]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
rbd: get rid of trivial v1 header wrappers
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN   \
65                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME      "-"
70
71 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX    64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX  64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING    (1<<0)
82 #define RBD_FEATURE_STRIPINGV2  (1<<1)
83 #define RBD_FEATURES_ALL \
84             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
89
90 /*
91  * An RBD device name will be "rbd#", where the "rbd" comes from
92  * RBD_DRV_NAME above, and # is a unique integer identifier.
93  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94  * enough to hold all possible device names.
95  */
96 #define DEV_NAME_LEN            32
97 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100  * block device image metadata (in-memory version)
101  */
102 struct rbd_image_header {
103         /* These six fields never change for a given rbd image */
104         char *object_prefix;
105         __u8 obj_order;
106         __u8 crypt_type;
107         __u8 comp_type;
108         u64 stripe_unit;
109         u64 stripe_count;
110         u64 features;           /* Might be changeable someday? */
111
112         /* The remaining fields need to be updated occasionally */
113         u64 image_size;
114         struct ceph_snap_context *snapc;
115         char *snap_names;       /* format 1 only */
116         u64 *snap_sizes;        /* format 1 only */
117 };
118
119 /*
120  * An rbd image specification.
121  *
122  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
123  * identify an image.  Each rbd_dev structure includes a pointer to
124  * an rbd_spec structure that encapsulates this identity.
125  *
126  * Each of the id's in an rbd_spec has an associated name.  For a
127  * user-mapped image, the names are supplied and the id's associated
128  * with them are looked up.  For a layered image, a parent image is
129  * defined by the tuple, and the names are looked up.
130  *
131  * An rbd_dev structure contains a parent_spec pointer which is
132  * non-null if the image it represents is a child in a layered
133  * image.  This pointer will refer to the rbd_spec structure used
134  * by the parent rbd_dev for its own identity (i.e., the structure
135  * is shared between the parent and child).
136  *
137  * Since these structures are populated once, during the discovery
138  * phase of image construction, they are effectively immutable so
139  * we make no effort to synchronize access to them.
140  *
141  * Note that code herein does not assume the image name is known (it
142  * could be a null pointer).
143  */
144 struct rbd_spec {
145         u64             pool_id;
146         const char      *pool_name;
147
148         const char      *image_id;
149         const char      *image_name;
150
151         u64             snap_id;
152         const char      *snap_name;
153
154         struct kref     kref;
155 };
156
157 /*
158  * an instance of the client.  multiple devices may share an rbd client.
159  */
160 struct rbd_client {
161         struct ceph_client      *client;
162         struct kref             kref;
163         struct list_head        node;
164 };
165
166 struct rbd_img_request;
167 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
168
169 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
170
171 struct rbd_obj_request;
172 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
173
174 enum obj_request_type {
175         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
176 };
177
178 enum obj_req_flags {
179         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
180         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
181         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
182         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
183 };
184
185 struct rbd_obj_request {
186         const char              *object_name;
187         u64                     offset;         /* object start byte */
188         u64                     length;         /* bytes from offset */
189         unsigned long           flags;
190
191         /*
192          * An object request associated with an image will have its
193          * img_data flag set; a standalone object request will not.
194          *
195          * A standalone object request will have which == BAD_WHICH
196          * and a null obj_request pointer.
197          *
198          * An object request initiated in support of a layered image
199          * object (to check for its existence before a write) will
200          * have which == BAD_WHICH and a non-null obj_request pointer.
201          *
202          * Finally, an object request for rbd image data will have
203          * which != BAD_WHICH, and will have a non-null img_request
204          * pointer.  The value of which will be in the range
205          * 0..(img_request->obj_request_count-1).
206          */
207         union {
208                 struct rbd_obj_request  *obj_request;   /* STAT op */
209                 struct {
210                         struct rbd_img_request  *img_request;
211                         u64                     img_offset;
212                         /* links for img_request->obj_requests list */
213                         struct list_head        links;
214                 };
215         };
216         u32                     which;          /* posn image request list */
217
218         enum obj_request_type   type;
219         union {
220                 struct bio      *bio_list;
221                 struct {
222                         struct page     **pages;
223                         u32             page_count;
224                 };
225         };
226         struct page             **copyup_pages;
227
228         struct ceph_osd_request *osd_req;
229
230         u64                     xferred;        /* bytes transferred */
231         int                     result;
232
233         rbd_obj_callback_t      callback;
234         struct completion       completion;
235
236         struct kref             kref;
237 };
238
239 enum img_req_flags {
240         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
241         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
242         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
243 };
244
245 struct rbd_img_request {
246         struct rbd_device       *rbd_dev;
247         u64                     offset; /* starting image byte offset */
248         u64                     length; /* byte count from offset */
249         unsigned long           flags;
250         union {
251                 u64                     snap_id;        /* for reads */
252                 struct ceph_snap_context *snapc;        /* for writes */
253         };
254         union {
255                 struct request          *rq;            /* block request */
256                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
257         };
258         struct page             **copyup_pages;
259         spinlock_t              completion_lock;/* protects next_completion */
260         u32                     next_completion;
261         rbd_img_callback_t      callback;
262         u64                     xferred;/* aggregate bytes transferred */
263         int                     result; /* first nonzero obj_request result */
264
265         u32                     obj_request_count;
266         struct list_head        obj_requests;   /* rbd_obj_request structs */
267
268         struct kref             kref;
269 };
270
271 #define for_each_obj_request(ireq, oreq) \
272         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
273 #define for_each_obj_request_from(ireq, oreq) \
274         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
275 #define for_each_obj_request_safe(ireq, oreq, n) \
276         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
277
278 struct rbd_mapping {
279         u64                     size;
280         u64                     features;
281         bool                    read_only;
282 };
283
284 /*
285  * a single device
286  */
287 struct rbd_device {
288         int                     dev_id;         /* blkdev unique id */
289
290         int                     major;          /* blkdev assigned major */
291         struct gendisk          *disk;          /* blkdev's gendisk and rq */
292
293         u32                     image_format;   /* Either 1 or 2 */
294         struct rbd_client       *rbd_client;
295
296         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
297
298         spinlock_t              lock;           /* queue, flags, open_count */
299
300         struct rbd_image_header header;
301         unsigned long           flags;          /* possibly lock protected */
302         struct rbd_spec         *spec;
303
304         char                    *header_name;
305
306         struct ceph_file_layout layout;
307
308         struct ceph_osd_event   *watch_event;
309         struct rbd_obj_request  *watch_request;
310
311         struct rbd_spec         *parent_spec;
312         u64                     parent_overlap;
313         struct rbd_device       *parent;
314
315         /* protects updating the header */
316         struct rw_semaphore     header_rwsem;
317
318         struct rbd_mapping      mapping;
319
320         struct list_head        node;
321
322         /* sysfs related */
323         struct device           dev;
324         unsigned long           open_count;     /* protected by lock */
325 };
326
327 /*
328  * Flag bits for rbd_dev->flags.  If atomicity is required,
329  * rbd_dev->lock is used to protect access.
330  *
331  * Currently, only the "removing" flag (which is coupled with the
332  * "open_count" field) requires atomic access.
333  */
334 enum rbd_dev_flags {
335         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
336         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
337 };
338
339 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
340
341 static LIST_HEAD(rbd_dev_list);    /* devices */
342 static DEFINE_SPINLOCK(rbd_dev_list_lock);
343
344 static LIST_HEAD(rbd_client_list);              /* clients */
345 static DEFINE_SPINLOCK(rbd_client_list_lock);
346
347 /* Slab caches for frequently-allocated structures */
348
349 static struct kmem_cache        *rbd_img_request_cache;
350 static struct kmem_cache        *rbd_obj_request_cache;
351 static struct kmem_cache        *rbd_segment_name_cache;
352
353 static int rbd_img_request_submit(struct rbd_img_request *img_request);
354
355 static void rbd_dev_device_release(struct device *dev);
356
357 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
358                        size_t count);
359 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
360                           size_t count);
361 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool read_only);
362
363 static struct bus_attribute rbd_bus_attrs[] = {
364         __ATTR(add, S_IWUSR, NULL, rbd_add),
365         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
366         __ATTR_NULL
367 };
368
369 static struct bus_type rbd_bus_type = {
370         .name           = "rbd",
371         .bus_attrs      = rbd_bus_attrs,
372 };
373
374 static void rbd_root_dev_release(struct device *dev)
375 {
376 }
377
378 static struct device rbd_root_dev = {
379         .init_name =    "rbd",
380         .release =      rbd_root_dev_release,
381 };
382
383 static __printf(2, 3)
384 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
385 {
386         struct va_format vaf;
387         va_list args;
388
389         va_start(args, fmt);
390         vaf.fmt = fmt;
391         vaf.va = &args;
392
393         if (!rbd_dev)
394                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
395         else if (rbd_dev->disk)
396                 printk(KERN_WARNING "%s: %s: %pV\n",
397                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
398         else if (rbd_dev->spec && rbd_dev->spec->image_name)
399                 printk(KERN_WARNING "%s: image %s: %pV\n",
400                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
401         else if (rbd_dev->spec && rbd_dev->spec->image_id)
402                 printk(KERN_WARNING "%s: id %s: %pV\n",
403                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
404         else    /* punt */
405                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
406                         RBD_DRV_NAME, rbd_dev, &vaf);
407         va_end(args);
408 }
409
410 #ifdef RBD_DEBUG
411 #define rbd_assert(expr)                                                \
412                 if (unlikely(!(expr))) {                                \
413                         printk(KERN_ERR "\nAssertion failure in %s() "  \
414                                                 "at line %d:\n\n"       \
415                                         "\trbd_assert(%s);\n\n",        \
416                                         __func__, __LINE__, #expr);     \
417                         BUG();                                          \
418                 }
419 #else /* !RBD_DEBUG */
420 #  define rbd_assert(expr)      ((void) 0)
421 #endif /* !RBD_DEBUG */
422
423 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
424 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
425 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
426
427 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
428 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
429 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
430                                         u64 snap_id);
431 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
432                                 u8 *order, u64 *snap_size);
433 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
434                 u64 *snap_features);
435 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
436
437 static int rbd_open(struct block_device *bdev, fmode_t mode)
438 {
439         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
440         bool removing = false;
441
442         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
443                 return -EROFS;
444
445         spin_lock_irq(&rbd_dev->lock);
446         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
447                 removing = true;
448         else
449                 rbd_dev->open_count++;
450         spin_unlock_irq(&rbd_dev->lock);
451         if (removing)
452                 return -ENOENT;
453
454         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455         (void) get_device(&rbd_dev->dev);
456         set_device_ro(bdev, rbd_dev->mapping.read_only);
457         mutex_unlock(&ctl_mutex);
458
459         return 0;
460 }
461
462 static int rbd_release(struct gendisk *disk, fmode_t mode)
463 {
464         struct rbd_device *rbd_dev = disk->private_data;
465         unsigned long open_count_before;
466
467         spin_lock_irq(&rbd_dev->lock);
468         open_count_before = rbd_dev->open_count--;
469         spin_unlock_irq(&rbd_dev->lock);
470         rbd_assert(open_count_before > 0);
471
472         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
473         put_device(&rbd_dev->dev);
474         mutex_unlock(&ctl_mutex);
475
476         return 0;
477 }
478
479 static const struct block_device_operations rbd_bd_ops = {
480         .owner                  = THIS_MODULE,
481         .open                   = rbd_open,
482         .release                = rbd_release,
483 };
484
485 /*
486  * Initialize an rbd client instance.
487  * We own *ceph_opts.
488  */
489 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
490 {
491         struct rbd_client *rbdc;
492         int ret = -ENOMEM;
493
494         dout("%s:\n", __func__);
495         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
496         if (!rbdc)
497                 goto out_opt;
498
499         kref_init(&rbdc->kref);
500         INIT_LIST_HEAD(&rbdc->node);
501
502         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
503
504         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
505         if (IS_ERR(rbdc->client))
506                 goto out_mutex;
507         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
508
509         ret = ceph_open_session(rbdc->client);
510         if (ret < 0)
511                 goto out_err;
512
513         spin_lock(&rbd_client_list_lock);
514         list_add_tail(&rbdc->node, &rbd_client_list);
515         spin_unlock(&rbd_client_list_lock);
516
517         mutex_unlock(&ctl_mutex);
518         dout("%s: rbdc %p\n", __func__, rbdc);
519
520         return rbdc;
521
522 out_err:
523         ceph_destroy_client(rbdc->client);
524 out_mutex:
525         mutex_unlock(&ctl_mutex);
526         kfree(rbdc);
527 out_opt:
528         if (ceph_opts)
529                 ceph_destroy_options(ceph_opts);
530         dout("%s: error %d\n", __func__, ret);
531
532         return ERR_PTR(ret);
533 }
534
535 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
536 {
537         kref_get(&rbdc->kref);
538
539         return rbdc;
540 }
541
542 /*
543  * Find a ceph client with specific addr and configuration.  If
544  * found, bump its reference count.
545  */
546 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
547 {
548         struct rbd_client *client_node;
549         bool found = false;
550
551         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
552                 return NULL;
553
554         spin_lock(&rbd_client_list_lock);
555         list_for_each_entry(client_node, &rbd_client_list, node) {
556                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
557                         __rbd_get_client(client_node);
558
559                         found = true;
560                         break;
561                 }
562         }
563         spin_unlock(&rbd_client_list_lock);
564
565         return found ? client_node : NULL;
566 }
567
568 /*
569  * mount options
570  */
571 enum {
572         Opt_last_int,
573         /* int args above */
574         Opt_last_string,
575         /* string args above */
576         Opt_read_only,
577         Opt_read_write,
578         /* Boolean args above */
579         Opt_last_bool,
580 };
581
582 static match_table_t rbd_opts_tokens = {
583         /* int args above */
584         /* string args above */
585         {Opt_read_only, "read_only"},
586         {Opt_read_only, "ro"},          /* Alternate spelling */
587         {Opt_read_write, "read_write"},
588         {Opt_read_write, "rw"},         /* Alternate spelling */
589         /* Boolean args above */
590         {-1, NULL}
591 };
592
593 struct rbd_options {
594         bool    read_only;
595 };
596
597 #define RBD_READ_ONLY_DEFAULT   false
598
599 static int parse_rbd_opts_token(char *c, void *private)
600 {
601         struct rbd_options *rbd_opts = private;
602         substring_t argstr[MAX_OPT_ARGS];
603         int token, intval, ret;
604
605         token = match_token(c, rbd_opts_tokens, argstr);
606         if (token < 0)
607                 return -EINVAL;
608
609         if (token < Opt_last_int) {
610                 ret = match_int(&argstr[0], &intval);
611                 if (ret < 0) {
612                         pr_err("bad mount option arg (not int) "
613                                "at '%s'\n", c);
614                         return ret;
615                 }
616                 dout("got int token %d val %d\n", token, intval);
617         } else if (token > Opt_last_int && token < Opt_last_string) {
618                 dout("got string token %d val %s\n", token,
619                      argstr[0].from);
620         } else if (token > Opt_last_string && token < Opt_last_bool) {
621                 dout("got Boolean token %d\n", token);
622         } else {
623                 dout("got token %d\n", token);
624         }
625
626         switch (token) {
627         case Opt_read_only:
628                 rbd_opts->read_only = true;
629                 break;
630         case Opt_read_write:
631                 rbd_opts->read_only = false;
632                 break;
633         default:
634                 rbd_assert(false);
635                 break;
636         }
637         return 0;
638 }
639
640 /*
641  * Get a ceph client with specific addr and configuration, if one does
642  * not exist create it.
643  */
644 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
645 {
646         struct rbd_client *rbdc;
647
648         rbdc = rbd_client_find(ceph_opts);
649         if (rbdc)       /* using an existing client */
650                 ceph_destroy_options(ceph_opts);
651         else
652                 rbdc = rbd_client_create(ceph_opts);
653
654         return rbdc;
655 }
656
657 /*
658  * Destroy ceph client
659  *
660  * Caller must hold rbd_client_list_lock.
661  */
662 static void rbd_client_release(struct kref *kref)
663 {
664         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
665
666         dout("%s: rbdc %p\n", __func__, rbdc);
667         spin_lock(&rbd_client_list_lock);
668         list_del(&rbdc->node);
669         spin_unlock(&rbd_client_list_lock);
670
671         ceph_destroy_client(rbdc->client);
672         kfree(rbdc);
673 }
674
675 /*
676  * Drop reference to ceph client node. If it's not referenced anymore, release
677  * it.
678  */
679 static void rbd_put_client(struct rbd_client *rbdc)
680 {
681         if (rbdc)
682                 kref_put(&rbdc->kref, rbd_client_release);
683 }
684
685 static bool rbd_image_format_valid(u32 image_format)
686 {
687         return image_format == 1 || image_format == 2;
688 }
689
690 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
691 {
692         size_t size;
693         u32 snap_count;
694
695         /* The header has to start with the magic rbd header text */
696         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
697                 return false;
698
699         /* The bio layer requires at least sector-sized I/O */
700
701         if (ondisk->options.order < SECTOR_SHIFT)
702                 return false;
703
704         /* If we use u64 in a few spots we may be able to loosen this */
705
706         if (ondisk->options.order > 8 * sizeof (int) - 1)
707                 return false;
708
709         /*
710          * The size of a snapshot header has to fit in a size_t, and
711          * that limits the number of snapshots.
712          */
713         snap_count = le32_to_cpu(ondisk->snap_count);
714         size = SIZE_MAX - sizeof (struct ceph_snap_context);
715         if (snap_count > size / sizeof (__le64))
716                 return false;
717
718         /*
719          * Not only that, but the size of the entire the snapshot
720          * header must also be representable in a size_t.
721          */
722         size -= snap_count * sizeof (__le64);
723         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
724                 return false;
725
726         return true;
727 }
728
729 /*
730  * Fill an rbd image header with information from the given format 1
731  * on-disk header.
732  */
733 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
734                                  struct rbd_image_header_ondisk *ondisk)
735 {
736         struct rbd_image_header *header = &rbd_dev->header;
737         bool first_time = header->object_prefix == NULL;
738         struct ceph_snap_context *snapc;
739         char *object_prefix = NULL;
740         char *snap_names = NULL;
741         u64 *snap_sizes = NULL;
742         u32 snap_count;
743         size_t size;
744         int ret = -ENOMEM;
745         u32 i;
746
747         /* Allocate this now to avoid having to handle failure below */
748
749         if (first_time) {
750                 size_t len;
751
752                 len = strnlen(ondisk->object_prefix,
753                                 sizeof (ondisk->object_prefix));
754                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
755                 if (!object_prefix)
756                         return -ENOMEM;
757                 memcpy(object_prefix, ondisk->object_prefix, len);
758                 object_prefix[len] = '\0';
759         }
760
761         /* Allocate the snapshot context and fill it in */
762
763         snap_count = le32_to_cpu(ondisk->snap_count);
764         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
765         if (!snapc)
766                 goto out_err;
767         snapc->seq = le64_to_cpu(ondisk->snap_seq);
768         if (snap_count) {
769                 struct rbd_image_snap_ondisk *snaps;
770                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
771
772                 /* We'll keep a copy of the snapshot names... */
773
774                 if (snap_names_len > (u64)SIZE_MAX)
775                         goto out_2big;
776                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
777                 if (!snap_names)
778                         goto out_err;
779
780                 /* ...as well as the array of their sizes. */
781
782                 size = snap_count * sizeof (*header->snap_sizes);
783                 snap_sizes = kmalloc(size, GFP_KERNEL);
784                 if (!snap_sizes)
785                         goto out_err;
786
787                 /*
788                  * Copy the names, and fill in each snapshot's id
789                  * and size.
790                  *
791                  * Note that rbd_dev_v1_header_info() guarantees the
792                  * ondisk buffer we're working with has
793                  * snap_names_len bytes beyond the end of the
794                  * snapshot id array, this memcpy() is safe.
795                  */
796                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
797                 snaps = ondisk->snaps;
798                 for (i = 0; i < snap_count; i++) {
799                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
800                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
801                 }
802         }
803
804         /* We won't fail any more, fill in the header */
805
806         down_write(&rbd_dev->header_rwsem);
807         if (first_time) {
808                 header->object_prefix = object_prefix;
809                 header->obj_order = ondisk->options.order;
810                 header->crypt_type = ondisk->options.crypt_type;
811                 header->comp_type = ondisk->options.comp_type;
812                 /* The rest aren't used for format 1 images */
813                 header->stripe_unit = 0;
814                 header->stripe_count = 0;
815                 header->features = 0;
816         } else {
817                 ceph_put_snap_context(header->snapc);
818                 kfree(header->snap_names);
819                 kfree(header->snap_sizes);
820         }
821
822         /* The remaining fields always get updated (when we refresh) */
823
824         header->image_size = le64_to_cpu(ondisk->image_size);
825         header->snapc = snapc;
826         header->snap_names = snap_names;
827         header->snap_sizes = snap_sizes;
828
829         /* Make sure mapping size is consistent with header info */
830
831         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
832                 if (rbd_dev->mapping.size != header->image_size)
833                         rbd_dev->mapping.size = header->image_size;
834
835         up_write(&rbd_dev->header_rwsem);
836
837         return 0;
838 out_2big:
839         ret = -EIO;
840 out_err:
841         kfree(snap_sizes);
842         kfree(snap_names);
843         ceph_put_snap_context(snapc);
844         kfree(object_prefix);
845
846         return ret;
847 }
848
849 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
850 {
851         const char *snap_name;
852
853         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
854
855         /* Skip over names until we find the one we are looking for */
856
857         snap_name = rbd_dev->header.snap_names;
858         while (which--)
859                 snap_name += strlen(snap_name) + 1;
860
861         return kstrdup(snap_name, GFP_KERNEL);
862 }
863
864 /*
865  * Snapshot id comparison function for use with qsort()/bsearch().
866  * Note that result is for snapshots in *descending* order.
867  */
868 static int snapid_compare_reverse(const void *s1, const void *s2)
869 {
870         u64 snap_id1 = *(u64 *)s1;
871         u64 snap_id2 = *(u64 *)s2;
872
873         if (snap_id1 < snap_id2)
874                 return 1;
875         return snap_id1 == snap_id2 ? 0 : -1;
876 }
877
878 /*
879  * Search a snapshot context to see if the given snapshot id is
880  * present.
881  *
882  * Returns the position of the snapshot id in the array if it's found,
883  * or BAD_SNAP_INDEX otherwise.
884  *
885  * Note: The snapshot array is in kept sorted (by the osd) in
886  * reverse order, highest snapshot id first.
887  */
888 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
889 {
890         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
891         u64 *found;
892
893         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
894                                 sizeof (snap_id), snapid_compare_reverse);
895
896         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
897 }
898
899 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
900                                         u64 snap_id)
901 {
902         u32 which;
903
904         which = rbd_dev_snap_index(rbd_dev, snap_id);
905         if (which == BAD_SNAP_INDEX)
906                 return NULL;
907
908         return _rbd_dev_v1_snap_name(rbd_dev, which);
909 }
910
911 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
912 {
913         if (snap_id == CEPH_NOSNAP)
914                 return RBD_SNAP_HEAD_NAME;
915
916         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
917         if (rbd_dev->image_format == 1)
918                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
919
920         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
921 }
922
923 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
924                                 u64 *snap_size)
925 {
926         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
927         if (snap_id == CEPH_NOSNAP) {
928                 *snap_size = rbd_dev->header.image_size;
929         } else if (rbd_dev->image_format == 1) {
930                 u32 which;
931
932                 which = rbd_dev_snap_index(rbd_dev, snap_id);
933                 if (which == BAD_SNAP_INDEX)
934                         return -ENOENT;
935
936                 *snap_size = rbd_dev->header.snap_sizes[which];
937         } else {
938                 u64 size = 0;
939                 int ret;
940
941                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
942                 if (ret)
943                         return ret;
944
945                 *snap_size = size;
946         }
947         return 0;
948 }
949
950 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
951                         u64 *snap_features)
952 {
953         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954         if (snap_id == CEPH_NOSNAP) {
955                 *snap_features = rbd_dev->header.features;
956         } else if (rbd_dev->image_format == 1) {
957                 *snap_features = 0;     /* No features for format 1 */
958         } else {
959                 u64 features = 0;
960                 int ret;
961
962                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
963                 if (ret)
964                         return ret;
965
966                 *snap_features = features;
967         }
968         return 0;
969 }
970
971 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
972 {
973         u64 snap_id = rbd_dev->spec->snap_id;
974         u64 size = 0;
975         u64 features = 0;
976         int ret;
977
978         ret = rbd_snap_size(rbd_dev, snap_id, &size);
979         if (ret)
980                 return ret;
981         ret = rbd_snap_features(rbd_dev, snap_id, &features);
982         if (ret)
983                 return ret;
984
985         rbd_dev->mapping.size = size;
986         rbd_dev->mapping.features = features;
987
988         return 0;
989 }
990
991 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
992 {
993         rbd_dev->mapping.size = 0;
994         rbd_dev->mapping.features = 0;
995 }
996
997 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
998 {
999         char *name;
1000         u64 segment;
1001         int ret;
1002
1003         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1004         if (!name)
1005                 return NULL;
1006         segment = offset >> rbd_dev->header.obj_order;
1007         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1008                         rbd_dev->header.object_prefix, segment);
1009         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1010                 pr_err("error formatting segment name for #%llu (%d)\n",
1011                         segment, ret);
1012                 kfree(name);
1013                 name = NULL;
1014         }
1015
1016         return name;
1017 }
1018
1019 static void rbd_segment_name_free(const char *name)
1020 {
1021         /* The explicit cast here is needed to drop the const qualifier */
1022
1023         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1024 }
1025
1026 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1027 {
1028         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1029
1030         return offset & (segment_size - 1);
1031 }
1032
1033 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1034                                 u64 offset, u64 length)
1035 {
1036         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1037
1038         offset &= segment_size - 1;
1039
1040         rbd_assert(length <= U64_MAX - offset);
1041         if (offset + length > segment_size)
1042                 length = segment_size - offset;
1043
1044         return length;
1045 }
1046
1047 /*
1048  * returns the size of an object in the image
1049  */
1050 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1051 {
1052         return 1 << header->obj_order;
1053 }
1054
1055 /*
1056  * bio helpers
1057  */
1058
1059 static void bio_chain_put(struct bio *chain)
1060 {
1061         struct bio *tmp;
1062
1063         while (chain) {
1064                 tmp = chain;
1065                 chain = chain->bi_next;
1066                 bio_put(tmp);
1067         }
1068 }
1069
1070 /*
1071  * zeros a bio chain, starting at specific offset
1072  */
1073 static void zero_bio_chain(struct bio *chain, int start_ofs)
1074 {
1075         struct bio_vec *bv;
1076         unsigned long flags;
1077         void *buf;
1078         int i;
1079         int pos = 0;
1080
1081         while (chain) {
1082                 bio_for_each_segment(bv, chain, i) {
1083                         if (pos + bv->bv_len > start_ofs) {
1084                                 int remainder = max(start_ofs - pos, 0);
1085                                 buf = bvec_kmap_irq(bv, &flags);
1086                                 memset(buf + remainder, 0,
1087                                        bv->bv_len - remainder);
1088                                 bvec_kunmap_irq(buf, &flags);
1089                         }
1090                         pos += bv->bv_len;
1091                 }
1092
1093                 chain = chain->bi_next;
1094         }
1095 }
1096
1097 /*
1098  * similar to zero_bio_chain(), zeros data defined by a page array,
1099  * starting at the given byte offset from the start of the array and
1100  * continuing up to the given end offset.  The pages array is
1101  * assumed to be big enough to hold all bytes up to the end.
1102  */
1103 static void zero_pages(struct page **pages, u64 offset, u64 end)
1104 {
1105         struct page **page = &pages[offset >> PAGE_SHIFT];
1106
1107         rbd_assert(end > offset);
1108         rbd_assert(end - offset <= (u64)SIZE_MAX);
1109         while (offset < end) {
1110                 size_t page_offset;
1111                 size_t length;
1112                 unsigned long flags;
1113                 void *kaddr;
1114
1115                 page_offset = (size_t)(offset & ~PAGE_MASK);
1116                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1117                 local_irq_save(flags);
1118                 kaddr = kmap_atomic(*page);
1119                 memset(kaddr + page_offset, 0, length);
1120                 kunmap_atomic(kaddr);
1121                 local_irq_restore(flags);
1122
1123                 offset += length;
1124                 page++;
1125         }
1126 }
1127
1128 /*
1129  * Clone a portion of a bio, starting at the given byte offset
1130  * and continuing for the number of bytes indicated.
1131  */
1132 static struct bio *bio_clone_range(struct bio *bio_src,
1133                                         unsigned int offset,
1134                                         unsigned int len,
1135                                         gfp_t gfpmask)
1136 {
1137         struct bio_vec *bv;
1138         unsigned int resid;
1139         unsigned short idx;
1140         unsigned int voff;
1141         unsigned short end_idx;
1142         unsigned short vcnt;
1143         struct bio *bio;
1144
1145         /* Handle the easy case for the caller */
1146
1147         if (!offset && len == bio_src->bi_size)
1148                 return bio_clone(bio_src, gfpmask);
1149
1150         if (WARN_ON_ONCE(!len))
1151                 return NULL;
1152         if (WARN_ON_ONCE(len > bio_src->bi_size))
1153                 return NULL;
1154         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1155                 return NULL;
1156
1157         /* Find first affected segment... */
1158
1159         resid = offset;
1160         __bio_for_each_segment(bv, bio_src, idx, 0) {
1161                 if (resid < bv->bv_len)
1162                         break;
1163                 resid -= bv->bv_len;
1164         }
1165         voff = resid;
1166
1167         /* ...and the last affected segment */
1168
1169         resid += len;
1170         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1171                 if (resid <= bv->bv_len)
1172                         break;
1173                 resid -= bv->bv_len;
1174         }
1175         vcnt = end_idx - idx + 1;
1176
1177         /* Build the clone */
1178
1179         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1180         if (!bio)
1181                 return NULL;    /* ENOMEM */
1182
1183         bio->bi_bdev = bio_src->bi_bdev;
1184         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1185         bio->bi_rw = bio_src->bi_rw;
1186         bio->bi_flags |= 1 << BIO_CLONED;
1187
1188         /*
1189          * Copy over our part of the bio_vec, then update the first
1190          * and last (or only) entries.
1191          */
1192         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1193                         vcnt * sizeof (struct bio_vec));
1194         bio->bi_io_vec[0].bv_offset += voff;
1195         if (vcnt > 1) {
1196                 bio->bi_io_vec[0].bv_len -= voff;
1197                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1198         } else {
1199                 bio->bi_io_vec[0].bv_len = len;
1200         }
1201
1202         bio->bi_vcnt = vcnt;
1203         bio->bi_size = len;
1204         bio->bi_idx = 0;
1205
1206         return bio;
1207 }
1208
1209 /*
1210  * Clone a portion of a bio chain, starting at the given byte offset
1211  * into the first bio in the source chain and continuing for the
1212  * number of bytes indicated.  The result is another bio chain of
1213  * exactly the given length, or a null pointer on error.
1214  *
1215  * The bio_src and offset parameters are both in-out.  On entry they
1216  * refer to the first source bio and the offset into that bio where
1217  * the start of data to be cloned is located.
1218  *
1219  * On return, bio_src is updated to refer to the bio in the source
1220  * chain that contains first un-cloned byte, and *offset will
1221  * contain the offset of that byte within that bio.
1222  */
1223 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1224                                         unsigned int *offset,
1225                                         unsigned int len,
1226                                         gfp_t gfpmask)
1227 {
1228         struct bio *bi = *bio_src;
1229         unsigned int off = *offset;
1230         struct bio *chain = NULL;
1231         struct bio **end;
1232
1233         /* Build up a chain of clone bios up to the limit */
1234
1235         if (!bi || off >= bi->bi_size || !len)
1236                 return NULL;            /* Nothing to clone */
1237
1238         end = &chain;
1239         while (len) {
1240                 unsigned int bi_size;
1241                 struct bio *bio;
1242
1243                 if (!bi) {
1244                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1245                         goto out_err;   /* EINVAL; ran out of bio's */
1246                 }
1247                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1248                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1249                 if (!bio)
1250                         goto out_err;   /* ENOMEM */
1251
1252                 *end = bio;
1253                 end = &bio->bi_next;
1254
1255                 off += bi_size;
1256                 if (off == bi->bi_size) {
1257                         bi = bi->bi_next;
1258                         off = 0;
1259                 }
1260                 len -= bi_size;
1261         }
1262         *bio_src = bi;
1263         *offset = off;
1264
1265         return chain;
1266 out_err:
1267         bio_chain_put(chain);
1268
1269         return NULL;
1270 }
1271
1272 /*
1273  * The default/initial value for all object request flags is 0.  For
1274  * each flag, once its value is set to 1 it is never reset to 0
1275  * again.
1276  */
1277 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1278 {
1279         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1280                 struct rbd_device *rbd_dev;
1281
1282                 rbd_dev = obj_request->img_request->rbd_dev;
1283                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1284                         obj_request);
1285         }
1286 }
1287
1288 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1289 {
1290         smp_mb();
1291         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1292 }
1293
1294 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1295 {
1296         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1297                 struct rbd_device *rbd_dev = NULL;
1298
1299                 if (obj_request_img_data_test(obj_request))
1300                         rbd_dev = obj_request->img_request->rbd_dev;
1301                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1302                         obj_request);
1303         }
1304 }
1305
1306 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1307 {
1308         smp_mb();
1309         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1310 }
1311
1312 /*
1313  * This sets the KNOWN flag after (possibly) setting the EXISTS
1314  * flag.  The latter is set based on the "exists" value provided.
1315  *
1316  * Note that for our purposes once an object exists it never goes
1317  * away again.  It's possible that the response from two existence
1318  * checks are separated by the creation of the target object, and
1319  * the first ("doesn't exist") response arrives *after* the second
1320  * ("does exist").  In that case we ignore the second one.
1321  */
1322 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1323                                 bool exists)
1324 {
1325         if (exists)
1326                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1327         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1328         smp_mb();
1329 }
1330
1331 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1332 {
1333         smp_mb();
1334         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1335 }
1336
1337 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1338 {
1339         smp_mb();
1340         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1341 }
1342
1343 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1344 {
1345         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1346                 atomic_read(&obj_request->kref.refcount));
1347         kref_get(&obj_request->kref);
1348 }
1349
1350 static void rbd_obj_request_destroy(struct kref *kref);
1351 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1352 {
1353         rbd_assert(obj_request != NULL);
1354         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1355                 atomic_read(&obj_request->kref.refcount));
1356         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1357 }
1358
1359 static void rbd_img_request_get(struct rbd_img_request *img_request)
1360 {
1361         dout("%s: img %p (was %d)\n", __func__, img_request,
1362                 atomic_read(&img_request->kref.refcount));
1363         kref_get(&img_request->kref);
1364 }
1365
1366 static void rbd_img_request_destroy(struct kref *kref);
1367 static void rbd_img_request_put(struct rbd_img_request *img_request)
1368 {
1369         rbd_assert(img_request != NULL);
1370         dout("%s: img %p (was %d)\n", __func__, img_request,
1371                 atomic_read(&img_request->kref.refcount));
1372         kref_put(&img_request->kref, rbd_img_request_destroy);
1373 }
1374
1375 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1376                                         struct rbd_obj_request *obj_request)
1377 {
1378         rbd_assert(obj_request->img_request == NULL);
1379
1380         /* Image request now owns object's original reference */
1381         obj_request->img_request = img_request;
1382         obj_request->which = img_request->obj_request_count;
1383         rbd_assert(!obj_request_img_data_test(obj_request));
1384         obj_request_img_data_set(obj_request);
1385         rbd_assert(obj_request->which != BAD_WHICH);
1386         img_request->obj_request_count++;
1387         list_add_tail(&obj_request->links, &img_request->obj_requests);
1388         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1389                 obj_request->which);
1390 }
1391
1392 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1393                                         struct rbd_obj_request *obj_request)
1394 {
1395         rbd_assert(obj_request->which != BAD_WHICH);
1396
1397         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1398                 obj_request->which);
1399         list_del(&obj_request->links);
1400         rbd_assert(img_request->obj_request_count > 0);
1401         img_request->obj_request_count--;
1402         rbd_assert(obj_request->which == img_request->obj_request_count);
1403         obj_request->which = BAD_WHICH;
1404         rbd_assert(obj_request_img_data_test(obj_request));
1405         rbd_assert(obj_request->img_request == img_request);
1406         obj_request->img_request = NULL;
1407         obj_request->callback = NULL;
1408         rbd_obj_request_put(obj_request);
1409 }
1410
1411 static bool obj_request_type_valid(enum obj_request_type type)
1412 {
1413         switch (type) {
1414         case OBJ_REQUEST_NODATA:
1415         case OBJ_REQUEST_BIO:
1416         case OBJ_REQUEST_PAGES:
1417                 return true;
1418         default:
1419                 return false;
1420         }
1421 }
1422
1423 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1424                                 struct rbd_obj_request *obj_request)
1425 {
1426         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1427
1428         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1429 }
1430
1431 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1432 {
1433
1434         dout("%s: img %p\n", __func__, img_request);
1435
1436         /*
1437          * If no error occurred, compute the aggregate transfer
1438          * count for the image request.  We could instead use
1439          * atomic64_cmpxchg() to update it as each object request
1440          * completes; not clear which way is better off hand.
1441          */
1442         if (!img_request->result) {
1443                 struct rbd_obj_request *obj_request;
1444                 u64 xferred = 0;
1445
1446                 for_each_obj_request(img_request, obj_request)
1447                         xferred += obj_request->xferred;
1448                 img_request->xferred = xferred;
1449         }
1450
1451         if (img_request->callback)
1452                 img_request->callback(img_request);
1453         else
1454                 rbd_img_request_put(img_request);
1455 }
1456
1457 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1458
1459 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1460 {
1461         dout("%s: obj %p\n", __func__, obj_request);
1462
1463         return wait_for_completion_interruptible(&obj_request->completion);
1464 }
1465
1466 /*
1467  * The default/initial value for all image request flags is 0.  Each
1468  * is conditionally set to 1 at image request initialization time
1469  * and currently never change thereafter.
1470  */
1471 static void img_request_write_set(struct rbd_img_request *img_request)
1472 {
1473         set_bit(IMG_REQ_WRITE, &img_request->flags);
1474         smp_mb();
1475 }
1476
1477 static bool img_request_write_test(struct rbd_img_request *img_request)
1478 {
1479         smp_mb();
1480         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1481 }
1482
1483 static void img_request_child_set(struct rbd_img_request *img_request)
1484 {
1485         set_bit(IMG_REQ_CHILD, &img_request->flags);
1486         smp_mb();
1487 }
1488
1489 static bool img_request_child_test(struct rbd_img_request *img_request)
1490 {
1491         smp_mb();
1492         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1493 }
1494
1495 static void img_request_layered_set(struct rbd_img_request *img_request)
1496 {
1497         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1498         smp_mb();
1499 }
1500
1501 static bool img_request_layered_test(struct rbd_img_request *img_request)
1502 {
1503         smp_mb();
1504         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1505 }
1506
1507 static void
1508 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1509 {
1510         u64 xferred = obj_request->xferred;
1511         u64 length = obj_request->length;
1512
1513         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1514                 obj_request, obj_request->img_request, obj_request->result,
1515                 xferred, length);
1516         /*
1517          * ENOENT means a hole in the image.  We zero-fill the
1518          * entire length of the request.  A short read also implies
1519          * zero-fill to the end of the request.  Either way we
1520          * update the xferred count to indicate the whole request
1521          * was satisfied.
1522          */
1523         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1524         if (obj_request->result == -ENOENT) {
1525                 if (obj_request->type == OBJ_REQUEST_BIO)
1526                         zero_bio_chain(obj_request->bio_list, 0);
1527                 else
1528                         zero_pages(obj_request->pages, 0, length);
1529                 obj_request->result = 0;
1530                 obj_request->xferred = length;
1531         } else if (xferred < length && !obj_request->result) {
1532                 if (obj_request->type == OBJ_REQUEST_BIO)
1533                         zero_bio_chain(obj_request->bio_list, xferred);
1534                 else
1535                         zero_pages(obj_request->pages, xferred, length);
1536                 obj_request->xferred = length;
1537         }
1538         obj_request_done_set(obj_request);
1539 }
1540
1541 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1542 {
1543         dout("%s: obj %p cb %p\n", __func__, obj_request,
1544                 obj_request->callback);
1545         if (obj_request->callback)
1546                 obj_request->callback(obj_request);
1547         else
1548                 complete_all(&obj_request->completion);
1549 }
1550
1551 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1552 {
1553         dout("%s: obj %p\n", __func__, obj_request);
1554         obj_request_done_set(obj_request);
1555 }
1556
1557 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559         struct rbd_img_request *img_request = NULL;
1560         struct rbd_device *rbd_dev = NULL;
1561         bool layered = false;
1562
1563         if (obj_request_img_data_test(obj_request)) {
1564                 img_request = obj_request->img_request;
1565                 layered = img_request && img_request_layered_test(img_request);
1566                 rbd_dev = img_request->rbd_dev;
1567         }
1568
1569         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1570                 obj_request, img_request, obj_request->result,
1571                 obj_request->xferred, obj_request->length);
1572         if (layered && obj_request->result == -ENOENT &&
1573                         obj_request->img_offset < rbd_dev->parent_overlap)
1574                 rbd_img_parent_read(obj_request);
1575         else if (img_request)
1576                 rbd_img_obj_request_read_callback(obj_request);
1577         else
1578                 obj_request_done_set(obj_request);
1579 }
1580
1581 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1582 {
1583         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1584                 obj_request->result, obj_request->length);
1585         /*
1586          * There is no such thing as a successful short write.  Set
1587          * it to our originally-requested length.
1588          */
1589         obj_request->xferred = obj_request->length;
1590         obj_request_done_set(obj_request);
1591 }
1592
1593 /*
1594  * For a simple stat call there's nothing to do.  We'll do more if
1595  * this is part of a write sequence for a layered image.
1596  */
1597 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1598 {
1599         dout("%s: obj %p\n", __func__, obj_request);
1600         obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1604                                 struct ceph_msg *msg)
1605 {
1606         struct rbd_obj_request *obj_request = osd_req->r_priv;
1607         u16 opcode;
1608
1609         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1610         rbd_assert(osd_req == obj_request->osd_req);
1611         if (obj_request_img_data_test(obj_request)) {
1612                 rbd_assert(obj_request->img_request);
1613                 rbd_assert(obj_request->which != BAD_WHICH);
1614         } else {
1615                 rbd_assert(obj_request->which == BAD_WHICH);
1616         }
1617
1618         if (osd_req->r_result < 0)
1619                 obj_request->result = osd_req->r_result;
1620
1621         BUG_ON(osd_req->r_num_ops > 2);
1622
1623         /*
1624          * We support a 64-bit length, but ultimately it has to be
1625          * passed to blk_end_request(), which takes an unsigned int.
1626          */
1627         obj_request->xferred = osd_req->r_reply_op_len[0];
1628         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1629         opcode = osd_req->r_ops[0].op;
1630         switch (opcode) {
1631         case CEPH_OSD_OP_READ:
1632                 rbd_osd_read_callback(obj_request);
1633                 break;
1634         case CEPH_OSD_OP_WRITE:
1635                 rbd_osd_write_callback(obj_request);
1636                 break;
1637         case CEPH_OSD_OP_STAT:
1638                 rbd_osd_stat_callback(obj_request);
1639                 break;
1640         case CEPH_OSD_OP_CALL:
1641         case CEPH_OSD_OP_NOTIFY_ACK:
1642         case CEPH_OSD_OP_WATCH:
1643                 rbd_osd_trivial_callback(obj_request);
1644                 break;
1645         default:
1646                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1647                         obj_request->object_name, (unsigned short) opcode);
1648                 break;
1649         }
1650
1651         if (obj_request_done_test(obj_request))
1652                 rbd_obj_request_complete(obj_request);
1653 }
1654
1655 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1656 {
1657         struct rbd_img_request *img_request = obj_request->img_request;
1658         struct ceph_osd_request *osd_req = obj_request->osd_req;
1659         u64 snap_id;
1660
1661         rbd_assert(osd_req != NULL);
1662
1663         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1664         ceph_osdc_build_request(osd_req, obj_request->offset,
1665                         NULL, snap_id, NULL);
1666 }
1667
1668 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1669 {
1670         struct rbd_img_request *img_request = obj_request->img_request;
1671         struct ceph_osd_request *osd_req = obj_request->osd_req;
1672         struct ceph_snap_context *snapc;
1673         struct timespec mtime = CURRENT_TIME;
1674
1675         rbd_assert(osd_req != NULL);
1676
1677         snapc = img_request ? img_request->snapc : NULL;
1678         ceph_osdc_build_request(osd_req, obj_request->offset,
1679                         snapc, CEPH_NOSNAP, &mtime);
1680 }
1681
1682 static struct ceph_osd_request *rbd_osd_req_create(
1683                                         struct rbd_device *rbd_dev,
1684                                         bool write_request,
1685                                         struct rbd_obj_request *obj_request)
1686 {
1687         struct ceph_snap_context *snapc = NULL;
1688         struct ceph_osd_client *osdc;
1689         struct ceph_osd_request *osd_req;
1690
1691         if (obj_request_img_data_test(obj_request)) {
1692                 struct rbd_img_request *img_request = obj_request->img_request;
1693
1694                 rbd_assert(write_request ==
1695                                 img_request_write_test(img_request));
1696                 if (write_request)
1697                         snapc = img_request->snapc;
1698         }
1699
1700         /* Allocate and initialize the request, for the single op */
1701
1702         osdc = &rbd_dev->rbd_client->client->osdc;
1703         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1704         if (!osd_req)
1705                 return NULL;    /* ENOMEM */
1706
1707         if (write_request)
1708                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1709         else
1710                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1711
1712         osd_req->r_callback = rbd_osd_req_callback;
1713         osd_req->r_priv = obj_request;
1714
1715         osd_req->r_oid_len = strlen(obj_request->object_name);
1716         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1717         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1718
1719         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1720
1721         return osd_req;
1722 }
1723
1724 /*
1725  * Create a copyup osd request based on the information in the
1726  * object request supplied.  A copyup request has two osd ops,
1727  * a copyup method call, and a "normal" write request.
1728  */
1729 static struct ceph_osd_request *
1730 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1731 {
1732         struct rbd_img_request *img_request;
1733         struct ceph_snap_context *snapc;
1734         struct rbd_device *rbd_dev;
1735         struct ceph_osd_client *osdc;
1736         struct ceph_osd_request *osd_req;
1737
1738         rbd_assert(obj_request_img_data_test(obj_request));
1739         img_request = obj_request->img_request;
1740         rbd_assert(img_request);
1741         rbd_assert(img_request_write_test(img_request));
1742
1743         /* Allocate and initialize the request, for the two ops */
1744
1745         snapc = img_request->snapc;
1746         rbd_dev = img_request->rbd_dev;
1747         osdc = &rbd_dev->rbd_client->client->osdc;
1748         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1749         if (!osd_req)
1750                 return NULL;    /* ENOMEM */
1751
1752         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1753         osd_req->r_callback = rbd_osd_req_callback;
1754         osd_req->r_priv = obj_request;
1755
1756         osd_req->r_oid_len = strlen(obj_request->object_name);
1757         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1758         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1759
1760         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1761
1762         return osd_req;
1763 }
1764
1765
1766 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1767 {
1768         ceph_osdc_put_request(osd_req);
1769 }
1770
1771 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1772
1773 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1774                                                 u64 offset, u64 length,
1775                                                 enum obj_request_type type)
1776 {
1777         struct rbd_obj_request *obj_request;
1778         size_t size;
1779         char *name;
1780
1781         rbd_assert(obj_request_type_valid(type));
1782
1783         size = strlen(object_name) + 1;
1784         name = kmalloc(size, GFP_KERNEL);
1785         if (!name)
1786                 return NULL;
1787
1788         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1789         if (!obj_request) {
1790                 kfree(name);
1791                 return NULL;
1792         }
1793
1794         obj_request->object_name = memcpy(name, object_name, size);
1795         obj_request->offset = offset;
1796         obj_request->length = length;
1797         obj_request->flags = 0;
1798         obj_request->which = BAD_WHICH;
1799         obj_request->type = type;
1800         INIT_LIST_HEAD(&obj_request->links);
1801         init_completion(&obj_request->completion);
1802         kref_init(&obj_request->kref);
1803
1804         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1805                 offset, length, (int)type, obj_request);
1806
1807         return obj_request;
1808 }
1809
1810 static void rbd_obj_request_destroy(struct kref *kref)
1811 {
1812         struct rbd_obj_request *obj_request;
1813
1814         obj_request = container_of(kref, struct rbd_obj_request, kref);
1815
1816         dout("%s: obj %p\n", __func__, obj_request);
1817
1818         rbd_assert(obj_request->img_request == NULL);
1819         rbd_assert(obj_request->which == BAD_WHICH);
1820
1821         if (obj_request->osd_req)
1822                 rbd_osd_req_destroy(obj_request->osd_req);
1823
1824         rbd_assert(obj_request_type_valid(obj_request->type));
1825         switch (obj_request->type) {
1826         case OBJ_REQUEST_NODATA:
1827                 break;          /* Nothing to do */
1828         case OBJ_REQUEST_BIO:
1829                 if (obj_request->bio_list)
1830                         bio_chain_put(obj_request->bio_list);
1831                 break;
1832         case OBJ_REQUEST_PAGES:
1833                 if (obj_request->pages)
1834                         ceph_release_page_vector(obj_request->pages,
1835                                                 obj_request->page_count);
1836                 break;
1837         }
1838
1839         kfree(obj_request->object_name);
1840         obj_request->object_name = NULL;
1841         kmem_cache_free(rbd_obj_request_cache, obj_request);
1842 }
1843
1844 /*
1845  * Caller is responsible for filling in the list of object requests
1846  * that comprises the image request, and the Linux request pointer
1847  * (if there is one).
1848  */
1849 static struct rbd_img_request *rbd_img_request_create(
1850                                         struct rbd_device *rbd_dev,
1851                                         u64 offset, u64 length,
1852                                         bool write_request,
1853                                         bool child_request)
1854 {
1855         struct rbd_img_request *img_request;
1856
1857         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1858         if (!img_request)
1859                 return NULL;
1860
1861         if (write_request) {
1862                 down_read(&rbd_dev->header_rwsem);
1863                 ceph_get_snap_context(rbd_dev->header.snapc);
1864                 up_read(&rbd_dev->header_rwsem);
1865         }
1866
1867         img_request->rq = NULL;
1868         img_request->rbd_dev = rbd_dev;
1869         img_request->offset = offset;
1870         img_request->length = length;
1871         img_request->flags = 0;
1872         if (write_request) {
1873                 img_request_write_set(img_request);
1874                 img_request->snapc = rbd_dev->header.snapc;
1875         } else {
1876                 img_request->snap_id = rbd_dev->spec->snap_id;
1877         }
1878         if (child_request)
1879                 img_request_child_set(img_request);
1880         if (rbd_dev->parent_spec)
1881                 img_request_layered_set(img_request);
1882         spin_lock_init(&img_request->completion_lock);
1883         img_request->next_completion = 0;
1884         img_request->callback = NULL;
1885         img_request->result = 0;
1886         img_request->obj_request_count = 0;
1887         INIT_LIST_HEAD(&img_request->obj_requests);
1888         kref_init(&img_request->kref);
1889
1890         rbd_img_request_get(img_request);       /* Avoid a warning */
1891         rbd_img_request_put(img_request);       /* TEMPORARY */
1892
1893         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1894                 write_request ? "write" : "read", offset, length,
1895                 img_request);
1896
1897         return img_request;
1898 }
1899
1900 static void rbd_img_request_destroy(struct kref *kref)
1901 {
1902         struct rbd_img_request *img_request;
1903         struct rbd_obj_request *obj_request;
1904         struct rbd_obj_request *next_obj_request;
1905
1906         img_request = container_of(kref, struct rbd_img_request, kref);
1907
1908         dout("%s: img %p\n", __func__, img_request);
1909
1910         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1911                 rbd_img_obj_request_del(img_request, obj_request);
1912         rbd_assert(img_request->obj_request_count == 0);
1913
1914         if (img_request_write_test(img_request))
1915                 ceph_put_snap_context(img_request->snapc);
1916
1917         if (img_request_child_test(img_request))
1918                 rbd_obj_request_put(img_request->obj_request);
1919
1920         kmem_cache_free(rbd_img_request_cache, img_request);
1921 }
1922
1923 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1924 {
1925         struct rbd_img_request *img_request;
1926         unsigned int xferred;
1927         int result;
1928         bool more;
1929
1930         rbd_assert(obj_request_img_data_test(obj_request));
1931         img_request = obj_request->img_request;
1932
1933         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1934         xferred = (unsigned int)obj_request->xferred;
1935         result = obj_request->result;
1936         if (result) {
1937                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1938
1939                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1940                         img_request_write_test(img_request) ? "write" : "read",
1941                         obj_request->length, obj_request->img_offset,
1942                         obj_request->offset);
1943                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1944                         result, xferred);
1945                 if (!img_request->result)
1946                         img_request->result = result;
1947         }
1948
1949         /* Image object requests don't own their page array */
1950
1951         if (obj_request->type == OBJ_REQUEST_PAGES) {
1952                 obj_request->pages = NULL;
1953                 obj_request->page_count = 0;
1954         }
1955
1956         if (img_request_child_test(img_request)) {
1957                 rbd_assert(img_request->obj_request != NULL);
1958                 more = obj_request->which < img_request->obj_request_count - 1;
1959         } else {
1960                 rbd_assert(img_request->rq != NULL);
1961                 more = blk_end_request(img_request->rq, result, xferred);
1962         }
1963
1964         return more;
1965 }
1966
1967 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1968 {
1969         struct rbd_img_request *img_request;
1970         u32 which = obj_request->which;
1971         bool more = true;
1972
1973         rbd_assert(obj_request_img_data_test(obj_request));
1974         img_request = obj_request->img_request;
1975
1976         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1977         rbd_assert(img_request != NULL);
1978         rbd_assert(img_request->obj_request_count > 0);
1979         rbd_assert(which != BAD_WHICH);
1980         rbd_assert(which < img_request->obj_request_count);
1981         rbd_assert(which >= img_request->next_completion);
1982
1983         spin_lock_irq(&img_request->completion_lock);
1984         if (which != img_request->next_completion)
1985                 goto out;
1986
1987         for_each_obj_request_from(img_request, obj_request) {
1988                 rbd_assert(more);
1989                 rbd_assert(which < img_request->obj_request_count);
1990
1991                 if (!obj_request_done_test(obj_request))
1992                         break;
1993                 more = rbd_img_obj_end_request(obj_request);
1994                 which++;
1995         }
1996
1997         rbd_assert(more ^ (which == img_request->obj_request_count));
1998         img_request->next_completion = which;
1999 out:
2000         spin_unlock_irq(&img_request->completion_lock);
2001
2002         if (!more)
2003                 rbd_img_request_complete(img_request);
2004 }
2005
2006 /*
2007  * Split up an image request into one or more object requests, each
2008  * to a different object.  The "type" parameter indicates whether
2009  * "data_desc" is the pointer to the head of a list of bio
2010  * structures, or the base of a page array.  In either case this
2011  * function assumes data_desc describes memory sufficient to hold
2012  * all data described by the image request.
2013  */
2014 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2015                                         enum obj_request_type type,
2016                                         void *data_desc)
2017 {
2018         struct rbd_device *rbd_dev = img_request->rbd_dev;
2019         struct rbd_obj_request *obj_request = NULL;
2020         struct rbd_obj_request *next_obj_request;
2021         bool write_request = img_request_write_test(img_request);
2022         struct bio *bio_list;
2023         unsigned int bio_offset = 0;
2024         struct page **pages;
2025         u64 img_offset;
2026         u64 resid;
2027         u16 opcode;
2028
2029         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2030                 (int)type, data_desc);
2031
2032         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2033         img_offset = img_request->offset;
2034         resid = img_request->length;
2035         rbd_assert(resid > 0);
2036
2037         if (type == OBJ_REQUEST_BIO) {
2038                 bio_list = data_desc;
2039                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2040         } else {
2041                 rbd_assert(type == OBJ_REQUEST_PAGES);
2042                 pages = data_desc;
2043         }
2044
2045         while (resid) {
2046                 struct ceph_osd_request *osd_req;
2047                 const char *object_name;
2048                 u64 offset;
2049                 u64 length;
2050
2051                 object_name = rbd_segment_name(rbd_dev, img_offset);
2052                 if (!object_name)
2053                         goto out_unwind;
2054                 offset = rbd_segment_offset(rbd_dev, img_offset);
2055                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2056                 obj_request = rbd_obj_request_create(object_name,
2057                                                 offset, length, type);
2058                 /* object request has its own copy of the object name */
2059                 rbd_segment_name_free(object_name);
2060                 if (!obj_request)
2061                         goto out_unwind;
2062
2063                 if (type == OBJ_REQUEST_BIO) {
2064                         unsigned int clone_size;
2065
2066                         rbd_assert(length <= (u64)UINT_MAX);
2067                         clone_size = (unsigned int)length;
2068                         obj_request->bio_list =
2069                                         bio_chain_clone_range(&bio_list,
2070                                                                 &bio_offset,
2071                                                                 clone_size,
2072                                                                 GFP_ATOMIC);
2073                         if (!obj_request->bio_list)
2074                                 goto out_partial;
2075                 } else {
2076                         unsigned int page_count;
2077
2078                         obj_request->pages = pages;
2079                         page_count = (u32)calc_pages_for(offset, length);
2080                         obj_request->page_count = page_count;
2081                         if ((offset + length) & ~PAGE_MASK)
2082                                 page_count--;   /* more on last page */
2083                         pages += page_count;
2084                 }
2085
2086                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2087                                                 obj_request);
2088                 if (!osd_req)
2089                         goto out_partial;
2090                 obj_request->osd_req = osd_req;
2091                 obj_request->callback = rbd_img_obj_callback;
2092
2093                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2094                                                 0, 0);
2095                 if (type == OBJ_REQUEST_BIO)
2096                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2097                                         obj_request->bio_list, length);
2098                 else
2099                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2100                                         obj_request->pages, length,
2101                                         offset & ~PAGE_MASK, false, false);
2102
2103                 if (write_request)
2104                         rbd_osd_req_format_write(obj_request);
2105                 else
2106                         rbd_osd_req_format_read(obj_request);
2107
2108                 obj_request->img_offset = img_offset;
2109                 rbd_img_obj_request_add(img_request, obj_request);
2110
2111                 img_offset += length;
2112                 resid -= length;
2113         }
2114
2115         return 0;
2116
2117 out_partial:
2118         rbd_obj_request_put(obj_request);
2119 out_unwind:
2120         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2121                 rbd_obj_request_put(obj_request);
2122
2123         return -ENOMEM;
2124 }
2125
2126 static void
2127 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2128 {
2129         struct rbd_img_request *img_request;
2130         struct rbd_device *rbd_dev;
2131         u64 length;
2132         u32 page_count;
2133
2134         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2135         rbd_assert(obj_request_img_data_test(obj_request));
2136         img_request = obj_request->img_request;
2137         rbd_assert(img_request);
2138
2139         rbd_dev = img_request->rbd_dev;
2140         rbd_assert(rbd_dev);
2141         length = (u64)1 << rbd_dev->header.obj_order;
2142         page_count = (u32)calc_pages_for(0, length);
2143
2144         rbd_assert(obj_request->copyup_pages);
2145         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2146         obj_request->copyup_pages = NULL;
2147
2148         /*
2149          * We want the transfer count to reflect the size of the
2150          * original write request.  There is no such thing as a
2151          * successful short write, so if the request was successful
2152          * we can just set it to the originally-requested length.
2153          */
2154         if (!obj_request->result)
2155                 obj_request->xferred = obj_request->length;
2156
2157         /* Finish up with the normal image object callback */
2158
2159         rbd_img_obj_callback(obj_request);
2160 }
2161
2162 static void
2163 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2164 {
2165         struct rbd_obj_request *orig_request;
2166         struct ceph_osd_request *osd_req;
2167         struct ceph_osd_client *osdc;
2168         struct rbd_device *rbd_dev;
2169         struct page **pages;
2170         int result;
2171         u64 obj_size;
2172         u64 xferred;
2173
2174         rbd_assert(img_request_child_test(img_request));
2175
2176         /* First get what we need from the image request */
2177
2178         pages = img_request->copyup_pages;
2179         rbd_assert(pages != NULL);
2180         img_request->copyup_pages = NULL;
2181
2182         orig_request = img_request->obj_request;
2183         rbd_assert(orig_request != NULL);
2184         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2185         result = img_request->result;
2186         obj_size = img_request->length;
2187         xferred = img_request->xferred;
2188
2189         rbd_dev = img_request->rbd_dev;
2190         rbd_assert(rbd_dev);
2191         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2192
2193         rbd_img_request_put(img_request);
2194
2195         if (result)
2196                 goto out_err;
2197
2198         /* Allocate the new copyup osd request for the original request */
2199
2200         result = -ENOMEM;
2201         rbd_assert(!orig_request->osd_req);
2202         osd_req = rbd_osd_req_create_copyup(orig_request);
2203         if (!osd_req)
2204                 goto out_err;
2205         orig_request->osd_req = osd_req;
2206         orig_request->copyup_pages = pages;
2207
2208         /* Initialize the copyup op */
2209
2210         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2211         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2212                                                 false, false);
2213
2214         /* Then the original write request op */
2215
2216         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2217                                         orig_request->offset,
2218                                         orig_request->length, 0, 0);
2219         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2220                                         orig_request->length);
2221
2222         rbd_osd_req_format_write(orig_request);
2223
2224         /* All set, send it off. */
2225
2226         orig_request->callback = rbd_img_obj_copyup_callback;
2227         osdc = &rbd_dev->rbd_client->client->osdc;
2228         result = rbd_obj_request_submit(osdc, orig_request);
2229         if (!result)
2230                 return;
2231 out_err:
2232         /* Record the error code and complete the request */
2233
2234         orig_request->result = result;
2235         orig_request->xferred = 0;
2236         obj_request_done_set(orig_request);
2237         rbd_obj_request_complete(orig_request);
2238 }
2239
2240 /*
2241  * Read from the parent image the range of data that covers the
2242  * entire target of the given object request.  This is used for
2243  * satisfying a layered image write request when the target of an
2244  * object request from the image request does not exist.
2245  *
2246  * A page array big enough to hold the returned data is allocated
2247  * and supplied to rbd_img_request_fill() as the "data descriptor."
2248  * When the read completes, this page array will be transferred to
2249  * the original object request for the copyup operation.
2250  *
2251  * If an error occurs, record it as the result of the original
2252  * object request and mark it done so it gets completed.
2253  */
2254 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2255 {
2256         struct rbd_img_request *img_request = NULL;
2257         struct rbd_img_request *parent_request = NULL;
2258         struct rbd_device *rbd_dev;
2259         u64 img_offset;
2260         u64 length;
2261         struct page **pages = NULL;
2262         u32 page_count;
2263         int result;
2264
2265         rbd_assert(obj_request_img_data_test(obj_request));
2266         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2267
2268         img_request = obj_request->img_request;
2269         rbd_assert(img_request != NULL);
2270         rbd_dev = img_request->rbd_dev;
2271         rbd_assert(rbd_dev->parent != NULL);
2272
2273         /*
2274          * First things first.  The original osd request is of no
2275          * use to use any more, we'll need a new one that can hold
2276          * the two ops in a copyup request.  We'll get that later,
2277          * but for now we can release the old one.
2278          */
2279         rbd_osd_req_destroy(obj_request->osd_req);
2280         obj_request->osd_req = NULL;
2281
2282         /*
2283          * Determine the byte range covered by the object in the
2284          * child image to which the original request was to be sent.
2285          */
2286         img_offset = obj_request->img_offset - obj_request->offset;
2287         length = (u64)1 << rbd_dev->header.obj_order;
2288
2289         /*
2290          * There is no defined parent data beyond the parent
2291          * overlap, so limit what we read at that boundary if
2292          * necessary.
2293          */
2294         if (img_offset + length > rbd_dev->parent_overlap) {
2295                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2296                 length = rbd_dev->parent_overlap - img_offset;
2297         }
2298
2299         /*
2300          * Allocate a page array big enough to receive the data read
2301          * from the parent.
2302          */
2303         page_count = (u32)calc_pages_for(0, length);
2304         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2305         if (IS_ERR(pages)) {
2306                 result = PTR_ERR(pages);
2307                 pages = NULL;
2308                 goto out_err;
2309         }
2310
2311         result = -ENOMEM;
2312         parent_request = rbd_img_request_create(rbd_dev->parent,
2313                                                 img_offset, length,
2314                                                 false, true);
2315         if (!parent_request)
2316                 goto out_err;
2317         rbd_obj_request_get(obj_request);
2318         parent_request->obj_request = obj_request;
2319
2320         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2321         if (result)
2322                 goto out_err;
2323         parent_request->copyup_pages = pages;
2324
2325         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2326         result = rbd_img_request_submit(parent_request);
2327         if (!result)
2328                 return 0;
2329
2330         parent_request->copyup_pages = NULL;
2331         parent_request->obj_request = NULL;
2332         rbd_obj_request_put(obj_request);
2333 out_err:
2334         if (pages)
2335                 ceph_release_page_vector(pages, page_count);
2336         if (parent_request)
2337                 rbd_img_request_put(parent_request);
2338         obj_request->result = result;
2339         obj_request->xferred = 0;
2340         obj_request_done_set(obj_request);
2341
2342         return result;
2343 }
2344
2345 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2346 {
2347         struct rbd_obj_request *orig_request;
2348         int result;
2349
2350         rbd_assert(!obj_request_img_data_test(obj_request));
2351
2352         /*
2353          * All we need from the object request is the original
2354          * request and the result of the STAT op.  Grab those, then
2355          * we're done with the request.
2356          */
2357         orig_request = obj_request->obj_request;
2358         obj_request->obj_request = NULL;
2359         rbd_assert(orig_request);
2360         rbd_assert(orig_request->img_request);
2361
2362         result = obj_request->result;
2363         obj_request->result = 0;
2364
2365         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2366                 obj_request, orig_request, result,
2367                 obj_request->xferred, obj_request->length);
2368         rbd_obj_request_put(obj_request);
2369
2370         rbd_assert(orig_request);
2371         rbd_assert(orig_request->img_request);
2372
2373         /*
2374          * Our only purpose here is to determine whether the object
2375          * exists, and we don't want to treat the non-existence as
2376          * an error.  If something else comes back, transfer the
2377          * error to the original request and complete it now.
2378          */
2379         if (!result) {
2380                 obj_request_existence_set(orig_request, true);
2381         } else if (result == -ENOENT) {
2382                 obj_request_existence_set(orig_request, false);
2383         } else if (result) {
2384                 orig_request->result = result;
2385                 goto out;
2386         }
2387
2388         /*
2389          * Resubmit the original request now that we have recorded
2390          * whether the target object exists.
2391          */
2392         orig_request->result = rbd_img_obj_request_submit(orig_request);
2393 out:
2394         if (orig_request->result)
2395                 rbd_obj_request_complete(orig_request);
2396         rbd_obj_request_put(orig_request);
2397 }
2398
2399 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2400 {
2401         struct rbd_obj_request *stat_request;
2402         struct rbd_device *rbd_dev;
2403         struct ceph_osd_client *osdc;
2404         struct page **pages = NULL;
2405         u32 page_count;
2406         size_t size;
2407         int ret;
2408
2409         /*
2410          * The response data for a STAT call consists of:
2411          *     le64 length;
2412          *     struct {
2413          *         le32 tv_sec;
2414          *         le32 tv_nsec;
2415          *     } mtime;
2416          */
2417         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2418         page_count = (u32)calc_pages_for(0, size);
2419         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2420         if (IS_ERR(pages))
2421                 return PTR_ERR(pages);
2422
2423         ret = -ENOMEM;
2424         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2425                                                         OBJ_REQUEST_PAGES);
2426         if (!stat_request)
2427                 goto out;
2428
2429         rbd_obj_request_get(obj_request);
2430         stat_request->obj_request = obj_request;
2431         stat_request->pages = pages;
2432         stat_request->page_count = page_count;
2433
2434         rbd_assert(obj_request->img_request);
2435         rbd_dev = obj_request->img_request->rbd_dev;
2436         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2437                                                 stat_request);
2438         if (!stat_request->osd_req)
2439                 goto out;
2440         stat_request->callback = rbd_img_obj_exists_callback;
2441
2442         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2443         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2444                                         false, false);
2445         rbd_osd_req_format_read(stat_request);
2446
2447         osdc = &rbd_dev->rbd_client->client->osdc;
2448         ret = rbd_obj_request_submit(osdc, stat_request);
2449 out:
2450         if (ret)
2451                 rbd_obj_request_put(obj_request);
2452
2453         return ret;
2454 }
2455
2456 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2457 {
2458         struct rbd_img_request *img_request;
2459         struct rbd_device *rbd_dev;
2460         bool known;
2461
2462         rbd_assert(obj_request_img_data_test(obj_request));
2463
2464         img_request = obj_request->img_request;
2465         rbd_assert(img_request);
2466         rbd_dev = img_request->rbd_dev;
2467
2468         /*
2469          * Only writes to layered images need special handling.
2470          * Reads and non-layered writes are simple object requests.
2471          * Layered writes that start beyond the end of the overlap
2472          * with the parent have no parent data, so they too are
2473          * simple object requests.  Finally, if the target object is
2474          * known to already exist, its parent data has already been
2475          * copied, so a write to the object can also be handled as a
2476          * simple object request.
2477          */
2478         if (!img_request_write_test(img_request) ||
2479                 !img_request_layered_test(img_request) ||
2480                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2481                 ((known = obj_request_known_test(obj_request)) &&
2482                         obj_request_exists_test(obj_request))) {
2483
2484                 struct rbd_device *rbd_dev;
2485                 struct ceph_osd_client *osdc;
2486
2487                 rbd_dev = obj_request->img_request->rbd_dev;
2488                 osdc = &rbd_dev->rbd_client->client->osdc;
2489
2490                 return rbd_obj_request_submit(osdc, obj_request);
2491         }
2492
2493         /*
2494          * It's a layered write.  The target object might exist but
2495          * we may not know that yet.  If we know it doesn't exist,
2496          * start by reading the data for the full target object from
2497          * the parent so we can use it for a copyup to the target.
2498          */
2499         if (known)
2500                 return rbd_img_obj_parent_read_full(obj_request);
2501
2502         /* We don't know whether the target exists.  Go find out. */
2503
2504         return rbd_img_obj_exists_submit(obj_request);
2505 }
2506
2507 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2508 {
2509         struct rbd_obj_request *obj_request;
2510         struct rbd_obj_request *next_obj_request;
2511
2512         dout("%s: img %p\n", __func__, img_request);
2513         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2514                 int ret;
2515
2516                 ret = rbd_img_obj_request_submit(obj_request);
2517                 if (ret)
2518                         return ret;
2519         }
2520
2521         return 0;
2522 }
2523
2524 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2525 {
2526         struct rbd_obj_request *obj_request;
2527         struct rbd_device *rbd_dev;
2528         u64 obj_end;
2529
2530         rbd_assert(img_request_child_test(img_request));
2531
2532         obj_request = img_request->obj_request;
2533         rbd_assert(obj_request);
2534         rbd_assert(obj_request->img_request);
2535
2536         obj_request->result = img_request->result;
2537         if (obj_request->result)
2538                 goto out;
2539
2540         /*
2541          * We need to zero anything beyond the parent overlap
2542          * boundary.  Since rbd_img_obj_request_read_callback()
2543          * will zero anything beyond the end of a short read, an
2544          * easy way to do this is to pretend the data from the
2545          * parent came up short--ending at the overlap boundary.
2546          */
2547         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2548         obj_end = obj_request->img_offset + obj_request->length;
2549         rbd_dev = obj_request->img_request->rbd_dev;
2550         if (obj_end > rbd_dev->parent_overlap) {
2551                 u64 xferred = 0;
2552
2553                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2554                         xferred = rbd_dev->parent_overlap -
2555                                         obj_request->img_offset;
2556
2557                 obj_request->xferred = min(img_request->xferred, xferred);
2558         } else {
2559                 obj_request->xferred = img_request->xferred;
2560         }
2561 out:
2562         rbd_img_request_put(img_request);
2563         rbd_img_obj_request_read_callback(obj_request);
2564         rbd_obj_request_complete(obj_request);
2565 }
2566
2567 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2568 {
2569         struct rbd_device *rbd_dev;
2570         struct rbd_img_request *img_request;
2571         int result;
2572
2573         rbd_assert(obj_request_img_data_test(obj_request));
2574         rbd_assert(obj_request->img_request != NULL);
2575         rbd_assert(obj_request->result == (s32) -ENOENT);
2576         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2577
2578         rbd_dev = obj_request->img_request->rbd_dev;
2579         rbd_assert(rbd_dev->parent != NULL);
2580         /* rbd_read_finish(obj_request, obj_request->length); */
2581         img_request = rbd_img_request_create(rbd_dev->parent,
2582                                                 obj_request->img_offset,
2583                                                 obj_request->length,
2584                                                 false, true);
2585         result = -ENOMEM;
2586         if (!img_request)
2587                 goto out_err;
2588
2589         rbd_obj_request_get(obj_request);
2590         img_request->obj_request = obj_request;
2591
2592         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2593                                         obj_request->bio_list);
2594         if (result)
2595                 goto out_err;
2596
2597         img_request->callback = rbd_img_parent_read_callback;
2598         result = rbd_img_request_submit(img_request);
2599         if (result)
2600                 goto out_err;
2601
2602         return;
2603 out_err:
2604         if (img_request)
2605                 rbd_img_request_put(img_request);
2606         obj_request->result = result;
2607         obj_request->xferred = 0;
2608         obj_request_done_set(obj_request);
2609 }
2610
2611 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2612 {
2613         struct rbd_obj_request *obj_request;
2614         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2615         int ret;
2616
2617         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2618                                                         OBJ_REQUEST_NODATA);
2619         if (!obj_request)
2620                 return -ENOMEM;
2621
2622         ret = -ENOMEM;
2623         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2624         if (!obj_request->osd_req)
2625                 goto out;
2626         obj_request->callback = rbd_obj_request_put;
2627
2628         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2629                                         notify_id, 0, 0);
2630         rbd_osd_req_format_read(obj_request);
2631
2632         ret = rbd_obj_request_submit(osdc, obj_request);
2633 out:
2634         if (ret)
2635                 rbd_obj_request_put(obj_request);
2636
2637         return ret;
2638 }
2639
2640 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2641 {
2642         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2643         int ret;
2644
2645         if (!rbd_dev)
2646                 return;
2647
2648         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2649                 rbd_dev->header_name, (unsigned long long)notify_id,
2650                 (unsigned int)opcode);
2651         ret = rbd_dev_refresh(rbd_dev);
2652         if (ret)
2653                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2654
2655         rbd_obj_notify_ack(rbd_dev, notify_id);
2656 }
2657
2658 /*
2659  * Request sync osd watch/unwatch.  The value of "start" determines
2660  * whether a watch request is being initiated or torn down.
2661  */
2662 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2663 {
2664         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2665         struct rbd_obj_request *obj_request;
2666         int ret;
2667
2668         rbd_assert(start ^ !!rbd_dev->watch_event);
2669         rbd_assert(start ^ !!rbd_dev->watch_request);
2670
2671         if (start) {
2672                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2673                                                 &rbd_dev->watch_event);
2674                 if (ret < 0)
2675                         return ret;
2676                 rbd_assert(rbd_dev->watch_event != NULL);
2677         }
2678
2679         ret = -ENOMEM;
2680         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2681                                                         OBJ_REQUEST_NODATA);
2682         if (!obj_request)
2683                 goto out_cancel;
2684
2685         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2686         if (!obj_request->osd_req)
2687                 goto out_cancel;
2688
2689         if (start)
2690                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2691         else
2692                 ceph_osdc_unregister_linger_request(osdc,
2693                                         rbd_dev->watch_request->osd_req);
2694
2695         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2696                                 rbd_dev->watch_event->cookie, 0, start);
2697         rbd_osd_req_format_write(obj_request);
2698
2699         ret = rbd_obj_request_submit(osdc, obj_request);
2700         if (ret)
2701                 goto out_cancel;
2702         ret = rbd_obj_request_wait(obj_request);
2703         if (ret)
2704                 goto out_cancel;
2705         ret = obj_request->result;
2706         if (ret)
2707                 goto out_cancel;
2708
2709         /*
2710          * A watch request is set to linger, so the underlying osd
2711          * request won't go away until we unregister it.  We retain
2712          * a pointer to the object request during that time (in
2713          * rbd_dev->watch_request), so we'll keep a reference to
2714          * it.  We'll drop that reference (below) after we've
2715          * unregistered it.
2716          */
2717         if (start) {
2718                 rbd_dev->watch_request = obj_request;
2719
2720                 return 0;
2721         }
2722
2723         /* We have successfully torn down the watch request */
2724
2725         rbd_obj_request_put(rbd_dev->watch_request);
2726         rbd_dev->watch_request = NULL;
2727 out_cancel:
2728         /* Cancel the event if we're tearing down, or on error */
2729         ceph_osdc_cancel_event(rbd_dev->watch_event);
2730         rbd_dev->watch_event = NULL;
2731         if (obj_request)
2732                 rbd_obj_request_put(obj_request);
2733
2734         return ret;
2735 }
2736
2737 /*
2738  * Synchronous osd object method call.  Returns the number of bytes
2739  * returned in the outbound buffer, or a negative error code.
2740  */
2741 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2742                              const char *object_name,
2743                              const char *class_name,
2744                              const char *method_name,
2745                              const void *outbound,
2746                              size_t outbound_size,
2747                              void *inbound,
2748                              size_t inbound_size)
2749 {
2750         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2751         struct rbd_obj_request *obj_request;
2752         struct page **pages;
2753         u32 page_count;
2754         int ret;
2755
2756         /*
2757          * Method calls are ultimately read operations.  The result
2758          * should placed into the inbound buffer provided.  They
2759          * also supply outbound data--parameters for the object
2760          * method.  Currently if this is present it will be a
2761          * snapshot id.
2762          */
2763         page_count = (u32)calc_pages_for(0, inbound_size);
2764         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2765         if (IS_ERR(pages))
2766                 return PTR_ERR(pages);
2767
2768         ret = -ENOMEM;
2769         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2770                                                         OBJ_REQUEST_PAGES);
2771         if (!obj_request)
2772                 goto out;
2773
2774         obj_request->pages = pages;
2775         obj_request->page_count = page_count;
2776
2777         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2778         if (!obj_request->osd_req)
2779                 goto out;
2780
2781         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2782                                         class_name, method_name);
2783         if (outbound_size) {
2784                 struct ceph_pagelist *pagelist;
2785
2786                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2787                 if (!pagelist)
2788                         goto out;
2789
2790                 ceph_pagelist_init(pagelist);
2791                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2792                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2793                                                 pagelist);
2794         }
2795         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2796                                         obj_request->pages, inbound_size,
2797                                         0, false, false);
2798         rbd_osd_req_format_read(obj_request);
2799
2800         ret = rbd_obj_request_submit(osdc, obj_request);
2801         if (ret)
2802                 goto out;
2803         ret = rbd_obj_request_wait(obj_request);
2804         if (ret)
2805                 goto out;
2806
2807         ret = obj_request->result;
2808         if (ret < 0)
2809                 goto out;
2810
2811         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2812         ret = (int)obj_request->xferred;
2813         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2814 out:
2815         if (obj_request)
2816                 rbd_obj_request_put(obj_request);
2817         else
2818                 ceph_release_page_vector(pages, page_count);
2819
2820         return ret;
2821 }
2822
2823 static void rbd_request_fn(struct request_queue *q)
2824                 __releases(q->queue_lock) __acquires(q->queue_lock)
2825 {
2826         struct rbd_device *rbd_dev = q->queuedata;
2827         bool read_only = rbd_dev->mapping.read_only;
2828         struct request *rq;
2829         int result;
2830
2831         while ((rq = blk_fetch_request(q))) {
2832                 bool write_request = rq_data_dir(rq) == WRITE;
2833                 struct rbd_img_request *img_request;
2834                 u64 offset;
2835                 u64 length;
2836
2837                 /* Ignore any non-FS requests that filter through. */
2838
2839                 if (rq->cmd_type != REQ_TYPE_FS) {
2840                         dout("%s: non-fs request type %d\n", __func__,
2841                                 (int) rq->cmd_type);
2842                         __blk_end_request_all(rq, 0);
2843                         continue;
2844                 }
2845
2846                 /* Ignore/skip any zero-length requests */
2847
2848                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2849                 length = (u64) blk_rq_bytes(rq);
2850
2851                 if (!length) {
2852                         dout("%s: zero-length request\n", __func__);
2853                         __blk_end_request_all(rq, 0);
2854                         continue;
2855                 }
2856
2857                 spin_unlock_irq(q->queue_lock);
2858
2859                 /* Disallow writes to a read-only device */
2860
2861                 if (write_request) {
2862                         result = -EROFS;
2863                         if (read_only)
2864                                 goto end_request;
2865                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2866                 }
2867
2868                 /*
2869                  * Quit early if the mapped snapshot no longer
2870                  * exists.  It's still possible the snapshot will
2871                  * have disappeared by the time our request arrives
2872                  * at the osd, but there's no sense in sending it if
2873                  * we already know.
2874                  */
2875                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2876                         dout("request for non-existent snapshot");
2877                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2878                         result = -ENXIO;
2879                         goto end_request;
2880                 }
2881
2882                 result = -EINVAL;
2883                 if (offset && length > U64_MAX - offset + 1) {
2884                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2885                                 offset, length);
2886                         goto end_request;       /* Shouldn't happen */
2887                 }
2888
2889                 result = -EIO;
2890                 if (offset + length > rbd_dev->mapping.size) {
2891                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
2892                                 offset, length, rbd_dev->mapping.size);
2893                         goto end_request;
2894                 }
2895
2896                 result = -ENOMEM;
2897                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2898                                                         write_request, false);
2899                 if (!img_request)
2900                         goto end_request;
2901
2902                 img_request->rq = rq;
2903
2904                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2905                                                 rq->bio);
2906                 if (!result)
2907                         result = rbd_img_request_submit(img_request);
2908                 if (result)
2909                         rbd_img_request_put(img_request);
2910 end_request:
2911                 spin_lock_irq(q->queue_lock);
2912                 if (result < 0) {
2913                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2914                                 write_request ? "write" : "read",
2915                                 length, offset, result);
2916
2917                         __blk_end_request_all(rq, result);
2918                 }
2919         }
2920 }
2921
2922 /*
2923  * a queue callback. Makes sure that we don't create a bio that spans across
2924  * multiple osd objects. One exception would be with a single page bios,
2925  * which we handle later at bio_chain_clone_range()
2926  */
2927 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2928                           struct bio_vec *bvec)
2929 {
2930         struct rbd_device *rbd_dev = q->queuedata;
2931         sector_t sector_offset;
2932         sector_t sectors_per_obj;
2933         sector_t obj_sector_offset;
2934         int ret;
2935
2936         /*
2937          * Find how far into its rbd object the partition-relative
2938          * bio start sector is to offset relative to the enclosing
2939          * device.
2940          */
2941         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2942         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2943         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2944
2945         /*
2946          * Compute the number of bytes from that offset to the end
2947          * of the object.  Account for what's already used by the bio.
2948          */
2949         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2950         if (ret > bmd->bi_size)
2951                 ret -= bmd->bi_size;
2952         else
2953                 ret = 0;
2954
2955         /*
2956          * Don't send back more than was asked for.  And if the bio
2957          * was empty, let the whole thing through because:  "Note
2958          * that a block device *must* allow a single page to be
2959          * added to an empty bio."
2960          */
2961         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2962         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2963                 ret = (int) bvec->bv_len;
2964
2965         return ret;
2966 }
2967
2968 static void rbd_free_disk(struct rbd_device *rbd_dev)
2969 {
2970         struct gendisk *disk = rbd_dev->disk;
2971
2972         if (!disk)
2973                 return;
2974
2975         rbd_dev->disk = NULL;
2976         if (disk->flags & GENHD_FL_UP) {
2977                 del_gendisk(disk);
2978                 if (disk->queue)
2979                         blk_cleanup_queue(disk->queue);
2980         }
2981         put_disk(disk);
2982 }
2983
2984 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2985                                 const char *object_name,
2986                                 u64 offset, u64 length, void *buf)
2987
2988 {
2989         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2990         struct rbd_obj_request *obj_request;
2991         struct page **pages = NULL;
2992         u32 page_count;
2993         size_t size;
2994         int ret;
2995
2996         page_count = (u32) calc_pages_for(offset, length);
2997         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998         if (IS_ERR(pages))
2999                 ret = PTR_ERR(pages);
3000
3001         ret = -ENOMEM;
3002         obj_request = rbd_obj_request_create(object_name, offset, length,
3003                                                         OBJ_REQUEST_PAGES);
3004         if (!obj_request)
3005                 goto out;
3006
3007         obj_request->pages = pages;
3008         obj_request->page_count = page_count;
3009
3010         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3011         if (!obj_request->osd_req)
3012                 goto out;
3013
3014         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3015                                         offset, length, 0, 0);
3016         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3017                                         obj_request->pages,
3018                                         obj_request->length,
3019                                         obj_request->offset & ~PAGE_MASK,
3020                                         false, false);
3021         rbd_osd_req_format_read(obj_request);
3022
3023         ret = rbd_obj_request_submit(osdc, obj_request);
3024         if (ret)
3025                 goto out;
3026         ret = rbd_obj_request_wait(obj_request);
3027         if (ret)
3028                 goto out;
3029
3030         ret = obj_request->result;
3031         if (ret < 0)
3032                 goto out;
3033
3034         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3035         size = (size_t) obj_request->xferred;
3036         ceph_copy_from_page_vector(pages, buf, 0, size);
3037         rbd_assert(size <= (size_t)INT_MAX);
3038         ret = (int)size;
3039 out:
3040         if (obj_request)
3041                 rbd_obj_request_put(obj_request);
3042         else
3043                 ceph_release_page_vector(pages, page_count);
3044
3045         return ret;
3046 }
3047
3048 /*
3049  * Read the complete header for the given rbd device.  On successful
3050  * return, the rbd_dev->header field will contain up-to-date
3051  * information about the image.
3052  */
3053 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3054 {
3055         struct rbd_image_header_ondisk *ondisk = NULL;
3056         u32 snap_count = 0;
3057         u64 names_size = 0;
3058         u32 want_count;
3059         int ret;
3060
3061         /*
3062          * The complete header will include an array of its 64-bit
3063          * snapshot ids, followed by the names of those snapshots as
3064          * a contiguous block of NUL-terminated strings.  Note that
3065          * the number of snapshots could change by the time we read
3066          * it in, in which case we re-read it.
3067          */
3068         do {
3069                 size_t size;
3070
3071                 kfree(ondisk);
3072
3073                 size = sizeof (*ondisk);
3074                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3075                 size += names_size;
3076                 ondisk = kmalloc(size, GFP_KERNEL);
3077                 if (!ondisk)
3078                         return -ENOMEM;
3079
3080                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3081                                        0, size, ondisk);
3082                 if (ret < 0)
3083                         goto out;
3084                 if ((size_t)ret < size) {
3085                         ret = -ENXIO;
3086                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3087                                 size, ret);
3088                         goto out;
3089                 }
3090                 if (!rbd_dev_ondisk_valid(ondisk)) {
3091                         ret = -ENXIO;
3092                         rbd_warn(rbd_dev, "invalid header");
3093                         goto out;
3094                 }
3095
3096                 names_size = le64_to_cpu(ondisk->snap_names_len);
3097                 want_count = snap_count;
3098                 snap_count = le32_to_cpu(ondisk->snap_count);
3099         } while (snap_count != want_count);
3100
3101         ret = rbd_header_from_disk(rbd_dev, ondisk);
3102 out:
3103         kfree(ondisk);
3104
3105         return ret;
3106 }
3107
3108 /*
3109  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3110  * has disappeared from the (just updated) snapshot context.
3111  */
3112 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3113 {
3114         u64 snap_id;
3115
3116         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3117                 return;
3118
3119         snap_id = rbd_dev->spec->snap_id;
3120         if (snap_id == CEPH_NOSNAP)
3121                 return;
3122
3123         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3124                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3125 }
3126
3127 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3128 {
3129         u64 mapping_size;
3130         int ret;
3131
3132         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3133         mapping_size = rbd_dev->mapping.size;
3134         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3135         if (rbd_dev->image_format == 1)
3136                 ret = rbd_dev_v1_header_info(rbd_dev);
3137         else
3138                 ret = rbd_dev_v2_refresh(rbd_dev);
3139
3140         /* If it's a mapped snapshot, validate its EXISTS flag */
3141
3142         rbd_exists_validate(rbd_dev);
3143         mutex_unlock(&ctl_mutex);
3144         if (mapping_size != rbd_dev->mapping.size) {
3145                 sector_t size;
3146
3147                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3148                 dout("setting size to %llu sectors", (unsigned long long)size);
3149                 set_capacity(rbd_dev->disk, size);
3150                 revalidate_disk(rbd_dev->disk);
3151         }
3152
3153         return ret;
3154 }
3155
3156 static int rbd_init_disk(struct rbd_device *rbd_dev)
3157 {
3158         struct gendisk *disk;
3159         struct request_queue *q;
3160         u64 segment_size;
3161
3162         /* create gendisk info */
3163         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3164         if (!disk)
3165                 return -ENOMEM;
3166
3167         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3168                  rbd_dev->dev_id);
3169         disk->major = rbd_dev->major;
3170         disk->first_minor = 0;
3171         disk->fops = &rbd_bd_ops;
3172         disk->private_data = rbd_dev;
3173
3174         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3175         if (!q)
3176                 goto out_disk;
3177
3178         /* We use the default size, but let's be explicit about it. */
3179         blk_queue_physical_block_size(q, SECTOR_SIZE);
3180
3181         /* set io sizes to object size */
3182         segment_size = rbd_obj_bytes(&rbd_dev->header);
3183         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3184         blk_queue_max_segment_size(q, segment_size);
3185         blk_queue_io_min(q, segment_size);
3186         blk_queue_io_opt(q, segment_size);
3187
3188         blk_queue_merge_bvec(q, rbd_merge_bvec);
3189         disk->queue = q;
3190
3191         q->queuedata = rbd_dev;
3192
3193         rbd_dev->disk = disk;
3194
3195         return 0;
3196 out_disk:
3197         put_disk(disk);
3198
3199         return -ENOMEM;
3200 }
3201
3202 /*
3203   sysfs
3204 */
3205
3206 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3207 {
3208         return container_of(dev, struct rbd_device, dev);
3209 }
3210
3211 static ssize_t rbd_size_show(struct device *dev,
3212                              struct device_attribute *attr, char *buf)
3213 {
3214         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3215
3216         return sprintf(buf, "%llu\n",
3217                 (unsigned long long)rbd_dev->mapping.size);
3218 }
3219
3220 /*
3221  * Note this shows the features for whatever's mapped, which is not
3222  * necessarily the base image.
3223  */
3224 static ssize_t rbd_features_show(struct device *dev,
3225                              struct device_attribute *attr, char *buf)
3226 {
3227         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3228
3229         return sprintf(buf, "0x%016llx\n",
3230                         (unsigned long long)rbd_dev->mapping.features);
3231 }
3232
3233 static ssize_t rbd_major_show(struct device *dev,
3234                               struct device_attribute *attr, char *buf)
3235 {
3236         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3237
3238         if (rbd_dev->major)
3239                 return sprintf(buf, "%d\n", rbd_dev->major);
3240
3241         return sprintf(buf, "(none)\n");
3242
3243 }
3244
3245 static ssize_t rbd_client_id_show(struct device *dev,
3246                                   struct device_attribute *attr, char *buf)
3247 {
3248         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3249
3250         return sprintf(buf, "client%lld\n",
3251                         ceph_client_id(rbd_dev->rbd_client->client));
3252 }
3253
3254 static ssize_t rbd_pool_show(struct device *dev,
3255                              struct device_attribute *attr, char *buf)
3256 {
3257         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3258
3259         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3260 }
3261
3262 static ssize_t rbd_pool_id_show(struct device *dev,
3263                              struct device_attribute *attr, char *buf)
3264 {
3265         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3266
3267         return sprintf(buf, "%llu\n",
3268                         (unsigned long long) rbd_dev->spec->pool_id);
3269 }
3270
3271 static ssize_t rbd_name_show(struct device *dev,
3272                              struct device_attribute *attr, char *buf)
3273 {
3274         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3275
3276         if (rbd_dev->spec->image_name)
3277                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3278
3279         return sprintf(buf, "(unknown)\n");
3280 }
3281
3282 static ssize_t rbd_image_id_show(struct device *dev,
3283                              struct device_attribute *attr, char *buf)
3284 {
3285         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3286
3287         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3288 }
3289
3290 /*
3291  * Shows the name of the currently-mapped snapshot (or
3292  * RBD_SNAP_HEAD_NAME for the base image).
3293  */
3294 static ssize_t rbd_snap_show(struct device *dev,
3295                              struct device_attribute *attr,
3296                              char *buf)
3297 {
3298         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3299
3300         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3301 }
3302
3303 /*
3304  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3305  * for the parent image.  If there is no parent, simply shows
3306  * "(no parent image)".
3307  */
3308 static ssize_t rbd_parent_show(struct device *dev,
3309                              struct device_attribute *attr,
3310                              char *buf)
3311 {
3312         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3313         struct rbd_spec *spec = rbd_dev->parent_spec;
3314         int count;
3315         char *bufp = buf;
3316
3317         if (!spec)
3318                 return sprintf(buf, "(no parent image)\n");
3319
3320         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3321                         (unsigned long long) spec->pool_id, spec->pool_name);
3322         if (count < 0)
3323                 return count;
3324         bufp += count;
3325
3326         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3327                         spec->image_name ? spec->image_name : "(unknown)");
3328         if (count < 0)
3329                 return count;
3330         bufp += count;
3331
3332         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3333                         (unsigned long long) spec->snap_id, spec->snap_name);
3334         if (count < 0)
3335                 return count;
3336         bufp += count;
3337
3338         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3339         if (count < 0)
3340                 return count;
3341         bufp += count;
3342
3343         return (ssize_t) (bufp - buf);
3344 }
3345
3346 static ssize_t rbd_image_refresh(struct device *dev,
3347                                  struct device_attribute *attr,
3348                                  const char *buf,
3349                                  size_t size)
3350 {
3351         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3352         int ret;
3353
3354         ret = rbd_dev_refresh(rbd_dev);
3355         if (ret)
3356                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3357
3358         return ret < 0 ? ret : size;
3359 }
3360
3361 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3362 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3363 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3364 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3365 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3366 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3367 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3368 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3369 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3370 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3371 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3372
3373 static struct attribute *rbd_attrs[] = {
3374         &dev_attr_size.attr,
3375         &dev_attr_features.attr,
3376         &dev_attr_major.attr,
3377         &dev_attr_client_id.attr,
3378         &dev_attr_pool.attr,
3379         &dev_attr_pool_id.attr,
3380         &dev_attr_name.attr,
3381         &dev_attr_image_id.attr,
3382         &dev_attr_current_snap.attr,
3383         &dev_attr_parent.attr,
3384         &dev_attr_refresh.attr,
3385         NULL
3386 };
3387
3388 static struct attribute_group rbd_attr_group = {
3389         .attrs = rbd_attrs,
3390 };
3391
3392 static const struct attribute_group *rbd_attr_groups[] = {
3393         &rbd_attr_group,
3394         NULL
3395 };
3396
3397 static void rbd_sysfs_dev_release(struct device *dev)
3398 {
3399 }
3400
3401 static struct device_type rbd_device_type = {
3402         .name           = "rbd",
3403         .groups         = rbd_attr_groups,
3404         .release        = rbd_sysfs_dev_release,
3405 };
3406
3407 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3408 {
3409         kref_get(&spec->kref);
3410
3411         return spec;
3412 }
3413
3414 static void rbd_spec_free(struct kref *kref);
3415 static void rbd_spec_put(struct rbd_spec *spec)
3416 {
3417         if (spec)
3418                 kref_put(&spec->kref, rbd_spec_free);
3419 }
3420
3421 static struct rbd_spec *rbd_spec_alloc(void)
3422 {
3423         struct rbd_spec *spec;
3424
3425         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3426         if (!spec)
3427                 return NULL;
3428         kref_init(&spec->kref);
3429
3430         return spec;
3431 }
3432
3433 static void rbd_spec_free(struct kref *kref)
3434 {
3435         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3436
3437         kfree(spec->pool_name);
3438         kfree(spec->image_id);
3439         kfree(spec->image_name);
3440         kfree(spec->snap_name);
3441         kfree(spec);
3442 }
3443
3444 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3445                                 struct rbd_spec *spec)
3446 {
3447         struct rbd_device *rbd_dev;
3448
3449         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3450         if (!rbd_dev)
3451                 return NULL;
3452
3453         spin_lock_init(&rbd_dev->lock);
3454         rbd_dev->flags = 0;
3455         INIT_LIST_HEAD(&rbd_dev->node);
3456         init_rwsem(&rbd_dev->header_rwsem);
3457
3458         rbd_dev->spec = spec;
3459         rbd_dev->rbd_client = rbdc;
3460
3461         /* Initialize the layout used for all rbd requests */
3462
3463         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3464         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3465         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3466         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3467
3468         return rbd_dev;
3469 }
3470
3471 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3472 {
3473         rbd_put_client(rbd_dev->rbd_client);
3474         rbd_spec_put(rbd_dev->spec);
3475         kfree(rbd_dev);
3476 }
3477
3478 /*
3479  * Get the size and object order for an image snapshot, or if
3480  * snap_id is CEPH_NOSNAP, gets this information for the base
3481  * image.
3482  */
3483 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3484                                 u8 *order, u64 *snap_size)
3485 {
3486         __le64 snapid = cpu_to_le64(snap_id);
3487         int ret;
3488         struct {
3489                 u8 order;
3490                 __le64 size;
3491         } __attribute__ ((packed)) size_buf = { 0 };
3492
3493         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3494                                 "rbd", "get_size",
3495                                 &snapid, sizeof (snapid),
3496                                 &size_buf, sizeof (size_buf));
3497         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3498         if (ret < 0)
3499                 return ret;
3500         if (ret < sizeof (size_buf))
3501                 return -ERANGE;
3502
3503         if (order)
3504                 *order = size_buf.order;
3505         *snap_size = le64_to_cpu(size_buf.size);
3506
3507         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3508                 (unsigned long long)snap_id, (unsigned int)*order,
3509                 (unsigned long long)*snap_size);
3510
3511         return 0;
3512 }
3513
3514 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3515 {
3516         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3517                                         &rbd_dev->header.obj_order,
3518                                         &rbd_dev->header.image_size);
3519 }
3520
3521 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3522 {
3523         void *reply_buf;
3524         int ret;
3525         void *p;
3526
3527         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3528         if (!reply_buf)
3529                 return -ENOMEM;
3530
3531         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3532                                 "rbd", "get_object_prefix", NULL, 0,
3533                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3534         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3535         if (ret < 0)
3536                 goto out;
3537
3538         p = reply_buf;
3539         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3540                                                 p + ret, NULL, GFP_NOIO);
3541         ret = 0;
3542
3543         if (IS_ERR(rbd_dev->header.object_prefix)) {
3544                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3545                 rbd_dev->header.object_prefix = NULL;
3546         } else {
3547                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3548         }
3549 out:
3550         kfree(reply_buf);
3551
3552         return ret;
3553 }
3554
3555 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3556                 u64 *snap_features)
3557 {
3558         __le64 snapid = cpu_to_le64(snap_id);
3559         struct {
3560                 __le64 features;
3561                 __le64 incompat;
3562         } __attribute__ ((packed)) features_buf = { 0 };
3563         u64 incompat;
3564         int ret;
3565
3566         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3567                                 "rbd", "get_features",
3568                                 &snapid, sizeof (snapid),
3569                                 &features_buf, sizeof (features_buf));
3570         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3571         if (ret < 0)
3572                 return ret;
3573         if (ret < sizeof (features_buf))
3574                 return -ERANGE;
3575
3576         incompat = le64_to_cpu(features_buf.incompat);
3577         if (incompat & ~RBD_FEATURES_SUPPORTED)
3578                 return -ENXIO;
3579
3580         *snap_features = le64_to_cpu(features_buf.features);
3581
3582         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3583                 (unsigned long long)snap_id,
3584                 (unsigned long long)*snap_features,
3585                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3586
3587         return 0;
3588 }
3589
3590 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3591 {
3592         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3593                                                 &rbd_dev->header.features);
3594 }
3595
3596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3597 {
3598         struct rbd_spec *parent_spec;
3599         size_t size;
3600         void *reply_buf = NULL;
3601         __le64 snapid;
3602         void *p;
3603         void *end;
3604         char *image_id;
3605         u64 overlap;
3606         int ret;
3607
3608         parent_spec = rbd_spec_alloc();
3609         if (!parent_spec)
3610                 return -ENOMEM;
3611
3612         size = sizeof (__le64) +                                /* pool_id */
3613                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3614                 sizeof (__le64) +                               /* snap_id */
3615                 sizeof (__le64);                                /* overlap */
3616         reply_buf = kmalloc(size, GFP_KERNEL);
3617         if (!reply_buf) {
3618                 ret = -ENOMEM;
3619                 goto out_err;
3620         }
3621
3622         snapid = cpu_to_le64(CEPH_NOSNAP);
3623         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3624                                 "rbd", "get_parent",
3625                                 &snapid, sizeof (snapid),
3626                                 reply_buf, size);
3627         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3628         if (ret < 0)
3629                 goto out_err;
3630
3631         p = reply_buf;
3632         end = reply_buf + ret;
3633         ret = -ERANGE;
3634         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3635         if (parent_spec->pool_id == CEPH_NOPOOL)
3636                 goto out;       /* No parent?  No problem. */
3637
3638         /* The ceph file layout needs to fit pool id in 32 bits */
3639
3640         ret = -EIO;
3641         if (parent_spec->pool_id > (u64)U32_MAX) {
3642                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3643                         (unsigned long long)parent_spec->pool_id, U32_MAX);
3644                 goto out_err;
3645         }
3646
3647         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3648         if (IS_ERR(image_id)) {
3649                 ret = PTR_ERR(image_id);
3650                 goto out_err;
3651         }
3652         parent_spec->image_id = image_id;
3653         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3654         ceph_decode_64_safe(&p, end, overlap, out_err);
3655
3656         rbd_dev->parent_overlap = overlap;
3657         rbd_dev->parent_spec = parent_spec;
3658         parent_spec = NULL;     /* rbd_dev now owns this */
3659 out:
3660         ret = 0;
3661 out_err:
3662         kfree(reply_buf);
3663         rbd_spec_put(parent_spec);
3664
3665         return ret;
3666 }
3667
3668 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3669 {
3670         struct {
3671                 __le64 stripe_unit;
3672                 __le64 stripe_count;
3673         } __attribute__ ((packed)) striping_info_buf = { 0 };
3674         size_t size = sizeof (striping_info_buf);
3675         void *p;
3676         u64 obj_size;
3677         u64 stripe_unit;
3678         u64 stripe_count;
3679         int ret;
3680
3681         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3682                                 "rbd", "get_stripe_unit_count", NULL, 0,
3683                                 (char *)&striping_info_buf, size);
3684         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3685         if (ret < 0)
3686                 return ret;
3687         if (ret < size)
3688                 return -ERANGE;
3689
3690         /*
3691          * We don't actually support the "fancy striping" feature
3692          * (STRIPINGV2) yet, but if the striping sizes are the
3693          * defaults the behavior is the same as before.  So find
3694          * out, and only fail if the image has non-default values.
3695          */
3696         ret = -EINVAL;
3697         obj_size = (u64)1 << rbd_dev->header.obj_order;
3698         p = &striping_info_buf;
3699         stripe_unit = ceph_decode_64(&p);
3700         if (stripe_unit != obj_size) {
3701                 rbd_warn(rbd_dev, "unsupported stripe unit "
3702                                 "(got %llu want %llu)",
3703                                 stripe_unit, obj_size);
3704                 return -EINVAL;
3705         }
3706         stripe_count = ceph_decode_64(&p);
3707         if (stripe_count != 1) {
3708                 rbd_warn(rbd_dev, "unsupported stripe count "
3709                                 "(got %llu want 1)", stripe_count);
3710                 return -EINVAL;
3711         }
3712         rbd_dev->header.stripe_unit = stripe_unit;
3713         rbd_dev->header.stripe_count = stripe_count;
3714
3715         return 0;
3716 }
3717
3718 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3719 {
3720         size_t image_id_size;
3721         char *image_id;
3722         void *p;
3723         void *end;
3724         size_t size;
3725         void *reply_buf = NULL;
3726         size_t len = 0;
3727         char *image_name = NULL;
3728         int ret;
3729
3730         rbd_assert(!rbd_dev->spec->image_name);
3731
3732         len = strlen(rbd_dev->spec->image_id);
3733         image_id_size = sizeof (__le32) + len;
3734         image_id = kmalloc(image_id_size, GFP_KERNEL);
3735         if (!image_id)
3736                 return NULL;
3737
3738         p = image_id;
3739         end = image_id + image_id_size;
3740         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3741
3742         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3743         reply_buf = kmalloc(size, GFP_KERNEL);
3744         if (!reply_buf)
3745                 goto out;
3746
3747         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3748                                 "rbd", "dir_get_name",
3749                                 image_id, image_id_size,
3750                                 reply_buf, size);
3751         if (ret < 0)
3752                 goto out;
3753         p = reply_buf;
3754         end = reply_buf + ret;
3755
3756         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3757         if (IS_ERR(image_name))
3758                 image_name = NULL;
3759         else
3760                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3761 out:
3762         kfree(reply_buf);
3763         kfree(image_id);
3764
3765         return image_name;
3766 }
3767
3768 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3769 {
3770         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3771         const char *snap_name;
3772         u32 which = 0;
3773
3774         /* Skip over names until we find the one we are looking for */
3775
3776         snap_name = rbd_dev->header.snap_names;
3777         while (which < snapc->num_snaps) {
3778                 if (!strcmp(name, snap_name))
3779                         return snapc->snaps[which];
3780                 snap_name += strlen(snap_name) + 1;
3781                 which++;
3782         }
3783         return CEPH_NOSNAP;
3784 }
3785
3786 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3787 {
3788         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3789         u32 which;
3790         bool found = false;
3791         u64 snap_id;
3792
3793         for (which = 0; !found && which < snapc->num_snaps; which++) {
3794                 const char *snap_name;
3795
3796                 snap_id = snapc->snaps[which];
3797                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3798                 if (IS_ERR(snap_name))
3799                         break;
3800                 found = !strcmp(name, snap_name);
3801                 kfree(snap_name);
3802         }
3803         return found ? snap_id : CEPH_NOSNAP;
3804 }
3805
3806 /*
3807  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3808  * no snapshot by that name is found, or if an error occurs.
3809  */
3810 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3811 {
3812         if (rbd_dev->image_format == 1)
3813                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3814
3815         return rbd_v2_snap_id_by_name(rbd_dev, name);
3816 }
3817
3818 /*
3819  * When an rbd image has a parent image, it is identified by the
3820  * pool, image, and snapshot ids (not names).  This function fills
3821  * in the names for those ids.  (It's OK if we can't figure out the
3822  * name for an image id, but the pool and snapshot ids should always
3823  * exist and have names.)  All names in an rbd spec are dynamically
3824  * allocated.
3825  *
3826  * When an image being mapped (not a parent) is probed, we have the
3827  * pool name and pool id, image name and image id, and the snapshot
3828  * name.  The only thing we're missing is the snapshot id.
3829  */
3830 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3831 {
3832         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3833         struct rbd_spec *spec = rbd_dev->spec;
3834         const char *pool_name;
3835         const char *image_name;
3836         const char *snap_name;
3837         int ret;
3838
3839         /*
3840          * An image being mapped will have the pool name (etc.), but
3841          * we need to look up the snapshot id.
3842          */
3843         if (spec->pool_name) {
3844                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3845                         u64 snap_id;
3846
3847                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3848                         if (snap_id == CEPH_NOSNAP)
3849                                 return -ENOENT;
3850                         spec->snap_id = snap_id;
3851                 } else {
3852                         spec->snap_id = CEPH_NOSNAP;
3853                 }
3854
3855                 return 0;
3856         }
3857
3858         /* Get the pool name; we have to make our own copy of this */
3859
3860         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3861         if (!pool_name) {
3862                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3863                 return -EIO;
3864         }
3865         pool_name = kstrdup(pool_name, GFP_KERNEL);
3866         if (!pool_name)
3867                 return -ENOMEM;
3868
3869         /* Fetch the image name; tolerate failure here */
3870
3871         image_name = rbd_dev_image_name(rbd_dev);
3872         if (!image_name)
3873                 rbd_warn(rbd_dev, "unable to get image name");
3874
3875         /* Look up the snapshot name, and make a copy */
3876
3877         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3878         if (!snap_name) {
3879                 ret = -ENOMEM;
3880                 goto out_err;
3881         }
3882
3883         spec->pool_name = pool_name;
3884         spec->image_name = image_name;
3885         spec->snap_name = snap_name;
3886
3887         return 0;
3888 out_err:
3889         kfree(image_name);
3890         kfree(pool_name);
3891
3892         return ret;
3893 }
3894
3895 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3896 {
3897         size_t size;
3898         int ret;
3899         void *reply_buf;
3900         void *p;
3901         void *end;
3902         u64 seq;
3903         u32 snap_count;
3904         struct ceph_snap_context *snapc;
3905         u32 i;
3906
3907         /*
3908          * We'll need room for the seq value (maximum snapshot id),
3909          * snapshot count, and array of that many snapshot ids.
3910          * For now we have a fixed upper limit on the number we're
3911          * prepared to receive.
3912          */
3913         size = sizeof (__le64) + sizeof (__le32) +
3914                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3915         reply_buf = kzalloc(size, GFP_KERNEL);
3916         if (!reply_buf)
3917                 return -ENOMEM;
3918
3919         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3920                                 "rbd", "get_snapcontext", NULL, 0,
3921                                 reply_buf, size);
3922         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3923         if (ret < 0)
3924                 goto out;
3925
3926         p = reply_buf;
3927         end = reply_buf + ret;
3928         ret = -ERANGE;
3929         ceph_decode_64_safe(&p, end, seq, out);
3930         ceph_decode_32_safe(&p, end, snap_count, out);
3931
3932         /*
3933          * Make sure the reported number of snapshot ids wouldn't go
3934          * beyond the end of our buffer.  But before checking that,
3935          * make sure the computed size of the snapshot context we
3936          * allocate is representable in a size_t.
3937          */
3938         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3939                                  / sizeof (u64)) {
3940                 ret = -EINVAL;
3941                 goto out;
3942         }
3943         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3944                 goto out;
3945         ret = 0;
3946
3947         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3948         if (!snapc) {
3949                 ret = -ENOMEM;
3950                 goto out;
3951         }
3952         snapc->seq = seq;
3953         for (i = 0; i < snap_count; i++)
3954                 snapc->snaps[i] = ceph_decode_64(&p);
3955
3956         ceph_put_snap_context(rbd_dev->header.snapc);
3957         rbd_dev->header.snapc = snapc;
3958
3959         dout("  snap context seq = %llu, snap_count = %u\n",
3960                 (unsigned long long)seq, (unsigned int)snap_count);
3961 out:
3962         kfree(reply_buf);
3963
3964         return ret;
3965 }
3966
3967 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
3968                                         u64 snap_id)
3969 {
3970         size_t size;
3971         void *reply_buf;
3972         __le64 snapid;
3973         int ret;
3974         void *p;
3975         void *end;
3976         char *snap_name;
3977
3978         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3979         reply_buf = kmalloc(size, GFP_KERNEL);
3980         if (!reply_buf)
3981                 return ERR_PTR(-ENOMEM);
3982
3983         snapid = cpu_to_le64(snap_id);
3984         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3985                                 "rbd", "get_snapshot_name",
3986                                 &snapid, sizeof (snapid),
3987                                 reply_buf, size);
3988         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3989         if (ret < 0) {
3990                 snap_name = ERR_PTR(ret);
3991                 goto out;
3992         }
3993
3994         p = reply_buf;
3995         end = reply_buf + ret;
3996         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3997         if (IS_ERR(snap_name))
3998                 goto out;
3999
4000         dout("  snap_id 0x%016llx snap_name = %s\n",
4001                 (unsigned long long)snap_id, snap_name);
4002 out:
4003         kfree(reply_buf);
4004
4005         return snap_name;
4006 }
4007
4008 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4009 {
4010         int ret;
4011
4012         down_write(&rbd_dev->header_rwsem);
4013
4014         ret = rbd_dev_v2_image_size(rbd_dev);
4015         if (ret)
4016                 goto out;
4017         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4018                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4019                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4020
4021         ret = rbd_dev_v2_snap_context(rbd_dev);
4022         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4023         if (ret)
4024                 goto out;
4025 out:
4026         up_write(&rbd_dev->header_rwsem);
4027
4028         return ret;
4029 }
4030
4031 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4032 {
4033         struct device *dev;
4034         int ret;
4035
4036         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4037
4038         dev = &rbd_dev->dev;
4039         dev->bus = &rbd_bus_type;
4040         dev->type = &rbd_device_type;
4041         dev->parent = &rbd_root_dev;
4042         dev->release = rbd_dev_device_release;
4043         dev_set_name(dev, "%d", rbd_dev->dev_id);
4044         ret = device_register(dev);
4045
4046         mutex_unlock(&ctl_mutex);
4047
4048         return ret;
4049 }
4050
4051 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4052 {
4053         device_unregister(&rbd_dev->dev);
4054 }
4055
4056 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4057
4058 /*
4059  * Get a unique rbd identifier for the given new rbd_dev, and add
4060  * the rbd_dev to the global list.  The minimum rbd id is 1.
4061  */
4062 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4063 {
4064         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4065
4066         spin_lock(&rbd_dev_list_lock);
4067         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4068         spin_unlock(&rbd_dev_list_lock);
4069         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4070                 (unsigned long long) rbd_dev->dev_id);
4071 }
4072
4073 /*
4074  * Remove an rbd_dev from the global list, and record that its
4075  * identifier is no longer in use.
4076  */
4077 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4078 {
4079         struct list_head *tmp;
4080         int rbd_id = rbd_dev->dev_id;
4081         int max_id;
4082
4083         rbd_assert(rbd_id > 0);
4084
4085         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4086                 (unsigned long long) rbd_dev->dev_id);
4087         spin_lock(&rbd_dev_list_lock);
4088         list_del_init(&rbd_dev->node);
4089
4090         /*
4091          * If the id being "put" is not the current maximum, there
4092          * is nothing special we need to do.
4093          */
4094         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4095                 spin_unlock(&rbd_dev_list_lock);
4096                 return;
4097         }
4098
4099         /*
4100          * We need to update the current maximum id.  Search the
4101          * list to find out what it is.  We're more likely to find
4102          * the maximum at the end, so search the list backward.
4103          */
4104         max_id = 0;
4105         list_for_each_prev(tmp, &rbd_dev_list) {
4106                 struct rbd_device *rbd_dev;
4107
4108                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4109                 if (rbd_dev->dev_id > max_id)
4110                         max_id = rbd_dev->dev_id;
4111         }
4112         spin_unlock(&rbd_dev_list_lock);
4113
4114         /*
4115          * The max id could have been updated by rbd_dev_id_get(), in
4116          * which case it now accurately reflects the new maximum.
4117          * Be careful not to overwrite the maximum value in that
4118          * case.
4119          */
4120         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4121         dout("  max dev id has been reset\n");
4122 }
4123
4124 /*
4125  * Skips over white space at *buf, and updates *buf to point to the
4126  * first found non-space character (if any). Returns the length of
4127  * the token (string of non-white space characters) found.  Note
4128  * that *buf must be terminated with '\0'.
4129  */
4130 static inline size_t next_token(const char **buf)
4131 {
4132         /*
4133         * These are the characters that produce nonzero for
4134         * isspace() in the "C" and "POSIX" locales.
4135         */
4136         const char *spaces = " \f\n\r\t\v";
4137
4138         *buf += strspn(*buf, spaces);   /* Find start of token */
4139
4140         return strcspn(*buf, spaces);   /* Return token length */
4141 }
4142
4143 /*
4144  * Finds the next token in *buf, and if the provided token buffer is
4145  * big enough, copies the found token into it.  The result, if
4146  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4147  * must be terminated with '\0' on entry.
4148  *
4149  * Returns the length of the token found (not including the '\0').
4150  * Return value will be 0 if no token is found, and it will be >=
4151  * token_size if the token would not fit.
4152  *
4153  * The *buf pointer will be updated to point beyond the end of the
4154  * found token.  Note that this occurs even if the token buffer is
4155  * too small to hold it.
4156  */
4157 static inline size_t copy_token(const char **buf,
4158                                 char *token,
4159                                 size_t token_size)
4160 {
4161         size_t len;
4162
4163         len = next_token(buf);
4164         if (len < token_size) {
4165                 memcpy(token, *buf, len);
4166                 *(token + len) = '\0';
4167         }
4168         *buf += len;
4169
4170         return len;
4171 }
4172
4173 /*
4174  * Finds the next token in *buf, dynamically allocates a buffer big
4175  * enough to hold a copy of it, and copies the token into the new
4176  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4177  * that a duplicate buffer is created even for a zero-length token.
4178  *
4179  * Returns a pointer to the newly-allocated duplicate, or a null
4180  * pointer if memory for the duplicate was not available.  If
4181  * the lenp argument is a non-null pointer, the length of the token
4182  * (not including the '\0') is returned in *lenp.
4183  *
4184  * If successful, the *buf pointer will be updated to point beyond
4185  * the end of the found token.
4186  *
4187  * Note: uses GFP_KERNEL for allocation.
4188  */
4189 static inline char *dup_token(const char **buf, size_t *lenp)
4190 {
4191         char *dup;
4192         size_t len;
4193
4194         len = next_token(buf);
4195         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4196         if (!dup)
4197                 return NULL;
4198         *(dup + len) = '\0';
4199         *buf += len;
4200
4201         if (lenp)
4202                 *lenp = len;
4203
4204         return dup;
4205 }
4206
4207 /*
4208  * Parse the options provided for an "rbd add" (i.e., rbd image
4209  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4210  * and the data written is passed here via a NUL-terminated buffer.
4211  * Returns 0 if successful or an error code otherwise.
4212  *
4213  * The information extracted from these options is recorded in
4214  * the other parameters which return dynamically-allocated
4215  * structures:
4216  *  ceph_opts
4217  *      The address of a pointer that will refer to a ceph options
4218  *      structure.  Caller must release the returned pointer using
4219  *      ceph_destroy_options() when it is no longer needed.
4220  *  rbd_opts
4221  *      Address of an rbd options pointer.  Fully initialized by
4222  *      this function; caller must release with kfree().
4223  *  spec
4224  *      Address of an rbd image specification pointer.  Fully
4225  *      initialized by this function based on parsed options.
4226  *      Caller must release with rbd_spec_put().
4227  *
4228  * The options passed take this form:
4229  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4230  * where:
4231  *  <mon_addrs>
4232  *      A comma-separated list of one or more monitor addresses.
4233  *      A monitor address is an ip address, optionally followed
4234  *      by a port number (separated by a colon).
4235  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4236  *  <options>
4237  *      A comma-separated list of ceph and/or rbd options.
4238  *  <pool_name>
4239  *      The name of the rados pool containing the rbd image.
4240  *  <image_name>
4241  *      The name of the image in that pool to map.
4242  *  <snap_id>
4243  *      An optional snapshot id.  If provided, the mapping will
4244  *      present data from the image at the time that snapshot was
4245  *      created.  The image head is used if no snapshot id is
4246  *      provided.  Snapshot mappings are always read-only.
4247  */
4248 static int rbd_add_parse_args(const char *buf,
4249                                 struct ceph_options **ceph_opts,
4250                                 struct rbd_options **opts,
4251                                 struct rbd_spec **rbd_spec)
4252 {
4253         size_t len;
4254         char *options;
4255         const char *mon_addrs;
4256         char *snap_name;
4257         size_t mon_addrs_size;
4258         struct rbd_spec *spec = NULL;
4259         struct rbd_options *rbd_opts = NULL;
4260         struct ceph_options *copts;
4261         int ret;
4262
4263         /* The first four tokens are required */
4264
4265         len = next_token(&buf);
4266         if (!len) {
4267                 rbd_warn(NULL, "no monitor address(es) provided");
4268                 return -EINVAL;
4269         }
4270         mon_addrs = buf;
4271         mon_addrs_size = len + 1;
4272         buf += len;
4273
4274         ret = -EINVAL;
4275         options = dup_token(&buf, NULL);
4276         if (!options)
4277                 return -ENOMEM;
4278         if (!*options) {
4279                 rbd_warn(NULL, "no options provided");
4280                 goto out_err;
4281         }
4282
4283         spec = rbd_spec_alloc();
4284         if (!spec)
4285                 goto out_mem;
4286
4287         spec->pool_name = dup_token(&buf, NULL);
4288         if (!spec->pool_name)
4289                 goto out_mem;
4290         if (!*spec->pool_name) {
4291                 rbd_warn(NULL, "no pool name provided");
4292                 goto out_err;
4293         }
4294
4295         spec->image_name = dup_token(&buf, NULL);
4296         if (!spec->image_name)
4297                 goto out_mem;
4298         if (!*spec->image_name) {
4299                 rbd_warn(NULL, "no image name provided");
4300                 goto out_err;
4301         }
4302
4303         /*
4304          * Snapshot name is optional; default is to use "-"
4305          * (indicating the head/no snapshot).
4306          */
4307         len = next_token(&buf);
4308         if (!len) {
4309                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4310                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4311         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4312                 ret = -ENAMETOOLONG;
4313                 goto out_err;
4314         }
4315         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4316         if (!snap_name)
4317                 goto out_mem;
4318         *(snap_name + len) = '\0';
4319         spec->snap_name = snap_name;
4320
4321         /* Initialize all rbd options to the defaults */
4322
4323         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4324         if (!rbd_opts)
4325                 goto out_mem;
4326
4327         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4328
4329         copts = ceph_parse_options(options, mon_addrs,
4330                                         mon_addrs + mon_addrs_size - 1,
4331                                         parse_rbd_opts_token, rbd_opts);
4332         if (IS_ERR(copts)) {
4333                 ret = PTR_ERR(copts);
4334                 goto out_err;
4335         }
4336         kfree(options);
4337
4338         *ceph_opts = copts;
4339         *opts = rbd_opts;
4340         *rbd_spec = spec;
4341
4342         return 0;
4343 out_mem:
4344         ret = -ENOMEM;
4345 out_err:
4346         kfree(rbd_opts);
4347         rbd_spec_put(spec);
4348         kfree(options);
4349
4350         return ret;
4351 }
4352
4353 /*
4354  * An rbd format 2 image has a unique identifier, distinct from the
4355  * name given to it by the user.  Internally, that identifier is
4356  * what's used to specify the names of objects related to the image.
4357  *
4358  * A special "rbd id" object is used to map an rbd image name to its
4359  * id.  If that object doesn't exist, then there is no v2 rbd image
4360  * with the supplied name.
4361  *
4362  * This function will record the given rbd_dev's image_id field if
4363  * it can be determined, and in that case will return 0.  If any
4364  * errors occur a negative errno will be returned and the rbd_dev's
4365  * image_id field will be unchanged (and should be NULL).
4366  */
4367 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4368 {
4369         int ret;
4370         size_t size;
4371         char *object_name;
4372         void *response;
4373         char *image_id;
4374
4375         /*
4376          * When probing a parent image, the image id is already
4377          * known (and the image name likely is not).  There's no
4378          * need to fetch the image id again in this case.  We
4379          * do still need to set the image format though.
4380          */
4381         if (rbd_dev->spec->image_id) {
4382                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4383
4384                 return 0;
4385         }
4386
4387         /*
4388          * First, see if the format 2 image id file exists, and if
4389          * so, get the image's persistent id from it.
4390          */
4391         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4392         object_name = kmalloc(size, GFP_NOIO);
4393         if (!object_name)
4394                 return -ENOMEM;
4395         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4396         dout("rbd id object name is %s\n", object_name);
4397
4398         /* Response will be an encoded string, which includes a length */
4399
4400         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4401         response = kzalloc(size, GFP_NOIO);
4402         if (!response) {
4403                 ret = -ENOMEM;
4404                 goto out;
4405         }
4406
4407         /* If it doesn't exist we'll assume it's a format 1 image */
4408
4409         ret = rbd_obj_method_sync(rbd_dev, object_name,
4410                                 "rbd", "get_id", NULL, 0,
4411                                 response, RBD_IMAGE_ID_LEN_MAX);
4412         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4413         if (ret == -ENOENT) {
4414                 image_id = kstrdup("", GFP_KERNEL);
4415                 ret = image_id ? 0 : -ENOMEM;
4416                 if (!ret)
4417                         rbd_dev->image_format = 1;
4418         } else if (ret > sizeof (__le32)) {
4419                 void *p = response;
4420
4421                 image_id = ceph_extract_encoded_string(&p, p + ret,
4422                                                 NULL, GFP_NOIO);
4423                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4424                 if (!ret)
4425                         rbd_dev->image_format = 2;
4426         } else {
4427                 ret = -EINVAL;
4428         }
4429
4430         if (!ret) {
4431                 rbd_dev->spec->image_id = image_id;
4432                 dout("image_id is %s\n", image_id);
4433         }
4434 out:
4435         kfree(response);
4436         kfree(object_name);
4437
4438         return ret;
4439 }
4440
4441 /* Undo whatever state changes are made by v1 or v2 image probe */
4442
4443 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4444 {
4445         struct rbd_image_header *header;
4446
4447         rbd_dev_remove_parent(rbd_dev);
4448         rbd_spec_put(rbd_dev->parent_spec);
4449         rbd_dev->parent_spec = NULL;
4450         rbd_dev->parent_overlap = 0;
4451
4452         /* Free dynamic fields from the header, then zero it out */
4453
4454         header = &rbd_dev->header;
4455         ceph_put_snap_context(header->snapc);
4456         kfree(header->snap_sizes);
4457         kfree(header->snap_names);
4458         kfree(header->object_prefix);
4459         memset(header, 0, sizeof (*header));
4460 }
4461
4462 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4463 {
4464         int ret;
4465
4466         ret = rbd_dev_v2_image_size(rbd_dev);
4467         if (ret)
4468                 goto out_err;
4469
4470         /* Get the object prefix (a.k.a. block_name) for the image */
4471
4472         ret = rbd_dev_v2_object_prefix(rbd_dev);
4473         if (ret)
4474                 goto out_err;
4475
4476         /* Get the and check features for the image */
4477
4478         ret = rbd_dev_v2_features(rbd_dev);
4479         if (ret)
4480                 goto out_err;
4481
4482         /* If the image supports layering, get the parent info */
4483
4484         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4485                 ret = rbd_dev_v2_parent_info(rbd_dev);
4486                 if (ret)
4487                         goto out_err;
4488                 /*
4489                  * Print a warning if this image has a parent.
4490                  * Don't print it if the image now being probed
4491                  * is itself a parent.  We can tell at this point
4492                  * because we won't know its pool name yet (just its
4493                  * pool id).
4494                  */
4495                 if (rbd_dev->parent_spec && rbd_dev->spec->pool_name)
4496                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4497                                         "is EXPERIMENTAL!");
4498         }
4499
4500         /* If the image supports fancy striping, get its parameters */
4501
4502         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4503                 ret = rbd_dev_v2_striping_info(rbd_dev);
4504                 if (ret < 0)
4505                         goto out_err;
4506         }
4507
4508         /* crypto and compression type aren't (yet) supported for v2 images */
4509
4510         rbd_dev->header.crypt_type = 0;
4511         rbd_dev->header.comp_type = 0;
4512
4513         /* Get the snapshot context, plus the header version */
4514
4515         ret = rbd_dev_v2_snap_context(rbd_dev);
4516         if (ret)
4517                 goto out_err;
4518
4519         return 0;
4520 out_err:
4521         rbd_dev->parent_overlap = 0;
4522         rbd_spec_put(rbd_dev->parent_spec);
4523         rbd_dev->parent_spec = NULL;
4524         kfree(rbd_dev->header_name);
4525         rbd_dev->header_name = NULL;
4526         kfree(rbd_dev->header.object_prefix);
4527         rbd_dev->header.object_prefix = NULL;
4528
4529         return ret;
4530 }
4531
4532 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4533 {
4534         struct rbd_device *parent = NULL;
4535         struct rbd_spec *parent_spec;
4536         struct rbd_client *rbdc;
4537         int ret;
4538
4539         if (!rbd_dev->parent_spec)
4540                 return 0;
4541         /*
4542          * We need to pass a reference to the client and the parent
4543          * spec when creating the parent rbd_dev.  Images related by
4544          * parent/child relationships always share both.
4545          */
4546         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4547         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4548
4549         ret = -ENOMEM;
4550         parent = rbd_dev_create(rbdc, parent_spec);
4551         if (!parent)
4552                 goto out_err;
4553
4554         ret = rbd_dev_image_probe(parent, true);
4555         if (ret < 0)
4556                 goto out_err;
4557         rbd_dev->parent = parent;
4558
4559         return 0;
4560 out_err:
4561         if (parent) {
4562                 rbd_spec_put(rbd_dev->parent_spec);
4563                 kfree(rbd_dev->header_name);
4564                 rbd_dev_destroy(parent);
4565         } else {
4566                 rbd_put_client(rbdc);
4567                 rbd_spec_put(parent_spec);
4568         }
4569
4570         return ret;
4571 }
4572
4573 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4574 {
4575         int ret;
4576
4577         /* generate unique id: find highest unique id, add one */
4578         rbd_dev_id_get(rbd_dev);
4579
4580         /* Fill in the device name, now that we have its id. */
4581         BUILD_BUG_ON(DEV_NAME_LEN
4582                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4583         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4584
4585         /* Get our block major device number. */
4586
4587         ret = register_blkdev(0, rbd_dev->name);
4588         if (ret < 0)
4589                 goto err_out_id;
4590         rbd_dev->major = ret;
4591
4592         /* Set up the blkdev mapping. */
4593
4594         ret = rbd_init_disk(rbd_dev);
4595         if (ret)
4596                 goto err_out_blkdev;
4597
4598         ret = rbd_dev_mapping_set(rbd_dev);
4599         if (ret)
4600                 goto err_out_disk;
4601         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4602
4603         ret = rbd_bus_add_dev(rbd_dev);
4604         if (ret)
4605                 goto err_out_mapping;
4606
4607         /* Everything's ready.  Announce the disk to the world. */
4608
4609         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4610         add_disk(rbd_dev->disk);
4611
4612         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4613                 (unsigned long long) rbd_dev->mapping.size);
4614
4615         return ret;
4616
4617 err_out_mapping:
4618         rbd_dev_mapping_clear(rbd_dev);
4619 err_out_disk:
4620         rbd_free_disk(rbd_dev);
4621 err_out_blkdev:
4622         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4623 err_out_id:
4624         rbd_dev_id_put(rbd_dev);
4625         rbd_dev_mapping_clear(rbd_dev);
4626
4627         return ret;
4628 }
4629
4630 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4631 {
4632         struct rbd_spec *spec = rbd_dev->spec;
4633         size_t size;
4634
4635         /* Record the header object name for this rbd image. */
4636
4637         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4638
4639         if (rbd_dev->image_format == 1)
4640                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4641         else
4642                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4643
4644         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4645         if (!rbd_dev->header_name)
4646                 return -ENOMEM;
4647
4648         if (rbd_dev->image_format == 1)
4649                 sprintf(rbd_dev->header_name, "%s%s",
4650                         spec->image_name, RBD_SUFFIX);
4651         else
4652                 sprintf(rbd_dev->header_name, "%s%s",
4653                         RBD_HEADER_PREFIX, spec->image_id);
4654         return 0;
4655 }
4656
4657 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4658 {
4659         int ret;
4660
4661         rbd_dev_unprobe(rbd_dev);
4662         ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4663         if (ret)
4664                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4665         kfree(rbd_dev->header_name);
4666         rbd_dev->header_name = NULL;
4667         rbd_dev->image_format = 0;
4668         kfree(rbd_dev->spec->image_id);
4669         rbd_dev->spec->image_id = NULL;
4670
4671         rbd_dev_destroy(rbd_dev);
4672 }
4673
4674 /*
4675  * Probe for the existence of the header object for the given rbd
4676  * device.  For format 2 images this includes determining the image
4677  * id.
4678  */
4679 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool read_only)
4680 {
4681         int ret;
4682         int tmp;
4683
4684         /*
4685          * Get the id from the image id object.  If it's not a
4686          * format 2 image, we'll get ENOENT back, and we'll assume
4687          * it's a format 1 image.
4688          */
4689         ret = rbd_dev_image_id(rbd_dev);
4690         if (ret)
4691                 return ret;
4692         rbd_assert(rbd_dev->spec->image_id);
4693         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4694
4695         ret = rbd_dev_header_name(rbd_dev);
4696         if (ret)
4697                 goto err_out_format;
4698
4699         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4700         if (ret)
4701                 goto out_header_name;
4702
4703         if (rbd_dev->image_format == 1)
4704                 ret = rbd_dev_v1_header_info(rbd_dev);
4705         else
4706                 ret = rbd_dev_v2_probe(rbd_dev);
4707         if (ret)
4708                 goto err_out_watch;
4709
4710         ret = rbd_dev_spec_update(rbd_dev);
4711         if (ret)
4712                 goto err_out_probe;
4713
4714         /* If we are mapping a snapshot it must be marked read-only */
4715
4716         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
4717                 read_only = true;
4718         rbd_dev->mapping.read_only = read_only;
4719
4720         ret = rbd_dev_probe_parent(rbd_dev);
4721         if (ret)
4722                 goto err_out_probe;
4723
4724         dout("discovered format %u image, header name is %s\n",
4725                 rbd_dev->image_format, rbd_dev->header_name);
4726
4727         return 0;
4728 err_out_probe:
4729         rbd_dev_unprobe(rbd_dev);
4730 err_out_watch:
4731         tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4732         if (tmp)
4733                 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4734 out_header_name:
4735         kfree(rbd_dev->header_name);
4736         rbd_dev->header_name = NULL;
4737 err_out_format:
4738         rbd_dev->image_format = 0;
4739         kfree(rbd_dev->spec->image_id);
4740         rbd_dev->spec->image_id = NULL;
4741
4742         dout("probe failed, returning %d\n", ret);
4743
4744         return ret;
4745 }
4746
4747 static ssize_t rbd_add(struct bus_type *bus,
4748                        const char *buf,
4749                        size_t count)
4750 {
4751         struct rbd_device *rbd_dev = NULL;
4752         struct ceph_options *ceph_opts = NULL;
4753         struct rbd_options *rbd_opts = NULL;
4754         struct rbd_spec *spec = NULL;
4755         struct rbd_client *rbdc;
4756         struct ceph_osd_client *osdc;
4757         bool read_only;
4758         int rc = -ENOMEM;
4759
4760         if (!try_module_get(THIS_MODULE))
4761                 return -ENODEV;
4762
4763         /* parse add command */
4764         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4765         if (rc < 0)
4766                 goto err_out_module;
4767         read_only = rbd_opts->read_only;
4768         kfree(rbd_opts);
4769         rbd_opts = NULL;        /* done with this */
4770
4771         rbdc = rbd_get_client(ceph_opts);
4772         if (IS_ERR(rbdc)) {
4773                 rc = PTR_ERR(rbdc);
4774                 goto err_out_args;
4775         }
4776         ceph_opts = NULL;       /* rbd_dev client now owns this */
4777
4778         /* pick the pool */
4779         osdc = &rbdc->client->osdc;
4780         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4781         if (rc < 0)
4782                 goto err_out_client;
4783         spec->pool_id = (u64)rc;
4784
4785         /* The ceph file layout needs to fit pool id in 32 bits */
4786
4787         if (spec->pool_id > (u64)U32_MAX) {
4788                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4789                                 (unsigned long long)spec->pool_id, U32_MAX);
4790                 rc = -EIO;
4791                 goto err_out_client;
4792         }
4793
4794         rbd_dev = rbd_dev_create(rbdc, spec);
4795         if (!rbd_dev)
4796                 goto err_out_client;
4797         rbdc = NULL;            /* rbd_dev now owns this */
4798         spec = NULL;            /* rbd_dev now owns this */
4799
4800         rc = rbd_dev_image_probe(rbd_dev, read_only);
4801         if (rc < 0)
4802                 goto err_out_rbd_dev;
4803
4804         rc = rbd_dev_device_setup(rbd_dev);
4805         if (!rc)
4806                 return count;
4807
4808         rbd_dev_image_release(rbd_dev);
4809 err_out_rbd_dev:
4810         rbd_dev_destroy(rbd_dev);
4811 err_out_client:
4812         rbd_put_client(rbdc);
4813 err_out_args:
4814         if (ceph_opts)
4815                 ceph_destroy_options(ceph_opts);
4816         kfree(rbd_opts);
4817         rbd_spec_put(spec);
4818 err_out_module:
4819         module_put(THIS_MODULE);
4820
4821         dout("Error adding device %s\n", buf);
4822
4823         return (ssize_t)rc;
4824 }
4825
4826 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4827 {
4828         struct list_head *tmp;
4829         struct rbd_device *rbd_dev;
4830
4831         spin_lock(&rbd_dev_list_lock);
4832         list_for_each(tmp, &rbd_dev_list) {
4833                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4834                 if (rbd_dev->dev_id == dev_id) {
4835                         spin_unlock(&rbd_dev_list_lock);
4836                         return rbd_dev;
4837                 }
4838         }
4839         spin_unlock(&rbd_dev_list_lock);
4840         return NULL;
4841 }
4842
4843 static void rbd_dev_device_release(struct device *dev)
4844 {
4845         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4846
4847         rbd_free_disk(rbd_dev);
4848         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4849         rbd_dev_mapping_clear(rbd_dev);
4850         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4851         rbd_dev->major = 0;
4852         rbd_dev_id_put(rbd_dev);
4853         rbd_dev_mapping_clear(rbd_dev);
4854 }
4855
4856 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4857 {
4858         while (rbd_dev->parent) {
4859                 struct rbd_device *first = rbd_dev;
4860                 struct rbd_device *second = first->parent;
4861                 struct rbd_device *third;
4862
4863                 /*
4864                  * Follow to the parent with no grandparent and
4865                  * remove it.
4866                  */
4867                 while (second && (third = second->parent)) {
4868                         first = second;
4869                         second = third;
4870                 }
4871                 rbd_assert(second);
4872                 rbd_dev_image_release(second);
4873                 first->parent = NULL;
4874                 first->parent_overlap = 0;
4875
4876                 rbd_assert(first->parent_spec);
4877                 rbd_spec_put(first->parent_spec);
4878                 first->parent_spec = NULL;
4879         }
4880 }
4881
4882 static ssize_t rbd_remove(struct bus_type *bus,
4883                           const char *buf,
4884                           size_t count)
4885 {
4886         struct rbd_device *rbd_dev = NULL;
4887         int target_id;
4888         unsigned long ul;
4889         int ret;
4890
4891         ret = strict_strtoul(buf, 10, &ul);
4892         if (ret)
4893                 return ret;
4894
4895         /* convert to int; abort if we lost anything in the conversion */
4896         target_id = (int) ul;
4897         if (target_id != ul)
4898                 return -EINVAL;
4899
4900         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4901
4902         rbd_dev = __rbd_get_dev(target_id);
4903         if (!rbd_dev) {
4904                 ret = -ENOENT;
4905                 goto done;
4906         }
4907
4908         spin_lock_irq(&rbd_dev->lock);
4909         if (rbd_dev->open_count)
4910                 ret = -EBUSY;
4911         else
4912                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4913         spin_unlock_irq(&rbd_dev->lock);
4914         if (ret < 0)
4915                 goto done;
4916         ret = count;
4917         rbd_bus_del_dev(rbd_dev);
4918         rbd_dev_image_release(rbd_dev);
4919         module_put(THIS_MODULE);
4920 done:
4921         mutex_unlock(&ctl_mutex);
4922
4923         return ret;
4924 }
4925
4926 /*
4927  * create control files in sysfs
4928  * /sys/bus/rbd/...
4929  */
4930 static int rbd_sysfs_init(void)
4931 {
4932         int ret;
4933
4934         ret = device_register(&rbd_root_dev);
4935         if (ret < 0)
4936                 return ret;
4937
4938         ret = bus_register(&rbd_bus_type);
4939         if (ret < 0)
4940                 device_unregister(&rbd_root_dev);
4941
4942         return ret;
4943 }
4944
4945 static void rbd_sysfs_cleanup(void)
4946 {
4947         bus_unregister(&rbd_bus_type);
4948         device_unregister(&rbd_root_dev);
4949 }
4950
4951 static int rbd_slab_init(void)
4952 {
4953         rbd_assert(!rbd_img_request_cache);
4954         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
4955                                         sizeof (struct rbd_img_request),
4956                                         __alignof__(struct rbd_img_request),
4957                                         0, NULL);
4958         if (!rbd_img_request_cache)
4959                 return -ENOMEM;
4960
4961         rbd_assert(!rbd_obj_request_cache);
4962         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
4963                                         sizeof (struct rbd_obj_request),
4964                                         __alignof__(struct rbd_obj_request),
4965                                         0, NULL);
4966         if (!rbd_obj_request_cache)
4967                 goto out_err;
4968
4969         rbd_assert(!rbd_segment_name_cache);
4970         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
4971                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
4972         if (rbd_segment_name_cache)
4973                 return 0;
4974 out_err:
4975         if (rbd_obj_request_cache) {
4976                 kmem_cache_destroy(rbd_obj_request_cache);
4977                 rbd_obj_request_cache = NULL;
4978         }
4979
4980         kmem_cache_destroy(rbd_img_request_cache);
4981         rbd_img_request_cache = NULL;
4982
4983         return -ENOMEM;
4984 }
4985
4986 static void rbd_slab_exit(void)
4987 {
4988         rbd_assert(rbd_segment_name_cache);
4989         kmem_cache_destroy(rbd_segment_name_cache);
4990         rbd_segment_name_cache = NULL;
4991
4992         rbd_assert(rbd_obj_request_cache);
4993         kmem_cache_destroy(rbd_obj_request_cache);
4994         rbd_obj_request_cache = NULL;
4995
4996         rbd_assert(rbd_img_request_cache);
4997         kmem_cache_destroy(rbd_img_request_cache);
4998         rbd_img_request_cache = NULL;
4999 }
5000
5001 static int __init rbd_init(void)
5002 {
5003         int rc;
5004
5005         if (!libceph_compatible(NULL)) {
5006                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5007
5008                 return -EINVAL;
5009         }
5010         rc = rbd_slab_init();
5011         if (rc)
5012                 return rc;
5013         rc = rbd_sysfs_init();
5014         if (rc)
5015                 rbd_slab_exit();
5016         else
5017                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5018
5019         return rc;
5020 }
5021
5022 static void __exit rbd_exit(void)
5023 {
5024         rbd_sysfs_cleanup();
5025         rbd_slab_exit();
5026 }
5027
5028 module_init(rbd_init);
5029 module_exit(rbd_exit);
5030
5031 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5032 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5033 MODULE_DESCRIPTION("rados block device");
5034
5035 /* following authorship retained from original osdblk.c */
5036 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5037
5038 MODULE_LICENSE("GPL");