]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
rbd: ignore result of ceph_copy_from_page_vector()
[~andy/linux] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG       /* Activate rbd_assert() calls */
45
46 /*
47  * The basic unit of block I/O is a sector.  It is interpreted in a
48  * number of contexts in Linux (blk, bio, genhd), but the default is
49  * universally 512 bytes.  These symbols are just slightly more
50  * meaningful than the bare numbers they represent.
51  */
52 #define SECTOR_SHIFT    9
53 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have these defined elsewhere */
56
57 #define U8_MAX  ((u8)   (~0U))
58 #define U16_MAX ((u16)  (~0U))
59 #define U32_MAX ((u32)  (~0U))
60 #define U64_MAX ((u64)  (~0ULL))
61
62 #define RBD_DRV_NAME "rbd"
63 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
64
65 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
66
67 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
68 #define RBD_MAX_SNAP_NAME_LEN   \
69                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
70
71 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
72
73 #define RBD_SNAP_HEAD_NAME      "-"
74
75 /* This allows a single page to hold an image name sent by OSD */
76 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
77 #define RBD_IMAGE_ID_LEN_MAX    64
78
79 #define RBD_OBJ_PREFIX_LEN_MAX  64
80
81 /* Feature bits */
82
83 #define RBD_FEATURE_LAYERING      1
84
85 /* Features supported by this (client software) implementation. */
86
87 #define RBD_FEATURES_ALL          (0)
88
89 /*
90  * An RBD device name will be "rbd#", where the "rbd" comes from
91  * RBD_DRV_NAME above, and # is a unique integer identifier.
92  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
93  * enough to hold all possible device names.
94  */
95 #define DEV_NAME_LEN            32
96 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
97
98 /*
99  * block device image metadata (in-memory version)
100  */
101 struct rbd_image_header {
102         /* These four fields never change for a given rbd image */
103         char *object_prefix;
104         u64 features;
105         __u8 obj_order;
106         __u8 crypt_type;
107         __u8 comp_type;
108
109         /* The remaining fields need to be updated occasionally */
110         u64 image_size;
111         struct ceph_snap_context *snapc;
112         char *snap_names;
113         u64 *snap_sizes;
114
115         u64 obj_version;
116 };
117
118 /*
119  * An rbd image specification.
120  *
121  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122  * identify an image.  Each rbd_dev structure includes a pointer to
123  * an rbd_spec structure that encapsulates this identity.
124  *
125  * Each of the id's in an rbd_spec has an associated name.  For a
126  * user-mapped image, the names are supplied and the id's associated
127  * with them are looked up.  For a layered image, a parent image is
128  * defined by the tuple, and the names are looked up.
129  *
130  * An rbd_dev structure contains a parent_spec pointer which is
131  * non-null if the image it represents is a child in a layered
132  * image.  This pointer will refer to the rbd_spec structure used
133  * by the parent rbd_dev for its own identity (i.e., the structure
134  * is shared between the parent and child).
135  *
136  * Since these structures are populated once, during the discovery
137  * phase of image construction, they are effectively immutable so
138  * we make no effort to synchronize access to them.
139  *
140  * Note that code herein does not assume the image name is known (it
141  * could be a null pointer).
142  */
143 struct rbd_spec {
144         u64             pool_id;
145         char            *pool_name;
146
147         char            *image_id;
148         char            *image_name;
149
150         u64             snap_id;
151         char            *snap_name;
152
153         struct kref     kref;
154 };
155
156 /*
157  * an instance of the client.  multiple devices may share an rbd client.
158  */
159 struct rbd_client {
160         struct ceph_client      *client;
161         struct kref             kref;
162         struct list_head        node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 struct rbd_obj_request {
178         const char              *object_name;
179         u64                     offset;         /* object start byte */
180         u64                     length;         /* bytes from offset */
181
182         struct rbd_img_request  *img_request;
183         struct list_head        links;          /* img_request->obj_requests */
184         u32                     which;          /* posn image request list */
185
186         enum obj_request_type   type;
187         union {
188                 struct bio      *bio_list;
189                 struct {
190                         struct page     **pages;
191                         u32             page_count;
192                 };
193         };
194
195         struct ceph_osd_request *osd_req;
196
197         u64                     xferred;        /* bytes transferred */
198         u64                     version;
199         s32                     result;
200         atomic_t                done;
201
202         rbd_obj_callback_t      callback;
203         struct completion       completion;
204
205         struct kref             kref;
206 };
207
208 struct rbd_img_request {
209         struct request          *rq;
210         struct rbd_device       *rbd_dev;
211         u64                     offset; /* starting image byte offset */
212         u64                     length; /* byte count from offset */
213         bool                    write_request;  /* false for read */
214         union {
215                 struct ceph_snap_context *snapc;        /* for writes */
216                 u64             snap_id;                /* for reads */
217         };
218         spinlock_t              completion_lock;/* protects next_completion */
219         u32                     next_completion;
220         rbd_img_callback_t      callback;
221
222         u32                     obj_request_count;
223         struct list_head        obj_requests;   /* rbd_obj_request structs */
224
225         struct kref             kref;
226 };
227
228 #define for_each_obj_request(ireq, oreq) \
229         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
230 #define for_each_obj_request_from(ireq, oreq) \
231         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
232 #define for_each_obj_request_safe(ireq, oreq, n) \
233         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
234
235 struct rbd_snap {
236         struct  device          dev;
237         const char              *name;
238         u64                     size;
239         struct list_head        node;
240         u64                     id;
241         u64                     features;
242 };
243
244 struct rbd_mapping {
245         u64                     size;
246         u64                     features;
247         bool                    read_only;
248 };
249
250 /*
251  * a single device
252  */
253 struct rbd_device {
254         int                     dev_id;         /* blkdev unique id */
255
256         int                     major;          /* blkdev assigned major */
257         struct gendisk          *disk;          /* blkdev's gendisk and rq */
258
259         u32                     image_format;   /* Either 1 or 2 */
260         struct rbd_client       *rbd_client;
261
262         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
263
264         spinlock_t              lock;           /* queue, flags, open_count */
265
266         struct rbd_image_header header;
267         unsigned long           flags;          /* possibly lock protected */
268         struct rbd_spec         *spec;
269
270         char                    *header_name;
271
272         struct ceph_file_layout layout;
273
274         struct ceph_osd_event   *watch_event;
275         struct rbd_obj_request  *watch_request;
276
277         struct rbd_spec         *parent_spec;
278         u64                     parent_overlap;
279
280         /* protects updating the header */
281         struct rw_semaphore     header_rwsem;
282
283         struct rbd_mapping      mapping;
284
285         struct list_head        node;
286
287         /* list of snapshots */
288         struct list_head        snaps;
289
290         /* sysfs related */
291         struct device           dev;
292         unsigned long           open_count;     /* protected by lock */
293 };
294
295 /*
296  * Flag bits for rbd_dev->flags.  If atomicity is required,
297  * rbd_dev->lock is used to protect access.
298  *
299  * Currently, only the "removing" flag (which is coupled with the
300  * "open_count" field) requires atomic access.
301  */
302 enum rbd_dev_flags {
303         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
304         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
305 };
306
307 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
308
309 static LIST_HEAD(rbd_dev_list);    /* devices */
310 static DEFINE_SPINLOCK(rbd_dev_list_lock);
311
312 static LIST_HEAD(rbd_client_list);              /* clients */
313 static DEFINE_SPINLOCK(rbd_client_list_lock);
314
315 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
316 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
317
318 static void rbd_dev_release(struct device *dev);
319 static void rbd_remove_snap_dev(struct rbd_snap *snap);
320
321 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
322                        size_t count);
323 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
324                           size_t count);
325
326 static struct bus_attribute rbd_bus_attrs[] = {
327         __ATTR(add, S_IWUSR, NULL, rbd_add),
328         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
329         __ATTR_NULL
330 };
331
332 static struct bus_type rbd_bus_type = {
333         .name           = "rbd",
334         .bus_attrs      = rbd_bus_attrs,
335 };
336
337 static void rbd_root_dev_release(struct device *dev)
338 {
339 }
340
341 static struct device rbd_root_dev = {
342         .init_name =    "rbd",
343         .release =      rbd_root_dev_release,
344 };
345
346 static __printf(2, 3)
347 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
348 {
349         struct va_format vaf;
350         va_list args;
351
352         va_start(args, fmt);
353         vaf.fmt = fmt;
354         vaf.va = &args;
355
356         if (!rbd_dev)
357                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
358         else if (rbd_dev->disk)
359                 printk(KERN_WARNING "%s: %s: %pV\n",
360                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
361         else if (rbd_dev->spec && rbd_dev->spec->image_name)
362                 printk(KERN_WARNING "%s: image %s: %pV\n",
363                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
364         else if (rbd_dev->spec && rbd_dev->spec->image_id)
365                 printk(KERN_WARNING "%s: id %s: %pV\n",
366                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
367         else    /* punt */
368                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
369                         RBD_DRV_NAME, rbd_dev, &vaf);
370         va_end(args);
371 }
372
373 #ifdef RBD_DEBUG
374 #define rbd_assert(expr)                                                \
375                 if (unlikely(!(expr))) {                                \
376                         printk(KERN_ERR "\nAssertion failure in %s() "  \
377                                                 "at line %d:\n\n"       \
378                                         "\trbd_assert(%s);\n\n",        \
379                                         __func__, __LINE__, #expr);     \
380                         BUG();                                          \
381                 }
382 #else /* !RBD_DEBUG */
383 #  define rbd_assert(expr)      ((void) 0)
384 #endif /* !RBD_DEBUG */
385
386 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
387 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
388
389 static int rbd_open(struct block_device *bdev, fmode_t mode)
390 {
391         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
392         bool removing = false;
393
394         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
395                 return -EROFS;
396
397         spin_lock_irq(&rbd_dev->lock);
398         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
399                 removing = true;
400         else
401                 rbd_dev->open_count++;
402         spin_unlock_irq(&rbd_dev->lock);
403         if (removing)
404                 return -ENOENT;
405
406         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
407         (void) get_device(&rbd_dev->dev);
408         set_device_ro(bdev, rbd_dev->mapping.read_only);
409         mutex_unlock(&ctl_mutex);
410
411         return 0;
412 }
413
414 static int rbd_release(struct gendisk *disk, fmode_t mode)
415 {
416         struct rbd_device *rbd_dev = disk->private_data;
417         unsigned long open_count_before;
418
419         spin_lock_irq(&rbd_dev->lock);
420         open_count_before = rbd_dev->open_count--;
421         spin_unlock_irq(&rbd_dev->lock);
422         rbd_assert(open_count_before > 0);
423
424         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
425         put_device(&rbd_dev->dev);
426         mutex_unlock(&ctl_mutex);
427
428         return 0;
429 }
430
431 static const struct block_device_operations rbd_bd_ops = {
432         .owner                  = THIS_MODULE,
433         .open                   = rbd_open,
434         .release                = rbd_release,
435 };
436
437 /*
438  * Initialize an rbd client instance.
439  * We own *ceph_opts.
440  */
441 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
442 {
443         struct rbd_client *rbdc;
444         int ret = -ENOMEM;
445
446         dout("rbd_client_create\n");
447         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
448         if (!rbdc)
449                 goto out_opt;
450
451         kref_init(&rbdc->kref);
452         INIT_LIST_HEAD(&rbdc->node);
453
454         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455
456         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
457         if (IS_ERR(rbdc->client))
458                 goto out_mutex;
459         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
460
461         ret = ceph_open_session(rbdc->client);
462         if (ret < 0)
463                 goto out_err;
464
465         spin_lock(&rbd_client_list_lock);
466         list_add_tail(&rbdc->node, &rbd_client_list);
467         spin_unlock(&rbd_client_list_lock);
468
469         mutex_unlock(&ctl_mutex);
470
471         dout("rbd_client_create created %p\n", rbdc);
472         return rbdc;
473
474 out_err:
475         ceph_destroy_client(rbdc->client);
476 out_mutex:
477         mutex_unlock(&ctl_mutex);
478         kfree(rbdc);
479 out_opt:
480         if (ceph_opts)
481                 ceph_destroy_options(ceph_opts);
482         return ERR_PTR(ret);
483 }
484
485 /*
486  * Find a ceph client with specific addr and configuration.  If
487  * found, bump its reference count.
488  */
489 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
490 {
491         struct rbd_client *client_node;
492         bool found = false;
493
494         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
495                 return NULL;
496
497         spin_lock(&rbd_client_list_lock);
498         list_for_each_entry(client_node, &rbd_client_list, node) {
499                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
500                         kref_get(&client_node->kref);
501                         found = true;
502                         break;
503                 }
504         }
505         spin_unlock(&rbd_client_list_lock);
506
507         return found ? client_node : NULL;
508 }
509
510 /*
511  * mount options
512  */
513 enum {
514         Opt_last_int,
515         /* int args above */
516         Opt_last_string,
517         /* string args above */
518         Opt_read_only,
519         Opt_read_write,
520         /* Boolean args above */
521         Opt_last_bool,
522 };
523
524 static match_table_t rbd_opts_tokens = {
525         /* int args above */
526         /* string args above */
527         {Opt_read_only, "read_only"},
528         {Opt_read_only, "ro"},          /* Alternate spelling */
529         {Opt_read_write, "read_write"},
530         {Opt_read_write, "rw"},         /* Alternate spelling */
531         /* Boolean args above */
532         {-1, NULL}
533 };
534
535 struct rbd_options {
536         bool    read_only;
537 };
538
539 #define RBD_READ_ONLY_DEFAULT   false
540
541 static int parse_rbd_opts_token(char *c, void *private)
542 {
543         struct rbd_options *rbd_opts = private;
544         substring_t argstr[MAX_OPT_ARGS];
545         int token, intval, ret;
546
547         token = match_token(c, rbd_opts_tokens, argstr);
548         if (token < 0)
549                 return -EINVAL;
550
551         if (token < Opt_last_int) {
552                 ret = match_int(&argstr[0], &intval);
553                 if (ret < 0) {
554                         pr_err("bad mount option arg (not int) "
555                                "at '%s'\n", c);
556                         return ret;
557                 }
558                 dout("got int token %d val %d\n", token, intval);
559         } else if (token > Opt_last_int && token < Opt_last_string) {
560                 dout("got string token %d val %s\n", token,
561                      argstr[0].from);
562         } else if (token > Opt_last_string && token < Opt_last_bool) {
563                 dout("got Boolean token %d\n", token);
564         } else {
565                 dout("got token %d\n", token);
566         }
567
568         switch (token) {
569         case Opt_read_only:
570                 rbd_opts->read_only = true;
571                 break;
572         case Opt_read_write:
573                 rbd_opts->read_only = false;
574                 break;
575         default:
576                 rbd_assert(false);
577                 break;
578         }
579         return 0;
580 }
581
582 /*
583  * Get a ceph client with specific addr and configuration, if one does
584  * not exist create it.
585  */
586 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
587 {
588         struct rbd_client *rbdc;
589
590         rbdc = rbd_client_find(ceph_opts);
591         if (rbdc)       /* using an existing client */
592                 ceph_destroy_options(ceph_opts);
593         else
594                 rbdc = rbd_client_create(ceph_opts);
595
596         return rbdc;
597 }
598
599 /*
600  * Destroy ceph client
601  *
602  * Caller must hold rbd_client_list_lock.
603  */
604 static void rbd_client_release(struct kref *kref)
605 {
606         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
607
608         dout("rbd_release_client %p\n", rbdc);
609         spin_lock(&rbd_client_list_lock);
610         list_del(&rbdc->node);
611         spin_unlock(&rbd_client_list_lock);
612
613         ceph_destroy_client(rbdc->client);
614         kfree(rbdc);
615 }
616
617 /*
618  * Drop reference to ceph client node. If it's not referenced anymore, release
619  * it.
620  */
621 static void rbd_put_client(struct rbd_client *rbdc)
622 {
623         if (rbdc)
624                 kref_put(&rbdc->kref, rbd_client_release);
625 }
626
627 static bool rbd_image_format_valid(u32 image_format)
628 {
629         return image_format == 1 || image_format == 2;
630 }
631
632 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
633 {
634         size_t size;
635         u32 snap_count;
636
637         /* The header has to start with the magic rbd header text */
638         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
639                 return false;
640
641         /* The bio layer requires at least sector-sized I/O */
642
643         if (ondisk->options.order < SECTOR_SHIFT)
644                 return false;
645
646         /* If we use u64 in a few spots we may be able to loosen this */
647
648         if (ondisk->options.order > 8 * sizeof (int) - 1)
649                 return false;
650
651         /*
652          * The size of a snapshot header has to fit in a size_t, and
653          * that limits the number of snapshots.
654          */
655         snap_count = le32_to_cpu(ondisk->snap_count);
656         size = SIZE_MAX - sizeof (struct ceph_snap_context);
657         if (snap_count > size / sizeof (__le64))
658                 return false;
659
660         /*
661          * Not only that, but the size of the entire the snapshot
662          * header must also be representable in a size_t.
663          */
664         size -= snap_count * sizeof (__le64);
665         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
666                 return false;
667
668         return true;
669 }
670
671 /*
672  * Create a new header structure, translate header format from the on-disk
673  * header.
674  */
675 static int rbd_header_from_disk(struct rbd_image_header *header,
676                                  struct rbd_image_header_ondisk *ondisk)
677 {
678         u32 snap_count;
679         size_t len;
680         size_t size;
681         u32 i;
682
683         memset(header, 0, sizeof (*header));
684
685         snap_count = le32_to_cpu(ondisk->snap_count);
686
687         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
688         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
689         if (!header->object_prefix)
690                 return -ENOMEM;
691         memcpy(header->object_prefix, ondisk->object_prefix, len);
692         header->object_prefix[len] = '\0';
693
694         if (snap_count) {
695                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
696
697                 /* Save a copy of the snapshot names */
698
699                 if (snap_names_len > (u64) SIZE_MAX)
700                         return -EIO;
701                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
702                 if (!header->snap_names)
703                         goto out_err;
704                 /*
705                  * Note that rbd_dev_v1_header_read() guarantees
706                  * the ondisk buffer we're working with has
707                  * snap_names_len bytes beyond the end of the
708                  * snapshot id array, this memcpy() is safe.
709                  */
710                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
711                         snap_names_len);
712
713                 /* Record each snapshot's size */
714
715                 size = snap_count * sizeof (*header->snap_sizes);
716                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
717                 if (!header->snap_sizes)
718                         goto out_err;
719                 for (i = 0; i < snap_count; i++)
720                         header->snap_sizes[i] =
721                                 le64_to_cpu(ondisk->snaps[i].image_size);
722         } else {
723                 WARN_ON(ondisk->snap_names_len);
724                 header->snap_names = NULL;
725                 header->snap_sizes = NULL;
726         }
727
728         header->features = 0;   /* No features support in v1 images */
729         header->obj_order = ondisk->options.order;
730         header->crypt_type = ondisk->options.crypt_type;
731         header->comp_type = ondisk->options.comp_type;
732
733         /* Allocate and fill in the snapshot context */
734
735         header->image_size = le64_to_cpu(ondisk->image_size);
736         size = sizeof (struct ceph_snap_context);
737         size += snap_count * sizeof (header->snapc->snaps[0]);
738         header->snapc = kzalloc(size, GFP_KERNEL);
739         if (!header->snapc)
740                 goto out_err;
741
742         atomic_set(&header->snapc->nref, 1);
743         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
744         header->snapc->num_snaps = snap_count;
745         for (i = 0; i < snap_count; i++)
746                 header->snapc->snaps[i] =
747                         le64_to_cpu(ondisk->snaps[i].id);
748
749         return 0;
750
751 out_err:
752         kfree(header->snap_sizes);
753         header->snap_sizes = NULL;
754         kfree(header->snap_names);
755         header->snap_names = NULL;
756         kfree(header->object_prefix);
757         header->object_prefix = NULL;
758
759         return -ENOMEM;
760 }
761
762 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
763 {
764         struct rbd_snap *snap;
765
766         if (snap_id == CEPH_NOSNAP)
767                 return RBD_SNAP_HEAD_NAME;
768
769         list_for_each_entry(snap, &rbd_dev->snaps, node)
770                 if (snap_id == snap->id)
771                         return snap->name;
772
773         return NULL;
774 }
775
776 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
777 {
778
779         struct rbd_snap *snap;
780
781         list_for_each_entry(snap, &rbd_dev->snaps, node) {
782                 if (!strcmp(snap_name, snap->name)) {
783                         rbd_dev->spec->snap_id = snap->id;
784                         rbd_dev->mapping.size = snap->size;
785                         rbd_dev->mapping.features = snap->features;
786
787                         return 0;
788                 }
789         }
790
791         return -ENOENT;
792 }
793
794 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
795 {
796         int ret;
797
798         if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
799                     sizeof (RBD_SNAP_HEAD_NAME))) {
800                 rbd_dev->spec->snap_id = CEPH_NOSNAP;
801                 rbd_dev->mapping.size = rbd_dev->header.image_size;
802                 rbd_dev->mapping.features = rbd_dev->header.features;
803                 ret = 0;
804         } else {
805                 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
806                 if (ret < 0)
807                         goto done;
808                 rbd_dev->mapping.read_only = true;
809         }
810         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
811
812 done:
813         return ret;
814 }
815
816 static void rbd_header_free(struct rbd_image_header *header)
817 {
818         kfree(header->object_prefix);
819         header->object_prefix = NULL;
820         kfree(header->snap_sizes);
821         header->snap_sizes = NULL;
822         kfree(header->snap_names);
823         header->snap_names = NULL;
824         ceph_put_snap_context(header->snapc);
825         header->snapc = NULL;
826 }
827
828 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
829 {
830         char *name;
831         u64 segment;
832         int ret;
833
834         name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
835         if (!name)
836                 return NULL;
837         segment = offset >> rbd_dev->header.obj_order;
838         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
839                         rbd_dev->header.object_prefix, segment);
840         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
841                 pr_err("error formatting segment name for #%llu (%d)\n",
842                         segment, ret);
843                 kfree(name);
844                 name = NULL;
845         }
846
847         return name;
848 }
849
850 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
851 {
852         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
853
854         return offset & (segment_size - 1);
855 }
856
857 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
858                                 u64 offset, u64 length)
859 {
860         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
861
862         offset &= segment_size - 1;
863
864         rbd_assert(length <= U64_MAX - offset);
865         if (offset + length > segment_size)
866                 length = segment_size - offset;
867
868         return length;
869 }
870
871 /*
872  * returns the size of an object in the image
873  */
874 static u64 rbd_obj_bytes(struct rbd_image_header *header)
875 {
876         return 1 << header->obj_order;
877 }
878
879 /*
880  * bio helpers
881  */
882
883 static void bio_chain_put(struct bio *chain)
884 {
885         struct bio *tmp;
886
887         while (chain) {
888                 tmp = chain;
889                 chain = chain->bi_next;
890                 bio_put(tmp);
891         }
892 }
893
894 /*
895  * zeros a bio chain, starting at specific offset
896  */
897 static void zero_bio_chain(struct bio *chain, int start_ofs)
898 {
899         struct bio_vec *bv;
900         unsigned long flags;
901         void *buf;
902         int i;
903         int pos = 0;
904
905         while (chain) {
906                 bio_for_each_segment(bv, chain, i) {
907                         if (pos + bv->bv_len > start_ofs) {
908                                 int remainder = max(start_ofs - pos, 0);
909                                 buf = bvec_kmap_irq(bv, &flags);
910                                 memset(buf + remainder, 0,
911                                        bv->bv_len - remainder);
912                                 bvec_kunmap_irq(buf, &flags);
913                         }
914                         pos += bv->bv_len;
915                 }
916
917                 chain = chain->bi_next;
918         }
919 }
920
921 /*
922  * Clone a portion of a bio, starting at the given byte offset
923  * and continuing for the number of bytes indicated.
924  */
925 static struct bio *bio_clone_range(struct bio *bio_src,
926                                         unsigned int offset,
927                                         unsigned int len,
928                                         gfp_t gfpmask)
929 {
930         struct bio_vec *bv;
931         unsigned int resid;
932         unsigned short idx;
933         unsigned int voff;
934         unsigned short end_idx;
935         unsigned short vcnt;
936         struct bio *bio;
937
938         /* Handle the easy case for the caller */
939
940         if (!offset && len == bio_src->bi_size)
941                 return bio_clone(bio_src, gfpmask);
942
943         if (WARN_ON_ONCE(!len))
944                 return NULL;
945         if (WARN_ON_ONCE(len > bio_src->bi_size))
946                 return NULL;
947         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
948                 return NULL;
949
950         /* Find first affected segment... */
951
952         resid = offset;
953         __bio_for_each_segment(bv, bio_src, idx, 0) {
954                 if (resid < bv->bv_len)
955                         break;
956                 resid -= bv->bv_len;
957         }
958         voff = resid;
959
960         /* ...and the last affected segment */
961
962         resid += len;
963         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
964                 if (resid <= bv->bv_len)
965                         break;
966                 resid -= bv->bv_len;
967         }
968         vcnt = end_idx - idx + 1;
969
970         /* Build the clone */
971
972         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
973         if (!bio)
974                 return NULL;    /* ENOMEM */
975
976         bio->bi_bdev = bio_src->bi_bdev;
977         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
978         bio->bi_rw = bio_src->bi_rw;
979         bio->bi_flags |= 1 << BIO_CLONED;
980
981         /*
982          * Copy over our part of the bio_vec, then update the first
983          * and last (or only) entries.
984          */
985         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
986                         vcnt * sizeof (struct bio_vec));
987         bio->bi_io_vec[0].bv_offset += voff;
988         if (vcnt > 1) {
989                 bio->bi_io_vec[0].bv_len -= voff;
990                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
991         } else {
992                 bio->bi_io_vec[0].bv_len = len;
993         }
994
995         bio->bi_vcnt = vcnt;
996         bio->bi_size = len;
997         bio->bi_idx = 0;
998
999         return bio;
1000 }
1001
1002 /*
1003  * Clone a portion of a bio chain, starting at the given byte offset
1004  * into the first bio in the source chain and continuing for the
1005  * number of bytes indicated.  The result is another bio chain of
1006  * exactly the given length, or a null pointer on error.
1007  *
1008  * The bio_src and offset parameters are both in-out.  On entry they
1009  * refer to the first source bio and the offset into that bio where
1010  * the start of data to be cloned is located.
1011  *
1012  * On return, bio_src is updated to refer to the bio in the source
1013  * chain that contains first un-cloned byte, and *offset will
1014  * contain the offset of that byte within that bio.
1015  */
1016 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1017                                         unsigned int *offset,
1018                                         unsigned int len,
1019                                         gfp_t gfpmask)
1020 {
1021         struct bio *bi = *bio_src;
1022         unsigned int off = *offset;
1023         struct bio *chain = NULL;
1024         struct bio **end;
1025
1026         /* Build up a chain of clone bios up to the limit */
1027
1028         if (!bi || off >= bi->bi_size || !len)
1029                 return NULL;            /* Nothing to clone */
1030
1031         end = &chain;
1032         while (len) {
1033                 unsigned int bi_size;
1034                 struct bio *bio;
1035
1036                 if (!bi) {
1037                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1038                         goto out_err;   /* EINVAL; ran out of bio's */
1039                 }
1040                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1041                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1042                 if (!bio)
1043                         goto out_err;   /* ENOMEM */
1044
1045                 *end = bio;
1046                 end = &bio->bi_next;
1047
1048                 off += bi_size;
1049                 if (off == bi->bi_size) {
1050                         bi = bi->bi_next;
1051                         off = 0;
1052                 }
1053                 len -= bi_size;
1054         }
1055         *bio_src = bi;
1056         *offset = off;
1057
1058         return chain;
1059 out_err:
1060         bio_chain_put(chain);
1061
1062         return NULL;
1063 }
1064
1065 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1066 {
1067         kref_get(&obj_request->kref);
1068 }
1069
1070 static void rbd_obj_request_destroy(struct kref *kref);
1071 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1072 {
1073         rbd_assert(obj_request != NULL);
1074         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1075 }
1076
1077 static void rbd_img_request_get(struct rbd_img_request *img_request)
1078 {
1079         kref_get(&img_request->kref);
1080 }
1081
1082 static void rbd_img_request_destroy(struct kref *kref);
1083 static void rbd_img_request_put(struct rbd_img_request *img_request)
1084 {
1085         rbd_assert(img_request != NULL);
1086         kref_put(&img_request->kref, rbd_img_request_destroy);
1087 }
1088
1089 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1090                                         struct rbd_obj_request *obj_request)
1091 {
1092         rbd_assert(obj_request->img_request == NULL);
1093
1094         rbd_obj_request_get(obj_request);
1095         obj_request->img_request = img_request;
1096         obj_request->which = img_request->obj_request_count;
1097         rbd_assert(obj_request->which != BAD_WHICH);
1098         img_request->obj_request_count++;
1099         list_add_tail(&obj_request->links, &img_request->obj_requests);
1100 }
1101
1102 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1103                                         struct rbd_obj_request *obj_request)
1104 {
1105         rbd_assert(obj_request->which != BAD_WHICH);
1106
1107         list_del(&obj_request->links);
1108         rbd_assert(img_request->obj_request_count > 0);
1109         img_request->obj_request_count--;
1110         rbd_assert(obj_request->which == img_request->obj_request_count);
1111         obj_request->which = BAD_WHICH;
1112         rbd_assert(obj_request->img_request == img_request);
1113         obj_request->img_request = NULL;
1114         obj_request->callback = NULL;
1115         rbd_obj_request_put(obj_request);
1116 }
1117
1118 static bool obj_request_type_valid(enum obj_request_type type)
1119 {
1120         switch (type) {
1121         case OBJ_REQUEST_NODATA:
1122         case OBJ_REQUEST_BIO:
1123         case OBJ_REQUEST_PAGES:
1124                 return true;
1125         default:
1126                 return false;
1127         }
1128 }
1129
1130 struct ceph_osd_req_op *rbd_osd_req_op_create(u16 opcode, ...)
1131 {
1132         struct ceph_osd_req_op *op;
1133         va_list args;
1134         size_t size;
1135
1136         op = kzalloc(sizeof (*op), GFP_NOIO);
1137         if (!op)
1138                 return NULL;
1139         op->op = opcode;
1140         va_start(args, opcode);
1141         switch (opcode) {
1142         case CEPH_OSD_OP_READ:
1143         case CEPH_OSD_OP_WRITE:
1144                 /* rbd_osd_req_op_create(READ, offset, length) */
1145                 /* rbd_osd_req_op_create(WRITE, offset, length) */
1146                 op->extent.offset = va_arg(args, u64);
1147                 op->extent.length = va_arg(args, u64);
1148                 if (opcode == CEPH_OSD_OP_WRITE)
1149                         op->payload_len = op->extent.length;
1150                 break;
1151         case CEPH_OSD_OP_STAT:
1152                 break;
1153         case CEPH_OSD_OP_CALL:
1154                 /* rbd_osd_req_op_create(CALL, class, method, data, datalen) */
1155                 op->cls.class_name = va_arg(args, char *);
1156                 size = strlen(op->cls.class_name);
1157                 rbd_assert(size <= (size_t) U8_MAX);
1158                 op->cls.class_len = size;
1159                 op->payload_len = size;
1160
1161                 op->cls.method_name = va_arg(args, char *);
1162                 size = strlen(op->cls.method_name);
1163                 rbd_assert(size <= (size_t) U8_MAX);
1164                 op->cls.method_len = size;
1165                 op->payload_len += size;
1166
1167                 op->cls.argc = 0;
1168                 op->cls.indata = va_arg(args, void *);
1169                 size = va_arg(args, size_t);
1170                 rbd_assert(size <= (size_t) U32_MAX);
1171                 op->cls.indata_len = (u32) size;
1172                 op->payload_len += size;
1173                 break;
1174         case CEPH_OSD_OP_NOTIFY_ACK:
1175         case CEPH_OSD_OP_WATCH:
1176                 /* rbd_osd_req_op_create(NOTIFY_ACK, cookie, version) */
1177                 /* rbd_osd_req_op_create(WATCH, cookie, version, flag) */
1178                 op->watch.cookie = va_arg(args, u64);
1179                 op->watch.ver = va_arg(args, u64);
1180                 op->watch.ver = cpu_to_le64(op->watch.ver);
1181                 if (opcode == CEPH_OSD_OP_WATCH && va_arg(args, int))
1182                         op->watch.flag = (u8) 1;
1183                 break;
1184         default:
1185                 rbd_warn(NULL, "unsupported opcode %hu\n", opcode);
1186                 kfree(op);
1187                 op = NULL;
1188                 break;
1189         }
1190         va_end(args);
1191
1192         return op;
1193 }
1194
1195 static void rbd_osd_req_op_destroy(struct ceph_osd_req_op *op)
1196 {
1197         kfree(op);
1198 }
1199
1200 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1201                                 struct rbd_obj_request *obj_request)
1202 {
1203         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1204 }
1205
1206 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1207 {
1208         if (img_request->callback)
1209                 img_request->callback(img_request);
1210         else
1211                 rbd_img_request_put(img_request);
1212 }
1213
1214 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1215
1216 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1217 {
1218         return wait_for_completion_interruptible(&obj_request->completion);
1219 }
1220
1221 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1222 {
1223         atomic_set(&obj_request->done, 0);
1224         smp_wmb();
1225 }
1226
1227 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1228 {
1229         atomic_set(&obj_request->done, 1);
1230         smp_wmb();
1231 }
1232
1233 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1234 {
1235         smp_rmb();
1236         return atomic_read(&obj_request->done) != 0;
1237 }
1238
1239 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request,
1240                                 struct ceph_osd_op *op)
1241 {
1242         obj_request_done_set(obj_request);
1243 }
1244
1245 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1246 {
1247         if (obj_request->callback)
1248                 obj_request->callback(obj_request);
1249         else
1250                 complete_all(&obj_request->completion);
1251 }
1252
1253 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request,
1254                                 struct ceph_osd_op *op)
1255 {
1256         u64 xferred;
1257
1258         /*
1259          * We support a 64-bit length, but ultimately it has to be
1260          * passed to blk_end_request(), which takes an unsigned int.
1261          */
1262         xferred = le64_to_cpu(op->extent.length);
1263         rbd_assert(xferred < (u64) UINT_MAX);
1264         if (obj_request->result == (s32) -ENOENT) {
1265                 zero_bio_chain(obj_request->bio_list, 0);
1266                 obj_request->result = 0;
1267         } else if (xferred < obj_request->length && !obj_request->result) {
1268                 zero_bio_chain(obj_request->bio_list, xferred);
1269                 xferred = obj_request->length;
1270         }
1271         obj_request->xferred = xferred;
1272         obj_request_done_set(obj_request);
1273 }
1274
1275 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request,
1276                                 struct ceph_osd_op *op)
1277 {
1278         obj_request->xferred = le64_to_cpu(op->extent.length);
1279         obj_request_done_set(obj_request);
1280 }
1281
1282 /*
1283  * For a simple stat call there's nothing to do.  We'll do more if
1284  * this is part of a write sequence for a layered image.
1285  */
1286 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request,
1287                                 struct ceph_osd_op *op)
1288 {
1289         obj_request_done_set(obj_request);
1290 }
1291
1292 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1293                                 struct ceph_msg *msg)
1294 {
1295         struct rbd_obj_request *obj_request = osd_req->r_priv;
1296         struct ceph_osd_reply_head *reply_head;
1297         struct ceph_osd_op *op;
1298         u32 num_ops;
1299         u16 opcode;
1300
1301         rbd_assert(osd_req == obj_request->osd_req);
1302         rbd_assert(!!obj_request->img_request ^
1303                                 (obj_request->which == BAD_WHICH));
1304
1305         obj_request->xferred = le32_to_cpu(msg->hdr.data_len);
1306         reply_head = msg->front.iov_base;
1307         obj_request->result = (s32) le32_to_cpu(reply_head->result);
1308         obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1309
1310         num_ops = le32_to_cpu(reply_head->num_ops);
1311         WARN_ON(num_ops != 1);  /* For now */
1312
1313         op = &reply_head->ops[0];
1314         opcode = le16_to_cpu(op->op);
1315         switch (opcode) {
1316         case CEPH_OSD_OP_READ:
1317                 rbd_osd_read_callback(obj_request, op);
1318                 break;
1319         case CEPH_OSD_OP_WRITE:
1320                 rbd_osd_write_callback(obj_request, op);
1321                 break;
1322         case CEPH_OSD_OP_STAT:
1323                 rbd_osd_stat_callback(obj_request, op);
1324                 break;
1325         case CEPH_OSD_OP_CALL:
1326         case CEPH_OSD_OP_NOTIFY_ACK:
1327         case CEPH_OSD_OP_WATCH:
1328                 rbd_osd_trivial_callback(obj_request, op);
1329                 break;
1330         default:
1331                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1332                         obj_request->object_name, (unsigned short) opcode);
1333                 break;
1334         }
1335
1336         if (obj_request_done_test(obj_request))
1337                 rbd_obj_request_complete(obj_request);
1338 }
1339
1340 static struct ceph_osd_request *rbd_osd_req_create(
1341                                         struct rbd_device *rbd_dev,
1342                                         bool write_request,
1343                                         struct rbd_obj_request *obj_request,
1344                                         struct ceph_osd_req_op *op)
1345 {
1346         struct rbd_img_request *img_request = obj_request->img_request;
1347         struct ceph_snap_context *snapc = NULL;
1348         struct ceph_osd_client *osdc;
1349         struct ceph_osd_request *osd_req;
1350         struct timespec now;
1351         struct timespec *mtime;
1352         u64 snap_id = CEPH_NOSNAP;
1353         u64 offset = obj_request->offset;
1354         u64 length = obj_request->length;
1355
1356         if (img_request) {
1357                 rbd_assert(img_request->write_request == write_request);
1358                 if (img_request->write_request)
1359                         snapc = img_request->snapc;
1360                 else
1361                         snap_id = img_request->snap_id;
1362         }
1363
1364         /* Allocate and initialize the request, for the single op */
1365
1366         osdc = &rbd_dev->rbd_client->client->osdc;
1367         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1368         if (!osd_req)
1369                 return NULL;    /* ENOMEM */
1370
1371         rbd_assert(obj_request_type_valid(obj_request->type));
1372         switch (obj_request->type) {
1373         case OBJ_REQUEST_NODATA:
1374                 break;          /* Nothing to do */
1375         case OBJ_REQUEST_BIO:
1376                 rbd_assert(obj_request->bio_list != NULL);
1377                 osd_req->r_bio = obj_request->bio_list;
1378                 break;
1379         case OBJ_REQUEST_PAGES:
1380                 osd_req->r_pages = obj_request->pages;
1381                 osd_req->r_num_pages = obj_request->page_count;
1382                 osd_req->r_page_alignment = offset & ~PAGE_MASK;
1383                 break;
1384         }
1385
1386         if (write_request) {
1387                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1388                 now = CURRENT_TIME;
1389                 mtime = &now;
1390         } else {
1391                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1392                 mtime = NULL;   /* not needed for reads */
1393                 offset = 0;     /* These are not used... */
1394                 length = 0;     /* ...for osd read requests */
1395         }
1396
1397         osd_req->r_callback = rbd_osd_req_callback;
1398         osd_req->r_priv = obj_request;
1399
1400         osd_req->r_oid_len = strlen(obj_request->object_name);
1401         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1402         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1403
1404         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1405
1406         /* osd_req will get its own reference to snapc (if non-null) */
1407
1408         ceph_osdc_build_request(osd_req, offset, length, 1, op,
1409                                 snapc, snap_id, mtime);
1410
1411         return osd_req;
1412 }
1413
1414 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1415 {
1416         ceph_osdc_put_request(osd_req);
1417 }
1418
1419 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1420
1421 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1422                                                 u64 offset, u64 length,
1423                                                 enum obj_request_type type)
1424 {
1425         struct rbd_obj_request *obj_request;
1426         size_t size;
1427         char *name;
1428
1429         rbd_assert(obj_request_type_valid(type));
1430
1431         size = strlen(object_name) + 1;
1432         obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1433         if (!obj_request)
1434                 return NULL;
1435
1436         name = (char *)(obj_request + 1);
1437         obj_request->object_name = memcpy(name, object_name, size);
1438         obj_request->offset = offset;
1439         obj_request->length = length;
1440         obj_request->which = BAD_WHICH;
1441         obj_request->type = type;
1442         INIT_LIST_HEAD(&obj_request->links);
1443         obj_request_done_init(obj_request);
1444         init_completion(&obj_request->completion);
1445         kref_init(&obj_request->kref);
1446
1447         return obj_request;
1448 }
1449
1450 static void rbd_obj_request_destroy(struct kref *kref)
1451 {
1452         struct rbd_obj_request *obj_request;
1453
1454         obj_request = container_of(kref, struct rbd_obj_request, kref);
1455
1456         rbd_assert(obj_request->img_request == NULL);
1457         rbd_assert(obj_request->which == BAD_WHICH);
1458
1459         if (obj_request->osd_req)
1460                 rbd_osd_req_destroy(obj_request->osd_req);
1461
1462         rbd_assert(obj_request_type_valid(obj_request->type));
1463         switch (obj_request->type) {
1464         case OBJ_REQUEST_NODATA:
1465                 break;          /* Nothing to do */
1466         case OBJ_REQUEST_BIO:
1467                 if (obj_request->bio_list)
1468                         bio_chain_put(obj_request->bio_list);
1469                 break;
1470         case OBJ_REQUEST_PAGES:
1471                 if (obj_request->pages)
1472                         ceph_release_page_vector(obj_request->pages,
1473                                                 obj_request->page_count);
1474                 break;
1475         }
1476
1477         kfree(obj_request);
1478 }
1479
1480 /*
1481  * Caller is responsible for filling in the list of object requests
1482  * that comprises the image request, and the Linux request pointer
1483  * (if there is one).
1484  */
1485 struct rbd_img_request *rbd_img_request_create(struct rbd_device *rbd_dev,
1486                                         u64 offset, u64 length,
1487                                         bool write_request)
1488 {
1489         struct rbd_img_request *img_request;
1490         struct ceph_snap_context *snapc = NULL;
1491
1492         img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1493         if (!img_request)
1494                 return NULL;
1495
1496         if (write_request) {
1497                 down_read(&rbd_dev->header_rwsem);
1498                 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1499                 up_read(&rbd_dev->header_rwsem);
1500                 if (WARN_ON(!snapc)) {
1501                         kfree(img_request);
1502                         return NULL;    /* Shouldn't happen */
1503                 }
1504         }
1505
1506         img_request->rq = NULL;
1507         img_request->rbd_dev = rbd_dev;
1508         img_request->offset = offset;
1509         img_request->length = length;
1510         img_request->write_request = write_request;
1511         if (write_request)
1512                 img_request->snapc = snapc;
1513         else
1514                 img_request->snap_id = rbd_dev->spec->snap_id;
1515         spin_lock_init(&img_request->completion_lock);
1516         img_request->next_completion = 0;
1517         img_request->callback = NULL;
1518         img_request->obj_request_count = 0;
1519         INIT_LIST_HEAD(&img_request->obj_requests);
1520         kref_init(&img_request->kref);
1521
1522         rbd_img_request_get(img_request);       /* Avoid a warning */
1523         rbd_img_request_put(img_request);       /* TEMPORARY */
1524
1525         return img_request;
1526 }
1527
1528 static void rbd_img_request_destroy(struct kref *kref)
1529 {
1530         struct rbd_img_request *img_request;
1531         struct rbd_obj_request *obj_request;
1532         struct rbd_obj_request *next_obj_request;
1533
1534         img_request = container_of(kref, struct rbd_img_request, kref);
1535
1536         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1537                 rbd_img_obj_request_del(img_request, obj_request);
1538         rbd_assert(img_request->obj_request_count == 0);
1539
1540         if (img_request->write_request)
1541                 ceph_put_snap_context(img_request->snapc);
1542
1543         kfree(img_request);
1544 }
1545
1546 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1547                                         struct bio *bio_list)
1548 {
1549         struct rbd_device *rbd_dev = img_request->rbd_dev;
1550         struct rbd_obj_request *obj_request = NULL;
1551         struct rbd_obj_request *next_obj_request;
1552         unsigned int bio_offset;
1553         u64 image_offset;
1554         u64 resid;
1555         u16 opcode;
1556
1557         opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1558                                               : CEPH_OSD_OP_READ;
1559         bio_offset = 0;
1560         image_offset = img_request->offset;
1561         rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1562         resid = img_request->length;
1563         while (resid) {
1564                 const char *object_name;
1565                 unsigned int clone_size;
1566                 struct ceph_osd_req_op *op;
1567                 u64 offset;
1568                 u64 length;
1569
1570                 object_name = rbd_segment_name(rbd_dev, image_offset);
1571                 if (!object_name)
1572                         goto out_unwind;
1573                 offset = rbd_segment_offset(rbd_dev, image_offset);
1574                 length = rbd_segment_length(rbd_dev, image_offset, resid);
1575                 obj_request = rbd_obj_request_create(object_name,
1576                                                 offset, length,
1577                                                 OBJ_REQUEST_BIO);
1578                 kfree(object_name);     /* object request has its own copy */
1579                 if (!obj_request)
1580                         goto out_unwind;
1581
1582                 rbd_assert(length <= (u64) UINT_MAX);
1583                 clone_size = (unsigned int) length;
1584                 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1585                                                 &bio_offset, clone_size,
1586                                                 GFP_ATOMIC);
1587                 if (!obj_request->bio_list)
1588                         goto out_partial;
1589
1590                 /*
1591                  * Build up the op to use in building the osd
1592                  * request.  Note that the contents of the op are
1593                  * copied by rbd_osd_req_create().
1594                  */
1595                 op = rbd_osd_req_op_create(opcode, offset, length);
1596                 if (!op)
1597                         goto out_partial;
1598                 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1599                                                 img_request->write_request,
1600                                                 obj_request, op);
1601                 rbd_osd_req_op_destroy(op);
1602                 if (!obj_request->osd_req)
1603                         goto out_partial;
1604                 /* status and version are initially zero-filled */
1605
1606                 rbd_img_obj_request_add(img_request, obj_request);
1607
1608                 image_offset += length;
1609                 resid -= length;
1610         }
1611
1612         return 0;
1613
1614 out_partial:
1615         rbd_obj_request_put(obj_request);
1616 out_unwind:
1617         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1618                 rbd_obj_request_put(obj_request);
1619
1620         return -ENOMEM;
1621 }
1622
1623 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1624 {
1625         struct rbd_img_request *img_request;
1626         u32 which = obj_request->which;
1627         bool more = true;
1628
1629         img_request = obj_request->img_request;
1630         rbd_assert(img_request != NULL);
1631         rbd_assert(img_request->rq != NULL);
1632         rbd_assert(which != BAD_WHICH);
1633         rbd_assert(which < img_request->obj_request_count);
1634         rbd_assert(which >= img_request->next_completion);
1635
1636         spin_lock_irq(&img_request->completion_lock);
1637         if (which != img_request->next_completion)
1638                 goto out;
1639
1640         for_each_obj_request_from(img_request, obj_request) {
1641                 unsigned int xferred;
1642                 int result;
1643
1644                 rbd_assert(more);
1645                 rbd_assert(which < img_request->obj_request_count);
1646
1647                 if (!obj_request_done_test(obj_request))
1648                         break;
1649
1650                 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1651                 xferred = (unsigned int) obj_request->xferred;
1652                 result = (int) obj_request->result;
1653                 if (result)
1654                         rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1655                                 img_request->write_request ? "write" : "read",
1656                                 result, xferred);
1657
1658                 more = blk_end_request(img_request->rq, result, xferred);
1659                 which++;
1660         }
1661         rbd_assert(more ^ (which == img_request->obj_request_count));
1662         img_request->next_completion = which;
1663 out:
1664         spin_unlock_irq(&img_request->completion_lock);
1665
1666         if (!more)
1667                 rbd_img_request_complete(img_request);
1668 }
1669
1670 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1671 {
1672         struct rbd_device *rbd_dev = img_request->rbd_dev;
1673         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1674         struct rbd_obj_request *obj_request;
1675
1676         for_each_obj_request(img_request, obj_request) {
1677                 int ret;
1678
1679                 obj_request->callback = rbd_img_obj_callback;
1680                 ret = rbd_obj_request_submit(osdc, obj_request);
1681                 if (ret)
1682                         return ret;
1683                 /*
1684                  * The image request has its own reference to each
1685                  * of its object requests, so we can safely drop the
1686                  * initial one here.
1687                  */
1688                 rbd_obj_request_put(obj_request);
1689         }
1690
1691         return 0;
1692 }
1693
1694 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1695                                    u64 ver, u64 notify_id)
1696 {
1697         struct rbd_obj_request *obj_request;
1698         struct ceph_osd_req_op *op;
1699         struct ceph_osd_client *osdc;
1700         int ret;
1701
1702         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1703                                                         OBJ_REQUEST_NODATA);
1704         if (!obj_request)
1705                 return -ENOMEM;
1706
1707         ret = -ENOMEM;
1708         op = rbd_osd_req_op_create(CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver);
1709         if (!op)
1710                 goto out;
1711         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1712                                                 obj_request, op);
1713         rbd_osd_req_op_destroy(op);
1714         if (!obj_request->osd_req)
1715                 goto out;
1716
1717         osdc = &rbd_dev->rbd_client->client->osdc;
1718         obj_request->callback = rbd_obj_request_put;
1719         ret = rbd_obj_request_submit(osdc, obj_request);
1720 out:
1721         if (ret)
1722                 rbd_obj_request_put(obj_request);
1723
1724         return ret;
1725 }
1726
1727 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1728 {
1729         struct rbd_device *rbd_dev = (struct rbd_device *)data;
1730         u64 hver;
1731         int rc;
1732
1733         if (!rbd_dev)
1734                 return;
1735
1736         dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1737                 rbd_dev->header_name, (unsigned long long) notify_id,
1738                 (unsigned int) opcode);
1739         rc = rbd_dev_refresh(rbd_dev, &hver);
1740         if (rc)
1741                 rbd_warn(rbd_dev, "got notification but failed to "
1742                            " update snaps: %d\n", rc);
1743
1744         rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1745 }
1746
1747 /*
1748  * Request sync osd watch/unwatch.  The value of "start" determines
1749  * whether a watch request is being initiated or torn down.
1750  */
1751 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1752 {
1753         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1754         struct rbd_obj_request *obj_request;
1755         struct ceph_osd_req_op *op;
1756         int ret;
1757
1758         rbd_assert(start ^ !!rbd_dev->watch_event);
1759         rbd_assert(start ^ !!rbd_dev->watch_request);
1760
1761         if (start) {
1762                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1763                                                 &rbd_dev->watch_event);
1764                 if (ret < 0)
1765                         return ret;
1766                 rbd_assert(rbd_dev->watch_event != NULL);
1767         }
1768
1769         ret = -ENOMEM;
1770         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1771                                                         OBJ_REQUEST_NODATA);
1772         if (!obj_request)
1773                 goto out_cancel;
1774
1775         op = rbd_osd_req_op_create(CEPH_OSD_OP_WATCH,
1776                                 rbd_dev->watch_event->cookie,
1777                                 rbd_dev->header.obj_version, start);
1778         if (!op)
1779                 goto out_cancel;
1780         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1781                                                         obj_request, op);
1782         rbd_osd_req_op_destroy(op);
1783         if (!obj_request->osd_req)
1784                 goto out_cancel;
1785
1786         if (start)
1787                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1788         else
1789                 ceph_osdc_unregister_linger_request(osdc,
1790                                         rbd_dev->watch_request->osd_req);
1791         ret = rbd_obj_request_submit(osdc, obj_request);
1792         if (ret)
1793                 goto out_cancel;
1794         ret = rbd_obj_request_wait(obj_request);
1795         if (ret)
1796                 goto out_cancel;
1797         ret = obj_request->result;
1798         if (ret)
1799                 goto out_cancel;
1800
1801         /*
1802          * A watch request is set to linger, so the underlying osd
1803          * request won't go away until we unregister it.  We retain
1804          * a pointer to the object request during that time (in
1805          * rbd_dev->watch_request), so we'll keep a reference to
1806          * it.  We'll drop that reference (below) after we've
1807          * unregistered it.
1808          */
1809         if (start) {
1810                 rbd_dev->watch_request = obj_request;
1811
1812                 return 0;
1813         }
1814
1815         /* We have successfully torn down the watch request */
1816
1817         rbd_obj_request_put(rbd_dev->watch_request);
1818         rbd_dev->watch_request = NULL;
1819 out_cancel:
1820         /* Cancel the event if we're tearing down, or on error */
1821         ceph_osdc_cancel_event(rbd_dev->watch_event);
1822         rbd_dev->watch_event = NULL;
1823         if (obj_request)
1824                 rbd_obj_request_put(obj_request);
1825
1826         return ret;
1827 }
1828
1829 /*
1830  * Synchronous osd object method call
1831  */
1832 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1833                              const char *object_name,
1834                              const char *class_name,
1835                              const char *method_name,
1836                              const char *outbound,
1837                              size_t outbound_size,
1838                              char *inbound,
1839                              size_t inbound_size,
1840                              u64 *version)
1841 {
1842         struct rbd_obj_request *obj_request;
1843         struct ceph_osd_client *osdc;
1844         struct ceph_osd_req_op *op;
1845         struct page **pages;
1846         u32 page_count;
1847         int ret;
1848
1849         /*
1850          * Method calls are ultimately read operations but they
1851          * don't involve object data (so no offset or length).
1852          * The result should placed into the inbound buffer
1853          * provided.  They also supply outbound data--parameters for
1854          * the object method.  Currently if this is present it will
1855          * be a snapshot id.
1856          */
1857         page_count = (u32) calc_pages_for(0, inbound_size);
1858         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1859         if (IS_ERR(pages))
1860                 return PTR_ERR(pages);
1861
1862         ret = -ENOMEM;
1863         obj_request = rbd_obj_request_create(object_name, 0, 0,
1864                                                         OBJ_REQUEST_PAGES);
1865         if (!obj_request)
1866                 goto out;
1867
1868         obj_request->pages = pages;
1869         obj_request->page_count = page_count;
1870
1871         op = rbd_osd_req_op_create(CEPH_OSD_OP_CALL, class_name,
1872                                         method_name, outbound, outbound_size);
1873         if (!op)
1874                 goto out;
1875         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1876                                                 obj_request, op);
1877         rbd_osd_req_op_destroy(op);
1878         if (!obj_request->osd_req)
1879                 goto out;
1880
1881         osdc = &rbd_dev->rbd_client->client->osdc;
1882         ret = rbd_obj_request_submit(osdc, obj_request);
1883         if (ret)
1884                 goto out;
1885         ret = rbd_obj_request_wait(obj_request);
1886         if (ret)
1887                 goto out;
1888
1889         ret = obj_request->result;
1890         if (ret < 0)
1891                 goto out;
1892         ret = 0;
1893         (void) ceph_copy_from_page_vector(pages, inbound, 0,
1894                                         obj_request->xferred);
1895         if (version)
1896                 *version = obj_request->version;
1897 out:
1898         if (obj_request)
1899                 rbd_obj_request_put(obj_request);
1900         else
1901                 ceph_release_page_vector(pages, page_count);
1902
1903         return ret;
1904 }
1905
1906 static void rbd_request_fn(struct request_queue *q)
1907 {
1908         struct rbd_device *rbd_dev = q->queuedata;
1909         bool read_only = rbd_dev->mapping.read_only;
1910         struct request *rq;
1911         int result;
1912
1913         while ((rq = blk_fetch_request(q))) {
1914                 bool write_request = rq_data_dir(rq) == WRITE;
1915                 struct rbd_img_request *img_request;
1916                 u64 offset;
1917                 u64 length;
1918
1919                 /* Ignore any non-FS requests that filter through. */
1920
1921                 if (rq->cmd_type != REQ_TYPE_FS) {
1922                         __blk_end_request_all(rq, 0);
1923                         continue;
1924                 }
1925
1926                 spin_unlock_irq(q->queue_lock);
1927
1928                 /* Disallow writes to a read-only device */
1929
1930                 if (write_request) {
1931                         result = -EROFS;
1932                         if (read_only)
1933                                 goto end_request;
1934                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1935                 }
1936
1937                 /*
1938                  * Quit early if the mapped snapshot no longer
1939                  * exists.  It's still possible the snapshot will
1940                  * have disappeared by the time our request arrives
1941                  * at the osd, but there's no sense in sending it if
1942                  * we already know.
1943                  */
1944                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1945                         dout("request for non-existent snapshot");
1946                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1947                         result = -ENXIO;
1948                         goto end_request;
1949                 }
1950
1951                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1952                 length = (u64) blk_rq_bytes(rq);
1953
1954                 result = -EINVAL;
1955                 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1956                         goto end_request;       /* Shouldn't happen */
1957
1958                 result = -ENOMEM;
1959                 img_request = rbd_img_request_create(rbd_dev, offset, length,
1960                                                         write_request);
1961                 if (!img_request)
1962                         goto end_request;
1963
1964                 img_request->rq = rq;
1965
1966                 result = rbd_img_request_fill_bio(img_request, rq->bio);
1967                 if (!result)
1968                         result = rbd_img_request_submit(img_request);
1969                 if (result)
1970                         rbd_img_request_put(img_request);
1971 end_request:
1972                 spin_lock_irq(q->queue_lock);
1973                 if (result < 0) {
1974                         rbd_warn(rbd_dev, "obj_request %s result %d\n",
1975                                 write_request ? "write" : "read", result);
1976                         __blk_end_request_all(rq, result);
1977                 }
1978         }
1979 }
1980
1981 /*
1982  * a queue callback. Makes sure that we don't create a bio that spans across
1983  * multiple osd objects. One exception would be with a single page bios,
1984  * which we handle later at bio_chain_clone_range()
1985  */
1986 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1987                           struct bio_vec *bvec)
1988 {
1989         struct rbd_device *rbd_dev = q->queuedata;
1990         sector_t sector_offset;
1991         sector_t sectors_per_obj;
1992         sector_t obj_sector_offset;
1993         int ret;
1994
1995         /*
1996          * Find how far into its rbd object the partition-relative
1997          * bio start sector is to offset relative to the enclosing
1998          * device.
1999          */
2000         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2001         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2002         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2003
2004         /*
2005          * Compute the number of bytes from that offset to the end
2006          * of the object.  Account for what's already used by the bio.
2007          */
2008         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2009         if (ret > bmd->bi_size)
2010                 ret -= bmd->bi_size;
2011         else
2012                 ret = 0;
2013
2014         /*
2015          * Don't send back more than was asked for.  And if the bio
2016          * was empty, let the whole thing through because:  "Note
2017          * that a block device *must* allow a single page to be
2018          * added to an empty bio."
2019          */
2020         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2021         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2022                 ret = (int) bvec->bv_len;
2023
2024         return ret;
2025 }
2026
2027 static void rbd_free_disk(struct rbd_device *rbd_dev)
2028 {
2029         struct gendisk *disk = rbd_dev->disk;
2030
2031         if (!disk)
2032                 return;
2033
2034         if (disk->flags & GENHD_FL_UP)
2035                 del_gendisk(disk);
2036         if (disk->queue)
2037                 blk_cleanup_queue(disk->queue);
2038         put_disk(disk);
2039 }
2040
2041 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2042                                 const char *object_name,
2043                                 u64 offset, u64 length,
2044                                 char *buf, u64 *version)
2045
2046 {
2047         struct ceph_osd_req_op *op;
2048         struct rbd_obj_request *obj_request;
2049         struct ceph_osd_client *osdc;
2050         struct page **pages = NULL;
2051         u32 page_count;
2052         size_t size;
2053         int ret;
2054
2055         page_count = (u32) calc_pages_for(offset, length);
2056         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2057         if (IS_ERR(pages))
2058                 ret = PTR_ERR(pages);
2059
2060         ret = -ENOMEM;
2061         obj_request = rbd_obj_request_create(object_name, offset, length,
2062                                                         OBJ_REQUEST_PAGES);
2063         if (!obj_request)
2064                 goto out;
2065
2066         obj_request->pages = pages;
2067         obj_request->page_count = page_count;
2068
2069         op = rbd_osd_req_op_create(CEPH_OSD_OP_READ, offset, length);
2070         if (!op)
2071                 goto out;
2072         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2073                                                 obj_request, op);
2074         rbd_osd_req_op_destroy(op);
2075         if (!obj_request->osd_req)
2076                 goto out;
2077
2078         osdc = &rbd_dev->rbd_client->client->osdc;
2079         ret = rbd_obj_request_submit(osdc, obj_request);
2080         if (ret)
2081                 goto out;
2082         ret = rbd_obj_request_wait(obj_request);
2083         if (ret)
2084                 goto out;
2085
2086         ret = obj_request->result;
2087         if (ret < 0)
2088                 goto out;
2089
2090         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2091         size = (size_t) obj_request->xferred;
2092         (void) ceph_copy_from_page_vector(pages, buf, 0, size);
2093         rbd_assert(size <= (size_t) INT_MAX);
2094         ret = (int) size;
2095         if (version)
2096                 *version = obj_request->version;
2097 out:
2098         if (obj_request)
2099                 rbd_obj_request_put(obj_request);
2100         else
2101                 ceph_release_page_vector(pages, page_count);
2102
2103         return ret;
2104 }
2105
2106 /*
2107  * Read the complete header for the given rbd device.
2108  *
2109  * Returns a pointer to a dynamically-allocated buffer containing
2110  * the complete and validated header.  Caller can pass the address
2111  * of a variable that will be filled in with the version of the
2112  * header object at the time it was read.
2113  *
2114  * Returns a pointer-coded errno if a failure occurs.
2115  */
2116 static struct rbd_image_header_ondisk *
2117 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2118 {
2119         struct rbd_image_header_ondisk *ondisk = NULL;
2120         u32 snap_count = 0;
2121         u64 names_size = 0;
2122         u32 want_count;
2123         int ret;
2124
2125         /*
2126          * The complete header will include an array of its 64-bit
2127          * snapshot ids, followed by the names of those snapshots as
2128          * a contiguous block of NUL-terminated strings.  Note that
2129          * the number of snapshots could change by the time we read
2130          * it in, in which case we re-read it.
2131          */
2132         do {
2133                 size_t size;
2134
2135                 kfree(ondisk);
2136
2137                 size = sizeof (*ondisk);
2138                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2139                 size += names_size;
2140                 ondisk = kmalloc(size, GFP_KERNEL);
2141                 if (!ondisk)
2142                         return ERR_PTR(-ENOMEM);
2143
2144                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2145                                        0, size,
2146                                        (char *) ondisk, version);
2147                 if (ret < 0)
2148                         goto out_err;
2149                 if (WARN_ON((size_t) ret < size)) {
2150                         ret = -ENXIO;
2151                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2152                                 size, ret);
2153                         goto out_err;
2154                 }
2155                 if (!rbd_dev_ondisk_valid(ondisk)) {
2156                         ret = -ENXIO;
2157                         rbd_warn(rbd_dev, "invalid header");
2158                         goto out_err;
2159                 }
2160
2161                 names_size = le64_to_cpu(ondisk->snap_names_len);
2162                 want_count = snap_count;
2163                 snap_count = le32_to_cpu(ondisk->snap_count);
2164         } while (snap_count != want_count);
2165
2166         return ondisk;
2167
2168 out_err:
2169         kfree(ondisk);
2170
2171         return ERR_PTR(ret);
2172 }
2173
2174 /*
2175  * reload the ondisk the header
2176  */
2177 static int rbd_read_header(struct rbd_device *rbd_dev,
2178                            struct rbd_image_header *header)
2179 {
2180         struct rbd_image_header_ondisk *ondisk;
2181         u64 ver = 0;
2182         int ret;
2183
2184         ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2185         if (IS_ERR(ondisk))
2186                 return PTR_ERR(ondisk);
2187         ret = rbd_header_from_disk(header, ondisk);
2188         if (ret >= 0)
2189                 header->obj_version = ver;
2190         kfree(ondisk);
2191
2192         return ret;
2193 }
2194
2195 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2196 {
2197         struct rbd_snap *snap;
2198         struct rbd_snap *next;
2199
2200         list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2201                 rbd_remove_snap_dev(snap);
2202 }
2203
2204 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2205 {
2206         sector_t size;
2207
2208         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2209                 return;
2210
2211         size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2212         dout("setting size to %llu sectors", (unsigned long long) size);
2213         rbd_dev->mapping.size = (u64) size;
2214         set_capacity(rbd_dev->disk, size);
2215 }
2216
2217 /*
2218  * only read the first part of the ondisk header, without the snaps info
2219  */
2220 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2221 {
2222         int ret;
2223         struct rbd_image_header h;
2224
2225         ret = rbd_read_header(rbd_dev, &h);
2226         if (ret < 0)
2227                 return ret;
2228
2229         down_write(&rbd_dev->header_rwsem);
2230
2231         /* Update image size, and check for resize of mapped image */
2232         rbd_dev->header.image_size = h.image_size;
2233         rbd_update_mapping_size(rbd_dev);
2234
2235         /* rbd_dev->header.object_prefix shouldn't change */
2236         kfree(rbd_dev->header.snap_sizes);
2237         kfree(rbd_dev->header.snap_names);
2238         /* osd requests may still refer to snapc */
2239         ceph_put_snap_context(rbd_dev->header.snapc);
2240
2241         if (hver)
2242                 *hver = h.obj_version;
2243         rbd_dev->header.obj_version = h.obj_version;
2244         rbd_dev->header.image_size = h.image_size;
2245         rbd_dev->header.snapc = h.snapc;
2246         rbd_dev->header.snap_names = h.snap_names;
2247         rbd_dev->header.snap_sizes = h.snap_sizes;
2248         /* Free the extra copy of the object prefix */
2249         WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2250         kfree(h.object_prefix);
2251
2252         ret = rbd_dev_snaps_update(rbd_dev);
2253         if (!ret)
2254                 ret = rbd_dev_snaps_register(rbd_dev);
2255
2256         up_write(&rbd_dev->header_rwsem);
2257
2258         return ret;
2259 }
2260
2261 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2262 {
2263         int ret;
2264
2265         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2266         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2267         if (rbd_dev->image_format == 1)
2268                 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2269         else
2270                 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2271         mutex_unlock(&ctl_mutex);
2272
2273         return ret;
2274 }
2275
2276 static int rbd_init_disk(struct rbd_device *rbd_dev)
2277 {
2278         struct gendisk *disk;
2279         struct request_queue *q;
2280         u64 segment_size;
2281
2282         /* create gendisk info */
2283         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2284         if (!disk)
2285                 return -ENOMEM;
2286
2287         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2288                  rbd_dev->dev_id);
2289         disk->major = rbd_dev->major;
2290         disk->first_minor = 0;
2291         disk->fops = &rbd_bd_ops;
2292         disk->private_data = rbd_dev;
2293
2294         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2295         if (!q)
2296                 goto out_disk;
2297
2298         /* We use the default size, but let's be explicit about it. */
2299         blk_queue_physical_block_size(q, SECTOR_SIZE);
2300
2301         /* set io sizes to object size */
2302         segment_size = rbd_obj_bytes(&rbd_dev->header);
2303         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2304         blk_queue_max_segment_size(q, segment_size);
2305         blk_queue_io_min(q, segment_size);
2306         blk_queue_io_opt(q, segment_size);
2307
2308         blk_queue_merge_bvec(q, rbd_merge_bvec);
2309         disk->queue = q;
2310
2311         q->queuedata = rbd_dev;
2312
2313         rbd_dev->disk = disk;
2314
2315         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2316
2317         return 0;
2318 out_disk:
2319         put_disk(disk);
2320
2321         return -ENOMEM;
2322 }
2323
2324 /*
2325   sysfs
2326 */
2327
2328 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2329 {
2330         return container_of(dev, struct rbd_device, dev);
2331 }
2332
2333 static ssize_t rbd_size_show(struct device *dev,
2334                              struct device_attribute *attr, char *buf)
2335 {
2336         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2337         sector_t size;
2338
2339         down_read(&rbd_dev->header_rwsem);
2340         size = get_capacity(rbd_dev->disk);
2341         up_read(&rbd_dev->header_rwsem);
2342
2343         return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2344 }
2345
2346 /*
2347  * Note this shows the features for whatever's mapped, which is not
2348  * necessarily the base image.
2349  */
2350 static ssize_t rbd_features_show(struct device *dev,
2351                              struct device_attribute *attr, char *buf)
2352 {
2353         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2354
2355         return sprintf(buf, "0x%016llx\n",
2356                         (unsigned long long) rbd_dev->mapping.features);
2357 }
2358
2359 static ssize_t rbd_major_show(struct device *dev,
2360                               struct device_attribute *attr, char *buf)
2361 {
2362         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2363
2364         return sprintf(buf, "%d\n", rbd_dev->major);
2365 }
2366
2367 static ssize_t rbd_client_id_show(struct device *dev,
2368                                   struct device_attribute *attr, char *buf)
2369 {
2370         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2371
2372         return sprintf(buf, "client%lld\n",
2373                         ceph_client_id(rbd_dev->rbd_client->client));
2374 }
2375
2376 static ssize_t rbd_pool_show(struct device *dev,
2377                              struct device_attribute *attr, char *buf)
2378 {
2379         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2380
2381         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2382 }
2383
2384 static ssize_t rbd_pool_id_show(struct device *dev,
2385                              struct device_attribute *attr, char *buf)
2386 {
2387         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2388
2389         return sprintf(buf, "%llu\n",
2390                 (unsigned long long) rbd_dev->spec->pool_id);
2391 }
2392
2393 static ssize_t rbd_name_show(struct device *dev,
2394                              struct device_attribute *attr, char *buf)
2395 {
2396         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2397
2398         if (rbd_dev->spec->image_name)
2399                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2400
2401         return sprintf(buf, "(unknown)\n");
2402 }
2403
2404 static ssize_t rbd_image_id_show(struct device *dev,
2405                              struct device_attribute *attr, char *buf)
2406 {
2407         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2408
2409         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2410 }
2411
2412 /*
2413  * Shows the name of the currently-mapped snapshot (or
2414  * RBD_SNAP_HEAD_NAME for the base image).
2415  */
2416 static ssize_t rbd_snap_show(struct device *dev,
2417                              struct device_attribute *attr,
2418                              char *buf)
2419 {
2420         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2421
2422         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2423 }
2424
2425 /*
2426  * For an rbd v2 image, shows the pool id, image id, and snapshot id
2427  * for the parent image.  If there is no parent, simply shows
2428  * "(no parent image)".
2429  */
2430 static ssize_t rbd_parent_show(struct device *dev,
2431                              struct device_attribute *attr,
2432                              char *buf)
2433 {
2434         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2435         struct rbd_spec *spec = rbd_dev->parent_spec;
2436         int count;
2437         char *bufp = buf;
2438
2439         if (!spec)
2440                 return sprintf(buf, "(no parent image)\n");
2441
2442         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2443                         (unsigned long long) spec->pool_id, spec->pool_name);
2444         if (count < 0)
2445                 return count;
2446         bufp += count;
2447
2448         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2449                         spec->image_name ? spec->image_name : "(unknown)");
2450         if (count < 0)
2451                 return count;
2452         bufp += count;
2453
2454         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2455                         (unsigned long long) spec->snap_id, spec->snap_name);
2456         if (count < 0)
2457                 return count;
2458         bufp += count;
2459
2460         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2461         if (count < 0)
2462                 return count;
2463         bufp += count;
2464
2465         return (ssize_t) (bufp - buf);
2466 }
2467
2468 static ssize_t rbd_image_refresh(struct device *dev,
2469                                  struct device_attribute *attr,
2470                                  const char *buf,
2471                                  size_t size)
2472 {
2473         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2474         int ret;
2475
2476         ret = rbd_dev_refresh(rbd_dev, NULL);
2477
2478         return ret < 0 ? ret : size;
2479 }
2480
2481 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2482 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2483 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2484 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2485 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2486 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2487 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2488 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2489 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2490 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2491 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2492
2493 static struct attribute *rbd_attrs[] = {
2494         &dev_attr_size.attr,
2495         &dev_attr_features.attr,
2496         &dev_attr_major.attr,
2497         &dev_attr_client_id.attr,
2498         &dev_attr_pool.attr,
2499         &dev_attr_pool_id.attr,
2500         &dev_attr_name.attr,
2501         &dev_attr_image_id.attr,
2502         &dev_attr_current_snap.attr,
2503         &dev_attr_parent.attr,
2504         &dev_attr_refresh.attr,
2505         NULL
2506 };
2507
2508 static struct attribute_group rbd_attr_group = {
2509         .attrs = rbd_attrs,
2510 };
2511
2512 static const struct attribute_group *rbd_attr_groups[] = {
2513         &rbd_attr_group,
2514         NULL
2515 };
2516
2517 static void rbd_sysfs_dev_release(struct device *dev)
2518 {
2519 }
2520
2521 static struct device_type rbd_device_type = {
2522         .name           = "rbd",
2523         .groups         = rbd_attr_groups,
2524         .release        = rbd_sysfs_dev_release,
2525 };
2526
2527
2528 /*
2529   sysfs - snapshots
2530 */
2531
2532 static ssize_t rbd_snap_size_show(struct device *dev,
2533                                   struct device_attribute *attr,
2534                                   char *buf)
2535 {
2536         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2537
2538         return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2539 }
2540
2541 static ssize_t rbd_snap_id_show(struct device *dev,
2542                                 struct device_attribute *attr,
2543                                 char *buf)
2544 {
2545         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2546
2547         return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2548 }
2549
2550 static ssize_t rbd_snap_features_show(struct device *dev,
2551                                 struct device_attribute *attr,
2552                                 char *buf)
2553 {
2554         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2555
2556         return sprintf(buf, "0x%016llx\n",
2557                         (unsigned long long) snap->features);
2558 }
2559
2560 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2561 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2562 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2563
2564 static struct attribute *rbd_snap_attrs[] = {
2565         &dev_attr_snap_size.attr,
2566         &dev_attr_snap_id.attr,
2567         &dev_attr_snap_features.attr,
2568         NULL,
2569 };
2570
2571 static struct attribute_group rbd_snap_attr_group = {
2572         .attrs = rbd_snap_attrs,
2573 };
2574
2575 static void rbd_snap_dev_release(struct device *dev)
2576 {
2577         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2578         kfree(snap->name);
2579         kfree(snap);
2580 }
2581
2582 static const struct attribute_group *rbd_snap_attr_groups[] = {
2583         &rbd_snap_attr_group,
2584         NULL
2585 };
2586
2587 static struct device_type rbd_snap_device_type = {
2588         .groups         = rbd_snap_attr_groups,
2589         .release        = rbd_snap_dev_release,
2590 };
2591
2592 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2593 {
2594         kref_get(&spec->kref);
2595
2596         return spec;
2597 }
2598
2599 static void rbd_spec_free(struct kref *kref);
2600 static void rbd_spec_put(struct rbd_spec *spec)
2601 {
2602         if (spec)
2603                 kref_put(&spec->kref, rbd_spec_free);
2604 }
2605
2606 static struct rbd_spec *rbd_spec_alloc(void)
2607 {
2608         struct rbd_spec *spec;
2609
2610         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2611         if (!spec)
2612                 return NULL;
2613         kref_init(&spec->kref);
2614
2615         rbd_spec_put(rbd_spec_get(spec));       /* TEMPORARY */
2616
2617         return spec;
2618 }
2619
2620 static void rbd_spec_free(struct kref *kref)
2621 {
2622         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2623
2624         kfree(spec->pool_name);
2625         kfree(spec->image_id);
2626         kfree(spec->image_name);
2627         kfree(spec->snap_name);
2628         kfree(spec);
2629 }
2630
2631 struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2632                                 struct rbd_spec *spec)
2633 {
2634         struct rbd_device *rbd_dev;
2635
2636         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2637         if (!rbd_dev)
2638                 return NULL;
2639
2640         spin_lock_init(&rbd_dev->lock);
2641         rbd_dev->flags = 0;
2642         INIT_LIST_HEAD(&rbd_dev->node);
2643         INIT_LIST_HEAD(&rbd_dev->snaps);
2644         init_rwsem(&rbd_dev->header_rwsem);
2645
2646         rbd_dev->spec = spec;
2647         rbd_dev->rbd_client = rbdc;
2648
2649         /* Initialize the layout used for all rbd requests */
2650
2651         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2652         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2653         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2654         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2655
2656         return rbd_dev;
2657 }
2658
2659 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2660 {
2661         rbd_spec_put(rbd_dev->parent_spec);
2662         kfree(rbd_dev->header_name);
2663         rbd_put_client(rbd_dev->rbd_client);
2664         rbd_spec_put(rbd_dev->spec);
2665         kfree(rbd_dev);
2666 }
2667
2668 static bool rbd_snap_registered(struct rbd_snap *snap)
2669 {
2670         bool ret = snap->dev.type == &rbd_snap_device_type;
2671         bool reg = device_is_registered(&snap->dev);
2672
2673         rbd_assert(!ret ^ reg);
2674
2675         return ret;
2676 }
2677
2678 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2679 {
2680         list_del(&snap->node);
2681         if (device_is_registered(&snap->dev))
2682                 device_unregister(&snap->dev);
2683 }
2684
2685 static int rbd_register_snap_dev(struct rbd_snap *snap,
2686                                   struct device *parent)
2687 {
2688         struct device *dev = &snap->dev;
2689         int ret;
2690
2691         dev->type = &rbd_snap_device_type;
2692         dev->parent = parent;
2693         dev->release = rbd_snap_dev_release;
2694         dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2695         dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2696
2697         ret = device_register(dev);
2698
2699         return ret;
2700 }
2701
2702 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2703                                                 const char *snap_name,
2704                                                 u64 snap_id, u64 snap_size,
2705                                                 u64 snap_features)
2706 {
2707         struct rbd_snap *snap;
2708         int ret;
2709
2710         snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2711         if (!snap)
2712                 return ERR_PTR(-ENOMEM);
2713
2714         ret = -ENOMEM;
2715         snap->name = kstrdup(snap_name, GFP_KERNEL);
2716         if (!snap->name)
2717                 goto err;
2718
2719         snap->id = snap_id;
2720         snap->size = snap_size;
2721         snap->features = snap_features;
2722
2723         return snap;
2724
2725 err:
2726         kfree(snap->name);
2727         kfree(snap);
2728
2729         return ERR_PTR(ret);
2730 }
2731
2732 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2733                 u64 *snap_size, u64 *snap_features)
2734 {
2735         char *snap_name;
2736
2737         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2738
2739         *snap_size = rbd_dev->header.snap_sizes[which];
2740         *snap_features = 0;     /* No features for v1 */
2741
2742         /* Skip over names until we find the one we are looking for */
2743
2744         snap_name = rbd_dev->header.snap_names;
2745         while (which--)
2746                 snap_name += strlen(snap_name) + 1;
2747
2748         return snap_name;
2749 }
2750
2751 /*
2752  * Get the size and object order for an image snapshot, or if
2753  * snap_id is CEPH_NOSNAP, gets this information for the base
2754  * image.
2755  */
2756 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2757                                 u8 *order, u64 *snap_size)
2758 {
2759         __le64 snapid = cpu_to_le64(snap_id);
2760         int ret;
2761         struct {
2762                 u8 order;
2763                 __le64 size;
2764         } __attribute__ ((packed)) size_buf = { 0 };
2765
2766         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2767                                 "rbd", "get_size",
2768                                 (char *) &snapid, sizeof (snapid),
2769                                 (char *) &size_buf, sizeof (size_buf), NULL);
2770         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2771         if (ret < 0)
2772                 return ret;
2773
2774         *order = size_buf.order;
2775         *snap_size = le64_to_cpu(size_buf.size);
2776
2777         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
2778                 (unsigned long long) snap_id, (unsigned int) *order,
2779                 (unsigned long long) *snap_size);
2780
2781         return 0;
2782 }
2783
2784 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2785 {
2786         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2787                                         &rbd_dev->header.obj_order,
2788                                         &rbd_dev->header.image_size);
2789 }
2790
2791 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2792 {
2793         void *reply_buf;
2794         int ret;
2795         void *p;
2796
2797         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2798         if (!reply_buf)
2799                 return -ENOMEM;
2800
2801         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2802                                 "rbd", "get_object_prefix",
2803                                 NULL, 0,
2804                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2805         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2806         if (ret < 0)
2807                 goto out;
2808
2809         p = reply_buf;
2810         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2811                                                 p + RBD_OBJ_PREFIX_LEN_MAX,
2812                                                 NULL, GFP_NOIO);
2813
2814         if (IS_ERR(rbd_dev->header.object_prefix)) {
2815                 ret = PTR_ERR(rbd_dev->header.object_prefix);
2816                 rbd_dev->header.object_prefix = NULL;
2817         } else {
2818                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
2819         }
2820
2821 out:
2822         kfree(reply_buf);
2823
2824         return ret;
2825 }
2826
2827 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2828                 u64 *snap_features)
2829 {
2830         __le64 snapid = cpu_to_le64(snap_id);
2831         struct {
2832                 __le64 features;
2833                 __le64 incompat;
2834         } features_buf = { 0 };
2835         u64 incompat;
2836         int ret;
2837
2838         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2839                                 "rbd", "get_features",
2840                                 (char *) &snapid, sizeof (snapid),
2841                                 (char *) &features_buf, sizeof (features_buf),
2842                                 NULL);
2843         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2844         if (ret < 0)
2845                 return ret;
2846
2847         incompat = le64_to_cpu(features_buf.incompat);
2848         if (incompat & ~RBD_FEATURES_ALL)
2849                 return -ENXIO;
2850
2851         *snap_features = le64_to_cpu(features_buf.features);
2852
2853         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2854                 (unsigned long long) snap_id,
2855                 (unsigned long long) *snap_features,
2856                 (unsigned long long) le64_to_cpu(features_buf.incompat));
2857
2858         return 0;
2859 }
2860
2861 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2862 {
2863         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2864                                                 &rbd_dev->header.features);
2865 }
2866
2867 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2868 {
2869         struct rbd_spec *parent_spec;
2870         size_t size;
2871         void *reply_buf = NULL;
2872         __le64 snapid;
2873         void *p;
2874         void *end;
2875         char *image_id;
2876         u64 overlap;
2877         int ret;
2878
2879         parent_spec = rbd_spec_alloc();
2880         if (!parent_spec)
2881                 return -ENOMEM;
2882
2883         size = sizeof (__le64) +                                /* pool_id */
2884                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
2885                 sizeof (__le64) +                               /* snap_id */
2886                 sizeof (__le64);                                /* overlap */
2887         reply_buf = kmalloc(size, GFP_KERNEL);
2888         if (!reply_buf) {
2889                 ret = -ENOMEM;
2890                 goto out_err;
2891         }
2892
2893         snapid = cpu_to_le64(CEPH_NOSNAP);
2894         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2895                                 "rbd", "get_parent",
2896                                 (char *) &snapid, sizeof (snapid),
2897                                 (char *) reply_buf, size, NULL);
2898         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2899         if (ret < 0)
2900                 goto out_err;
2901
2902         ret = -ERANGE;
2903         p = reply_buf;
2904         end = (char *) reply_buf + size;
2905         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2906         if (parent_spec->pool_id == CEPH_NOPOOL)
2907                 goto out;       /* No parent?  No problem. */
2908
2909         /* The ceph file layout needs to fit pool id in 32 bits */
2910
2911         ret = -EIO;
2912         if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2913                 goto out;
2914
2915         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2916         if (IS_ERR(image_id)) {
2917                 ret = PTR_ERR(image_id);
2918                 goto out_err;
2919         }
2920         parent_spec->image_id = image_id;
2921         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2922         ceph_decode_64_safe(&p, end, overlap, out_err);
2923
2924         rbd_dev->parent_overlap = overlap;
2925         rbd_dev->parent_spec = parent_spec;
2926         parent_spec = NULL;     /* rbd_dev now owns this */
2927 out:
2928         ret = 0;
2929 out_err:
2930         kfree(reply_buf);
2931         rbd_spec_put(parent_spec);
2932
2933         return ret;
2934 }
2935
2936 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2937 {
2938         size_t image_id_size;
2939         char *image_id;
2940         void *p;
2941         void *end;
2942         size_t size;
2943         void *reply_buf = NULL;
2944         size_t len = 0;
2945         char *image_name = NULL;
2946         int ret;
2947
2948         rbd_assert(!rbd_dev->spec->image_name);
2949
2950         len = strlen(rbd_dev->spec->image_id);
2951         image_id_size = sizeof (__le32) + len;
2952         image_id = kmalloc(image_id_size, GFP_KERNEL);
2953         if (!image_id)
2954                 return NULL;
2955
2956         p = image_id;
2957         end = (char *) image_id + image_id_size;
2958         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2959
2960         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2961         reply_buf = kmalloc(size, GFP_KERNEL);
2962         if (!reply_buf)
2963                 goto out;
2964
2965         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2966                                 "rbd", "dir_get_name",
2967                                 image_id, image_id_size,
2968                                 (char *) reply_buf, size, NULL);
2969         if (ret < 0)
2970                 goto out;
2971         p = reply_buf;
2972         end = (char *) reply_buf + size;
2973         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2974         if (IS_ERR(image_name))
2975                 image_name = NULL;
2976         else
2977                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2978 out:
2979         kfree(reply_buf);
2980         kfree(image_id);
2981
2982         return image_name;
2983 }
2984
2985 /*
2986  * When a parent image gets probed, we only have the pool, image,
2987  * and snapshot ids but not the names of any of them.  This call
2988  * is made later to fill in those names.  It has to be done after
2989  * rbd_dev_snaps_update() has completed because some of the
2990  * information (in particular, snapshot name) is not available
2991  * until then.
2992  */
2993 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2994 {
2995         struct ceph_osd_client *osdc;
2996         const char *name;
2997         void *reply_buf = NULL;
2998         int ret;
2999
3000         if (rbd_dev->spec->pool_name)
3001                 return 0;       /* Already have the names */
3002
3003         /* Look up the pool name */
3004
3005         osdc = &rbd_dev->rbd_client->client->osdc;
3006         name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3007         if (!name) {
3008                 rbd_warn(rbd_dev, "there is no pool with id %llu",
3009                         rbd_dev->spec->pool_id);        /* Really a BUG() */
3010                 return -EIO;
3011         }
3012
3013         rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3014         if (!rbd_dev->spec->pool_name)
3015                 return -ENOMEM;
3016
3017         /* Fetch the image name; tolerate failure here */
3018
3019         name = rbd_dev_image_name(rbd_dev);
3020         if (name)
3021                 rbd_dev->spec->image_name = (char *) name;
3022         else
3023                 rbd_warn(rbd_dev, "unable to get image name");
3024
3025         /* Look up the snapshot name. */
3026
3027         name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3028         if (!name) {
3029                 rbd_warn(rbd_dev, "no snapshot with id %llu",
3030                         rbd_dev->spec->snap_id);        /* Really a BUG() */
3031                 ret = -EIO;
3032                 goto out_err;
3033         }
3034         rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3035         if(!rbd_dev->spec->snap_name)
3036                 goto out_err;
3037
3038         return 0;
3039 out_err:
3040         kfree(reply_buf);
3041         kfree(rbd_dev->spec->pool_name);
3042         rbd_dev->spec->pool_name = NULL;
3043
3044         return ret;
3045 }
3046
3047 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3048 {
3049         size_t size;
3050         int ret;
3051         void *reply_buf;
3052         void *p;
3053         void *end;
3054         u64 seq;
3055         u32 snap_count;
3056         struct ceph_snap_context *snapc;
3057         u32 i;
3058
3059         /*
3060          * We'll need room for the seq value (maximum snapshot id),
3061          * snapshot count, and array of that many snapshot ids.
3062          * For now we have a fixed upper limit on the number we're
3063          * prepared to receive.
3064          */
3065         size = sizeof (__le64) + sizeof (__le32) +
3066                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3067         reply_buf = kzalloc(size, GFP_KERNEL);
3068         if (!reply_buf)
3069                 return -ENOMEM;
3070
3071         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3072                                 "rbd", "get_snapcontext",
3073                                 NULL, 0,
3074                                 reply_buf, size, ver);
3075         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3076         if (ret < 0)
3077                 goto out;
3078
3079         ret = -ERANGE;
3080         p = reply_buf;
3081         end = (char *) reply_buf + size;
3082         ceph_decode_64_safe(&p, end, seq, out);
3083         ceph_decode_32_safe(&p, end, snap_count, out);
3084
3085         /*
3086          * Make sure the reported number of snapshot ids wouldn't go
3087          * beyond the end of our buffer.  But before checking that,
3088          * make sure the computed size of the snapshot context we
3089          * allocate is representable in a size_t.
3090          */
3091         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3092                                  / sizeof (u64)) {
3093                 ret = -EINVAL;
3094                 goto out;
3095         }
3096         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3097                 goto out;
3098
3099         size = sizeof (struct ceph_snap_context) +
3100                                 snap_count * sizeof (snapc->snaps[0]);
3101         snapc = kmalloc(size, GFP_KERNEL);
3102         if (!snapc) {
3103                 ret = -ENOMEM;
3104                 goto out;
3105         }
3106
3107         atomic_set(&snapc->nref, 1);
3108         snapc->seq = seq;
3109         snapc->num_snaps = snap_count;
3110         for (i = 0; i < snap_count; i++)
3111                 snapc->snaps[i] = ceph_decode_64(&p);
3112
3113         rbd_dev->header.snapc = snapc;
3114
3115         dout("  snap context seq = %llu, snap_count = %u\n",
3116                 (unsigned long long) seq, (unsigned int) snap_count);
3117
3118 out:
3119         kfree(reply_buf);
3120
3121         return 0;
3122 }
3123
3124 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3125 {
3126         size_t size;
3127         void *reply_buf;
3128         __le64 snap_id;
3129         int ret;
3130         void *p;
3131         void *end;
3132         char *snap_name;
3133
3134         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3135         reply_buf = kmalloc(size, GFP_KERNEL);
3136         if (!reply_buf)
3137                 return ERR_PTR(-ENOMEM);
3138
3139         snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3140         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3141                                 "rbd", "get_snapshot_name",
3142                                 (char *) &snap_id, sizeof (snap_id),
3143                                 reply_buf, size, NULL);
3144         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3145         if (ret < 0)
3146                 goto out;
3147
3148         p = reply_buf;
3149         end = (char *) reply_buf + size;
3150         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3151         if (IS_ERR(snap_name)) {
3152                 ret = PTR_ERR(snap_name);
3153                 goto out;
3154         } else {
3155                 dout("  snap_id 0x%016llx snap_name = %s\n",
3156                         (unsigned long long) le64_to_cpu(snap_id), snap_name);
3157         }
3158         kfree(reply_buf);
3159
3160         return snap_name;
3161 out:
3162         kfree(reply_buf);
3163
3164         return ERR_PTR(ret);
3165 }
3166
3167 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3168                 u64 *snap_size, u64 *snap_features)
3169 {
3170         u64 snap_id;
3171         u8 order;
3172         int ret;
3173
3174         snap_id = rbd_dev->header.snapc->snaps[which];
3175         ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3176         if (ret)
3177                 return ERR_PTR(ret);
3178         ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3179         if (ret)
3180                 return ERR_PTR(ret);
3181
3182         return rbd_dev_v2_snap_name(rbd_dev, which);
3183 }
3184
3185 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3186                 u64 *snap_size, u64 *snap_features)
3187 {
3188         if (rbd_dev->image_format == 1)
3189                 return rbd_dev_v1_snap_info(rbd_dev, which,
3190                                         snap_size, snap_features);
3191         if (rbd_dev->image_format == 2)
3192                 return rbd_dev_v2_snap_info(rbd_dev, which,
3193                                         snap_size, snap_features);
3194         return ERR_PTR(-EINVAL);
3195 }
3196
3197 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3198 {
3199         int ret;
3200         __u8 obj_order;
3201
3202         down_write(&rbd_dev->header_rwsem);
3203
3204         /* Grab old order first, to see if it changes */
3205
3206         obj_order = rbd_dev->header.obj_order,
3207         ret = rbd_dev_v2_image_size(rbd_dev);
3208         if (ret)
3209                 goto out;
3210         if (rbd_dev->header.obj_order != obj_order) {
3211                 ret = -EIO;
3212                 goto out;
3213         }
3214         rbd_update_mapping_size(rbd_dev);
3215
3216         ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3217         dout("rbd_dev_v2_snap_context returned %d\n", ret);
3218         if (ret)
3219                 goto out;
3220         ret = rbd_dev_snaps_update(rbd_dev);
3221         dout("rbd_dev_snaps_update returned %d\n", ret);
3222         if (ret)
3223                 goto out;
3224         ret = rbd_dev_snaps_register(rbd_dev);
3225         dout("rbd_dev_snaps_register returned %d\n", ret);
3226 out:
3227         up_write(&rbd_dev->header_rwsem);
3228
3229         return ret;
3230 }
3231
3232 /*
3233  * Scan the rbd device's current snapshot list and compare it to the
3234  * newly-received snapshot context.  Remove any existing snapshots
3235  * not present in the new snapshot context.  Add a new snapshot for
3236  * any snaphots in the snapshot context not in the current list.
3237  * And verify there are no changes to snapshots we already know
3238  * about.
3239  *
3240  * Assumes the snapshots in the snapshot context are sorted by
3241  * snapshot id, highest id first.  (Snapshots in the rbd_dev's list
3242  * are also maintained in that order.)
3243  */
3244 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3245 {
3246         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3247         const u32 snap_count = snapc->num_snaps;
3248         struct list_head *head = &rbd_dev->snaps;
3249         struct list_head *links = head->next;
3250         u32 index = 0;
3251
3252         dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3253         while (index < snap_count || links != head) {
3254                 u64 snap_id;
3255                 struct rbd_snap *snap;
3256                 char *snap_name;
3257                 u64 snap_size = 0;
3258                 u64 snap_features = 0;
3259
3260                 snap_id = index < snap_count ? snapc->snaps[index]
3261                                              : CEPH_NOSNAP;
3262                 snap = links != head ? list_entry(links, struct rbd_snap, node)
3263                                      : NULL;
3264                 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3265
3266                 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3267                         struct list_head *next = links->next;
3268
3269                         /*
3270                          * A previously-existing snapshot is not in
3271                          * the new snap context.
3272                          *
3273                          * If the now missing snapshot is the one the
3274                          * image is mapped to, clear its exists flag
3275                          * so we can avoid sending any more requests
3276                          * to it.
3277                          */
3278                         if (rbd_dev->spec->snap_id == snap->id)
3279                                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3280                         rbd_remove_snap_dev(snap);
3281                         dout("%ssnap id %llu has been removed\n",
3282                                 rbd_dev->spec->snap_id == snap->id ?
3283                                                         "mapped " : "",
3284                                 (unsigned long long) snap->id);
3285
3286                         /* Done with this list entry; advance */
3287
3288                         links = next;
3289                         continue;
3290                 }
3291
3292                 snap_name = rbd_dev_snap_info(rbd_dev, index,
3293                                         &snap_size, &snap_features);
3294                 if (IS_ERR(snap_name))
3295                         return PTR_ERR(snap_name);
3296
3297                 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3298                         (unsigned long long) snap_id);
3299                 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3300                         struct rbd_snap *new_snap;
3301
3302                         /* We haven't seen this snapshot before */
3303
3304                         new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3305                                         snap_id, snap_size, snap_features);
3306                         if (IS_ERR(new_snap)) {
3307                                 int err = PTR_ERR(new_snap);
3308
3309                                 dout("  failed to add dev, error %d\n", err);
3310
3311                                 return err;
3312                         }
3313
3314                         /* New goes before existing, or at end of list */
3315
3316                         dout("  added dev%s\n", snap ? "" : " at end\n");
3317                         if (snap)
3318                                 list_add_tail(&new_snap->node, &snap->node);
3319                         else
3320                                 list_add_tail(&new_snap->node, head);
3321                 } else {
3322                         /* Already have this one */
3323
3324                         dout("  already present\n");
3325
3326                         rbd_assert(snap->size == snap_size);
3327                         rbd_assert(!strcmp(snap->name, snap_name));
3328                         rbd_assert(snap->features == snap_features);
3329
3330                         /* Done with this list entry; advance */
3331
3332                         links = links->next;
3333                 }
3334
3335                 /* Advance to the next entry in the snapshot context */
3336
3337                 index++;
3338         }
3339         dout("%s: done\n", __func__);
3340
3341         return 0;
3342 }
3343
3344 /*
3345  * Scan the list of snapshots and register the devices for any that
3346  * have not already been registered.
3347  */
3348 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3349 {
3350         struct rbd_snap *snap;
3351         int ret = 0;
3352
3353         dout("%s called\n", __func__);
3354         if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3355                 return -EIO;
3356
3357         list_for_each_entry(snap, &rbd_dev->snaps, node) {
3358                 if (!rbd_snap_registered(snap)) {
3359                         ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3360                         if (ret < 0)
3361                                 break;
3362                 }
3363         }
3364         dout("%s: returning %d\n", __func__, ret);
3365
3366         return ret;
3367 }
3368
3369 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3370 {
3371         struct device *dev;
3372         int ret;
3373
3374         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3375
3376         dev = &rbd_dev->dev;
3377         dev->bus = &rbd_bus_type;
3378         dev->type = &rbd_device_type;
3379         dev->parent = &rbd_root_dev;
3380         dev->release = rbd_dev_release;
3381         dev_set_name(dev, "%d", rbd_dev->dev_id);
3382         ret = device_register(dev);
3383
3384         mutex_unlock(&ctl_mutex);
3385
3386         return ret;
3387 }
3388
3389 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3390 {
3391         device_unregister(&rbd_dev->dev);
3392 }
3393
3394 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3395
3396 /*
3397  * Get a unique rbd identifier for the given new rbd_dev, and add
3398  * the rbd_dev to the global list.  The minimum rbd id is 1.
3399  */
3400 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3401 {
3402         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3403
3404         spin_lock(&rbd_dev_list_lock);
3405         list_add_tail(&rbd_dev->node, &rbd_dev_list);
3406         spin_unlock(&rbd_dev_list_lock);
3407         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3408                 (unsigned long long) rbd_dev->dev_id);
3409 }
3410
3411 /*
3412  * Remove an rbd_dev from the global list, and record that its
3413  * identifier is no longer in use.
3414  */
3415 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3416 {
3417         struct list_head *tmp;
3418         int rbd_id = rbd_dev->dev_id;
3419         int max_id;
3420
3421         rbd_assert(rbd_id > 0);
3422
3423         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3424                 (unsigned long long) rbd_dev->dev_id);
3425         spin_lock(&rbd_dev_list_lock);
3426         list_del_init(&rbd_dev->node);
3427
3428         /*
3429          * If the id being "put" is not the current maximum, there
3430          * is nothing special we need to do.
3431          */
3432         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3433                 spin_unlock(&rbd_dev_list_lock);
3434                 return;
3435         }
3436
3437         /*
3438          * We need to update the current maximum id.  Search the
3439          * list to find out what it is.  We're more likely to find
3440          * the maximum at the end, so search the list backward.
3441          */
3442         max_id = 0;
3443         list_for_each_prev(tmp, &rbd_dev_list) {
3444                 struct rbd_device *rbd_dev;
3445
3446                 rbd_dev = list_entry(tmp, struct rbd_device, node);
3447                 if (rbd_dev->dev_id > max_id)
3448                         max_id = rbd_dev->dev_id;
3449         }
3450         spin_unlock(&rbd_dev_list_lock);
3451
3452         /*
3453          * The max id could have been updated by rbd_dev_id_get(), in
3454          * which case it now accurately reflects the new maximum.
3455          * Be careful not to overwrite the maximum value in that
3456          * case.
3457          */
3458         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3459         dout("  max dev id has been reset\n");
3460 }
3461
3462 /*
3463  * Skips over white space at *buf, and updates *buf to point to the
3464  * first found non-space character (if any). Returns the length of
3465  * the token (string of non-white space characters) found.  Note
3466  * that *buf must be terminated with '\0'.
3467  */
3468 static inline size_t next_token(const char **buf)
3469 {
3470         /*
3471         * These are the characters that produce nonzero for
3472         * isspace() in the "C" and "POSIX" locales.
3473         */
3474         const char *spaces = " \f\n\r\t\v";
3475
3476         *buf += strspn(*buf, spaces);   /* Find start of token */
3477
3478         return strcspn(*buf, spaces);   /* Return token length */
3479 }
3480
3481 /*
3482  * Finds the next token in *buf, and if the provided token buffer is
3483  * big enough, copies the found token into it.  The result, if
3484  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
3485  * must be terminated with '\0' on entry.
3486  *
3487  * Returns the length of the token found (not including the '\0').
3488  * Return value will be 0 if no token is found, and it will be >=
3489  * token_size if the token would not fit.
3490  *
3491  * The *buf pointer will be updated to point beyond the end of the
3492  * found token.  Note that this occurs even if the token buffer is
3493  * too small to hold it.
3494  */
3495 static inline size_t copy_token(const char **buf,
3496                                 char *token,
3497                                 size_t token_size)
3498 {
3499         size_t len;
3500
3501         len = next_token(buf);
3502         if (len < token_size) {
3503                 memcpy(token, *buf, len);
3504                 *(token + len) = '\0';
3505         }
3506         *buf += len;
3507
3508         return len;
3509 }
3510
3511 /*
3512  * Finds the next token in *buf, dynamically allocates a buffer big
3513  * enough to hold a copy of it, and copies the token into the new
3514  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
3515  * that a duplicate buffer is created even for a zero-length token.
3516  *
3517  * Returns a pointer to the newly-allocated duplicate, or a null
3518  * pointer if memory for the duplicate was not available.  If
3519  * the lenp argument is a non-null pointer, the length of the token
3520  * (not including the '\0') is returned in *lenp.
3521  *
3522  * If successful, the *buf pointer will be updated to point beyond
3523  * the end of the found token.
3524  *
3525  * Note: uses GFP_KERNEL for allocation.
3526  */
3527 static inline char *dup_token(const char **buf, size_t *lenp)
3528 {
3529         char *dup;
3530         size_t len;
3531
3532         len = next_token(buf);
3533         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3534         if (!dup)
3535                 return NULL;
3536         *(dup + len) = '\0';
3537         *buf += len;
3538
3539         if (lenp)
3540                 *lenp = len;
3541
3542         return dup;
3543 }
3544
3545 /*
3546  * Parse the options provided for an "rbd add" (i.e., rbd image
3547  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
3548  * and the data written is passed here via a NUL-terminated buffer.
3549  * Returns 0 if successful or an error code otherwise.
3550  *
3551  * The information extracted from these options is recorded in
3552  * the other parameters which return dynamically-allocated
3553  * structures:
3554  *  ceph_opts
3555  *      The address of a pointer that will refer to a ceph options
3556  *      structure.  Caller must release the returned pointer using
3557  *      ceph_destroy_options() when it is no longer needed.
3558  *  rbd_opts
3559  *      Address of an rbd options pointer.  Fully initialized by
3560  *      this function; caller must release with kfree().
3561  *  spec
3562  *      Address of an rbd image specification pointer.  Fully
3563  *      initialized by this function based on parsed options.
3564  *      Caller must release with rbd_spec_put().
3565  *
3566  * The options passed take this form:
3567  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3568  * where:
3569  *  <mon_addrs>
3570  *      A comma-separated list of one or more monitor addresses.
3571  *      A monitor address is an ip address, optionally followed
3572  *      by a port number (separated by a colon).
3573  *        I.e.:  ip1[:port1][,ip2[:port2]...]
3574  *  <options>
3575  *      A comma-separated list of ceph and/or rbd options.
3576  *  <pool_name>
3577  *      The name of the rados pool containing the rbd image.
3578  *  <image_name>
3579  *      The name of the image in that pool to map.
3580  *  <snap_id>
3581  *      An optional snapshot id.  If provided, the mapping will
3582  *      present data from the image at the time that snapshot was
3583  *      created.  The image head is used if no snapshot id is
3584  *      provided.  Snapshot mappings are always read-only.
3585  */
3586 static int rbd_add_parse_args(const char *buf,
3587                                 struct ceph_options **ceph_opts,
3588                                 struct rbd_options **opts,
3589                                 struct rbd_spec **rbd_spec)
3590 {
3591         size_t len;
3592         char *options;
3593         const char *mon_addrs;
3594         size_t mon_addrs_size;
3595         struct rbd_spec *spec = NULL;
3596         struct rbd_options *rbd_opts = NULL;
3597         struct ceph_options *copts;
3598         int ret;
3599
3600         /* The first four tokens are required */
3601
3602         len = next_token(&buf);
3603         if (!len) {
3604                 rbd_warn(NULL, "no monitor address(es) provided");
3605                 return -EINVAL;
3606         }
3607         mon_addrs = buf;
3608         mon_addrs_size = len + 1;
3609         buf += len;
3610
3611         ret = -EINVAL;
3612         options = dup_token(&buf, NULL);
3613         if (!options)
3614                 return -ENOMEM;
3615         if (!*options) {
3616                 rbd_warn(NULL, "no options provided");
3617                 goto out_err;
3618         }
3619
3620         spec = rbd_spec_alloc();
3621         if (!spec)
3622                 goto out_mem;
3623
3624         spec->pool_name = dup_token(&buf, NULL);
3625         if (!spec->pool_name)
3626                 goto out_mem;
3627         if (!*spec->pool_name) {
3628                 rbd_warn(NULL, "no pool name provided");
3629                 goto out_err;
3630         }
3631
3632         spec->image_name = dup_token(&buf, NULL);
3633         if (!spec->image_name)
3634                 goto out_mem;
3635         if (!*spec->image_name) {
3636                 rbd_warn(NULL, "no image name provided");
3637                 goto out_err;
3638         }
3639
3640         /*
3641          * Snapshot name is optional; default is to use "-"
3642          * (indicating the head/no snapshot).
3643          */
3644         len = next_token(&buf);
3645         if (!len) {
3646                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3647                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3648         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3649                 ret = -ENAMETOOLONG;
3650                 goto out_err;
3651         }
3652         spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3653         if (!spec->snap_name)
3654                 goto out_mem;
3655         *(spec->snap_name + len) = '\0';
3656
3657         /* Initialize all rbd options to the defaults */
3658
3659         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3660         if (!rbd_opts)
3661                 goto out_mem;
3662
3663         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3664
3665         copts = ceph_parse_options(options, mon_addrs,
3666                                         mon_addrs + mon_addrs_size - 1,
3667                                         parse_rbd_opts_token, rbd_opts);
3668         if (IS_ERR(copts)) {
3669                 ret = PTR_ERR(copts);
3670                 goto out_err;
3671         }
3672         kfree(options);
3673
3674         *ceph_opts = copts;
3675         *opts = rbd_opts;
3676         *rbd_spec = spec;
3677
3678         return 0;
3679 out_mem:
3680         ret = -ENOMEM;
3681 out_err:
3682         kfree(rbd_opts);
3683         rbd_spec_put(spec);
3684         kfree(options);
3685
3686         return ret;
3687 }
3688
3689 /*
3690  * An rbd format 2 image has a unique identifier, distinct from the
3691  * name given to it by the user.  Internally, that identifier is
3692  * what's used to specify the names of objects related to the image.
3693  *
3694  * A special "rbd id" object is used to map an rbd image name to its
3695  * id.  If that object doesn't exist, then there is no v2 rbd image
3696  * with the supplied name.
3697  *
3698  * This function will record the given rbd_dev's image_id field if
3699  * it can be determined, and in that case will return 0.  If any
3700  * errors occur a negative errno will be returned and the rbd_dev's
3701  * image_id field will be unchanged (and should be NULL).
3702  */
3703 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3704 {
3705         int ret;
3706         size_t size;
3707         char *object_name;
3708         void *response;
3709         void *p;
3710
3711         /*
3712          * When probing a parent image, the image id is already
3713          * known (and the image name likely is not).  There's no
3714          * need to fetch the image id again in this case.
3715          */
3716         if (rbd_dev->spec->image_id)
3717                 return 0;
3718
3719         /*
3720          * First, see if the format 2 image id file exists, and if
3721          * so, get the image's persistent id from it.
3722          */
3723         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3724         object_name = kmalloc(size, GFP_NOIO);
3725         if (!object_name)
3726                 return -ENOMEM;
3727         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3728         dout("rbd id object name is %s\n", object_name);
3729
3730         /* Response will be an encoded string, which includes a length */
3731
3732         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3733         response = kzalloc(size, GFP_NOIO);
3734         if (!response) {
3735                 ret = -ENOMEM;
3736                 goto out;
3737         }
3738
3739         ret = rbd_obj_method_sync(rbd_dev, object_name,
3740                                 "rbd", "get_id",
3741                                 NULL, 0,
3742                                 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3743         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3744         if (ret < 0)
3745                 goto out;
3746
3747         p = response;
3748         rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3749                                                 p + RBD_IMAGE_ID_LEN_MAX,
3750                                                 NULL, GFP_NOIO);
3751         if (IS_ERR(rbd_dev->spec->image_id)) {
3752                 ret = PTR_ERR(rbd_dev->spec->image_id);
3753                 rbd_dev->spec->image_id = NULL;
3754         } else {
3755                 dout("image_id is %s\n", rbd_dev->spec->image_id);
3756         }
3757 out:
3758         kfree(response);
3759         kfree(object_name);
3760
3761         return ret;
3762 }
3763
3764 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3765 {
3766         int ret;
3767         size_t size;
3768
3769         /* Version 1 images have no id; empty string is used */
3770
3771         rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3772         if (!rbd_dev->spec->image_id)
3773                 return -ENOMEM;
3774
3775         /* Record the header object name for this rbd image. */
3776
3777         size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3778         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3779         if (!rbd_dev->header_name) {
3780                 ret = -ENOMEM;
3781                 goto out_err;
3782         }
3783         sprintf(rbd_dev->header_name, "%s%s",
3784                 rbd_dev->spec->image_name, RBD_SUFFIX);
3785
3786         /* Populate rbd image metadata */
3787
3788         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3789         if (ret < 0)
3790                 goto out_err;
3791
3792         /* Version 1 images have no parent (no layering) */
3793
3794         rbd_dev->parent_spec = NULL;
3795         rbd_dev->parent_overlap = 0;
3796
3797         rbd_dev->image_format = 1;
3798
3799         dout("discovered version 1 image, header name is %s\n",
3800                 rbd_dev->header_name);
3801
3802         return 0;
3803
3804 out_err:
3805         kfree(rbd_dev->header_name);
3806         rbd_dev->header_name = NULL;
3807         kfree(rbd_dev->spec->image_id);
3808         rbd_dev->spec->image_id = NULL;
3809
3810         return ret;
3811 }
3812
3813 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3814 {
3815         size_t size;
3816         int ret;
3817         u64 ver = 0;
3818
3819         /*
3820          * Image id was filled in by the caller.  Record the header
3821          * object name for this rbd image.
3822          */
3823         size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3824         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3825         if (!rbd_dev->header_name)
3826                 return -ENOMEM;
3827         sprintf(rbd_dev->header_name, "%s%s",
3828                         RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3829
3830         /* Get the size and object order for the image */
3831
3832         ret = rbd_dev_v2_image_size(rbd_dev);
3833         if (ret < 0)
3834                 goto out_err;
3835
3836         /* Get the object prefix (a.k.a. block_name) for the image */
3837
3838         ret = rbd_dev_v2_object_prefix(rbd_dev);
3839         if (ret < 0)
3840                 goto out_err;
3841
3842         /* Get the and check features for the image */
3843
3844         ret = rbd_dev_v2_features(rbd_dev);
3845         if (ret < 0)
3846                 goto out_err;
3847
3848         /* If the image supports layering, get the parent info */
3849
3850         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3851                 ret = rbd_dev_v2_parent_info(rbd_dev);
3852                 if (ret < 0)
3853                         goto out_err;
3854         }
3855
3856         /* crypto and compression type aren't (yet) supported for v2 images */
3857
3858         rbd_dev->header.crypt_type = 0;
3859         rbd_dev->header.comp_type = 0;
3860
3861         /* Get the snapshot context, plus the header version */
3862
3863         ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3864         if (ret)
3865                 goto out_err;
3866         rbd_dev->header.obj_version = ver;
3867
3868         rbd_dev->image_format = 2;
3869
3870         dout("discovered version 2 image, header name is %s\n",
3871                 rbd_dev->header_name);
3872
3873         return 0;
3874 out_err:
3875         rbd_dev->parent_overlap = 0;
3876         rbd_spec_put(rbd_dev->parent_spec);
3877         rbd_dev->parent_spec = NULL;
3878         kfree(rbd_dev->header_name);
3879         rbd_dev->header_name = NULL;
3880         kfree(rbd_dev->header.object_prefix);
3881         rbd_dev->header.object_prefix = NULL;
3882
3883         return ret;
3884 }
3885
3886 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3887 {
3888         int ret;
3889
3890         /* no need to lock here, as rbd_dev is not registered yet */
3891         ret = rbd_dev_snaps_update(rbd_dev);
3892         if (ret)
3893                 return ret;
3894
3895         ret = rbd_dev_probe_update_spec(rbd_dev);
3896         if (ret)
3897                 goto err_out_snaps;
3898
3899         ret = rbd_dev_set_mapping(rbd_dev);
3900         if (ret)
3901                 goto err_out_snaps;
3902
3903         /* generate unique id: find highest unique id, add one */
3904         rbd_dev_id_get(rbd_dev);
3905
3906         /* Fill in the device name, now that we have its id. */
3907         BUILD_BUG_ON(DEV_NAME_LEN
3908                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3909         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3910
3911         /* Get our block major device number. */
3912
3913         ret = register_blkdev(0, rbd_dev->name);
3914         if (ret < 0)
3915                 goto err_out_id;
3916         rbd_dev->major = ret;
3917
3918         /* Set up the blkdev mapping. */
3919
3920         ret = rbd_init_disk(rbd_dev);
3921         if (ret)
3922                 goto err_out_blkdev;
3923
3924         ret = rbd_bus_add_dev(rbd_dev);
3925         if (ret)
3926                 goto err_out_disk;
3927
3928         /*
3929          * At this point cleanup in the event of an error is the job
3930          * of the sysfs code (initiated by rbd_bus_del_dev()).
3931          */
3932         down_write(&rbd_dev->header_rwsem);
3933         ret = rbd_dev_snaps_register(rbd_dev);
3934         up_write(&rbd_dev->header_rwsem);
3935         if (ret)
3936                 goto err_out_bus;
3937
3938         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3939         if (ret)
3940                 goto err_out_bus;
3941
3942         /* Everything's ready.  Announce the disk to the world. */
3943
3944         add_disk(rbd_dev->disk);
3945
3946         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3947                 (unsigned long long) rbd_dev->mapping.size);
3948
3949         return ret;
3950 err_out_bus:
3951         /* this will also clean up rest of rbd_dev stuff */
3952
3953         rbd_bus_del_dev(rbd_dev);
3954
3955         return ret;
3956 err_out_disk:
3957         rbd_free_disk(rbd_dev);
3958 err_out_blkdev:
3959         unregister_blkdev(rbd_dev->major, rbd_dev->name);
3960 err_out_id:
3961         rbd_dev_id_put(rbd_dev);
3962 err_out_snaps:
3963         rbd_remove_all_snaps(rbd_dev);
3964
3965         return ret;
3966 }
3967
3968 /*
3969  * Probe for the existence of the header object for the given rbd
3970  * device.  For format 2 images this includes determining the image
3971  * id.
3972  */
3973 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3974 {
3975         int ret;
3976
3977         /*
3978          * Get the id from the image id object.  If it's not a
3979          * format 2 image, we'll get ENOENT back, and we'll assume
3980          * it's a format 1 image.
3981          */
3982         ret = rbd_dev_image_id(rbd_dev);
3983         if (ret)
3984                 ret = rbd_dev_v1_probe(rbd_dev);
3985         else
3986                 ret = rbd_dev_v2_probe(rbd_dev);
3987         if (ret) {
3988                 dout("probe failed, returning %d\n", ret);
3989
3990                 return ret;
3991         }
3992
3993         ret = rbd_dev_probe_finish(rbd_dev);
3994         if (ret)
3995                 rbd_header_free(&rbd_dev->header);
3996
3997         return ret;
3998 }
3999
4000 static ssize_t rbd_add(struct bus_type *bus,
4001                        const char *buf,
4002                        size_t count)
4003 {
4004         struct rbd_device *rbd_dev = NULL;
4005         struct ceph_options *ceph_opts = NULL;
4006         struct rbd_options *rbd_opts = NULL;
4007         struct rbd_spec *spec = NULL;
4008         struct rbd_client *rbdc;
4009         struct ceph_osd_client *osdc;
4010         int rc = -ENOMEM;
4011
4012         if (!try_module_get(THIS_MODULE))
4013                 return -ENODEV;
4014
4015         /* parse add command */
4016         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4017         if (rc < 0)
4018                 goto err_out_module;
4019
4020         rbdc = rbd_get_client(ceph_opts);
4021         if (IS_ERR(rbdc)) {
4022                 rc = PTR_ERR(rbdc);
4023                 goto err_out_args;
4024         }
4025         ceph_opts = NULL;       /* rbd_dev client now owns this */
4026
4027         /* pick the pool */
4028         osdc = &rbdc->client->osdc;
4029         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4030         if (rc < 0)
4031                 goto err_out_client;
4032         spec->pool_id = (u64) rc;
4033
4034         /* The ceph file layout needs to fit pool id in 32 bits */
4035
4036         if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4037                 rc = -EIO;
4038                 goto err_out_client;
4039         }
4040
4041         rbd_dev = rbd_dev_create(rbdc, spec);
4042         if (!rbd_dev)
4043                 goto err_out_client;
4044         rbdc = NULL;            /* rbd_dev now owns this */
4045         spec = NULL;            /* rbd_dev now owns this */
4046
4047         rbd_dev->mapping.read_only = rbd_opts->read_only;
4048         kfree(rbd_opts);
4049         rbd_opts = NULL;        /* done with this */
4050
4051         rc = rbd_dev_probe(rbd_dev);
4052         if (rc < 0)
4053                 goto err_out_rbd_dev;
4054
4055         return count;
4056 err_out_rbd_dev:
4057         rbd_dev_destroy(rbd_dev);
4058 err_out_client:
4059         rbd_put_client(rbdc);
4060 err_out_args:
4061         if (ceph_opts)
4062                 ceph_destroy_options(ceph_opts);
4063         kfree(rbd_opts);
4064         rbd_spec_put(spec);
4065 err_out_module:
4066         module_put(THIS_MODULE);
4067
4068         dout("Error adding device %s\n", buf);
4069
4070         return (ssize_t) rc;
4071 }
4072
4073 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4074 {
4075         struct list_head *tmp;
4076         struct rbd_device *rbd_dev;
4077
4078         spin_lock(&rbd_dev_list_lock);
4079         list_for_each(tmp, &rbd_dev_list) {
4080                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4081                 if (rbd_dev->dev_id == dev_id) {
4082                         spin_unlock(&rbd_dev_list_lock);
4083                         return rbd_dev;
4084                 }
4085         }
4086         spin_unlock(&rbd_dev_list_lock);
4087         return NULL;
4088 }
4089
4090 static void rbd_dev_release(struct device *dev)
4091 {
4092         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4093
4094         if (rbd_dev->watch_event)
4095                 rbd_dev_header_watch_sync(rbd_dev, 0);
4096
4097         /* clean up and free blkdev */
4098         rbd_free_disk(rbd_dev);
4099         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4100
4101         /* release allocated disk header fields */
4102         rbd_header_free(&rbd_dev->header);
4103
4104         /* done with the id, and with the rbd_dev */
4105         rbd_dev_id_put(rbd_dev);
4106         rbd_assert(rbd_dev->rbd_client != NULL);
4107         rbd_dev_destroy(rbd_dev);
4108
4109         /* release module ref */
4110         module_put(THIS_MODULE);
4111 }
4112
4113 static ssize_t rbd_remove(struct bus_type *bus,
4114                           const char *buf,
4115                           size_t count)
4116 {
4117         struct rbd_device *rbd_dev = NULL;
4118         int target_id, rc;
4119         unsigned long ul;
4120         int ret = count;
4121
4122         rc = strict_strtoul(buf, 10, &ul);
4123         if (rc)
4124                 return rc;
4125
4126         /* convert to int; abort if we lost anything in the conversion */
4127         target_id = (int) ul;
4128         if (target_id != ul)
4129                 return -EINVAL;
4130
4131         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4132
4133         rbd_dev = __rbd_get_dev(target_id);
4134         if (!rbd_dev) {
4135                 ret = -ENOENT;
4136                 goto done;
4137         }
4138
4139         spin_lock_irq(&rbd_dev->lock);
4140         if (rbd_dev->open_count)
4141                 ret = -EBUSY;
4142         else
4143                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4144         spin_unlock_irq(&rbd_dev->lock);
4145         if (ret < 0)
4146                 goto done;
4147
4148         rbd_remove_all_snaps(rbd_dev);
4149         rbd_bus_del_dev(rbd_dev);
4150
4151 done:
4152         mutex_unlock(&ctl_mutex);
4153
4154         return ret;
4155 }
4156
4157 /*
4158  * create control files in sysfs
4159  * /sys/bus/rbd/...
4160  */
4161 static int rbd_sysfs_init(void)
4162 {
4163         int ret;
4164
4165         ret = device_register(&rbd_root_dev);
4166         if (ret < 0)
4167                 return ret;
4168
4169         ret = bus_register(&rbd_bus_type);
4170         if (ret < 0)
4171                 device_unregister(&rbd_root_dev);
4172
4173         return ret;
4174 }
4175
4176 static void rbd_sysfs_cleanup(void)
4177 {
4178         bus_unregister(&rbd_bus_type);
4179         device_unregister(&rbd_root_dev);
4180 }
4181
4182 int __init rbd_init(void)
4183 {
4184         int rc;
4185
4186         if (!libceph_compatible(NULL)) {
4187                 rbd_warn(NULL, "libceph incompatibility (quitting)");
4188
4189                 return -EINVAL;
4190         }
4191         rc = rbd_sysfs_init();
4192         if (rc)
4193                 return rc;
4194         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4195         return 0;
4196 }
4197
4198 void __exit rbd_exit(void)
4199 {
4200         rbd_sysfs_cleanup();
4201 }
4202
4203 module_init(rbd_init);
4204 module_exit(rbd_exit);
4205
4206 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4207 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4208 MODULE_DESCRIPTION("rados block device");
4209
4210 /* following authorship retained from original osdblk.c */
4211 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4212
4213 MODULE_LICENSE("GPL");