]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
libceph: define source request op functions
[~andy/linux] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG       /* Activate rbd_assert() calls */
45
46 /*
47  * The basic unit of block I/O is a sector.  It is interpreted in a
48  * number of contexts in Linux (blk, bio, genhd), but the default is
49  * universally 512 bytes.  These symbols are just slightly more
50  * meaningful than the bare numbers they represent.
51  */
52 #define SECTOR_SHIFT    9
53 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN   \
62                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME      "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX    64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX  64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING      1
77
78 /* Features supported by this (client software) implementation. */
79
80 #define RBD_FEATURES_ALL          (0)
81
82 /*
83  * An RBD device name will be "rbd#", where the "rbd" comes from
84  * RBD_DRV_NAME above, and # is a unique integer identifier.
85  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
86  * enough to hold all possible device names.
87  */
88 #define DEV_NAME_LEN            32
89 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
90
91 /*
92  * block device image metadata (in-memory version)
93  */
94 struct rbd_image_header {
95         /* These four fields never change for a given rbd image */
96         char *object_prefix;
97         u64 features;
98         __u8 obj_order;
99         __u8 crypt_type;
100         __u8 comp_type;
101
102         /* The remaining fields need to be updated occasionally */
103         u64 image_size;
104         struct ceph_snap_context *snapc;
105         char *snap_names;
106         u64 *snap_sizes;
107
108         u64 obj_version;
109 };
110
111 /*
112  * An rbd image specification.
113  *
114  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
115  * identify an image.  Each rbd_dev structure includes a pointer to
116  * an rbd_spec structure that encapsulates this identity.
117  *
118  * Each of the id's in an rbd_spec has an associated name.  For a
119  * user-mapped image, the names are supplied and the id's associated
120  * with them are looked up.  For a layered image, a parent image is
121  * defined by the tuple, and the names are looked up.
122  *
123  * An rbd_dev structure contains a parent_spec pointer which is
124  * non-null if the image it represents is a child in a layered
125  * image.  This pointer will refer to the rbd_spec structure used
126  * by the parent rbd_dev for its own identity (i.e., the structure
127  * is shared between the parent and child).
128  *
129  * Since these structures are populated once, during the discovery
130  * phase of image construction, they are effectively immutable so
131  * we make no effort to synchronize access to them.
132  *
133  * Note that code herein does not assume the image name is known (it
134  * could be a null pointer).
135  */
136 struct rbd_spec {
137         u64             pool_id;
138         char            *pool_name;
139
140         char            *image_id;
141         char            *image_name;
142
143         u64             snap_id;
144         char            *snap_name;
145
146         struct kref     kref;
147 };
148
149 /*
150  * an instance of the client.  multiple devices may share an rbd client.
151  */
152 struct rbd_client {
153         struct ceph_client      *client;
154         struct kref             kref;
155         struct list_head        node;
156 };
157
158 struct rbd_img_request;
159 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
160
161 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
162
163 struct rbd_obj_request;
164 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
165
166 enum obj_request_type {
167         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
168 };
169
170 struct rbd_obj_request {
171         const char              *object_name;
172         u64                     offset;         /* object start byte */
173         u64                     length;         /* bytes from offset */
174
175         struct rbd_img_request  *img_request;
176         struct list_head        links;          /* img_request->obj_requests */
177         u32                     which;          /* posn image request list */
178
179         enum obj_request_type   type;
180         union {
181                 struct bio      *bio_list;
182                 struct {
183                         struct page     **pages;
184                         u32             page_count;
185                 };
186         };
187
188         struct ceph_osd_request *osd_req;
189
190         u64                     xferred;        /* bytes transferred */
191         u64                     version;
192         int                     result;
193         atomic_t                done;
194
195         rbd_obj_callback_t      callback;
196         struct completion       completion;
197
198         struct kref             kref;
199 };
200
201 struct rbd_img_request {
202         struct request          *rq;
203         struct rbd_device       *rbd_dev;
204         u64                     offset; /* starting image byte offset */
205         u64                     length; /* byte count from offset */
206         bool                    write_request;  /* false for read */
207         union {
208                 struct ceph_snap_context *snapc;        /* for writes */
209                 u64             snap_id;                /* for reads */
210         };
211         spinlock_t              completion_lock;/* protects next_completion */
212         u32                     next_completion;
213         rbd_img_callback_t      callback;
214
215         u32                     obj_request_count;
216         struct list_head        obj_requests;   /* rbd_obj_request structs */
217
218         struct kref             kref;
219 };
220
221 #define for_each_obj_request(ireq, oreq) \
222         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
223 #define for_each_obj_request_from(ireq, oreq) \
224         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
225 #define for_each_obj_request_safe(ireq, oreq, n) \
226         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
227
228 struct rbd_snap {
229         struct  device          dev;
230         const char              *name;
231         u64                     size;
232         struct list_head        node;
233         u64                     id;
234         u64                     features;
235 };
236
237 struct rbd_mapping {
238         u64                     size;
239         u64                     features;
240         bool                    read_only;
241 };
242
243 /*
244  * a single device
245  */
246 struct rbd_device {
247         int                     dev_id;         /* blkdev unique id */
248
249         int                     major;          /* blkdev assigned major */
250         struct gendisk          *disk;          /* blkdev's gendisk and rq */
251
252         u32                     image_format;   /* Either 1 or 2 */
253         struct rbd_client       *rbd_client;
254
255         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
256
257         spinlock_t              lock;           /* queue, flags, open_count */
258
259         struct rbd_image_header header;
260         unsigned long           flags;          /* possibly lock protected */
261         struct rbd_spec         *spec;
262
263         char                    *header_name;
264
265         struct ceph_file_layout layout;
266
267         struct ceph_osd_event   *watch_event;
268         struct rbd_obj_request  *watch_request;
269
270         struct rbd_spec         *parent_spec;
271         u64                     parent_overlap;
272
273         /* protects updating the header */
274         struct rw_semaphore     header_rwsem;
275
276         struct rbd_mapping      mapping;
277
278         struct list_head        node;
279
280         /* list of snapshots */
281         struct list_head        snaps;
282
283         /* sysfs related */
284         struct device           dev;
285         unsigned long           open_count;     /* protected by lock */
286 };
287
288 /*
289  * Flag bits for rbd_dev->flags.  If atomicity is required,
290  * rbd_dev->lock is used to protect access.
291  *
292  * Currently, only the "removing" flag (which is coupled with the
293  * "open_count" field) requires atomic access.
294  */
295 enum rbd_dev_flags {
296         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
297         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
298 };
299
300 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
301
302 static LIST_HEAD(rbd_dev_list);    /* devices */
303 static DEFINE_SPINLOCK(rbd_dev_list_lock);
304
305 static LIST_HEAD(rbd_client_list);              /* clients */
306 static DEFINE_SPINLOCK(rbd_client_list_lock);
307
308 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
309 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
310
311 static void rbd_dev_release(struct device *dev);
312 static void rbd_remove_snap_dev(struct rbd_snap *snap);
313
314 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
315                        size_t count);
316 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
317                           size_t count);
318
319 static struct bus_attribute rbd_bus_attrs[] = {
320         __ATTR(add, S_IWUSR, NULL, rbd_add),
321         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
322         __ATTR_NULL
323 };
324
325 static struct bus_type rbd_bus_type = {
326         .name           = "rbd",
327         .bus_attrs      = rbd_bus_attrs,
328 };
329
330 static void rbd_root_dev_release(struct device *dev)
331 {
332 }
333
334 static struct device rbd_root_dev = {
335         .init_name =    "rbd",
336         .release =      rbd_root_dev_release,
337 };
338
339 static __printf(2, 3)
340 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
341 {
342         struct va_format vaf;
343         va_list args;
344
345         va_start(args, fmt);
346         vaf.fmt = fmt;
347         vaf.va = &args;
348
349         if (!rbd_dev)
350                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
351         else if (rbd_dev->disk)
352                 printk(KERN_WARNING "%s: %s: %pV\n",
353                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
354         else if (rbd_dev->spec && rbd_dev->spec->image_name)
355                 printk(KERN_WARNING "%s: image %s: %pV\n",
356                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
357         else if (rbd_dev->spec && rbd_dev->spec->image_id)
358                 printk(KERN_WARNING "%s: id %s: %pV\n",
359                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
360         else    /* punt */
361                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
362                         RBD_DRV_NAME, rbd_dev, &vaf);
363         va_end(args);
364 }
365
366 #ifdef RBD_DEBUG
367 #define rbd_assert(expr)                                                \
368                 if (unlikely(!(expr))) {                                \
369                         printk(KERN_ERR "\nAssertion failure in %s() "  \
370                                                 "at line %d:\n\n"       \
371                                         "\trbd_assert(%s);\n\n",        \
372                                         __func__, __LINE__, #expr);     \
373                         BUG();                                          \
374                 }
375 #else /* !RBD_DEBUG */
376 #  define rbd_assert(expr)      ((void) 0)
377 #endif /* !RBD_DEBUG */
378
379 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
380 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
381
382 static int rbd_open(struct block_device *bdev, fmode_t mode)
383 {
384         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
385         bool removing = false;
386
387         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
388                 return -EROFS;
389
390         spin_lock_irq(&rbd_dev->lock);
391         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
392                 removing = true;
393         else
394                 rbd_dev->open_count++;
395         spin_unlock_irq(&rbd_dev->lock);
396         if (removing)
397                 return -ENOENT;
398
399         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
400         (void) get_device(&rbd_dev->dev);
401         set_device_ro(bdev, rbd_dev->mapping.read_only);
402         mutex_unlock(&ctl_mutex);
403
404         return 0;
405 }
406
407 static int rbd_release(struct gendisk *disk, fmode_t mode)
408 {
409         struct rbd_device *rbd_dev = disk->private_data;
410         unsigned long open_count_before;
411
412         spin_lock_irq(&rbd_dev->lock);
413         open_count_before = rbd_dev->open_count--;
414         spin_unlock_irq(&rbd_dev->lock);
415         rbd_assert(open_count_before > 0);
416
417         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
418         put_device(&rbd_dev->dev);
419         mutex_unlock(&ctl_mutex);
420
421         return 0;
422 }
423
424 static const struct block_device_operations rbd_bd_ops = {
425         .owner                  = THIS_MODULE,
426         .open                   = rbd_open,
427         .release                = rbd_release,
428 };
429
430 /*
431  * Initialize an rbd client instance.
432  * We own *ceph_opts.
433  */
434 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
435 {
436         struct rbd_client *rbdc;
437         int ret = -ENOMEM;
438
439         dout("%s:\n", __func__);
440         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
441         if (!rbdc)
442                 goto out_opt;
443
444         kref_init(&rbdc->kref);
445         INIT_LIST_HEAD(&rbdc->node);
446
447         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448
449         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
450         if (IS_ERR(rbdc->client))
451                 goto out_mutex;
452         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
453
454         ret = ceph_open_session(rbdc->client);
455         if (ret < 0)
456                 goto out_err;
457
458         spin_lock(&rbd_client_list_lock);
459         list_add_tail(&rbdc->node, &rbd_client_list);
460         spin_unlock(&rbd_client_list_lock);
461
462         mutex_unlock(&ctl_mutex);
463         dout("%s: rbdc %p\n", __func__, rbdc);
464
465         return rbdc;
466
467 out_err:
468         ceph_destroy_client(rbdc->client);
469 out_mutex:
470         mutex_unlock(&ctl_mutex);
471         kfree(rbdc);
472 out_opt:
473         if (ceph_opts)
474                 ceph_destroy_options(ceph_opts);
475         dout("%s: error %d\n", __func__, ret);
476
477         return ERR_PTR(ret);
478 }
479
480 /*
481  * Find a ceph client with specific addr and configuration.  If
482  * found, bump its reference count.
483  */
484 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
485 {
486         struct rbd_client *client_node;
487         bool found = false;
488
489         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
490                 return NULL;
491
492         spin_lock(&rbd_client_list_lock);
493         list_for_each_entry(client_node, &rbd_client_list, node) {
494                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
495                         kref_get(&client_node->kref);
496                         found = true;
497                         break;
498                 }
499         }
500         spin_unlock(&rbd_client_list_lock);
501
502         return found ? client_node : NULL;
503 }
504
505 /*
506  * mount options
507  */
508 enum {
509         Opt_last_int,
510         /* int args above */
511         Opt_last_string,
512         /* string args above */
513         Opt_read_only,
514         Opt_read_write,
515         /* Boolean args above */
516         Opt_last_bool,
517 };
518
519 static match_table_t rbd_opts_tokens = {
520         /* int args above */
521         /* string args above */
522         {Opt_read_only, "read_only"},
523         {Opt_read_only, "ro"},          /* Alternate spelling */
524         {Opt_read_write, "read_write"},
525         {Opt_read_write, "rw"},         /* Alternate spelling */
526         /* Boolean args above */
527         {-1, NULL}
528 };
529
530 struct rbd_options {
531         bool    read_only;
532 };
533
534 #define RBD_READ_ONLY_DEFAULT   false
535
536 static int parse_rbd_opts_token(char *c, void *private)
537 {
538         struct rbd_options *rbd_opts = private;
539         substring_t argstr[MAX_OPT_ARGS];
540         int token, intval, ret;
541
542         token = match_token(c, rbd_opts_tokens, argstr);
543         if (token < 0)
544                 return -EINVAL;
545
546         if (token < Opt_last_int) {
547                 ret = match_int(&argstr[0], &intval);
548                 if (ret < 0) {
549                         pr_err("bad mount option arg (not int) "
550                                "at '%s'\n", c);
551                         return ret;
552                 }
553                 dout("got int token %d val %d\n", token, intval);
554         } else if (token > Opt_last_int && token < Opt_last_string) {
555                 dout("got string token %d val %s\n", token,
556                      argstr[0].from);
557         } else if (token > Opt_last_string && token < Opt_last_bool) {
558                 dout("got Boolean token %d\n", token);
559         } else {
560                 dout("got token %d\n", token);
561         }
562
563         switch (token) {
564         case Opt_read_only:
565                 rbd_opts->read_only = true;
566                 break;
567         case Opt_read_write:
568                 rbd_opts->read_only = false;
569                 break;
570         default:
571                 rbd_assert(false);
572                 break;
573         }
574         return 0;
575 }
576
577 /*
578  * Get a ceph client with specific addr and configuration, if one does
579  * not exist create it.
580  */
581 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
582 {
583         struct rbd_client *rbdc;
584
585         rbdc = rbd_client_find(ceph_opts);
586         if (rbdc)       /* using an existing client */
587                 ceph_destroy_options(ceph_opts);
588         else
589                 rbdc = rbd_client_create(ceph_opts);
590
591         return rbdc;
592 }
593
594 /*
595  * Destroy ceph client
596  *
597  * Caller must hold rbd_client_list_lock.
598  */
599 static void rbd_client_release(struct kref *kref)
600 {
601         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
602
603         dout("%s: rbdc %p\n", __func__, rbdc);
604         spin_lock(&rbd_client_list_lock);
605         list_del(&rbdc->node);
606         spin_unlock(&rbd_client_list_lock);
607
608         ceph_destroy_client(rbdc->client);
609         kfree(rbdc);
610 }
611
612 /*
613  * Drop reference to ceph client node. If it's not referenced anymore, release
614  * it.
615  */
616 static void rbd_put_client(struct rbd_client *rbdc)
617 {
618         if (rbdc)
619                 kref_put(&rbdc->kref, rbd_client_release);
620 }
621
622 static bool rbd_image_format_valid(u32 image_format)
623 {
624         return image_format == 1 || image_format == 2;
625 }
626
627 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
628 {
629         size_t size;
630         u32 snap_count;
631
632         /* The header has to start with the magic rbd header text */
633         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
634                 return false;
635
636         /* The bio layer requires at least sector-sized I/O */
637
638         if (ondisk->options.order < SECTOR_SHIFT)
639                 return false;
640
641         /* If we use u64 in a few spots we may be able to loosen this */
642
643         if (ondisk->options.order > 8 * sizeof (int) - 1)
644                 return false;
645
646         /*
647          * The size of a snapshot header has to fit in a size_t, and
648          * that limits the number of snapshots.
649          */
650         snap_count = le32_to_cpu(ondisk->snap_count);
651         size = SIZE_MAX - sizeof (struct ceph_snap_context);
652         if (snap_count > size / sizeof (__le64))
653                 return false;
654
655         /*
656          * Not only that, but the size of the entire the snapshot
657          * header must also be representable in a size_t.
658          */
659         size -= snap_count * sizeof (__le64);
660         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
661                 return false;
662
663         return true;
664 }
665
666 /*
667  * Create a new header structure, translate header format from the on-disk
668  * header.
669  */
670 static int rbd_header_from_disk(struct rbd_image_header *header,
671                                  struct rbd_image_header_ondisk *ondisk)
672 {
673         u32 snap_count;
674         size_t len;
675         size_t size;
676         u32 i;
677
678         memset(header, 0, sizeof (*header));
679
680         snap_count = le32_to_cpu(ondisk->snap_count);
681
682         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
683         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
684         if (!header->object_prefix)
685                 return -ENOMEM;
686         memcpy(header->object_prefix, ondisk->object_prefix, len);
687         header->object_prefix[len] = '\0';
688
689         if (snap_count) {
690                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
691
692                 /* Save a copy of the snapshot names */
693
694                 if (snap_names_len > (u64) SIZE_MAX)
695                         return -EIO;
696                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
697                 if (!header->snap_names)
698                         goto out_err;
699                 /*
700                  * Note that rbd_dev_v1_header_read() guarantees
701                  * the ondisk buffer we're working with has
702                  * snap_names_len bytes beyond the end of the
703                  * snapshot id array, this memcpy() is safe.
704                  */
705                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
706                         snap_names_len);
707
708                 /* Record each snapshot's size */
709
710                 size = snap_count * sizeof (*header->snap_sizes);
711                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
712                 if (!header->snap_sizes)
713                         goto out_err;
714                 for (i = 0; i < snap_count; i++)
715                         header->snap_sizes[i] =
716                                 le64_to_cpu(ondisk->snaps[i].image_size);
717         } else {
718                 WARN_ON(ondisk->snap_names_len);
719                 header->snap_names = NULL;
720                 header->snap_sizes = NULL;
721         }
722
723         header->features = 0;   /* No features support in v1 images */
724         header->obj_order = ondisk->options.order;
725         header->crypt_type = ondisk->options.crypt_type;
726         header->comp_type = ondisk->options.comp_type;
727
728         /* Allocate and fill in the snapshot context */
729
730         header->image_size = le64_to_cpu(ondisk->image_size);
731         size = sizeof (struct ceph_snap_context);
732         size += snap_count * sizeof (header->snapc->snaps[0]);
733         header->snapc = kzalloc(size, GFP_KERNEL);
734         if (!header->snapc)
735                 goto out_err;
736
737         atomic_set(&header->snapc->nref, 1);
738         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
739         header->snapc->num_snaps = snap_count;
740         for (i = 0; i < snap_count; i++)
741                 header->snapc->snaps[i] =
742                         le64_to_cpu(ondisk->snaps[i].id);
743
744         return 0;
745
746 out_err:
747         kfree(header->snap_sizes);
748         header->snap_sizes = NULL;
749         kfree(header->snap_names);
750         header->snap_names = NULL;
751         kfree(header->object_prefix);
752         header->object_prefix = NULL;
753
754         return -ENOMEM;
755 }
756
757 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
758 {
759         struct rbd_snap *snap;
760
761         if (snap_id == CEPH_NOSNAP)
762                 return RBD_SNAP_HEAD_NAME;
763
764         list_for_each_entry(snap, &rbd_dev->snaps, node)
765                 if (snap_id == snap->id)
766                         return snap->name;
767
768         return NULL;
769 }
770
771 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
772 {
773
774         struct rbd_snap *snap;
775
776         list_for_each_entry(snap, &rbd_dev->snaps, node) {
777                 if (!strcmp(snap_name, snap->name)) {
778                         rbd_dev->spec->snap_id = snap->id;
779                         rbd_dev->mapping.size = snap->size;
780                         rbd_dev->mapping.features = snap->features;
781
782                         return 0;
783                 }
784         }
785
786         return -ENOENT;
787 }
788
789 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
790 {
791         int ret;
792
793         if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
794                     sizeof (RBD_SNAP_HEAD_NAME))) {
795                 rbd_dev->spec->snap_id = CEPH_NOSNAP;
796                 rbd_dev->mapping.size = rbd_dev->header.image_size;
797                 rbd_dev->mapping.features = rbd_dev->header.features;
798                 ret = 0;
799         } else {
800                 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
801                 if (ret < 0)
802                         goto done;
803                 rbd_dev->mapping.read_only = true;
804         }
805         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
806
807 done:
808         return ret;
809 }
810
811 static void rbd_header_free(struct rbd_image_header *header)
812 {
813         kfree(header->object_prefix);
814         header->object_prefix = NULL;
815         kfree(header->snap_sizes);
816         header->snap_sizes = NULL;
817         kfree(header->snap_names);
818         header->snap_names = NULL;
819         ceph_put_snap_context(header->snapc);
820         header->snapc = NULL;
821 }
822
823 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
824 {
825         char *name;
826         u64 segment;
827         int ret;
828
829         name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
830         if (!name)
831                 return NULL;
832         segment = offset >> rbd_dev->header.obj_order;
833         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
834                         rbd_dev->header.object_prefix, segment);
835         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
836                 pr_err("error formatting segment name for #%llu (%d)\n",
837                         segment, ret);
838                 kfree(name);
839                 name = NULL;
840         }
841
842         return name;
843 }
844
845 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
846 {
847         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
848
849         return offset & (segment_size - 1);
850 }
851
852 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
853                                 u64 offset, u64 length)
854 {
855         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
856
857         offset &= segment_size - 1;
858
859         rbd_assert(length <= U64_MAX - offset);
860         if (offset + length > segment_size)
861                 length = segment_size - offset;
862
863         return length;
864 }
865
866 /*
867  * returns the size of an object in the image
868  */
869 static u64 rbd_obj_bytes(struct rbd_image_header *header)
870 {
871         return 1 << header->obj_order;
872 }
873
874 /*
875  * bio helpers
876  */
877
878 static void bio_chain_put(struct bio *chain)
879 {
880         struct bio *tmp;
881
882         while (chain) {
883                 tmp = chain;
884                 chain = chain->bi_next;
885                 bio_put(tmp);
886         }
887 }
888
889 /*
890  * zeros a bio chain, starting at specific offset
891  */
892 static void zero_bio_chain(struct bio *chain, int start_ofs)
893 {
894         struct bio_vec *bv;
895         unsigned long flags;
896         void *buf;
897         int i;
898         int pos = 0;
899
900         while (chain) {
901                 bio_for_each_segment(bv, chain, i) {
902                         if (pos + bv->bv_len > start_ofs) {
903                                 int remainder = max(start_ofs - pos, 0);
904                                 buf = bvec_kmap_irq(bv, &flags);
905                                 memset(buf + remainder, 0,
906                                        bv->bv_len - remainder);
907                                 bvec_kunmap_irq(buf, &flags);
908                         }
909                         pos += bv->bv_len;
910                 }
911
912                 chain = chain->bi_next;
913         }
914 }
915
916 /*
917  * Clone a portion of a bio, starting at the given byte offset
918  * and continuing for the number of bytes indicated.
919  */
920 static struct bio *bio_clone_range(struct bio *bio_src,
921                                         unsigned int offset,
922                                         unsigned int len,
923                                         gfp_t gfpmask)
924 {
925         struct bio_vec *bv;
926         unsigned int resid;
927         unsigned short idx;
928         unsigned int voff;
929         unsigned short end_idx;
930         unsigned short vcnt;
931         struct bio *bio;
932
933         /* Handle the easy case for the caller */
934
935         if (!offset && len == bio_src->bi_size)
936                 return bio_clone(bio_src, gfpmask);
937
938         if (WARN_ON_ONCE(!len))
939                 return NULL;
940         if (WARN_ON_ONCE(len > bio_src->bi_size))
941                 return NULL;
942         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
943                 return NULL;
944
945         /* Find first affected segment... */
946
947         resid = offset;
948         __bio_for_each_segment(bv, bio_src, idx, 0) {
949                 if (resid < bv->bv_len)
950                         break;
951                 resid -= bv->bv_len;
952         }
953         voff = resid;
954
955         /* ...and the last affected segment */
956
957         resid += len;
958         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
959                 if (resid <= bv->bv_len)
960                         break;
961                 resid -= bv->bv_len;
962         }
963         vcnt = end_idx - idx + 1;
964
965         /* Build the clone */
966
967         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
968         if (!bio)
969                 return NULL;    /* ENOMEM */
970
971         bio->bi_bdev = bio_src->bi_bdev;
972         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
973         bio->bi_rw = bio_src->bi_rw;
974         bio->bi_flags |= 1 << BIO_CLONED;
975
976         /*
977          * Copy over our part of the bio_vec, then update the first
978          * and last (or only) entries.
979          */
980         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
981                         vcnt * sizeof (struct bio_vec));
982         bio->bi_io_vec[0].bv_offset += voff;
983         if (vcnt > 1) {
984                 bio->bi_io_vec[0].bv_len -= voff;
985                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
986         } else {
987                 bio->bi_io_vec[0].bv_len = len;
988         }
989
990         bio->bi_vcnt = vcnt;
991         bio->bi_size = len;
992         bio->bi_idx = 0;
993
994         return bio;
995 }
996
997 /*
998  * Clone a portion of a bio chain, starting at the given byte offset
999  * into the first bio in the source chain and continuing for the
1000  * number of bytes indicated.  The result is another bio chain of
1001  * exactly the given length, or a null pointer on error.
1002  *
1003  * The bio_src and offset parameters are both in-out.  On entry they
1004  * refer to the first source bio and the offset into that bio where
1005  * the start of data to be cloned is located.
1006  *
1007  * On return, bio_src is updated to refer to the bio in the source
1008  * chain that contains first un-cloned byte, and *offset will
1009  * contain the offset of that byte within that bio.
1010  */
1011 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1012                                         unsigned int *offset,
1013                                         unsigned int len,
1014                                         gfp_t gfpmask)
1015 {
1016         struct bio *bi = *bio_src;
1017         unsigned int off = *offset;
1018         struct bio *chain = NULL;
1019         struct bio **end;
1020
1021         /* Build up a chain of clone bios up to the limit */
1022
1023         if (!bi || off >= bi->bi_size || !len)
1024                 return NULL;            /* Nothing to clone */
1025
1026         end = &chain;
1027         while (len) {
1028                 unsigned int bi_size;
1029                 struct bio *bio;
1030
1031                 if (!bi) {
1032                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1033                         goto out_err;   /* EINVAL; ran out of bio's */
1034                 }
1035                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1036                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1037                 if (!bio)
1038                         goto out_err;   /* ENOMEM */
1039
1040                 *end = bio;
1041                 end = &bio->bi_next;
1042
1043                 off += bi_size;
1044                 if (off == bi->bi_size) {
1045                         bi = bi->bi_next;
1046                         off = 0;
1047                 }
1048                 len -= bi_size;
1049         }
1050         *bio_src = bi;
1051         *offset = off;
1052
1053         return chain;
1054 out_err:
1055         bio_chain_put(chain);
1056
1057         return NULL;
1058 }
1059
1060 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1061 {
1062         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1063                 atomic_read(&obj_request->kref.refcount));
1064         kref_get(&obj_request->kref);
1065 }
1066
1067 static void rbd_obj_request_destroy(struct kref *kref);
1068 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1069 {
1070         rbd_assert(obj_request != NULL);
1071         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1072                 atomic_read(&obj_request->kref.refcount));
1073         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1074 }
1075
1076 static void rbd_img_request_get(struct rbd_img_request *img_request)
1077 {
1078         dout("%s: img %p (was %d)\n", __func__, img_request,
1079                 atomic_read(&img_request->kref.refcount));
1080         kref_get(&img_request->kref);
1081 }
1082
1083 static void rbd_img_request_destroy(struct kref *kref);
1084 static void rbd_img_request_put(struct rbd_img_request *img_request)
1085 {
1086         rbd_assert(img_request != NULL);
1087         dout("%s: img %p (was %d)\n", __func__, img_request,
1088                 atomic_read(&img_request->kref.refcount));
1089         kref_put(&img_request->kref, rbd_img_request_destroy);
1090 }
1091
1092 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1093                                         struct rbd_obj_request *obj_request)
1094 {
1095         rbd_assert(obj_request->img_request == NULL);
1096
1097         rbd_obj_request_get(obj_request);
1098         obj_request->img_request = img_request;
1099         obj_request->which = img_request->obj_request_count;
1100         rbd_assert(obj_request->which != BAD_WHICH);
1101         img_request->obj_request_count++;
1102         list_add_tail(&obj_request->links, &img_request->obj_requests);
1103         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1104                 obj_request->which);
1105 }
1106
1107 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1108                                         struct rbd_obj_request *obj_request)
1109 {
1110         rbd_assert(obj_request->which != BAD_WHICH);
1111
1112         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1113                 obj_request->which);
1114         list_del(&obj_request->links);
1115         rbd_assert(img_request->obj_request_count > 0);
1116         img_request->obj_request_count--;
1117         rbd_assert(obj_request->which == img_request->obj_request_count);
1118         obj_request->which = BAD_WHICH;
1119         rbd_assert(obj_request->img_request == img_request);
1120         obj_request->img_request = NULL;
1121         obj_request->callback = NULL;
1122         rbd_obj_request_put(obj_request);
1123 }
1124
1125 static bool obj_request_type_valid(enum obj_request_type type)
1126 {
1127         switch (type) {
1128         case OBJ_REQUEST_NODATA:
1129         case OBJ_REQUEST_BIO:
1130         case OBJ_REQUEST_PAGES:
1131                 return true;
1132         default:
1133                 return false;
1134         }
1135 }
1136
1137 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1138                                 struct rbd_obj_request *obj_request)
1139 {
1140         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1141
1142         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1143 }
1144
1145 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1146 {
1147         dout("%s: img %p\n", __func__, img_request);
1148         if (img_request->callback)
1149                 img_request->callback(img_request);
1150         else
1151                 rbd_img_request_put(img_request);
1152 }
1153
1154 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1155
1156 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1157 {
1158         dout("%s: obj %p\n", __func__, obj_request);
1159
1160         return wait_for_completion_interruptible(&obj_request->completion);
1161 }
1162
1163 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1164 {
1165         atomic_set(&obj_request->done, 0);
1166         smp_wmb();
1167 }
1168
1169 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1170 {
1171         int done;
1172
1173         done = atomic_inc_return(&obj_request->done);
1174         if (done > 1) {
1175                 struct rbd_img_request *img_request = obj_request->img_request;
1176                 struct rbd_device *rbd_dev;
1177
1178                 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1179                 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1180                         obj_request);
1181         }
1182 }
1183
1184 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1185 {
1186         smp_mb();
1187         return atomic_read(&obj_request->done) != 0;
1188 }
1189
1190 static void
1191 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1192 {
1193         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1194                 obj_request, obj_request->img_request, obj_request->result,
1195                 obj_request->xferred, obj_request->length);
1196         /*
1197          * ENOENT means a hole in the image.  We zero-fill the
1198          * entire length of the request.  A short read also implies
1199          * zero-fill to the end of the request.  Either way we
1200          * update the xferred count to indicate the whole request
1201          * was satisfied.
1202          */
1203         BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1204         if (obj_request->result == -ENOENT) {
1205                 zero_bio_chain(obj_request->bio_list, 0);
1206                 obj_request->result = 0;
1207                 obj_request->xferred = obj_request->length;
1208         } else if (obj_request->xferred < obj_request->length &&
1209                         !obj_request->result) {
1210                 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1211                 obj_request->xferred = obj_request->length;
1212         }
1213         obj_request_done_set(obj_request);
1214 }
1215
1216 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1217 {
1218         dout("%s: obj %p cb %p\n", __func__, obj_request,
1219                 obj_request->callback);
1220         if (obj_request->callback)
1221                 obj_request->callback(obj_request);
1222         else
1223                 complete_all(&obj_request->completion);
1224 }
1225
1226 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1227 {
1228         dout("%s: obj %p\n", __func__, obj_request);
1229         obj_request_done_set(obj_request);
1230 }
1231
1232 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1233 {
1234         dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1235                 obj_request->result, obj_request->xferred, obj_request->length);
1236         if (obj_request->img_request)
1237                 rbd_img_obj_request_read_callback(obj_request);
1238         else
1239                 obj_request_done_set(obj_request);
1240 }
1241
1242 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1243 {
1244         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1245                 obj_request->result, obj_request->length);
1246         /*
1247          * There is no such thing as a successful short write.
1248          * Our xferred value is the number of bytes transferred
1249          * back.  Set it to our originally-requested length.
1250          */
1251         obj_request->xferred = obj_request->length;
1252         obj_request_done_set(obj_request);
1253 }
1254
1255 /*
1256  * For a simple stat call there's nothing to do.  We'll do more if
1257  * this is part of a write sequence for a layered image.
1258  */
1259 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1260 {
1261         dout("%s: obj %p\n", __func__, obj_request);
1262         obj_request_done_set(obj_request);
1263 }
1264
1265 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1266                                 struct ceph_msg *msg)
1267 {
1268         struct rbd_obj_request *obj_request = osd_req->r_priv;
1269         u16 opcode;
1270
1271         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1272         rbd_assert(osd_req == obj_request->osd_req);
1273         rbd_assert(!!obj_request->img_request ^
1274                                 (obj_request->which == BAD_WHICH));
1275
1276         if (osd_req->r_result < 0)
1277                 obj_request->result = osd_req->r_result;
1278         obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1279
1280         WARN_ON(osd_req->r_num_ops != 1);       /* For now */
1281
1282         /*
1283          * We support a 64-bit length, but ultimately it has to be
1284          * passed to blk_end_request(), which takes an unsigned int.
1285          */
1286         obj_request->xferred = osd_req->r_reply_op_len[0];
1287         rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1288         opcode = osd_req->r_request_ops[0].op;
1289         switch (opcode) {
1290         case CEPH_OSD_OP_READ:
1291                 rbd_osd_read_callback(obj_request);
1292                 break;
1293         case CEPH_OSD_OP_WRITE:
1294                 rbd_osd_write_callback(obj_request);
1295                 break;
1296         case CEPH_OSD_OP_STAT:
1297                 rbd_osd_stat_callback(obj_request);
1298                 break;
1299         case CEPH_OSD_OP_CALL:
1300         case CEPH_OSD_OP_NOTIFY_ACK:
1301         case CEPH_OSD_OP_WATCH:
1302                 rbd_osd_trivial_callback(obj_request);
1303                 break;
1304         default:
1305                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1306                         obj_request->object_name, (unsigned short) opcode);
1307                 break;
1308         }
1309
1310         if (obj_request_done_test(obj_request))
1311                 rbd_obj_request_complete(obj_request);
1312 }
1313
1314 static struct ceph_osd_request *rbd_osd_req_create(
1315                                         struct rbd_device *rbd_dev,
1316                                         bool write_request,
1317                                         struct rbd_obj_request *obj_request,
1318                                         struct ceph_osd_req_op *op)
1319 {
1320         struct rbd_img_request *img_request = obj_request->img_request;
1321         struct ceph_snap_context *snapc = NULL;
1322         struct ceph_osd_client *osdc;
1323         struct ceph_osd_request *osd_req;
1324         struct ceph_osd_data *osd_data;
1325         struct timespec now;
1326         struct timespec *mtime;
1327         u64 snap_id = CEPH_NOSNAP;
1328         u64 offset = obj_request->offset;
1329         u64 length = obj_request->length;
1330
1331         if (img_request) {
1332                 rbd_assert(img_request->write_request == write_request);
1333                 if (img_request->write_request)
1334                         snapc = img_request->snapc;
1335                 else
1336                         snap_id = img_request->snap_id;
1337         }
1338
1339         /* Allocate and initialize the request, for the single op */
1340
1341         osdc = &rbd_dev->rbd_client->client->osdc;
1342         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1343         if (!osd_req)
1344                 return NULL;    /* ENOMEM */
1345         osd_data = write_request ? &osd_req->r_data_out : &osd_req->r_data_in;
1346
1347         rbd_assert(obj_request_type_valid(obj_request->type));
1348         switch (obj_request->type) {
1349         case OBJ_REQUEST_NODATA:
1350                 break;          /* Nothing to do */
1351         case OBJ_REQUEST_BIO:
1352                 rbd_assert(obj_request->bio_list != NULL);
1353                 osd_data->type = CEPH_OSD_DATA_TYPE_BIO;
1354                 osd_data->bio = obj_request->bio_list;
1355                 break;
1356         case OBJ_REQUEST_PAGES:
1357                 osd_data->type = CEPH_OSD_DATA_TYPE_PAGES;
1358                 osd_data->pages = obj_request->pages;
1359                 osd_data->length = obj_request->length;
1360                 osd_data->alignment = offset & ~PAGE_MASK;
1361                 osd_data->pages_from_pool = false;
1362                 osd_data->own_pages = false;
1363                 break;
1364         }
1365
1366         if (write_request) {
1367                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1368                 now = CURRENT_TIME;
1369                 mtime = &now;
1370         } else {
1371                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1372                 mtime = NULL;   /* not needed for reads */
1373                 offset = 0;     /* These are not used... */
1374                 length = 0;     /* ...for osd read requests */
1375         }
1376
1377         osd_req->r_callback = rbd_osd_req_callback;
1378         osd_req->r_priv = obj_request;
1379
1380         osd_req->r_oid_len = strlen(obj_request->object_name);
1381         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1382         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1383
1384         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1385
1386         /* osd_req will get its own reference to snapc (if non-null) */
1387
1388         ceph_osdc_build_request(osd_req, offset, 1, op,
1389                                 snapc, snap_id, mtime);
1390
1391         return osd_req;
1392 }
1393
1394 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1395 {
1396         ceph_osdc_put_request(osd_req);
1397 }
1398
1399 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1400
1401 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1402                                                 u64 offset, u64 length,
1403                                                 enum obj_request_type type)
1404 {
1405         struct rbd_obj_request *obj_request;
1406         size_t size;
1407         char *name;
1408
1409         rbd_assert(obj_request_type_valid(type));
1410
1411         size = strlen(object_name) + 1;
1412         obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1413         if (!obj_request)
1414                 return NULL;
1415
1416         name = (char *)(obj_request + 1);
1417         obj_request->object_name = memcpy(name, object_name, size);
1418         obj_request->offset = offset;
1419         obj_request->length = length;
1420         obj_request->which = BAD_WHICH;
1421         obj_request->type = type;
1422         INIT_LIST_HEAD(&obj_request->links);
1423         obj_request_done_init(obj_request);
1424         init_completion(&obj_request->completion);
1425         kref_init(&obj_request->kref);
1426
1427         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1428                 offset, length, (int)type, obj_request);
1429
1430         return obj_request;
1431 }
1432
1433 static void rbd_obj_request_destroy(struct kref *kref)
1434 {
1435         struct rbd_obj_request *obj_request;
1436
1437         obj_request = container_of(kref, struct rbd_obj_request, kref);
1438
1439         dout("%s: obj %p\n", __func__, obj_request);
1440
1441         rbd_assert(obj_request->img_request == NULL);
1442         rbd_assert(obj_request->which == BAD_WHICH);
1443
1444         if (obj_request->osd_req)
1445                 rbd_osd_req_destroy(obj_request->osd_req);
1446
1447         rbd_assert(obj_request_type_valid(obj_request->type));
1448         switch (obj_request->type) {
1449         case OBJ_REQUEST_NODATA:
1450                 break;          /* Nothing to do */
1451         case OBJ_REQUEST_BIO:
1452                 if (obj_request->bio_list)
1453                         bio_chain_put(obj_request->bio_list);
1454                 break;
1455         case OBJ_REQUEST_PAGES:
1456                 if (obj_request->pages)
1457                         ceph_release_page_vector(obj_request->pages,
1458                                                 obj_request->page_count);
1459                 break;
1460         }
1461
1462         kfree(obj_request);
1463 }
1464
1465 /*
1466  * Caller is responsible for filling in the list of object requests
1467  * that comprises the image request, and the Linux request pointer
1468  * (if there is one).
1469  */
1470 static struct rbd_img_request *rbd_img_request_create(
1471                                         struct rbd_device *rbd_dev,
1472                                         u64 offset, u64 length,
1473                                         bool write_request)
1474 {
1475         struct rbd_img_request *img_request;
1476         struct ceph_snap_context *snapc = NULL;
1477
1478         img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1479         if (!img_request)
1480                 return NULL;
1481
1482         if (write_request) {
1483                 down_read(&rbd_dev->header_rwsem);
1484                 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1485                 up_read(&rbd_dev->header_rwsem);
1486                 if (WARN_ON(!snapc)) {
1487                         kfree(img_request);
1488                         return NULL;    /* Shouldn't happen */
1489                 }
1490         }
1491
1492         img_request->rq = NULL;
1493         img_request->rbd_dev = rbd_dev;
1494         img_request->offset = offset;
1495         img_request->length = length;
1496         img_request->write_request = write_request;
1497         if (write_request)
1498                 img_request->snapc = snapc;
1499         else
1500                 img_request->snap_id = rbd_dev->spec->snap_id;
1501         spin_lock_init(&img_request->completion_lock);
1502         img_request->next_completion = 0;
1503         img_request->callback = NULL;
1504         img_request->obj_request_count = 0;
1505         INIT_LIST_HEAD(&img_request->obj_requests);
1506         kref_init(&img_request->kref);
1507
1508         rbd_img_request_get(img_request);       /* Avoid a warning */
1509         rbd_img_request_put(img_request);       /* TEMPORARY */
1510
1511         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1512                 write_request ? "write" : "read", offset, length,
1513                 img_request);
1514
1515         return img_request;
1516 }
1517
1518 static void rbd_img_request_destroy(struct kref *kref)
1519 {
1520         struct rbd_img_request *img_request;
1521         struct rbd_obj_request *obj_request;
1522         struct rbd_obj_request *next_obj_request;
1523
1524         img_request = container_of(kref, struct rbd_img_request, kref);
1525
1526         dout("%s: img %p\n", __func__, img_request);
1527
1528         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1529                 rbd_img_obj_request_del(img_request, obj_request);
1530         rbd_assert(img_request->obj_request_count == 0);
1531
1532         if (img_request->write_request)
1533                 ceph_put_snap_context(img_request->snapc);
1534
1535         kfree(img_request);
1536 }
1537
1538 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1539                                         struct bio *bio_list)
1540 {
1541         struct rbd_device *rbd_dev = img_request->rbd_dev;
1542         struct rbd_obj_request *obj_request = NULL;
1543         struct rbd_obj_request *next_obj_request;
1544         unsigned int bio_offset;
1545         u64 image_offset;
1546         u64 resid;
1547         u16 opcode;
1548
1549         dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1550
1551         opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1552                                               : CEPH_OSD_OP_READ;
1553         bio_offset = 0;
1554         image_offset = img_request->offset;
1555         rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1556         resid = img_request->length;
1557         rbd_assert(resid > 0);
1558         while (resid) {
1559                 const char *object_name;
1560                 unsigned int clone_size;
1561                 struct ceph_osd_req_op op;
1562                 u64 offset;
1563                 u64 length;
1564
1565                 object_name = rbd_segment_name(rbd_dev, image_offset);
1566                 if (!object_name)
1567                         goto out_unwind;
1568                 offset = rbd_segment_offset(rbd_dev, image_offset);
1569                 length = rbd_segment_length(rbd_dev, image_offset, resid);
1570                 obj_request = rbd_obj_request_create(object_name,
1571                                                 offset, length,
1572                                                 OBJ_REQUEST_BIO);
1573                 kfree(object_name);     /* object request has its own copy */
1574                 if (!obj_request)
1575                         goto out_unwind;
1576
1577                 rbd_assert(length <= (u64) UINT_MAX);
1578                 clone_size = (unsigned int) length;
1579                 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1580                                                 &bio_offset, clone_size,
1581                                                 GFP_ATOMIC);
1582                 if (!obj_request->bio_list)
1583                         goto out_partial;
1584
1585                 /*
1586                  * Build up the op to use in building the osd
1587                  * request.  Note that the contents of the op are
1588                  * copied by rbd_osd_req_create().
1589                  */
1590                 osd_req_op_extent_init(&op, opcode, offset, length, 0, 0);
1591                 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1592                                                 img_request->write_request,
1593                                                 obj_request, &op);
1594                 if (!obj_request->osd_req)
1595                         goto out_partial;
1596                 /* status and version are initially zero-filled */
1597
1598                 rbd_img_obj_request_add(img_request, obj_request);
1599
1600                 image_offset += length;
1601                 resid -= length;
1602         }
1603
1604         return 0;
1605
1606 out_partial:
1607         rbd_obj_request_put(obj_request);
1608 out_unwind:
1609         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1610                 rbd_obj_request_put(obj_request);
1611
1612         return -ENOMEM;
1613 }
1614
1615 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1616 {
1617         struct rbd_img_request *img_request;
1618         u32 which = obj_request->which;
1619         bool more = true;
1620
1621         img_request = obj_request->img_request;
1622
1623         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1624         rbd_assert(img_request != NULL);
1625         rbd_assert(img_request->rq != NULL);
1626         rbd_assert(img_request->obj_request_count > 0);
1627         rbd_assert(which != BAD_WHICH);
1628         rbd_assert(which < img_request->obj_request_count);
1629         rbd_assert(which >= img_request->next_completion);
1630
1631         spin_lock_irq(&img_request->completion_lock);
1632         if (which != img_request->next_completion)
1633                 goto out;
1634
1635         for_each_obj_request_from(img_request, obj_request) {
1636                 unsigned int xferred;
1637                 int result;
1638
1639                 rbd_assert(more);
1640                 rbd_assert(which < img_request->obj_request_count);
1641
1642                 if (!obj_request_done_test(obj_request))
1643                         break;
1644
1645                 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1646                 xferred = (unsigned int) obj_request->xferred;
1647                 result = (int) obj_request->result;
1648                 if (result)
1649                         rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1650                                 img_request->write_request ? "write" : "read",
1651                                 result, xferred);
1652
1653                 more = blk_end_request(img_request->rq, result, xferred);
1654                 which++;
1655         }
1656
1657         rbd_assert(more ^ (which == img_request->obj_request_count));
1658         img_request->next_completion = which;
1659 out:
1660         spin_unlock_irq(&img_request->completion_lock);
1661
1662         if (!more)
1663                 rbd_img_request_complete(img_request);
1664 }
1665
1666 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1667 {
1668         struct rbd_device *rbd_dev = img_request->rbd_dev;
1669         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1670         struct rbd_obj_request *obj_request;
1671         struct rbd_obj_request *next_obj_request;
1672
1673         dout("%s: img %p\n", __func__, img_request);
1674         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1675                 int ret;
1676
1677                 obj_request->callback = rbd_img_obj_callback;
1678                 ret = rbd_obj_request_submit(osdc, obj_request);
1679                 if (ret)
1680                         return ret;
1681                 /*
1682                  * The image request has its own reference to each
1683                  * of its object requests, so we can safely drop the
1684                  * initial one here.
1685                  */
1686                 rbd_obj_request_put(obj_request);
1687         }
1688
1689         return 0;
1690 }
1691
1692 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1693                                    u64 ver, u64 notify_id)
1694 {
1695         struct rbd_obj_request *obj_request;
1696         struct ceph_osd_req_op op;
1697         struct ceph_osd_client *osdc;
1698         int ret;
1699
1700         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1701                                                         OBJ_REQUEST_NODATA);
1702         if (!obj_request)
1703                 return -ENOMEM;
1704
1705         ret = -ENOMEM;
1706         osd_req_op_watch_init(&op, CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver, 0);
1707         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1708                                                 obj_request, &op);
1709         if (!obj_request->osd_req)
1710                 goto out;
1711
1712         osdc = &rbd_dev->rbd_client->client->osdc;
1713         obj_request->callback = rbd_obj_request_put;
1714         ret = rbd_obj_request_submit(osdc, obj_request);
1715 out:
1716         if (ret)
1717                 rbd_obj_request_put(obj_request);
1718
1719         return ret;
1720 }
1721
1722 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1723 {
1724         struct rbd_device *rbd_dev = (struct rbd_device *)data;
1725         u64 hver;
1726         int rc;
1727
1728         if (!rbd_dev)
1729                 return;
1730
1731         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1732                 rbd_dev->header_name, (unsigned long long) notify_id,
1733                 (unsigned int) opcode);
1734         rc = rbd_dev_refresh(rbd_dev, &hver);
1735         if (rc)
1736                 rbd_warn(rbd_dev, "got notification but failed to "
1737                            " update snaps: %d\n", rc);
1738
1739         rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1740 }
1741
1742 /*
1743  * Request sync osd watch/unwatch.  The value of "start" determines
1744  * whether a watch request is being initiated or torn down.
1745  */
1746 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1747 {
1748         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1749         struct rbd_obj_request *obj_request;
1750         struct ceph_osd_req_op op;
1751         int ret;
1752
1753         rbd_assert(start ^ !!rbd_dev->watch_event);
1754         rbd_assert(start ^ !!rbd_dev->watch_request);
1755
1756         if (start) {
1757                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1758                                                 &rbd_dev->watch_event);
1759                 if (ret < 0)
1760                         return ret;
1761                 rbd_assert(rbd_dev->watch_event != NULL);
1762         }
1763
1764         ret = -ENOMEM;
1765         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1766                                                         OBJ_REQUEST_NODATA);
1767         if (!obj_request)
1768                 goto out_cancel;
1769
1770         osd_req_op_watch_init(&op, CEPH_OSD_OP_WATCH,
1771                                 rbd_dev->watch_event->cookie,
1772                                 rbd_dev->header.obj_version, start);
1773         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1774                                                         obj_request, &op);
1775         if (!obj_request->osd_req)
1776                 goto out_cancel;
1777
1778         if (start)
1779                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1780         else
1781                 ceph_osdc_unregister_linger_request(osdc,
1782                                         rbd_dev->watch_request->osd_req);
1783         ret = rbd_obj_request_submit(osdc, obj_request);
1784         if (ret)
1785                 goto out_cancel;
1786         ret = rbd_obj_request_wait(obj_request);
1787         if (ret)
1788                 goto out_cancel;
1789         ret = obj_request->result;
1790         if (ret)
1791                 goto out_cancel;
1792
1793         /*
1794          * A watch request is set to linger, so the underlying osd
1795          * request won't go away until we unregister it.  We retain
1796          * a pointer to the object request during that time (in
1797          * rbd_dev->watch_request), so we'll keep a reference to
1798          * it.  We'll drop that reference (below) after we've
1799          * unregistered it.
1800          */
1801         if (start) {
1802                 rbd_dev->watch_request = obj_request;
1803
1804                 return 0;
1805         }
1806
1807         /* We have successfully torn down the watch request */
1808
1809         rbd_obj_request_put(rbd_dev->watch_request);
1810         rbd_dev->watch_request = NULL;
1811 out_cancel:
1812         /* Cancel the event if we're tearing down, or on error */
1813         ceph_osdc_cancel_event(rbd_dev->watch_event);
1814         rbd_dev->watch_event = NULL;
1815         if (obj_request)
1816                 rbd_obj_request_put(obj_request);
1817
1818         return ret;
1819 }
1820
1821 /*
1822  * Synchronous osd object method call
1823  */
1824 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1825                              const char *object_name,
1826                              const char *class_name,
1827                              const char *method_name,
1828                              const char *outbound,
1829                              size_t outbound_size,
1830                              char *inbound,
1831                              size_t inbound_size,
1832                              u64 *version)
1833 {
1834         struct rbd_obj_request *obj_request;
1835         struct ceph_osd_client *osdc;
1836         struct ceph_osd_req_op op;
1837         struct page **pages;
1838         u32 page_count;
1839         int ret;
1840
1841         /*
1842          * Method calls are ultimately read operations but they
1843          * don't involve object data (so no offset or length).
1844          * The result should placed into the inbound buffer
1845          * provided.  They also supply outbound data--parameters for
1846          * the object method.  Currently if this is present it will
1847          * be a snapshot id.
1848          */
1849         page_count = (u32) calc_pages_for(0, inbound_size);
1850         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1851         if (IS_ERR(pages))
1852                 return PTR_ERR(pages);
1853
1854         ret = -ENOMEM;
1855         obj_request = rbd_obj_request_create(object_name, 0, 0,
1856                                                         OBJ_REQUEST_PAGES);
1857         if (!obj_request)
1858                 goto out;
1859
1860         obj_request->pages = pages;
1861         obj_request->page_count = page_count;
1862
1863         osd_req_op_cls_init(&op, CEPH_OSD_OP_CALL, class_name, method_name,
1864                                         outbound, outbound_size);
1865         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1866                                                 obj_request, &op);
1867         if (!obj_request->osd_req)
1868                 goto out;
1869
1870         osdc = &rbd_dev->rbd_client->client->osdc;
1871         ret = rbd_obj_request_submit(osdc, obj_request);
1872         if (ret)
1873                 goto out;
1874         ret = rbd_obj_request_wait(obj_request);
1875         if (ret)
1876                 goto out;
1877
1878         ret = obj_request->result;
1879         if (ret < 0)
1880                 goto out;
1881         ret = 0;
1882         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1883         if (version)
1884                 *version = obj_request->version;
1885 out:
1886         if (obj_request)
1887                 rbd_obj_request_put(obj_request);
1888         else
1889                 ceph_release_page_vector(pages, page_count);
1890
1891         return ret;
1892 }
1893
1894 static void rbd_request_fn(struct request_queue *q)
1895                 __releases(q->queue_lock) __acquires(q->queue_lock)
1896 {
1897         struct rbd_device *rbd_dev = q->queuedata;
1898         bool read_only = rbd_dev->mapping.read_only;
1899         struct request *rq;
1900         int result;
1901
1902         while ((rq = blk_fetch_request(q))) {
1903                 bool write_request = rq_data_dir(rq) == WRITE;
1904                 struct rbd_img_request *img_request;
1905                 u64 offset;
1906                 u64 length;
1907
1908                 /* Ignore any non-FS requests that filter through. */
1909
1910                 if (rq->cmd_type != REQ_TYPE_FS) {
1911                         dout("%s: non-fs request type %d\n", __func__,
1912                                 (int) rq->cmd_type);
1913                         __blk_end_request_all(rq, 0);
1914                         continue;
1915                 }
1916
1917                 /* Ignore/skip any zero-length requests */
1918
1919                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1920                 length = (u64) blk_rq_bytes(rq);
1921
1922                 if (!length) {
1923                         dout("%s: zero-length request\n", __func__);
1924                         __blk_end_request_all(rq, 0);
1925                         continue;
1926                 }
1927
1928                 spin_unlock_irq(q->queue_lock);
1929
1930                 /* Disallow writes to a read-only device */
1931
1932                 if (write_request) {
1933                         result = -EROFS;
1934                         if (read_only)
1935                                 goto end_request;
1936                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1937                 }
1938
1939                 /*
1940                  * Quit early if the mapped snapshot no longer
1941                  * exists.  It's still possible the snapshot will
1942                  * have disappeared by the time our request arrives
1943                  * at the osd, but there's no sense in sending it if
1944                  * we already know.
1945                  */
1946                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1947                         dout("request for non-existent snapshot");
1948                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1949                         result = -ENXIO;
1950                         goto end_request;
1951                 }
1952
1953                 result = -EINVAL;
1954                 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1955                         goto end_request;       /* Shouldn't happen */
1956
1957                 result = -ENOMEM;
1958                 img_request = rbd_img_request_create(rbd_dev, offset, length,
1959                                                         write_request);
1960                 if (!img_request)
1961                         goto end_request;
1962
1963                 img_request->rq = rq;
1964
1965                 result = rbd_img_request_fill_bio(img_request, rq->bio);
1966                 if (!result)
1967                         result = rbd_img_request_submit(img_request);
1968                 if (result)
1969                         rbd_img_request_put(img_request);
1970 end_request:
1971                 spin_lock_irq(q->queue_lock);
1972                 if (result < 0) {
1973                         rbd_warn(rbd_dev, "obj_request %s result %d\n",
1974                                 write_request ? "write" : "read", result);
1975                         __blk_end_request_all(rq, result);
1976                 }
1977         }
1978 }
1979
1980 /*
1981  * a queue callback. Makes sure that we don't create a bio that spans across
1982  * multiple osd objects. One exception would be with a single page bios,
1983  * which we handle later at bio_chain_clone_range()
1984  */
1985 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1986                           struct bio_vec *bvec)
1987 {
1988         struct rbd_device *rbd_dev = q->queuedata;
1989         sector_t sector_offset;
1990         sector_t sectors_per_obj;
1991         sector_t obj_sector_offset;
1992         int ret;
1993
1994         /*
1995          * Find how far into its rbd object the partition-relative
1996          * bio start sector is to offset relative to the enclosing
1997          * device.
1998          */
1999         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2000         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2001         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2002
2003         /*
2004          * Compute the number of bytes from that offset to the end
2005          * of the object.  Account for what's already used by the bio.
2006          */
2007         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2008         if (ret > bmd->bi_size)
2009                 ret -= bmd->bi_size;
2010         else
2011                 ret = 0;
2012
2013         /*
2014          * Don't send back more than was asked for.  And if the bio
2015          * was empty, let the whole thing through because:  "Note
2016          * that a block device *must* allow a single page to be
2017          * added to an empty bio."
2018          */
2019         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2020         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2021                 ret = (int) bvec->bv_len;
2022
2023         return ret;
2024 }
2025
2026 static void rbd_free_disk(struct rbd_device *rbd_dev)
2027 {
2028         struct gendisk *disk = rbd_dev->disk;
2029
2030         if (!disk)
2031                 return;
2032
2033         if (disk->flags & GENHD_FL_UP)
2034                 del_gendisk(disk);
2035         if (disk->queue)
2036                 blk_cleanup_queue(disk->queue);
2037         put_disk(disk);
2038 }
2039
2040 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2041                                 const char *object_name,
2042                                 u64 offset, u64 length,
2043                                 char *buf, u64 *version)
2044
2045 {
2046         struct ceph_osd_req_op op;
2047         struct rbd_obj_request *obj_request;
2048         struct ceph_osd_client *osdc;
2049         struct page **pages = NULL;
2050         u32 page_count;
2051         size_t size;
2052         int ret;
2053
2054         page_count = (u32) calc_pages_for(offset, length);
2055         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2056         if (IS_ERR(pages))
2057                 ret = PTR_ERR(pages);
2058
2059         ret = -ENOMEM;
2060         obj_request = rbd_obj_request_create(object_name, offset, length,
2061                                                         OBJ_REQUEST_PAGES);
2062         if (!obj_request)
2063                 goto out;
2064
2065         obj_request->pages = pages;
2066         obj_request->page_count = page_count;
2067
2068         osd_req_op_extent_init(&op, CEPH_OSD_OP_READ, offset, length, 0, 0);
2069         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2070                                                 obj_request, &op);
2071         if (!obj_request->osd_req)
2072                 goto out;
2073
2074         osdc = &rbd_dev->rbd_client->client->osdc;
2075         ret = rbd_obj_request_submit(osdc, obj_request);
2076         if (ret)
2077                 goto out;
2078         ret = rbd_obj_request_wait(obj_request);
2079         if (ret)
2080                 goto out;
2081
2082         ret = obj_request->result;
2083         if (ret < 0)
2084                 goto out;
2085
2086         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2087         size = (size_t) obj_request->xferred;
2088         ceph_copy_from_page_vector(pages, buf, 0, size);
2089         rbd_assert(size <= (size_t) INT_MAX);
2090         ret = (int) size;
2091         if (version)
2092                 *version = obj_request->version;
2093 out:
2094         if (obj_request)
2095                 rbd_obj_request_put(obj_request);
2096         else
2097                 ceph_release_page_vector(pages, page_count);
2098
2099         return ret;
2100 }
2101
2102 /*
2103  * Read the complete header for the given rbd device.
2104  *
2105  * Returns a pointer to a dynamically-allocated buffer containing
2106  * the complete and validated header.  Caller can pass the address
2107  * of a variable that will be filled in with the version of the
2108  * header object at the time it was read.
2109  *
2110  * Returns a pointer-coded errno if a failure occurs.
2111  */
2112 static struct rbd_image_header_ondisk *
2113 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2114 {
2115         struct rbd_image_header_ondisk *ondisk = NULL;
2116         u32 snap_count = 0;
2117         u64 names_size = 0;
2118         u32 want_count;
2119         int ret;
2120
2121         /*
2122          * The complete header will include an array of its 64-bit
2123          * snapshot ids, followed by the names of those snapshots as
2124          * a contiguous block of NUL-terminated strings.  Note that
2125          * the number of snapshots could change by the time we read
2126          * it in, in which case we re-read it.
2127          */
2128         do {
2129                 size_t size;
2130
2131                 kfree(ondisk);
2132
2133                 size = sizeof (*ondisk);
2134                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2135                 size += names_size;
2136                 ondisk = kmalloc(size, GFP_KERNEL);
2137                 if (!ondisk)
2138                         return ERR_PTR(-ENOMEM);
2139
2140                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2141                                        0, size,
2142                                        (char *) ondisk, version);
2143                 if (ret < 0)
2144                         goto out_err;
2145                 if (WARN_ON((size_t) ret < size)) {
2146                         ret = -ENXIO;
2147                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2148                                 size, ret);
2149                         goto out_err;
2150                 }
2151                 if (!rbd_dev_ondisk_valid(ondisk)) {
2152                         ret = -ENXIO;
2153                         rbd_warn(rbd_dev, "invalid header");
2154                         goto out_err;
2155                 }
2156
2157                 names_size = le64_to_cpu(ondisk->snap_names_len);
2158                 want_count = snap_count;
2159                 snap_count = le32_to_cpu(ondisk->snap_count);
2160         } while (snap_count != want_count);
2161
2162         return ondisk;
2163
2164 out_err:
2165         kfree(ondisk);
2166
2167         return ERR_PTR(ret);
2168 }
2169
2170 /*
2171  * reload the ondisk the header
2172  */
2173 static int rbd_read_header(struct rbd_device *rbd_dev,
2174                            struct rbd_image_header *header)
2175 {
2176         struct rbd_image_header_ondisk *ondisk;
2177         u64 ver = 0;
2178         int ret;
2179
2180         ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2181         if (IS_ERR(ondisk))
2182                 return PTR_ERR(ondisk);
2183         ret = rbd_header_from_disk(header, ondisk);
2184         if (ret >= 0)
2185                 header->obj_version = ver;
2186         kfree(ondisk);
2187
2188         return ret;
2189 }
2190
2191 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2192 {
2193         struct rbd_snap *snap;
2194         struct rbd_snap *next;
2195
2196         list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2197                 rbd_remove_snap_dev(snap);
2198 }
2199
2200 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2201 {
2202         sector_t size;
2203
2204         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2205                 return;
2206
2207         size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2208         dout("setting size to %llu sectors", (unsigned long long) size);
2209         rbd_dev->mapping.size = (u64) size;
2210         set_capacity(rbd_dev->disk, size);
2211 }
2212
2213 /*
2214  * only read the first part of the ondisk header, without the snaps info
2215  */
2216 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2217 {
2218         int ret;
2219         struct rbd_image_header h;
2220
2221         ret = rbd_read_header(rbd_dev, &h);
2222         if (ret < 0)
2223                 return ret;
2224
2225         down_write(&rbd_dev->header_rwsem);
2226
2227         /* Update image size, and check for resize of mapped image */
2228         rbd_dev->header.image_size = h.image_size;
2229         rbd_update_mapping_size(rbd_dev);
2230
2231         /* rbd_dev->header.object_prefix shouldn't change */
2232         kfree(rbd_dev->header.snap_sizes);
2233         kfree(rbd_dev->header.snap_names);
2234         /* osd requests may still refer to snapc */
2235         ceph_put_snap_context(rbd_dev->header.snapc);
2236
2237         if (hver)
2238                 *hver = h.obj_version;
2239         rbd_dev->header.obj_version = h.obj_version;
2240         rbd_dev->header.image_size = h.image_size;
2241         rbd_dev->header.snapc = h.snapc;
2242         rbd_dev->header.snap_names = h.snap_names;
2243         rbd_dev->header.snap_sizes = h.snap_sizes;
2244         /* Free the extra copy of the object prefix */
2245         WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2246         kfree(h.object_prefix);
2247
2248         ret = rbd_dev_snaps_update(rbd_dev);
2249         if (!ret)
2250                 ret = rbd_dev_snaps_register(rbd_dev);
2251
2252         up_write(&rbd_dev->header_rwsem);
2253
2254         return ret;
2255 }
2256
2257 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2258 {
2259         int ret;
2260
2261         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2262         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2263         if (rbd_dev->image_format == 1)
2264                 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2265         else
2266                 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2267         mutex_unlock(&ctl_mutex);
2268
2269         return ret;
2270 }
2271
2272 static int rbd_init_disk(struct rbd_device *rbd_dev)
2273 {
2274         struct gendisk *disk;
2275         struct request_queue *q;
2276         u64 segment_size;
2277
2278         /* create gendisk info */
2279         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2280         if (!disk)
2281                 return -ENOMEM;
2282
2283         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2284                  rbd_dev->dev_id);
2285         disk->major = rbd_dev->major;
2286         disk->first_minor = 0;
2287         disk->fops = &rbd_bd_ops;
2288         disk->private_data = rbd_dev;
2289
2290         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2291         if (!q)
2292                 goto out_disk;
2293
2294         /* We use the default size, but let's be explicit about it. */
2295         blk_queue_physical_block_size(q, SECTOR_SIZE);
2296
2297         /* set io sizes to object size */
2298         segment_size = rbd_obj_bytes(&rbd_dev->header);
2299         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2300         blk_queue_max_segment_size(q, segment_size);
2301         blk_queue_io_min(q, segment_size);
2302         blk_queue_io_opt(q, segment_size);
2303
2304         blk_queue_merge_bvec(q, rbd_merge_bvec);
2305         disk->queue = q;
2306
2307         q->queuedata = rbd_dev;
2308
2309         rbd_dev->disk = disk;
2310
2311         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2312
2313         return 0;
2314 out_disk:
2315         put_disk(disk);
2316
2317         return -ENOMEM;
2318 }
2319
2320 /*
2321   sysfs
2322 */
2323
2324 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2325 {
2326         return container_of(dev, struct rbd_device, dev);
2327 }
2328
2329 static ssize_t rbd_size_show(struct device *dev,
2330                              struct device_attribute *attr, char *buf)
2331 {
2332         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2333         sector_t size;
2334
2335         down_read(&rbd_dev->header_rwsem);
2336         size = get_capacity(rbd_dev->disk);
2337         up_read(&rbd_dev->header_rwsem);
2338
2339         return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2340 }
2341
2342 /*
2343  * Note this shows the features for whatever's mapped, which is not
2344  * necessarily the base image.
2345  */
2346 static ssize_t rbd_features_show(struct device *dev,
2347                              struct device_attribute *attr, char *buf)
2348 {
2349         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2350
2351         return sprintf(buf, "0x%016llx\n",
2352                         (unsigned long long) rbd_dev->mapping.features);
2353 }
2354
2355 static ssize_t rbd_major_show(struct device *dev,
2356                               struct device_attribute *attr, char *buf)
2357 {
2358         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2359
2360         return sprintf(buf, "%d\n", rbd_dev->major);
2361 }
2362
2363 static ssize_t rbd_client_id_show(struct device *dev,
2364                                   struct device_attribute *attr, char *buf)
2365 {
2366         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2367
2368         return sprintf(buf, "client%lld\n",
2369                         ceph_client_id(rbd_dev->rbd_client->client));
2370 }
2371
2372 static ssize_t rbd_pool_show(struct device *dev,
2373                              struct device_attribute *attr, char *buf)
2374 {
2375         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2376
2377         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2378 }
2379
2380 static ssize_t rbd_pool_id_show(struct device *dev,
2381                              struct device_attribute *attr, char *buf)
2382 {
2383         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2384
2385         return sprintf(buf, "%llu\n",
2386                 (unsigned long long) rbd_dev->spec->pool_id);
2387 }
2388
2389 static ssize_t rbd_name_show(struct device *dev,
2390                              struct device_attribute *attr, char *buf)
2391 {
2392         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2393
2394         if (rbd_dev->spec->image_name)
2395                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2396
2397         return sprintf(buf, "(unknown)\n");
2398 }
2399
2400 static ssize_t rbd_image_id_show(struct device *dev,
2401                              struct device_attribute *attr, char *buf)
2402 {
2403         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2404
2405         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2406 }
2407
2408 /*
2409  * Shows the name of the currently-mapped snapshot (or
2410  * RBD_SNAP_HEAD_NAME for the base image).
2411  */
2412 static ssize_t rbd_snap_show(struct device *dev,
2413                              struct device_attribute *attr,
2414                              char *buf)
2415 {
2416         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2417
2418         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2419 }
2420
2421 /*
2422  * For an rbd v2 image, shows the pool id, image id, and snapshot id
2423  * for the parent image.  If there is no parent, simply shows
2424  * "(no parent image)".
2425  */
2426 static ssize_t rbd_parent_show(struct device *dev,
2427                              struct device_attribute *attr,
2428                              char *buf)
2429 {
2430         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2431         struct rbd_spec *spec = rbd_dev->parent_spec;
2432         int count;
2433         char *bufp = buf;
2434
2435         if (!spec)
2436                 return sprintf(buf, "(no parent image)\n");
2437
2438         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2439                         (unsigned long long) spec->pool_id, spec->pool_name);
2440         if (count < 0)
2441                 return count;
2442         bufp += count;
2443
2444         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2445                         spec->image_name ? spec->image_name : "(unknown)");
2446         if (count < 0)
2447                 return count;
2448         bufp += count;
2449
2450         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2451                         (unsigned long long) spec->snap_id, spec->snap_name);
2452         if (count < 0)
2453                 return count;
2454         bufp += count;
2455
2456         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2457         if (count < 0)
2458                 return count;
2459         bufp += count;
2460
2461         return (ssize_t) (bufp - buf);
2462 }
2463
2464 static ssize_t rbd_image_refresh(struct device *dev,
2465                                  struct device_attribute *attr,
2466                                  const char *buf,
2467                                  size_t size)
2468 {
2469         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2470         int ret;
2471
2472         ret = rbd_dev_refresh(rbd_dev, NULL);
2473
2474         return ret < 0 ? ret : size;
2475 }
2476
2477 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2478 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2479 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2480 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2481 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2482 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2483 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2484 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2485 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2486 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2487 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2488
2489 static struct attribute *rbd_attrs[] = {
2490         &dev_attr_size.attr,
2491         &dev_attr_features.attr,
2492         &dev_attr_major.attr,
2493         &dev_attr_client_id.attr,
2494         &dev_attr_pool.attr,
2495         &dev_attr_pool_id.attr,
2496         &dev_attr_name.attr,
2497         &dev_attr_image_id.attr,
2498         &dev_attr_current_snap.attr,
2499         &dev_attr_parent.attr,
2500         &dev_attr_refresh.attr,
2501         NULL
2502 };
2503
2504 static struct attribute_group rbd_attr_group = {
2505         .attrs = rbd_attrs,
2506 };
2507
2508 static const struct attribute_group *rbd_attr_groups[] = {
2509         &rbd_attr_group,
2510         NULL
2511 };
2512
2513 static void rbd_sysfs_dev_release(struct device *dev)
2514 {
2515 }
2516
2517 static struct device_type rbd_device_type = {
2518         .name           = "rbd",
2519         .groups         = rbd_attr_groups,
2520         .release        = rbd_sysfs_dev_release,
2521 };
2522
2523
2524 /*
2525   sysfs - snapshots
2526 */
2527
2528 static ssize_t rbd_snap_size_show(struct device *dev,
2529                                   struct device_attribute *attr,
2530                                   char *buf)
2531 {
2532         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2533
2534         return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2535 }
2536
2537 static ssize_t rbd_snap_id_show(struct device *dev,
2538                                 struct device_attribute *attr,
2539                                 char *buf)
2540 {
2541         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2542
2543         return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2544 }
2545
2546 static ssize_t rbd_snap_features_show(struct device *dev,
2547                                 struct device_attribute *attr,
2548                                 char *buf)
2549 {
2550         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2551
2552         return sprintf(buf, "0x%016llx\n",
2553                         (unsigned long long) snap->features);
2554 }
2555
2556 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2557 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2558 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2559
2560 static struct attribute *rbd_snap_attrs[] = {
2561         &dev_attr_snap_size.attr,
2562         &dev_attr_snap_id.attr,
2563         &dev_attr_snap_features.attr,
2564         NULL,
2565 };
2566
2567 static struct attribute_group rbd_snap_attr_group = {
2568         .attrs = rbd_snap_attrs,
2569 };
2570
2571 static void rbd_snap_dev_release(struct device *dev)
2572 {
2573         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2574         kfree(snap->name);
2575         kfree(snap);
2576 }
2577
2578 static const struct attribute_group *rbd_snap_attr_groups[] = {
2579         &rbd_snap_attr_group,
2580         NULL
2581 };
2582
2583 static struct device_type rbd_snap_device_type = {
2584         .groups         = rbd_snap_attr_groups,
2585         .release        = rbd_snap_dev_release,
2586 };
2587
2588 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2589 {
2590         kref_get(&spec->kref);
2591
2592         return spec;
2593 }
2594
2595 static void rbd_spec_free(struct kref *kref);
2596 static void rbd_spec_put(struct rbd_spec *spec)
2597 {
2598         if (spec)
2599                 kref_put(&spec->kref, rbd_spec_free);
2600 }
2601
2602 static struct rbd_spec *rbd_spec_alloc(void)
2603 {
2604         struct rbd_spec *spec;
2605
2606         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2607         if (!spec)
2608                 return NULL;
2609         kref_init(&spec->kref);
2610
2611         rbd_spec_put(rbd_spec_get(spec));       /* TEMPORARY */
2612
2613         return spec;
2614 }
2615
2616 static void rbd_spec_free(struct kref *kref)
2617 {
2618         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2619
2620         kfree(spec->pool_name);
2621         kfree(spec->image_id);
2622         kfree(spec->image_name);
2623         kfree(spec->snap_name);
2624         kfree(spec);
2625 }
2626
2627 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2628                                 struct rbd_spec *spec)
2629 {
2630         struct rbd_device *rbd_dev;
2631
2632         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2633         if (!rbd_dev)
2634                 return NULL;
2635
2636         spin_lock_init(&rbd_dev->lock);
2637         rbd_dev->flags = 0;
2638         INIT_LIST_HEAD(&rbd_dev->node);
2639         INIT_LIST_HEAD(&rbd_dev->snaps);
2640         init_rwsem(&rbd_dev->header_rwsem);
2641
2642         rbd_dev->spec = spec;
2643         rbd_dev->rbd_client = rbdc;
2644
2645         /* Initialize the layout used for all rbd requests */
2646
2647         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2648         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2649         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2650         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2651
2652         return rbd_dev;
2653 }
2654
2655 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2656 {
2657         rbd_spec_put(rbd_dev->parent_spec);
2658         kfree(rbd_dev->header_name);
2659         rbd_put_client(rbd_dev->rbd_client);
2660         rbd_spec_put(rbd_dev->spec);
2661         kfree(rbd_dev);
2662 }
2663
2664 static bool rbd_snap_registered(struct rbd_snap *snap)
2665 {
2666         bool ret = snap->dev.type == &rbd_snap_device_type;
2667         bool reg = device_is_registered(&snap->dev);
2668
2669         rbd_assert(!ret ^ reg);
2670
2671         return ret;
2672 }
2673
2674 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2675 {
2676         list_del(&snap->node);
2677         if (device_is_registered(&snap->dev))
2678                 device_unregister(&snap->dev);
2679 }
2680
2681 static int rbd_register_snap_dev(struct rbd_snap *snap,
2682                                   struct device *parent)
2683 {
2684         struct device *dev = &snap->dev;
2685         int ret;
2686
2687         dev->type = &rbd_snap_device_type;
2688         dev->parent = parent;
2689         dev->release = rbd_snap_dev_release;
2690         dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2691         dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2692
2693         ret = device_register(dev);
2694
2695         return ret;
2696 }
2697
2698 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2699                                                 const char *snap_name,
2700                                                 u64 snap_id, u64 snap_size,
2701                                                 u64 snap_features)
2702 {
2703         struct rbd_snap *snap;
2704         int ret;
2705
2706         snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2707         if (!snap)
2708                 return ERR_PTR(-ENOMEM);
2709
2710         ret = -ENOMEM;
2711         snap->name = kstrdup(snap_name, GFP_KERNEL);
2712         if (!snap->name)
2713                 goto err;
2714
2715         snap->id = snap_id;
2716         snap->size = snap_size;
2717         snap->features = snap_features;
2718
2719         return snap;
2720
2721 err:
2722         kfree(snap->name);
2723         kfree(snap);
2724
2725         return ERR_PTR(ret);
2726 }
2727
2728 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2729                 u64 *snap_size, u64 *snap_features)
2730 {
2731         char *snap_name;
2732
2733         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2734
2735         *snap_size = rbd_dev->header.snap_sizes[which];
2736         *snap_features = 0;     /* No features for v1 */
2737
2738         /* Skip over names until we find the one we are looking for */
2739
2740         snap_name = rbd_dev->header.snap_names;
2741         while (which--)
2742                 snap_name += strlen(snap_name) + 1;
2743
2744         return snap_name;
2745 }
2746
2747 /*
2748  * Get the size and object order for an image snapshot, or if
2749  * snap_id is CEPH_NOSNAP, gets this information for the base
2750  * image.
2751  */
2752 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2753                                 u8 *order, u64 *snap_size)
2754 {
2755         __le64 snapid = cpu_to_le64(snap_id);
2756         int ret;
2757         struct {
2758                 u8 order;
2759                 __le64 size;
2760         } __attribute__ ((packed)) size_buf = { 0 };
2761
2762         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2763                                 "rbd", "get_size",
2764                                 (char *) &snapid, sizeof (snapid),
2765                                 (char *) &size_buf, sizeof (size_buf), NULL);
2766         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2767         if (ret < 0)
2768                 return ret;
2769
2770         *order = size_buf.order;
2771         *snap_size = le64_to_cpu(size_buf.size);
2772
2773         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
2774                 (unsigned long long) snap_id, (unsigned int) *order,
2775                 (unsigned long long) *snap_size);
2776
2777         return 0;
2778 }
2779
2780 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2781 {
2782         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2783                                         &rbd_dev->header.obj_order,
2784                                         &rbd_dev->header.image_size);
2785 }
2786
2787 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2788 {
2789         void *reply_buf;
2790         int ret;
2791         void *p;
2792
2793         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2794         if (!reply_buf)
2795                 return -ENOMEM;
2796
2797         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2798                                 "rbd", "get_object_prefix",
2799                                 NULL, 0,
2800                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2801         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2802         if (ret < 0)
2803                 goto out;
2804
2805         p = reply_buf;
2806         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2807                                                 p + RBD_OBJ_PREFIX_LEN_MAX,
2808                                                 NULL, GFP_NOIO);
2809
2810         if (IS_ERR(rbd_dev->header.object_prefix)) {
2811                 ret = PTR_ERR(rbd_dev->header.object_prefix);
2812                 rbd_dev->header.object_prefix = NULL;
2813         } else {
2814                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
2815         }
2816
2817 out:
2818         kfree(reply_buf);
2819
2820         return ret;
2821 }
2822
2823 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2824                 u64 *snap_features)
2825 {
2826         __le64 snapid = cpu_to_le64(snap_id);
2827         struct {
2828                 __le64 features;
2829                 __le64 incompat;
2830         } features_buf = { 0 };
2831         u64 incompat;
2832         int ret;
2833
2834         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2835                                 "rbd", "get_features",
2836                                 (char *) &snapid, sizeof (snapid),
2837                                 (char *) &features_buf, sizeof (features_buf),
2838                                 NULL);
2839         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2840         if (ret < 0)
2841                 return ret;
2842
2843         incompat = le64_to_cpu(features_buf.incompat);
2844         if (incompat & ~RBD_FEATURES_ALL)
2845                 return -ENXIO;
2846
2847         *snap_features = le64_to_cpu(features_buf.features);
2848
2849         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2850                 (unsigned long long) snap_id,
2851                 (unsigned long long) *snap_features,
2852                 (unsigned long long) le64_to_cpu(features_buf.incompat));
2853
2854         return 0;
2855 }
2856
2857 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2858 {
2859         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2860                                                 &rbd_dev->header.features);
2861 }
2862
2863 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2864 {
2865         struct rbd_spec *parent_spec;
2866         size_t size;
2867         void *reply_buf = NULL;
2868         __le64 snapid;
2869         void *p;
2870         void *end;
2871         char *image_id;
2872         u64 overlap;
2873         int ret;
2874
2875         parent_spec = rbd_spec_alloc();
2876         if (!parent_spec)
2877                 return -ENOMEM;
2878
2879         size = sizeof (__le64) +                                /* pool_id */
2880                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
2881                 sizeof (__le64) +                               /* snap_id */
2882                 sizeof (__le64);                                /* overlap */
2883         reply_buf = kmalloc(size, GFP_KERNEL);
2884         if (!reply_buf) {
2885                 ret = -ENOMEM;
2886                 goto out_err;
2887         }
2888
2889         snapid = cpu_to_le64(CEPH_NOSNAP);
2890         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2891                                 "rbd", "get_parent",
2892                                 (char *) &snapid, sizeof (snapid),
2893                                 (char *) reply_buf, size, NULL);
2894         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2895         if (ret < 0)
2896                 goto out_err;
2897
2898         ret = -ERANGE;
2899         p = reply_buf;
2900         end = (char *) reply_buf + size;
2901         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2902         if (parent_spec->pool_id == CEPH_NOPOOL)
2903                 goto out;       /* No parent?  No problem. */
2904
2905         /* The ceph file layout needs to fit pool id in 32 bits */
2906
2907         ret = -EIO;
2908         if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2909                 goto out;
2910
2911         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2912         if (IS_ERR(image_id)) {
2913                 ret = PTR_ERR(image_id);
2914                 goto out_err;
2915         }
2916         parent_spec->image_id = image_id;
2917         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2918         ceph_decode_64_safe(&p, end, overlap, out_err);
2919
2920         rbd_dev->parent_overlap = overlap;
2921         rbd_dev->parent_spec = parent_spec;
2922         parent_spec = NULL;     /* rbd_dev now owns this */
2923 out:
2924         ret = 0;
2925 out_err:
2926         kfree(reply_buf);
2927         rbd_spec_put(parent_spec);
2928
2929         return ret;
2930 }
2931
2932 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2933 {
2934         size_t image_id_size;
2935         char *image_id;
2936         void *p;
2937         void *end;
2938         size_t size;
2939         void *reply_buf = NULL;
2940         size_t len = 0;
2941         char *image_name = NULL;
2942         int ret;
2943
2944         rbd_assert(!rbd_dev->spec->image_name);
2945
2946         len = strlen(rbd_dev->spec->image_id);
2947         image_id_size = sizeof (__le32) + len;
2948         image_id = kmalloc(image_id_size, GFP_KERNEL);
2949         if (!image_id)
2950                 return NULL;
2951
2952         p = image_id;
2953         end = (char *) image_id + image_id_size;
2954         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2955
2956         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2957         reply_buf = kmalloc(size, GFP_KERNEL);
2958         if (!reply_buf)
2959                 goto out;
2960
2961         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2962                                 "rbd", "dir_get_name",
2963                                 image_id, image_id_size,
2964                                 (char *) reply_buf, size, NULL);
2965         if (ret < 0)
2966                 goto out;
2967         p = reply_buf;
2968         end = (char *) reply_buf + size;
2969         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2970         if (IS_ERR(image_name))
2971                 image_name = NULL;
2972         else
2973                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2974 out:
2975         kfree(reply_buf);
2976         kfree(image_id);
2977
2978         return image_name;
2979 }
2980
2981 /*
2982  * When a parent image gets probed, we only have the pool, image,
2983  * and snapshot ids but not the names of any of them.  This call
2984  * is made later to fill in those names.  It has to be done after
2985  * rbd_dev_snaps_update() has completed because some of the
2986  * information (in particular, snapshot name) is not available
2987  * until then.
2988  */
2989 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2990 {
2991         struct ceph_osd_client *osdc;
2992         const char *name;
2993         void *reply_buf = NULL;
2994         int ret;
2995
2996         if (rbd_dev->spec->pool_name)
2997                 return 0;       /* Already have the names */
2998
2999         /* Look up the pool name */
3000
3001         osdc = &rbd_dev->rbd_client->client->osdc;
3002         name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3003         if (!name) {
3004                 rbd_warn(rbd_dev, "there is no pool with id %llu",
3005                         rbd_dev->spec->pool_id);        /* Really a BUG() */
3006                 return -EIO;
3007         }
3008
3009         rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3010         if (!rbd_dev->spec->pool_name)
3011                 return -ENOMEM;
3012
3013         /* Fetch the image name; tolerate failure here */
3014
3015         name = rbd_dev_image_name(rbd_dev);
3016         if (name)
3017                 rbd_dev->spec->image_name = (char *) name;
3018         else
3019                 rbd_warn(rbd_dev, "unable to get image name");
3020
3021         /* Look up the snapshot name. */
3022
3023         name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3024         if (!name) {
3025                 rbd_warn(rbd_dev, "no snapshot with id %llu",
3026                         rbd_dev->spec->snap_id);        /* Really a BUG() */
3027                 ret = -EIO;
3028                 goto out_err;
3029         }
3030         rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3031         if(!rbd_dev->spec->snap_name)
3032                 goto out_err;
3033
3034         return 0;
3035 out_err:
3036         kfree(reply_buf);
3037         kfree(rbd_dev->spec->pool_name);
3038         rbd_dev->spec->pool_name = NULL;
3039
3040         return ret;
3041 }
3042
3043 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3044 {
3045         size_t size;
3046         int ret;
3047         void *reply_buf;
3048         void *p;
3049         void *end;
3050         u64 seq;
3051         u32 snap_count;
3052         struct ceph_snap_context *snapc;
3053         u32 i;
3054
3055         /*
3056          * We'll need room for the seq value (maximum snapshot id),
3057          * snapshot count, and array of that many snapshot ids.
3058          * For now we have a fixed upper limit on the number we're
3059          * prepared to receive.
3060          */
3061         size = sizeof (__le64) + sizeof (__le32) +
3062                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3063         reply_buf = kzalloc(size, GFP_KERNEL);
3064         if (!reply_buf)
3065                 return -ENOMEM;
3066
3067         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3068                                 "rbd", "get_snapcontext",
3069                                 NULL, 0,
3070                                 reply_buf, size, ver);
3071         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3072         if (ret < 0)
3073                 goto out;
3074
3075         ret = -ERANGE;
3076         p = reply_buf;
3077         end = (char *) reply_buf + size;
3078         ceph_decode_64_safe(&p, end, seq, out);
3079         ceph_decode_32_safe(&p, end, snap_count, out);
3080
3081         /*
3082          * Make sure the reported number of snapshot ids wouldn't go
3083          * beyond the end of our buffer.  But before checking that,
3084          * make sure the computed size of the snapshot context we
3085          * allocate is representable in a size_t.
3086          */
3087         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3088                                  / sizeof (u64)) {
3089                 ret = -EINVAL;
3090                 goto out;
3091         }
3092         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3093                 goto out;
3094
3095         size = sizeof (struct ceph_snap_context) +
3096                                 snap_count * sizeof (snapc->snaps[0]);
3097         snapc = kmalloc(size, GFP_KERNEL);
3098         if (!snapc) {
3099                 ret = -ENOMEM;
3100                 goto out;
3101         }
3102
3103         atomic_set(&snapc->nref, 1);
3104         snapc->seq = seq;
3105         snapc->num_snaps = snap_count;
3106         for (i = 0; i < snap_count; i++)
3107                 snapc->snaps[i] = ceph_decode_64(&p);
3108
3109         rbd_dev->header.snapc = snapc;
3110
3111         dout("  snap context seq = %llu, snap_count = %u\n",
3112                 (unsigned long long) seq, (unsigned int) snap_count);
3113
3114 out:
3115         kfree(reply_buf);
3116
3117         return 0;
3118 }
3119
3120 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3121 {
3122         size_t size;
3123         void *reply_buf;
3124         __le64 snap_id;
3125         int ret;
3126         void *p;
3127         void *end;
3128         char *snap_name;
3129
3130         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3131         reply_buf = kmalloc(size, GFP_KERNEL);
3132         if (!reply_buf)
3133                 return ERR_PTR(-ENOMEM);
3134
3135         snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3136         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3137                                 "rbd", "get_snapshot_name",
3138                                 (char *) &snap_id, sizeof (snap_id),
3139                                 reply_buf, size, NULL);
3140         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3141         if (ret < 0)
3142                 goto out;
3143
3144         p = reply_buf;
3145         end = (char *) reply_buf + size;
3146         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3147         if (IS_ERR(snap_name)) {
3148                 ret = PTR_ERR(snap_name);
3149                 goto out;
3150         } else {
3151                 dout("  snap_id 0x%016llx snap_name = %s\n",
3152                         (unsigned long long) le64_to_cpu(snap_id), snap_name);
3153         }
3154         kfree(reply_buf);
3155
3156         return snap_name;
3157 out:
3158         kfree(reply_buf);
3159
3160         return ERR_PTR(ret);
3161 }
3162
3163 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3164                 u64 *snap_size, u64 *snap_features)
3165 {
3166         u64 snap_id;
3167         u8 order;
3168         int ret;
3169
3170         snap_id = rbd_dev->header.snapc->snaps[which];
3171         ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3172         if (ret)
3173                 return ERR_PTR(ret);
3174         ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3175         if (ret)
3176                 return ERR_PTR(ret);
3177
3178         return rbd_dev_v2_snap_name(rbd_dev, which);
3179 }
3180
3181 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3182                 u64 *snap_size, u64 *snap_features)
3183 {
3184         if (rbd_dev->image_format == 1)
3185                 return rbd_dev_v1_snap_info(rbd_dev, which,
3186                                         snap_size, snap_features);
3187         if (rbd_dev->image_format == 2)
3188                 return rbd_dev_v2_snap_info(rbd_dev, which,
3189                                         snap_size, snap_features);
3190         return ERR_PTR(-EINVAL);
3191 }
3192
3193 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3194 {
3195         int ret;
3196         __u8 obj_order;
3197
3198         down_write(&rbd_dev->header_rwsem);
3199
3200         /* Grab old order first, to see if it changes */
3201
3202         obj_order = rbd_dev->header.obj_order,
3203         ret = rbd_dev_v2_image_size(rbd_dev);
3204         if (ret)
3205                 goto out;
3206         if (rbd_dev->header.obj_order != obj_order) {
3207                 ret = -EIO;
3208                 goto out;
3209         }
3210         rbd_update_mapping_size(rbd_dev);
3211
3212         ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3213         dout("rbd_dev_v2_snap_context returned %d\n", ret);
3214         if (ret)
3215                 goto out;
3216         ret = rbd_dev_snaps_update(rbd_dev);
3217         dout("rbd_dev_snaps_update returned %d\n", ret);
3218         if (ret)
3219                 goto out;
3220         ret = rbd_dev_snaps_register(rbd_dev);
3221         dout("rbd_dev_snaps_register returned %d\n", ret);
3222 out:
3223         up_write(&rbd_dev->header_rwsem);
3224
3225         return ret;
3226 }
3227
3228 /*
3229  * Scan the rbd device's current snapshot list and compare it to the
3230  * newly-received snapshot context.  Remove any existing snapshots
3231  * not present in the new snapshot context.  Add a new snapshot for
3232  * any snaphots in the snapshot context not in the current list.
3233  * And verify there are no changes to snapshots we already know
3234  * about.
3235  *
3236  * Assumes the snapshots in the snapshot context are sorted by
3237  * snapshot id, highest id first.  (Snapshots in the rbd_dev's list
3238  * are also maintained in that order.)
3239  */
3240 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3241 {
3242         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3243         const u32 snap_count = snapc->num_snaps;
3244         struct list_head *head = &rbd_dev->snaps;
3245         struct list_head *links = head->next;
3246         u32 index = 0;
3247
3248         dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3249         while (index < snap_count || links != head) {
3250                 u64 snap_id;
3251                 struct rbd_snap *snap;
3252                 char *snap_name;
3253                 u64 snap_size = 0;
3254                 u64 snap_features = 0;
3255
3256                 snap_id = index < snap_count ? snapc->snaps[index]
3257                                              : CEPH_NOSNAP;
3258                 snap = links != head ? list_entry(links, struct rbd_snap, node)
3259                                      : NULL;
3260                 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3261
3262                 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3263                         struct list_head *next = links->next;
3264
3265                         /*
3266                          * A previously-existing snapshot is not in
3267                          * the new snap context.
3268                          *
3269                          * If the now missing snapshot is the one the
3270                          * image is mapped to, clear its exists flag
3271                          * so we can avoid sending any more requests
3272                          * to it.
3273                          */
3274                         if (rbd_dev->spec->snap_id == snap->id)
3275                                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3276                         rbd_remove_snap_dev(snap);
3277                         dout("%ssnap id %llu has been removed\n",
3278                                 rbd_dev->spec->snap_id == snap->id ?
3279                                                         "mapped " : "",
3280                                 (unsigned long long) snap->id);
3281
3282                         /* Done with this list entry; advance */
3283
3284                         links = next;
3285                         continue;
3286                 }
3287
3288                 snap_name = rbd_dev_snap_info(rbd_dev, index,
3289                                         &snap_size, &snap_features);
3290                 if (IS_ERR(snap_name))
3291                         return PTR_ERR(snap_name);
3292
3293                 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3294                         (unsigned long long) snap_id);
3295                 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3296                         struct rbd_snap *new_snap;
3297
3298                         /* We haven't seen this snapshot before */
3299
3300                         new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3301                                         snap_id, snap_size, snap_features);
3302                         if (IS_ERR(new_snap)) {
3303                                 int err = PTR_ERR(new_snap);
3304
3305                                 dout("  failed to add dev, error %d\n", err);
3306
3307                                 return err;
3308                         }
3309
3310                         /* New goes before existing, or at end of list */
3311
3312                         dout("  added dev%s\n", snap ? "" : " at end\n");
3313                         if (snap)
3314                                 list_add_tail(&new_snap->node, &snap->node);
3315                         else
3316                                 list_add_tail(&new_snap->node, head);
3317                 } else {
3318                         /* Already have this one */
3319
3320                         dout("  already present\n");
3321
3322                         rbd_assert(snap->size == snap_size);
3323                         rbd_assert(!strcmp(snap->name, snap_name));
3324                         rbd_assert(snap->features == snap_features);
3325
3326                         /* Done with this list entry; advance */
3327
3328                         links = links->next;
3329                 }
3330
3331                 /* Advance to the next entry in the snapshot context */
3332
3333                 index++;
3334         }
3335         dout("%s: done\n", __func__);
3336
3337         return 0;
3338 }
3339
3340 /*
3341  * Scan the list of snapshots and register the devices for any that
3342  * have not already been registered.
3343  */
3344 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3345 {
3346         struct rbd_snap *snap;
3347         int ret = 0;
3348
3349         dout("%s:\n", __func__);
3350         if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3351                 return -EIO;
3352
3353         list_for_each_entry(snap, &rbd_dev->snaps, node) {
3354                 if (!rbd_snap_registered(snap)) {
3355                         ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3356                         if (ret < 0)
3357                                 break;
3358                 }
3359         }
3360         dout("%s: returning %d\n", __func__, ret);
3361
3362         return ret;
3363 }
3364
3365 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3366 {
3367         struct device *dev;
3368         int ret;
3369
3370         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3371
3372         dev = &rbd_dev->dev;
3373         dev->bus = &rbd_bus_type;
3374         dev->type = &rbd_device_type;
3375         dev->parent = &rbd_root_dev;
3376         dev->release = rbd_dev_release;
3377         dev_set_name(dev, "%d", rbd_dev->dev_id);
3378         ret = device_register(dev);
3379
3380         mutex_unlock(&ctl_mutex);
3381
3382         return ret;
3383 }
3384
3385 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3386 {
3387         device_unregister(&rbd_dev->dev);
3388 }
3389
3390 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3391
3392 /*
3393  * Get a unique rbd identifier for the given new rbd_dev, and add
3394  * the rbd_dev to the global list.  The minimum rbd id is 1.
3395  */
3396 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3397 {
3398         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3399
3400         spin_lock(&rbd_dev_list_lock);
3401         list_add_tail(&rbd_dev->node, &rbd_dev_list);
3402         spin_unlock(&rbd_dev_list_lock);
3403         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3404                 (unsigned long long) rbd_dev->dev_id);
3405 }
3406
3407 /*
3408  * Remove an rbd_dev from the global list, and record that its
3409  * identifier is no longer in use.
3410  */
3411 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3412 {
3413         struct list_head *tmp;
3414         int rbd_id = rbd_dev->dev_id;
3415         int max_id;
3416
3417         rbd_assert(rbd_id > 0);
3418
3419         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3420                 (unsigned long long) rbd_dev->dev_id);
3421         spin_lock(&rbd_dev_list_lock);
3422         list_del_init(&rbd_dev->node);
3423
3424         /*
3425          * If the id being "put" is not the current maximum, there
3426          * is nothing special we need to do.
3427          */
3428         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3429                 spin_unlock(&rbd_dev_list_lock);
3430                 return;
3431         }
3432
3433         /*
3434          * We need to update the current maximum id.  Search the
3435          * list to find out what it is.  We're more likely to find
3436          * the maximum at the end, so search the list backward.
3437          */
3438         max_id = 0;
3439         list_for_each_prev(tmp, &rbd_dev_list) {
3440                 struct rbd_device *rbd_dev;
3441
3442                 rbd_dev = list_entry(tmp, struct rbd_device, node);
3443                 if (rbd_dev->dev_id > max_id)
3444                         max_id = rbd_dev->dev_id;
3445         }
3446         spin_unlock(&rbd_dev_list_lock);
3447
3448         /*
3449          * The max id could have been updated by rbd_dev_id_get(), in
3450          * which case it now accurately reflects the new maximum.
3451          * Be careful not to overwrite the maximum value in that
3452          * case.
3453          */
3454         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3455         dout("  max dev id has been reset\n");
3456 }
3457
3458 /*
3459  * Skips over white space at *buf, and updates *buf to point to the
3460  * first found non-space character (if any). Returns the length of
3461  * the token (string of non-white space characters) found.  Note
3462  * that *buf must be terminated with '\0'.
3463  */
3464 static inline size_t next_token(const char **buf)
3465 {
3466         /*
3467         * These are the characters that produce nonzero for
3468         * isspace() in the "C" and "POSIX" locales.
3469         */
3470         const char *spaces = " \f\n\r\t\v";
3471
3472         *buf += strspn(*buf, spaces);   /* Find start of token */
3473
3474         return strcspn(*buf, spaces);   /* Return token length */
3475 }
3476
3477 /*
3478  * Finds the next token in *buf, and if the provided token buffer is
3479  * big enough, copies the found token into it.  The result, if
3480  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
3481  * must be terminated with '\0' on entry.
3482  *
3483  * Returns the length of the token found (not including the '\0').
3484  * Return value will be 0 if no token is found, and it will be >=
3485  * token_size if the token would not fit.
3486  *
3487  * The *buf pointer will be updated to point beyond the end of the
3488  * found token.  Note that this occurs even if the token buffer is
3489  * too small to hold it.
3490  */
3491 static inline size_t copy_token(const char **buf,
3492                                 char *token,
3493                                 size_t token_size)
3494 {
3495         size_t len;
3496
3497         len = next_token(buf);
3498         if (len < token_size) {
3499                 memcpy(token, *buf, len);
3500                 *(token + len) = '\0';
3501         }
3502         *buf += len;
3503
3504         return len;
3505 }
3506
3507 /*
3508  * Finds the next token in *buf, dynamically allocates a buffer big
3509  * enough to hold a copy of it, and copies the token into the new
3510  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
3511  * that a duplicate buffer is created even for a zero-length token.
3512  *
3513  * Returns a pointer to the newly-allocated duplicate, or a null
3514  * pointer if memory for the duplicate was not available.  If
3515  * the lenp argument is a non-null pointer, the length of the token
3516  * (not including the '\0') is returned in *lenp.
3517  *
3518  * If successful, the *buf pointer will be updated to point beyond
3519  * the end of the found token.
3520  *
3521  * Note: uses GFP_KERNEL for allocation.
3522  */
3523 static inline char *dup_token(const char **buf, size_t *lenp)
3524 {
3525         char *dup;
3526         size_t len;
3527
3528         len = next_token(buf);
3529         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3530         if (!dup)
3531                 return NULL;
3532         *(dup + len) = '\0';
3533         *buf += len;
3534
3535         if (lenp)
3536                 *lenp = len;
3537
3538         return dup;
3539 }
3540
3541 /*
3542  * Parse the options provided for an "rbd add" (i.e., rbd image
3543  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
3544  * and the data written is passed here via a NUL-terminated buffer.
3545  * Returns 0 if successful or an error code otherwise.
3546  *
3547  * The information extracted from these options is recorded in
3548  * the other parameters which return dynamically-allocated
3549  * structures:
3550  *  ceph_opts
3551  *      The address of a pointer that will refer to a ceph options
3552  *      structure.  Caller must release the returned pointer using
3553  *      ceph_destroy_options() when it is no longer needed.
3554  *  rbd_opts
3555  *      Address of an rbd options pointer.  Fully initialized by
3556  *      this function; caller must release with kfree().
3557  *  spec
3558  *      Address of an rbd image specification pointer.  Fully
3559  *      initialized by this function based on parsed options.
3560  *      Caller must release with rbd_spec_put().
3561  *
3562  * The options passed take this form:
3563  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3564  * where:
3565  *  <mon_addrs>
3566  *      A comma-separated list of one or more monitor addresses.
3567  *      A monitor address is an ip address, optionally followed
3568  *      by a port number (separated by a colon).
3569  *        I.e.:  ip1[:port1][,ip2[:port2]...]
3570  *  <options>
3571  *      A comma-separated list of ceph and/or rbd options.
3572  *  <pool_name>
3573  *      The name of the rados pool containing the rbd image.
3574  *  <image_name>
3575  *      The name of the image in that pool to map.
3576  *  <snap_id>
3577  *      An optional snapshot id.  If provided, the mapping will
3578  *      present data from the image at the time that snapshot was
3579  *      created.  The image head is used if no snapshot id is
3580  *      provided.  Snapshot mappings are always read-only.
3581  */
3582 static int rbd_add_parse_args(const char *buf,
3583                                 struct ceph_options **ceph_opts,
3584                                 struct rbd_options **opts,
3585                                 struct rbd_spec **rbd_spec)
3586 {
3587         size_t len;
3588         char *options;
3589         const char *mon_addrs;
3590         size_t mon_addrs_size;
3591         struct rbd_spec *spec = NULL;
3592         struct rbd_options *rbd_opts = NULL;
3593         struct ceph_options *copts;
3594         int ret;
3595
3596         /* The first four tokens are required */
3597
3598         len = next_token(&buf);
3599         if (!len) {
3600                 rbd_warn(NULL, "no monitor address(es) provided");
3601                 return -EINVAL;
3602         }
3603         mon_addrs = buf;
3604         mon_addrs_size = len + 1;
3605         buf += len;
3606
3607         ret = -EINVAL;
3608         options = dup_token(&buf, NULL);
3609         if (!options)
3610                 return -ENOMEM;
3611         if (!*options) {
3612                 rbd_warn(NULL, "no options provided");
3613                 goto out_err;
3614         }
3615
3616         spec = rbd_spec_alloc();
3617         if (!spec)
3618                 goto out_mem;
3619
3620         spec->pool_name = dup_token(&buf, NULL);
3621         if (!spec->pool_name)
3622                 goto out_mem;
3623         if (!*spec->pool_name) {
3624                 rbd_warn(NULL, "no pool name provided");
3625                 goto out_err;
3626         }
3627
3628         spec->image_name = dup_token(&buf, NULL);
3629         if (!spec->image_name)
3630                 goto out_mem;
3631         if (!*spec->image_name) {
3632                 rbd_warn(NULL, "no image name provided");
3633                 goto out_err;
3634         }
3635
3636         /*
3637          * Snapshot name is optional; default is to use "-"
3638          * (indicating the head/no snapshot).
3639          */
3640         len = next_token(&buf);
3641         if (!len) {
3642                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3643                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3644         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3645                 ret = -ENAMETOOLONG;
3646                 goto out_err;
3647         }
3648         spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3649         if (!spec->snap_name)
3650                 goto out_mem;
3651         *(spec->snap_name + len) = '\0';
3652
3653         /* Initialize all rbd options to the defaults */
3654
3655         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3656         if (!rbd_opts)
3657                 goto out_mem;
3658
3659         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3660
3661         copts = ceph_parse_options(options, mon_addrs,
3662                                         mon_addrs + mon_addrs_size - 1,
3663                                         parse_rbd_opts_token, rbd_opts);
3664         if (IS_ERR(copts)) {
3665                 ret = PTR_ERR(copts);
3666                 goto out_err;
3667         }
3668         kfree(options);
3669
3670         *ceph_opts = copts;
3671         *opts = rbd_opts;
3672         *rbd_spec = spec;
3673
3674         return 0;
3675 out_mem:
3676         ret = -ENOMEM;
3677 out_err:
3678         kfree(rbd_opts);
3679         rbd_spec_put(spec);
3680         kfree(options);
3681
3682         return ret;
3683 }
3684
3685 /*
3686  * An rbd format 2 image has a unique identifier, distinct from the
3687  * name given to it by the user.  Internally, that identifier is
3688  * what's used to specify the names of objects related to the image.
3689  *
3690  * A special "rbd id" object is used to map an rbd image name to its
3691  * id.  If that object doesn't exist, then there is no v2 rbd image
3692  * with the supplied name.
3693  *
3694  * This function will record the given rbd_dev's image_id field if
3695  * it can be determined, and in that case will return 0.  If any
3696  * errors occur a negative errno will be returned and the rbd_dev's
3697  * image_id field will be unchanged (and should be NULL).
3698  */
3699 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3700 {
3701         int ret;
3702         size_t size;
3703         char *object_name;
3704         void *response;
3705         void *p;
3706
3707         /*
3708          * When probing a parent image, the image id is already
3709          * known (and the image name likely is not).  There's no
3710          * need to fetch the image id again in this case.
3711          */
3712         if (rbd_dev->spec->image_id)
3713                 return 0;
3714
3715         /*
3716          * First, see if the format 2 image id file exists, and if
3717          * so, get the image's persistent id from it.
3718          */
3719         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3720         object_name = kmalloc(size, GFP_NOIO);
3721         if (!object_name)
3722                 return -ENOMEM;
3723         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3724         dout("rbd id object name is %s\n", object_name);
3725
3726         /* Response will be an encoded string, which includes a length */
3727
3728         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3729         response = kzalloc(size, GFP_NOIO);
3730         if (!response) {
3731                 ret = -ENOMEM;
3732                 goto out;
3733         }
3734
3735         ret = rbd_obj_method_sync(rbd_dev, object_name,
3736                                 "rbd", "get_id",
3737                                 NULL, 0,
3738                                 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3739         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3740         if (ret < 0)
3741                 goto out;
3742
3743         p = response;
3744         rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3745                                                 p + RBD_IMAGE_ID_LEN_MAX,
3746                                                 NULL, GFP_NOIO);
3747         if (IS_ERR(rbd_dev->spec->image_id)) {
3748                 ret = PTR_ERR(rbd_dev->spec->image_id);
3749                 rbd_dev->spec->image_id = NULL;
3750         } else {
3751                 dout("image_id is %s\n", rbd_dev->spec->image_id);
3752         }
3753 out:
3754         kfree(response);
3755         kfree(object_name);
3756
3757         return ret;
3758 }
3759
3760 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3761 {
3762         int ret;
3763         size_t size;
3764
3765         /* Version 1 images have no id; empty string is used */
3766
3767         rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3768         if (!rbd_dev->spec->image_id)
3769                 return -ENOMEM;
3770
3771         /* Record the header object name for this rbd image. */
3772
3773         size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3774         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3775         if (!rbd_dev->header_name) {
3776                 ret = -ENOMEM;
3777                 goto out_err;
3778         }
3779         sprintf(rbd_dev->header_name, "%s%s",
3780                 rbd_dev->spec->image_name, RBD_SUFFIX);
3781
3782         /* Populate rbd image metadata */
3783
3784         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3785         if (ret < 0)
3786                 goto out_err;
3787
3788         /* Version 1 images have no parent (no layering) */
3789
3790         rbd_dev->parent_spec = NULL;
3791         rbd_dev->parent_overlap = 0;
3792
3793         rbd_dev->image_format = 1;
3794
3795         dout("discovered version 1 image, header name is %s\n",
3796                 rbd_dev->header_name);
3797
3798         return 0;
3799
3800 out_err:
3801         kfree(rbd_dev->header_name);
3802         rbd_dev->header_name = NULL;
3803         kfree(rbd_dev->spec->image_id);
3804         rbd_dev->spec->image_id = NULL;
3805
3806         return ret;
3807 }
3808
3809 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3810 {
3811         size_t size;
3812         int ret;
3813         u64 ver = 0;
3814
3815         /*
3816          * Image id was filled in by the caller.  Record the header
3817          * object name for this rbd image.
3818          */
3819         size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3820         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3821         if (!rbd_dev->header_name)
3822                 return -ENOMEM;
3823         sprintf(rbd_dev->header_name, "%s%s",
3824                         RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3825
3826         /* Get the size and object order for the image */
3827
3828         ret = rbd_dev_v2_image_size(rbd_dev);
3829         if (ret < 0)
3830                 goto out_err;
3831
3832         /* Get the object prefix (a.k.a. block_name) for the image */
3833
3834         ret = rbd_dev_v2_object_prefix(rbd_dev);
3835         if (ret < 0)
3836                 goto out_err;
3837
3838         /* Get the and check features for the image */
3839
3840         ret = rbd_dev_v2_features(rbd_dev);
3841         if (ret < 0)
3842                 goto out_err;
3843
3844         /* If the image supports layering, get the parent info */
3845
3846         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3847                 ret = rbd_dev_v2_parent_info(rbd_dev);
3848                 if (ret < 0)
3849                         goto out_err;
3850         }
3851
3852         /* crypto and compression type aren't (yet) supported for v2 images */
3853
3854         rbd_dev->header.crypt_type = 0;
3855         rbd_dev->header.comp_type = 0;
3856
3857         /* Get the snapshot context, plus the header version */
3858
3859         ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3860         if (ret)
3861                 goto out_err;
3862         rbd_dev->header.obj_version = ver;
3863
3864         rbd_dev->image_format = 2;
3865
3866         dout("discovered version 2 image, header name is %s\n",
3867                 rbd_dev->header_name);
3868
3869         return 0;
3870 out_err:
3871         rbd_dev->parent_overlap = 0;
3872         rbd_spec_put(rbd_dev->parent_spec);
3873         rbd_dev->parent_spec = NULL;
3874         kfree(rbd_dev->header_name);
3875         rbd_dev->header_name = NULL;
3876         kfree(rbd_dev->header.object_prefix);
3877         rbd_dev->header.object_prefix = NULL;
3878
3879         return ret;
3880 }
3881
3882 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3883 {
3884         int ret;
3885
3886         /* no need to lock here, as rbd_dev is not registered yet */
3887         ret = rbd_dev_snaps_update(rbd_dev);
3888         if (ret)
3889                 return ret;
3890
3891         ret = rbd_dev_probe_update_spec(rbd_dev);
3892         if (ret)
3893                 goto err_out_snaps;
3894
3895         ret = rbd_dev_set_mapping(rbd_dev);
3896         if (ret)
3897                 goto err_out_snaps;
3898
3899         /* generate unique id: find highest unique id, add one */
3900         rbd_dev_id_get(rbd_dev);
3901
3902         /* Fill in the device name, now that we have its id. */
3903         BUILD_BUG_ON(DEV_NAME_LEN
3904                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3905         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3906
3907         /* Get our block major device number. */
3908
3909         ret = register_blkdev(0, rbd_dev->name);
3910         if (ret < 0)
3911                 goto err_out_id;
3912         rbd_dev->major = ret;
3913
3914         /* Set up the blkdev mapping. */
3915
3916         ret = rbd_init_disk(rbd_dev);
3917         if (ret)
3918                 goto err_out_blkdev;
3919
3920         ret = rbd_bus_add_dev(rbd_dev);
3921         if (ret)
3922                 goto err_out_disk;
3923
3924         /*
3925          * At this point cleanup in the event of an error is the job
3926          * of the sysfs code (initiated by rbd_bus_del_dev()).
3927          */
3928         down_write(&rbd_dev->header_rwsem);
3929         ret = rbd_dev_snaps_register(rbd_dev);
3930         up_write(&rbd_dev->header_rwsem);
3931         if (ret)
3932                 goto err_out_bus;
3933
3934         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3935         if (ret)
3936                 goto err_out_bus;
3937
3938         /* Everything's ready.  Announce the disk to the world. */
3939
3940         add_disk(rbd_dev->disk);
3941
3942         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3943                 (unsigned long long) rbd_dev->mapping.size);
3944
3945         return ret;
3946 err_out_bus:
3947         /* this will also clean up rest of rbd_dev stuff */
3948
3949         rbd_bus_del_dev(rbd_dev);
3950
3951         return ret;
3952 err_out_disk:
3953         rbd_free_disk(rbd_dev);
3954 err_out_blkdev:
3955         unregister_blkdev(rbd_dev->major, rbd_dev->name);
3956 err_out_id:
3957         rbd_dev_id_put(rbd_dev);
3958 err_out_snaps:
3959         rbd_remove_all_snaps(rbd_dev);
3960
3961         return ret;
3962 }
3963
3964 /*
3965  * Probe for the existence of the header object for the given rbd
3966  * device.  For format 2 images this includes determining the image
3967  * id.
3968  */
3969 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3970 {
3971         int ret;
3972
3973         /*
3974          * Get the id from the image id object.  If it's not a
3975          * format 2 image, we'll get ENOENT back, and we'll assume
3976          * it's a format 1 image.
3977          */
3978         ret = rbd_dev_image_id(rbd_dev);
3979         if (ret)
3980                 ret = rbd_dev_v1_probe(rbd_dev);
3981         else
3982                 ret = rbd_dev_v2_probe(rbd_dev);
3983         if (ret) {
3984                 dout("probe failed, returning %d\n", ret);
3985
3986                 return ret;
3987         }
3988
3989         ret = rbd_dev_probe_finish(rbd_dev);
3990         if (ret)
3991                 rbd_header_free(&rbd_dev->header);
3992
3993         return ret;
3994 }
3995
3996 static ssize_t rbd_add(struct bus_type *bus,
3997                        const char *buf,
3998                        size_t count)
3999 {
4000         struct rbd_device *rbd_dev = NULL;
4001         struct ceph_options *ceph_opts = NULL;
4002         struct rbd_options *rbd_opts = NULL;
4003         struct rbd_spec *spec = NULL;
4004         struct rbd_client *rbdc;
4005         struct ceph_osd_client *osdc;
4006         int rc = -ENOMEM;
4007
4008         if (!try_module_get(THIS_MODULE))
4009                 return -ENODEV;
4010
4011         /* parse add command */
4012         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4013         if (rc < 0)
4014                 goto err_out_module;
4015
4016         rbdc = rbd_get_client(ceph_opts);
4017         if (IS_ERR(rbdc)) {
4018                 rc = PTR_ERR(rbdc);
4019                 goto err_out_args;
4020         }
4021         ceph_opts = NULL;       /* rbd_dev client now owns this */
4022
4023         /* pick the pool */
4024         osdc = &rbdc->client->osdc;
4025         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4026         if (rc < 0)
4027                 goto err_out_client;
4028         spec->pool_id = (u64) rc;
4029
4030         /* The ceph file layout needs to fit pool id in 32 bits */
4031
4032         if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4033                 rc = -EIO;
4034                 goto err_out_client;
4035         }
4036
4037         rbd_dev = rbd_dev_create(rbdc, spec);
4038         if (!rbd_dev)
4039                 goto err_out_client;
4040         rbdc = NULL;            /* rbd_dev now owns this */
4041         spec = NULL;            /* rbd_dev now owns this */
4042
4043         rbd_dev->mapping.read_only = rbd_opts->read_only;
4044         kfree(rbd_opts);
4045         rbd_opts = NULL;        /* done with this */
4046
4047         rc = rbd_dev_probe(rbd_dev);
4048         if (rc < 0)
4049                 goto err_out_rbd_dev;
4050
4051         return count;
4052 err_out_rbd_dev:
4053         rbd_dev_destroy(rbd_dev);
4054 err_out_client:
4055         rbd_put_client(rbdc);
4056 err_out_args:
4057         if (ceph_opts)
4058                 ceph_destroy_options(ceph_opts);
4059         kfree(rbd_opts);
4060         rbd_spec_put(spec);
4061 err_out_module:
4062         module_put(THIS_MODULE);
4063
4064         dout("Error adding device %s\n", buf);
4065
4066         return (ssize_t) rc;
4067 }
4068
4069 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4070 {
4071         struct list_head *tmp;
4072         struct rbd_device *rbd_dev;
4073
4074         spin_lock(&rbd_dev_list_lock);
4075         list_for_each(tmp, &rbd_dev_list) {
4076                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4077                 if (rbd_dev->dev_id == dev_id) {
4078                         spin_unlock(&rbd_dev_list_lock);
4079                         return rbd_dev;
4080                 }
4081         }
4082         spin_unlock(&rbd_dev_list_lock);
4083         return NULL;
4084 }
4085
4086 static void rbd_dev_release(struct device *dev)
4087 {
4088         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4089
4090         if (rbd_dev->watch_event)
4091                 rbd_dev_header_watch_sync(rbd_dev, 0);
4092
4093         /* clean up and free blkdev */
4094         rbd_free_disk(rbd_dev);
4095         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4096
4097         /* release allocated disk header fields */
4098         rbd_header_free(&rbd_dev->header);
4099
4100         /* done with the id, and with the rbd_dev */
4101         rbd_dev_id_put(rbd_dev);
4102         rbd_assert(rbd_dev->rbd_client != NULL);
4103         rbd_dev_destroy(rbd_dev);
4104
4105         /* release module ref */
4106         module_put(THIS_MODULE);
4107 }
4108
4109 static ssize_t rbd_remove(struct bus_type *bus,
4110                           const char *buf,
4111                           size_t count)
4112 {
4113         struct rbd_device *rbd_dev = NULL;
4114         int target_id, rc;
4115         unsigned long ul;
4116         int ret = count;
4117
4118         rc = strict_strtoul(buf, 10, &ul);
4119         if (rc)
4120                 return rc;
4121
4122         /* convert to int; abort if we lost anything in the conversion */
4123         target_id = (int) ul;
4124         if (target_id != ul)
4125                 return -EINVAL;
4126
4127         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4128
4129         rbd_dev = __rbd_get_dev(target_id);
4130         if (!rbd_dev) {
4131                 ret = -ENOENT;
4132                 goto done;
4133         }
4134
4135         spin_lock_irq(&rbd_dev->lock);
4136         if (rbd_dev->open_count)
4137                 ret = -EBUSY;
4138         else
4139                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4140         spin_unlock_irq(&rbd_dev->lock);
4141         if (ret < 0)
4142                 goto done;
4143
4144         rbd_remove_all_snaps(rbd_dev);
4145         rbd_bus_del_dev(rbd_dev);
4146
4147 done:
4148         mutex_unlock(&ctl_mutex);
4149
4150         return ret;
4151 }
4152
4153 /*
4154  * create control files in sysfs
4155  * /sys/bus/rbd/...
4156  */
4157 static int rbd_sysfs_init(void)
4158 {
4159         int ret;
4160
4161         ret = device_register(&rbd_root_dev);
4162         if (ret < 0)
4163                 return ret;
4164
4165         ret = bus_register(&rbd_bus_type);
4166         if (ret < 0)
4167                 device_unregister(&rbd_root_dev);
4168
4169         return ret;
4170 }
4171
4172 static void rbd_sysfs_cleanup(void)
4173 {
4174         bus_unregister(&rbd_bus_type);
4175         device_unregister(&rbd_root_dev);
4176 }
4177
4178 static int __init rbd_init(void)
4179 {
4180         int rc;
4181
4182         if (!libceph_compatible(NULL)) {
4183                 rbd_warn(NULL, "libceph incompatibility (quitting)");
4184
4185                 return -EINVAL;
4186         }
4187         rc = rbd_sysfs_init();
4188         if (rc)
4189                 return rc;
4190         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4191         return 0;
4192 }
4193
4194 static void __exit rbd_exit(void)
4195 {
4196         rbd_sysfs_cleanup();
4197 }
4198
4199 module_init(rbd_init);
4200 module_exit(rbd_exit);
4201
4202 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4203 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4204 MODULE_DESCRIPTION("rados block device");
4205
4206 /* following authorship retained from original osdblk.c */
4207 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4208
4209 MODULE_LICENSE("GPL");