]> Pileus Git - ~andy/linux/blob - drivers/block/zram/zram_drv.c
ebfddd852272eb60172af99ccdbc2232b6a5ba74
[~andy/linux] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47         return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51                 struct device_attribute *attr, char *buf)
52 {
53         struct zram *zram = dev_to_zram(dev);
54
55         return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59                 struct device_attribute *attr, char *buf)
60 {
61         struct zram *zram = dev_to_zram(dev);
62
63         return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return sprintf(buf, "%llu\n",
72                         (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         struct zram *zram = dev_to_zram(dev);
79
80         return sprintf(buf, "%llu\n",
81                         (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85                 struct device_attribute *attr, char *buf)
86 {
87         struct zram *zram = dev_to_zram(dev);
88
89         return sprintf(buf, "%llu\n",
90                         (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94                 struct device_attribute *attr, char *buf)
95 {
96         struct zram *zram = dev_to_zram(dev);
97
98         return sprintf(buf, "%llu\n",
99                         (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103                 struct device_attribute *attr, char *buf)
104 {
105         struct zram *zram = dev_to_zram(dev);
106
107         return sprintf(buf, "%u\n", zram->stats.pages_zero);
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111                 struct device_attribute *attr, char *buf)
112 {
113         struct zram *zram = dev_to_zram(dev);
114
115         return sprintf(buf, "%llu\n",
116                 (u64)(zram->stats.pages_stored) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120                 struct device_attribute *attr, char *buf)
121 {
122         struct zram *zram = dev_to_zram(dev);
123
124         return sprintf(buf, "%llu\n",
125                         (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129                 struct device_attribute *attr, char *buf)
130 {
131         u64 val = 0;
132         struct zram *zram = dev_to_zram(dev);
133         struct zram_meta *meta = zram->meta;
134
135         down_read(&zram->init_lock);
136         if (zram->init_done)
137                 val = zs_get_total_size_bytes(meta->mem_pool);
138         up_read(&zram->init_lock);
139
140         return sprintf(buf, "%llu\n", val);
141 }
142
143 static int zram_test_flag(struct zram_meta *meta, u32 index,
144                         enum zram_pageflags flag)
145 {
146         return meta->table[index].flags & BIT(flag);
147 }
148
149 static void zram_set_flag(struct zram_meta *meta, u32 index,
150                         enum zram_pageflags flag)
151 {
152         meta->table[index].flags |= BIT(flag);
153 }
154
155 static void zram_clear_flag(struct zram_meta *meta, u32 index,
156                         enum zram_pageflags flag)
157 {
158         meta->table[index].flags &= ~BIT(flag);
159 }
160
161 static inline int is_partial_io(struct bio_vec *bvec)
162 {
163         return bvec->bv_len != PAGE_SIZE;
164 }
165
166 /*
167  * Check if request is within bounds and aligned on zram logical blocks.
168  */
169 static inline int valid_io_request(struct zram *zram, struct bio *bio)
170 {
171         u64 start, end, bound;
172
173         /* unaligned request */
174         if (unlikely(bio->bi_iter.bi_sector &
175                      (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
176                 return 0;
177         if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
178                 return 0;
179
180         start = bio->bi_iter.bi_sector;
181         end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
182         bound = zram->disksize >> SECTOR_SHIFT;
183         /* out of range range */
184         if (unlikely(start >= bound || end > bound || start > end))
185                 return 0;
186
187         /* I/O request is valid */
188         return 1;
189 }
190
191 static void zram_meta_free(struct zram_meta *meta)
192 {
193         zs_destroy_pool(meta->mem_pool);
194         kfree(meta->compress_workmem);
195         free_pages((unsigned long)meta->compress_buffer, 1);
196         vfree(meta->table);
197         kfree(meta);
198 }
199
200 static struct zram_meta *zram_meta_alloc(u64 disksize)
201 {
202         size_t num_pages;
203         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
204         if (!meta)
205                 goto out;
206
207         meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
208         if (!meta->compress_workmem)
209                 goto free_meta;
210
211         meta->compress_buffer =
212                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
213         if (!meta->compress_buffer) {
214                 pr_err("Error allocating compressor buffer space\n");
215                 goto free_workmem;
216         }
217
218         num_pages = disksize >> PAGE_SHIFT;
219         meta->table = vzalloc(num_pages * sizeof(*meta->table));
220         if (!meta->table) {
221                 pr_err("Error allocating zram address table\n");
222                 goto free_buffer;
223         }
224
225         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
226         if (!meta->mem_pool) {
227                 pr_err("Error creating memory pool\n");
228                 goto free_table;
229         }
230
231         return meta;
232
233 free_table:
234         vfree(meta->table);
235 free_buffer:
236         free_pages((unsigned long)meta->compress_buffer, 1);
237 free_workmem:
238         kfree(meta->compress_workmem);
239 free_meta:
240         kfree(meta);
241         meta = NULL;
242 out:
243         return meta;
244 }
245
246 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
247 {
248         if (*offset + bvec->bv_len >= PAGE_SIZE)
249                 (*index)++;
250         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
251 }
252
253 static int page_zero_filled(void *ptr)
254 {
255         unsigned int pos;
256         unsigned long *page;
257
258         page = (unsigned long *)ptr;
259
260         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
261                 if (page[pos])
262                         return 0;
263         }
264
265         return 1;
266 }
267
268 static void handle_zero_page(struct bio_vec *bvec)
269 {
270         struct page *page = bvec->bv_page;
271         void *user_mem;
272
273         user_mem = kmap_atomic(page);
274         if (is_partial_io(bvec))
275                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
276         else
277                 clear_page(user_mem);
278         kunmap_atomic(user_mem);
279
280         flush_dcache_page(page);
281 }
282
283 static void zram_free_page(struct zram *zram, size_t index)
284 {
285         struct zram_meta *meta = zram->meta;
286         unsigned long handle = meta->table[index].handle;
287         u16 size = meta->table[index].size;
288
289         if (unlikely(!handle)) {
290                 /*
291                  * No memory is allocated for zero filled pages.
292                  * Simply clear zero page flag.
293                  */
294                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
295                         zram_clear_flag(meta, index, ZRAM_ZERO);
296                         zram->stats.pages_zero--;
297                 }
298                 return;
299         }
300
301         if (unlikely(size > max_zpage_size))
302                 zram->stats.bad_compress--;
303
304         zs_free(meta->mem_pool, handle);
305
306         if (size <= PAGE_SIZE / 2)
307                 zram->stats.good_compress--;
308
309         atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
310         zram->stats.pages_stored--;
311
312         meta->table[index].handle = 0;
313         meta->table[index].size = 0;
314 }
315
316 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
317 {
318         int ret = LZO_E_OK;
319         size_t clen = PAGE_SIZE;
320         unsigned char *cmem;
321         struct zram_meta *meta = zram->meta;
322         unsigned long handle = meta->table[index].handle;
323
324         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
325                 clear_page(mem);
326                 return 0;
327         }
328
329         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
330         if (meta->table[index].size == PAGE_SIZE)
331                 copy_page(mem, cmem);
332         else
333                 ret = lzo1x_decompress_safe(cmem, meta->table[index].size,
334                                                 mem, &clen);
335         zs_unmap_object(meta->mem_pool, handle);
336
337         /* Should NEVER happen. Return bio error if it does. */
338         if (unlikely(ret != LZO_E_OK)) {
339                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
340                 atomic64_inc(&zram->stats.failed_reads);
341                 return ret;
342         }
343
344         return 0;
345 }
346
347 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
348                           u32 index, int offset, struct bio *bio)
349 {
350         int ret;
351         struct page *page;
352         unsigned char *user_mem, *uncmem = NULL;
353         struct zram_meta *meta = zram->meta;
354         page = bvec->bv_page;
355
356         if (unlikely(!meta->table[index].handle) ||
357                         zram_test_flag(meta, index, ZRAM_ZERO)) {
358                 handle_zero_page(bvec);
359                 return 0;
360         }
361
362         if (is_partial_io(bvec))
363                 /* Use  a temporary buffer to decompress the page */
364                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
365
366         user_mem = kmap_atomic(page);
367         if (!is_partial_io(bvec))
368                 uncmem = user_mem;
369
370         if (!uncmem) {
371                 pr_info("Unable to allocate temp memory\n");
372                 ret = -ENOMEM;
373                 goto out_cleanup;
374         }
375
376         ret = zram_decompress_page(zram, uncmem, index);
377         /* Should NEVER happen. Return bio error if it does. */
378         if (unlikely(ret != LZO_E_OK))
379                 goto out_cleanup;
380
381         if (is_partial_io(bvec))
382                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
383                                 bvec->bv_len);
384
385         flush_dcache_page(page);
386         ret = 0;
387 out_cleanup:
388         kunmap_atomic(user_mem);
389         if (is_partial_io(bvec))
390                 kfree(uncmem);
391         return ret;
392 }
393
394 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
395                            int offset)
396 {
397         int ret = 0;
398         size_t clen;
399         unsigned long handle;
400         struct page *page;
401         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
402         struct zram_meta *meta = zram->meta;
403
404         page = bvec->bv_page;
405         src = meta->compress_buffer;
406
407         if (is_partial_io(bvec)) {
408                 /*
409                  * This is a partial IO. We need to read the full page
410                  * before to write the changes.
411                  */
412                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
413                 if (!uncmem) {
414                         ret = -ENOMEM;
415                         goto out;
416                 }
417                 ret = zram_decompress_page(zram, uncmem, index);
418                 if (ret)
419                         goto out;
420         }
421
422         user_mem = kmap_atomic(page);
423
424         if (is_partial_io(bvec)) {
425                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
426                        bvec->bv_len);
427                 kunmap_atomic(user_mem);
428                 user_mem = NULL;
429         } else {
430                 uncmem = user_mem;
431         }
432
433         if (page_zero_filled(uncmem)) {
434                 kunmap_atomic(user_mem);
435                 /* Free memory associated with this sector now. */
436                 zram_free_page(zram, index);
437
438                 zram->stats.pages_zero++;
439                 zram_set_flag(meta, index, ZRAM_ZERO);
440                 ret = 0;
441                 goto out;
442         }
443
444         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
445                                meta->compress_workmem);
446
447         if (!is_partial_io(bvec)) {
448                 kunmap_atomic(user_mem);
449                 user_mem = NULL;
450                 uncmem = NULL;
451         }
452
453         if (unlikely(ret != LZO_E_OK)) {
454                 pr_err("Compression failed! err=%d\n", ret);
455                 goto out;
456         }
457
458         if (unlikely(clen > max_zpage_size)) {
459                 zram->stats.bad_compress++;
460                 clen = PAGE_SIZE;
461                 src = NULL;
462                 if (is_partial_io(bvec))
463                         src = uncmem;
464         }
465
466         handle = zs_malloc(meta->mem_pool, clen);
467         if (!handle) {
468                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
469                         index, clen);
470                 ret = -ENOMEM;
471                 goto out;
472         }
473         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
474
475         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
476                 src = kmap_atomic(page);
477                 copy_page(cmem, src);
478                 kunmap_atomic(src);
479         } else {
480                 memcpy(cmem, src, clen);
481         }
482
483         zs_unmap_object(meta->mem_pool, handle);
484
485         /*
486          * Free memory associated with this sector
487          * before overwriting unused sectors.
488          */
489         zram_free_page(zram, index);
490
491         meta->table[index].handle = handle;
492         meta->table[index].size = clen;
493
494         /* Update stats */
495         atomic64_add(clen, &zram->stats.compr_size);
496         zram->stats.pages_stored++;
497         if (clen <= PAGE_SIZE / 2)
498                 zram->stats.good_compress++;
499
500 out:
501         if (is_partial_io(bvec))
502                 kfree(uncmem);
503
504         if (ret)
505                 atomic64_inc(&zram->stats.failed_writes);
506         return ret;
507 }
508
509 static void handle_pending_slot_free(struct zram *zram)
510 {
511         struct zram_slot_free *free_rq;
512
513         spin_lock(&zram->slot_free_lock);
514         while (zram->slot_free_rq) {
515                 free_rq = zram->slot_free_rq;
516                 zram->slot_free_rq = free_rq->next;
517                 zram_free_page(zram, free_rq->index);
518                 kfree(free_rq);
519         }
520         spin_unlock(&zram->slot_free_lock);
521 }
522
523 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
524                         int offset, struct bio *bio, int rw)
525 {
526         int ret;
527
528         if (rw == READ) {
529                 down_read(&zram->lock);
530                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
531                 up_read(&zram->lock);
532         } else {
533                 down_write(&zram->lock);
534                 handle_pending_slot_free(zram);
535                 ret = zram_bvec_write(zram, bvec, index, offset);
536                 up_write(&zram->lock);
537         }
538
539         return ret;
540 }
541
542 static void zram_reset_device(struct zram *zram, bool reset_capacity)
543 {
544         size_t index;
545         struct zram_meta *meta;
546
547         down_write(&zram->init_lock);
548         if (!zram->init_done) {
549                 up_write(&zram->init_lock);
550                 return;
551         }
552
553         flush_work(&zram->free_work);
554
555         meta = zram->meta;
556         zram->init_done = 0;
557
558         /* Free all pages that are still in this zram device */
559         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
560                 unsigned long handle = meta->table[index].handle;
561                 if (!handle)
562                         continue;
563
564                 zs_free(meta->mem_pool, handle);
565         }
566
567         zram_meta_free(zram->meta);
568         zram->meta = NULL;
569         /* Reset stats */
570         memset(&zram->stats, 0, sizeof(zram->stats));
571
572         zram->disksize = 0;
573         if (reset_capacity)
574                 set_capacity(zram->disk, 0);
575         up_write(&zram->init_lock);
576 }
577
578 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
579 {
580         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
581                 pr_info(
582                 "There is little point creating a zram of greater than "
583                 "twice the size of memory since we expect a 2:1 compression "
584                 "ratio. Note that zram uses about 0.1%% of the size of "
585                 "the disk when not in use so a huge zram is "
586                 "wasteful.\n"
587                 "\tMemory Size: %lu kB\n"
588                 "\tSize you selected: %llu kB\n"
589                 "Continuing anyway ...\n",
590                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
591                 );
592         }
593
594         /* zram devices sort of resembles non-rotational disks */
595         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
596
597         zram->meta = meta;
598         zram->init_done = 1;
599
600         pr_debug("Initialization done!\n");
601 }
602
603 static ssize_t disksize_store(struct device *dev,
604                 struct device_attribute *attr, const char *buf, size_t len)
605 {
606         u64 disksize;
607         struct zram_meta *meta;
608         struct zram *zram = dev_to_zram(dev);
609
610         disksize = memparse(buf, NULL);
611         if (!disksize)
612                 return -EINVAL;
613
614         disksize = PAGE_ALIGN(disksize);
615         meta = zram_meta_alloc(disksize);
616         down_write(&zram->init_lock);
617         if (zram->init_done) {
618                 up_write(&zram->init_lock);
619                 zram_meta_free(meta);
620                 pr_info("Cannot change disksize for initialized device\n");
621                 return -EBUSY;
622         }
623
624         zram->disksize = disksize;
625         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
626         zram_init_device(zram, meta);
627         up_write(&zram->init_lock);
628
629         return len;
630 }
631
632 static ssize_t reset_store(struct device *dev,
633                 struct device_attribute *attr, const char *buf, size_t len)
634 {
635         int ret;
636         unsigned short do_reset;
637         struct zram *zram;
638         struct block_device *bdev;
639
640         zram = dev_to_zram(dev);
641         bdev = bdget_disk(zram->disk, 0);
642
643         if (!bdev)
644                 return -ENOMEM;
645
646         /* Do not reset an active device! */
647         if (bdev->bd_holders) {
648                 ret = -EBUSY;
649                 goto out;
650         }
651
652         ret = kstrtou16(buf, 10, &do_reset);
653         if (ret)
654                 goto out;
655
656         if (!do_reset) {
657                 ret = -EINVAL;
658                 goto out;
659         }
660
661         /* Make sure all pending I/O is finished */
662         fsync_bdev(bdev);
663         bdput(bdev);
664
665         zram_reset_device(zram, true);
666         return len;
667
668 out:
669         bdput(bdev);
670         return ret;
671 }
672
673 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
674 {
675         int offset;
676         u32 index;
677         struct bio_vec bvec;
678         struct bvec_iter iter;
679
680         switch (rw) {
681         case READ:
682                 atomic64_inc(&zram->stats.num_reads);
683                 break;
684         case WRITE:
685                 atomic64_inc(&zram->stats.num_writes);
686                 break;
687         }
688
689         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
690         offset = (bio->bi_iter.bi_sector &
691                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
692
693         bio_for_each_segment(bvec, bio, iter) {
694                 int max_transfer_size = PAGE_SIZE - offset;
695
696                 if (bvec.bv_len > max_transfer_size) {
697                         /*
698                          * zram_bvec_rw() can only make operation on a single
699                          * zram page. Split the bio vector.
700                          */
701                         struct bio_vec bv;
702
703                         bv.bv_page = bvec.bv_page;
704                         bv.bv_len = max_transfer_size;
705                         bv.bv_offset = bvec.bv_offset;
706
707                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
708                                 goto out;
709
710                         bv.bv_len = bvec.bv_len - max_transfer_size;
711                         bv.bv_offset += max_transfer_size;
712                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
713                                 goto out;
714                 } else
715                         if (zram_bvec_rw(zram, &bvec, index, offset, bio, rw)
716                             < 0)
717                                 goto out;
718
719                 update_position(&index, &offset, &bvec);
720         }
721
722         set_bit(BIO_UPTODATE, &bio->bi_flags);
723         bio_endio(bio, 0);
724         return;
725
726 out:
727         bio_io_error(bio);
728 }
729
730 /*
731  * Handler function for all zram I/O requests.
732  */
733 static void zram_make_request(struct request_queue *queue, struct bio *bio)
734 {
735         struct zram *zram = queue->queuedata;
736
737         down_read(&zram->init_lock);
738         if (unlikely(!zram->init_done))
739                 goto error;
740
741         if (!valid_io_request(zram, bio)) {
742                 atomic64_inc(&zram->stats.invalid_io);
743                 goto error;
744         }
745
746         __zram_make_request(zram, bio, bio_data_dir(bio));
747         up_read(&zram->init_lock);
748
749         return;
750
751 error:
752         up_read(&zram->init_lock);
753         bio_io_error(bio);
754 }
755
756 static void zram_slot_free(struct work_struct *work)
757 {
758         struct zram *zram;
759
760         zram = container_of(work, struct zram, free_work);
761         down_write(&zram->lock);
762         handle_pending_slot_free(zram);
763         up_write(&zram->lock);
764 }
765
766 static void add_slot_free(struct zram *zram, struct zram_slot_free *free_rq)
767 {
768         spin_lock(&zram->slot_free_lock);
769         free_rq->next = zram->slot_free_rq;
770         zram->slot_free_rq = free_rq;
771         spin_unlock(&zram->slot_free_lock);
772 }
773
774 static void zram_slot_free_notify(struct block_device *bdev,
775                                 unsigned long index)
776 {
777         struct zram *zram;
778         struct zram_slot_free *free_rq;
779
780         zram = bdev->bd_disk->private_data;
781         atomic64_inc(&zram->stats.notify_free);
782
783         free_rq = kmalloc(sizeof(struct zram_slot_free), GFP_ATOMIC);
784         if (!free_rq)
785                 return;
786
787         free_rq->index = index;
788         add_slot_free(zram, free_rq);
789         schedule_work(&zram->free_work);
790 }
791
792 static const struct block_device_operations zram_devops = {
793         .swap_slot_free_notify = zram_slot_free_notify,
794         .owner = THIS_MODULE
795 };
796
797 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
798                 disksize_show, disksize_store);
799 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
800 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
801 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
802 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
803 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
804 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
805 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
806 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
807 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
808 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
809
810 static struct attribute *zram_disk_attrs[] = {
811         &dev_attr_disksize.attr,
812         &dev_attr_initstate.attr,
813         &dev_attr_reset.attr,
814         &dev_attr_num_reads.attr,
815         &dev_attr_num_writes.attr,
816         &dev_attr_invalid_io.attr,
817         &dev_attr_notify_free.attr,
818         &dev_attr_zero_pages.attr,
819         &dev_attr_orig_data_size.attr,
820         &dev_attr_compr_data_size.attr,
821         &dev_attr_mem_used_total.attr,
822         NULL,
823 };
824
825 static struct attribute_group zram_disk_attr_group = {
826         .attrs = zram_disk_attrs,
827 };
828
829 static int create_device(struct zram *zram, int device_id)
830 {
831         int ret = -ENOMEM;
832
833         init_rwsem(&zram->lock);
834         init_rwsem(&zram->init_lock);
835
836         INIT_WORK(&zram->free_work, zram_slot_free);
837         spin_lock_init(&zram->slot_free_lock);
838         zram->slot_free_rq = NULL;
839
840         zram->queue = blk_alloc_queue(GFP_KERNEL);
841         if (!zram->queue) {
842                 pr_err("Error allocating disk queue for device %d\n",
843                         device_id);
844                 goto out;
845         }
846
847         blk_queue_make_request(zram->queue, zram_make_request);
848         zram->queue->queuedata = zram;
849
850          /* gendisk structure */
851         zram->disk = alloc_disk(1);
852         if (!zram->disk) {
853                 pr_warn("Error allocating disk structure for device %d\n",
854                         device_id);
855                 goto out_free_queue;
856         }
857
858         zram->disk->major = zram_major;
859         zram->disk->first_minor = device_id;
860         zram->disk->fops = &zram_devops;
861         zram->disk->queue = zram->queue;
862         zram->disk->private_data = zram;
863         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
864
865         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
866         set_capacity(zram->disk, 0);
867
868         /*
869          * To ensure that we always get PAGE_SIZE aligned
870          * and n*PAGE_SIZED sized I/O requests.
871          */
872         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
873         blk_queue_logical_block_size(zram->disk->queue,
874                                         ZRAM_LOGICAL_BLOCK_SIZE);
875         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
876         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
877
878         add_disk(zram->disk);
879
880         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
881                                 &zram_disk_attr_group);
882         if (ret < 0) {
883                 pr_warn("Error creating sysfs group");
884                 goto out_free_disk;
885         }
886
887         zram->init_done = 0;
888         return 0;
889
890 out_free_disk:
891         del_gendisk(zram->disk);
892         put_disk(zram->disk);
893 out_free_queue:
894         blk_cleanup_queue(zram->queue);
895 out:
896         return ret;
897 }
898
899 static void destroy_device(struct zram *zram)
900 {
901         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
902                         &zram_disk_attr_group);
903
904         del_gendisk(zram->disk);
905         put_disk(zram->disk);
906
907         blk_cleanup_queue(zram->queue);
908 }
909
910 static int __init zram_init(void)
911 {
912         int ret, dev_id;
913
914         if (num_devices > max_num_devices) {
915                 pr_warn("Invalid value for num_devices: %u\n",
916                                 num_devices);
917                 ret = -EINVAL;
918                 goto out;
919         }
920
921         zram_major = register_blkdev(0, "zram");
922         if (zram_major <= 0) {
923                 pr_warn("Unable to get major number\n");
924                 ret = -EBUSY;
925                 goto out;
926         }
927
928         /* Allocate the device array and initialize each one */
929         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
930         if (!zram_devices) {
931                 ret = -ENOMEM;
932                 goto unregister;
933         }
934
935         for (dev_id = 0; dev_id < num_devices; dev_id++) {
936                 ret = create_device(&zram_devices[dev_id], dev_id);
937                 if (ret)
938                         goto free_devices;
939         }
940
941         pr_info("Created %u device(s) ...\n", num_devices);
942
943         return 0;
944
945 free_devices:
946         while (dev_id)
947                 destroy_device(&zram_devices[--dev_id]);
948         kfree(zram_devices);
949 unregister:
950         unregister_blkdev(zram_major, "zram");
951 out:
952         return ret;
953 }
954
955 static void __exit zram_exit(void)
956 {
957         int i;
958         struct zram *zram;
959
960         for (i = 0; i < num_devices; i++) {
961                 zram = &zram_devices[i];
962
963                 destroy_device(zram);
964                 /*
965                  * Shouldn't access zram->disk after destroy_device
966                  * because destroy_device already released zram->disk.
967                  */
968                 zram_reset_device(zram, false);
969         }
970
971         unregister_blkdev(zram_major, "zram");
972
973         kfree(zram_devices);
974         pr_debug("Cleanup done!\n");
975 }
976
977 module_init(zram_init);
978 module_exit(zram_exit);
979
980 module_param(num_devices, uint, 0);
981 MODULE_PARM_DESC(num_devices, "Number of zram devices");
982
983 MODULE_LICENSE("Dual BSD/GPL");
984 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
985 MODULE_DESCRIPTION("Compressed RAM Block Device");