addr_source_cleanup)
3673                 to_clean->addr_source_cleanup(to_clean);
3674         if (to_clean->io_cleanup)
3675                 to_clean->io_cleanup(to_clean);
3676
3677         if (to_clean->dev_registered)
3678                 platform_device_unregister(to_clean->pdev);
3679
3680         kfree(to_clean);
3681 }
3682
3683 static void cleanup_ipmi_si(void)
3684 {
3685         struct smi_info *e, *tmp_e;
3686
3687         if (!initialized)
3688                 return;
3689
3690 #ifdef CONFIG_PCI
3691         if (pci_registered)
3692                 pci_unregister_driver(&ipmi_pci_driver);
3693 #endif
3694 #ifdef CONFIG_ACPI
3695         if (pnp_registered)
3696                 pnp_unregister_driver(&ipmi_pnp_driver);
3697 #endif
3698 #ifdef CONFIG_PARISC
3699         if (parisc_registered)
3700                 unregister_parisc_driver(&ipmi_parisc_driver);
3701 #endif
3702
3703         platform_driver_unregister(&ipmi_driver);
3704
3705         mutex_lock(&smi_infos_lock);
3706         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3707                 cleanup_one_si(e);
3708         mutex_unlock(&smi_infos_lock);
3709 }
3710 module_exit(cleanup_ipmi_si);
3711
3712 MODULE_LICENSE("GPL");
3713 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3714 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3715                    " system interfaces.");