]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
libceph: keep source rather than message osd op array
[~andy/linux] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG       /* Activate rbd_assert() calls */
45
46 /*
47  * The basic unit of block I/O is a sector.  It is interpreted in a
48  * number of contexts in Linux (blk, bio, genhd), but the default is
49  * universally 512 bytes.  These symbols are just slightly more
50  * meaningful than the bare numbers they represent.
51  */
52 #define SECTOR_SHIFT    9
53 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN   \
62                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME      "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX    64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX  64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING      1
77
78 /* Features supported by this (client software) implementation. */
79
80 #define RBD_FEATURES_ALL          (0)
81
82 /*
83  * An RBD device name will be "rbd#", where the "rbd" comes from
84  * RBD_DRV_NAME above, and # is a unique integer identifier.
85  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
86  * enough to hold all possible device names.
87  */
88 #define DEV_NAME_LEN            32
89 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
90
91 /*
92  * block device image metadata (in-memory version)
93  */
94 struct rbd_image_header {
95         /* These four fields never change for a given rbd image */
96         char *object_prefix;
97         u64 features;
98         __u8 obj_order;
99         __u8 crypt_type;
100         __u8 comp_type;
101
102         /* The remaining fields need to be updated occasionally */
103         u64 image_size;
104         struct ceph_snap_context *snapc;
105         char *snap_names;
106         u64 *snap_sizes;
107
108         u64 obj_version;
109 };
110
111 /*
112  * An rbd image specification.
113  *
114  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
115  * identify an image.  Each rbd_dev structure includes a pointer to
116  * an rbd_spec structure that encapsulates this identity.
117  *
118  * Each of the id's in an rbd_spec has an associated name.  For a
119  * user-mapped image, the names are supplied and the id's associated
120  * with them are looked up.  For a layered image, a parent image is
121  * defined by the tuple, and the names are looked up.
122  *
123  * An rbd_dev structure contains a parent_spec pointer which is
124  * non-null if the image it represents is a child in a layered
125  * image.  This pointer will refer to the rbd_spec structure used
126  * by the parent rbd_dev for its own identity (i.e., the structure
127  * is shared between the parent and child).
128  *
129  * Since these structures are populated once, during the discovery
130  * phase of image construction, they are effectively immutable so
131  * we make no effort to synchronize access to them.
132  *
133  * Note that code herein does not assume the image name is known (it
134  * could be a null pointer).
135  */
136 struct rbd_spec {
137         u64             pool_id;
138         char            *pool_name;
139
140         char            *image_id;
141         char            *image_name;
142
143         u64             snap_id;
144         char            *snap_name;
145
146         struct kref     kref;
147 };
148
149 /*
150  * an instance of the client.  multiple devices may share an rbd client.
151  */
152 struct rbd_client {
153         struct ceph_client      *client;
154         struct kref             kref;
155         struct list_head        node;
156 };
157
158 struct rbd_img_request;
159 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
160
161 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
162
163 struct rbd_obj_request;
164 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
165
166 enum obj_request_type {
167         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
168 };
169
170 struct rbd_obj_request {
171         const char              *object_name;
172         u64                     offset;         /* object start byte */
173         u64                     length;         /* bytes from offset */
174
175         struct rbd_img_request  *img_request;
176         struct list_head        links;          /* img_request->obj_requests */
177         u32                     which;          /* posn image request list */
178
179         enum obj_request_type   type;
180         union {
181                 struct bio      *bio_list;
182                 struct {
183                         struct page     **pages;
184                         u32             page_count;
185                 };
186         };
187
188         struct ceph_osd_request *osd_req;
189
190         u64                     xferred;        /* bytes transferred */
191         u64                     version;
192         int                     result;
193         atomic_t                done;
194
195         rbd_obj_callback_t      callback;
196         struct completion       completion;
197
198         struct kref             kref;
199 };
200
201 struct rbd_img_request {
202         struct request          *rq;
203         struct rbd_device       *rbd_dev;
204         u64                     offset; /* starting image byte offset */
205         u64                     length; /* byte count from offset */
206         bool                    write_request;  /* false for read */
207         union {
208                 struct ceph_snap_context *snapc;        /* for writes */
209                 u64             snap_id;                /* for reads */
210         };
211         spinlock_t              completion_lock;/* protects next_completion */
212         u32                     next_completion;
213         rbd_img_callback_t      callback;
214
215         u32                     obj_request_count;
216         struct list_head        obj_requests;   /* rbd_obj_request structs */
217
218         struct kref             kref;
219 };
220
221 #define for_each_obj_request(ireq, oreq) \
222         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
223 #define for_each_obj_request_from(ireq, oreq) \
224         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
225 #define for_each_obj_request_safe(ireq, oreq, n) \
226         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
227
228 struct rbd_snap {
229         struct  device          dev;
230         const char              *name;
231         u64                     size;
232         struct list_head        node;
233         u64                     id;
234         u64                     features;
235 };
236
237 struct rbd_mapping {
238         u64                     size;
239         u64                     features;
240         bool                    read_only;
241 };
242
243 /*
244  * a single device
245  */
246 struct rbd_device {
247         int                     dev_id;         /* blkdev unique id */
248
249         int                     major;          /* blkdev assigned major */
250         struct gendisk          *disk;          /* blkdev's gendisk and rq */
251
252         u32                     image_format;   /* Either 1 or 2 */
253         struct rbd_client       *rbd_client;
254
255         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
256
257         spinlock_t              lock;           /* queue, flags, open_count */
258
259         struct rbd_image_header header;
260         unsigned long           flags;          /* possibly lock protected */
261         struct rbd_spec         *spec;
262
263         char                    *header_name;
264
265         struct ceph_file_layout layout;
266
267         struct ceph_osd_event   *watch_event;
268         struct rbd_obj_request  *watch_request;
269
270         struct rbd_spec         *parent_spec;
271         u64                     parent_overlap;
272
273         /* protects updating the header */
274         struct rw_semaphore     header_rwsem;
275
276         struct rbd_mapping      mapping;
277
278         struct list_head        node;
279
280         /* list of snapshots */
281         struct list_head        snaps;
282
283         /* sysfs related */
284         struct device           dev;
285         unsigned long           open_count;     /* protected by lock */
286 };
287
288 /*
289  * Flag bits for rbd_dev->flags.  If atomicity is required,
290  * rbd_dev->lock is used to protect access.
291  *
292  * Currently, only the "removing" flag (which is coupled with the
293  * "open_count" field) requires atomic access.
294  */
295 enum rbd_dev_flags {
296         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
297         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
298 };
299
300 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
301
302 static LIST_HEAD(rbd_dev_list);    /* devices */
303 static DEFINE_SPINLOCK(rbd_dev_list_lock);
304
305 static LIST_HEAD(rbd_client_list);              /* clients */
306 static DEFINE_SPINLOCK(rbd_client_list_lock);
307
308 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
309 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
310
311 static void rbd_dev_release(struct device *dev);
312 static void rbd_remove_snap_dev(struct rbd_snap *snap);
313
314 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
315                        size_t count);
316 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
317                           size_t count);
318
319 static struct bus_attribute rbd_bus_attrs[] = {
320         __ATTR(add, S_IWUSR, NULL, rbd_add),
321         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
322         __ATTR_NULL
323 };
324
325 static struct bus_type rbd_bus_type = {
326         .name           = "rbd",
327         .bus_attrs      = rbd_bus_attrs,
328 };
329
330 static void rbd_root_dev_release(struct device *dev)
331 {
332 }
333
334 static struct device rbd_root_dev = {
335         .init_name =    "rbd",
336         .release =      rbd_root_dev_release,
337 };
338
339 static __printf(2, 3)
340 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
341 {
342         struct va_format vaf;
343         va_list args;
344
345         va_start(args, fmt);
346         vaf.fmt = fmt;
347         vaf.va = &args;
348
349         if (!rbd_dev)
350                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
351         else if (rbd_dev->disk)
352                 printk(KERN_WARNING "%s: %s: %pV\n",
353                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
354         else if (rbd_dev->spec && rbd_dev->spec->image_name)
355                 printk(KERN_WARNING "%s: image %s: %pV\n",
356                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
357         else if (rbd_dev->spec && rbd_dev->spec->image_id)
358                 printk(KERN_WARNING "%s: id %s: %pV\n",
359                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
360         else    /* punt */
361                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
362                         RBD_DRV_NAME, rbd_dev, &vaf);
363         va_end(args);
364 }
365
366 #ifdef RBD_DEBUG
367 #define rbd_assert(expr)                                                \
368                 if (unlikely(!(expr))) {                                \
369                         printk(KERN_ERR "\nAssertion failure in %s() "  \
370                                                 "at line %d:\n\n"       \
371                                         "\trbd_assert(%s);\n\n",        \
372                                         __func__, __LINE__, #expr);     \
373                         BUG();                                          \
374                 }
375 #else /* !RBD_DEBUG */
376 #  define rbd_assert(expr)      ((void) 0)
377 #endif /* !RBD_DEBUG */
378
379 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
380 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
381
382 static int rbd_open(struct block_device *bdev, fmode_t mode)
383 {
384         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
385         bool removing = false;
386
387         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
388                 return -EROFS;
389
390         spin_lock_irq(&rbd_dev->lock);
391         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
392                 removing = true;
393         else
394                 rbd_dev->open_count++;
395         spin_unlock_irq(&rbd_dev->lock);
396         if (removing)
397                 return -ENOENT;
398
399         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
400         (void) get_device(&rbd_dev->dev);
401         set_device_ro(bdev, rbd_dev->mapping.read_only);
402         mutex_unlock(&ctl_mutex);
403
404         return 0;
405 }
406
407 static int rbd_release(struct gendisk *disk, fmode_t mode)
408 {
409         struct rbd_device *rbd_dev = disk->private_data;
410         unsigned long open_count_before;
411
412         spin_lock_irq(&rbd_dev->lock);
413         open_count_before = rbd_dev->open_count--;
414         spin_unlock_irq(&rbd_dev->lock);
415         rbd_assert(open_count_before > 0);
416
417         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
418         put_device(&rbd_dev->dev);
419         mutex_unlock(&ctl_mutex);
420
421         return 0;
422 }
423
424 static const struct block_device_operations rbd_bd_ops = {
425         .owner                  = THIS_MODULE,
426         .open                   = rbd_open,
427         .release                = rbd_release,
428 };
429
430 /*
431  * Initialize an rbd client instance.
432  * We own *ceph_opts.
433  */
434 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
435 {
436         struct rbd_client *rbdc;
437         int ret = -ENOMEM;
438
439         dout("%s:\n", __func__);
440         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
441         if (!rbdc)
442                 goto out_opt;
443
444         kref_init(&rbdc->kref);
445         INIT_LIST_HEAD(&rbdc->node);
446
447         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448
449         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
450         if (IS_ERR(rbdc->client))
451                 goto out_mutex;
452         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
453
454         ret = ceph_open_session(rbdc->client);
455         if (ret < 0)
456                 goto out_err;
457
458         spin_lock(&rbd_client_list_lock);
459         list_add_tail(&rbdc->node, &rbd_client_list);
460         spin_unlock(&rbd_client_list_lock);
461
462         mutex_unlock(&ctl_mutex);
463         dout("%s: rbdc %p\n", __func__, rbdc);
464
465         return rbdc;
466
467 out_err:
468         ceph_destroy_client(rbdc->client);
469 out_mutex:
470         mutex_unlock(&ctl_mutex);
471         kfree(rbdc);
472 out_opt:
473         if (ceph_opts)
474                 ceph_destroy_options(ceph_opts);
475         dout("%s: error %d\n", __func__, ret);
476
477         return ERR_PTR(ret);
478 }
479
480 /*
481  * Find a ceph client with specific addr and configuration.  If
482  * found, bump its reference count.
483  */
484 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
485 {
486         struct rbd_client *client_node;
487         bool found = false;
488
489         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
490                 return NULL;
491
492         spin_lock(&rbd_client_list_lock);
493         list_for_each_entry(client_node, &rbd_client_list, node) {
494                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
495                         kref_get(&client_node->kref);
496                         found = true;
497                         break;
498                 }
499         }
500         spin_unlock(&rbd_client_list_lock);
501
502         return found ? client_node : NULL;
503 }
504
505 /*
506  * mount options
507  */
508 enum {
509         Opt_last_int,
510         /* int args above */
511         Opt_last_string,
512         /* string args above */
513         Opt_read_only,
514         Opt_read_write,
515         /* Boolean args above */
516         Opt_last_bool,
517 };
518
519 static match_table_t rbd_opts_tokens = {
520         /* int args above */
521         /* string args above */
522         {Opt_read_only, "read_only"},
523         {Opt_read_only, "ro"},          /* Alternate spelling */
524         {Opt_read_write, "read_write"},
525         {Opt_read_write, "rw"},         /* Alternate spelling */
526         /* Boolean args above */
527         {-1, NULL}
528 };
529
530 struct rbd_options {
531         bool    read_only;
532 };
533
534 #define RBD_READ_ONLY_DEFAULT   false
535
536 static int parse_rbd_opts_token(char *c, void *private)
537 {
538         struct rbd_options *rbd_opts = private;
539         substring_t argstr[MAX_OPT_ARGS];
540         int token, intval, ret;
541
542         token = match_token(c, rbd_opts_tokens, argstr);
543         if (token < 0)
544                 return -EINVAL;
545
546         if (token < Opt_last_int) {
547                 ret = match_int(&argstr[0], &intval);
548                 if (ret < 0) {
549                         pr_err("bad mount option arg (not int) "
550                                "at '%s'\n", c);
551                         return ret;
552                 }
553                 dout("got int token %d val %d\n", token, intval);
554         } else if (token > Opt_last_int && token < Opt_last_string) {
555                 dout("got string token %d val %s\n", token,
556                      argstr[0].from);
557         } else if (token > Opt_last_string && token < Opt_last_bool) {
558                 dout("got Boolean token %d\n", token);
559         } else {
560                 dout("got token %d\n", token);
561         }
562
563         switch (token) {
564         case Opt_read_only:
565                 rbd_opts->read_only = true;
566                 break;
567         case Opt_read_write:
568                 rbd_opts->read_only = false;
569                 break;
570         default:
571                 rbd_assert(false);
572                 break;
573         }
574         return 0;
575 }
576
577 /*
578  * Get a ceph client with specific addr and configuration, if one does
579  * not exist create it.
580  */
581 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
582 {
583         struct rbd_client *rbdc;
584
585         rbdc = rbd_client_find(ceph_opts);
586         if (rbdc)       /* using an existing client */
587                 ceph_destroy_options(ceph_opts);
588         else
589                 rbdc = rbd_client_create(ceph_opts);
590
591         return rbdc;
592 }
593
594 /*
595  * Destroy ceph client
596  *
597  * Caller must hold rbd_client_list_lock.
598  */
599 static void rbd_client_release(struct kref *kref)
600 {
601         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
602
603         dout("%s: rbdc %p\n", __func__, rbdc);
604         spin_lock(&rbd_client_list_lock);
605         list_del(&rbdc->node);
606         spin_unlock(&rbd_client_list_lock);
607
608         ceph_destroy_client(rbdc->client);
609         kfree(rbdc);
610 }
611
612 /*
613  * Drop reference to ceph client node. If it's not referenced anymore, release
614  * it.
615  */
616 static void rbd_put_client(struct rbd_client *rbdc)
617 {
618         if (rbdc)
619                 kref_put(&rbdc->kref, rbd_client_release);
620 }
621
622 static bool rbd_image_format_valid(u32 image_format)
623 {
624         return image_format == 1 || image_format == 2;
625 }
626
627 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
628 {
629         size_t size;
630         u32 snap_count;
631
632         /* The header has to start with the magic rbd header text */
633         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
634                 return false;
635
636         /* The bio layer requires at least sector-sized I/O */
637
638         if (ondisk->options.order < SECTOR_SHIFT)
639                 return false;
640
641         /* If we use u64 in a few spots we may be able to loosen this */
642
643         if (ondisk->options.order > 8 * sizeof (int) - 1)
644                 return false;
645
646         /*
647          * The size of a snapshot header has to fit in a size_t, and
648          * that limits the number of snapshots.
649          */
650         snap_count = le32_to_cpu(ondisk->snap_count);
651         size = SIZE_MAX - sizeof (struct ceph_snap_context);
652         if (snap_count > size / sizeof (__le64))
653                 return false;
654
655         /*
656          * Not only that, but the size of the entire the snapshot
657          * header must also be representable in a size_t.
658          */
659         size -= snap_count * sizeof (__le64);
660         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
661                 return false;
662
663         return true;
664 }
665
666 /*
667  * Create a new header structure, translate header format from the on-disk
668  * header.
669  */
670 static int rbd_header_from_disk(struct rbd_image_header *header,
671                                  struct rbd_image_header_ondisk *ondisk)
672 {
673         u32 snap_count;
674         size_t len;
675         size_t size;
676         u32 i;
677
678         memset(header, 0, sizeof (*header));
679
680         snap_count = le32_to_cpu(ondisk->snap_count);
681
682         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
683         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
684         if (!header->object_prefix)
685                 return -ENOMEM;
686         memcpy(header->object_prefix, ondisk->object_prefix, len);
687         header->object_prefix[len] = '\0';
688
689         if (snap_count) {
690                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
691
692                 /* Save a copy of the snapshot names */
693
694                 if (snap_names_len > (u64) SIZE_MAX)
695                         return -EIO;
696                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
697                 if (!header->snap_names)
698                         goto out_err;
699                 /*
700                  * Note that rbd_dev_v1_header_read() guarantees
701                  * the ondisk buffer we're working with has
702                  * snap_names_len bytes beyond the end of the
703                  * snapshot id array, this memcpy() is safe.
704                  */
705                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
706                         snap_names_len);
707
708                 /* Record each snapshot's size */
709
710                 size = snap_count * sizeof (*header->snap_sizes);
711                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
712                 if (!header->snap_sizes)
713                         goto out_err;
714                 for (i = 0; i < snap_count; i++)
715                         header->snap_sizes[i] =
716                                 le64_to_cpu(ondisk->snaps[i].image_size);
717         } else {
718                 WARN_ON(ondisk->snap_names_len);
719                 header->snap_names = NULL;
720                 header->snap_sizes = NULL;
721         }
722
723         header->features = 0;   /* No features support in v1 images */
724         header->obj_order = ondisk->options.order;
725         header->crypt_type = ondisk->options.crypt_type;
726         header->comp_type = ondisk->options.comp_type;
727
728         /* Allocate and fill in the snapshot context */
729
730         header->image_size = le64_to_cpu(ondisk->image_size);
731         size = sizeof (struct ceph_snap_context);
732         size += snap_count * sizeof (header->snapc->snaps[0]);
733         header->snapc = kzalloc(size, GFP_KERNEL);
734         if (!header->snapc)
735                 goto out_err;
736
737         atomic_set(&header->snapc->nref, 1);
738         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
739         header->snapc->num_snaps = snap_count;
740         for (i = 0; i < snap_count; i++)
741                 header->snapc->snaps[i] =
742                         le64_to_cpu(ondisk->snaps[i].id);
743
744         return 0;
745
746 out_err:
747         kfree(header->snap_sizes);
748         header->snap_sizes = NULL;
749         kfree(header->snap_names);
750         header->snap_names = NULL;
751         kfree(header->object_prefix);
752         header->object_prefix = NULL;
753
754         return -ENOMEM;
755 }
756
757 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
758 {
759         struct rbd_snap *snap;
760
761         if (snap_id == CEPH_NOSNAP)
762                 return RBD_SNAP_HEAD_NAME;
763
764         list_for_each_entry(snap, &rbd_dev->snaps, node)
765                 if (snap_id == snap->id)
766                         return snap->name;
767
768         return NULL;
769 }
770
771 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
772 {
773
774         struct rbd_snap *snap;
775
776         list_for_each_entry(snap, &rbd_dev->snaps, node) {
777                 if (!strcmp(snap_name, snap->name)) {
778                         rbd_dev->spec->snap_id = snap->id;
779                         rbd_dev->mapping.size = snap->size;
780                         rbd_dev->mapping.features = snap->features;
781
782                         return 0;
783                 }
784         }
785
786         return -ENOENT;
787 }
788
789 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
790 {
791         int ret;
792
793         if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
794                     sizeof (RBD_SNAP_HEAD_NAME))) {
795                 rbd_dev->spec->snap_id = CEPH_NOSNAP;
796                 rbd_dev->mapping.size = rbd_dev->header.image_size;
797                 rbd_dev->mapping.features = rbd_dev->header.features;
798                 ret = 0;
799         } else {
800                 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
801                 if (ret < 0)
802                         goto done;
803                 rbd_dev->mapping.read_only = true;
804         }
805         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
806
807 done:
808         return ret;
809 }
810
811 static void rbd_header_free(struct rbd_image_header *header)
812 {
813         kfree(header->object_prefix);
814         header->object_prefix = NULL;
815         kfree(header->snap_sizes);
816         header->snap_sizes = NULL;
817         kfree(header->snap_names);
818         header->snap_names = NULL;
819         ceph_put_snap_context(header->snapc);
820         header->snapc = NULL;
821 }
822
823 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
824 {
825         char *name;
826         u64 segment;
827         int ret;
828
829         name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
830         if (!name)
831                 return NULL;
832         segment = offset >> rbd_dev->header.obj_order;
833         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
834                         rbd_dev->header.object_prefix, segment);
835         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
836                 pr_err("error formatting segment name for #%llu (%d)\n",
837                         segment, ret);
838                 kfree(name);
839                 name = NULL;
840         }
841
842         return name;
843 }
844
845 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
846 {
847         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
848
849         return offset & (segment_size - 1);
850 }
851
852 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
853                                 u64 offset, u64 length)
854 {
855         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
856
857         offset &= segment_size - 1;
858
859         rbd_assert(length <= U64_MAX - offset);
860         if (offset + length > segment_size)
861                 length = segment_size - offset;
862
863         return length;
864 }
865
866 /*
867  * returns the size of an object in the image
868  */
869 static u64 rbd_obj_bytes(struct rbd_image_header *header)
870 {
871         return 1 << header->obj_order;
872 }
873
874 /*
875  * bio helpers
876  */
877
878 static void bio_chain_put(struct bio *chain)
879 {
880         struct bio *tmp;
881
882         while (chain) {
883                 tmp = chain;
884                 chain = chain->bi_next;
885                 bio_put(tmp);
886         }
887 }
888
889 /*
890  * zeros a bio chain, starting at specific offset
891  */
892 static void zero_bio_chain(struct bio *chain, int start_ofs)
893 {
894         struct bio_vec *bv;
895         unsigned long flags;
896         void *buf;
897         int i;
898         int pos = 0;
899
900         while (chain) {
901                 bio_for_each_segment(bv, chain, i) {
902                         if (pos + bv->bv_len > start_ofs) {
903                                 int remainder = max(start_ofs - pos, 0);
904                                 buf = bvec_kmap_irq(bv, &flags);
905                                 memset(buf + remainder, 0,
906                                        bv->bv_len - remainder);
907                                 bvec_kunmap_irq(buf, &flags);
908                         }
909                         pos += bv->bv_len;
910                 }
911
912                 chain = chain->bi_next;
913         }
914 }
915
916 /*
917  * Clone a portion of a bio, starting at the given byte offset
918  * and continuing for the number of bytes indicated.
919  */
920 static struct bio *bio_clone_range(struct bio *bio_src,
921                                         unsigned int offset,
922                                         unsigned int len,
923                                         gfp_t gfpmask)
924 {
925         struct bio_vec *bv;
926         unsigned int resid;
927         unsigned short idx;
928         unsigned int voff;
929         unsigned short end_idx;
930         unsigned short vcnt;
931         struct bio *bio;
932
933         /* Handle the easy case for the caller */
934
935         if (!offset && len == bio_src->bi_size)
936                 return bio_clone(bio_src, gfpmask);
937
938         if (WARN_ON_ONCE(!len))
939                 return NULL;
940         if (WARN_ON_ONCE(len > bio_src->bi_size))
941                 return NULL;
942         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
943                 return NULL;
944
945         /* Find first affected segment... */
946
947         resid = offset;
948         __bio_for_each_segment(bv, bio_src, idx, 0) {
949                 if (resid < bv->bv_len)
950                         break;
951                 resid -= bv->bv_len;
952         }
953         voff = resid;
954
955         /* ...and the last affected segment */
956
957         resid += len;
958         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
959                 if (resid <= bv->bv_len)
960                         break;
961                 resid -= bv->bv_len;
962         }
963         vcnt = end_idx - idx + 1;
964
965         /* Build the clone */
966
967         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
968         if (!bio)
969                 return NULL;    /* ENOMEM */
970
971         bio->bi_bdev = bio_src->bi_bdev;
972         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
973         bio->bi_rw = bio_src->bi_rw;
974         bio->bi_flags |= 1 << BIO_CLONED;
975
976         /*
977          * Copy over our part of the bio_vec, then update the first
978          * and last (or only) entries.
979          */
980         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
981                         vcnt * sizeof (struct bio_vec));
982         bio->bi_io_vec[0].bv_offset += voff;
983         if (vcnt > 1) {
984                 bio->bi_io_vec[0].bv_len -= voff;
985                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
986         } else {
987                 bio->bi_io_vec[0].bv_len = len;
988         }
989
990         bio->bi_vcnt = vcnt;
991         bio->bi_size = len;
992         bio->bi_idx = 0;
993
994         return bio;
995 }
996
997 /*
998  * Clone a portion of a bio chain, starting at the given byte offset
999  * into the first bio in the source chain and continuing for the
1000  * number of bytes indicated.  The result is another bio chain of
1001  * exactly the given length, or a null pointer on error.
1002  *
1003  * The bio_src and offset parameters are both in-out.  On entry they
1004  * refer to the first source bio and the offset into that bio where
1005  * the start of data to be cloned is located.
1006  *
1007  * On return, bio_src is updated to refer to the bio in the source
1008  * chain that contains first un-cloned byte, and *offset will
1009  * contain the offset of that byte within that bio.
1010  */
1011 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1012                                         unsigned int *offset,
1013                                         unsigned int len,
1014                                         gfp_t gfpmask)
1015 {
1016         struct bio *bi = *bio_src;
1017         unsigned int off = *offset;
1018         struct bio *chain = NULL;
1019         struct bio **end;
1020
1021         /* Build up a chain of clone bios up to the limit */
1022
1023         if (!bi || off >= bi->bi_size || !len)
1024                 return NULL;            /* Nothing to clone */
1025
1026         end = &chain;
1027         while (len) {
1028                 unsigned int bi_size;
1029                 struct bio *bio;
1030
1031                 if (!bi) {
1032                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1033                         goto out_err;   /* EINVAL; ran out of bio's */
1034                 }
1035                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1036                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1037                 if (!bio)
1038                         goto out_err;   /* ENOMEM */
1039
1040                 *end = bio;
1041                 end = &bio->bi_next;
1042
1043                 off += bi_size;
1044                 if (off == bi->bi_size) {
1045                         bi = bi->bi_next;
1046                         off = 0;
1047                 }
1048                 len -= bi_size;
1049         }
1050         *bio_src = bi;
1051         *offset = off;
1052
1053         return chain;
1054 out_err:
1055         bio_chain_put(chain);
1056
1057         return NULL;
1058 }
1059
1060 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1061 {
1062         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1063                 atomic_read(&obj_request->kref.refcount));
1064         kref_get(&obj_request->kref);
1065 }
1066
1067 static void rbd_obj_request_destroy(struct kref *kref);
1068 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1069 {
1070         rbd_assert(obj_request != NULL);
1071         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1072                 atomic_read(&obj_request->kref.refcount));
1073         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1074 }
1075
1076 static void rbd_img_request_get(struct rbd_img_request *img_request)
1077 {
1078         dout("%s: img %p (was %d)\n", __func__, img_request,
1079                 atomic_read(&img_request->kref.refcount));
1080         kref_get(&img_request->kref);
1081 }
1082
1083 static void rbd_img_request_destroy(struct kref *kref);
1084 static void rbd_img_request_put(struct rbd_img_request *img_request)
1085 {
1086         rbd_assert(img_request != NULL);
1087         dout("%s: img %p (was %d)\n", __func__, img_request,
1088                 atomic_read(&img_request->kref.refcount));
1089         kref_put(&img_request->kref, rbd_img_request_destroy);
1090 }
1091
1092 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1093                                         struct rbd_obj_request *obj_request)
1094 {
1095         rbd_assert(obj_request->img_request == NULL);
1096
1097         rbd_obj_request_get(obj_request);
1098         obj_request->img_request = img_request;
1099         obj_request->which = img_request->obj_request_count;
1100         rbd_assert(obj_request->which != BAD_WHICH);
1101         img_request->obj_request_count++;
1102         list_add_tail(&obj_request->links, &img_request->obj_requests);
1103         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1104                 obj_request->which);
1105 }
1106
1107 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1108                                         struct rbd_obj_request *obj_request)
1109 {
1110         rbd_assert(obj_request->which != BAD_WHICH);
1111
1112         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1113                 obj_request->which);
1114         list_del(&obj_request->links);
1115         rbd_assert(img_request->obj_request_count > 0);
1116         img_request->obj_request_count--;
1117         rbd_assert(obj_request->which == img_request->obj_request_count);
1118         obj_request->which = BAD_WHICH;
1119         rbd_assert(obj_request->img_request == img_request);
1120         obj_request->img_request = NULL;
1121         obj_request->callback = NULL;
1122         rbd_obj_request_put(obj_request);
1123 }
1124
1125 static bool obj_request_type_valid(enum obj_request_type type)
1126 {
1127         switch (type) {
1128         case OBJ_REQUEST_NODATA:
1129         case OBJ_REQUEST_BIO:
1130         case OBJ_REQUEST_PAGES:
1131                 return true;
1132         default:
1133                 return false;
1134         }
1135 }
1136
1137 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1138                                 struct rbd_obj_request *obj_request)
1139 {
1140         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1141
1142         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1143 }
1144
1145 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1146 {
1147         dout("%s: img %p\n", __func__, img_request);
1148         if (img_request->callback)
1149                 img_request->callback(img_request);
1150         else
1151                 rbd_img_request_put(img_request);
1152 }
1153
1154 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1155
1156 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1157 {
1158         dout("%s: obj %p\n", __func__, obj_request);
1159
1160         return wait_for_completion_interruptible(&obj_request->completion);
1161 }
1162
1163 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1164 {
1165         atomic_set(&obj_request->done, 0);
1166         smp_wmb();
1167 }
1168
1169 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1170 {
1171         int done;
1172
1173         done = atomic_inc_return(&obj_request->done);
1174         if (done > 1) {
1175                 struct rbd_img_request *img_request = obj_request->img_request;
1176                 struct rbd_device *rbd_dev;
1177
1178                 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1179                 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1180                         obj_request);
1181         }
1182 }
1183
1184 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1185 {
1186         smp_mb();
1187         return atomic_read(&obj_request->done) != 0;
1188 }
1189
1190 static void
1191 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1192 {
1193         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1194                 obj_request, obj_request->img_request, obj_request->result,
1195                 obj_request->xferred, obj_request->length);
1196         /*
1197          * ENOENT means a hole in the image.  We zero-fill the
1198          * entire length of the request.  A short read also implies
1199          * zero-fill to the end of the request.  Either way we
1200          * update the xferred count to indicate the whole request
1201          * was satisfied.
1202          */
1203         BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1204         if (obj_request->result == -ENOENT) {
1205                 zero_bio_chain(obj_request->bio_list, 0);
1206                 obj_request->result = 0;
1207                 obj_request->xferred = obj_request->length;
1208         } else if (obj_request->xferred < obj_request->length &&
1209                         !obj_request->result) {
1210                 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1211                 obj_request->xferred = obj_request->length;
1212         }
1213         obj_request_done_set(obj_request);
1214 }
1215
1216 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1217 {
1218         dout("%s: obj %p cb %p\n", __func__, obj_request,
1219                 obj_request->callback);
1220         if (obj_request->callback)
1221                 obj_request->callback(obj_request);
1222         else
1223                 complete_all(&obj_request->completion);
1224 }
1225
1226 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1227 {
1228         dout("%s: obj %p\n", __func__, obj_request);
1229         obj_request_done_set(obj_request);
1230 }
1231
1232 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1233 {
1234         dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1235                 obj_request->result, obj_request->xferred, obj_request->length);
1236         if (obj_request->img_request)
1237                 rbd_img_obj_request_read_callback(obj_request);
1238         else
1239                 obj_request_done_set(obj_request);
1240 }
1241
1242 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1243 {
1244         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1245                 obj_request->result, obj_request->length);
1246         /*
1247          * There is no such thing as a successful short write.
1248          * Our xferred value is the number of bytes transferred
1249          * back.  Set it to our originally-requested length.
1250          */
1251         obj_request->xferred = obj_request->length;
1252         obj_request_done_set(obj_request);
1253 }
1254
1255 /*
1256  * For a simple stat call there's nothing to do.  We'll do more if
1257  * this is part of a write sequence for a layered image.
1258  */
1259 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1260 {
1261         dout("%s: obj %p\n", __func__, obj_request);
1262         obj_request_done_set(obj_request);
1263 }
1264
1265 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1266                                 struct ceph_msg *msg)
1267 {
1268         struct rbd_obj_request *obj_request = osd_req->r_priv;
1269         u16 opcode;
1270
1271         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1272         rbd_assert(osd_req == obj_request->osd_req);
1273         rbd_assert(!!obj_request->img_request ^
1274                                 (obj_request->which == BAD_WHICH));
1275
1276         if (osd_req->r_result < 0)
1277                 obj_request->result = osd_req->r_result;
1278         obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1279
1280         WARN_ON(osd_req->r_num_ops != 1);       /* For now */
1281
1282         /*
1283          * We support a 64-bit length, but ultimately it has to be
1284          * passed to blk_end_request(), which takes an unsigned int.
1285          */
1286         obj_request->xferred = osd_req->r_reply_op_len[0];
1287         rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1288         opcode = osd_req->r_ops[0].op;
1289         switch (opcode) {
1290         case CEPH_OSD_OP_READ:
1291                 rbd_osd_read_callback(obj_request);
1292                 break;
1293         case CEPH_OSD_OP_WRITE:
1294                 rbd_osd_write_callback(obj_request);
1295                 break;
1296         case CEPH_OSD_OP_STAT:
1297                 rbd_osd_stat_callback(obj_request);
1298                 break;
1299         case CEPH_OSD_OP_CALL:
1300         case CEPH_OSD_OP_NOTIFY_ACK:
1301         case CEPH_OSD_OP_WATCH:
1302                 rbd_osd_trivial_callback(obj_request);
1303                 break;
1304         default:
1305                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1306                         obj_request->object_name, (unsigned short) opcode);
1307                 break;
1308         }
1309
1310         if (obj_request_done_test(obj_request))
1311                 rbd_obj_request_complete(obj_request);
1312 }
1313
1314 static void rbd_osd_req_format_op(struct rbd_obj_request *obj_request,
1315                                         bool write_request)
1316 {
1317         struct rbd_img_request *img_request = obj_request->img_request;
1318         struct ceph_snap_context *snapc = NULL;
1319         u64 snap_id = CEPH_NOSNAP;
1320         struct timespec *mtime = NULL;
1321         struct timespec now;
1322
1323         rbd_assert(obj_request->osd_req != NULL);
1324
1325         if (write_request) {
1326                 now = CURRENT_TIME;
1327                 mtime = &now;
1328                 if (img_request)
1329                         snapc = img_request->snapc;
1330         } else if (img_request) {
1331                 snap_id = img_request->snap_id;
1332         }
1333
1334         ceph_osdc_build_request(obj_request->osd_req, obj_request->offset,
1335                         snapc, snap_id, mtime);
1336 }
1337
1338 static struct ceph_osd_request *rbd_osd_req_create(
1339                                         struct rbd_device *rbd_dev,
1340                                         bool write_request,
1341                                         struct rbd_obj_request *obj_request)
1342 {
1343         struct rbd_img_request *img_request = obj_request->img_request;
1344         struct ceph_snap_context *snapc = NULL;
1345         struct ceph_osd_client *osdc;
1346         struct ceph_osd_request *osd_req;
1347         struct ceph_osd_data *osd_data;
1348         u64 offset = obj_request->offset;
1349
1350         if (img_request) {
1351                 rbd_assert(img_request->write_request == write_request);
1352                 if (img_request->write_request)
1353                         snapc = img_request->snapc;
1354         }
1355
1356         /* Allocate and initialize the request, for the single op */
1357
1358         osdc = &rbd_dev->rbd_client->client->osdc;
1359         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1360         if (!osd_req)
1361                 return NULL;    /* ENOMEM */
1362         osd_data = write_request ? &osd_req->r_data_out : &osd_req->r_data_in;
1363
1364         rbd_assert(obj_request_type_valid(obj_request->type));
1365         switch (obj_request->type) {
1366         case OBJ_REQUEST_NODATA:
1367                 break;          /* Nothing to do */
1368         case OBJ_REQUEST_BIO:
1369                 rbd_assert(obj_request->bio_list != NULL);
1370                 ceph_osd_data_bio_init(osd_data, obj_request->bio_list,
1371                                         obj_request->length);
1372                 break;
1373         case OBJ_REQUEST_PAGES:
1374                 ceph_osd_data_pages_init(osd_data, obj_request->pages,
1375                                 obj_request->length, offset & ~PAGE_MASK,
1376                                 false, false);
1377                 break;
1378         }
1379
1380         if (write_request)
1381                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1382         else
1383                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1384
1385         osd_req->r_callback = rbd_osd_req_callback;
1386         osd_req->r_priv = obj_request;
1387
1388         osd_req->r_oid_len = strlen(obj_request->object_name);
1389         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1390         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1391
1392         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1393
1394         return osd_req;
1395 }
1396
1397 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1398 {
1399         ceph_osdc_put_request(osd_req);
1400 }
1401
1402 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1403
1404 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1405                                                 u64 offset, u64 length,
1406                                                 enum obj_request_type type)
1407 {
1408         struct rbd_obj_request *obj_request;
1409         size_t size;
1410         char *name;
1411
1412         rbd_assert(obj_request_type_valid(type));
1413
1414         size = strlen(object_name) + 1;
1415         obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1416         if (!obj_request)
1417                 return NULL;
1418
1419         name = (char *)(obj_request + 1);
1420         obj_request->object_name = memcpy(name, object_name, size);
1421         obj_request->offset = offset;
1422         obj_request->length = length;
1423         obj_request->which = BAD_WHICH;
1424         obj_request->type = type;
1425         INIT_LIST_HEAD(&obj_request->links);
1426         obj_request_done_init(obj_request);
1427         init_completion(&obj_request->completion);
1428         kref_init(&obj_request->kref);
1429
1430         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1431                 offset, length, (int)type, obj_request);
1432
1433         return obj_request;
1434 }
1435
1436 static void rbd_obj_request_destroy(struct kref *kref)
1437 {
1438         struct rbd_obj_request *obj_request;
1439
1440         obj_request = container_of(kref, struct rbd_obj_request, kref);
1441
1442         dout("%s: obj %p\n", __func__, obj_request);
1443
1444         rbd_assert(obj_request->img_request == NULL);
1445         rbd_assert(obj_request->which == BAD_WHICH);
1446
1447         if (obj_request->osd_req)
1448                 rbd_osd_req_destroy(obj_request->osd_req);
1449
1450         rbd_assert(obj_request_type_valid(obj_request->type));
1451         switch (obj_request->type) {
1452         case OBJ_REQUEST_NODATA:
1453                 break;          /* Nothing to do */
1454         case OBJ_REQUEST_BIO:
1455                 if (obj_request->bio_list)
1456                         bio_chain_put(obj_request->bio_list);
1457                 break;
1458         case OBJ_REQUEST_PAGES:
1459                 if (obj_request->pages)
1460                         ceph_release_page_vector(obj_request->pages,
1461                                                 obj_request->page_count);
1462                 break;
1463         }
1464
1465         kfree(obj_request);
1466 }
1467
1468 /*
1469  * Caller is responsible for filling in the list of object requests
1470  * that comprises the image request, and the Linux request pointer
1471  * (if there is one).
1472  */
1473 static struct rbd_img_request *rbd_img_request_create(
1474                                         struct rbd_device *rbd_dev,
1475                                         u64 offset, u64 length,
1476                                         bool write_request)
1477 {
1478         struct rbd_img_request *img_request;
1479         struct ceph_snap_context *snapc = NULL;
1480
1481         img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1482         if (!img_request)
1483                 return NULL;
1484
1485         if (write_request) {
1486                 down_read(&rbd_dev->header_rwsem);
1487                 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1488                 up_read(&rbd_dev->header_rwsem);
1489                 if (WARN_ON(!snapc)) {
1490                         kfree(img_request);
1491                         return NULL;    /* Shouldn't happen */
1492                 }
1493         }
1494
1495         img_request->rq = NULL;
1496         img_request->rbd_dev = rbd_dev;
1497         img_request->offset = offset;
1498         img_request->length = length;
1499         img_request->write_request = write_request;
1500         if (write_request)
1501                 img_request->snapc = snapc;
1502         else
1503                 img_request->snap_id = rbd_dev->spec->snap_id;
1504         spin_lock_init(&img_request->completion_lock);
1505         img_request->next_completion = 0;
1506         img_request->callback = NULL;
1507         img_request->obj_request_count = 0;
1508         INIT_LIST_HEAD(&img_request->obj_requests);
1509         kref_init(&img_request->kref);
1510
1511         rbd_img_request_get(img_request);       /* Avoid a warning */
1512         rbd_img_request_put(img_request);       /* TEMPORARY */
1513
1514         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1515                 write_request ? "write" : "read", offset, length,
1516                 img_request);
1517
1518         return img_request;
1519 }
1520
1521 static void rbd_img_request_destroy(struct kref *kref)
1522 {
1523         struct rbd_img_request *img_request;
1524         struct rbd_obj_request *obj_request;
1525         struct rbd_obj_request *next_obj_request;
1526
1527         img_request = container_of(kref, struct rbd_img_request, kref);
1528
1529         dout("%s: img %p\n", __func__, img_request);
1530
1531         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1532                 rbd_img_obj_request_del(img_request, obj_request);
1533         rbd_assert(img_request->obj_request_count == 0);
1534
1535         if (img_request->write_request)
1536                 ceph_put_snap_context(img_request->snapc);
1537
1538         kfree(img_request);
1539 }
1540
1541 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1542                                         struct bio *bio_list)
1543 {
1544         struct rbd_device *rbd_dev = img_request->rbd_dev;
1545         struct rbd_obj_request *obj_request = NULL;
1546         struct rbd_obj_request *next_obj_request;
1547         bool write_request = img_request->write_request;
1548         unsigned int bio_offset;
1549         u64 image_offset;
1550         u64 resid;
1551         u16 opcode;
1552
1553         dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1554
1555         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1556         bio_offset = 0;
1557         image_offset = img_request->offset;
1558         rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1559         resid = img_request->length;
1560         rbd_assert(resid > 0);
1561         while (resid) {
1562                 const char *object_name;
1563                 unsigned int clone_size;
1564                 struct ceph_osd_req_op *op;
1565                 u64 offset;
1566                 u64 length;
1567
1568                 object_name = rbd_segment_name(rbd_dev, image_offset);
1569                 if (!object_name)
1570                         goto out_unwind;
1571                 offset = rbd_segment_offset(rbd_dev, image_offset);
1572                 length = rbd_segment_length(rbd_dev, image_offset, resid);
1573                 obj_request = rbd_obj_request_create(object_name,
1574                                                 offset, length,
1575                                                 OBJ_REQUEST_BIO);
1576                 kfree(object_name);     /* object request has its own copy */
1577                 if (!obj_request)
1578                         goto out_unwind;
1579
1580                 rbd_assert(length <= (u64) UINT_MAX);
1581                 clone_size = (unsigned int) length;
1582                 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1583                                                 &bio_offset, clone_size,
1584                                                 GFP_ATOMIC);
1585                 if (!obj_request->bio_list)
1586                         goto out_partial;
1587
1588                 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1589                                                 write_request, obj_request);
1590                 if (!obj_request->osd_req)
1591                         goto out_partial;
1592
1593                 op = &obj_request->osd_req->r_ops[0];
1594                 osd_req_op_extent_init(op, opcode, offset, length, 0, 0);
1595                 rbd_osd_req_format_op(obj_request, write_request);
1596
1597                 /* status and version are initially zero-filled */
1598
1599                 rbd_img_obj_request_add(img_request, obj_request);
1600
1601                 image_offset += length;
1602                 resid -= length;
1603         }
1604
1605         return 0;
1606
1607 out_partial:
1608         rbd_obj_request_put(obj_request);
1609 out_unwind:
1610         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1611                 rbd_obj_request_put(obj_request);
1612
1613         return -ENOMEM;
1614 }
1615
1616 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1617 {
1618         struct rbd_img_request *img_request;
1619         u32 which = obj_request->which;
1620         bool more = true;
1621
1622         img_request = obj_request->img_request;
1623
1624         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1625         rbd_assert(img_request != NULL);
1626         rbd_assert(img_request->rq != NULL);
1627         rbd_assert(img_request->obj_request_count > 0);
1628         rbd_assert(which != BAD_WHICH);
1629         rbd_assert(which < img_request->obj_request_count);
1630         rbd_assert(which >= img_request->next_completion);
1631
1632         spin_lock_irq(&img_request->completion_lock);
1633         if (which != img_request->next_completion)
1634                 goto out;
1635
1636         for_each_obj_request_from(img_request, obj_request) {
1637                 unsigned int xferred;
1638                 int result;
1639
1640                 rbd_assert(more);
1641                 rbd_assert(which < img_request->obj_request_count);
1642
1643                 if (!obj_request_done_test(obj_request))
1644                         break;
1645
1646                 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1647                 xferred = (unsigned int) obj_request->xferred;
1648                 result = (int) obj_request->result;
1649                 if (result)
1650                         rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1651                                 img_request->write_request ? "write" : "read",
1652                                 result, xferred);
1653
1654                 more = blk_end_request(img_request->rq, result, xferred);
1655                 which++;
1656         }
1657
1658         rbd_assert(more ^ (which == img_request->obj_request_count));
1659         img_request->next_completion = which;
1660 out:
1661         spin_unlock_irq(&img_request->completion_lock);
1662
1663         if (!more)
1664                 rbd_img_request_complete(img_request);
1665 }
1666
1667 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1668 {
1669         struct rbd_device *rbd_dev = img_request->rbd_dev;
1670         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1671         struct rbd_obj_request *obj_request;
1672         struct rbd_obj_request *next_obj_request;
1673
1674         dout("%s: img %p\n", __func__, img_request);
1675         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1676                 int ret;
1677
1678                 obj_request->callback = rbd_img_obj_callback;
1679                 ret = rbd_obj_request_submit(osdc, obj_request);
1680                 if (ret)
1681                         return ret;
1682                 /*
1683                  * The image request has its own reference to each
1684                  * of its object requests, so we can safely drop the
1685                  * initial one here.
1686                  */
1687                 rbd_obj_request_put(obj_request);
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1694                                    u64 ver, u64 notify_id)
1695 {
1696         struct rbd_obj_request *obj_request;
1697         struct ceph_osd_req_op *op;
1698         struct ceph_osd_client *osdc;
1699         int ret;
1700
1701         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1702                                                         OBJ_REQUEST_NODATA);
1703         if (!obj_request)
1704                 return -ENOMEM;
1705
1706         ret = -ENOMEM;
1707         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
1708         if (!obj_request->osd_req)
1709                 goto out;
1710
1711         op = &obj_request->osd_req->r_ops[0];
1712         osd_req_op_watch_init(op, CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver, 0);
1713         rbd_osd_req_format_op(obj_request, false);
1714
1715         osdc = &rbd_dev->rbd_client->client->osdc;
1716         obj_request->callback = rbd_obj_request_put;
1717         ret = rbd_obj_request_submit(osdc, obj_request);
1718 out:
1719         if (ret)
1720                 rbd_obj_request_put(obj_request);
1721
1722         return ret;
1723 }
1724
1725 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1726 {
1727         struct rbd_device *rbd_dev = (struct rbd_device *)data;
1728         u64 hver;
1729         int rc;
1730
1731         if (!rbd_dev)
1732                 return;
1733
1734         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1735                 rbd_dev->header_name, (unsigned long long) notify_id,
1736                 (unsigned int) opcode);
1737         rc = rbd_dev_refresh(rbd_dev, &hver);
1738         if (rc)
1739                 rbd_warn(rbd_dev, "got notification but failed to "
1740                            " update snaps: %d\n", rc);
1741
1742         rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1743 }
1744
1745 /*
1746  * Request sync osd watch/unwatch.  The value of "start" determines
1747  * whether a watch request is being initiated or torn down.
1748  */
1749 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1750 {
1751         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1752         struct rbd_obj_request *obj_request;
1753         struct ceph_osd_req_op *op;
1754         int ret;
1755
1756         rbd_assert(start ^ !!rbd_dev->watch_event);
1757         rbd_assert(start ^ !!rbd_dev->watch_request);
1758
1759         if (start) {
1760                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1761                                                 &rbd_dev->watch_event);
1762                 if (ret < 0)
1763                         return ret;
1764                 rbd_assert(rbd_dev->watch_event != NULL);
1765         }
1766
1767         ret = -ENOMEM;
1768         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1769                                                         OBJ_REQUEST_NODATA);
1770         if (!obj_request)
1771                 goto out_cancel;
1772
1773         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
1774         if (!obj_request->osd_req)
1775                 goto out_cancel;
1776
1777         op = &obj_request->osd_req->r_ops[0];
1778         osd_req_op_watch_init(op, CEPH_OSD_OP_WATCH,
1779                                 rbd_dev->watch_event->cookie,
1780                                 rbd_dev->header.obj_version, start);
1781         rbd_osd_req_format_op(obj_request, true);
1782
1783         if (start)
1784                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1785         else
1786                 ceph_osdc_unregister_linger_request(osdc,
1787                                         rbd_dev->watch_request->osd_req);
1788         ret = rbd_obj_request_submit(osdc, obj_request);
1789         if (ret)
1790                 goto out_cancel;
1791         ret = rbd_obj_request_wait(obj_request);
1792         if (ret)
1793                 goto out_cancel;
1794         ret = obj_request->result;
1795         if (ret)
1796                 goto out_cancel;
1797
1798         /*
1799          * A watch request is set to linger, so the underlying osd
1800          * request won't go away until we unregister it.  We retain
1801          * a pointer to the object request during that time (in
1802          * rbd_dev->watch_request), so we'll keep a reference to
1803          * it.  We'll drop that reference (below) after we've
1804          * unregistered it.
1805          */
1806         if (start) {
1807                 rbd_dev->watch_request = obj_request;
1808
1809                 return 0;
1810         }
1811
1812         /* We have successfully torn down the watch request */
1813
1814         rbd_obj_request_put(rbd_dev->watch_request);
1815         rbd_dev->watch_request = NULL;
1816 out_cancel:
1817         /* Cancel the event if we're tearing down, or on error */
1818         ceph_osdc_cancel_event(rbd_dev->watch_event);
1819         rbd_dev->watch_event = NULL;
1820         if (obj_request)
1821                 rbd_obj_request_put(obj_request);
1822
1823         return ret;
1824 }
1825
1826 /*
1827  * Synchronous osd object method call
1828  */
1829 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1830                              const char *object_name,
1831                              const char *class_name,
1832                              const char *method_name,
1833                              const char *outbound,
1834                              size_t outbound_size,
1835                              char *inbound,
1836                              size_t inbound_size,
1837                              u64 *version)
1838 {
1839         struct rbd_obj_request *obj_request;
1840         struct ceph_osd_client *osdc;
1841         struct ceph_osd_req_op *op;
1842         struct page **pages;
1843         u32 page_count;
1844         int ret;
1845
1846         /*
1847          * Method calls are ultimately read operations.  The result
1848          * should placed into the inbound buffer provided.  They
1849          * also supply outbound data--parameters for the object
1850          * method.  Currently if this is present it will be a
1851          * snapshot id.
1852          */
1853         page_count = (u32) calc_pages_for(0, inbound_size);
1854         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1855         if (IS_ERR(pages))
1856                 return PTR_ERR(pages);
1857
1858         ret = -ENOMEM;
1859         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
1860                                                         OBJ_REQUEST_PAGES);
1861         if (!obj_request)
1862                 goto out;
1863
1864         obj_request->pages = pages;
1865         obj_request->page_count = page_count;
1866
1867         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
1868         if (!obj_request->osd_req)
1869                 goto out;
1870
1871         op = &obj_request->osd_req->r_ops[0];
1872         osd_req_op_cls_init(op, CEPH_OSD_OP_CALL, class_name, method_name,
1873                                         outbound, outbound_size);
1874         rbd_osd_req_format_op(obj_request, false);
1875
1876         osdc = &rbd_dev->rbd_client->client->osdc;
1877         ret = rbd_obj_request_submit(osdc, obj_request);
1878         if (ret)
1879                 goto out;
1880         ret = rbd_obj_request_wait(obj_request);
1881         if (ret)
1882                 goto out;
1883
1884         ret = obj_request->result;
1885         if (ret < 0)
1886                 goto out;
1887         ret = 0;
1888         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1889         if (version)
1890                 *version = obj_request->version;
1891 out:
1892         if (obj_request)
1893                 rbd_obj_request_put(obj_request);
1894         else
1895                 ceph_release_page_vector(pages, page_count);
1896
1897         return ret;
1898 }
1899
1900 static void rbd_request_fn(struct request_queue *q)
1901                 __releases(q->queue_lock) __acquires(q->queue_lock)
1902 {
1903         struct rbd_device *rbd_dev = q->queuedata;
1904         bool read_only = rbd_dev->mapping.read_only;
1905         struct request *rq;
1906         int result;
1907
1908         while ((rq = blk_fetch_request(q))) {
1909                 bool write_request = rq_data_dir(rq) == WRITE;
1910                 struct rbd_img_request *img_request;
1911                 u64 offset;
1912                 u64 length;
1913
1914                 /* Ignore any non-FS requests that filter through. */
1915
1916                 if (rq->cmd_type != REQ_TYPE_FS) {
1917                         dout("%s: non-fs request type %d\n", __func__,
1918                                 (int) rq->cmd_type);
1919                         __blk_end_request_all(rq, 0);
1920                         continue;
1921                 }
1922
1923                 /* Ignore/skip any zero-length requests */
1924
1925                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1926                 length = (u64) blk_rq_bytes(rq);
1927
1928                 if (!length) {
1929                         dout("%s: zero-length request\n", __func__);
1930                         __blk_end_request_all(rq, 0);
1931                         continue;
1932                 }
1933
1934                 spin_unlock_irq(q->queue_lock);
1935
1936                 /* Disallow writes to a read-only device */
1937
1938                 if (write_request) {
1939                         result = -EROFS;
1940                         if (read_only)
1941                                 goto end_request;
1942                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1943                 }
1944
1945                 /*
1946                  * Quit early if the mapped snapshot no longer
1947                  * exists.  It's still possible the snapshot will
1948                  * have disappeared by the time our request arrives
1949                  * at the osd, but there's no sense in sending it if
1950                  * we already know.
1951                  */
1952                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1953                         dout("request for non-existent snapshot");
1954                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1955                         result = -ENXIO;
1956                         goto end_request;
1957                 }
1958
1959                 result = -EINVAL;
1960                 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1961                         goto end_request;       /* Shouldn't happen */
1962
1963                 result = -ENOMEM;
1964                 img_request = rbd_img_request_create(rbd_dev, offset, length,
1965                                                         write_request);
1966                 if (!img_request)
1967                         goto end_request;
1968
1969                 img_request->rq = rq;
1970
1971                 result = rbd_img_request_fill_bio(img_request, rq->bio);
1972                 if (!result)
1973                         result = rbd_img_request_submit(img_request);
1974                 if (result)
1975                         rbd_img_request_put(img_request);
1976 end_request:
1977                 spin_lock_irq(q->queue_lock);
1978                 if (result < 0) {
1979                         rbd_warn(rbd_dev, "obj_request %s result %d\n",
1980                                 write_request ? "write" : "read", result);
1981                         __blk_end_request_all(rq, result);
1982                 }
1983         }
1984 }
1985
1986 /*
1987  * a queue callback. Makes sure that we don't create a bio that spans across
1988  * multiple osd objects. One exception would be with a single page bios,
1989  * which we handle later at bio_chain_clone_range()
1990  */
1991 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1992                           struct bio_vec *bvec)
1993 {
1994         struct rbd_device *rbd_dev = q->queuedata;
1995         sector_t sector_offset;
1996         sector_t sectors_per_obj;
1997         sector_t obj_sector_offset;
1998         int ret;
1999
2000         /*
2001          * Find how far into its rbd object the partition-relative
2002          * bio start sector is to offset relative to the enclosing
2003          * device.
2004          */
2005         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2006         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2007         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2008
2009         /*
2010          * Compute the number of bytes from that offset to the end
2011          * of the object.  Account for what's already used by the bio.
2012          */
2013         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2014         if (ret > bmd->bi_size)
2015                 ret -= bmd->bi_size;
2016         else
2017                 ret = 0;
2018
2019         /*
2020          * Don't send back more than was asked for.  And if the bio
2021          * was empty, let the whole thing through because:  "Note
2022          * that a block device *must* allow a single page to be
2023          * added to an empty bio."
2024          */
2025         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2026         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2027                 ret = (int) bvec->bv_len;
2028
2029         return ret;
2030 }
2031
2032 static void rbd_free_disk(struct rbd_device *rbd_dev)
2033 {
2034         struct gendisk *disk = rbd_dev->disk;
2035
2036         if (!disk)
2037                 return;
2038
2039         if (disk->flags & GENHD_FL_UP)
2040                 del_gendisk(disk);
2041         if (disk->queue)
2042                 blk_cleanup_queue(disk->queue);
2043         put_disk(disk);
2044 }
2045
2046 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2047                                 const char *object_name,
2048                                 u64 offset, u64 length,
2049                                 char *buf, u64 *version)
2050
2051 {
2052         struct rbd_obj_request *obj_request;
2053         struct ceph_osd_req_op *op;
2054         struct ceph_osd_client *osdc;
2055         struct page **pages = NULL;
2056         u32 page_count;
2057         size_t size;
2058         int ret;
2059
2060         page_count = (u32) calc_pages_for(offset, length);
2061         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2062         if (IS_ERR(pages))
2063                 ret = PTR_ERR(pages);
2064
2065         ret = -ENOMEM;
2066         obj_request = rbd_obj_request_create(object_name, offset, length,
2067                                                         OBJ_REQUEST_PAGES);
2068         if (!obj_request)
2069                 goto out;
2070
2071         obj_request->pages = pages;
2072         obj_request->page_count = page_count;
2073
2074         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2075         if (!obj_request->osd_req)
2076                 goto out;
2077
2078         op = &obj_request->osd_req->r_ops[0];
2079         osd_req_op_extent_init(op, CEPH_OSD_OP_READ, offset, length, 0, 0);
2080         rbd_osd_req_format_op(obj_request, false);
2081
2082         osdc = &rbd_dev->rbd_client->client->osdc;
2083         ret = rbd_obj_request_submit(osdc, obj_request);
2084         if (ret)
2085                 goto out;
2086         ret = rbd_obj_request_wait(obj_request);
2087         if (ret)
2088                 goto out;
2089
2090         ret = obj_request->result;
2091         if (ret < 0)
2092                 goto out;
2093
2094         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2095         size = (size_t) obj_request->xferred;
2096         ceph_copy_from_page_vector(pages, buf, 0, size);
2097         rbd_assert(size <= (size_t) INT_MAX);
2098         ret = (int) size;
2099         if (version)
2100                 *version = obj_request->version;
2101 out:
2102         if (obj_request)
2103                 rbd_obj_request_put(obj_request);
2104         else
2105                 ceph_release_page_vector(pages, page_count);
2106
2107         return ret;
2108 }
2109
2110 /*
2111  * Read the complete header for the given rbd device.
2112  *
2113  * Returns a pointer to a dynamically-allocated buffer containing
2114  * the complete and validated header.  Caller can pass the address
2115  * of a variable that will be filled in with the version of the
2116  * header object at the time it was read.
2117  *
2118  * Returns a pointer-coded errno if a failure occurs.
2119  */
2120 static struct rbd_image_header_ondisk *
2121 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2122 {
2123         struct rbd_image_header_ondisk *ondisk = NULL;
2124         u32 snap_count = 0;
2125         u64 names_size = 0;
2126         u32 want_count;
2127         int ret;
2128
2129         /*
2130          * The complete header will include an array of its 64-bit
2131          * snapshot ids, followed by the names of those snapshots as
2132          * a contiguous block of NUL-terminated strings.  Note that
2133          * the number of snapshots could change by the time we read
2134          * it in, in which case we re-read it.
2135          */
2136         do {
2137                 size_t size;
2138
2139                 kfree(ondisk);
2140
2141                 size = sizeof (*ondisk);
2142                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2143                 size += names_size;
2144                 ondisk = kmalloc(size, GFP_KERNEL);
2145                 if (!ondisk)
2146                         return ERR_PTR(-ENOMEM);
2147
2148                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2149                                        0, size,
2150                                        (char *) ondisk, version);
2151                 if (ret < 0)
2152                         goto out_err;
2153                 if (WARN_ON((size_t) ret < size)) {
2154                         ret = -ENXIO;
2155                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2156                                 size, ret);
2157                         goto out_err;
2158                 }
2159                 if (!rbd_dev_ondisk_valid(ondisk)) {
2160                         ret = -ENXIO;
2161                         rbd_warn(rbd_dev, "invalid header");
2162                         goto out_err;
2163                 }
2164
2165                 names_size = le64_to_cpu(ondisk->snap_names_len);
2166                 want_count = snap_count;
2167                 snap_count = le32_to_cpu(ondisk->snap_count);
2168         } while (snap_count != want_count);
2169
2170         return ondisk;
2171
2172 out_err:
2173         kfree(ondisk);
2174
2175         return ERR_PTR(ret);
2176 }
2177
2178 /*
2179  * reload the ondisk the header
2180  */
2181 static int rbd_read_header(struct rbd_device *rbd_dev,
2182                            struct rbd_image_header *header)
2183 {
2184         struct rbd_image_header_ondisk *ondisk;
2185         u64 ver = 0;
2186         int ret;
2187
2188         ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2189         if (IS_ERR(ondisk))
2190                 return PTR_ERR(ondisk);
2191         ret = rbd_header_from_disk(header, ondisk);
2192         if (ret >= 0)
2193                 header->obj_version = ver;
2194         kfree(ondisk);
2195
2196         return ret;
2197 }
2198
2199 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2200 {
2201         struct rbd_snap *snap;
2202         struct rbd_snap *next;
2203
2204         list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2205                 rbd_remove_snap_dev(snap);
2206 }
2207
2208 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2209 {
2210         sector_t size;
2211
2212         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2213                 return;
2214
2215         size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2216         dout("setting size to %llu sectors", (unsigned long long) size);
2217         rbd_dev->mapping.size = (u64) size;
2218         set_capacity(rbd_dev->disk, size);
2219 }
2220
2221 /*
2222  * only read the first part of the ondisk header, without the snaps info
2223  */
2224 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2225 {
2226         int ret;
2227         struct rbd_image_header h;
2228
2229         ret = rbd_read_header(rbd_dev, &h);
2230         if (ret < 0)
2231                 return ret;
2232
2233         down_write(&rbd_dev->header_rwsem);
2234
2235         /* Update image size, and check for resize of mapped image */
2236         rbd_dev->header.image_size = h.image_size;
2237         rbd_update_mapping_size(rbd_dev);
2238
2239         /* rbd_dev->header.object_prefix shouldn't change */
2240         kfree(rbd_dev->header.snap_sizes);
2241         kfree(rbd_dev->header.snap_names);
2242         /* osd requests may still refer to snapc */
2243         ceph_put_snap_context(rbd_dev->header.snapc);
2244
2245         if (hver)
2246                 *hver = h.obj_version;
2247         rbd_dev->header.obj_version = h.obj_version;
2248         rbd_dev->header.image_size = h.image_size;
2249         rbd_dev->header.snapc = h.snapc;
2250         rbd_dev->header.snap_names = h.snap_names;
2251         rbd_dev->header.snap_sizes = h.snap_sizes;
2252         /* Free the extra copy of the object prefix */
2253         WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2254         kfree(h.object_prefix);
2255
2256         ret = rbd_dev_snaps_update(rbd_dev);
2257         if (!ret)
2258                 ret = rbd_dev_snaps_register(rbd_dev);
2259
2260         up_write(&rbd_dev->header_rwsem);
2261
2262         return ret;
2263 }
2264
2265 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2266 {
2267         int ret;
2268
2269         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2270         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2271         if (rbd_dev->image_format == 1)
2272                 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2273         else
2274                 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2275         mutex_unlock(&ctl_mutex);
2276
2277         return ret;
2278 }
2279
2280 static int rbd_init_disk(struct rbd_device *rbd_dev)
2281 {
2282         struct gendisk *disk;
2283         struct request_queue *q;
2284         u64 segment_size;
2285
2286         /* create gendisk info */
2287         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2288         if (!disk)
2289                 return -ENOMEM;
2290
2291         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2292                  rbd_dev->dev_id);
2293         disk->major = rbd_dev->major;
2294         disk->first_minor = 0;
2295         disk->fops = &rbd_bd_ops;
2296         disk->private_data = rbd_dev;
2297
2298         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2299         if (!q)
2300                 goto out_disk;
2301
2302         /* We use the default size, but let's be explicit about it. */
2303         blk_queue_physical_block_size(q, SECTOR_SIZE);
2304
2305         /* set io sizes to object size */
2306         segment_size = rbd_obj_bytes(&rbd_dev->header);
2307         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2308         blk_queue_max_segment_size(q, segment_size);
2309         blk_queue_io_min(q, segment_size);
2310         blk_queue_io_opt(q, segment_size);
2311
2312         blk_queue_merge_bvec(q, rbd_merge_bvec);
2313         disk->queue = q;
2314
2315         q->queuedata = rbd_dev;
2316
2317         rbd_dev->disk = disk;
2318
2319         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2320
2321         return 0;
2322 out_disk:
2323         put_disk(disk);
2324
2325         return -ENOMEM;
2326 }
2327
2328 /*
2329   sysfs
2330 */
2331
2332 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2333 {
2334         return container_of(dev, struct rbd_device, dev);
2335 }
2336
2337 static ssize_t rbd_size_show(struct device *dev,
2338                              struct device_attribute *attr, char *buf)
2339 {
2340         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2341         sector_t size;
2342
2343         down_read(&rbd_dev->header_rwsem);
2344         size = get_capacity(rbd_dev->disk);
2345         up_read(&rbd_dev->header_rwsem);
2346
2347         return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2348 }
2349
2350 /*
2351  * Note this shows the features for whatever's mapped, which is not
2352  * necessarily the base image.
2353  */
2354 static ssize_t rbd_features_show(struct device *dev,
2355                              struct device_attribute *attr, char *buf)
2356 {
2357         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2358
2359         return sprintf(buf, "0x%016llx\n",
2360                         (unsigned long long) rbd_dev->mapping.features);
2361 }
2362
2363 static ssize_t rbd_major_show(struct device *dev,
2364                               struct device_attribute *attr, char *buf)
2365 {
2366         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2367
2368         return sprintf(buf, "%d\n", rbd_dev->major);
2369 }
2370
2371 static ssize_t rbd_client_id_show(struct device *dev,
2372                                   struct device_attribute *attr, char *buf)
2373 {
2374         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2375
2376         return sprintf(buf, "client%lld\n",
2377                         ceph_client_id(rbd_dev->rbd_client->client));
2378 }
2379
2380 static ssize_t rbd_pool_show(struct device *dev,
2381                              struct device_attribute *attr, char *buf)
2382 {
2383         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2384
2385         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2386 }
2387
2388 static ssize_t rbd_pool_id_show(struct device *dev,
2389                              struct device_attribute *attr, char *buf)
2390 {
2391         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2392
2393         return sprintf(buf, "%llu\n",
2394                 (unsigned long long) rbd_dev->spec->pool_id);
2395 }
2396
2397 static ssize_t rbd_name_show(struct device *dev,
2398                              struct device_attribute *attr, char *buf)
2399 {
2400         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2401
2402         if (rbd_dev->spec->image_name)
2403                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2404
2405         return sprintf(buf, "(unknown)\n");
2406 }
2407
2408 static ssize_t rbd_image_id_show(struct device *dev,
2409                              struct device_attribute *attr, char *buf)
2410 {
2411         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2412
2413         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2414 }
2415
2416 /*
2417  * Shows the name of the currently-mapped snapshot (or
2418  * RBD_SNAP_HEAD_NAME for the base image).
2419  */
2420 static ssize_t rbd_snap_show(struct device *dev,
2421                              struct device_attribute *attr,
2422                              char *buf)
2423 {
2424         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2425
2426         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2427 }
2428
2429 /*
2430  * For an rbd v2 image, shows the pool id, image id, and snapshot id
2431  * for the parent image.  If there is no parent, simply shows
2432  * "(no parent image)".
2433  */
2434 static ssize_t rbd_parent_show(struct device *dev,
2435                              struct device_attribute *attr,
2436                              char *buf)
2437 {
2438         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2439         struct rbd_spec *spec = rbd_dev->parent_spec;
2440         int count;
2441         char *bufp = buf;
2442
2443         if (!spec)
2444                 return sprintf(buf, "(no parent image)\n");
2445
2446         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2447                         (unsigned long long) spec->pool_id, spec->pool_name);
2448         if (count < 0)
2449                 return count;
2450         bufp += count;
2451
2452         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2453                         spec->image_name ? spec->image_name : "(unknown)");
2454         if (count < 0)
2455                 return count;
2456         bufp += count;
2457
2458         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2459                         (unsigned long long) spec->snap_id, spec->snap_name);
2460         if (count < 0)
2461                 return count;
2462         bufp += count;
2463
2464         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2465         if (count < 0)
2466                 return count;
2467         bufp += count;
2468
2469         return (ssize_t) (bufp - buf);
2470 }
2471
2472 static ssize_t rbd_image_refresh(struct device *dev,
2473                                  struct device_attribute *attr,
2474                                  const char *buf,
2475                                  size_t size)
2476 {
2477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2478         int ret;
2479
2480         ret = rbd_dev_refresh(rbd_dev, NULL);
2481
2482         return ret < 0 ? ret : size;
2483 }
2484
2485 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2486 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2487 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2488 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2489 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2490 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2491 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2492 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2493 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2494 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2495 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2496
2497 static struct attribute *rbd_attrs[] = {
2498         &dev_attr_size.attr,
2499         &dev_attr_features.attr,
2500         &dev_attr_major.attr,
2501         &dev_attr_client_id.attr,
2502         &dev_attr_pool.attr,
2503         &dev_attr_pool_id.attr,
2504         &dev_attr_name.attr,
2505         &dev_attr_image_id.attr,
2506         &dev_attr_current_snap.attr,
2507         &dev_attr_parent.attr,
2508         &dev_attr_refresh.attr,
2509         NULL
2510 };
2511
2512 static struct attribute_group rbd_attr_group = {
2513         .attrs = rbd_attrs,
2514 };
2515
2516 static const struct attribute_group *rbd_attr_groups[] = {
2517         &rbd_attr_group,
2518         NULL
2519 };
2520
2521 static void rbd_sysfs_dev_release(struct device *dev)
2522 {
2523 }
2524
2525 static struct device_type rbd_device_type = {
2526         .name           = "rbd",
2527         .groups         = rbd_attr_groups,
2528         .release        = rbd_sysfs_dev_release,
2529 };
2530
2531
2532 /*
2533   sysfs - snapshots
2534 */
2535
2536 static ssize_t rbd_snap_size_show(struct device *dev,
2537                                   struct device_attribute *attr,
2538                                   char *buf)
2539 {
2540         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2541
2542         return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2543 }
2544
2545 static ssize_t rbd_snap_id_show(struct device *dev,
2546                                 struct device_attribute *attr,
2547                                 char *buf)
2548 {
2549         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2550
2551         return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2552 }
2553
2554 static ssize_t rbd_snap_features_show(struct device *dev,
2555                                 struct device_attribute *attr,
2556                                 char *buf)
2557 {
2558         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2559
2560         return sprintf(buf, "0x%016llx\n",
2561                         (unsigned long long) snap->features);
2562 }
2563
2564 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2565 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2566 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2567
2568 static struct attribute *rbd_snap_attrs[] = {
2569         &dev_attr_snap_size.attr,
2570         &dev_attr_snap_id.attr,
2571         &dev_attr_snap_features.attr,
2572         NULL,
2573 };
2574
2575 static struct attribute_group rbd_snap_attr_group = {
2576         .attrs = rbd_snap_attrs,
2577 };
2578
2579 static void rbd_snap_dev_release(struct device *dev)
2580 {
2581         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2582         kfree(snap->name);
2583         kfree(snap);
2584 }
2585
2586 static const struct attribute_group *rbd_snap_attr_groups[] = {
2587         &rbd_snap_attr_group,
2588         NULL
2589 };
2590
2591 static struct device_type rbd_snap_device_type = {
2592         .groups         = rbd_snap_attr_groups,
2593         .release        = rbd_snap_dev_release,
2594 };
2595
2596 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2597 {
2598         kref_get(&spec->kref);
2599
2600         return spec;
2601 }
2602
2603 static void rbd_spec_free(struct kref *kref);
2604 static void rbd_spec_put(struct rbd_spec *spec)
2605 {
2606         if (spec)
2607                 kref_put(&spec->kref, rbd_spec_free);
2608 }
2609
2610 static struct rbd_spec *rbd_spec_alloc(void)
2611 {
2612         struct rbd_spec *spec;
2613
2614         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2615         if (!spec)
2616                 return NULL;
2617         kref_init(&spec->kref);
2618
2619         rbd_spec_put(rbd_spec_get(spec));       /* TEMPORARY */
2620
2621         return spec;
2622 }
2623
2624 static void rbd_spec_free(struct kref *kref)
2625 {
2626         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2627
2628         kfree(spec->pool_name);
2629         kfree(spec->image_id);
2630         kfree(spec->image_name);
2631         kfree(spec->snap_name);
2632         kfree(spec);
2633 }
2634
2635 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2636                                 struct rbd_spec *spec)
2637 {
2638         struct rbd_device *rbd_dev;
2639
2640         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2641         if (!rbd_dev)
2642                 return NULL;
2643
2644         spin_lock_init(&rbd_dev->lock);
2645         rbd_dev->flags = 0;
2646         INIT_LIST_HEAD(&rbd_dev->node);
2647         INIT_LIST_HEAD(&rbd_dev->snaps);
2648         init_rwsem(&rbd_dev->header_rwsem);
2649
2650         rbd_dev->spec = spec;
2651         rbd_dev->rbd_client = rbdc;
2652
2653         /* Initialize the layout used for all rbd requests */
2654
2655         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2656         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2657         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2658         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2659
2660         return rbd_dev;
2661 }
2662
2663 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2664 {
2665         rbd_spec_put(rbd_dev->parent_spec);
2666         kfree(rbd_dev->header_name);
2667         rbd_put_client(rbd_dev->rbd_client);
2668         rbd_spec_put(rbd_dev->spec);
2669         kfree(rbd_dev);
2670 }
2671
2672 static bool rbd_snap_registered(struct rbd_snap *snap)
2673 {
2674         bool ret = snap->dev.type == &rbd_snap_device_type;
2675         bool reg = device_is_registered(&snap->dev);
2676
2677         rbd_assert(!ret ^ reg);
2678
2679         return ret;
2680 }
2681
2682 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2683 {
2684         list_del(&snap->node);
2685         if (device_is_registered(&snap->dev))
2686                 device_unregister(&snap->dev);
2687 }
2688
2689 static int rbd_register_snap_dev(struct rbd_snap *snap,
2690                                   struct device *parent)
2691 {
2692         struct device *dev = &snap->dev;
2693         int ret;
2694
2695         dev->type = &rbd_snap_device_type;
2696         dev->parent = parent;
2697         dev->release = rbd_snap_dev_release;
2698         dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2699         dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2700
2701         ret = device_register(dev);
2702
2703         return ret;
2704 }
2705
2706 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2707                                                 const char *snap_name,
2708                                                 u64 snap_id, u64 snap_size,
2709                                                 u64 snap_features)
2710 {
2711         struct rbd_snap *snap;
2712         int ret;
2713
2714         snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2715         if (!snap)
2716                 return ERR_PTR(-ENOMEM);
2717
2718         ret = -ENOMEM;
2719         snap->name = kstrdup(snap_name, GFP_KERNEL);
2720         if (!snap->name)
2721                 goto err;
2722
2723         snap->id = snap_id;
2724         snap->size = snap_size;
2725         snap->features = snap_features;
2726
2727         return snap;
2728
2729 err:
2730         kfree(snap->name);
2731         kfree(snap);
2732
2733         return ERR_PTR(ret);
2734 }
2735
2736 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2737                 u64 *snap_size, u64 *snap_features)
2738 {
2739         char *snap_name;
2740
2741         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2742
2743         *snap_size = rbd_dev->header.snap_sizes[which];
2744         *snap_features = 0;     /* No features for v1 */
2745
2746         /* Skip over names until we find the one we are looking for */
2747
2748         snap_name = rbd_dev->header.snap_names;
2749         while (which--)
2750                 snap_name += strlen(snap_name) + 1;
2751
2752         return snap_name;
2753 }
2754
2755 /*
2756  * Get the size and object order for an image snapshot, or if
2757  * snap_id is CEPH_NOSNAP, gets this information for the base
2758  * image.
2759  */
2760 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2761                                 u8 *order, u64 *snap_size)
2762 {
2763         __le64 snapid = cpu_to_le64(snap_id);
2764         int ret;
2765         struct {
2766                 u8 order;
2767                 __le64 size;
2768         } __attribute__ ((packed)) size_buf = { 0 };
2769
2770         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2771                                 "rbd", "get_size",
2772                                 (char *) &snapid, sizeof (snapid),
2773                                 (char *) &size_buf, sizeof (size_buf), NULL);
2774         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2775         if (ret < 0)
2776                 return ret;
2777
2778         *order = size_buf.order;
2779         *snap_size = le64_to_cpu(size_buf.size);
2780
2781         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
2782                 (unsigned long long) snap_id, (unsigned int) *order,
2783                 (unsigned long long) *snap_size);
2784
2785         return 0;
2786 }
2787
2788 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2789 {
2790         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2791                                         &rbd_dev->header.obj_order,
2792                                         &rbd_dev->header.image_size);
2793 }
2794
2795 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2796 {
2797         void *reply_buf;
2798         int ret;
2799         void *p;
2800
2801         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2802         if (!reply_buf)
2803                 return -ENOMEM;
2804
2805         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2806                                 "rbd", "get_object_prefix",
2807                                 NULL, 0,
2808                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2809         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2810         if (ret < 0)
2811                 goto out;
2812
2813         p = reply_buf;
2814         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2815                                                 p + RBD_OBJ_PREFIX_LEN_MAX,
2816                                                 NULL, GFP_NOIO);
2817
2818         if (IS_ERR(rbd_dev->header.object_prefix)) {
2819                 ret = PTR_ERR(rbd_dev->header.object_prefix);
2820                 rbd_dev->header.object_prefix = NULL;
2821         } else {
2822                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
2823         }
2824
2825 out:
2826         kfree(reply_buf);
2827
2828         return ret;
2829 }
2830
2831 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2832                 u64 *snap_features)
2833 {
2834         __le64 snapid = cpu_to_le64(snap_id);
2835         struct {
2836                 __le64 features;
2837                 __le64 incompat;
2838         } features_buf = { 0 };
2839         u64 incompat;
2840         int ret;
2841
2842         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2843                                 "rbd", "get_features",
2844                                 (char *) &snapid, sizeof (snapid),
2845                                 (char *) &features_buf, sizeof (features_buf),
2846                                 NULL);
2847         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2848         if (ret < 0)
2849                 return ret;
2850
2851         incompat = le64_to_cpu(features_buf.incompat);
2852         if (incompat & ~RBD_FEATURES_ALL)
2853                 return -ENXIO;
2854
2855         *snap_features = le64_to_cpu(features_buf.features);
2856
2857         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2858                 (unsigned long long) snap_id,
2859                 (unsigned long long) *snap_features,
2860                 (unsigned long long) le64_to_cpu(features_buf.incompat));
2861
2862         return 0;
2863 }
2864
2865 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2866 {
2867         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2868                                                 &rbd_dev->header.features);
2869 }
2870
2871 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2872 {
2873         struct rbd_spec *parent_spec;
2874         size_t size;
2875         void *reply_buf = NULL;
2876         __le64 snapid;
2877         void *p;
2878         void *end;
2879         char *image_id;
2880         u64 overlap;
2881         int ret;
2882
2883         parent_spec = rbd_spec_alloc();
2884         if (!parent_spec)
2885                 return -ENOMEM;
2886
2887         size = sizeof (__le64) +                                /* pool_id */
2888                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
2889                 sizeof (__le64) +                               /* snap_id */
2890                 sizeof (__le64);                                /* overlap */
2891         reply_buf = kmalloc(size, GFP_KERNEL);
2892         if (!reply_buf) {
2893                 ret = -ENOMEM;
2894                 goto out_err;
2895         }
2896
2897         snapid = cpu_to_le64(CEPH_NOSNAP);
2898         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2899                                 "rbd", "get_parent",
2900                                 (char *) &snapid, sizeof (snapid),
2901                                 (char *) reply_buf, size, NULL);
2902         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2903         if (ret < 0)
2904                 goto out_err;
2905
2906         ret = -ERANGE;
2907         p = reply_buf;
2908         end = (char *) reply_buf + size;
2909         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2910         if (parent_spec->pool_id == CEPH_NOPOOL)
2911                 goto out;       /* No parent?  No problem. */
2912
2913         /* The ceph file layout needs to fit pool id in 32 bits */
2914
2915         ret = -EIO;
2916         if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2917                 goto out;
2918
2919         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2920         if (IS_ERR(image_id)) {
2921                 ret = PTR_ERR(image_id);
2922                 goto out_err;
2923         }
2924         parent_spec->image_id = image_id;
2925         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2926         ceph_decode_64_safe(&p, end, overlap, out_err);
2927
2928         rbd_dev->parent_overlap = overlap;
2929         rbd_dev->parent_spec = parent_spec;
2930         parent_spec = NULL;     /* rbd_dev now owns this */
2931 out:
2932         ret = 0;
2933 out_err:
2934         kfree(reply_buf);
2935         rbd_spec_put(parent_spec);
2936
2937         return ret;
2938 }
2939
2940 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2941 {
2942         size_t image_id_size;
2943         char *image_id;
2944         void *p;
2945         void *end;
2946         size_t size;
2947         void *reply_buf = NULL;
2948         size_t len = 0;
2949         char *image_name = NULL;
2950         int ret;
2951
2952         rbd_assert(!rbd_dev->spec->image_name);
2953
2954         len = strlen(rbd_dev->spec->image_id);
2955         image_id_size = sizeof (__le32) + len;
2956         image_id = kmalloc(image_id_size, GFP_KERNEL);
2957         if (!image_id)
2958                 return NULL;
2959
2960         p = image_id;
2961         end = (char *) image_id + image_id_size;
2962         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2963
2964         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2965         reply_buf = kmalloc(size, GFP_KERNEL);
2966         if (!reply_buf)
2967                 goto out;
2968
2969         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2970                                 "rbd", "dir_get_name",
2971                                 image_id, image_id_size,
2972                                 (char *) reply_buf, size, NULL);
2973         if (ret < 0)
2974                 goto out;
2975         p = reply_buf;
2976         end = (char *) reply_buf + size;
2977         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2978         if (IS_ERR(image_name))
2979                 image_name = NULL;
2980         else
2981                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2982 out:
2983         kfree(reply_buf);
2984         kfree(image_id);
2985
2986         return image_name;
2987 }
2988
2989 /*
2990  * When a parent image gets probed, we only have the pool, image,
2991  * and snapshot ids but not the names of any of them.  This call
2992  * is made later to fill in those names.  It has to be done after
2993  * rbd_dev_snaps_update() has completed because some of the
2994  * information (in particular, snapshot name) is not available
2995  * until then.
2996  */
2997 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2998 {
2999         struct ceph_osd_client *osdc;
3000         const char *name;
3001         void *reply_buf = NULL;
3002         int ret;
3003
3004         if (rbd_dev->spec->pool_name)
3005                 return 0;       /* Already have the names */
3006
3007         /* Look up the pool name */
3008
3009         osdc = &rbd_dev->rbd_client->client->osdc;
3010         name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3011         if (!name) {
3012                 rbd_warn(rbd_dev, "there is no pool with id %llu",
3013                         rbd_dev->spec->pool_id);        /* Really a BUG() */
3014                 return -EIO;
3015         }
3016
3017         rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3018         if (!rbd_dev->spec->pool_name)
3019                 return -ENOMEM;
3020
3021         /* Fetch the image name; tolerate failure here */
3022
3023         name = rbd_dev_image_name(rbd_dev);
3024         if (name)
3025                 rbd_dev->spec->image_name = (char *) name;
3026         else
3027                 rbd_warn(rbd_dev, "unable to get image name");
3028
3029         /* Look up the snapshot name. */
3030
3031         name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3032         if (!name) {
3033                 rbd_warn(rbd_dev, "no snapshot with id %llu",
3034                         rbd_dev->spec->snap_id);        /* Really a BUG() */
3035                 ret = -EIO;
3036                 goto out_err;
3037         }
3038         rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3039         if(!rbd_dev->spec->snap_name)
3040                 goto out_err;
3041
3042         return 0;
3043 out_err:
3044         kfree(reply_buf);
3045         kfree(rbd_dev->spec->pool_name);
3046         rbd_dev->spec->pool_name = NULL;
3047
3048         return ret;
3049 }
3050
3051 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3052 {
3053         size_t size;
3054         int ret;
3055         void *reply_buf;
3056         void *p;
3057         void *end;
3058         u64 seq;
3059         u32 snap_count;
3060         struct ceph_snap_context *snapc;
3061         u32 i;
3062
3063         /*
3064          * We'll need room for the seq value (maximum snapshot id),
3065          * snapshot count, and array of that many snapshot ids.
3066          * For now we have a fixed upper limit on the number we're
3067          * prepared to receive.
3068          */
3069         size = sizeof (__le64) + sizeof (__le32) +
3070                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3071         reply_buf = kzalloc(size, GFP_KERNEL);
3072         if (!reply_buf)
3073                 return -ENOMEM;
3074
3075         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3076                                 "rbd", "get_snapcontext",
3077                                 NULL, 0,
3078                                 reply_buf, size, ver);
3079         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3080         if (ret < 0)
3081                 goto out;
3082
3083         ret = -ERANGE;
3084         p = reply_buf;
3085         end = (char *) reply_buf + size;
3086         ceph_decode_64_safe(&p, end, seq, out);
3087         ceph_decode_32_safe(&p, end, snap_count, out);
3088
3089         /*
3090          * Make sure the reported number of snapshot ids wouldn't go
3091          * beyond the end of our buffer.  But before checking that,
3092          * make sure the computed size of the snapshot context we
3093          * allocate is representable in a size_t.
3094          */
3095         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3096                                  / sizeof (u64)) {
3097                 ret = -EINVAL;
3098                 goto out;
3099         }
3100         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3101                 goto out;
3102
3103         size = sizeof (struct ceph_snap_context) +
3104                                 snap_count * sizeof (snapc->snaps[0]);
3105         snapc = kmalloc(size, GFP_KERNEL);
3106         if (!snapc) {
3107                 ret = -ENOMEM;
3108                 goto out;
3109         }
3110
3111         atomic_set(&snapc->nref, 1);
3112         snapc->seq = seq;
3113         snapc->num_snaps = snap_count;
3114         for (i = 0; i < snap_count; i++)
3115                 snapc->snaps[i] = ceph_decode_64(&p);
3116
3117         rbd_dev->header.snapc = snapc;
3118
3119         dout("  snap context seq = %llu, snap_count = %u\n",
3120                 (unsigned long long) seq, (unsigned int) snap_count);
3121
3122 out:
3123         kfree(reply_buf);
3124
3125         return 0;
3126 }
3127
3128 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3129 {
3130         size_t size;
3131         void *reply_buf;
3132         __le64 snap_id;
3133         int ret;
3134         void *p;
3135         void *end;
3136         char *snap_name;
3137
3138         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3139         reply_buf = kmalloc(size, GFP_KERNEL);
3140         if (!reply_buf)
3141                 return ERR_PTR(-ENOMEM);
3142
3143         snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3144         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3145                                 "rbd", "get_snapshot_name",
3146                                 (char *) &snap_id, sizeof (snap_id),
3147                                 reply_buf, size, NULL);
3148         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3149         if (ret < 0)
3150                 goto out;
3151
3152         p = reply_buf;
3153         end = (char *) reply_buf + size;
3154         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3155         if (IS_ERR(snap_name)) {
3156                 ret = PTR_ERR(snap_name);
3157                 goto out;
3158         } else {
3159                 dout("  snap_id 0x%016llx snap_name = %s\n",
3160                         (unsigned long long) le64_to_cpu(snap_id), snap_name);
3161         }
3162         kfree(reply_buf);
3163
3164         return snap_name;
3165 out:
3166         kfree(reply_buf);
3167
3168         return ERR_PTR(ret);
3169 }
3170
3171 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3172                 u64 *snap_size, u64 *snap_features)
3173 {
3174         u64 snap_id;
3175         u8 order;
3176         int ret;
3177
3178         snap_id = rbd_dev->header.snapc->snaps[which];
3179         ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3180         if (ret)
3181                 return ERR_PTR(ret);
3182         ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3183         if (ret)
3184                 return ERR_PTR(ret);
3185
3186         return rbd_dev_v2_snap_name(rbd_dev, which);
3187 }
3188
3189 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3190                 u64 *snap_size, u64 *snap_features)
3191 {
3192         if (rbd_dev->image_format == 1)
3193                 return rbd_dev_v1_snap_info(rbd_dev, which,
3194                                         snap_size, snap_features);
3195         if (rbd_dev->image_format == 2)
3196                 return rbd_dev_v2_snap_info(rbd_dev, which,
3197                                         snap_size, snap_features);
3198         return ERR_PTR(-EINVAL);
3199 }
3200
3201 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3202 {
3203         int ret;
3204         __u8 obj_order;
3205
3206         down_write(&rbd_dev->header_rwsem);
3207
3208         /* Grab old order first, to see if it changes */
3209
3210         obj_order = rbd_dev->header.obj_order,
3211         ret = rbd_dev_v2_image_size(rbd_dev);
3212         if (ret)
3213                 goto out;
3214         if (rbd_dev->header.obj_order != obj_order) {
3215                 ret = -EIO;
3216                 goto out;
3217         }
3218         rbd_update_mapping_size(rbd_dev);
3219
3220         ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3221         dout("rbd_dev_v2_snap_context returned %d\n", ret);
3222         if (ret)
3223                 goto out;
3224         ret = rbd_dev_snaps_update(rbd_dev);
3225         dout("rbd_dev_snaps_update returned %d\n", ret);
3226         if (ret)
3227                 goto out;
3228         ret = rbd_dev_snaps_register(rbd_dev);
3229         dout("rbd_dev_snaps_register returned %d\n", ret);
3230 out:
3231         up_write(&rbd_dev->header_rwsem);
3232
3233         return ret;
3234 }
3235
3236 /*
3237  * Scan the rbd device's current snapshot list and compare it to the
3238  * newly-received snapshot context.  Remove any existing snapshots
3239  * not present in the new snapshot context.  Add a new snapshot for
3240  * any snaphots in the snapshot context not in the current list.
3241  * And verify there are no changes to snapshots we already know
3242  * about.
3243  *
3244  * Assumes the snapshots in the snapshot context are sorted by
3245  * snapshot id, highest id first.  (Snapshots in the rbd_dev's list
3246  * are also maintained in that order.)
3247  */
3248 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3249 {
3250         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3251         const u32 snap_count = snapc->num_snaps;
3252         struct list_head *head = &rbd_dev->snaps;
3253         struct list_head *links = head->next;
3254         u32 index = 0;
3255
3256         dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3257         while (index < snap_count || links != head) {
3258                 u64 snap_id;
3259                 struct rbd_snap *snap;
3260                 char *snap_name;
3261                 u64 snap_size = 0;
3262                 u64 snap_features = 0;
3263
3264                 snap_id = index < snap_count ? snapc->snaps[index]
3265                                              : CEPH_NOSNAP;
3266                 snap = links != head ? list_entry(links, struct rbd_snap, node)
3267                                      : NULL;
3268                 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3269
3270                 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3271                         struct list_head *next = links->next;
3272
3273                         /*
3274                          * A previously-existing snapshot is not in
3275                          * the new snap context.
3276                          *
3277                          * If the now missing snapshot is the one the
3278                          * image is mapped to, clear its exists flag
3279                          * so we can avoid sending any more requests
3280                          * to it.
3281                          */
3282                         if (rbd_dev->spec->snap_id == snap->id)
3283                                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3284                         rbd_remove_snap_dev(snap);
3285                         dout("%ssnap id %llu has been removed\n",
3286                                 rbd_dev->spec->snap_id == snap->id ?
3287                                                         "mapped " : "",
3288                                 (unsigned long long) snap->id);
3289
3290                         /* Done with this list entry; advance */
3291
3292                         links = next;
3293                         continue;
3294                 }
3295
3296                 snap_name = rbd_dev_snap_info(rbd_dev, index,
3297                                         &snap_size, &snap_features);
3298                 if (IS_ERR(snap_name))
3299                         return PTR_ERR(snap_name);
3300
3301                 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3302                         (unsigned long long) snap_id);
3303                 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3304                         struct rbd_snap *new_snap;
3305
3306                         /* We haven't seen this snapshot before */
3307
3308                         new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3309                                         snap_id, snap_size, snap_features);
3310                         if (IS_ERR(new_snap)) {
3311                                 int err = PTR_ERR(new_snap);
3312
3313                                 dout("  failed to add dev, error %d\n", err);
3314
3315                                 return err;
3316                         }
3317
3318                         /* New goes before existing, or at end of list */
3319
3320                         dout("  added dev%s\n", snap ? "" : " at end\n");
3321                         if (snap)
3322                                 list_add_tail(&new_snap->node, &snap->node);
3323                         else
3324                                 list_add_tail(&new_snap->node, head);
3325                 } else {
3326                         /* Already have this one */
3327
3328                         dout("  already present\n");
3329
3330                         rbd_assert(snap->size == snap_size);
3331                         rbd_assert(!strcmp(snap->name, snap_name));
3332                         rbd_assert(snap->features == snap_features);
3333
3334                         /* Done with this list entry; advance */
3335
3336                         links = links->next;
3337                 }
3338
3339                 /* Advance to the next entry in the snapshot context */
3340
3341                 index++;
3342         }
3343         dout("%s: done\n", __func__);
3344
3345         return 0;
3346 }
3347
3348 /*
3349  * Scan the list of snapshots and register the devices for any that
3350  * have not already been registered.
3351  */
3352 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3353 {
3354         struct rbd_snap *snap;
3355         int ret = 0;
3356
3357         dout("%s:\n", __func__);
3358         if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3359                 return -EIO;
3360
3361         list_for_each_entry(snap, &rbd_dev->snaps, node) {
3362                 if (!rbd_snap_registered(snap)) {
3363                         ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3364                         if (ret < 0)
3365                                 break;
3366                 }
3367         }
3368         dout("%s: returning %d\n", __func__, ret);
3369
3370         return ret;
3371 }
3372
3373 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3374 {
3375         struct device *dev;
3376         int ret;
3377
3378         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3379
3380         dev = &rbd_dev->dev;
3381         dev->bus = &rbd_bus_type;
3382         dev->type = &rbd_device_type;
3383         dev->parent = &rbd_root_dev;
3384         dev->release = rbd_dev_release;
3385         dev_set_name(dev, "%d", rbd_dev->dev_id);
3386         ret = device_register(dev);
3387
3388         mutex_unlock(&ctl_mutex);
3389
3390         return ret;
3391 }
3392
3393 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3394 {
3395         device_unregister(&rbd_dev->dev);
3396 }
3397
3398 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3399
3400 /*
3401  * Get a unique rbd identifier for the given new rbd_dev, and add
3402  * the rbd_dev to the global list.  The minimum rbd id is 1.
3403  */
3404 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3405 {
3406         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3407
3408         spin_lock(&rbd_dev_list_lock);
3409         list_add_tail(&rbd_dev->node, &rbd_dev_list);
3410         spin_unlock(&rbd_dev_list_lock);
3411         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3412                 (unsigned long long) rbd_dev->dev_id);
3413 }
3414
3415 /*
3416  * Remove an rbd_dev from the global list, and record that its
3417  * identifier is no longer in use.
3418  */
3419 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3420 {
3421         struct list_head *tmp;
3422         int rbd_id = rbd_dev->dev_id;
3423         int max_id;
3424
3425         rbd_assert(rbd_id > 0);
3426
3427         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3428                 (unsigned long long) rbd_dev->dev_id);
3429         spin_lock(&rbd_dev_list_lock);
3430         list_del_init(&rbd_dev->node);
3431
3432         /*
3433          * If the id being "put" is not the current maximum, there
3434          * is nothing special we need to do.
3435          */
3436         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3437                 spin_unlock(&rbd_dev_list_lock);
3438                 return;
3439         }
3440
3441         /*
3442          * We need to update the current maximum id.  Search the
3443          * list to find out what it is.  We're more likely to find
3444          * the maximum at the end, so search the list backward.
3445          */
3446         max_id = 0;
3447         list_for_each_prev(tmp, &rbd_dev_list) {
3448                 struct rbd_device *rbd_dev;
3449
3450                 rbd_dev = list_entry(tmp, struct rbd_device, node);
3451                 if (rbd_dev->dev_id > max_id)
3452                         max_id = rbd_dev->dev_id;
3453         }
3454         spin_unlock(&rbd_dev_list_lock);
3455
3456         /*
3457          * The max id could have been updated by rbd_dev_id_get(), in
3458          * which case it now accurately reflects the new maximum.
3459          * Be careful not to overwrite the maximum value in that
3460          * case.
3461          */
3462         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3463         dout("  max dev id has been reset\n");
3464 }
3465
3466 /*
3467  * Skips over white space at *buf, and updates *buf to point to the
3468  * first found non-space character (if any). Returns the length of
3469  * the token (string of non-white space characters) found.  Note
3470  * that *buf must be terminated with '\0'.
3471  */
3472 static inline size_t next_token(const char **buf)
3473 {
3474         /*
3475         * These are the characters that produce nonzero for
3476         * isspace() in the "C" and "POSIX" locales.
3477         */
3478         const char *spaces = " \f\n\r\t\v";
3479
3480         *buf += strspn(*buf, spaces);   /* Find start of token */
3481
3482         return strcspn(*buf, spaces);   /* Return token length */
3483 }
3484
3485 /*
3486  * Finds the next token in *buf, and if the provided token buffer is
3487  * big enough, copies the found token into it.  The result, if
3488  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
3489  * must be terminated with '\0' on entry.
3490  *
3491  * Returns the length of the token found (not including the '\0').
3492  * Return value will be 0 if no token is found, and it will be >=
3493  * token_size if the token would not fit.
3494  *
3495  * The *buf pointer will be updated to point beyond the end of the
3496  * found token.  Note that this occurs even if the token buffer is
3497  * too small to hold it.
3498  */
3499 static inline size_t copy_token(const char **buf,
3500                                 char *token,
3501                                 size_t token_size)
3502 {
3503         size_t len;
3504
3505         len = next_token(buf);
3506         if (len < token_size) {
3507                 memcpy(token, *buf, len);
3508                 *(token + len) = '\0';
3509         }
3510         *buf += len;
3511
3512         return len;
3513 }
3514
3515 /*
3516  * Finds the next token in *buf, dynamically allocates a buffer big
3517  * enough to hold a copy of it, and copies the token into the new
3518  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
3519  * that a duplicate buffer is created even for a zero-length token.
3520  *
3521  * Returns a pointer to the newly-allocated duplicate, or a null
3522  * pointer if memory for the duplicate was not available.  If
3523  * the lenp argument is a non-null pointer, the length of the token
3524  * (not including the '\0') is returned in *lenp.
3525  *
3526  * If successful, the *buf pointer will be updated to point beyond
3527  * the end of the found token.
3528  *
3529  * Note: uses GFP_KERNEL for allocation.
3530  */
3531 static inline char *dup_token(const char **buf, size_t *lenp)
3532 {
3533         char *dup;
3534         size_t len;
3535
3536         len = next_token(buf);
3537         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3538         if (!dup)
3539                 return NULL;
3540         *(dup + len) = '\0';
3541         *buf += len;
3542
3543         if (lenp)
3544                 *lenp = len;
3545
3546         return dup;
3547 }
3548
3549 /*
3550  * Parse the options provided for an "rbd add" (i.e., rbd image
3551  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
3552  * and the data written is passed here via a NUL-terminated buffer.
3553  * Returns 0 if successful or an error code otherwise.
3554  *
3555  * The information extracted from these options is recorded in
3556  * the other parameters which return dynamically-allocated
3557  * structures:
3558  *  ceph_opts
3559  *      The address of a pointer that will refer to a ceph options
3560  *      structure.  Caller must release the returned pointer using
3561  *      ceph_destroy_options() when it is no longer needed.
3562  *  rbd_opts
3563  *      Address of an rbd options pointer.  Fully initialized by
3564  *      this function; caller must release with kfree().
3565  *  spec
3566  *      Address of an rbd image specification pointer.  Fully
3567  *      initialized by this function based on parsed options.
3568  *      Caller must release with rbd_spec_put().
3569  *
3570  * The options passed take this form:
3571  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3572  * where:
3573  *  <mon_addrs>
3574  *      A comma-separated list of one or more monitor addresses.
3575  *      A monitor address is an ip address, optionally followed
3576  *      by a port number (separated by a colon).
3577  *        I.e.:  ip1[:port1][,ip2[:port2]...]
3578  *  <options>
3579  *      A comma-separated list of ceph and/or rbd options.
3580  *  <pool_name>
3581  *      The name of the rados pool containing the rbd image.
3582  *  <image_name>
3583  *      The name of the image in that pool to map.
3584  *  <snap_id>
3585  *      An optional snapshot id.  If provided, the mapping will
3586  *      present data from the image at the time that snapshot was
3587  *      created.  The image head is used if no snapshot id is
3588  *      provided.  Snapshot mappings are always read-only.
3589  */
3590 static int rbd_add_parse_args(const char *buf,
3591                                 struct ceph_options **ceph_opts,
3592                                 struct rbd_options **opts,
3593                                 struct rbd_spec **rbd_spec)
3594 {
3595         size_t len;
3596         char *options;
3597         const char *mon_addrs;
3598         size_t mon_addrs_size;
3599         struct rbd_spec *spec = NULL;
3600         struct rbd_options *rbd_opts = NULL;
3601         struct ceph_options *copts;
3602         int ret;
3603
3604         /* The first four tokens are required */
3605
3606         len = next_token(&buf);
3607         if (!len) {
3608                 rbd_warn(NULL, "no monitor address(es) provided");
3609                 return -EINVAL;
3610         }
3611         mon_addrs = buf;
3612         mon_addrs_size = len + 1;
3613         buf += len;
3614
3615         ret = -EINVAL;
3616         options = dup_token(&buf, NULL);
3617         if (!options)
3618                 return -ENOMEM;
3619         if (!*options) {
3620                 rbd_warn(NULL, "no options provided");
3621                 goto out_err;
3622         }
3623
3624         spec = rbd_spec_alloc();
3625         if (!spec)
3626                 goto out_mem;
3627
3628         spec->pool_name = dup_token(&buf, NULL);
3629         if (!spec->pool_name)
3630                 goto out_mem;
3631         if (!*spec->pool_name) {
3632                 rbd_warn(NULL, "no pool name provided");
3633                 goto out_err;
3634         }
3635
3636         spec->image_name = dup_token(&buf, NULL);
3637         if (!spec->image_name)
3638                 goto out_mem;
3639         if (!*spec->image_name) {
3640                 rbd_warn(NULL, "no image name provided");
3641                 goto out_err;
3642         }
3643
3644         /*
3645          * Snapshot name is optional; default is to use "-"
3646          * (indicating the head/no snapshot).
3647          */
3648         len = next_token(&buf);
3649         if (!len) {
3650                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3651                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3652         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3653                 ret = -ENAMETOOLONG;
3654                 goto out_err;
3655         }
3656         spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3657         if (!spec->snap_name)
3658                 goto out_mem;
3659         *(spec->snap_name + len) = '\0';
3660
3661         /* Initialize all rbd options to the defaults */
3662
3663         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3664         if (!rbd_opts)
3665                 goto out_mem;
3666
3667         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3668
3669         copts = ceph_parse_options(options, mon_addrs,
3670                                         mon_addrs + mon_addrs_size - 1,
3671                                         parse_rbd_opts_token, rbd_opts);
3672         if (IS_ERR(copts)) {
3673                 ret = PTR_ERR(copts);
3674                 goto out_err;
3675         }
3676         kfree(options);
3677
3678         *ceph_opts = copts;
3679         *opts = rbd_opts;
3680         *rbd_spec = spec;
3681
3682         return 0;
3683 out_mem:
3684         ret = -ENOMEM;
3685 out_err:
3686         kfree(rbd_opts);
3687         rbd_spec_put(spec);
3688         kfree(options);
3689
3690         return ret;
3691 }
3692
3693 /*
3694  * An rbd format 2 image has a unique identifier, distinct from the
3695  * name given to it by the user.  Internally, that identifier is
3696  * what's used to specify the names of objects related to the image.
3697  *
3698  * A special "rbd id" object is used to map an rbd image name to its
3699  * id.  If that object doesn't exist, then there is no v2 rbd image
3700  * with the supplied name.
3701  *
3702  * This function will record the given rbd_dev's image_id field if
3703  * it can be determined, and in that case will return 0.  If any
3704  * errors occur a negative errno will be returned and the rbd_dev's
3705  * image_id field will be unchanged (and should be NULL).
3706  */
3707 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3708 {
3709         int ret;
3710         size_t size;
3711         char *object_name;
3712         void *response;
3713         void *p;
3714
3715         /*
3716          * When probing a parent image, the image id is already
3717          * known (and the image name likely is not).  There's no
3718          * need to fetch the image id again in this case.
3719          */
3720         if (rbd_dev->spec->image_id)
3721                 return 0;
3722
3723         /*
3724          * First, see if the format 2 image id file exists, and if
3725          * so, get the image's persistent id from it.
3726          */
3727         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3728         object_name = kmalloc(size, GFP_NOIO);
3729         if (!object_name)
3730                 return -ENOMEM;
3731         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3732         dout("rbd id object name is %s\n", object_name);
3733
3734         /* Response will be an encoded string, which includes a length */
3735
3736         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3737         response = kzalloc(size, GFP_NOIO);
3738         if (!response) {
3739                 ret = -ENOMEM;
3740                 goto out;
3741         }
3742
3743         ret = rbd_obj_method_sync(rbd_dev, object_name,
3744                                 "rbd", "get_id",
3745                                 NULL, 0,
3746                                 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3747         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3748         if (ret < 0)
3749                 goto out;
3750
3751         p = response;
3752         rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3753                                                 p + RBD_IMAGE_ID_LEN_MAX,
3754                                                 NULL, GFP_NOIO);
3755         if (IS_ERR(rbd_dev->spec->image_id)) {
3756                 ret = PTR_ERR(rbd_dev->spec->image_id);
3757                 rbd_dev->spec->image_id = NULL;
3758         } else {
3759                 dout("image_id is %s\n", rbd_dev->spec->image_id);
3760         }
3761 out:
3762         kfree(response);
3763         kfree(object_name);
3764
3765         return ret;
3766 }
3767
3768 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3769 {
3770         int ret;
3771         size_t size;
3772
3773         /* Version 1 images have no id; empty string is used */
3774
3775         rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3776         if (!rbd_dev->spec->image_id)
3777                 return -ENOMEM;
3778
3779         /* Record the header object name for this rbd image. */
3780
3781         size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3782         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3783         if (!rbd_dev->header_name) {
3784                 ret = -ENOMEM;
3785                 goto out_err;
3786         }
3787         sprintf(rbd_dev->header_name, "%s%s",
3788                 rbd_dev->spec->image_name, RBD_SUFFIX);
3789
3790         /* Populate rbd image metadata */
3791
3792         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3793         if (ret < 0)
3794                 goto out_err;
3795
3796         /* Version 1 images have no parent (no layering) */
3797
3798         rbd_dev->parent_spec = NULL;
3799         rbd_dev->parent_overlap = 0;
3800
3801         rbd_dev->image_format = 1;
3802
3803         dout("discovered version 1 image, header name is %s\n",
3804                 rbd_dev->header_name);
3805
3806         return 0;
3807
3808 out_err:
3809         kfree(rbd_dev->header_name);
3810         rbd_dev->header_name = NULL;
3811         kfree(rbd_dev->spec->image_id);
3812         rbd_dev->spec->image_id = NULL;
3813
3814         return ret;
3815 }
3816
3817 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3818 {
3819         size_t size;
3820         int ret;
3821         u64 ver = 0;
3822
3823         /*
3824          * Image id was filled in by the caller.  Record the header
3825          * object name for this rbd image.
3826          */
3827         size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3828         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3829         if (!rbd_dev->header_name)
3830                 return -ENOMEM;
3831         sprintf(rbd_dev->header_name, "%s%s",
3832                         RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3833
3834         /* Get the size and object order for the image */
3835
3836         ret = rbd_dev_v2_image_size(rbd_dev);
3837         if (ret < 0)
3838                 goto out_err;
3839
3840         /* Get the object prefix (a.k.a. block_name) for the image */
3841
3842         ret = rbd_dev_v2_object_prefix(rbd_dev);
3843         if (ret < 0)
3844                 goto out_err;
3845
3846         /* Get the and check features for the image */
3847
3848         ret = rbd_dev_v2_features(rbd_dev);
3849         if (ret < 0)
3850                 goto out_err;
3851
3852         /* If the image supports layering, get the parent info */
3853
3854         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3855                 ret = rbd_dev_v2_parent_info(rbd_dev);
3856                 if (ret < 0)
3857                         goto out_err;
3858         }
3859
3860         /* crypto and compression type aren't (yet) supported for v2 images */
3861
3862         rbd_dev->header.crypt_type = 0;
3863         rbd_dev->header.comp_type = 0;
3864
3865         /* Get the snapshot context, plus the header version */
3866
3867         ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3868         if (ret)
3869                 goto out_err;
3870         rbd_dev->header.obj_version = ver;
3871
3872         rbd_dev->image_format = 2;
3873
3874         dout("discovered version 2 image, header name is %s\n",
3875                 rbd_dev->header_name);
3876
3877         return 0;
3878 out_err:
3879         rbd_dev->parent_overlap = 0;
3880         rbd_spec_put(rbd_dev->parent_spec);
3881         rbd_dev->parent_spec = NULL;
3882         kfree(rbd_dev->header_name);
3883         rbd_dev->header_name = NULL;
3884         kfree(rbd_dev->header.object_prefix);
3885         rbd_dev->header.object_prefix = NULL;
3886
3887         return ret;
3888 }
3889
3890 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3891 {
3892         int ret;
3893
3894         /* no need to lock here, as rbd_dev is not registered yet */
3895         ret = rbd_dev_snaps_update(rbd_dev);
3896         if (ret)
3897                 return ret;
3898
3899         ret = rbd_dev_probe_update_spec(rbd_dev);
3900         if (ret)
3901                 goto err_out_snaps;
3902
3903         ret = rbd_dev_set_mapping(rbd_dev);
3904         if (ret)
3905                 goto err_out_snaps;
3906
3907         /* generate unique id: find highest unique id, add one */
3908         rbd_dev_id_get(rbd_dev);
3909
3910         /* Fill in the device name, now that we have its id. */
3911         BUILD_BUG_ON(DEV_NAME_LEN
3912                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3913         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3914
3915         /* Get our block major device number. */
3916
3917         ret = register_blkdev(0, rbd_dev->name);
3918         if (ret < 0)
3919                 goto err_out_id;
3920         rbd_dev->major = ret;
3921
3922         /* Set up the blkdev mapping. */
3923
3924         ret = rbd_init_disk(rbd_dev);
3925         if (ret)
3926                 goto err_out_blkdev;
3927
3928         ret = rbd_bus_add_dev(rbd_dev);
3929         if (ret)
3930                 goto err_out_disk;
3931
3932         /*
3933          * At this point cleanup in the event of an error is the job
3934          * of the sysfs code (initiated by rbd_bus_del_dev()).
3935          */
3936         down_write(&rbd_dev->header_rwsem);
3937         ret = rbd_dev_snaps_register(rbd_dev);
3938         up_write(&rbd_dev->header_rwsem);
3939         if (ret)
3940                 goto err_out_bus;
3941
3942         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3943         if (ret)
3944                 goto err_out_bus;
3945
3946         /* Everything's ready.  Announce the disk to the world. */
3947
3948         add_disk(rbd_dev->disk);
3949
3950         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3951                 (unsigned long long) rbd_dev->mapping.size);
3952
3953         return ret;
3954 err_out_bus:
3955         /* this will also clean up rest of rbd_dev stuff */
3956
3957         rbd_bus_del_dev(rbd_dev);
3958
3959         return ret;
3960 err_out_disk:
3961         rbd_free_disk(rbd_dev);
3962 err_out_blkdev:
3963         unregister_blkdev(rbd_dev->major, rbd_dev->name);
3964 err_out_id:
3965         rbd_dev_id_put(rbd_dev);
3966 err_out_snaps:
3967         rbd_remove_all_snaps(rbd_dev);
3968
3969         return ret;
3970 }
3971
3972 /*
3973  * Probe for the existence of the header object for the given rbd
3974  * device.  For format 2 images this includes determining the image
3975  * id.
3976  */
3977 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3978 {
3979         int ret;
3980
3981         /*
3982          * Get the id from the image id object.  If it's not a
3983          * format 2 image, we'll get ENOENT back, and we'll assume
3984          * it's a format 1 image.
3985          */
3986         ret = rbd_dev_image_id(rbd_dev);
3987         if (ret)
3988                 ret = rbd_dev_v1_probe(rbd_dev);
3989         else
3990                 ret = rbd_dev_v2_probe(rbd_dev);
3991         if (ret) {
3992                 dout("probe failed, returning %d\n", ret);
3993
3994                 return ret;
3995         }
3996
3997         ret = rbd_dev_probe_finish(rbd_dev);
3998         if (ret)
3999                 rbd_header_free(&rbd_dev->header);
4000
4001         return ret;
4002 }
4003
4004 static ssize_t rbd_add(struct bus_type *bus,
4005                        const char *buf,
4006                        size_t count)
4007 {
4008         struct rbd_device *rbd_dev = NULL;
4009         struct ceph_options *ceph_opts = NULL;
4010         struct rbd_options *rbd_opts = NULL;
4011         struct rbd_spec *spec = NULL;
4012         struct rbd_client *rbdc;
4013         struct ceph_osd_client *osdc;
4014         int rc = -ENOMEM;
4015
4016         if (!try_module_get(THIS_MODULE))
4017                 return -ENODEV;
4018
4019         /* parse add command */
4020         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4021         if (rc < 0)
4022                 goto err_out_module;
4023
4024         rbdc = rbd_get_client(ceph_opts);
4025         if (IS_ERR(rbdc)) {
4026                 rc = PTR_ERR(rbdc);
4027                 goto err_out_args;
4028         }
4029         ceph_opts = NULL;       /* rbd_dev client now owns this */
4030
4031         /* pick the pool */
4032         osdc = &rbdc->client->osdc;
4033         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4034         if (rc < 0)
4035                 goto err_out_client;
4036         spec->pool_id = (u64) rc;
4037
4038         /* The ceph file layout needs to fit pool id in 32 bits */
4039
4040         if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4041                 rc = -EIO;
4042                 goto err_out_client;
4043         }
4044
4045         rbd_dev = rbd_dev_create(rbdc, spec);
4046         if (!rbd_dev)
4047                 goto err_out_client;
4048         rbdc = NULL;            /* rbd_dev now owns this */
4049         spec = NULL;            /* rbd_dev now owns this */
4050
4051         rbd_dev->mapping.read_only = rbd_opts->read_only;
4052         kfree(rbd_opts);
4053         rbd_opts = NULL;        /* done with this */
4054
4055         rc = rbd_dev_probe(rbd_dev);
4056         if (rc < 0)
4057                 goto err_out_rbd_dev;
4058
4059         return count;
4060 err_out_rbd_dev:
4061         rbd_dev_destroy(rbd_dev);
4062 err_out_client:
4063         rbd_put_client(rbdc);
4064 err_out_args:
4065         if (ceph_opts)
4066                 ceph_destroy_options(ceph_opts);
4067         kfree(rbd_opts);
4068         rbd_spec_put(spec);
4069 err_out_module:
4070         module_put(THIS_MODULE);
4071
4072         dout("Error adding device %s\n", buf);
4073
4074         return (ssize_t) rc;
4075 }
4076
4077 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4078 {
4079         struct list_head *tmp;
4080         struct rbd_device *rbd_dev;
4081
4082         spin_lock(&rbd_dev_list_lock);
4083         list_for_each(tmp, &rbd_dev_list) {
4084                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4085                 if (rbd_dev->dev_id == dev_id) {
4086                         spin_unlock(&rbd_dev_list_lock);
4087                         return rbd_dev;
4088                 }
4089         }
4090         spin_unlock(&rbd_dev_list_lock);
4091         return NULL;
4092 }
4093
4094 static void rbd_dev_release(struct device *dev)
4095 {
4096         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4097
4098         if (rbd_dev->watch_event)
4099                 rbd_dev_header_watch_sync(rbd_dev, 0);
4100
4101         /* clean up and free blkdev */
4102         rbd_free_disk(rbd_dev);
4103         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4104
4105         /* release allocated disk header fields */
4106         rbd_header_free(&rbd_dev->header);
4107
4108         /* done with the id, and with the rbd_dev */
4109         rbd_dev_id_put(rbd_dev);
4110         rbd_assert(rbd_dev->rbd_client != NULL);
4111         rbd_dev_destroy(rbd_dev);
4112
4113         /* release module ref */
4114         module_put(THIS_MODULE);
4115 }
4116
4117 static ssize_t rbd_remove(struct bus_type *bus,
4118                           const char *buf,
4119                           size_t count)
4120 {
4121         struct rbd_device *rbd_dev = NULL;
4122         int target_id, rc;
4123         unsigned long ul;
4124         int ret = count;
4125
4126         rc = strict_strtoul(buf, 10, &ul);
4127         if (rc)
4128                 return rc;
4129
4130         /* convert to int; abort if we lost anything in the conversion */
4131         target_id = (int) ul;
4132         if (target_id != ul)
4133                 return -EINVAL;
4134
4135         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4136
4137         rbd_dev = __rbd_get_dev(target_id);
4138         if (!rbd_dev) {
4139                 ret = -ENOENT;
4140                 goto done;
4141         }
4142
4143         spin_lock_irq(&rbd_dev->lock);
4144         if (rbd_dev->open_count)
4145                 ret = -EBUSY;
4146         else
4147                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4148         spin_unlock_irq(&rbd_dev->lock);
4149         if (ret < 0)
4150                 goto done;
4151
4152         rbd_remove_all_snaps(rbd_dev);
4153         rbd_bus_del_dev(rbd_dev);
4154
4155 done:
4156         mutex_unlock(&ctl_mutex);
4157
4158         return ret;
4159 }
4160
4161 /*
4162  * create control files in sysfs
4163  * /sys/bus/rbd/...
4164  */
4165 static int rbd_sysfs_init(void)
4166 {
4167         int ret;
4168
4169         ret = device_register(&rbd_root_dev);
4170         if (ret < 0)
4171                 return ret;
4172
4173         ret = bus_register(&rbd_bus_type);
4174         if (ret < 0)
4175                 device_unregister(&rbd_root_dev);
4176
4177         return ret;
4178 }
4179
4180 static void rbd_sysfs_cleanup(void)
4181 {
4182         bus_unregister(&rbd_bus_type);
4183         device_unregister(&rbd_root_dev);
4184 }
4185
4186 static int __init rbd_init(void)
4187 {
4188         int rc;
4189
4190         if (!libceph_compatible(NULL)) {
4191                 rbd_warn(NULL, "libceph incompatibility (quitting)");
4192
4193                 return -EINVAL;
4194         }
4195         rc = rbd_sysfs_init();
4196         if (rc)
4197                 return rc;
4198         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4199         return 0;
4200 }
4201
4202 static void __exit rbd_exit(void)
4203 {
4204         rbd_sysfs_cleanup();
4205 }
4206
4207 module_init(rbd_init);
4208 module_exit(rbd_exit);
4209
4210 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4211 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4212 MODULE_DESCRIPTION("rados block device");
4213
4214 /* following authorship retained from original osdblk.c */
4215 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4216
4217 MODULE_LICENSE("GPL");