]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
Merge tag 'v3.13-rc6' into for-3.14/core
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404         &bus_attr_add.attr,
405         &bus_attr_remove.attr,
406         NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411         .name           = "rbd",
412         .bus_groups     = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420         .init_name =    "rbd",
421         .release =      rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427         struct va_format vaf;
428         va_list args;
429
430         va_start(args, fmt);
431         vaf.fmt = fmt;
432         vaf.va = &args;
433
434         if (!rbd_dev)
435                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436         else if (rbd_dev->disk)
437                 printk(KERN_WARNING "%s: %s: %pV\n",
438                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439         else if (rbd_dev->spec && rbd_dev->spec->image_name)
440                 printk(KERN_WARNING "%s: image %s: %pV\n",
441                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442         else if (rbd_dev->spec && rbd_dev->spec->image_id)
443                 printk(KERN_WARNING "%s: id %s: %pV\n",
444                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445         else    /* punt */
446                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447                         RBD_DRV_NAME, rbd_dev, &vaf);
448         va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)                                                \
453                 if (unlikely(!(expr))) {                                \
454                         printk(KERN_ERR "\nAssertion failure in %s() "  \
455                                                 "at line %d:\n\n"       \
456                                         "\trbd_assert(%s);\n\n",        \
457                                         __func__, __LINE__, #expr);     \
458                         BUG();                                          \
459                 }
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)      ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472                                         u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474                                 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476                 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482         bool removing = false;
483
484         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485                 return -EROFS;
486
487         spin_lock_irq(&rbd_dev->lock);
488         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489                 removing = true;
490         else
491                 rbd_dev->open_count++;
492         spin_unlock_irq(&rbd_dev->lock);
493         if (removing)
494                 return -ENOENT;
495
496         (void) get_device(&rbd_dev->dev);
497         set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499         return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504         struct rbd_device *rbd_dev = disk->private_data;
505         unsigned long open_count_before;
506
507         spin_lock_irq(&rbd_dev->lock);
508         open_count_before = rbd_dev->open_count--;
509         spin_unlock_irq(&rbd_dev->lock);
510         rbd_assert(open_count_before > 0);
511
512         put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539         if (IS_ERR(rbdc->client))
540                 goto out_rbdc;
541         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543         ret = ceph_open_session(rbdc->client);
544         if (ret < 0)
545                 goto out_client;
546
547         spin_lock(&rbd_client_list_lock);
548         list_add_tail(&rbdc->node, &rbd_client_list);
549         spin_unlock(&rbd_client_list_lock);
550
551         dout("%s: rbdc %p\n", __func__, rbdc);
552
553         return rbdc;
554 out_client:
555         ceph_destroy_client(rbdc->client);
556 out_rbdc:
557         kfree(rbdc);
558 out_opt:
559         if (ceph_opts)
560                 ceph_destroy_options(ceph_opts);
561         dout("%s: error %d\n", __func__, ret);
562
563         return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568         kref_get(&rbdc->kref);
569
570         return rbdc;
571 }
572
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579         struct rbd_client *client_node;
580         bool found = false;
581
582         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583                 return NULL;
584
585         spin_lock(&rbd_client_list_lock);
586         list_for_each_entry(client_node, &rbd_client_list, node) {
587                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588                         __rbd_get_client(client_node);
589
590                         found = true;
591                         break;
592                 }
593         }
594         spin_unlock(&rbd_client_list_lock);
595
596         return found ? client_node : NULL;
597 }
598
599 /*
600  * mount options
601  */
602 enum {
603         Opt_last_int,
604         /* int args above */
605         Opt_last_string,
606         /* string args above */
607         Opt_read_only,
608         Opt_read_write,
609         /* Boolean args above */
610         Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614         /* int args above */
615         /* string args above */
616         {Opt_read_only, "read_only"},
617         {Opt_read_only, "ro"},          /* Alternate spelling */
618         {Opt_read_write, "read_write"},
619         {Opt_read_write, "rw"},         /* Alternate spelling */
620         /* Boolean args above */
621         {-1, NULL}
622 };
623
624 struct rbd_options {
625         bool    read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT   false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632         struct rbd_options *rbd_opts = private;
633         substring_t argstr[MAX_OPT_ARGS];
634         int token, intval, ret;
635
636         token = match_token(c, rbd_opts_tokens, argstr);
637         if (token < 0)
638                 return -EINVAL;
639
640         if (token < Opt_last_int) {
641                 ret = match_int(&argstr[0], &intval);
642                 if (ret < 0) {
643                         pr_err("bad mount option arg (not int) "
644                                "at '%s'\n", c);
645                         return ret;
646                 }
647                 dout("got int token %d val %d\n", token, intval);
648         } else if (token > Opt_last_int && token < Opt_last_string) {
649                 dout("got string token %d val %s\n", token,
650                      argstr[0].from);
651         } else if (token > Opt_last_string && token < Opt_last_bool) {
652                 dout("got Boolean token %d\n", token);
653         } else {
654                 dout("got token %d\n", token);
655         }
656
657         switch (token) {
658         case Opt_read_only:
659                 rbd_opts->read_only = true;
660                 break;
661         case Opt_read_write:
662                 rbd_opts->read_only = false;
663                 break;
664         default:
665                 rbd_assert(false);
666                 break;
667         }
668         return 0;
669 }
670
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678         struct rbd_client *rbdc;
679
680         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681         rbdc = rbd_client_find(ceph_opts);
682         if (rbdc)       /* using an existing client */
683                 ceph_destroy_options(ceph_opts);
684         else
685                 rbdc = rbd_client_create(ceph_opts);
686         mutex_unlock(&client_mutex);
687
688         return rbdc;
689 }
690
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700         dout("%s: rbdc %p\n", __func__, rbdc);
701         spin_lock(&rbd_client_list_lock);
702         list_del(&rbdc->node);
703         spin_unlock(&rbd_client_list_lock);
704
705         ceph_destroy_client(rbdc->client);
706         kfree(rbdc);
707 }
708
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715         if (rbdc)
716                 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721         return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726         size_t size;
727         u32 snap_count;
728
729         /* The header has to start with the magic rbd header text */
730         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731                 return false;
732
733         /* The bio layer requires at least sector-sized I/O */
734
735         if (ondisk->options.order < SECTOR_SHIFT)
736                 return false;
737
738         /* If we use u64 in a few spots we may be able to loosen this */
739
740         if (ondisk->options.order > 8 * sizeof (int) - 1)
741                 return false;
742
743         /*
744          * The size of a snapshot header has to fit in a size_t, and
745          * that limits the number of snapshots.
746          */
747         snap_count = le32_to_cpu(ondisk->snap_count);
748         size = SIZE_MAX - sizeof (struct ceph_snap_context);
749         if (snap_count > size / sizeof (__le64))
750                 return false;
751
752         /*
753          * Not only that, but the size of the entire the snapshot
754          * header must also be representable in a size_t.
755          */
756         size -= snap_count * sizeof (__le64);
757         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758                 return false;
759
760         return true;
761 }
762
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768                                  struct rbd_image_header_ondisk *ondisk)
769 {
770         struct rbd_image_header *header = &rbd_dev->header;
771         bool first_time = header->object_prefix == NULL;
772         struct ceph_snap_context *snapc;
773         char *object_prefix = NULL;
774         char *snap_names = NULL;
775         u64 *snap_sizes = NULL;
776         u32 snap_count;
777         size_t size;
778         int ret = -ENOMEM;
779         u32 i;
780
781         /* Allocate this now to avoid having to handle failure below */
782
783         if (first_time) {
784                 size_t len;
785
786                 len = strnlen(ondisk->object_prefix,
787                                 sizeof (ondisk->object_prefix));
788                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789                 if (!object_prefix)
790                         return -ENOMEM;
791                 memcpy(object_prefix, ondisk->object_prefix, len);
792                 object_prefix[len] = '\0';
793         }
794
795         /* Allocate the snapshot context and fill it in */
796
797         snap_count = le32_to_cpu(ondisk->snap_count);
798         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799         if (!snapc)
800                 goto out_err;
801         snapc->seq = le64_to_cpu(ondisk->snap_seq);
802         if (snap_count) {
803                 struct rbd_image_snap_ondisk *snaps;
804                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806                 /* We'll keep a copy of the snapshot names... */
807
808                 if (snap_names_len > (u64)SIZE_MAX)
809                         goto out_2big;
810                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811                 if (!snap_names)
812                         goto out_err;
813
814                 /* ...as well as the array of their sizes. */
815
816                 size = snap_count * sizeof (*header->snap_sizes);
817                 snap_sizes = kmalloc(size, GFP_KERNEL);
818                 if (!snap_sizes)
819                         goto out_err;
820
821                 /*
822                  * Copy the names, and fill in each snapshot's id
823                  * and size.
824                  *
825                  * Note that rbd_dev_v1_header_info() guarantees the
826                  * ondisk buffer we're working with has
827                  * snap_names_len bytes beyond the end of the
828                  * snapshot id array, this memcpy() is safe.
829                  */
830                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831                 snaps = ondisk->snaps;
832                 for (i = 0; i < snap_count; i++) {
833                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835                 }
836         }
837
838         /* We won't fail any more, fill in the header */
839
840         if (first_time) {
841                 header->object_prefix = object_prefix;
842                 header->obj_order = ondisk->options.order;
843                 header->crypt_type = ondisk->options.crypt_type;
844                 header->comp_type = ondisk->options.comp_type;
845                 /* The rest aren't used for format 1 images */
846                 header->stripe_unit = 0;
847                 header->stripe_count = 0;
848                 header->features = 0;
849         } else {
850                 ceph_put_snap_context(header->snapc);
851                 kfree(header->snap_names);
852                 kfree(header->snap_sizes);
853         }
854
855         /* The remaining fields always get updated (when we refresh) */
856
857         header->image_size = le64_to_cpu(ondisk->image_size);
858         header->snapc = snapc;
859         header->snap_names = snap_names;
860         header->snap_sizes = snap_sizes;
861
862         /* Make sure mapping size is consistent with header info */
863
864         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865                 if (rbd_dev->mapping.size != header->image_size)
866                         rbd_dev->mapping.size = header->image_size;
867
868         return 0;
869 out_2big:
870         ret = -EIO;
871 out_err:
872         kfree(snap_sizes);
873         kfree(snap_names);
874         ceph_put_snap_context(snapc);
875         kfree(object_prefix);
876
877         return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882         const char *snap_name;
883
884         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886         /* Skip over names until we find the one we are looking for */
887
888         snap_name = rbd_dev->header.snap_names;
889         while (which--)
890                 snap_name += strlen(snap_name) + 1;
891
892         return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901         u64 snap_id1 = *(u64 *)s1;
902         u64 snap_id2 = *(u64 *)s2;
903
904         if (snap_id1 < snap_id2)
905                 return 1;
906         return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922         u64 *found;
923
924         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925                                 sizeof (snap_id), snapid_compare_reverse);
926
927         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931                                         u64 snap_id)
932 {
933         u32 which;
934         const char *snap_name;
935
936         which = rbd_dev_snap_index(rbd_dev, snap_id);
937         if (which == BAD_SNAP_INDEX)
938                 return ERR_PTR(-ENOENT);
939
940         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946         if (snap_id == CEPH_NOSNAP)
947                 return RBD_SNAP_HEAD_NAME;
948
949         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950         if (rbd_dev->image_format == 1)
951                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952
953         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957                                 u64 *snap_size)
958 {
959         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960         if (snap_id == CEPH_NOSNAP) {
961                 *snap_size = rbd_dev->header.image_size;
962         } else if (rbd_dev->image_format == 1) {
963                 u32 which;
964
965                 which = rbd_dev_snap_index(rbd_dev, snap_id);
966                 if (which == BAD_SNAP_INDEX)
967                         return -ENOENT;
968
969                 *snap_size = rbd_dev->header.snap_sizes[which];
970         } else {
971                 u64 size = 0;
972                 int ret;
973
974                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975                 if (ret)
976                         return ret;
977
978                 *snap_size = size;
979         }
980         return 0;
981 }
982
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984                         u64 *snap_features)
985 {
986         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987         if (snap_id == CEPH_NOSNAP) {
988                 *snap_features = rbd_dev->header.features;
989         } else if (rbd_dev->image_format == 1) {
990                 *snap_features = 0;     /* No features for format 1 */
991         } else {
992                 u64 features = 0;
993                 int ret;
994
995                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996                 if (ret)
997                         return ret;
998
999                 *snap_features = features;
1000         }
1001         return 0;
1002 }
1003
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006         u64 snap_id = rbd_dev->spec->snap_id;
1007         u64 size = 0;
1008         u64 features = 0;
1009         int ret;
1010
1011         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012         if (ret)
1013                 return ret;
1014         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015         if (ret)
1016                 return ret;
1017
1018         rbd_dev->mapping.size = size;
1019         rbd_dev->mapping.features = features;
1020
1021         return 0;
1022 }
1023
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026         rbd_dev->mapping.size = 0;
1027         rbd_dev->mapping.features = 0;
1028 }
1029
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032         char *name;
1033         u64 segment;
1034         int ret;
1035         char *name_format;
1036
1037         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038         if (!name)
1039                 return NULL;
1040         segment = offset >> rbd_dev->header.obj_order;
1041         name_format = "%s.%012llx";
1042         if (rbd_dev->image_format == 2)
1043                 name_format = "%s.%016llx";
1044         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045                         rbd_dev->header.object_prefix, segment);
1046         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047                 pr_err("error formatting segment name for #%llu (%d)\n",
1048                         segment, ret);
1049                 kfree(name);
1050                 name = NULL;
1051         }
1052
1053         return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058         /* The explicit cast here is needed to drop the const qualifier */
1059
1060         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067         return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071                                 u64 offset, u64 length)
1072 {
1073         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075         offset &= segment_size - 1;
1076
1077         rbd_assert(length <= U64_MAX - offset);
1078         if (offset + length > segment_size)
1079                 length = segment_size - offset;
1080
1081         return length;
1082 }
1083
1084 /*
1085  * returns the size of an object in the image
1086  */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089         return 1 << header->obj_order;
1090 }
1091
1092 /*
1093  * bio helpers
1094  */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098         struct bio *tmp;
1099
1100         while (chain) {
1101                 tmp = chain;
1102                 chain = chain->bi_next;
1103                 bio_put(tmp);
1104         }
1105 }
1106
1107 /*
1108  * zeros a bio chain, starting at specific offset
1109  */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112         struct bio_vec bv;
1113         struct bvec_iter iter;
1114         unsigned long flags;
1115         void *buf;
1116         int pos = 0;
1117
1118         while (chain) {
1119                 bio_for_each_segment(bv, chain, iter) {
1120                         if (pos + bv.bv_len > start_ofs) {
1121                                 int remainder = max(start_ofs - pos, 0);
1122                                 buf = bvec_kmap_irq(&bv, &flags);
1123                                 memset(buf + remainder, 0,
1124                                        bv.bv_len - remainder);
1125                                 flush_dcache_page(bv.bv_page);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv.bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = offset & ~PAGE_MASK;
1154                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 flush_dcache_page(*page);
1159                 kunmap_atomic(kaddr);
1160                 local_irq_restore(flags);
1161
1162                 offset += length;
1163                 page++;
1164         }
1165 }
1166
1167 /*
1168  * Clone a portion of a bio, starting at the given byte offset
1169  * and continuing for the number of bytes indicated.
1170  */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172                                         unsigned int offset,
1173                                         unsigned int len,
1174                                         gfp_t gfpmask)
1175 {
1176         struct bio *bio;
1177
1178         bio = bio_clone(bio_src, gfpmask);
1179         if (!bio)
1180                 return NULL;    /* ENOMEM */
1181
1182         bio_advance(bio, offset);
1183         bio->bi_iter.bi_size = len;
1184
1185         return bio;
1186 }
1187
1188 /*
1189  * Clone a portion of a bio chain, starting at the given byte offset
1190  * into the first bio in the source chain and continuing for the
1191  * number of bytes indicated.  The result is another bio chain of
1192  * exactly the given length, or a null pointer on error.
1193  *
1194  * The bio_src and offset parameters are both in-out.  On entry they
1195  * refer to the first source bio and the offset into that bio where
1196  * the start of data to be cloned is located.
1197  *
1198  * On return, bio_src is updated to refer to the bio in the source
1199  * chain that contains first un-cloned byte, and *offset will
1200  * contain the offset of that byte within that bio.
1201  */
1202 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1203                                         unsigned int *offset,
1204                                         unsigned int len,
1205                                         gfp_t gfpmask)
1206 {
1207         struct bio *bi = *bio_src;
1208         unsigned int off = *offset;
1209         struct bio *chain = NULL;
1210         struct bio **end;
1211
1212         /* Build up a chain of clone bios up to the limit */
1213
1214         if (!bi || off >= bi->bi_iter.bi_size || !len)
1215                 return NULL;            /* Nothing to clone */
1216
1217         end = &chain;
1218         while (len) {
1219                 unsigned int bi_size;
1220                 struct bio *bio;
1221
1222                 if (!bi) {
1223                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1224                         goto out_err;   /* EINVAL; ran out of bio's */
1225                 }
1226                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1227                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1228                 if (!bio)
1229                         goto out_err;   /* ENOMEM */
1230
1231                 *end = bio;
1232                 end = &bio->bi_next;
1233
1234                 off += bi_size;
1235                 if (off == bi->bi_iter.bi_size) {
1236                         bi = bi->bi_next;
1237                         off = 0;
1238                 }
1239                 len -= bi_size;
1240         }
1241         *bio_src = bi;
1242         *offset = off;
1243
1244         return chain;
1245 out_err:
1246         bio_chain_put(chain);
1247
1248         return NULL;
1249 }
1250
1251 /*
1252  * The default/initial value for all object request flags is 0.  For
1253  * each flag, once its value is set to 1 it is never reset to 0
1254  * again.
1255  */
1256 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1257 {
1258         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1259                 struct rbd_device *rbd_dev;
1260
1261                 rbd_dev = obj_request->img_request->rbd_dev;
1262                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1263                         obj_request);
1264         }
1265 }
1266
1267 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1268 {
1269         smp_mb();
1270         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1271 }
1272
1273 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1274 {
1275         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1276                 struct rbd_device *rbd_dev = NULL;
1277
1278                 if (obj_request_img_data_test(obj_request))
1279                         rbd_dev = obj_request->img_request->rbd_dev;
1280                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1281                         obj_request);
1282         }
1283 }
1284
1285 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1286 {
1287         smp_mb();
1288         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1289 }
1290
1291 /*
1292  * This sets the KNOWN flag after (possibly) setting the EXISTS
1293  * flag.  The latter is set based on the "exists" value provided.
1294  *
1295  * Note that for our purposes once an object exists it never goes
1296  * away again.  It's possible that the response from two existence
1297  * checks are separated by the creation of the target object, and
1298  * the first ("doesn't exist") response arrives *after* the second
1299  * ("does exist").  In that case we ignore the second one.
1300  */
1301 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1302                                 bool exists)
1303 {
1304         if (exists)
1305                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1306         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1307         smp_mb();
1308 }
1309
1310 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1311 {
1312         smp_mb();
1313         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1314 }
1315
1316 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1317 {
1318         smp_mb();
1319         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1320 }
1321
1322 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1323 {
1324         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1325                 atomic_read(&obj_request->kref.refcount));
1326         kref_get(&obj_request->kref);
1327 }
1328
1329 static void rbd_obj_request_destroy(struct kref *kref);
1330 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1331 {
1332         rbd_assert(obj_request != NULL);
1333         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1334                 atomic_read(&obj_request->kref.refcount));
1335         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1336 }
1337
1338 static bool img_request_child_test(struct rbd_img_request *img_request);
1339 static void rbd_parent_request_destroy(struct kref *kref);
1340 static void rbd_img_request_destroy(struct kref *kref);
1341 static void rbd_img_request_put(struct rbd_img_request *img_request)
1342 {
1343         rbd_assert(img_request != NULL);
1344         dout("%s: img %p (was %d)\n", __func__, img_request,
1345                 atomic_read(&img_request->kref.refcount));
1346         if (img_request_child_test(img_request))
1347                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1348         else
1349                 kref_put(&img_request->kref, rbd_img_request_destroy);
1350 }
1351
1352 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1353                                         struct rbd_obj_request *obj_request)
1354 {
1355         rbd_assert(obj_request->img_request == NULL);
1356
1357         /* Image request now owns object's original reference */
1358         obj_request->img_request = img_request;
1359         obj_request->which = img_request->obj_request_count;
1360         rbd_assert(!obj_request_img_data_test(obj_request));
1361         obj_request_img_data_set(obj_request);
1362         rbd_assert(obj_request->which != BAD_WHICH);
1363         img_request->obj_request_count++;
1364         list_add_tail(&obj_request->links, &img_request->obj_requests);
1365         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1366                 obj_request->which);
1367 }
1368
1369 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1370                                         struct rbd_obj_request *obj_request)
1371 {
1372         rbd_assert(obj_request->which != BAD_WHICH);
1373
1374         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1375                 obj_request->which);
1376         list_del(&obj_request->links);
1377         rbd_assert(img_request->obj_request_count > 0);
1378         img_request->obj_request_count--;
1379         rbd_assert(obj_request->which == img_request->obj_request_count);
1380         obj_request->which = BAD_WHICH;
1381         rbd_assert(obj_request_img_data_test(obj_request));
1382         rbd_assert(obj_request->img_request == img_request);
1383         obj_request->img_request = NULL;
1384         obj_request->callback = NULL;
1385         rbd_obj_request_put(obj_request);
1386 }
1387
1388 static bool obj_request_type_valid(enum obj_request_type type)
1389 {
1390         switch (type) {
1391         case OBJ_REQUEST_NODATA:
1392         case OBJ_REQUEST_BIO:
1393         case OBJ_REQUEST_PAGES:
1394                 return true;
1395         default:
1396                 return false;
1397         }
1398 }
1399
1400 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1401                                 struct rbd_obj_request *obj_request)
1402 {
1403         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1404
1405         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1406 }
1407
1408 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1409 {
1410
1411         dout("%s: img %p\n", __func__, img_request);
1412
1413         /*
1414          * If no error occurred, compute the aggregate transfer
1415          * count for the image request.  We could instead use
1416          * atomic64_cmpxchg() to update it as each object request
1417          * completes; not clear which way is better off hand.
1418          */
1419         if (!img_request->result) {
1420                 struct rbd_obj_request *obj_request;
1421                 u64 xferred = 0;
1422
1423                 for_each_obj_request(img_request, obj_request)
1424                         xferred += obj_request->xferred;
1425                 img_request->xferred = xferred;
1426         }
1427
1428         if (img_request->callback)
1429                 img_request->callback(img_request);
1430         else
1431                 rbd_img_request_put(img_request);
1432 }
1433
1434 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1435
1436 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1437 {
1438         dout("%s: obj %p\n", __func__, obj_request);
1439
1440         return wait_for_completion_interruptible(&obj_request->completion);
1441 }
1442
1443 /*
1444  * The default/initial value for all image request flags is 0.  Each
1445  * is conditionally set to 1 at image request initialization time
1446  * and currently never change thereafter.
1447  */
1448 static void img_request_write_set(struct rbd_img_request *img_request)
1449 {
1450         set_bit(IMG_REQ_WRITE, &img_request->flags);
1451         smp_mb();
1452 }
1453
1454 static bool img_request_write_test(struct rbd_img_request *img_request)
1455 {
1456         smp_mb();
1457         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1458 }
1459
1460 static void img_request_child_set(struct rbd_img_request *img_request)
1461 {
1462         set_bit(IMG_REQ_CHILD, &img_request->flags);
1463         smp_mb();
1464 }
1465
1466 static void img_request_child_clear(struct rbd_img_request *img_request)
1467 {
1468         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1469         smp_mb();
1470 }
1471
1472 static bool img_request_child_test(struct rbd_img_request *img_request)
1473 {
1474         smp_mb();
1475         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1476 }
1477
1478 static void img_request_layered_set(struct rbd_img_request *img_request)
1479 {
1480         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1481         smp_mb();
1482 }
1483
1484 static void img_request_layered_clear(struct rbd_img_request *img_request)
1485 {
1486         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1487         smp_mb();
1488 }
1489
1490 static bool img_request_layered_test(struct rbd_img_request *img_request)
1491 {
1492         smp_mb();
1493         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1494 }
1495
1496 static void
1497 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1498 {
1499         u64 xferred = obj_request->xferred;
1500         u64 length = obj_request->length;
1501
1502         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1503                 obj_request, obj_request->img_request, obj_request->result,
1504                 xferred, length);
1505         /*
1506          * ENOENT means a hole in the image.  We zero-fill the entire
1507          * length of the request.  A short read also implies zero-fill
1508          * to the end of the request.  An error requires the whole
1509          * length of the request to be reported finished with an error
1510          * to the block layer.  In each case we update the xferred
1511          * count to indicate the whole request was satisfied.
1512          */
1513         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1514         if (obj_request->result == -ENOENT) {
1515                 if (obj_request->type == OBJ_REQUEST_BIO)
1516                         zero_bio_chain(obj_request->bio_list, 0);
1517                 else
1518                         zero_pages(obj_request->pages, 0, length);
1519                 obj_request->result = 0;
1520         } else if (xferred < length && !obj_request->result) {
1521                 if (obj_request->type == OBJ_REQUEST_BIO)
1522                         zero_bio_chain(obj_request->bio_list, xferred);
1523                 else
1524                         zero_pages(obj_request->pages, xferred, length);
1525         }
1526         obj_request->xferred = length;
1527         obj_request_done_set(obj_request);
1528 }
1529
1530 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1531 {
1532         dout("%s: obj %p cb %p\n", __func__, obj_request,
1533                 obj_request->callback);
1534         if (obj_request->callback)
1535                 obj_request->callback(obj_request);
1536         else
1537                 complete_all(&obj_request->completion);
1538 }
1539
1540 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1541 {
1542         dout("%s: obj %p\n", __func__, obj_request);
1543         obj_request_done_set(obj_request);
1544 }
1545
1546 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1547 {
1548         struct rbd_img_request *img_request = NULL;
1549         struct rbd_device *rbd_dev = NULL;
1550         bool layered = false;
1551
1552         if (obj_request_img_data_test(obj_request)) {
1553                 img_request = obj_request->img_request;
1554                 layered = img_request && img_request_layered_test(img_request);
1555                 rbd_dev = img_request->rbd_dev;
1556         }
1557
1558         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1559                 obj_request, img_request, obj_request->result,
1560                 obj_request->xferred, obj_request->length);
1561         if (layered && obj_request->result == -ENOENT &&
1562                         obj_request->img_offset < rbd_dev->parent_overlap)
1563                 rbd_img_parent_read(obj_request);
1564         else if (img_request)
1565                 rbd_img_obj_request_read_callback(obj_request);
1566         else
1567                 obj_request_done_set(obj_request);
1568 }
1569
1570 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1571 {
1572         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1573                 obj_request->result, obj_request->length);
1574         /*
1575          * There is no such thing as a successful short write.  Set
1576          * it to our originally-requested length.
1577          */
1578         obj_request->xferred = obj_request->length;
1579         obj_request_done_set(obj_request);
1580 }
1581
1582 /*
1583  * For a simple stat call there's nothing to do.  We'll do more if
1584  * this is part of a write sequence for a layered image.
1585  */
1586 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1587 {
1588         dout("%s: obj %p\n", __func__, obj_request);
1589         obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1593                                 struct ceph_msg *msg)
1594 {
1595         struct rbd_obj_request *obj_request = osd_req->r_priv;
1596         u16 opcode;
1597
1598         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1599         rbd_assert(osd_req == obj_request->osd_req);
1600         if (obj_request_img_data_test(obj_request)) {
1601                 rbd_assert(obj_request->img_request);
1602                 rbd_assert(obj_request->which != BAD_WHICH);
1603         } else {
1604                 rbd_assert(obj_request->which == BAD_WHICH);
1605         }
1606
1607         if (osd_req->r_result < 0)
1608                 obj_request->result = osd_req->r_result;
1609
1610         BUG_ON(osd_req->r_num_ops > 2);
1611
1612         /*
1613          * We support a 64-bit length, but ultimately it has to be
1614          * passed to blk_end_request(), which takes an unsigned int.
1615          */
1616         obj_request->xferred = osd_req->r_reply_op_len[0];
1617         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1618         opcode = osd_req->r_ops[0].op;
1619         switch (opcode) {
1620         case CEPH_OSD_OP_READ:
1621                 rbd_osd_read_callback(obj_request);
1622                 break;
1623         case CEPH_OSD_OP_WRITE:
1624                 rbd_osd_write_callback(obj_request);
1625                 break;
1626         case CEPH_OSD_OP_STAT:
1627                 rbd_osd_stat_callback(obj_request);
1628                 break;
1629         case CEPH_OSD_OP_CALL:
1630         case CEPH_OSD_OP_NOTIFY_ACK:
1631         case CEPH_OSD_OP_WATCH:
1632                 rbd_osd_trivial_callback(obj_request);
1633                 break;
1634         default:
1635                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1636                         obj_request->object_name, (unsigned short) opcode);
1637                 break;
1638         }
1639
1640         if (obj_request_done_test(obj_request))
1641                 rbd_obj_request_complete(obj_request);
1642 }
1643
1644 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1645 {
1646         struct rbd_img_request *img_request = obj_request->img_request;
1647         struct ceph_osd_request *osd_req = obj_request->osd_req;
1648         u64 snap_id;
1649
1650         rbd_assert(osd_req != NULL);
1651
1652         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1653         ceph_osdc_build_request(osd_req, obj_request->offset,
1654                         NULL, snap_id, NULL);
1655 }
1656
1657 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1658 {
1659         struct rbd_img_request *img_request = obj_request->img_request;
1660         struct ceph_osd_request *osd_req = obj_request->osd_req;
1661         struct ceph_snap_context *snapc;
1662         struct timespec mtime = CURRENT_TIME;
1663
1664         rbd_assert(osd_req != NULL);
1665
1666         snapc = img_request ? img_request->snapc : NULL;
1667         ceph_osdc_build_request(osd_req, obj_request->offset,
1668                         snapc, CEPH_NOSNAP, &mtime);
1669 }
1670
1671 static struct ceph_osd_request *rbd_osd_req_create(
1672                                         struct rbd_device *rbd_dev,
1673                                         bool write_request,
1674                                         struct rbd_obj_request *obj_request)
1675 {
1676         struct ceph_snap_context *snapc = NULL;
1677         struct ceph_osd_client *osdc;
1678         struct ceph_osd_request *osd_req;
1679
1680         if (obj_request_img_data_test(obj_request)) {
1681                 struct rbd_img_request *img_request = obj_request->img_request;
1682
1683                 rbd_assert(write_request ==
1684                                 img_request_write_test(img_request));
1685                 if (write_request)
1686                         snapc = img_request->snapc;
1687         }
1688
1689         /* Allocate and initialize the request, for the single op */
1690
1691         osdc = &rbd_dev->rbd_client->client->osdc;
1692         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1693         if (!osd_req)
1694                 return NULL;    /* ENOMEM */
1695
1696         if (write_request)
1697                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1698         else
1699                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1700
1701         osd_req->r_callback = rbd_osd_req_callback;
1702         osd_req->r_priv = obj_request;
1703
1704         osd_req->r_oid_len = strlen(obj_request->object_name);
1705         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1706         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1707
1708         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1709
1710         return osd_req;
1711 }
1712
1713 /*
1714  * Create a copyup osd request based on the information in the
1715  * object request supplied.  A copyup request has two osd ops,
1716  * a copyup method call, and a "normal" write request.
1717  */
1718 static struct ceph_osd_request *
1719 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1720 {
1721         struct rbd_img_request *img_request;
1722         struct ceph_snap_context *snapc;
1723         struct rbd_device *rbd_dev;
1724         struct ceph_osd_client *osdc;
1725         struct ceph_osd_request *osd_req;
1726
1727         rbd_assert(obj_request_img_data_test(obj_request));
1728         img_request = obj_request->img_request;
1729         rbd_assert(img_request);
1730         rbd_assert(img_request_write_test(img_request));
1731
1732         /* Allocate and initialize the request, for the two ops */
1733
1734         snapc = img_request->snapc;
1735         rbd_dev = img_request->rbd_dev;
1736         osdc = &rbd_dev->rbd_client->client->osdc;
1737         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1738         if (!osd_req)
1739                 return NULL;    /* ENOMEM */
1740
1741         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1742         osd_req->r_callback = rbd_osd_req_callback;
1743         osd_req->r_priv = obj_request;
1744
1745         osd_req->r_oid_len = strlen(obj_request->object_name);
1746         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1747         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1748
1749         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1750
1751         return osd_req;
1752 }
1753
1754
1755 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1756 {
1757         ceph_osdc_put_request(osd_req);
1758 }
1759
1760 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1761
1762 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1763                                                 u64 offset, u64 length,
1764                                                 enum obj_request_type type)
1765 {
1766         struct rbd_obj_request *obj_request;
1767         size_t size;
1768         char *name;
1769
1770         rbd_assert(obj_request_type_valid(type));
1771
1772         size = strlen(object_name) + 1;
1773         name = kmalloc(size, GFP_KERNEL);
1774         if (!name)
1775                 return NULL;
1776
1777         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1778         if (!obj_request) {
1779                 kfree(name);
1780                 return NULL;
1781         }
1782
1783         obj_request->object_name = memcpy(name, object_name, size);
1784         obj_request->offset = offset;
1785         obj_request->length = length;
1786         obj_request->flags = 0;
1787         obj_request->which = BAD_WHICH;
1788         obj_request->type = type;
1789         INIT_LIST_HEAD(&obj_request->links);
1790         init_completion(&obj_request->completion);
1791         kref_init(&obj_request->kref);
1792
1793         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1794                 offset, length, (int)type, obj_request);
1795
1796         return obj_request;
1797 }
1798
1799 static void rbd_obj_request_destroy(struct kref *kref)
1800 {
1801         struct rbd_obj_request *obj_request;
1802
1803         obj_request = container_of(kref, struct rbd_obj_request, kref);
1804
1805         dout("%s: obj %p\n", __func__, obj_request);
1806
1807         rbd_assert(obj_request->img_request == NULL);
1808         rbd_assert(obj_request->which == BAD_WHICH);
1809
1810         if (obj_request->osd_req)
1811                 rbd_osd_req_destroy(obj_request->osd_req);
1812
1813         rbd_assert(obj_request_type_valid(obj_request->type));
1814         switch (obj_request->type) {
1815         case OBJ_REQUEST_NODATA:
1816                 break;          /* Nothing to do */
1817         case OBJ_REQUEST_BIO:
1818                 if (obj_request->bio_list)
1819                         bio_chain_put(obj_request->bio_list);
1820                 break;
1821         case OBJ_REQUEST_PAGES:
1822                 if (obj_request->pages)
1823                         ceph_release_page_vector(obj_request->pages,
1824                                                 obj_request->page_count);
1825                 break;
1826         }
1827
1828         kfree(obj_request->object_name);
1829         obj_request->object_name = NULL;
1830         kmem_cache_free(rbd_obj_request_cache, obj_request);
1831 }
1832
1833 /* It's OK to call this for a device with no parent */
1834
1835 static void rbd_spec_put(struct rbd_spec *spec);
1836 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1837 {
1838         rbd_dev_remove_parent(rbd_dev);
1839         rbd_spec_put(rbd_dev->parent_spec);
1840         rbd_dev->parent_spec = NULL;
1841         rbd_dev->parent_overlap = 0;
1842 }
1843
1844 /*
1845  * Parent image reference counting is used to determine when an
1846  * image's parent fields can be safely torn down--after there are no
1847  * more in-flight requests to the parent image.  When the last
1848  * reference is dropped, cleaning them up is safe.
1849  */
1850 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1851 {
1852         int counter;
1853
1854         if (!rbd_dev->parent_spec)
1855                 return;
1856
1857         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1858         if (counter > 0)
1859                 return;
1860
1861         /* Last reference; clean up parent data structures */
1862
1863         if (!counter)
1864                 rbd_dev_unparent(rbd_dev);
1865         else
1866                 rbd_warn(rbd_dev, "parent reference underflow\n");
1867 }
1868
1869 /*
1870  * If an image has a non-zero parent overlap, get a reference to its
1871  * parent.
1872  *
1873  * We must get the reference before checking for the overlap to
1874  * coordinate properly with zeroing the parent overlap in
1875  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1876  * drop it again if there is no overlap.
1877  *
1878  * Returns true if the rbd device has a parent with a non-zero
1879  * overlap and a reference for it was successfully taken, or
1880  * false otherwise.
1881  */
1882 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1883 {
1884         int counter;
1885
1886         if (!rbd_dev->parent_spec)
1887                 return false;
1888
1889         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1890         if (counter > 0 && rbd_dev->parent_overlap)
1891                 return true;
1892
1893         /* Image was flattened, but parent is not yet torn down */
1894
1895         if (counter < 0)
1896                 rbd_warn(rbd_dev, "parent reference overflow\n");
1897
1898         return false;
1899 }
1900
1901 /*
1902  * Caller is responsible for filling in the list of object requests
1903  * that comprises the image request, and the Linux request pointer
1904  * (if there is one).
1905  */
1906 static struct rbd_img_request *rbd_img_request_create(
1907                                         struct rbd_device *rbd_dev,
1908                                         u64 offset, u64 length,
1909                                         bool write_request)
1910 {
1911         struct rbd_img_request *img_request;
1912
1913         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1914         if (!img_request)
1915                 return NULL;
1916
1917         if (write_request) {
1918                 down_read(&rbd_dev->header_rwsem);
1919                 ceph_get_snap_context(rbd_dev->header.snapc);
1920                 up_read(&rbd_dev->header_rwsem);
1921         }
1922
1923         img_request->rq = NULL;
1924         img_request->rbd_dev = rbd_dev;
1925         img_request->offset = offset;
1926         img_request->length = length;
1927         img_request->flags = 0;
1928         if (write_request) {
1929                 img_request_write_set(img_request);
1930                 img_request->snapc = rbd_dev->header.snapc;
1931         } else {
1932                 img_request->snap_id = rbd_dev->spec->snap_id;
1933         }
1934         if (rbd_dev_parent_get(rbd_dev))
1935                 img_request_layered_set(img_request);
1936         spin_lock_init(&img_request->completion_lock);
1937         img_request->next_completion = 0;
1938         img_request->callback = NULL;
1939         img_request->result = 0;
1940         img_request->obj_request_count = 0;
1941         INIT_LIST_HEAD(&img_request->obj_requests);
1942         kref_init(&img_request->kref);
1943
1944         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1945                 write_request ? "write" : "read", offset, length,
1946                 img_request);
1947
1948         return img_request;
1949 }
1950
1951 static void rbd_img_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_img_request *img_request;
1954         struct rbd_obj_request *obj_request;
1955         struct rbd_obj_request *next_obj_request;
1956
1957         img_request = container_of(kref, struct rbd_img_request, kref);
1958
1959         dout("%s: img %p\n", __func__, img_request);
1960
1961         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1962                 rbd_img_obj_request_del(img_request, obj_request);
1963         rbd_assert(img_request->obj_request_count == 0);
1964
1965         if (img_request_layered_test(img_request)) {
1966                 img_request_layered_clear(img_request);
1967                 rbd_dev_parent_put(img_request->rbd_dev);
1968         }
1969
1970         if (img_request_write_test(img_request))
1971                 ceph_put_snap_context(img_request->snapc);
1972
1973         kmem_cache_free(rbd_img_request_cache, img_request);
1974 }
1975
1976 static struct rbd_img_request *rbd_parent_request_create(
1977                                         struct rbd_obj_request *obj_request,
1978                                         u64 img_offset, u64 length)
1979 {
1980         struct rbd_img_request *parent_request;
1981         struct rbd_device *rbd_dev;
1982
1983         rbd_assert(obj_request->img_request);
1984         rbd_dev = obj_request->img_request->rbd_dev;
1985
1986         parent_request = rbd_img_request_create(rbd_dev->parent,
1987                                                 img_offset, length, false);
1988         if (!parent_request)
1989                 return NULL;
1990
1991         img_request_child_set(parent_request);
1992         rbd_obj_request_get(obj_request);
1993         parent_request->obj_request = obj_request;
1994
1995         return parent_request;
1996 }
1997
1998 static void rbd_parent_request_destroy(struct kref *kref)
1999 {
2000         struct rbd_img_request *parent_request;
2001         struct rbd_obj_request *orig_request;
2002
2003         parent_request = container_of(kref, struct rbd_img_request, kref);
2004         orig_request = parent_request->obj_request;
2005
2006         parent_request->obj_request = NULL;
2007         rbd_obj_request_put(orig_request);
2008         img_request_child_clear(parent_request);
2009
2010         rbd_img_request_destroy(kref);
2011 }
2012
2013 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2014 {
2015         struct rbd_img_request *img_request;
2016         unsigned int xferred;
2017         int result;
2018         bool more;
2019
2020         rbd_assert(obj_request_img_data_test(obj_request));
2021         img_request = obj_request->img_request;
2022
2023         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2024         xferred = (unsigned int)obj_request->xferred;
2025         result = obj_request->result;
2026         if (result) {
2027                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2028
2029                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2030                         img_request_write_test(img_request) ? "write" : "read",
2031                         obj_request->length, obj_request->img_offset,
2032                         obj_request->offset);
2033                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2034                         result, xferred);
2035                 if (!img_request->result)
2036                         img_request->result = result;
2037         }
2038
2039         /* Image object requests don't own their page array */
2040
2041         if (obj_request->type == OBJ_REQUEST_PAGES) {
2042                 obj_request->pages = NULL;
2043                 obj_request->page_count = 0;
2044         }
2045
2046         if (img_request_child_test(img_request)) {
2047                 rbd_assert(img_request->obj_request != NULL);
2048                 more = obj_request->which < img_request->obj_request_count - 1;
2049         } else {
2050                 rbd_assert(img_request->rq != NULL);
2051                 more = blk_end_request(img_request->rq, result, xferred);
2052         }
2053
2054         return more;
2055 }
2056
2057 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2058 {
2059         struct rbd_img_request *img_request;
2060         u32 which = obj_request->which;
2061         bool more = true;
2062
2063         rbd_assert(obj_request_img_data_test(obj_request));
2064         img_request = obj_request->img_request;
2065
2066         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2067         rbd_assert(img_request != NULL);
2068         rbd_assert(img_request->obj_request_count > 0);
2069         rbd_assert(which != BAD_WHICH);
2070         rbd_assert(which < img_request->obj_request_count);
2071         rbd_assert(which >= img_request->next_completion);
2072
2073         spin_lock_irq(&img_request->completion_lock);
2074         if (which != img_request->next_completion)
2075                 goto out;
2076
2077         for_each_obj_request_from(img_request, obj_request) {
2078                 rbd_assert(more);
2079                 rbd_assert(which < img_request->obj_request_count);
2080
2081                 if (!obj_request_done_test(obj_request))
2082                         break;
2083                 more = rbd_img_obj_end_request(obj_request);
2084                 which++;
2085         }
2086
2087         rbd_assert(more ^ (which == img_request->obj_request_count));
2088         img_request->next_completion = which;
2089 out:
2090         spin_unlock_irq(&img_request->completion_lock);
2091
2092         if (!more)
2093                 rbd_img_request_complete(img_request);
2094 }
2095
2096 /*
2097  * Split up an image request into one or more object requests, each
2098  * to a different object.  The "type" parameter indicates whether
2099  * "data_desc" is the pointer to the head of a list of bio
2100  * structures, or the base of a page array.  In either case this
2101  * function assumes data_desc describes memory sufficient to hold
2102  * all data described by the image request.
2103  */
2104 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2105                                         enum obj_request_type type,
2106                                         void *data_desc)
2107 {
2108         struct rbd_device *rbd_dev = img_request->rbd_dev;
2109         struct rbd_obj_request *obj_request = NULL;
2110         struct rbd_obj_request *next_obj_request;
2111         bool write_request = img_request_write_test(img_request);
2112         struct bio *bio_list = NULL;
2113         unsigned int bio_offset = 0;
2114         struct page **pages = NULL;
2115         u64 img_offset;
2116         u64 resid;
2117         u16 opcode;
2118
2119         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2120                 (int)type, data_desc);
2121
2122         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2123         img_offset = img_request->offset;
2124         resid = img_request->length;
2125         rbd_assert(resid > 0);
2126
2127         if (type == OBJ_REQUEST_BIO) {
2128                 bio_list = data_desc;
2129                 rbd_assert(img_offset ==
2130                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2131         } else {
2132                 rbd_assert(type == OBJ_REQUEST_PAGES);
2133                 pages = data_desc;
2134         }
2135
2136         while (resid) {
2137                 struct ceph_osd_request *osd_req;
2138                 const char *object_name;
2139                 u64 offset;
2140                 u64 length;
2141
2142                 object_name = rbd_segment_name(rbd_dev, img_offset);
2143                 if (!object_name)
2144                         goto out_unwind;
2145                 offset = rbd_segment_offset(rbd_dev, img_offset);
2146                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2147                 obj_request = rbd_obj_request_create(object_name,
2148                                                 offset, length, type);
2149                 /* object request has its own copy of the object name */
2150                 rbd_segment_name_free(object_name);
2151                 if (!obj_request)
2152                         goto out_unwind;
2153                 /*
2154                  * set obj_request->img_request before creating the
2155                  * osd_request so that it gets the right snapc
2156                  */
2157                 rbd_img_obj_request_add(img_request, obj_request);
2158
2159                 if (type == OBJ_REQUEST_BIO) {
2160                         unsigned int clone_size;
2161
2162                         rbd_assert(length <= (u64)UINT_MAX);
2163                         clone_size = (unsigned int)length;
2164                         obj_request->bio_list =
2165                                         bio_chain_clone_range(&bio_list,
2166                                                                 &bio_offset,
2167                                                                 clone_size,
2168                                                                 GFP_ATOMIC);
2169                         if (!obj_request->bio_list)
2170                                 goto out_partial;
2171                 } else {
2172                         unsigned int page_count;
2173
2174                         obj_request->pages = pages;
2175                         page_count = (u32)calc_pages_for(offset, length);
2176                         obj_request->page_count = page_count;
2177                         if ((offset + length) & ~PAGE_MASK)
2178                                 page_count--;   /* more on last page */
2179                         pages += page_count;
2180                 }
2181
2182                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2183                                                 obj_request);
2184                 if (!osd_req)
2185                         goto out_partial;
2186                 obj_request->osd_req = osd_req;
2187                 obj_request->callback = rbd_img_obj_callback;
2188
2189                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2190                                                 0, 0);
2191                 if (type == OBJ_REQUEST_BIO)
2192                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2193                                         obj_request->bio_list, length);
2194                 else
2195                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2196                                         obj_request->pages, length,
2197                                         offset & ~PAGE_MASK, false, false);
2198
2199                 if (write_request)
2200                         rbd_osd_req_format_write(obj_request);
2201                 else
2202                         rbd_osd_req_format_read(obj_request);
2203
2204                 obj_request->img_offset = img_offset;
2205
2206                 img_offset += length;
2207                 resid -= length;
2208         }
2209
2210         return 0;
2211
2212 out_partial:
2213         rbd_obj_request_put(obj_request);
2214 out_unwind:
2215         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2216                 rbd_obj_request_put(obj_request);
2217
2218         return -ENOMEM;
2219 }
2220
2221 static void
2222 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2223 {
2224         struct rbd_img_request *img_request;
2225         struct rbd_device *rbd_dev;
2226         struct page **pages;
2227         u32 page_count;
2228
2229         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2230         rbd_assert(obj_request_img_data_test(obj_request));
2231         img_request = obj_request->img_request;
2232         rbd_assert(img_request);
2233
2234         rbd_dev = img_request->rbd_dev;
2235         rbd_assert(rbd_dev);
2236
2237         pages = obj_request->copyup_pages;
2238         rbd_assert(pages != NULL);
2239         obj_request->copyup_pages = NULL;
2240         page_count = obj_request->copyup_page_count;
2241         rbd_assert(page_count);
2242         obj_request->copyup_page_count = 0;
2243         ceph_release_page_vector(pages, page_count);
2244
2245         /*
2246          * We want the transfer count to reflect the size of the
2247          * original write request.  There is no such thing as a
2248          * successful short write, so if the request was successful
2249          * we can just set it to the originally-requested length.
2250          */
2251         if (!obj_request->result)
2252                 obj_request->xferred = obj_request->length;
2253
2254         /* Finish up with the normal image object callback */
2255
2256         rbd_img_obj_callback(obj_request);
2257 }
2258
2259 static void
2260 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2261 {
2262         struct rbd_obj_request *orig_request;
2263         struct ceph_osd_request *osd_req;
2264         struct ceph_osd_client *osdc;
2265         struct rbd_device *rbd_dev;
2266         struct page **pages;
2267         u32 page_count;
2268         int img_result;
2269         u64 parent_length;
2270         u64 offset;
2271         u64 length;
2272
2273         rbd_assert(img_request_child_test(img_request));
2274
2275         /* First get what we need from the image request */
2276
2277         pages = img_request->copyup_pages;
2278         rbd_assert(pages != NULL);
2279         img_request->copyup_pages = NULL;
2280         page_count = img_request->copyup_page_count;
2281         rbd_assert(page_count);
2282         img_request->copyup_page_count = 0;
2283
2284         orig_request = img_request->obj_request;
2285         rbd_assert(orig_request != NULL);
2286         rbd_assert(obj_request_type_valid(orig_request->type));
2287         img_result = img_request->result;
2288         parent_length = img_request->length;
2289         rbd_assert(parent_length == img_request->xferred);
2290         rbd_img_request_put(img_request);
2291
2292         rbd_assert(orig_request->img_request);
2293         rbd_dev = orig_request->img_request->rbd_dev;
2294         rbd_assert(rbd_dev);
2295
2296         /*
2297          * If the overlap has become 0 (most likely because the
2298          * image has been flattened) we need to free the pages
2299          * and re-submit the original write request.
2300          */
2301         if (!rbd_dev->parent_overlap) {
2302                 struct ceph_osd_client *osdc;
2303
2304                 ceph_release_page_vector(pages, page_count);
2305                 osdc = &rbd_dev->rbd_client->client->osdc;
2306                 img_result = rbd_obj_request_submit(osdc, orig_request);
2307                 if (!img_result)
2308                         return;
2309         }
2310
2311         if (img_result)
2312                 goto out_err;
2313
2314         /*
2315          * The original osd request is of no use to use any more.
2316          * We need a new one that can hold the two ops in a copyup
2317          * request.  Allocate the new copyup osd request for the
2318          * original request, and release the old one.
2319          */
2320         img_result = -ENOMEM;
2321         osd_req = rbd_osd_req_create_copyup(orig_request);
2322         if (!osd_req)
2323                 goto out_err;
2324         rbd_osd_req_destroy(orig_request->osd_req);
2325         orig_request->osd_req = osd_req;
2326         orig_request->copyup_pages = pages;
2327         orig_request->copyup_page_count = page_count;
2328
2329         /* Initialize the copyup op */
2330
2331         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2332         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2333                                                 false, false);
2334
2335         /* Then the original write request op */
2336
2337         offset = orig_request->offset;
2338         length = orig_request->length;
2339         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2340                                         offset, length, 0, 0);
2341         if (orig_request->type == OBJ_REQUEST_BIO)
2342                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2343                                         orig_request->bio_list, length);
2344         else
2345                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2346                                         orig_request->pages, length,
2347                                         offset & ~PAGE_MASK, false, false);
2348
2349         rbd_osd_req_format_write(orig_request);
2350
2351         /* All set, send it off. */
2352
2353         orig_request->callback = rbd_img_obj_copyup_callback;
2354         osdc = &rbd_dev->rbd_client->client->osdc;
2355         img_result = rbd_obj_request_submit(osdc, orig_request);
2356         if (!img_result)
2357                 return;
2358 out_err:
2359         /* Record the error code and complete the request */
2360
2361         orig_request->result = img_result;
2362         orig_request->xferred = 0;
2363         obj_request_done_set(orig_request);
2364         rbd_obj_request_complete(orig_request);
2365 }
2366
2367 /*
2368  * Read from the parent image the range of data that covers the
2369  * entire target of the given object request.  This is used for
2370  * satisfying a layered image write request when the target of an
2371  * object request from the image request does not exist.
2372  *
2373  * A page array big enough to hold the returned data is allocated
2374  * and supplied to rbd_img_request_fill() as the "data descriptor."
2375  * When the read completes, this page array will be transferred to
2376  * the original object request for the copyup operation.
2377  *
2378  * If an error occurs, record it as the result of the original
2379  * object request and mark it done so it gets completed.
2380  */
2381 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2382 {
2383         struct rbd_img_request *img_request = NULL;
2384         struct rbd_img_request *parent_request = NULL;
2385         struct rbd_device *rbd_dev;
2386         u64 img_offset;
2387         u64 length;
2388         struct page **pages = NULL;
2389         u32 page_count;
2390         int result;
2391
2392         rbd_assert(obj_request_img_data_test(obj_request));
2393         rbd_assert(obj_request_type_valid(obj_request->type));
2394
2395         img_request = obj_request->img_request;
2396         rbd_assert(img_request != NULL);
2397         rbd_dev = img_request->rbd_dev;
2398         rbd_assert(rbd_dev->parent != NULL);
2399
2400         /*
2401          * Determine the byte range covered by the object in the
2402          * child image to which the original request was to be sent.
2403          */
2404         img_offset = obj_request->img_offset - obj_request->offset;
2405         length = (u64)1 << rbd_dev->header.obj_order;
2406
2407         /*
2408          * There is no defined parent data beyond the parent
2409          * overlap, so limit what we read at that boundary if
2410          * necessary.
2411          */
2412         if (img_offset + length > rbd_dev->parent_overlap) {
2413                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2414                 length = rbd_dev->parent_overlap - img_offset;
2415         }
2416
2417         /*
2418          * Allocate a page array big enough to receive the data read
2419          * from the parent.
2420          */
2421         page_count = (u32)calc_pages_for(0, length);
2422         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2423         if (IS_ERR(pages)) {
2424                 result = PTR_ERR(pages);
2425                 pages = NULL;
2426                 goto out_err;
2427         }
2428
2429         result = -ENOMEM;
2430         parent_request = rbd_parent_request_create(obj_request,
2431                                                 img_offset, length);
2432         if (!parent_request)
2433                 goto out_err;
2434
2435         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2436         if (result)
2437                 goto out_err;
2438         parent_request->copyup_pages = pages;
2439         parent_request->copyup_page_count = page_count;
2440
2441         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2442         result = rbd_img_request_submit(parent_request);
2443         if (!result)
2444                 return 0;
2445
2446         parent_request->copyup_pages = NULL;
2447         parent_request->copyup_page_count = 0;
2448         parent_request->obj_request = NULL;
2449         rbd_obj_request_put(obj_request);
2450 out_err:
2451         if (pages)
2452                 ceph_release_page_vector(pages, page_count);
2453         if (parent_request)
2454                 rbd_img_request_put(parent_request);
2455         obj_request->result = result;
2456         obj_request->xferred = 0;
2457         obj_request_done_set(obj_request);
2458
2459         return result;
2460 }
2461
2462 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2463 {
2464         struct rbd_obj_request *orig_request;
2465         struct rbd_device *rbd_dev;
2466         int result;
2467
2468         rbd_assert(!obj_request_img_data_test(obj_request));
2469
2470         /*
2471          * All we need from the object request is the original
2472          * request and the result of the STAT op.  Grab those, then
2473          * we're done with the request.
2474          */
2475         orig_request = obj_request->obj_request;
2476         obj_request->obj_request = NULL;
2477         rbd_obj_request_put(orig_request);
2478         rbd_assert(orig_request);
2479         rbd_assert(orig_request->img_request);
2480
2481         result = obj_request->result;
2482         obj_request->result = 0;
2483
2484         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2485                 obj_request, orig_request, result,
2486                 obj_request->xferred, obj_request->length);
2487         rbd_obj_request_put(obj_request);
2488
2489         /*
2490          * If the overlap has become 0 (most likely because the
2491          * image has been flattened) we need to free the pages
2492          * and re-submit the original write request.
2493          */
2494         rbd_dev = orig_request->img_request->rbd_dev;
2495         if (!rbd_dev->parent_overlap) {
2496                 struct ceph_osd_client *osdc;
2497
2498                 osdc = &rbd_dev->rbd_client->client->osdc;
2499                 result = rbd_obj_request_submit(osdc, orig_request);
2500                 if (!result)
2501                         return;
2502         }
2503
2504         /*
2505          * Our only purpose here is to determine whether the object
2506          * exists, and we don't want to treat the non-existence as
2507          * an error.  If something else comes back, transfer the
2508          * error to the original request and complete it now.
2509          */
2510         if (!result) {
2511                 obj_request_existence_set(orig_request, true);
2512         } else if (result == -ENOENT) {
2513                 obj_request_existence_set(orig_request, false);
2514         } else if (result) {
2515                 orig_request->result = result;
2516                 goto out;
2517         }
2518
2519         /*
2520          * Resubmit the original request now that we have recorded
2521          * whether the target object exists.
2522          */
2523         orig_request->result = rbd_img_obj_request_submit(orig_request);
2524 out:
2525         if (orig_request->result)
2526                 rbd_obj_request_complete(orig_request);
2527 }
2528
2529 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2530 {
2531         struct rbd_obj_request *stat_request;
2532         struct rbd_device *rbd_dev;
2533         struct ceph_osd_client *osdc;
2534         struct page **pages = NULL;
2535         u32 page_count;
2536         size_t size;
2537         int ret;
2538
2539         /*
2540          * The response data for a STAT call consists of:
2541          *     le64 length;
2542          *     struct {
2543          *         le32 tv_sec;
2544          *         le32 tv_nsec;
2545          *     } mtime;
2546          */
2547         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2548         page_count = (u32)calc_pages_for(0, size);
2549         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2550         if (IS_ERR(pages))
2551                 return PTR_ERR(pages);
2552
2553         ret = -ENOMEM;
2554         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2555                                                         OBJ_REQUEST_PAGES);
2556         if (!stat_request)
2557                 goto out;
2558
2559         rbd_obj_request_get(obj_request);
2560         stat_request->obj_request = obj_request;
2561         stat_request->pages = pages;
2562         stat_request->page_count = page_count;
2563
2564         rbd_assert(obj_request->img_request);
2565         rbd_dev = obj_request->img_request->rbd_dev;
2566         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2567                                                 stat_request);
2568         if (!stat_request->osd_req)
2569                 goto out;
2570         stat_request->callback = rbd_img_obj_exists_callback;
2571
2572         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2573         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2574                                         false, false);
2575         rbd_osd_req_format_read(stat_request);
2576
2577         osdc = &rbd_dev->rbd_client->client->osdc;
2578         ret = rbd_obj_request_submit(osdc, stat_request);
2579 out:
2580         if (ret)
2581                 rbd_obj_request_put(obj_request);
2582
2583         return ret;
2584 }
2585
2586 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2587 {
2588         struct rbd_img_request *img_request;
2589         struct rbd_device *rbd_dev;
2590         bool known;
2591
2592         rbd_assert(obj_request_img_data_test(obj_request));
2593
2594         img_request = obj_request->img_request;
2595         rbd_assert(img_request);
2596         rbd_dev = img_request->rbd_dev;
2597
2598         /*
2599          * Only writes to layered images need special handling.
2600          * Reads and non-layered writes are simple object requests.
2601          * Layered writes that start beyond the end of the overlap
2602          * with the parent have no parent data, so they too are
2603          * simple object requests.  Finally, if the target object is
2604          * known to already exist, its parent data has already been
2605          * copied, so a write to the object can also be handled as a
2606          * simple object request.
2607          */
2608         if (!img_request_write_test(img_request) ||
2609                 !img_request_layered_test(img_request) ||
2610                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2611                 ((known = obj_request_known_test(obj_request)) &&
2612                         obj_request_exists_test(obj_request))) {
2613
2614                 struct rbd_device *rbd_dev;
2615                 struct ceph_osd_client *osdc;
2616
2617                 rbd_dev = obj_request->img_request->rbd_dev;
2618                 osdc = &rbd_dev->rbd_client->client->osdc;
2619
2620                 return rbd_obj_request_submit(osdc, obj_request);
2621         }
2622
2623         /*
2624          * It's a layered write.  The target object might exist but
2625          * we may not know that yet.  If we know it doesn't exist,
2626          * start by reading the data for the full target object from
2627          * the parent so we can use it for a copyup to the target.
2628          */
2629         if (known)
2630                 return rbd_img_obj_parent_read_full(obj_request);
2631
2632         /* We don't know whether the target exists.  Go find out. */
2633
2634         return rbd_img_obj_exists_submit(obj_request);
2635 }
2636
2637 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2638 {
2639         struct rbd_obj_request *obj_request;
2640         struct rbd_obj_request *next_obj_request;
2641
2642         dout("%s: img %p\n", __func__, img_request);
2643         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2644                 int ret;
2645
2646                 ret = rbd_img_obj_request_submit(obj_request);
2647                 if (ret)
2648                         return ret;
2649         }
2650
2651         return 0;
2652 }
2653
2654 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2655 {
2656         struct rbd_obj_request *obj_request;
2657         struct rbd_device *rbd_dev;
2658         u64 obj_end;
2659         u64 img_xferred;
2660         int img_result;
2661
2662         rbd_assert(img_request_child_test(img_request));
2663
2664         /* First get what we need from the image request and release it */
2665
2666         obj_request = img_request->obj_request;
2667         img_xferred = img_request->xferred;
2668         img_result = img_request->result;
2669         rbd_img_request_put(img_request);
2670
2671         /*
2672          * If the overlap has become 0 (most likely because the
2673          * image has been flattened) we need to re-submit the
2674          * original request.
2675          */
2676         rbd_assert(obj_request);
2677         rbd_assert(obj_request->img_request);
2678         rbd_dev = obj_request->img_request->rbd_dev;
2679         if (!rbd_dev->parent_overlap) {
2680                 struct ceph_osd_client *osdc;
2681
2682                 osdc = &rbd_dev->rbd_client->client->osdc;
2683                 img_result = rbd_obj_request_submit(osdc, obj_request);
2684                 if (!img_result)
2685                         return;
2686         }
2687
2688         obj_request->result = img_result;
2689         if (obj_request->result)
2690                 goto out;
2691
2692         /*
2693          * We need to zero anything beyond the parent overlap
2694          * boundary.  Since rbd_img_obj_request_read_callback()
2695          * will zero anything beyond the end of a short read, an
2696          * easy way to do this is to pretend the data from the
2697          * parent came up short--ending at the overlap boundary.
2698          */
2699         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2700         obj_end = obj_request->img_offset + obj_request->length;
2701         if (obj_end > rbd_dev->parent_overlap) {
2702                 u64 xferred = 0;
2703
2704                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2705                         xferred = rbd_dev->parent_overlap -
2706                                         obj_request->img_offset;
2707
2708                 obj_request->xferred = min(img_xferred, xferred);
2709         } else {
2710                 obj_request->xferred = img_xferred;
2711         }
2712 out:
2713         rbd_img_obj_request_read_callback(obj_request);
2714         rbd_obj_request_complete(obj_request);
2715 }
2716
2717 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2718 {
2719         struct rbd_img_request *img_request;
2720         int result;
2721
2722         rbd_assert(obj_request_img_data_test(obj_request));
2723         rbd_assert(obj_request->img_request != NULL);
2724         rbd_assert(obj_request->result == (s32) -ENOENT);
2725         rbd_assert(obj_request_type_valid(obj_request->type));
2726
2727         /* rbd_read_finish(obj_request, obj_request->length); */
2728         img_request = rbd_parent_request_create(obj_request,
2729                                                 obj_request->img_offset,
2730                                                 obj_request->length);
2731         result = -ENOMEM;
2732         if (!img_request)
2733                 goto out_err;
2734
2735         if (obj_request->type == OBJ_REQUEST_BIO)
2736                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2737                                                 obj_request->bio_list);
2738         else
2739                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2740                                                 obj_request->pages);
2741         if (result)
2742                 goto out_err;
2743
2744         img_request->callback = rbd_img_parent_read_callback;
2745         result = rbd_img_request_submit(img_request);
2746         if (result)
2747                 goto out_err;
2748
2749         return;
2750 out_err:
2751         if (img_request)
2752                 rbd_img_request_put(img_request);
2753         obj_request->result = result;
2754         obj_request->xferred = 0;
2755         obj_request_done_set(obj_request);
2756 }
2757
2758 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2759 {
2760         struct rbd_obj_request *obj_request;
2761         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2762         int ret;
2763
2764         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2765                                                         OBJ_REQUEST_NODATA);
2766         if (!obj_request)
2767                 return -ENOMEM;
2768
2769         ret = -ENOMEM;
2770         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2771         if (!obj_request->osd_req)
2772                 goto out;
2773
2774         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2775                                         notify_id, 0, 0);
2776         rbd_osd_req_format_read(obj_request);
2777
2778         ret = rbd_obj_request_submit(osdc, obj_request);
2779         if (ret)
2780                 goto out;
2781         ret = rbd_obj_request_wait(obj_request);
2782 out:
2783         rbd_obj_request_put(obj_request);
2784
2785         return ret;
2786 }
2787
2788 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2789 {
2790         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2791         int ret;
2792
2793         if (!rbd_dev)
2794                 return;
2795
2796         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2797                 rbd_dev->header_name, (unsigned long long)notify_id,
2798                 (unsigned int)opcode);
2799         ret = rbd_dev_refresh(rbd_dev);
2800         if (ret)
2801                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2802
2803         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2804 }
2805
2806 /*
2807  * Request sync osd watch/unwatch.  The value of "start" determines
2808  * whether a watch request is being initiated or torn down.
2809  */
2810 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2811 {
2812         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2813         struct rbd_obj_request *obj_request;
2814         int ret;
2815
2816         rbd_assert(start ^ !!rbd_dev->watch_event);
2817         rbd_assert(start ^ !!rbd_dev->watch_request);
2818
2819         if (start) {
2820                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2821                                                 &rbd_dev->watch_event);
2822                 if (ret < 0)
2823                         return ret;
2824                 rbd_assert(rbd_dev->watch_event != NULL);
2825         }
2826
2827         ret = -ENOMEM;
2828         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2829                                                         OBJ_REQUEST_NODATA);
2830         if (!obj_request)
2831                 goto out_cancel;
2832
2833         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2834         if (!obj_request->osd_req)
2835                 goto out_cancel;
2836
2837         if (start)
2838                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2839         else
2840                 ceph_osdc_unregister_linger_request(osdc,
2841                                         rbd_dev->watch_request->osd_req);
2842
2843         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2844                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2845         rbd_osd_req_format_write(obj_request);
2846
2847         ret = rbd_obj_request_submit(osdc, obj_request);
2848         if (ret)
2849                 goto out_cancel;
2850         ret = rbd_obj_request_wait(obj_request);
2851         if (ret)
2852                 goto out_cancel;
2853         ret = obj_request->result;
2854         if (ret)
2855                 goto out_cancel;
2856
2857         /*
2858          * A watch request is set to linger, so the underlying osd
2859          * request won't go away until we unregister it.  We retain
2860          * a pointer to the object request during that time (in
2861          * rbd_dev->watch_request), so we'll keep a reference to
2862          * it.  We'll drop that reference (below) after we've
2863          * unregistered it.
2864          */
2865         if (start) {
2866                 rbd_dev->watch_request = obj_request;
2867
2868                 return 0;
2869         }
2870
2871         /* We have successfully torn down the watch request */
2872
2873         rbd_obj_request_put(rbd_dev->watch_request);
2874         rbd_dev->watch_request = NULL;
2875 out_cancel:
2876         /* Cancel the event if we're tearing down, or on error */
2877         ceph_osdc_cancel_event(rbd_dev->watch_event);
2878         rbd_dev->watch_event = NULL;
2879         if (obj_request)
2880                 rbd_obj_request_put(obj_request);
2881
2882         return ret;
2883 }
2884
2885 /*
2886  * Synchronous osd object method call.  Returns the number of bytes
2887  * returned in the outbound buffer, or a negative error code.
2888  */
2889 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2890                              const char *object_name,
2891                              const char *class_name,
2892                              const char *method_name,
2893                              const void *outbound,
2894                              size_t outbound_size,
2895                              void *inbound,
2896                              size_t inbound_size)
2897 {
2898         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2899         struct rbd_obj_request *obj_request;
2900         struct page **pages;
2901         u32 page_count;
2902         int ret;
2903
2904         /*
2905          * Method calls are ultimately read operations.  The result
2906          * should placed into the inbound buffer provided.  They
2907          * also supply outbound data--parameters for the object
2908          * method.  Currently if this is present it will be a
2909          * snapshot id.
2910          */
2911         page_count = (u32)calc_pages_for(0, inbound_size);
2912         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2913         if (IS_ERR(pages))
2914                 return PTR_ERR(pages);
2915
2916         ret = -ENOMEM;
2917         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2918                                                         OBJ_REQUEST_PAGES);
2919         if (!obj_request)
2920                 goto out;
2921
2922         obj_request->pages = pages;
2923         obj_request->page_count = page_count;
2924
2925         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2926         if (!obj_request->osd_req)
2927                 goto out;
2928
2929         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2930                                         class_name, method_name);
2931         if (outbound_size) {
2932                 struct ceph_pagelist *pagelist;
2933
2934                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2935                 if (!pagelist)
2936                         goto out;
2937
2938                 ceph_pagelist_init(pagelist);
2939                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2940                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2941                                                 pagelist);
2942         }
2943         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2944                                         obj_request->pages, inbound_size,
2945                                         0, false, false);
2946         rbd_osd_req_format_read(obj_request);
2947
2948         ret = rbd_obj_request_submit(osdc, obj_request);
2949         if (ret)
2950                 goto out;
2951         ret = rbd_obj_request_wait(obj_request);
2952         if (ret)
2953                 goto out;
2954
2955         ret = obj_request->result;
2956         if (ret < 0)
2957                 goto out;
2958
2959         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2960         ret = (int)obj_request->xferred;
2961         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2962 out:
2963         if (obj_request)
2964                 rbd_obj_request_put(obj_request);
2965         else
2966                 ceph_release_page_vector(pages, page_count);
2967
2968         return ret;
2969 }
2970
2971 static void rbd_request_fn(struct request_queue *q)
2972                 __releases(q->queue_lock) __acquires(q->queue_lock)
2973 {
2974         struct rbd_device *rbd_dev = q->queuedata;
2975         bool read_only = rbd_dev->mapping.read_only;
2976         struct request *rq;
2977         int result;
2978
2979         while ((rq = blk_fetch_request(q))) {
2980                 bool write_request = rq_data_dir(rq) == WRITE;
2981                 struct rbd_img_request *img_request;
2982                 u64 offset;
2983                 u64 length;
2984
2985                 /* Ignore any non-FS requests that filter through. */
2986
2987                 if (rq->cmd_type != REQ_TYPE_FS) {
2988                         dout("%s: non-fs request type %d\n", __func__,
2989                                 (int) rq->cmd_type);
2990                         __blk_end_request_all(rq, 0);
2991                         continue;
2992                 }
2993
2994                 /* Ignore/skip any zero-length requests */
2995
2996                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2997                 length = (u64) blk_rq_bytes(rq);
2998
2999                 if (!length) {
3000                         dout("%s: zero-length request\n", __func__);
3001                         __blk_end_request_all(rq, 0);
3002                         continue;
3003                 }
3004
3005                 spin_unlock_irq(q->queue_lock);
3006
3007                 /* Disallow writes to a read-only device */
3008
3009                 if (write_request) {
3010                         result = -EROFS;
3011                         if (read_only)
3012                                 goto end_request;
3013                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3014                 }
3015
3016                 /*
3017                  * Quit early if the mapped snapshot no longer
3018                  * exists.  It's still possible the snapshot will
3019                  * have disappeared by the time our request arrives
3020                  * at the osd, but there's no sense in sending it if
3021                  * we already know.
3022                  */
3023                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3024                         dout("request for non-existent snapshot");
3025                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3026                         result = -ENXIO;
3027                         goto end_request;
3028                 }
3029
3030                 result = -EINVAL;
3031                 if (offset && length > U64_MAX - offset + 1) {
3032                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3033                                 offset, length);
3034                         goto end_request;       /* Shouldn't happen */
3035                 }
3036
3037                 result = -EIO;
3038                 if (offset + length > rbd_dev->mapping.size) {
3039                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3040                                 offset, length, rbd_dev->mapping.size);
3041                         goto end_request;
3042                 }
3043
3044                 result = -ENOMEM;
3045                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3046                                                         write_request);
3047                 if (!img_request)
3048                         goto end_request;
3049
3050                 img_request->rq = rq;
3051
3052                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3053                                                 rq->bio);
3054                 if (!result)
3055                         result = rbd_img_request_submit(img_request);
3056                 if (result)
3057                         rbd_img_request_put(img_request);
3058 end_request:
3059                 spin_lock_irq(q->queue_lock);
3060                 if (result < 0) {
3061                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3062                                 write_request ? "write" : "read",
3063                                 length, offset, result);
3064
3065                         __blk_end_request_all(rq, result);
3066                 }
3067         }
3068 }
3069
3070 /*
3071  * a queue callback. Makes sure that we don't create a bio that spans across
3072  * multiple osd objects. One exception would be with a single page bios,
3073  * which we handle later at bio_chain_clone_range()
3074  */
3075 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3076                           struct bio_vec *bvec)
3077 {
3078         struct rbd_device *rbd_dev = q->queuedata;
3079         sector_t sector_offset;
3080         sector_t sectors_per_obj;
3081         sector_t obj_sector_offset;
3082         int ret;
3083
3084         /*
3085          * Find how far into its rbd object the partition-relative
3086          * bio start sector is to offset relative to the enclosing
3087          * device.
3088          */
3089         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3090         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3091         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3092
3093         /*
3094          * Compute the number of bytes from that offset to the end
3095          * of the object.  Account for what's already used by the bio.
3096          */
3097         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3098         if (ret > bmd->bi_size)
3099                 ret -= bmd->bi_size;
3100         else
3101                 ret = 0;
3102
3103         /*
3104          * Don't send back more than was asked for.  And if the bio
3105          * was empty, let the whole thing through because:  "Note
3106          * that a block device *must* allow a single page to be
3107          * added to an empty bio."
3108          */
3109         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3110         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3111                 ret = (int) bvec->bv_len;
3112
3113         return ret;
3114 }
3115
3116 static void rbd_free_disk(struct rbd_device *rbd_dev)
3117 {
3118         struct gendisk *disk = rbd_dev->disk;
3119
3120         if (!disk)
3121                 return;
3122
3123         rbd_dev->disk = NULL;
3124         if (disk->flags & GENHD_FL_UP) {
3125                 del_gendisk(disk);
3126                 if (disk->queue)
3127                         blk_cleanup_queue(disk->queue);
3128         }
3129         put_disk(disk);
3130 }
3131
3132 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3133                                 const char *object_name,
3134                                 u64 offset, u64 length, void *buf)
3135
3136 {
3137         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3138         struct rbd_obj_request *obj_request;
3139         struct page **pages = NULL;
3140         u32 page_count;
3141         size_t size;
3142         int ret;
3143
3144         page_count = (u32) calc_pages_for(offset, length);
3145         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3146         if (IS_ERR(pages))
3147                 ret = PTR_ERR(pages);
3148
3149         ret = -ENOMEM;
3150         obj_request = rbd_obj_request_create(object_name, offset, length,
3151                                                         OBJ_REQUEST_PAGES);
3152         if (!obj_request)
3153                 goto out;
3154
3155         obj_request->pages = pages;
3156         obj_request->page_count = page_count;
3157
3158         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3159         if (!obj_request->osd_req)
3160                 goto out;
3161
3162         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3163                                         offset, length, 0, 0);
3164         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3165                                         obj_request->pages,
3166                                         obj_request->length,
3167                                         obj_request->offset & ~PAGE_MASK,
3168                                         false, false);
3169         rbd_osd_req_format_read(obj_request);
3170
3171         ret = rbd_obj_request_submit(osdc, obj_request);
3172         if (ret)
3173                 goto out;
3174         ret = rbd_obj_request_wait(obj_request);
3175         if (ret)
3176                 goto out;
3177
3178         ret = obj_request->result;
3179         if (ret < 0)
3180                 goto out;
3181
3182         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3183         size = (size_t) obj_request->xferred;
3184         ceph_copy_from_page_vector(pages, buf, 0, size);
3185         rbd_assert(size <= (size_t)INT_MAX);
3186         ret = (int)size;
3187 out:
3188         if (obj_request)
3189                 rbd_obj_request_put(obj_request);
3190         else
3191                 ceph_release_page_vector(pages, page_count);
3192
3193         return ret;
3194 }
3195
3196 /*
3197  * Read the complete header for the given rbd device.  On successful
3198  * return, the rbd_dev->header field will contain up-to-date
3199  * information about the image.
3200  */
3201 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3202 {
3203         struct rbd_image_header_ondisk *ondisk = NULL;
3204         u32 snap_count = 0;
3205         u64 names_size = 0;
3206         u32 want_count;
3207         int ret;
3208
3209         /*
3210          * The complete header will include an array of its 64-bit
3211          * snapshot ids, followed by the names of those snapshots as
3212          * a contiguous block of NUL-terminated strings.  Note that
3213          * the number of snapshots could change by the time we read
3214          * it in, in which case we re-read it.
3215          */
3216         do {
3217                 size_t size;
3218
3219                 kfree(ondisk);
3220
3221                 size = sizeof (*ondisk);
3222                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3223                 size += names_size;
3224                 ondisk = kmalloc(size, GFP_KERNEL);
3225                 if (!ondisk)
3226                         return -ENOMEM;
3227
3228                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3229                                        0, size, ondisk);
3230                 if (ret < 0)
3231                         goto out;
3232                 if ((size_t)ret < size) {
3233                         ret = -ENXIO;
3234                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3235                                 size, ret);
3236                         goto out;
3237                 }
3238                 if (!rbd_dev_ondisk_valid(ondisk)) {
3239                         ret = -ENXIO;
3240                         rbd_warn(rbd_dev, "invalid header");
3241                         goto out;
3242                 }
3243
3244                 names_size = le64_to_cpu(ondisk->snap_names_len);
3245                 want_count = snap_count;
3246                 snap_count = le32_to_cpu(ondisk->snap_count);
3247         } while (snap_count != want_count);
3248
3249         ret = rbd_header_from_disk(rbd_dev, ondisk);
3250 out:
3251         kfree(ondisk);
3252
3253         return ret;
3254 }
3255
3256 /*
3257  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3258  * has disappeared from the (just updated) snapshot context.
3259  */
3260 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3261 {
3262         u64 snap_id;
3263
3264         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3265                 return;
3266
3267         snap_id = rbd_dev->spec->snap_id;
3268         if (snap_id == CEPH_NOSNAP)
3269                 return;
3270
3271         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3272                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3273 }
3274
3275 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3276 {
3277         sector_t size;
3278         bool removing;
3279
3280         /*
3281          * Don't hold the lock while doing disk operations,
3282          * or lock ordering will conflict with the bdev mutex via:
3283          * rbd_add() -> blkdev_get() -> rbd_open()
3284          */
3285         spin_lock_irq(&rbd_dev->lock);
3286         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3287         spin_unlock_irq(&rbd_dev->lock);
3288         /*
3289          * If the device is being removed, rbd_dev->disk has
3290          * been destroyed, so don't try to update its size
3291          */
3292         if (!removing) {
3293                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3294                 dout("setting size to %llu sectors", (unsigned long long)size);
3295                 set_capacity(rbd_dev->disk, size);
3296                 revalidate_disk(rbd_dev->disk);
3297         }
3298 }
3299
3300 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3301 {
3302         u64 mapping_size;
3303         int ret;
3304
3305         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3306         down_write(&rbd_dev->header_rwsem);
3307         mapping_size = rbd_dev->mapping.size;
3308         if (rbd_dev->image_format == 1)
3309                 ret = rbd_dev_v1_header_info(rbd_dev);
3310         else
3311                 ret = rbd_dev_v2_header_info(rbd_dev);
3312
3313         /* If it's a mapped snapshot, validate its EXISTS flag */
3314
3315         rbd_exists_validate(rbd_dev);
3316         up_write(&rbd_dev->header_rwsem);
3317
3318         if (mapping_size != rbd_dev->mapping.size) {
3319                 rbd_dev_update_size(rbd_dev);
3320         }
3321
3322         return ret;
3323 }
3324
3325 static int rbd_init_disk(struct rbd_device *rbd_dev)
3326 {
3327         struct gendisk *disk;
3328         struct request_queue *q;
3329         u64 segment_size;
3330
3331         /* create gendisk info */
3332         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3333         if (!disk)
3334                 return -ENOMEM;
3335
3336         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3337                  rbd_dev->dev_id);
3338         disk->major = rbd_dev->major;
3339         disk->first_minor = 0;
3340         disk->fops = &rbd_bd_ops;
3341         disk->private_data = rbd_dev;
3342
3343         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3344         if (!q)
3345                 goto out_disk;
3346
3347         /* We use the default size, but let's be explicit about it. */
3348         blk_queue_physical_block_size(q, SECTOR_SIZE);
3349
3350         /* set io sizes to object size */
3351         segment_size = rbd_obj_bytes(&rbd_dev->header);
3352         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3353         blk_queue_max_segment_size(q, segment_size);
3354         blk_queue_io_min(q, segment_size);
3355         blk_queue_io_opt(q, segment_size);
3356
3357         blk_queue_merge_bvec(q, rbd_merge_bvec);
3358         disk->queue = q;
3359
3360         q->queuedata = rbd_dev;
3361
3362         rbd_dev->disk = disk;
3363
3364         return 0;
3365 out_disk:
3366         put_disk(disk);
3367
3368         return -ENOMEM;
3369 }
3370
3371 /*
3372   sysfs
3373 */
3374
3375 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3376 {
3377         return container_of(dev, struct rbd_device, dev);
3378 }
3379
3380 static ssize_t rbd_size_show(struct device *dev,
3381                              struct device_attribute *attr, char *buf)
3382 {
3383         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3384
3385         return sprintf(buf, "%llu\n",
3386                 (unsigned long long)rbd_dev->mapping.size);
3387 }
3388
3389 /*
3390  * Note this shows the features for whatever's mapped, which is not
3391  * necessarily the base image.
3392  */
3393 static ssize_t rbd_features_show(struct device *dev,
3394                              struct device_attribute *attr, char *buf)
3395 {
3396         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3397
3398         return sprintf(buf, "0x%016llx\n",
3399                         (unsigned long long)rbd_dev->mapping.features);
3400 }
3401
3402 static ssize_t rbd_major_show(struct device *dev,
3403                               struct device_attribute *attr, char *buf)
3404 {
3405         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3406
3407         if (rbd_dev->major)
3408                 return sprintf(buf, "%d\n", rbd_dev->major);
3409
3410         return sprintf(buf, "(none)\n");
3411
3412 }
3413
3414 static ssize_t rbd_client_id_show(struct device *dev,
3415                                   struct device_attribute *attr, char *buf)
3416 {
3417         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3418
3419         return sprintf(buf, "client%lld\n",
3420                         ceph_client_id(rbd_dev->rbd_client->client));
3421 }
3422
3423 static ssize_t rbd_pool_show(struct device *dev,
3424                              struct device_attribute *attr, char *buf)
3425 {
3426         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3427
3428         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3429 }
3430
3431 static ssize_t rbd_pool_id_show(struct device *dev,
3432                              struct device_attribute *attr, char *buf)
3433 {
3434         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3435
3436         return sprintf(buf, "%llu\n",
3437                         (unsigned long long) rbd_dev->spec->pool_id);
3438 }
3439
3440 static ssize_t rbd_name_show(struct device *dev,
3441                              struct device_attribute *attr, char *buf)
3442 {
3443         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3444
3445         if (rbd_dev->spec->image_name)
3446                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3447
3448         return sprintf(buf, "(unknown)\n");
3449 }
3450
3451 static ssize_t rbd_image_id_show(struct device *dev,
3452                              struct device_attribute *attr, char *buf)
3453 {
3454         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3455
3456         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3457 }
3458
3459 /*
3460  * Shows the name of the currently-mapped snapshot (or
3461  * RBD_SNAP_HEAD_NAME for the base image).
3462  */
3463 static ssize_t rbd_snap_show(struct device *dev,
3464                              struct device_attribute *attr,
3465                              char *buf)
3466 {
3467         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3468
3469         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3470 }
3471
3472 /*
3473  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3474  * for the parent image.  If there is no parent, simply shows
3475  * "(no parent image)".
3476  */
3477 static ssize_t rbd_parent_show(struct device *dev,
3478                              struct device_attribute *attr,
3479                              char *buf)
3480 {
3481         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3482         struct rbd_spec *spec = rbd_dev->parent_spec;
3483         int count;
3484         char *bufp = buf;
3485
3486         if (!spec)
3487                 return sprintf(buf, "(no parent image)\n");
3488
3489         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3490                         (unsigned long long) spec->pool_id, spec->pool_name);
3491         if (count < 0)
3492                 return count;
3493         bufp += count;
3494
3495         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3496                         spec->image_name ? spec->image_name : "(unknown)");
3497         if (count < 0)
3498                 return count;
3499         bufp += count;
3500
3501         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3502                         (unsigned long long) spec->snap_id, spec->snap_name);
3503         if (count < 0)
3504                 return count;
3505         bufp += count;
3506
3507         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3508         if (count < 0)
3509                 return count;
3510         bufp += count;
3511
3512         return (ssize_t) (bufp - buf);
3513 }
3514
3515 static ssize_t rbd_image_refresh(struct device *dev,
3516                                  struct device_attribute *attr,
3517                                  const char *buf,
3518                                  size_t size)
3519 {
3520         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3521         int ret;
3522
3523         ret = rbd_dev_refresh(rbd_dev);
3524         if (ret)
3525                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3526
3527         return ret < 0 ? ret : size;
3528 }
3529
3530 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3531 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3532 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3533 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3534 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3535 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3536 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3537 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3538 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3539 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3540 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3541
3542 static struct attribute *rbd_attrs[] = {
3543         &dev_attr_size.attr,
3544         &dev_attr_features.attr,
3545         &dev_attr_major.attr,
3546         &dev_attr_client_id.attr,
3547         &dev_attr_pool.attr,
3548         &dev_attr_pool_id.attr,
3549         &dev_attr_name.attr,
3550         &dev_attr_image_id.attr,
3551         &dev_attr_current_snap.attr,
3552         &dev_attr_parent.attr,
3553         &dev_attr_refresh.attr,
3554         NULL
3555 };
3556
3557 static struct attribute_group rbd_attr_group = {
3558         .attrs = rbd_attrs,
3559 };
3560
3561 static const struct attribute_group *rbd_attr_groups[] = {
3562         &rbd_attr_group,
3563         NULL
3564 };
3565
3566 static void rbd_sysfs_dev_release(struct device *dev)
3567 {
3568 }
3569
3570 static struct device_type rbd_device_type = {
3571         .name           = "rbd",
3572         .groups         = rbd_attr_groups,
3573         .release        = rbd_sysfs_dev_release,
3574 };
3575
3576 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3577 {
3578         kref_get(&spec->kref);
3579
3580         return spec;
3581 }
3582
3583 static void rbd_spec_free(struct kref *kref);
3584 static void rbd_spec_put(struct rbd_spec *spec)
3585 {
3586         if (spec)
3587                 kref_put(&spec->kref, rbd_spec_free);
3588 }
3589
3590 static struct rbd_spec *rbd_spec_alloc(void)
3591 {
3592         struct rbd_spec *spec;
3593
3594         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3595         if (!spec)
3596                 return NULL;
3597         kref_init(&spec->kref);
3598
3599         return spec;
3600 }
3601
3602 static void rbd_spec_free(struct kref *kref)
3603 {
3604         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3605
3606         kfree(spec->pool_name);
3607         kfree(spec->image_id);
3608         kfree(spec->image_name);
3609         kfree(spec->snap_name);
3610         kfree(spec);
3611 }
3612
3613 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3614                                 struct rbd_spec *spec)
3615 {
3616         struct rbd_device *rbd_dev;
3617
3618         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3619         if (!rbd_dev)
3620                 return NULL;
3621
3622         spin_lock_init(&rbd_dev->lock);
3623         rbd_dev->flags = 0;
3624         atomic_set(&rbd_dev->parent_ref, 0);
3625         INIT_LIST_HEAD(&rbd_dev->node);
3626         init_rwsem(&rbd_dev->header_rwsem);
3627
3628         rbd_dev->spec = spec;
3629         rbd_dev->rbd_client = rbdc;
3630
3631         /* Initialize the layout used for all rbd requests */
3632
3633         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3634         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3635         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3636         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3637
3638         return rbd_dev;
3639 }
3640
3641 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3642 {
3643         rbd_put_client(rbd_dev->rbd_client);
3644         rbd_spec_put(rbd_dev->spec);
3645         kfree(rbd_dev);
3646 }
3647
3648 /*
3649  * Get the size and object order for an image snapshot, or if
3650  * snap_id is CEPH_NOSNAP, gets this information for the base
3651  * image.
3652  */
3653 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3654                                 u8 *order, u64 *snap_size)
3655 {
3656         __le64 snapid = cpu_to_le64(snap_id);
3657         int ret;
3658         struct {
3659                 u8 order;
3660                 __le64 size;
3661         } __attribute__ ((packed)) size_buf = { 0 };
3662
3663         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3664                                 "rbd", "get_size",
3665                                 &snapid, sizeof (snapid),
3666                                 &size_buf, sizeof (size_buf));
3667         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3668         if (ret < 0)
3669                 return ret;
3670         if (ret < sizeof (size_buf))
3671                 return -ERANGE;
3672
3673         if (order) {
3674                 *order = size_buf.order;
3675                 dout("  order %u", (unsigned int)*order);
3676         }
3677         *snap_size = le64_to_cpu(size_buf.size);
3678
3679         dout("  snap_id 0x%016llx snap_size = %llu\n",
3680                 (unsigned long long)snap_id,
3681                 (unsigned long long)*snap_size);
3682
3683         return 0;
3684 }
3685
3686 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3687 {
3688         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3689                                         &rbd_dev->header.obj_order,
3690                                         &rbd_dev->header.image_size);
3691 }
3692
3693 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3694 {
3695         void *reply_buf;
3696         int ret;
3697         void *p;
3698
3699         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3700         if (!reply_buf)
3701                 return -ENOMEM;
3702
3703         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3704                                 "rbd", "get_object_prefix", NULL, 0,
3705                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3706         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3707         if (ret < 0)
3708                 goto out;
3709
3710         p = reply_buf;
3711         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3712                                                 p + ret, NULL, GFP_NOIO);
3713         ret = 0;
3714
3715         if (IS_ERR(rbd_dev->header.object_prefix)) {
3716                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3717                 rbd_dev->header.object_prefix = NULL;
3718         } else {
3719                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3720         }
3721 out:
3722         kfree(reply_buf);
3723
3724         return ret;
3725 }
3726
3727 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3728                 u64 *snap_features)
3729 {
3730         __le64 snapid = cpu_to_le64(snap_id);
3731         struct {
3732                 __le64 features;
3733                 __le64 incompat;
3734         } __attribute__ ((packed)) features_buf = { 0 };
3735         u64 incompat;
3736         int ret;
3737
3738         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3739                                 "rbd", "get_features",
3740                                 &snapid, sizeof (snapid),
3741                                 &features_buf, sizeof (features_buf));
3742         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3743         if (ret < 0)
3744                 return ret;
3745         if (ret < sizeof (features_buf))
3746                 return -ERANGE;
3747
3748         incompat = le64_to_cpu(features_buf.incompat);
3749         if (incompat & ~RBD_FEATURES_SUPPORTED)
3750                 return -ENXIO;
3751
3752         *snap_features = le64_to_cpu(features_buf.features);
3753
3754         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3755                 (unsigned long long)snap_id,
3756                 (unsigned long long)*snap_features,
3757                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3758
3759         return 0;
3760 }
3761
3762 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3763 {
3764         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3765                                                 &rbd_dev->header.features);
3766 }
3767
3768 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3769 {
3770         struct rbd_spec *parent_spec;
3771         size_t size;
3772         void *reply_buf = NULL;
3773         __le64 snapid;
3774         void *p;
3775         void *end;
3776         u64 pool_id;
3777         char *image_id;
3778         u64 snap_id;
3779         u64 overlap;
3780         int ret;
3781
3782         parent_spec = rbd_spec_alloc();
3783         if (!parent_spec)
3784                 return -ENOMEM;
3785
3786         size = sizeof (__le64) +                                /* pool_id */
3787                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3788                 sizeof (__le64) +                               /* snap_id */
3789                 sizeof (__le64);                                /* overlap */
3790         reply_buf = kmalloc(size, GFP_KERNEL);
3791         if (!reply_buf) {
3792                 ret = -ENOMEM;
3793                 goto out_err;
3794         }
3795
3796         snapid = cpu_to_le64(CEPH_NOSNAP);
3797         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3798                                 "rbd", "get_parent",
3799                                 &snapid, sizeof (snapid),
3800                                 reply_buf, size);
3801         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3802         if (ret < 0)
3803                 goto out_err;
3804
3805         p = reply_buf;
3806         end = reply_buf + ret;
3807         ret = -ERANGE;
3808         ceph_decode_64_safe(&p, end, pool_id, out_err);
3809         if (pool_id == CEPH_NOPOOL) {
3810                 /*
3811                  * Either the parent never existed, or we have
3812                  * record of it but the image got flattened so it no
3813                  * longer has a parent.  When the parent of a
3814                  * layered image disappears we immediately set the
3815                  * overlap to 0.  The effect of this is that all new
3816                  * requests will be treated as if the image had no
3817                  * parent.
3818                  */
3819                 if (rbd_dev->parent_overlap) {
3820                         rbd_dev->parent_overlap = 0;
3821                         smp_mb();
3822                         rbd_dev_parent_put(rbd_dev);
3823                         pr_info("%s: clone image has been flattened\n",
3824                                 rbd_dev->disk->disk_name);
3825                 }
3826
3827                 goto out;       /* No parent?  No problem. */
3828         }
3829
3830         /* The ceph file layout needs to fit pool id in 32 bits */
3831
3832         ret = -EIO;
3833         if (pool_id > (u64)U32_MAX) {
3834                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3835                         (unsigned long long)pool_id, U32_MAX);
3836                 goto out_err;
3837         }
3838
3839         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3840         if (IS_ERR(image_id)) {
3841                 ret = PTR_ERR(image_id);
3842                 goto out_err;
3843         }
3844         ceph_decode_64_safe(&p, end, snap_id, out_err);
3845         ceph_decode_64_safe(&p, end, overlap, out_err);
3846
3847         /*
3848          * The parent won't change (except when the clone is
3849          * flattened, already handled that).  So we only need to
3850          * record the parent spec we have not already done so.
3851          */
3852         if (!rbd_dev->parent_spec) {
3853                 parent_spec->pool_id = pool_id;
3854                 parent_spec->image_id = image_id;
3855                 parent_spec->snap_id = snap_id;
3856                 rbd_dev->parent_spec = parent_spec;
3857                 parent_spec = NULL;     /* rbd_dev now owns this */
3858         }
3859
3860         /*
3861          * We always update the parent overlap.  If it's zero we
3862          * treat it specially.
3863          */
3864         rbd_dev->parent_overlap = overlap;
3865         smp_mb();
3866         if (!overlap) {
3867
3868                 /* A null parent_spec indicates it's the initial probe */
3869
3870                 if (parent_spec) {
3871                         /*
3872                          * The overlap has become zero, so the clone
3873                          * must have been resized down to 0 at some
3874                          * point.  Treat this the same as a flatten.
3875                          */
3876                         rbd_dev_parent_put(rbd_dev);
3877                         pr_info("%s: clone image now standalone\n",
3878                                 rbd_dev->disk->disk_name);
3879                 } else {
3880                         /*
3881                          * For the initial probe, if we find the
3882                          * overlap is zero we just pretend there was
3883                          * no parent image.
3884                          */
3885                         rbd_warn(rbd_dev, "ignoring parent of "
3886                                                 "clone with overlap 0\n");
3887                 }
3888         }
3889 out:
3890         ret = 0;
3891 out_err:
3892         kfree(reply_buf);
3893         rbd_spec_put(parent_spec);
3894
3895         return ret;
3896 }
3897
3898 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3899 {
3900         struct {
3901                 __le64 stripe_unit;
3902                 __le64 stripe_count;
3903         } __attribute__ ((packed)) striping_info_buf = { 0 };
3904         size_t size = sizeof (striping_info_buf);
3905         void *p;
3906         u64 obj_size;
3907         u64 stripe_unit;
3908         u64 stripe_count;
3909         int ret;
3910
3911         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3912                                 "rbd", "get_stripe_unit_count", NULL, 0,
3913                                 (char *)&striping_info_buf, size);
3914         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3915         if (ret < 0)
3916                 return ret;
3917         if (ret < size)
3918                 return -ERANGE;
3919
3920         /*
3921          * We don't actually support the "fancy striping" feature
3922          * (STRIPINGV2) yet, but if the striping sizes are the
3923          * defaults the behavior is the same as before.  So find
3924          * out, and only fail if the image has non-default values.
3925          */
3926         ret = -EINVAL;
3927         obj_size = (u64)1 << rbd_dev->header.obj_order;
3928         p = &striping_info_buf;
3929         stripe_unit = ceph_decode_64(&p);
3930         if (stripe_unit != obj_size) {
3931                 rbd_warn(rbd_dev, "unsupported stripe unit "
3932                                 "(got %llu want %llu)",
3933                                 stripe_unit, obj_size);
3934                 return -EINVAL;
3935         }
3936         stripe_count = ceph_decode_64(&p);
3937         if (stripe_count != 1) {
3938                 rbd_warn(rbd_dev, "unsupported stripe count "
3939                                 "(got %llu want 1)", stripe_count);
3940                 return -EINVAL;
3941         }
3942         rbd_dev->header.stripe_unit = stripe_unit;
3943         rbd_dev->header.stripe_count = stripe_count;
3944
3945         return 0;
3946 }
3947
3948 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3949 {
3950         size_t image_id_size;
3951         char *image_id;
3952         void *p;
3953         void *end;
3954         size_t size;
3955         void *reply_buf = NULL;
3956         size_t len = 0;
3957         char *image_name = NULL;
3958         int ret;
3959
3960         rbd_assert(!rbd_dev->spec->image_name);
3961
3962         len = strlen(rbd_dev->spec->image_id);
3963         image_id_size = sizeof (__le32) + len;
3964         image_id = kmalloc(image_id_size, GFP_KERNEL);
3965         if (!image_id)
3966                 return NULL;
3967
3968         p = image_id;
3969         end = image_id + image_id_size;
3970         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3971
3972         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3973         reply_buf = kmalloc(size, GFP_KERNEL);
3974         if (!reply_buf)
3975                 goto out;
3976
3977         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3978                                 "rbd", "dir_get_name",
3979                                 image_id, image_id_size,
3980                                 reply_buf, size);
3981         if (ret < 0)
3982                 goto out;
3983         p = reply_buf;
3984         end = reply_buf + ret;
3985
3986         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3987         if (IS_ERR(image_name))
3988                 image_name = NULL;
3989         else
3990                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3991 out:
3992         kfree(reply_buf);
3993         kfree(image_id);
3994
3995         return image_name;
3996 }
3997
3998 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3999 {
4000         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4001         const char *snap_name;
4002         u32 which = 0;
4003
4004         /* Skip over names until we find the one we are looking for */
4005
4006         snap_name = rbd_dev->header.snap_names;
4007         while (which < snapc->num_snaps) {
4008                 if (!strcmp(name, snap_name))
4009                         return snapc->snaps[which];
4010                 snap_name += strlen(snap_name) + 1;
4011                 which++;
4012         }
4013         return CEPH_NOSNAP;
4014 }
4015
4016 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4017 {
4018         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4019         u32 which;
4020         bool found = false;
4021         u64 snap_id;
4022
4023         for (which = 0; !found && which < snapc->num_snaps; which++) {
4024                 const char *snap_name;
4025
4026                 snap_id = snapc->snaps[which];
4027                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4028                 if (IS_ERR(snap_name)) {
4029                         /* ignore no-longer existing snapshots */
4030                         if (PTR_ERR(snap_name) == -ENOENT)
4031                                 continue;
4032                         else
4033                                 break;
4034                 }
4035                 found = !strcmp(name, snap_name);
4036                 kfree(snap_name);
4037         }
4038         return found ? snap_id : CEPH_NOSNAP;
4039 }
4040
4041 /*
4042  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4043  * no snapshot by that name is found, or if an error occurs.
4044  */
4045 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4046 {
4047         if (rbd_dev->image_format == 1)
4048                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4049
4050         return rbd_v2_snap_id_by_name(rbd_dev, name);
4051 }
4052
4053 /*
4054  * When an rbd image has a parent image, it is identified by the
4055  * pool, image, and snapshot ids (not names).  This function fills
4056  * in the names for those ids.  (It's OK if we can't figure out the
4057  * name for an image id, but the pool and snapshot ids should always
4058  * exist and have names.)  All names in an rbd spec are dynamically
4059  * allocated.
4060  *
4061  * When an image being mapped (not a parent) is probed, we have the
4062  * pool name and pool id, image name and image id, and the snapshot
4063  * name.  The only thing we're missing is the snapshot id.
4064  */
4065 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4066 {
4067         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4068         struct rbd_spec *spec = rbd_dev->spec;
4069         const char *pool_name;
4070         const char *image_name;
4071         const char *snap_name;
4072         int ret;
4073
4074         /*
4075          * An image being mapped will have the pool name (etc.), but
4076          * we need to look up the snapshot id.
4077          */
4078         if (spec->pool_name) {
4079                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4080                         u64 snap_id;
4081
4082                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4083                         if (snap_id == CEPH_NOSNAP)
4084                                 return -ENOENT;
4085                         spec->snap_id = snap_id;
4086                 } else {
4087                         spec->snap_id = CEPH_NOSNAP;
4088                 }
4089
4090                 return 0;
4091         }
4092
4093         /* Get the pool name; we have to make our own copy of this */
4094
4095         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4096         if (!pool_name) {
4097                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4098                 return -EIO;
4099         }
4100         pool_name = kstrdup(pool_name, GFP_KERNEL);
4101         if (!pool_name)
4102                 return -ENOMEM;
4103
4104         /* Fetch the image name; tolerate failure here */
4105
4106         image_name = rbd_dev_image_name(rbd_dev);
4107         if (!image_name)
4108                 rbd_warn(rbd_dev, "unable to get image name");
4109
4110         /* Look up the snapshot name, and make a copy */
4111
4112         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4113         if (IS_ERR(snap_name)) {
4114                 ret = PTR_ERR(snap_name);
4115                 goto out_err;
4116         }
4117
4118         spec->pool_name = pool_name;
4119         spec->image_name = image_name;
4120         spec->snap_name = snap_name;
4121
4122         return 0;
4123 out_err:
4124         kfree(image_name);
4125         kfree(pool_name);
4126
4127         return ret;
4128 }
4129
4130 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4131 {
4132         size_t size;
4133         int ret;
4134         void *reply_buf;
4135         void *p;
4136         void *end;
4137         u64 seq;
4138         u32 snap_count;
4139         struct ceph_snap_context *snapc;
4140         u32 i;
4141
4142         /*
4143          * We'll need room for the seq value (maximum snapshot id),
4144          * snapshot count, and array of that many snapshot ids.
4145          * For now we have a fixed upper limit on the number we're
4146          * prepared to receive.
4147          */
4148         size = sizeof (__le64) + sizeof (__le32) +
4149                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4150         reply_buf = kzalloc(size, GFP_KERNEL);
4151         if (!reply_buf)
4152                 return -ENOMEM;
4153
4154         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155                                 "rbd", "get_snapcontext", NULL, 0,
4156                                 reply_buf, size);
4157         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158         if (ret < 0)
4159                 goto out;
4160
4161         p = reply_buf;
4162         end = reply_buf + ret;
4163         ret = -ERANGE;
4164         ceph_decode_64_safe(&p, end, seq, out);
4165         ceph_decode_32_safe(&p, end, snap_count, out);
4166
4167         /*
4168          * Make sure the reported number of snapshot ids wouldn't go
4169          * beyond the end of our buffer.  But before checking that,
4170          * make sure the computed size of the snapshot context we
4171          * allocate is representable in a size_t.
4172          */
4173         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4174                                  / sizeof (u64)) {
4175                 ret = -EINVAL;
4176                 goto out;
4177         }
4178         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4179                 goto out;
4180         ret = 0;
4181
4182         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4183         if (!snapc) {
4184                 ret = -ENOMEM;
4185                 goto out;
4186         }
4187         snapc->seq = seq;
4188         for (i = 0; i < snap_count; i++)
4189                 snapc->snaps[i] = ceph_decode_64(&p);
4190
4191         ceph_put_snap_context(rbd_dev->header.snapc);
4192         rbd_dev->header.snapc = snapc;
4193
4194         dout("  snap context seq = %llu, snap_count = %u\n",
4195                 (unsigned long long)seq, (unsigned int)snap_count);
4196 out:
4197         kfree(reply_buf);
4198
4199         return ret;
4200 }
4201
4202 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4203                                         u64 snap_id)
4204 {
4205         size_t size;
4206         void *reply_buf;
4207         __le64 snapid;
4208         int ret;
4209         void *p;
4210         void *end;
4211         char *snap_name;
4212
4213         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4214         reply_buf = kmalloc(size, GFP_KERNEL);
4215         if (!reply_buf)
4216                 return ERR_PTR(-ENOMEM);
4217
4218         snapid = cpu_to_le64(snap_id);
4219         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4220                                 "rbd", "get_snapshot_name",
4221                                 &snapid, sizeof (snapid),
4222                                 reply_buf, size);
4223         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4224         if (ret < 0) {
4225                 snap_name = ERR_PTR(ret);
4226                 goto out;
4227         }
4228
4229         p = reply_buf;
4230         end = reply_buf + ret;
4231         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4232         if (IS_ERR(snap_name))
4233                 goto out;
4234
4235         dout("  snap_id 0x%016llx snap_name = %s\n",
4236                 (unsigned long long)snap_id, snap_name);
4237 out:
4238         kfree(reply_buf);
4239
4240         return snap_name;
4241 }
4242
4243 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4244 {
4245         bool first_time = rbd_dev->header.object_prefix == NULL;
4246         int ret;
4247
4248         ret = rbd_dev_v2_image_size(rbd_dev);
4249         if (ret)
4250                 return ret;
4251
4252         if (first_time) {
4253                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4254                 if (ret)
4255                         return ret;
4256         }
4257
4258         /*
4259          * If the image supports layering, get the parent info.  We
4260          * need to probe the first time regardless.  Thereafter we
4261          * only need to if there's a parent, to see if it has
4262          * disappeared due to the mapped image getting flattened.
4263          */
4264         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4265                         (first_time || rbd_dev->parent_spec)) {
4266                 bool warn;
4267
4268                 ret = rbd_dev_v2_parent_info(rbd_dev);
4269                 if (ret)
4270                         return ret;
4271
4272                 /*
4273                  * Print a warning if this is the initial probe and
4274                  * the image has a parent.  Don't print it if the
4275                  * image now being probed is itself a parent.  We
4276                  * can tell at this point because we won't know its
4277                  * pool name yet (just its pool id).
4278                  */
4279                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4280                 if (first_time && warn)
4281                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4282                                         "is EXPERIMENTAL!");
4283         }
4284
4285         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4286                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4287                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4288
4289         ret = rbd_dev_v2_snap_context(rbd_dev);
4290         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4291
4292         return ret;
4293 }
4294
4295 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4296 {
4297         struct device *dev;
4298         int ret;
4299
4300         dev = &rbd_dev->dev;
4301         dev->bus = &rbd_bus_type;
4302         dev->type = &rbd_device_type;
4303         dev->parent = &rbd_root_dev;
4304         dev->release = rbd_dev_device_release;
4305         dev_set_name(dev, "%d", rbd_dev->dev_id);
4306         ret = device_register(dev);
4307
4308         return ret;
4309 }
4310
4311 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4312 {
4313         device_unregister(&rbd_dev->dev);
4314 }
4315
4316 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4317
4318 /*
4319  * Get a unique rbd identifier for the given new rbd_dev, and add
4320  * the rbd_dev to the global list.  The minimum rbd id is 1.
4321  */
4322 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4323 {
4324         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4325
4326         spin_lock(&rbd_dev_list_lock);
4327         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4328         spin_unlock(&rbd_dev_list_lock);
4329         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4330                 (unsigned long long) rbd_dev->dev_id);
4331 }
4332
4333 /*
4334  * Remove an rbd_dev from the global list, and record that its
4335  * identifier is no longer in use.
4336  */
4337 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4338 {
4339         struct list_head *tmp;
4340         int rbd_id = rbd_dev->dev_id;
4341         int max_id;
4342
4343         rbd_assert(rbd_id > 0);
4344
4345         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4346                 (unsigned long long) rbd_dev->dev_id);
4347         spin_lock(&rbd_dev_list_lock);
4348         list_del_init(&rbd_dev->node);
4349
4350         /*
4351          * If the id being "put" is not the current maximum, there
4352          * is nothing special we need to do.
4353          */
4354         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4355                 spin_unlock(&rbd_dev_list_lock);
4356                 return;
4357         }
4358
4359         /*
4360          * We need to update the current maximum id.  Search the
4361          * list to find out what it is.  We're more likely to find
4362          * the maximum at the end, so search the list backward.
4363          */
4364         max_id = 0;
4365         list_for_each_prev(tmp, &rbd_dev_list) {
4366                 struct rbd_device *rbd_dev;
4367
4368                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4369                 if (rbd_dev->dev_id > max_id)
4370                         max_id = rbd_dev->dev_id;
4371         }
4372         spin_unlock(&rbd_dev_list_lock);
4373
4374         /*
4375          * The max id could have been updated by rbd_dev_id_get(), in
4376          * which case it now accurately reflects the new maximum.
4377          * Be careful not to overwrite the maximum value in that
4378          * case.
4379          */
4380         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4381         dout("  max dev id has been reset\n");
4382 }
4383
4384 /*
4385  * Skips over white space at *buf, and updates *buf to point to the
4386  * first found non-space character (if any). Returns the length of
4387  * the token (string of non-white space characters) found.  Note
4388  * that *buf must be terminated with '\0'.
4389  */
4390 static inline size_t next_token(const char **buf)
4391 {
4392         /*
4393         * These are the characters that produce nonzero for
4394         * isspace() in the "C" and "POSIX" locales.
4395         */
4396         const char *spaces = " \f\n\r\t\v";
4397
4398         *buf += strspn(*buf, spaces);   /* Find start of token */
4399
4400         return strcspn(*buf, spaces);   /* Return token length */
4401 }
4402
4403 /*
4404  * Finds the next token in *buf, and if the provided token buffer is
4405  * big enough, copies the found token into it.  The result, if
4406  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4407  * must be terminated with '\0' on entry.
4408  *
4409  * Returns the length of the token found (not including the '\0').
4410  * Return value will be 0 if no token is found, and it will be >=
4411  * token_size if the token would not fit.
4412  *
4413  * The *buf pointer will be updated to point beyond the end of the
4414  * found token.  Note that this occurs even if the token buffer is
4415  * too small to hold it.
4416  */
4417 static inline size_t copy_token(const char **buf,
4418                                 char *token,
4419                                 size_t token_size)
4420 {
4421         size_t len;
4422
4423         len = next_token(buf);
4424         if (len < token_size) {
4425                 memcpy(token, *buf, len);
4426                 *(token + len) = '\0';
4427         }
4428         *buf += len;
4429
4430         return len;
4431 }
4432
4433 /*
4434  * Finds the next token in *buf, dynamically allocates a buffer big
4435  * enough to hold a copy of it, and copies the token into the new
4436  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4437  * that a duplicate buffer is created even for a zero-length token.
4438  *
4439  * Returns a pointer to the newly-allocated duplicate, or a null
4440  * pointer if memory for the duplicate was not available.  If
4441  * the lenp argument is a non-null pointer, the length of the token
4442  * (not including the '\0') is returned in *lenp.
4443  *
4444  * If successful, the *buf pointer will be updated to point beyond
4445  * the end of the found token.
4446  *
4447  * Note: uses GFP_KERNEL for allocation.
4448  */
4449 static inline char *dup_token(const char **buf, size_t *lenp)
4450 {
4451         char *dup;
4452         size_t len;
4453
4454         len = next_token(buf);
4455         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4456         if (!dup)
4457                 return NULL;
4458         *(dup + len) = '\0';
4459         *buf += len;
4460
4461         if (lenp)
4462                 *lenp = len;
4463
4464         return dup;
4465 }
4466
4467 /*
4468  * Parse the options provided for an "rbd add" (i.e., rbd image
4469  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4470  * and the data written is passed here via a NUL-terminated buffer.
4471  * Returns 0 if successful or an error code otherwise.
4472  *
4473  * The information extracted from these options is recorded in
4474  * the other parameters which return dynamically-allocated
4475  * structures:
4476  *  ceph_opts
4477  *      The address of a pointer that will refer to a ceph options
4478  *      structure.  Caller must release the returned pointer using
4479  *      ceph_destroy_options() when it is no longer needed.
4480  *  rbd_opts
4481  *      Address of an rbd options pointer.  Fully initialized by
4482  *      this function; caller must release with kfree().
4483  *  spec
4484  *      Address of an rbd image specification pointer.  Fully
4485  *      initialized by this function based on parsed options.
4486  *      Caller must release with rbd_spec_put().
4487  *
4488  * The options passed take this form:
4489  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4490  * where:
4491  *  <mon_addrs>
4492  *      A comma-separated list of one or more monitor addresses.
4493  *      A monitor address is an ip address, optionally followed
4494  *      by a port number (separated by a colon).
4495  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4496  *  <options>
4497  *      A comma-separated list of ceph and/or rbd options.
4498  *  <pool_name>
4499  *      The name of the rados pool containing the rbd image.
4500  *  <image_name>
4501  *      The name of the image in that pool to map.
4502  *  <snap_id>
4503  *      An optional snapshot id.  If provided, the mapping will
4504  *      present data from the image at the time that snapshot was
4505  *      created.  The image head is used if no snapshot id is
4506  *      provided.  Snapshot mappings are always read-only.
4507  */
4508 static int rbd_add_parse_args(const char *buf,
4509                                 struct ceph_options **ceph_opts,
4510                                 struct rbd_options **opts,
4511                                 struct rbd_spec **rbd_spec)
4512 {
4513         size_t len;
4514         char *options;
4515         const char *mon_addrs;
4516         char *snap_name;
4517         size_t mon_addrs_size;
4518         struct rbd_spec *spec = NULL;
4519         struct rbd_options *rbd_opts = NULL;
4520         struct ceph_options *copts;
4521         int ret;
4522
4523         /* The first four tokens are required */
4524
4525         len = next_token(&buf);
4526         if (!len) {
4527                 rbd_warn(NULL, "no monitor address(es) provided");
4528                 return -EINVAL;
4529         }
4530         mon_addrs = buf;
4531         mon_addrs_size = len + 1;
4532         buf += len;
4533
4534         ret = -EINVAL;
4535         options = dup_token(&buf, NULL);
4536         if (!options)
4537                 return -ENOMEM;
4538         if (!*options) {
4539                 rbd_warn(NULL, "no options provided");
4540                 goto out_err;
4541         }
4542
4543         spec = rbd_spec_alloc();
4544         if (!spec)
4545                 goto out_mem;
4546
4547         spec->pool_name = dup_token(&buf, NULL);
4548         if (!spec->pool_name)
4549                 goto out_mem;
4550         if (!*spec->pool_name) {
4551                 rbd_warn(NULL, "no pool name provided");
4552                 goto out_err;
4553         }
4554
4555         spec->image_name = dup_token(&buf, NULL);
4556         if (!spec->image_name)
4557                 goto out_mem;
4558         if (!*spec->image_name) {
4559                 rbd_warn(NULL, "no image name provided");
4560                 goto out_err;
4561         }
4562
4563         /*
4564          * Snapshot name is optional; default is to use "-"
4565          * (indicating the head/no snapshot).
4566          */
4567         len = next_token(&buf);
4568         if (!len) {
4569                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4570                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4571         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4572                 ret = -ENAMETOOLONG;
4573                 goto out_err;
4574         }
4575         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4576         if (!snap_name)
4577                 goto out_mem;
4578         *(snap_name + len) = '\0';
4579         spec->snap_name = snap_name;
4580
4581         /* Initialize all rbd options to the defaults */
4582
4583         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4584         if (!rbd_opts)
4585                 goto out_mem;
4586
4587         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4588
4589         copts = ceph_parse_options(options, mon_addrs,
4590                                         mon_addrs + mon_addrs_size - 1,
4591                                         parse_rbd_opts_token, rbd_opts);
4592         if (IS_ERR(copts)) {
4593                 ret = PTR_ERR(copts);
4594                 goto out_err;
4595         }
4596         kfree(options);
4597
4598         *ceph_opts = copts;
4599         *opts = rbd_opts;
4600         *rbd_spec = spec;
4601
4602         return 0;
4603 out_mem:
4604         ret = -ENOMEM;
4605 out_err:
4606         kfree(rbd_opts);
4607         rbd_spec_put(spec);
4608         kfree(options);
4609
4610         return ret;
4611 }
4612
4613 /*
4614  * An rbd format 2 image has a unique identifier, distinct from the
4615  * name given to it by the user.  Internally, that identifier is
4616  * what's used to specify the names of objects related to the image.
4617  *
4618  * A special "rbd id" object is used to map an rbd image name to its
4619  * id.  If that object doesn't exist, then there is no v2 rbd image
4620  * with the supplied name.
4621  *
4622  * This function will record the given rbd_dev's image_id field if
4623  * it can be determined, and in that case will return 0.  If any
4624  * errors occur a negative errno will be returned and the rbd_dev's
4625  * image_id field will be unchanged (and should be NULL).
4626  */
4627 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4628 {
4629         int ret;
4630         size_t size;
4631         char *object_name;
4632         void *response;
4633         char *image_id;
4634
4635         /*
4636          * When probing a parent image, the image id is already
4637          * known (and the image name likely is not).  There's no
4638          * need to fetch the image id again in this case.  We
4639          * do still need to set the image format though.
4640          */
4641         if (rbd_dev->spec->image_id) {
4642                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4643
4644                 return 0;
4645         }
4646
4647         /*
4648          * First, see if the format 2 image id file exists, and if
4649          * so, get the image's persistent id from it.
4650          */
4651         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4652         object_name = kmalloc(size, GFP_NOIO);
4653         if (!object_name)
4654                 return -ENOMEM;
4655         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4656         dout("rbd id object name is %s\n", object_name);
4657
4658         /* Response will be an encoded string, which includes a length */
4659
4660         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4661         response = kzalloc(size, GFP_NOIO);
4662         if (!response) {
4663                 ret = -ENOMEM;
4664                 goto out;
4665         }
4666
4667         /* If it doesn't exist we'll assume it's a format 1 image */
4668
4669         ret = rbd_obj_method_sync(rbd_dev, object_name,
4670                                 "rbd", "get_id", NULL, 0,
4671                                 response, RBD_IMAGE_ID_LEN_MAX);
4672         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4673         if (ret == -ENOENT) {
4674                 image_id = kstrdup("", GFP_KERNEL);
4675                 ret = image_id ? 0 : -ENOMEM;
4676                 if (!ret)
4677                         rbd_dev->image_format = 1;
4678         } else if (ret > sizeof (__le32)) {
4679                 void *p = response;
4680
4681                 image_id = ceph_extract_encoded_string(&p, p + ret,
4682                                                 NULL, GFP_NOIO);
4683                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4684                 if (!ret)
4685                         rbd_dev->image_format = 2;
4686         } else {
4687                 ret = -EINVAL;
4688         }
4689
4690         if (!ret) {
4691                 rbd_dev->spec->image_id = image_id;
4692                 dout("image_id is %s\n", image_id);
4693         }
4694 out:
4695         kfree(response);
4696         kfree(object_name);
4697
4698         return ret;
4699 }
4700
4701 /*
4702  * Undo whatever state changes are made by v1 or v2 header info
4703  * call.
4704  */
4705 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4706 {
4707         struct rbd_image_header *header;
4708
4709         /* Drop parent reference unless it's already been done (or none) */
4710
4711         if (rbd_dev->parent_overlap)
4712                 rbd_dev_parent_put(rbd_dev);
4713
4714         /* Free dynamic fields from the header, then zero it out */
4715
4716         header = &rbd_dev->header;
4717         ceph_put_snap_context(header->snapc);
4718         kfree(header->snap_sizes);
4719         kfree(header->snap_names);
4720         kfree(header->object_prefix);
4721         memset(header, 0, sizeof (*header));
4722 }
4723
4724 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4725 {
4726         int ret;
4727
4728         ret = rbd_dev_v2_object_prefix(rbd_dev);
4729         if (ret)
4730                 goto out_err;
4731
4732         /*
4733          * Get the and check features for the image.  Currently the
4734          * features are assumed to never change.
4735          */
4736         ret = rbd_dev_v2_features(rbd_dev);
4737         if (ret)
4738                 goto out_err;
4739
4740         /* If the image supports fancy striping, get its parameters */
4741
4742         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4743                 ret = rbd_dev_v2_striping_info(rbd_dev);
4744                 if (ret < 0)
4745                         goto out_err;
4746         }
4747         /* No support for crypto and compression type format 2 images */
4748
4749         return 0;
4750 out_err:
4751         rbd_dev->header.features = 0;
4752         kfree(rbd_dev->header.object_prefix);
4753         rbd_dev->header.object_prefix = NULL;
4754
4755         return ret;
4756 }
4757
4758 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4759 {
4760         struct rbd_device *parent = NULL;
4761         struct rbd_spec *parent_spec;
4762         struct rbd_client *rbdc;
4763         int ret;
4764
4765         if (!rbd_dev->parent_spec)
4766                 return 0;
4767         /*
4768          * We need to pass a reference to the client and the parent
4769          * spec when creating the parent rbd_dev.  Images related by
4770          * parent/child relationships always share both.
4771          */
4772         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4773         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4774
4775         ret = -ENOMEM;
4776         parent = rbd_dev_create(rbdc, parent_spec);
4777         if (!parent)
4778                 goto out_err;
4779
4780         ret = rbd_dev_image_probe(parent, false);
4781         if (ret < 0)
4782                 goto out_err;
4783         rbd_dev->parent = parent;
4784         atomic_set(&rbd_dev->parent_ref, 1);
4785
4786         return 0;
4787 out_err:
4788         if (parent) {
4789                 rbd_dev_unparent(rbd_dev);
4790                 kfree(rbd_dev->header_name);
4791                 rbd_dev_destroy(parent);
4792         } else {
4793                 rbd_put_client(rbdc);
4794                 rbd_spec_put(parent_spec);
4795         }
4796
4797         return ret;
4798 }
4799
4800 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4801 {
4802         int ret;
4803
4804         /* generate unique id: find highest unique id, add one */
4805         rbd_dev_id_get(rbd_dev);
4806
4807         /* Fill in the device name, now that we have its id. */
4808         BUILD_BUG_ON(DEV_NAME_LEN
4809                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4810         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4811
4812         /* Get our block major device number. */
4813
4814         ret = register_blkdev(0, rbd_dev->name);
4815         if (ret < 0)
4816                 goto err_out_id;
4817         rbd_dev->major = ret;
4818
4819         /* Set up the blkdev mapping. */
4820
4821         ret = rbd_init_disk(rbd_dev);
4822         if (ret)
4823                 goto err_out_blkdev;
4824
4825         ret = rbd_dev_mapping_set(rbd_dev);
4826         if (ret)
4827                 goto err_out_disk;
4828         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4829
4830         ret = rbd_bus_add_dev(rbd_dev);
4831         if (ret)
4832                 goto err_out_mapping;
4833
4834         /* Everything's ready.  Announce the disk to the world. */
4835
4836         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4837         add_disk(rbd_dev->disk);
4838
4839         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4840                 (unsigned long long) rbd_dev->mapping.size);
4841
4842         return ret;
4843
4844 err_out_mapping:
4845         rbd_dev_mapping_clear(rbd_dev);
4846 err_out_disk:
4847         rbd_free_disk(rbd_dev);
4848 err_out_blkdev:
4849         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4850 err_out_id:
4851         rbd_dev_id_put(rbd_dev);
4852         rbd_dev_mapping_clear(rbd_dev);
4853
4854         return ret;
4855 }
4856
4857 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4858 {
4859         struct rbd_spec *spec = rbd_dev->spec;
4860         size_t size;
4861
4862         /* Record the header object name for this rbd image. */
4863
4864         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4865
4866         if (rbd_dev->image_format == 1)
4867                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4868         else
4869                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4870
4871         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4872         if (!rbd_dev->header_name)
4873                 return -ENOMEM;
4874
4875         if (rbd_dev->image_format == 1)
4876                 sprintf(rbd_dev->header_name, "%s%s",
4877                         spec->image_name, RBD_SUFFIX);
4878         else
4879                 sprintf(rbd_dev->header_name, "%s%s",
4880                         RBD_HEADER_PREFIX, spec->image_id);
4881         return 0;
4882 }
4883
4884 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4885 {
4886         rbd_dev_unprobe(rbd_dev);
4887         kfree(rbd_dev->header_name);
4888         rbd_dev->header_name = NULL;
4889         rbd_dev->image_format = 0;
4890         kfree(rbd_dev->spec->image_id);
4891         rbd_dev->spec->image_id = NULL;
4892
4893         rbd_dev_destroy(rbd_dev);
4894 }
4895
4896 /*
4897  * Probe for the existence of the header object for the given rbd
4898  * device.  If this image is the one being mapped (i.e., not a
4899  * parent), initiate a watch on its header object before using that
4900  * object to get detailed information about the rbd image.
4901  */
4902 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4903 {
4904         int ret;
4905         int tmp;
4906
4907         /*
4908          * Get the id from the image id object.  Unless there's an
4909          * error, rbd_dev->spec->image_id will be filled in with
4910          * a dynamically-allocated string, and rbd_dev->image_format
4911          * will be set to either 1 or 2.
4912          */
4913         ret = rbd_dev_image_id(rbd_dev);
4914         if (ret)
4915                 return ret;
4916         rbd_assert(rbd_dev->spec->image_id);
4917         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4918
4919         ret = rbd_dev_header_name(rbd_dev);
4920         if (ret)
4921                 goto err_out_format;
4922
4923         if (mapping) {
4924                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4925                 if (ret)
4926                         goto out_header_name;
4927         }
4928
4929         if (rbd_dev->image_format == 1)
4930                 ret = rbd_dev_v1_header_info(rbd_dev);
4931         else
4932                 ret = rbd_dev_v2_header_info(rbd_dev);
4933         if (ret)
4934                 goto err_out_watch;
4935
4936         ret = rbd_dev_spec_update(rbd_dev);
4937         if (ret)
4938                 goto err_out_probe;
4939
4940         ret = rbd_dev_probe_parent(rbd_dev);
4941         if (ret)
4942                 goto err_out_probe;
4943
4944         dout("discovered format %u image, header name is %s\n",
4945                 rbd_dev->image_format, rbd_dev->header_name);
4946
4947         return 0;
4948 err_out_probe:
4949         rbd_dev_unprobe(rbd_dev);
4950 err_out_watch:
4951         if (mapping) {
4952                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4953                 if (tmp)
4954                         rbd_warn(rbd_dev, "unable to tear down "
4955                                         "watch request (%d)\n", tmp);
4956         }
4957 out_header_name:
4958         kfree(rbd_dev->header_name);
4959         rbd_dev->header_name = NULL;
4960 err_out_format:
4961         rbd_dev->image_format = 0;
4962         kfree(rbd_dev->spec->image_id);
4963         rbd_dev->spec->image_id = NULL;
4964
4965         dout("probe failed, returning %d\n", ret);
4966
4967         return ret;
4968 }
4969
4970 static ssize_t rbd_add(struct bus_type *bus,
4971                        const char *buf,
4972                        size_t count)
4973 {
4974         struct rbd_device *rbd_dev = NULL;
4975         struct ceph_options *ceph_opts = NULL;
4976         struct rbd_options *rbd_opts = NULL;
4977         struct rbd_spec *spec = NULL;
4978         struct rbd_client *rbdc;
4979         struct ceph_osd_client *osdc;
4980         bool read_only;
4981         int rc = -ENOMEM;
4982
4983         if (!try_module_get(THIS_MODULE))
4984                 return -ENODEV;
4985
4986         /* parse add command */
4987         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4988         if (rc < 0)
4989                 goto err_out_module;
4990         read_only = rbd_opts->read_only;
4991         kfree(rbd_opts);
4992         rbd_opts = NULL;        /* done with this */
4993
4994         rbdc = rbd_get_client(ceph_opts);
4995         if (IS_ERR(rbdc)) {
4996                 rc = PTR_ERR(rbdc);
4997                 goto err_out_args;
4998         }
4999
5000         /* pick the pool */
5001         osdc = &rbdc->client->osdc;
5002         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5003         if (rc < 0)
5004                 goto err_out_client;
5005         spec->pool_id = (u64)rc;
5006
5007         /* The ceph file layout needs to fit pool id in 32 bits */
5008
5009         if (spec->pool_id > (u64)U32_MAX) {
5010                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5011                                 (unsigned long long)spec->pool_id, U32_MAX);
5012                 rc = -EIO;
5013                 goto err_out_client;
5014         }
5015
5016         rbd_dev = rbd_dev_create(rbdc, spec);
5017         if (!rbd_dev)
5018                 goto err_out_client;
5019         rbdc = NULL;            /* rbd_dev now owns this */
5020         spec = NULL;            /* rbd_dev now owns this */
5021
5022         rc = rbd_dev_image_probe(rbd_dev, true);
5023         if (rc < 0)
5024                 goto err_out_rbd_dev;
5025
5026         /* If we are mapping a snapshot it must be marked read-only */
5027
5028         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5029                 read_only = true;
5030         rbd_dev->mapping.read_only = read_only;
5031
5032         rc = rbd_dev_device_setup(rbd_dev);
5033         if (rc) {
5034                 rbd_dev_image_release(rbd_dev);
5035                 goto err_out_module;
5036         }
5037
5038         return count;
5039
5040 err_out_rbd_dev:
5041         rbd_dev_destroy(rbd_dev);
5042 err_out_client:
5043         rbd_put_client(rbdc);
5044 err_out_args:
5045         rbd_spec_put(spec);
5046 err_out_module:
5047         module_put(THIS_MODULE);
5048
5049         dout("Error adding device %s\n", buf);
5050
5051         return (ssize_t)rc;
5052 }
5053
5054 static void rbd_dev_device_release(struct device *dev)
5055 {
5056         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057
5058         rbd_free_disk(rbd_dev);
5059         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5060         rbd_dev_mapping_clear(rbd_dev);
5061         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5062         rbd_dev->major = 0;
5063         rbd_dev_id_put(rbd_dev);
5064         rbd_dev_mapping_clear(rbd_dev);
5065 }
5066
5067 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5068 {
5069         while (rbd_dev->parent) {
5070                 struct rbd_device *first = rbd_dev;
5071                 struct rbd_device *second = first->parent;
5072                 struct rbd_device *third;
5073
5074                 /*
5075                  * Follow to the parent with no grandparent and
5076                  * remove it.
5077                  */
5078                 while (second && (third = second->parent)) {
5079                         first = second;
5080                         second = third;
5081                 }
5082                 rbd_assert(second);
5083                 rbd_dev_image_release(second);
5084                 first->parent = NULL;
5085                 first->parent_overlap = 0;
5086
5087                 rbd_assert(first->parent_spec);
5088                 rbd_spec_put(first->parent_spec);
5089                 first->parent_spec = NULL;
5090         }
5091 }
5092
5093 static ssize_t rbd_remove(struct bus_type *bus,
5094                           const char *buf,
5095                           size_t count)
5096 {
5097         struct rbd_device *rbd_dev = NULL;
5098         struct list_head *tmp;
5099         int dev_id;
5100         unsigned long ul;
5101         bool already = false;
5102         int ret;
5103
5104         ret = kstrtoul(buf, 10, &ul);
5105         if (ret)
5106                 return ret;
5107
5108         /* convert to int; abort if we lost anything in the conversion */
5109         dev_id = (int)ul;
5110         if (dev_id != ul)
5111                 return -EINVAL;
5112
5113         ret = -ENOENT;
5114         spin_lock(&rbd_dev_list_lock);
5115         list_for_each(tmp, &rbd_dev_list) {
5116                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5117                 if (rbd_dev->dev_id == dev_id) {
5118                         ret = 0;
5119                         break;
5120                 }
5121         }
5122         if (!ret) {
5123                 spin_lock_irq(&rbd_dev->lock);
5124                 if (rbd_dev->open_count)
5125                         ret = -EBUSY;
5126                 else
5127                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5128                                                         &rbd_dev->flags);
5129                 spin_unlock_irq(&rbd_dev->lock);
5130         }
5131         spin_unlock(&rbd_dev_list_lock);
5132         if (ret < 0 || already)
5133                 return ret;
5134
5135         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5136         if (ret)
5137                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5138
5139         /*
5140          * flush remaining watch callbacks - these must be complete
5141          * before the osd_client is shutdown
5142          */
5143         dout("%s: flushing notifies", __func__);
5144         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5145         /*
5146          * Don't free anything from rbd_dev->disk until after all
5147          * notifies are completely processed. Otherwise
5148          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5149          * in a potential use after free of rbd_dev->disk or rbd_dev.
5150          */
5151         rbd_bus_del_dev(rbd_dev);
5152         rbd_dev_image_release(rbd_dev);
5153         module_put(THIS_MODULE);
5154
5155         return count;
5156 }
5157
5158 /*
5159  * create control files in sysfs
5160  * /sys/bus/rbd/...
5161  */
5162 static int rbd_sysfs_init(void)
5163 {
5164         int ret;
5165
5166         ret = device_register(&rbd_root_dev);
5167         if (ret < 0)
5168                 return ret;
5169
5170         ret = bus_register(&rbd_bus_type);
5171         if (ret < 0)
5172                 device_unregister(&rbd_root_dev);
5173
5174         return ret;
5175 }
5176
5177 static void rbd_sysfs_cleanup(void)
5178 {
5179         bus_unregister(&rbd_bus_type);
5180         device_unregister(&rbd_root_dev);
5181 }
5182
5183 static int rbd_slab_init(void)
5184 {
5185         rbd_assert(!rbd_img_request_cache);
5186         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5187                                         sizeof (struct rbd_img_request),
5188                                         __alignof__(struct rbd_img_request),
5189                                         0, NULL);
5190         if (!rbd_img_request_cache)
5191                 return -ENOMEM;
5192
5193         rbd_assert(!rbd_obj_request_cache);
5194         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5195                                         sizeof (struct rbd_obj_request),
5196                                         __alignof__(struct rbd_obj_request),
5197                                         0, NULL);
5198         if (!rbd_obj_request_cache)
5199                 goto out_err;
5200
5201         rbd_assert(!rbd_segment_name_cache);
5202         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5203                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5204         if (rbd_segment_name_cache)
5205                 return 0;
5206 out_err:
5207         if (rbd_obj_request_cache) {
5208                 kmem_cache_destroy(rbd_obj_request_cache);
5209                 rbd_obj_request_cache = NULL;
5210         }
5211
5212         kmem_cache_destroy(rbd_img_request_cache);
5213         rbd_img_request_cache = NULL;
5214
5215         return -ENOMEM;
5216 }
5217
5218 static void rbd_slab_exit(void)
5219 {
5220         rbd_assert(rbd_segment_name_cache);
5221         kmem_cache_destroy(rbd_segment_name_cache);
5222         rbd_segment_name_cache = NULL;
5223
5224         rbd_assert(rbd_obj_request_cache);
5225         kmem_cache_destroy(rbd_obj_request_cache);
5226         rbd_obj_request_cache = NULL;
5227
5228         rbd_assert(rbd_img_request_cache);
5229         kmem_cache_destroy(rbd_img_request_cache);
5230         rbd_img_request_cache = NULL;
5231 }
5232
5233 static int __init rbd_init(void)
5234 {
5235         int rc;
5236
5237         if (!libceph_compatible(NULL)) {
5238                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5239
5240                 return -EINVAL;
5241         }
5242         rc = rbd_slab_init();
5243         if (rc)
5244                 return rc;
5245         rc = rbd_sysfs_init();
5246         if (rc)
5247                 rbd_slab_exit();
5248         else
5249                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5250
5251         return rc;
5252 }
5253
5254 static void __exit rbd_exit(void)
5255 {
5256         rbd_sysfs_cleanup();
5257         rbd_slab_exit();
5258 }
5259
5260 module_init(rbd_init);
5261 module_exit(rbd_exit);
5262
5263 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5264 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5265 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5266 MODULE_DESCRIPTION("rados block device");
5267
5268 /* following authorship retained from original osdblk.c */
5269 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5270
5271 MODULE_LICENSE("GPL");