]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
Merge tag 'trace-fixes-v3.10-rc3-v3' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.
523  * We own *ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.
679  */
680 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
681 {
682         struct rbd_client *rbdc;
683
684         rbdc = rbd_client_find(ceph_opts);
685         if (rbdc)       /* using an existing client */
686                 ceph_destroy_options(ceph_opts);
687         else
688                 rbdc = rbd_client_create(ceph_opts);
689
690         return rbdc;
691 }
692
693 /*
694  * Destroy ceph client
695  *
696  * Caller must hold rbd_client_list_lock.
697  */
698 static void rbd_client_release(struct kref *kref)
699 {
700         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
701
702         dout("%s: rbdc %p\n", __func__, rbdc);
703         spin_lock(&rbd_client_list_lock);
704         list_del(&rbdc->node);
705         spin_unlock(&rbd_client_list_lock);
706
707         ceph_destroy_client(rbdc->client);
708         kfree(rbdc);
709 }
710
711 /*
712  * Drop reference to ceph client node. If it's not referenced anymore, release
713  * it.
714  */
715 static void rbd_put_client(struct rbd_client *rbdc)
716 {
717         if (rbdc)
718                 kref_put(&rbdc->kref, rbd_client_release);
719 }
720
721 static bool rbd_image_format_valid(u32 image_format)
722 {
723         return image_format == 1 || image_format == 2;
724 }
725
726 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
727 {
728         size_t size;
729         u32 snap_count;
730
731         /* The header has to start with the magic rbd header text */
732         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
733                 return false;
734
735         /* The bio layer requires at least sector-sized I/O */
736
737         if (ondisk->options.order < SECTOR_SHIFT)
738                 return false;
739
740         /* If we use u64 in a few spots we may be able to loosen this */
741
742         if (ondisk->options.order > 8 * sizeof (int) - 1)
743                 return false;
744
745         /*
746          * The size of a snapshot header has to fit in a size_t, and
747          * that limits the number of snapshots.
748          */
749         snap_count = le32_to_cpu(ondisk->snap_count);
750         size = SIZE_MAX - sizeof (struct ceph_snap_context);
751         if (snap_count > size / sizeof (__le64))
752                 return false;
753
754         /*
755          * Not only that, but the size of the entire the snapshot
756          * header must also be representable in a size_t.
757          */
758         size -= snap_count * sizeof (__le64);
759         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
760                 return false;
761
762         return true;
763 }
764
765 /*
766  * Fill an rbd image header with information from the given format 1
767  * on-disk header.
768  */
769 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
770                                  struct rbd_image_header_ondisk *ondisk)
771 {
772         struct rbd_image_header *header = &rbd_dev->header;
773         bool first_time = header->object_prefix == NULL;
774         struct ceph_snap_context *snapc;
775         char *object_prefix = NULL;
776         char *snap_names = NULL;
777         u64 *snap_sizes = NULL;
778         u32 snap_count;
779         size_t size;
780         int ret = -ENOMEM;
781         u32 i;
782
783         /* Allocate this now to avoid having to handle failure below */
784
785         if (first_time) {
786                 size_t len;
787
788                 len = strnlen(ondisk->object_prefix,
789                                 sizeof (ondisk->object_prefix));
790                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
791                 if (!object_prefix)
792                         return -ENOMEM;
793                 memcpy(object_prefix, ondisk->object_prefix, len);
794                 object_prefix[len] = '\0';
795         }
796
797         /* Allocate the snapshot context and fill it in */
798
799         snap_count = le32_to_cpu(ondisk->snap_count);
800         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
801         if (!snapc)
802                 goto out_err;
803         snapc->seq = le64_to_cpu(ondisk->snap_seq);
804         if (snap_count) {
805                 struct rbd_image_snap_ondisk *snaps;
806                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
807
808                 /* We'll keep a copy of the snapshot names... */
809
810                 if (snap_names_len > (u64)SIZE_MAX)
811                         goto out_2big;
812                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
813                 if (!snap_names)
814                         goto out_err;
815
816                 /* ...as well as the array of their sizes. */
817
818                 size = snap_count * sizeof (*header->snap_sizes);
819                 snap_sizes = kmalloc(size, GFP_KERNEL);
820                 if (!snap_sizes)
821                         goto out_err;
822
823                 /*
824                  * Copy the names, and fill in each snapshot's id
825                  * and size.
826                  *
827                  * Note that rbd_dev_v1_header_info() guarantees the
828                  * ondisk buffer we're working with has
829                  * snap_names_len bytes beyond the end of the
830                  * snapshot id array, this memcpy() is safe.
831                  */
832                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
833                 snaps = ondisk->snaps;
834                 for (i = 0; i < snap_count; i++) {
835                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
836                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
837                 }
838         }
839
840         /* We won't fail any more, fill in the header */
841
842         down_write(&rbd_dev->header_rwsem);
843         if (first_time) {
844                 header->object_prefix = object_prefix;
845                 header->obj_order = ondisk->options.order;
846                 header->crypt_type = ondisk->options.crypt_type;
847                 header->comp_type = ondisk->options.comp_type;
848                 /* The rest aren't used for format 1 images */
849                 header->stripe_unit = 0;
850                 header->stripe_count = 0;
851                 header->features = 0;
852         } else {
853                 ceph_put_snap_context(header->snapc);
854                 kfree(header->snap_names);
855                 kfree(header->snap_sizes);
856         }
857
858         /* The remaining fields always get updated (when we refresh) */
859
860         header->image_size = le64_to_cpu(ondisk->image_size);
861         header->snapc = snapc;
862         header->snap_names = snap_names;
863         header->snap_sizes = snap_sizes;
864
865         /* Make sure mapping size is consistent with header info */
866
867         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
868                 if (rbd_dev->mapping.size != header->image_size)
869                         rbd_dev->mapping.size = header->image_size;
870
871         up_write(&rbd_dev->header_rwsem);
872
873         return 0;
874 out_2big:
875         ret = -EIO;
876 out_err:
877         kfree(snap_sizes);
878         kfree(snap_names);
879         ceph_put_snap_context(snapc);
880         kfree(object_prefix);
881
882         return ret;
883 }
884
885 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
886 {
887         const char *snap_name;
888
889         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
890
891         /* Skip over names until we find the one we are looking for */
892
893         snap_name = rbd_dev->header.snap_names;
894         while (which--)
895                 snap_name += strlen(snap_name) + 1;
896
897         return kstrdup(snap_name, GFP_KERNEL);
898 }
899
900 /*
901  * Snapshot id comparison function for use with qsort()/bsearch().
902  * Note that result is for snapshots in *descending* order.
903  */
904 static int snapid_compare_reverse(const void *s1, const void *s2)
905 {
906         u64 snap_id1 = *(u64 *)s1;
907         u64 snap_id2 = *(u64 *)s2;
908
909         if (snap_id1 < snap_id2)
910                 return 1;
911         return snap_id1 == snap_id2 ? 0 : -1;
912 }
913
914 /*
915  * Search a snapshot context to see if the given snapshot id is
916  * present.
917  *
918  * Returns the position of the snapshot id in the array if it's found,
919  * or BAD_SNAP_INDEX otherwise.
920  *
921  * Note: The snapshot array is in kept sorted (by the osd) in
922  * reverse order, highest snapshot id first.
923  */
924 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
925 {
926         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
927         u64 *found;
928
929         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
930                                 sizeof (snap_id), snapid_compare_reverse);
931
932         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
933 }
934
935 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
936                                         u64 snap_id)
937 {
938         u32 which;
939
940         which = rbd_dev_snap_index(rbd_dev, snap_id);
941         if (which == BAD_SNAP_INDEX)
942                 return NULL;
943
944         return _rbd_dev_v1_snap_name(rbd_dev, which);
945 }
946
947 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
948 {
949         if (snap_id == CEPH_NOSNAP)
950                 return RBD_SNAP_HEAD_NAME;
951
952         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
953         if (rbd_dev->image_format == 1)
954                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
955
956         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
957 }
958
959 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
960                                 u64 *snap_size)
961 {
962         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
963         if (snap_id == CEPH_NOSNAP) {
964                 *snap_size = rbd_dev->header.image_size;
965         } else if (rbd_dev->image_format == 1) {
966                 u32 which;
967
968                 which = rbd_dev_snap_index(rbd_dev, snap_id);
969                 if (which == BAD_SNAP_INDEX)
970                         return -ENOENT;
971
972                 *snap_size = rbd_dev->header.snap_sizes[which];
973         } else {
974                 u64 size = 0;
975                 int ret;
976
977                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
978                 if (ret)
979                         return ret;
980
981                 *snap_size = size;
982         }
983         return 0;
984 }
985
986 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
987                         u64 *snap_features)
988 {
989         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
990         if (snap_id == CEPH_NOSNAP) {
991                 *snap_features = rbd_dev->header.features;
992         } else if (rbd_dev->image_format == 1) {
993                 *snap_features = 0;     /* No features for format 1 */
994         } else {
995                 u64 features = 0;
996                 int ret;
997
998                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
999                 if (ret)
1000                         return ret;
1001
1002                 *snap_features = features;
1003         }
1004         return 0;
1005 }
1006
1007 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1008 {
1009         u64 snap_id = rbd_dev->spec->snap_id;
1010         u64 size = 0;
1011         u64 features = 0;
1012         int ret;
1013
1014         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1015         if (ret)
1016                 return ret;
1017         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1018         if (ret)
1019                 return ret;
1020
1021         rbd_dev->mapping.size = size;
1022         rbd_dev->mapping.features = features;
1023
1024         return 0;
1025 }
1026
1027 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1028 {
1029         rbd_dev->mapping.size = 0;
1030         rbd_dev->mapping.features = 0;
1031 }
1032
1033 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1034 {
1035         char *name;
1036         u64 segment;
1037         int ret;
1038
1039         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1040         if (!name)
1041                 return NULL;
1042         segment = offset >> rbd_dev->header.obj_order;
1043         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1044                         rbd_dev->header.object_prefix, segment);
1045         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1046                 pr_err("error formatting segment name for #%llu (%d)\n",
1047                         segment, ret);
1048                 kfree(name);
1049                 name = NULL;
1050         }
1051
1052         return name;
1053 }
1054
1055 static void rbd_segment_name_free(const char *name)
1056 {
1057         /* The explicit cast here is needed to drop the const qualifier */
1058
1059         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1060 }
1061
1062 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1063 {
1064         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1065
1066         return offset & (segment_size - 1);
1067 }
1068
1069 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1070                                 u64 offset, u64 length)
1071 {
1072         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1073
1074         offset &= segment_size - 1;
1075
1076         rbd_assert(length <= U64_MAX - offset);
1077         if (offset + length > segment_size)
1078                 length = segment_size - offset;
1079
1080         return length;
1081 }
1082
1083 /*
1084  * returns the size of an object in the image
1085  */
1086 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1087 {
1088         return 1 << header->obj_order;
1089 }
1090
1091 /*
1092  * bio helpers
1093  */
1094
1095 static void bio_chain_put(struct bio *chain)
1096 {
1097         struct bio *tmp;
1098
1099         while (chain) {
1100                 tmp = chain;
1101                 chain = chain->bi_next;
1102                 bio_put(tmp);
1103         }
1104 }
1105
1106 /*
1107  * zeros a bio chain, starting at specific offset
1108  */
1109 static void zero_bio_chain(struct bio *chain, int start_ofs)
1110 {
1111         struct bio_vec *bv;
1112         unsigned long flags;
1113         void *buf;
1114         int i;
1115         int pos = 0;
1116
1117         while (chain) {
1118                 bio_for_each_segment(bv, chain, i) {
1119                         if (pos + bv->bv_len > start_ofs) {
1120                                 int remainder = max(start_ofs - pos, 0);
1121                                 buf = bvec_kmap_irq(bv, &flags);
1122                                 memset(buf + remainder, 0,
1123                                        bv->bv_len - remainder);
1124                                 bvec_kunmap_irq(buf, &flags);
1125                         }
1126                         pos += bv->bv_len;
1127                 }
1128
1129                 chain = chain->bi_next;
1130         }
1131 }
1132
1133 /*
1134  * similar to zero_bio_chain(), zeros data defined by a page array,
1135  * starting at the given byte offset from the start of the array and
1136  * continuing up to the given end offset.  The pages array is
1137  * assumed to be big enough to hold all bytes up to the end.
1138  */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141         struct page **page = &pages[offset >> PAGE_SHIFT];
1142
1143         rbd_assert(end > offset);
1144         rbd_assert(end - offset <= (u64)SIZE_MAX);
1145         while (offset < end) {
1146                 size_t page_offset;
1147                 size_t length;
1148                 unsigned long flags;
1149                 void *kaddr;
1150
1151                 page_offset = (size_t)(offset & ~PAGE_MASK);
1152                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1153                 local_irq_save(flags);
1154                 kaddr = kmap_atomic(*page);
1155                 memset(kaddr + page_offset, 0, length);
1156                 kunmap_atomic(kaddr);
1157                 local_irq_restore(flags);
1158
1159                 offset += length;
1160                 page++;
1161         }
1162 }
1163
1164 /*
1165  * Clone a portion of a bio, starting at the given byte offset
1166  * and continuing for the number of bytes indicated.
1167  */
1168 static struct bio *bio_clone_range(struct bio *bio_src,
1169                                         unsigned int offset,
1170                                         unsigned int len,
1171                                         gfp_t gfpmask)
1172 {
1173         struct bio_vec *bv;
1174         unsigned int resid;
1175         unsigned short idx;
1176         unsigned int voff;
1177         unsigned short end_idx;
1178         unsigned short vcnt;
1179         struct bio *bio;
1180
1181         /* Handle the easy case for the caller */
1182
1183         if (!offset && len == bio_src->bi_size)
1184                 return bio_clone(bio_src, gfpmask);
1185
1186         if (WARN_ON_ONCE(!len))
1187                 return NULL;
1188         if (WARN_ON_ONCE(len > bio_src->bi_size))
1189                 return NULL;
1190         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1191                 return NULL;
1192
1193         /* Find first affected segment... */
1194
1195         resid = offset;
1196         bio_for_each_segment(bv, bio_src, idx) {
1197                 if (resid < bv->bv_len)
1198                         break;
1199                 resid -= bv->bv_len;
1200         }
1201         voff = resid;
1202
1203         /* ...and the last affected segment */
1204
1205         resid += len;
1206         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1207                 if (resid <= bv->bv_len)
1208                         break;
1209                 resid -= bv->bv_len;
1210         }
1211         vcnt = end_idx - idx + 1;
1212
1213         /* Build the clone */
1214
1215         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1216         if (!bio)
1217                 return NULL;    /* ENOMEM */
1218
1219         bio->bi_bdev = bio_src->bi_bdev;
1220         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1221         bio->bi_rw = bio_src->bi_rw;
1222         bio->bi_flags |= 1 << BIO_CLONED;
1223
1224         /*
1225          * Copy over our part of the bio_vec, then update the first
1226          * and last (or only) entries.
1227          */
1228         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1229                         vcnt * sizeof (struct bio_vec));
1230         bio->bi_io_vec[0].bv_offset += voff;
1231         if (vcnt > 1) {
1232                 bio->bi_io_vec[0].bv_len -= voff;
1233                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1234         } else {
1235                 bio->bi_io_vec[0].bv_len = len;
1236         }
1237
1238         bio->bi_vcnt = vcnt;
1239         bio->bi_size = len;
1240         bio->bi_idx = 0;
1241
1242         return bio;
1243 }
1244
1245 /*
1246  * Clone a portion of a bio chain, starting at the given byte offset
1247  * into the first bio in the source chain and continuing for the
1248  * number of bytes indicated.  The result is another bio chain of
1249  * exactly the given length, or a null pointer on error.
1250  *
1251  * The bio_src and offset parameters are both in-out.  On entry they
1252  * refer to the first source bio and the offset into that bio where
1253  * the start of data to be cloned is located.
1254  *
1255  * On return, bio_src is updated to refer to the bio in the source
1256  * chain that contains first un-cloned byte, and *offset will
1257  * contain the offset of that byte within that bio.
1258  */
1259 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1260                                         unsigned int *offset,
1261                                         unsigned int len,
1262                                         gfp_t gfpmask)
1263 {
1264         struct bio *bi = *bio_src;
1265         unsigned int off = *offset;
1266         struct bio *chain = NULL;
1267         struct bio **end;
1268
1269         /* Build up a chain of clone bios up to the limit */
1270
1271         if (!bi || off >= bi->bi_size || !len)
1272                 return NULL;            /* Nothing to clone */
1273
1274         end = &chain;
1275         while (len) {
1276                 unsigned int bi_size;
1277                 struct bio *bio;
1278
1279                 if (!bi) {
1280                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1281                         goto out_err;   /* EINVAL; ran out of bio's */
1282                 }
1283                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1284                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1285                 if (!bio)
1286                         goto out_err;   /* ENOMEM */
1287
1288                 *end = bio;
1289                 end = &bio->bi_next;
1290
1291                 off += bi_size;
1292                 if (off == bi->bi_size) {
1293                         bi = bi->bi_next;
1294                         off = 0;
1295                 }
1296                 len -= bi_size;
1297         }
1298         *bio_src = bi;
1299         *offset = off;
1300
1301         return chain;
1302 out_err:
1303         bio_chain_put(chain);
1304
1305         return NULL;
1306 }
1307
1308 /*
1309  * The default/initial value for all object request flags is 0.  For
1310  * each flag, once its value is set to 1 it is never reset to 0
1311  * again.
1312  */
1313 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1314 {
1315         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1316                 struct rbd_device *rbd_dev;
1317
1318                 rbd_dev = obj_request->img_request->rbd_dev;
1319                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1320                         obj_request);
1321         }
1322 }
1323
1324 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1325 {
1326         smp_mb();
1327         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1328 }
1329
1330 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1331 {
1332         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1333                 struct rbd_device *rbd_dev = NULL;
1334
1335                 if (obj_request_img_data_test(obj_request))
1336                         rbd_dev = obj_request->img_request->rbd_dev;
1337                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1338                         obj_request);
1339         }
1340 }
1341
1342 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1343 {
1344         smp_mb();
1345         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1346 }
1347
1348 /*
1349  * This sets the KNOWN flag after (possibly) setting the EXISTS
1350  * flag.  The latter is set based on the "exists" value provided.
1351  *
1352  * Note that for our purposes once an object exists it never goes
1353  * away again.  It's possible that the response from two existence
1354  * checks are separated by the creation of the target object, and
1355  * the first ("doesn't exist") response arrives *after* the second
1356  * ("does exist").  In that case we ignore the second one.
1357  */
1358 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1359                                 bool exists)
1360 {
1361         if (exists)
1362                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1363         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1364         smp_mb();
1365 }
1366
1367 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1368 {
1369         smp_mb();
1370         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1371 }
1372
1373 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1374 {
1375         smp_mb();
1376         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1377 }
1378
1379 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1380 {
1381         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1382                 atomic_read(&obj_request->kref.refcount));
1383         kref_get(&obj_request->kref);
1384 }
1385
1386 static void rbd_obj_request_destroy(struct kref *kref);
1387 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1388 {
1389         rbd_assert(obj_request != NULL);
1390         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391                 atomic_read(&obj_request->kref.refcount));
1392         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1393 }
1394
1395 static bool img_request_child_test(struct rbd_img_request *img_request);
1396 static void rbd_parent_request_destroy(struct kref *kref);
1397 static void rbd_img_request_destroy(struct kref *kref);
1398 static void rbd_img_request_put(struct rbd_img_request *img_request)
1399 {
1400         rbd_assert(img_request != NULL);
1401         dout("%s: img %p (was %d)\n", __func__, img_request,
1402                 atomic_read(&img_request->kref.refcount));
1403         if (img_request_child_test(img_request))
1404                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1405         else
1406                 kref_put(&img_request->kref, rbd_img_request_destroy);
1407 }
1408
1409 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1410                                         struct rbd_obj_request *obj_request)
1411 {
1412         rbd_assert(obj_request->img_request == NULL);
1413
1414         /* Image request now owns object's original reference */
1415         obj_request->img_request = img_request;
1416         obj_request->which = img_request->obj_request_count;
1417         rbd_assert(!obj_request_img_data_test(obj_request));
1418         obj_request_img_data_set(obj_request);
1419         rbd_assert(obj_request->which != BAD_WHICH);
1420         img_request->obj_request_count++;
1421         list_add_tail(&obj_request->links, &img_request->obj_requests);
1422         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1423                 obj_request->which);
1424 }
1425
1426 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1427                                         struct rbd_obj_request *obj_request)
1428 {
1429         rbd_assert(obj_request->which != BAD_WHICH);
1430
1431         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1432                 obj_request->which);
1433         list_del(&obj_request->links);
1434         rbd_assert(img_request->obj_request_count > 0);
1435         img_request->obj_request_count--;
1436         rbd_assert(obj_request->which == img_request->obj_request_count);
1437         obj_request->which = BAD_WHICH;
1438         rbd_assert(obj_request_img_data_test(obj_request));
1439         rbd_assert(obj_request->img_request == img_request);
1440         obj_request->img_request = NULL;
1441         obj_request->callback = NULL;
1442         rbd_obj_request_put(obj_request);
1443 }
1444
1445 static bool obj_request_type_valid(enum obj_request_type type)
1446 {
1447         switch (type) {
1448         case OBJ_REQUEST_NODATA:
1449         case OBJ_REQUEST_BIO:
1450         case OBJ_REQUEST_PAGES:
1451                 return true;
1452         default:
1453                 return false;
1454         }
1455 }
1456
1457 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1458                                 struct rbd_obj_request *obj_request)
1459 {
1460         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1461
1462         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1463 }
1464
1465 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1466 {
1467
1468         dout("%s: img %p\n", __func__, img_request);
1469
1470         /*
1471          * If no error occurred, compute the aggregate transfer
1472          * count for the image request.  We could instead use
1473          * atomic64_cmpxchg() to update it as each object request
1474          * completes; not clear which way is better off hand.
1475          */
1476         if (!img_request->result) {
1477                 struct rbd_obj_request *obj_request;
1478                 u64 xferred = 0;
1479
1480                 for_each_obj_request(img_request, obj_request)
1481                         xferred += obj_request->xferred;
1482                 img_request->xferred = xferred;
1483         }
1484
1485         if (img_request->callback)
1486                 img_request->callback(img_request);
1487         else
1488                 rbd_img_request_put(img_request);
1489 }
1490
1491 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1492
1493 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1494 {
1495         dout("%s: obj %p\n", __func__, obj_request);
1496
1497         return wait_for_completion_interruptible(&obj_request->completion);
1498 }
1499
1500 /*
1501  * The default/initial value for all image request flags is 0.  Each
1502  * is conditionally set to 1 at image request initialization time
1503  * and currently never change thereafter.
1504  */
1505 static void img_request_write_set(struct rbd_img_request *img_request)
1506 {
1507         set_bit(IMG_REQ_WRITE, &img_request->flags);
1508         smp_mb();
1509 }
1510
1511 static bool img_request_write_test(struct rbd_img_request *img_request)
1512 {
1513         smp_mb();
1514         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1515 }
1516
1517 static void img_request_child_set(struct rbd_img_request *img_request)
1518 {
1519         set_bit(IMG_REQ_CHILD, &img_request->flags);
1520         smp_mb();
1521 }
1522
1523 static void img_request_child_clear(struct rbd_img_request *img_request)
1524 {
1525         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1526         smp_mb();
1527 }
1528
1529 static bool img_request_child_test(struct rbd_img_request *img_request)
1530 {
1531         smp_mb();
1532         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1533 }
1534
1535 static void img_request_layered_set(struct rbd_img_request *img_request)
1536 {
1537         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1538         smp_mb();
1539 }
1540
1541 static void img_request_layered_clear(struct rbd_img_request *img_request)
1542 {
1543         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1544         smp_mb();
1545 }
1546
1547 static bool img_request_layered_test(struct rbd_img_request *img_request)
1548 {
1549         smp_mb();
1550         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1551 }
1552
1553 static void
1554 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1555 {
1556         u64 xferred = obj_request->xferred;
1557         u64 length = obj_request->length;
1558
1559         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1560                 obj_request, obj_request->img_request, obj_request->result,
1561                 xferred, length);
1562         /*
1563          * ENOENT means a hole in the image.  We zero-fill the
1564          * entire length of the request.  A short read also implies
1565          * zero-fill to the end of the request.  Either way we
1566          * update the xferred count to indicate the whole request
1567          * was satisfied.
1568          */
1569         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1570         if (obj_request->result == -ENOENT) {
1571                 if (obj_request->type == OBJ_REQUEST_BIO)
1572                         zero_bio_chain(obj_request->bio_list, 0);
1573                 else
1574                         zero_pages(obj_request->pages, 0, length);
1575                 obj_request->result = 0;
1576                 obj_request->xferred = length;
1577         } else if (xferred < length && !obj_request->result) {
1578                 if (obj_request->type == OBJ_REQUEST_BIO)
1579                         zero_bio_chain(obj_request->bio_list, xferred);
1580                 else
1581                         zero_pages(obj_request->pages, xferred, length);
1582                 obj_request->xferred = length;
1583         }
1584         obj_request_done_set(obj_request);
1585 }
1586
1587 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1588 {
1589         dout("%s: obj %p cb %p\n", __func__, obj_request,
1590                 obj_request->callback);
1591         if (obj_request->callback)
1592                 obj_request->callback(obj_request);
1593         else
1594                 complete_all(&obj_request->completion);
1595 }
1596
1597 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1598 {
1599         dout("%s: obj %p\n", __func__, obj_request);
1600         obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1604 {
1605         struct rbd_img_request *img_request = NULL;
1606         struct rbd_device *rbd_dev = NULL;
1607         bool layered = false;
1608
1609         if (obj_request_img_data_test(obj_request)) {
1610                 img_request = obj_request->img_request;
1611                 layered = img_request && img_request_layered_test(img_request);
1612                 rbd_dev = img_request->rbd_dev;
1613         }
1614
1615         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1616                 obj_request, img_request, obj_request->result,
1617                 obj_request->xferred, obj_request->length);
1618         if (layered && obj_request->result == -ENOENT &&
1619                         obj_request->img_offset < rbd_dev->parent_overlap)
1620                 rbd_img_parent_read(obj_request);
1621         else if (img_request)
1622                 rbd_img_obj_request_read_callback(obj_request);
1623         else
1624                 obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1628 {
1629         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1630                 obj_request->result, obj_request->length);
1631         /*
1632          * There is no such thing as a successful short write.  Set
1633          * it to our originally-requested length.
1634          */
1635         obj_request->xferred = obj_request->length;
1636         obj_request_done_set(obj_request);
1637 }
1638
1639 /*
1640  * For a simple stat call there's nothing to do.  We'll do more if
1641  * this is part of a write sequence for a layered image.
1642  */
1643 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1644 {
1645         dout("%s: obj %p\n", __func__, obj_request);
1646         obj_request_done_set(obj_request);
1647 }
1648
1649 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1650                                 struct ceph_msg *msg)
1651 {
1652         struct rbd_obj_request *obj_request = osd_req->r_priv;
1653         u16 opcode;
1654
1655         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1656         rbd_assert(osd_req == obj_request->osd_req);
1657         if (obj_request_img_data_test(obj_request)) {
1658                 rbd_assert(obj_request->img_request);
1659                 rbd_assert(obj_request->which != BAD_WHICH);
1660         } else {
1661                 rbd_assert(obj_request->which == BAD_WHICH);
1662         }
1663
1664         if (osd_req->r_result < 0)
1665                 obj_request->result = osd_req->r_result;
1666
1667         BUG_ON(osd_req->r_num_ops > 2);
1668
1669         /*
1670          * We support a 64-bit length, but ultimately it has to be
1671          * passed to blk_end_request(), which takes an unsigned int.
1672          */
1673         obj_request->xferred = osd_req->r_reply_op_len[0];
1674         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1675         opcode = osd_req->r_ops[0].op;
1676         switch (opcode) {
1677         case CEPH_OSD_OP_READ:
1678                 rbd_osd_read_callback(obj_request);
1679                 break;
1680         case CEPH_OSD_OP_WRITE:
1681                 rbd_osd_write_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_STAT:
1684                 rbd_osd_stat_callback(obj_request);
1685                 break;
1686         case CEPH_OSD_OP_CALL:
1687         case CEPH_OSD_OP_NOTIFY_ACK:
1688         case CEPH_OSD_OP_WATCH:
1689                 rbd_osd_trivial_callback(obj_request);
1690                 break;
1691         default:
1692                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1693                         obj_request->object_name, (unsigned short) opcode);
1694                 break;
1695         }
1696
1697         if (obj_request_done_test(obj_request))
1698                 rbd_obj_request_complete(obj_request);
1699 }
1700
1701 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1702 {
1703         struct rbd_img_request *img_request = obj_request->img_request;
1704         struct ceph_osd_request *osd_req = obj_request->osd_req;
1705         u64 snap_id;
1706
1707         rbd_assert(osd_req != NULL);
1708
1709         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1710         ceph_osdc_build_request(osd_req, obj_request->offset,
1711                         NULL, snap_id, NULL);
1712 }
1713
1714 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1715 {
1716         struct rbd_img_request *img_request = obj_request->img_request;
1717         struct ceph_osd_request *osd_req = obj_request->osd_req;
1718         struct ceph_snap_context *snapc;
1719         struct timespec mtime = CURRENT_TIME;
1720
1721         rbd_assert(osd_req != NULL);
1722
1723         snapc = img_request ? img_request->snapc : NULL;
1724         ceph_osdc_build_request(osd_req, obj_request->offset,
1725                         snapc, CEPH_NOSNAP, &mtime);
1726 }
1727
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729                                         struct rbd_device *rbd_dev,
1730                                         bool write_request,
1731                                         struct rbd_obj_request *obj_request)
1732 {
1733         struct ceph_snap_context *snapc = NULL;
1734         struct ceph_osd_client *osdc;
1735         struct ceph_osd_request *osd_req;
1736
1737         if (obj_request_img_data_test(obj_request)) {
1738                 struct rbd_img_request *img_request = obj_request->img_request;
1739
1740                 rbd_assert(write_request ==
1741                                 img_request_write_test(img_request));
1742                 if (write_request)
1743                         snapc = img_request->snapc;
1744         }
1745
1746         /* Allocate and initialize the request, for the single op */
1747
1748         osdc = &rbd_dev->rbd_client->client->osdc;
1749         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1750         if (!osd_req)
1751                 return NULL;    /* ENOMEM */
1752
1753         if (write_request)
1754                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1755         else
1756                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1757
1758         osd_req->r_callback = rbd_osd_req_callback;
1759         osd_req->r_priv = obj_request;
1760
1761         osd_req->r_oid_len = strlen(obj_request->object_name);
1762         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1763         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1764
1765         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1766
1767         return osd_req;
1768 }
1769
1770 /*
1771  * Create a copyup osd request based on the information in the
1772  * object request supplied.  A copyup request has two osd ops,
1773  * a copyup method call, and a "normal" write request.
1774  */
1775 static struct ceph_osd_request *
1776 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1777 {
1778         struct rbd_img_request *img_request;
1779         struct ceph_snap_context *snapc;
1780         struct rbd_device *rbd_dev;
1781         struct ceph_osd_client *osdc;
1782         struct ceph_osd_request *osd_req;
1783
1784         rbd_assert(obj_request_img_data_test(obj_request));
1785         img_request = obj_request->img_request;
1786         rbd_assert(img_request);
1787         rbd_assert(img_request_write_test(img_request));
1788
1789         /* Allocate and initialize the request, for the two ops */
1790
1791         snapc = img_request->snapc;
1792         rbd_dev = img_request->rbd_dev;
1793         osdc = &rbd_dev->rbd_client->client->osdc;
1794         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1795         if (!osd_req)
1796                 return NULL;    /* ENOMEM */
1797
1798         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1799         osd_req->r_callback = rbd_osd_req_callback;
1800         osd_req->r_priv = obj_request;
1801
1802         osd_req->r_oid_len = strlen(obj_request->object_name);
1803         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1804         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1805
1806         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1807
1808         return osd_req;
1809 }
1810
1811
1812 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1813 {
1814         ceph_osdc_put_request(osd_req);
1815 }
1816
1817 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1818
1819 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1820                                                 u64 offset, u64 length,
1821                                                 enum obj_request_type type)
1822 {
1823         struct rbd_obj_request *obj_request;
1824         size_t size;
1825         char *name;
1826
1827         rbd_assert(obj_request_type_valid(type));
1828
1829         size = strlen(object_name) + 1;
1830         name = kmalloc(size, GFP_KERNEL);
1831         if (!name)
1832                 return NULL;
1833
1834         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1835         if (!obj_request) {
1836                 kfree(name);
1837                 return NULL;
1838         }
1839
1840         obj_request->object_name = memcpy(name, object_name, size);
1841         obj_request->offset = offset;
1842         obj_request->length = length;
1843         obj_request->flags = 0;
1844         obj_request->which = BAD_WHICH;
1845         obj_request->type = type;
1846         INIT_LIST_HEAD(&obj_request->links);
1847         init_completion(&obj_request->completion);
1848         kref_init(&obj_request->kref);
1849
1850         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1851                 offset, length, (int)type, obj_request);
1852
1853         return obj_request;
1854 }
1855
1856 static void rbd_obj_request_destroy(struct kref *kref)
1857 {
1858         struct rbd_obj_request *obj_request;
1859
1860         obj_request = container_of(kref, struct rbd_obj_request, kref);
1861
1862         dout("%s: obj %p\n", __func__, obj_request);
1863
1864         rbd_assert(obj_request->img_request == NULL);
1865         rbd_assert(obj_request->which == BAD_WHICH);
1866
1867         if (obj_request->osd_req)
1868                 rbd_osd_req_destroy(obj_request->osd_req);
1869
1870         rbd_assert(obj_request_type_valid(obj_request->type));
1871         switch (obj_request->type) {
1872         case OBJ_REQUEST_NODATA:
1873                 break;          /* Nothing to do */
1874         case OBJ_REQUEST_BIO:
1875                 if (obj_request->bio_list)
1876                         bio_chain_put(obj_request->bio_list);
1877                 break;
1878         case OBJ_REQUEST_PAGES:
1879                 if (obj_request->pages)
1880                         ceph_release_page_vector(obj_request->pages,
1881                                                 obj_request->page_count);
1882                 break;
1883         }
1884
1885         kfree(obj_request->object_name);
1886         obj_request->object_name = NULL;
1887         kmem_cache_free(rbd_obj_request_cache, obj_request);
1888 }
1889
1890 /* It's OK to call this for a device with no parent */
1891
1892 static void rbd_spec_put(struct rbd_spec *spec);
1893 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1894 {
1895         rbd_dev_remove_parent(rbd_dev);
1896         rbd_spec_put(rbd_dev->parent_spec);
1897         rbd_dev->parent_spec = NULL;
1898         rbd_dev->parent_overlap = 0;
1899 }
1900
1901 /*
1902  * Parent image reference counting is used to determine when an
1903  * image's parent fields can be safely torn down--after there are no
1904  * more in-flight requests to the parent image.  When the last
1905  * reference is dropped, cleaning them up is safe.
1906  */
1907 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1908 {
1909         int counter;
1910
1911         if (!rbd_dev->parent_spec)
1912                 return;
1913
1914         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1915         if (counter > 0)
1916                 return;
1917
1918         /* Last reference; clean up parent data structures */
1919
1920         if (!counter)
1921                 rbd_dev_unparent(rbd_dev);
1922         else
1923                 rbd_warn(rbd_dev, "parent reference underflow\n");
1924 }
1925
1926 /*
1927  * If an image has a non-zero parent overlap, get a reference to its
1928  * parent.
1929  *
1930  * We must get the reference before checking for the overlap to
1931  * coordinate properly with zeroing the parent overlap in
1932  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1933  * drop it again if there is no overlap.
1934  *
1935  * Returns true if the rbd device has a parent with a non-zero
1936  * overlap and a reference for it was successfully taken, or
1937  * false otherwise.
1938  */
1939 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1940 {
1941         int counter;
1942
1943         if (!rbd_dev->parent_spec)
1944                 return false;
1945
1946         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1947         if (counter > 0 && rbd_dev->parent_overlap)
1948                 return true;
1949
1950         /* Image was flattened, but parent is not yet torn down */
1951
1952         if (counter < 0)
1953                 rbd_warn(rbd_dev, "parent reference overflow\n");
1954
1955         return false;
1956 }
1957
1958 /*
1959  * Caller is responsible for filling in the list of object requests
1960  * that comprises the image request, and the Linux request pointer
1961  * (if there is one).
1962  */
1963 static struct rbd_img_request *rbd_img_request_create(
1964                                         struct rbd_device *rbd_dev,
1965                                         u64 offset, u64 length,
1966                                         bool write_request)
1967 {
1968         struct rbd_img_request *img_request;
1969
1970         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1971         if (!img_request)
1972                 return NULL;
1973
1974         if (write_request) {
1975                 down_read(&rbd_dev->header_rwsem);
1976                 ceph_get_snap_context(rbd_dev->header.snapc);
1977                 up_read(&rbd_dev->header_rwsem);
1978         }
1979
1980         img_request->rq = NULL;
1981         img_request->rbd_dev = rbd_dev;
1982         img_request->offset = offset;
1983         img_request->length = length;
1984         img_request->flags = 0;
1985         if (write_request) {
1986                 img_request_write_set(img_request);
1987                 img_request->snapc = rbd_dev->header.snapc;
1988         } else {
1989                 img_request->snap_id = rbd_dev->spec->snap_id;
1990         }
1991         if (rbd_dev_parent_get(rbd_dev))
1992                 img_request_layered_set(img_request);
1993         spin_lock_init(&img_request->completion_lock);
1994         img_request->next_completion = 0;
1995         img_request->callback = NULL;
1996         img_request->result = 0;
1997         img_request->obj_request_count = 0;
1998         INIT_LIST_HEAD(&img_request->obj_requests);
1999         kref_init(&img_request->kref);
2000
2001         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2002                 write_request ? "write" : "read", offset, length,
2003                 img_request);
2004
2005         return img_request;
2006 }
2007
2008 static void rbd_img_request_destroy(struct kref *kref)
2009 {
2010         struct rbd_img_request *img_request;
2011         struct rbd_obj_request *obj_request;
2012         struct rbd_obj_request *next_obj_request;
2013
2014         img_request = container_of(kref, struct rbd_img_request, kref);
2015
2016         dout("%s: img %p\n", __func__, img_request);
2017
2018         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2019                 rbd_img_obj_request_del(img_request, obj_request);
2020         rbd_assert(img_request->obj_request_count == 0);
2021
2022         if (img_request_layered_test(img_request)) {
2023                 img_request_layered_clear(img_request);
2024                 rbd_dev_parent_put(img_request->rbd_dev);
2025         }
2026
2027         if (img_request_write_test(img_request))
2028                 ceph_put_snap_context(img_request->snapc);
2029
2030         kmem_cache_free(rbd_img_request_cache, img_request);
2031 }
2032
2033 static struct rbd_img_request *rbd_parent_request_create(
2034                                         struct rbd_obj_request *obj_request,
2035                                         u64 img_offset, u64 length)
2036 {
2037         struct rbd_img_request *parent_request;
2038         struct rbd_device *rbd_dev;
2039
2040         rbd_assert(obj_request->img_request);
2041         rbd_dev = obj_request->img_request->rbd_dev;
2042
2043         parent_request = rbd_img_request_create(rbd_dev->parent,
2044                                                 img_offset, length, false);
2045         if (!parent_request)
2046                 return NULL;
2047
2048         img_request_child_set(parent_request);
2049         rbd_obj_request_get(obj_request);
2050         parent_request->obj_request = obj_request;
2051
2052         return parent_request;
2053 }
2054
2055 static void rbd_parent_request_destroy(struct kref *kref)
2056 {
2057         struct rbd_img_request *parent_request;
2058         struct rbd_obj_request *orig_request;
2059
2060         parent_request = container_of(kref, struct rbd_img_request, kref);
2061         orig_request = parent_request->obj_request;
2062
2063         parent_request->obj_request = NULL;
2064         rbd_obj_request_put(orig_request);
2065         img_request_child_clear(parent_request);
2066
2067         rbd_img_request_destroy(kref);
2068 }
2069
2070 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2071 {
2072         struct rbd_img_request *img_request;
2073         unsigned int xferred;
2074         int result;
2075         bool more;
2076
2077         rbd_assert(obj_request_img_data_test(obj_request));
2078         img_request = obj_request->img_request;
2079
2080         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2081         xferred = (unsigned int)obj_request->xferred;
2082         result = obj_request->result;
2083         if (result) {
2084                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2085
2086                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2087                         img_request_write_test(img_request) ? "write" : "read",
2088                         obj_request->length, obj_request->img_offset,
2089                         obj_request->offset);
2090                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2091                         result, xferred);
2092                 if (!img_request->result)
2093                         img_request->result = result;
2094         }
2095
2096         /* Image object requests don't own their page array */
2097
2098         if (obj_request->type == OBJ_REQUEST_PAGES) {
2099                 obj_request->pages = NULL;
2100                 obj_request->page_count = 0;
2101         }
2102
2103         if (img_request_child_test(img_request)) {
2104                 rbd_assert(img_request->obj_request != NULL);
2105                 more = obj_request->which < img_request->obj_request_count - 1;
2106         } else {
2107                 rbd_assert(img_request->rq != NULL);
2108                 more = blk_end_request(img_request->rq, result, xferred);
2109         }
2110
2111         return more;
2112 }
2113
2114 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2115 {
2116         struct rbd_img_request *img_request;
2117         u32 which = obj_request->which;
2118         bool more = true;
2119
2120         rbd_assert(obj_request_img_data_test(obj_request));
2121         img_request = obj_request->img_request;
2122
2123         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2124         rbd_assert(img_request != NULL);
2125         rbd_assert(img_request->obj_request_count > 0);
2126         rbd_assert(which != BAD_WHICH);
2127         rbd_assert(which < img_request->obj_request_count);
2128         rbd_assert(which >= img_request->next_completion);
2129
2130         spin_lock_irq(&img_request->completion_lock);
2131         if (which != img_request->next_completion)
2132                 goto out;
2133
2134         for_each_obj_request_from(img_request, obj_request) {
2135                 rbd_assert(more);
2136                 rbd_assert(which < img_request->obj_request_count);
2137
2138                 if (!obj_request_done_test(obj_request))
2139                         break;
2140                 more = rbd_img_obj_end_request(obj_request);
2141                 which++;
2142         }
2143
2144         rbd_assert(more ^ (which == img_request->obj_request_count));
2145         img_request->next_completion = which;
2146 out:
2147         spin_unlock_irq(&img_request->completion_lock);
2148
2149         if (!more)
2150                 rbd_img_request_complete(img_request);
2151 }
2152
2153 /*
2154  * Split up an image request into one or more object requests, each
2155  * to a different object.  The "type" parameter indicates whether
2156  * "data_desc" is the pointer to the head of a list of bio
2157  * structures, or the base of a page array.  In either case this
2158  * function assumes data_desc describes memory sufficient to hold
2159  * all data described by the image request.
2160  */
2161 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2162                                         enum obj_request_type type,
2163                                         void *data_desc)
2164 {
2165         struct rbd_device *rbd_dev = img_request->rbd_dev;
2166         struct rbd_obj_request *obj_request = NULL;
2167         struct rbd_obj_request *next_obj_request;
2168         bool write_request = img_request_write_test(img_request);
2169         struct bio *bio_list;
2170         unsigned int bio_offset = 0;
2171         struct page **pages;
2172         u64 img_offset;
2173         u64 resid;
2174         u16 opcode;
2175
2176         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2177                 (int)type, data_desc);
2178
2179         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2180         img_offset = img_request->offset;
2181         resid = img_request->length;
2182         rbd_assert(resid > 0);
2183
2184         if (type == OBJ_REQUEST_BIO) {
2185                 bio_list = data_desc;
2186                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2187         } else {
2188                 rbd_assert(type == OBJ_REQUEST_PAGES);
2189                 pages = data_desc;
2190         }
2191
2192         while (resid) {
2193                 struct ceph_osd_request *osd_req;
2194                 const char *object_name;
2195                 u64 offset;
2196                 u64 length;
2197
2198                 object_name = rbd_segment_name(rbd_dev, img_offset);
2199                 if (!object_name)
2200                         goto out_unwind;
2201                 offset = rbd_segment_offset(rbd_dev, img_offset);
2202                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2203                 obj_request = rbd_obj_request_create(object_name,
2204                                                 offset, length, type);
2205                 /* object request has its own copy of the object name */
2206                 rbd_segment_name_free(object_name);
2207                 if (!obj_request)
2208                         goto out_unwind;
2209
2210                 if (type == OBJ_REQUEST_BIO) {
2211                         unsigned int clone_size;
2212
2213                         rbd_assert(length <= (u64)UINT_MAX);
2214                         clone_size = (unsigned int)length;
2215                         obj_request->bio_list =
2216                                         bio_chain_clone_range(&bio_list,
2217                                                                 &bio_offset,
2218                                                                 clone_size,
2219                                                                 GFP_ATOMIC);
2220                         if (!obj_request->bio_list)
2221                                 goto out_partial;
2222                 } else {
2223                         unsigned int page_count;
2224
2225                         obj_request->pages = pages;
2226                         page_count = (u32)calc_pages_for(offset, length);
2227                         obj_request->page_count = page_count;
2228                         if ((offset + length) & ~PAGE_MASK)
2229                                 page_count--;   /* more on last page */
2230                         pages += page_count;
2231                 }
2232
2233                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2234                                                 obj_request);
2235                 if (!osd_req)
2236                         goto out_partial;
2237                 obj_request->osd_req = osd_req;
2238                 obj_request->callback = rbd_img_obj_callback;
2239
2240                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2241                                                 0, 0);
2242                 if (type == OBJ_REQUEST_BIO)
2243                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2244                                         obj_request->bio_list, length);
2245                 else
2246                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2247                                         obj_request->pages, length,
2248                                         offset & ~PAGE_MASK, false, false);
2249
2250                 if (write_request)
2251                         rbd_osd_req_format_write(obj_request);
2252                 else
2253                         rbd_osd_req_format_read(obj_request);
2254
2255                 obj_request->img_offset = img_offset;
2256                 rbd_img_obj_request_add(img_request, obj_request);
2257
2258                 img_offset += length;
2259                 resid -= length;
2260         }
2261
2262         return 0;
2263
2264 out_partial:
2265         rbd_obj_request_put(obj_request);
2266 out_unwind:
2267         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2268                 rbd_obj_request_put(obj_request);
2269
2270         return -ENOMEM;
2271 }
2272
2273 static void
2274 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2275 {
2276         struct rbd_img_request *img_request;
2277         struct rbd_device *rbd_dev;
2278         struct page **pages;
2279         u32 page_count;
2280
2281         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2282         rbd_assert(obj_request_img_data_test(obj_request));
2283         img_request = obj_request->img_request;
2284         rbd_assert(img_request);
2285
2286         rbd_dev = img_request->rbd_dev;
2287         rbd_assert(rbd_dev);
2288
2289         pages = obj_request->copyup_pages;
2290         rbd_assert(pages != NULL);
2291         obj_request->copyup_pages = NULL;
2292         page_count = obj_request->copyup_page_count;
2293         rbd_assert(page_count);
2294         obj_request->copyup_page_count = 0;
2295         ceph_release_page_vector(pages, page_count);
2296
2297         /*
2298          * We want the transfer count to reflect the size of the
2299          * original write request.  There is no such thing as a
2300          * successful short write, so if the request was successful
2301          * we can just set it to the originally-requested length.
2302          */
2303         if (!obj_request->result)
2304                 obj_request->xferred = obj_request->length;
2305
2306         /* Finish up with the normal image object callback */
2307
2308         rbd_img_obj_callback(obj_request);
2309 }
2310
2311 static void
2312 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2313 {
2314         struct rbd_obj_request *orig_request;
2315         struct ceph_osd_request *osd_req;
2316         struct ceph_osd_client *osdc;
2317         struct rbd_device *rbd_dev;
2318         struct page **pages;
2319         u32 page_count;
2320         int img_result;
2321         u64 parent_length;
2322         u64 offset;
2323         u64 length;
2324
2325         rbd_assert(img_request_child_test(img_request));
2326
2327         /* First get what we need from the image request */
2328
2329         pages = img_request->copyup_pages;
2330         rbd_assert(pages != NULL);
2331         img_request->copyup_pages = NULL;
2332         page_count = img_request->copyup_page_count;
2333         rbd_assert(page_count);
2334         img_request->copyup_page_count = 0;
2335
2336         orig_request = img_request->obj_request;
2337         rbd_assert(orig_request != NULL);
2338         rbd_assert(obj_request_type_valid(orig_request->type));
2339         img_result = img_request->result;
2340         parent_length = img_request->length;
2341         rbd_assert(parent_length == img_request->xferred);
2342         rbd_img_request_put(img_request);
2343
2344         rbd_assert(orig_request->img_request);
2345         rbd_dev = orig_request->img_request->rbd_dev;
2346         rbd_assert(rbd_dev);
2347
2348         /*
2349          * If the overlap has become 0 (most likely because the
2350          * image has been flattened) we need to free the pages
2351          * and re-submit the original write request.
2352          */
2353         if (!rbd_dev->parent_overlap) {
2354                 struct ceph_osd_client *osdc;
2355
2356                 ceph_release_page_vector(pages, page_count);
2357                 osdc = &rbd_dev->rbd_client->client->osdc;
2358                 img_result = rbd_obj_request_submit(osdc, orig_request);
2359                 if (!img_result)
2360                         return;
2361         }
2362
2363         if (img_result)
2364                 goto out_err;
2365
2366         /*
2367          * The original osd request is of no use to use any more.
2368          * We need a new one that can hold the two ops in a copyup
2369          * request.  Allocate the new copyup osd request for the
2370          * original request, and release the old one.
2371          */
2372         img_result = -ENOMEM;
2373         osd_req = rbd_osd_req_create_copyup(orig_request);
2374         if (!osd_req)
2375                 goto out_err;
2376         rbd_osd_req_destroy(orig_request->osd_req);
2377         orig_request->osd_req = osd_req;
2378         orig_request->copyup_pages = pages;
2379         orig_request->copyup_page_count = page_count;
2380
2381         /* Initialize the copyup op */
2382
2383         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2384         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2385                                                 false, false);
2386
2387         /* Then the original write request op */
2388
2389         offset = orig_request->offset;
2390         length = orig_request->length;
2391         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2392                                         offset, length, 0, 0);
2393         if (orig_request->type == OBJ_REQUEST_BIO)
2394                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2395                                         orig_request->bio_list, length);
2396         else
2397                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2398                                         orig_request->pages, length,
2399                                         offset & ~PAGE_MASK, false, false);
2400
2401         rbd_osd_req_format_write(orig_request);
2402
2403         /* All set, send it off. */
2404
2405         orig_request->callback = rbd_img_obj_copyup_callback;
2406         osdc = &rbd_dev->rbd_client->client->osdc;
2407         img_result = rbd_obj_request_submit(osdc, orig_request);
2408         if (!img_result)
2409                 return;
2410 out_err:
2411         /* Record the error code and complete the request */
2412
2413         orig_request->result = img_result;
2414         orig_request->xferred = 0;
2415         obj_request_done_set(orig_request);
2416         rbd_obj_request_complete(orig_request);
2417 }
2418
2419 /*
2420  * Read from the parent image the range of data that covers the
2421  * entire target of the given object request.  This is used for
2422  * satisfying a layered image write request when the target of an
2423  * object request from the image request does not exist.
2424  *
2425  * A page array big enough to hold the returned data is allocated
2426  * and supplied to rbd_img_request_fill() as the "data descriptor."
2427  * When the read completes, this page array will be transferred to
2428  * the original object request for the copyup operation.
2429  *
2430  * If an error occurs, record it as the result of the original
2431  * object request and mark it done so it gets completed.
2432  */
2433 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2434 {
2435         struct rbd_img_request *img_request = NULL;
2436         struct rbd_img_request *parent_request = NULL;
2437         struct rbd_device *rbd_dev;
2438         u64 img_offset;
2439         u64 length;
2440         struct page **pages = NULL;
2441         u32 page_count;
2442         int result;
2443
2444         rbd_assert(obj_request_img_data_test(obj_request));
2445         rbd_assert(obj_request_type_valid(obj_request->type));
2446
2447         img_request = obj_request->img_request;
2448         rbd_assert(img_request != NULL);
2449         rbd_dev = img_request->rbd_dev;
2450         rbd_assert(rbd_dev->parent != NULL);
2451
2452         /*
2453          * Determine the byte range covered by the object in the
2454          * child image to which the original request was to be sent.
2455          */
2456         img_offset = obj_request->img_offset - obj_request->offset;
2457         length = (u64)1 << rbd_dev->header.obj_order;
2458
2459         /*
2460          * There is no defined parent data beyond the parent
2461          * overlap, so limit what we read at that boundary if
2462          * necessary.
2463          */
2464         if (img_offset + length > rbd_dev->parent_overlap) {
2465                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2466                 length = rbd_dev->parent_overlap - img_offset;
2467         }
2468
2469         /*
2470          * Allocate a page array big enough to receive the data read
2471          * from the parent.
2472          */
2473         page_count = (u32)calc_pages_for(0, length);
2474         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2475         if (IS_ERR(pages)) {
2476                 result = PTR_ERR(pages);
2477                 pages = NULL;
2478                 goto out_err;
2479         }
2480
2481         result = -ENOMEM;
2482         parent_request = rbd_parent_request_create(obj_request,
2483                                                 img_offset, length);
2484         if (!parent_request)
2485                 goto out_err;
2486
2487         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2488         if (result)
2489                 goto out_err;
2490         parent_request->copyup_pages = pages;
2491         parent_request->copyup_page_count = page_count;
2492
2493         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2494         result = rbd_img_request_submit(parent_request);
2495         if (!result)
2496                 return 0;
2497
2498         parent_request->copyup_pages = NULL;
2499         parent_request->copyup_page_count = 0;
2500         parent_request->obj_request = NULL;
2501         rbd_obj_request_put(obj_request);
2502 out_err:
2503         if (pages)
2504                 ceph_release_page_vector(pages, page_count);
2505         if (parent_request)
2506                 rbd_img_request_put(parent_request);
2507         obj_request->result = result;
2508         obj_request->xferred = 0;
2509         obj_request_done_set(obj_request);
2510
2511         return result;
2512 }
2513
2514 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2515 {
2516         struct rbd_obj_request *orig_request;
2517         struct rbd_device *rbd_dev;
2518         int result;
2519
2520         rbd_assert(!obj_request_img_data_test(obj_request));
2521
2522         /*
2523          * All we need from the object request is the original
2524          * request and the result of the STAT op.  Grab those, then
2525          * we're done with the request.
2526          */
2527         orig_request = obj_request->obj_request;
2528         obj_request->obj_request = NULL;
2529         rbd_assert(orig_request);
2530         rbd_assert(orig_request->img_request);
2531
2532         result = obj_request->result;
2533         obj_request->result = 0;
2534
2535         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2536                 obj_request, orig_request, result,
2537                 obj_request->xferred, obj_request->length);
2538         rbd_obj_request_put(obj_request);
2539
2540         /*
2541          * If the overlap has become 0 (most likely because the
2542          * image has been flattened) we need to free the pages
2543          * and re-submit the original write request.
2544          */
2545         rbd_dev = orig_request->img_request->rbd_dev;
2546         if (!rbd_dev->parent_overlap) {
2547                 struct ceph_osd_client *osdc;
2548
2549                 rbd_obj_request_put(orig_request);
2550                 osdc = &rbd_dev->rbd_client->client->osdc;
2551                 result = rbd_obj_request_submit(osdc, orig_request);
2552                 if (!result)
2553                         return;
2554         }
2555
2556         /*
2557          * Our only purpose here is to determine whether the object
2558          * exists, and we don't want to treat the non-existence as
2559          * an error.  If something else comes back, transfer the
2560          * error to the original request and complete it now.
2561          */
2562         if (!result) {
2563                 obj_request_existence_set(orig_request, true);
2564         } else if (result == -ENOENT) {
2565                 obj_request_existence_set(orig_request, false);
2566         } else if (result) {
2567                 orig_request->result = result;
2568                 goto out;
2569         }
2570
2571         /*
2572          * Resubmit the original request now that we have recorded
2573          * whether the target object exists.
2574          */
2575         orig_request->result = rbd_img_obj_request_submit(orig_request);
2576 out:
2577         if (orig_request->result)
2578                 rbd_obj_request_complete(orig_request);
2579         rbd_obj_request_put(orig_request);
2580 }
2581
2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2583 {
2584         struct rbd_obj_request *stat_request;
2585         struct rbd_device *rbd_dev;
2586         struct ceph_osd_client *osdc;
2587         struct page **pages = NULL;
2588         u32 page_count;
2589         size_t size;
2590         int ret;
2591
2592         /*
2593          * The response data for a STAT call consists of:
2594          *     le64 length;
2595          *     struct {
2596          *         le32 tv_sec;
2597          *         le32 tv_nsec;
2598          *     } mtime;
2599          */
2600         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2601         page_count = (u32)calc_pages_for(0, size);
2602         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2603         if (IS_ERR(pages))
2604                 return PTR_ERR(pages);
2605
2606         ret = -ENOMEM;
2607         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2608                                                         OBJ_REQUEST_PAGES);
2609         if (!stat_request)
2610                 goto out;
2611
2612         rbd_obj_request_get(obj_request);
2613         stat_request->obj_request = obj_request;
2614         stat_request->pages = pages;
2615         stat_request->page_count = page_count;
2616
2617         rbd_assert(obj_request->img_request);
2618         rbd_dev = obj_request->img_request->rbd_dev;
2619         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2620                                                 stat_request);
2621         if (!stat_request->osd_req)
2622                 goto out;
2623         stat_request->callback = rbd_img_obj_exists_callback;
2624
2625         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2626         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2627                                         false, false);
2628         rbd_osd_req_format_read(stat_request);
2629
2630         osdc = &rbd_dev->rbd_client->client->osdc;
2631         ret = rbd_obj_request_submit(osdc, stat_request);
2632 out:
2633         if (ret)
2634                 rbd_obj_request_put(obj_request);
2635
2636         return ret;
2637 }
2638
2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2640 {
2641         struct rbd_img_request *img_request;
2642         struct rbd_device *rbd_dev;
2643         bool known;
2644
2645         rbd_assert(obj_request_img_data_test(obj_request));
2646
2647         img_request = obj_request->img_request;
2648         rbd_assert(img_request);
2649         rbd_dev = img_request->rbd_dev;
2650
2651         /*
2652          * Only writes to layered images need special handling.
2653          * Reads and non-layered writes are simple object requests.
2654          * Layered writes that start beyond the end of the overlap
2655          * with the parent have no parent data, so they too are
2656          * simple object requests.  Finally, if the target object is
2657          * known to already exist, its parent data has already been
2658          * copied, so a write to the object can also be handled as a
2659          * simple object request.
2660          */
2661         if (!img_request_write_test(img_request) ||
2662                 !img_request_layered_test(img_request) ||
2663                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2664                 ((known = obj_request_known_test(obj_request)) &&
2665                         obj_request_exists_test(obj_request))) {
2666
2667                 struct rbd_device *rbd_dev;
2668                 struct ceph_osd_client *osdc;
2669
2670                 rbd_dev = obj_request->img_request->rbd_dev;
2671                 osdc = &rbd_dev->rbd_client->client->osdc;
2672
2673                 return rbd_obj_request_submit(osdc, obj_request);
2674         }
2675
2676         /*
2677          * It's a layered write.  The target object might exist but
2678          * we may not know that yet.  If we know it doesn't exist,
2679          * start by reading the data for the full target object from
2680          * the parent so we can use it for a copyup to the target.
2681          */
2682         if (known)
2683                 return rbd_img_obj_parent_read_full(obj_request);
2684
2685         /* We don't know whether the target exists.  Go find out. */
2686
2687         return rbd_img_obj_exists_submit(obj_request);
2688 }
2689
2690 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2691 {
2692         struct rbd_obj_request *obj_request;
2693         struct rbd_obj_request *next_obj_request;
2694
2695         dout("%s: img %p\n", __func__, img_request);
2696         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2697                 int ret;
2698
2699                 ret = rbd_img_obj_request_submit(obj_request);
2700                 if (ret)
2701                         return ret;
2702         }
2703
2704         return 0;
2705 }
2706
2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2708 {
2709         struct rbd_obj_request *obj_request;
2710         struct rbd_device *rbd_dev;
2711         u64 obj_end;
2712         u64 img_xferred;
2713         int img_result;
2714
2715         rbd_assert(img_request_child_test(img_request));
2716
2717         /* First get what we need from the image request and release it */
2718
2719         obj_request = img_request->obj_request;
2720         img_xferred = img_request->xferred;
2721         img_result = img_request->result;
2722         rbd_img_request_put(img_request);
2723
2724         /*
2725          * If the overlap has become 0 (most likely because the
2726          * image has been flattened) we need to re-submit the
2727          * original request.
2728          */
2729         rbd_assert(obj_request);
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         if (!rbd_dev->parent_overlap) {
2733                 struct ceph_osd_client *osdc;
2734
2735                 osdc = &rbd_dev->rbd_client->client->osdc;
2736                 img_result = rbd_obj_request_submit(osdc, obj_request);
2737                 if (!img_result)
2738                         return;
2739         }
2740
2741         obj_request->result = img_result;
2742         if (obj_request->result)
2743                 goto out;
2744
2745         /*
2746          * We need to zero anything beyond the parent overlap
2747          * boundary.  Since rbd_img_obj_request_read_callback()
2748          * will zero anything beyond the end of a short read, an
2749          * easy way to do this is to pretend the data from the
2750          * parent came up short--ending at the overlap boundary.
2751          */
2752         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2753         obj_end = obj_request->img_offset + obj_request->length;
2754         if (obj_end > rbd_dev->parent_overlap) {
2755                 u64 xferred = 0;
2756
2757                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2758                         xferred = rbd_dev->parent_overlap -
2759                                         obj_request->img_offset;
2760
2761                 obj_request->xferred = min(img_xferred, xferred);
2762         } else {
2763                 obj_request->xferred = img_xferred;
2764         }
2765 out:
2766         rbd_img_obj_request_read_callback(obj_request);
2767         rbd_obj_request_complete(obj_request);
2768 }
2769
2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2771 {
2772         struct rbd_img_request *img_request;
2773         int result;
2774
2775         rbd_assert(obj_request_img_data_test(obj_request));
2776         rbd_assert(obj_request->img_request != NULL);
2777         rbd_assert(obj_request->result == (s32) -ENOENT);
2778         rbd_assert(obj_request_type_valid(obj_request->type));
2779
2780         /* rbd_read_finish(obj_request, obj_request->length); */
2781         img_request = rbd_parent_request_create(obj_request,
2782                                                 obj_request->img_offset,
2783                                                 obj_request->length);
2784         result = -ENOMEM;
2785         if (!img_request)
2786                 goto out_err;
2787
2788         if (obj_request->type == OBJ_REQUEST_BIO)
2789                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790                                                 obj_request->bio_list);
2791         else
2792                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2793                                                 obj_request->pages);
2794         if (result)
2795                 goto out_err;
2796
2797         img_request->callback = rbd_img_parent_read_callback;
2798         result = rbd_img_request_submit(img_request);
2799         if (result)
2800                 goto out_err;
2801
2802         return;
2803 out_err:
2804         if (img_request)
2805                 rbd_img_request_put(img_request);
2806         obj_request->result = result;
2807         obj_request->xferred = 0;
2808         obj_request_done_set(obj_request);
2809 }
2810
2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2812 {
2813         struct rbd_obj_request *obj_request;
2814         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2815         int ret;
2816
2817         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2818                                                         OBJ_REQUEST_NODATA);
2819         if (!obj_request)
2820                 return -ENOMEM;
2821
2822         ret = -ENOMEM;
2823         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2824         if (!obj_request->osd_req)
2825                 goto out;
2826         obj_request->callback = rbd_obj_request_put;
2827
2828         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2829                                         notify_id, 0, 0);
2830         rbd_osd_req_format_read(obj_request);
2831
2832         ret = rbd_obj_request_submit(osdc, obj_request);
2833 out:
2834         if (ret)
2835                 rbd_obj_request_put(obj_request);
2836
2837         return ret;
2838 }
2839
2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2841 {
2842         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2843         int ret;
2844
2845         if (!rbd_dev)
2846                 return;
2847
2848         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2849                 rbd_dev->header_name, (unsigned long long)notify_id,
2850                 (unsigned int)opcode);
2851         ret = rbd_dev_refresh(rbd_dev);
2852         if (ret)
2853                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2854
2855         rbd_obj_notify_ack(rbd_dev, notify_id);
2856 }
2857
2858 /*
2859  * Request sync osd watch/unwatch.  The value of "start" determines
2860  * whether a watch request is being initiated or torn down.
2861  */
2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2863 {
2864         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2865         struct rbd_obj_request *obj_request;
2866         int ret;
2867
2868         rbd_assert(start ^ !!rbd_dev->watch_event);
2869         rbd_assert(start ^ !!rbd_dev->watch_request);
2870
2871         if (start) {
2872                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2873                                                 &rbd_dev->watch_event);
2874                 if (ret < 0)
2875                         return ret;
2876                 rbd_assert(rbd_dev->watch_event != NULL);
2877         }
2878
2879         ret = -ENOMEM;
2880         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2881                                                         OBJ_REQUEST_NODATA);
2882         if (!obj_request)
2883                 goto out_cancel;
2884
2885         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2886         if (!obj_request->osd_req)
2887                 goto out_cancel;
2888
2889         if (start)
2890                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2891         else
2892                 ceph_osdc_unregister_linger_request(osdc,
2893                                         rbd_dev->watch_request->osd_req);
2894
2895         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2896                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2897         rbd_osd_req_format_write(obj_request);
2898
2899         ret = rbd_obj_request_submit(osdc, obj_request);
2900         if (ret)
2901                 goto out_cancel;
2902         ret = rbd_obj_request_wait(obj_request);
2903         if (ret)
2904                 goto out_cancel;
2905         ret = obj_request->result;
2906         if (ret)
2907                 goto out_cancel;
2908
2909         /*
2910          * A watch request is set to linger, so the underlying osd
2911          * request won't go away until we unregister it.  We retain
2912          * a pointer to the object request during that time (in
2913          * rbd_dev->watch_request), so we'll keep a reference to
2914          * it.  We'll drop that reference (below) after we've
2915          * unregistered it.
2916          */
2917         if (start) {
2918                 rbd_dev->watch_request = obj_request;
2919
2920                 return 0;
2921         }
2922
2923         /* We have successfully torn down the watch request */
2924
2925         rbd_obj_request_put(rbd_dev->watch_request);
2926         rbd_dev->watch_request = NULL;
2927 out_cancel:
2928         /* Cancel the event if we're tearing down, or on error */
2929         ceph_osdc_cancel_event(rbd_dev->watch_event);
2930         rbd_dev->watch_event = NULL;
2931         if (obj_request)
2932                 rbd_obj_request_put(obj_request);
2933
2934         return ret;
2935 }
2936
2937 /*
2938  * Synchronous osd object method call.  Returns the number of bytes
2939  * returned in the outbound buffer, or a negative error code.
2940  */
2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2942                              const char *object_name,
2943                              const char *class_name,
2944                              const char *method_name,
2945                              const void *outbound,
2946                              size_t outbound_size,
2947                              void *inbound,
2948                              size_t inbound_size)
2949 {
2950         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2951         struct rbd_obj_request *obj_request;
2952         struct page **pages;
2953         u32 page_count;
2954         int ret;
2955
2956         /*
2957          * Method calls are ultimately read operations.  The result
2958          * should placed into the inbound buffer provided.  They
2959          * also supply outbound data--parameters for the object
2960          * method.  Currently if this is present it will be a
2961          * snapshot id.
2962          */
2963         page_count = (u32)calc_pages_for(0, inbound_size);
2964         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2965         if (IS_ERR(pages))
2966                 return PTR_ERR(pages);
2967
2968         ret = -ENOMEM;
2969         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2970                                                         OBJ_REQUEST_PAGES);
2971         if (!obj_request)
2972                 goto out;
2973
2974         obj_request->pages = pages;
2975         obj_request->page_count = page_count;
2976
2977         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2978         if (!obj_request->osd_req)
2979                 goto out;
2980
2981         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2982                                         class_name, method_name);
2983         if (outbound_size) {
2984                 struct ceph_pagelist *pagelist;
2985
2986                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2987                 if (!pagelist)
2988                         goto out;
2989
2990                 ceph_pagelist_init(pagelist);
2991                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2992                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2993                                                 pagelist);
2994         }
2995         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2996                                         obj_request->pages, inbound_size,
2997                                         0, false, false);
2998         rbd_osd_req_format_read(obj_request);
2999
3000         ret = rbd_obj_request_submit(osdc, obj_request);
3001         if (ret)
3002                 goto out;
3003         ret = rbd_obj_request_wait(obj_request);
3004         if (ret)
3005                 goto out;
3006
3007         ret = obj_request->result;
3008         if (ret < 0)
3009                 goto out;
3010
3011         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3012         ret = (int)obj_request->xferred;
3013         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3014 out:
3015         if (obj_request)
3016                 rbd_obj_request_put(obj_request);
3017         else
3018                 ceph_release_page_vector(pages, page_count);
3019
3020         return ret;
3021 }
3022
3023 static void rbd_request_fn(struct request_queue *q)
3024                 __releases(q->queue_lock) __acquires(q->queue_lock)
3025 {
3026         struct rbd_device *rbd_dev = q->queuedata;
3027         bool read_only = rbd_dev->mapping.read_only;
3028         struct request *rq;
3029         int result;
3030
3031         while ((rq = blk_fetch_request(q))) {
3032                 bool write_request = rq_data_dir(rq) == WRITE;
3033                 struct rbd_img_request *img_request;
3034                 u64 offset;
3035                 u64 length;
3036
3037                 /* Ignore any non-FS requests that filter through. */
3038
3039                 if (rq->cmd_type != REQ_TYPE_FS) {
3040                         dout("%s: non-fs request type %d\n", __func__,
3041                                 (int) rq->cmd_type);
3042                         __blk_end_request_all(rq, 0);
3043                         continue;
3044                 }
3045
3046                 /* Ignore/skip any zero-length requests */
3047
3048                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3049                 length = (u64) blk_rq_bytes(rq);
3050
3051                 if (!length) {
3052                         dout("%s: zero-length request\n", __func__);
3053                         __blk_end_request_all(rq, 0);
3054                         continue;
3055                 }
3056
3057                 spin_unlock_irq(q->queue_lock);
3058
3059                 /* Disallow writes to a read-only device */
3060
3061                 if (write_request) {
3062                         result = -EROFS;
3063                         if (read_only)
3064                                 goto end_request;
3065                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3066                 }
3067
3068                 /*
3069                  * Quit early if the mapped snapshot no longer
3070                  * exists.  It's still possible the snapshot will
3071                  * have disappeared by the time our request arrives
3072                  * at the osd, but there's no sense in sending it if
3073                  * we already know.
3074                  */
3075                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3076                         dout("request for non-existent snapshot");
3077                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3078                         result = -ENXIO;
3079                         goto end_request;
3080                 }
3081
3082                 result = -EINVAL;
3083                 if (offset && length > U64_MAX - offset + 1) {
3084                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3085                                 offset, length);
3086                         goto end_request;       /* Shouldn't happen */
3087                 }
3088
3089                 result = -EIO;
3090                 if (offset + length > rbd_dev->mapping.size) {
3091                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3092                                 offset, length, rbd_dev->mapping.size);
3093                         goto end_request;
3094                 }
3095
3096                 result = -ENOMEM;
3097                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3098                                                         write_request);
3099                 if (!img_request)
3100                         goto end_request;
3101
3102                 img_request->rq = rq;
3103
3104                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3105                                                 rq->bio);
3106                 if (!result)
3107                         result = rbd_img_request_submit(img_request);
3108                 if (result)
3109                         rbd_img_request_put(img_request);
3110 end_request:
3111                 spin_lock_irq(q->queue_lock);
3112                 if (result < 0) {
3113                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3114                                 write_request ? "write" : "read",
3115                                 length, offset, result);
3116
3117                         __blk_end_request_all(rq, result);
3118                 }
3119         }
3120 }
3121
3122 /*
3123  * a queue callback. Makes sure that we don't create a bio that spans across
3124  * multiple osd objects. One exception would be with a single page bios,
3125  * which we handle later at bio_chain_clone_range()
3126  */
3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3128                           struct bio_vec *bvec)
3129 {
3130         struct rbd_device *rbd_dev = q->queuedata;
3131         sector_t sector_offset;
3132         sector_t sectors_per_obj;
3133         sector_t obj_sector_offset;
3134         int ret;
3135
3136         /*
3137          * Find how far into its rbd object the partition-relative
3138          * bio start sector is to offset relative to the enclosing
3139          * device.
3140          */
3141         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3142         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3143         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3144
3145         /*
3146          * Compute the number of bytes from that offset to the end
3147          * of the object.  Account for what's already used by the bio.
3148          */
3149         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3150         if (ret > bmd->bi_size)
3151                 ret -= bmd->bi_size;
3152         else
3153                 ret = 0;
3154
3155         /*
3156          * Don't send back more than was asked for.  And if the bio
3157          * was empty, let the whole thing through because:  "Note
3158          * that a block device *must* allow a single page to be
3159          * added to an empty bio."
3160          */
3161         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3162         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3163                 ret = (int) bvec->bv_len;
3164
3165         return ret;
3166 }
3167
3168 static void rbd_free_disk(struct rbd_device *rbd_dev)
3169 {
3170         struct gendisk *disk = rbd_dev->disk;
3171
3172         if (!disk)
3173                 return;
3174
3175         rbd_dev->disk = NULL;
3176         if (disk->flags & GENHD_FL_UP) {
3177                 del_gendisk(disk);
3178                 if (disk->queue)
3179                         blk_cleanup_queue(disk->queue);
3180         }
3181         put_disk(disk);
3182 }
3183
3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3185                                 const char *object_name,
3186                                 u64 offset, u64 length, void *buf)
3187
3188 {
3189         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3190         struct rbd_obj_request *obj_request;
3191         struct page **pages = NULL;
3192         u32 page_count;
3193         size_t size;
3194         int ret;
3195
3196         page_count = (u32) calc_pages_for(offset, length);
3197         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3198         if (IS_ERR(pages))
3199                 ret = PTR_ERR(pages);
3200
3201         ret = -ENOMEM;
3202         obj_request = rbd_obj_request_create(object_name, offset, length,
3203                                                         OBJ_REQUEST_PAGES);
3204         if (!obj_request)
3205                 goto out;
3206
3207         obj_request->pages = pages;
3208         obj_request->page_count = page_count;
3209
3210         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3211         if (!obj_request->osd_req)
3212                 goto out;
3213
3214         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3215                                         offset, length, 0, 0);
3216         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3217                                         obj_request->pages,
3218                                         obj_request->length,
3219                                         obj_request->offset & ~PAGE_MASK,
3220                                         false, false);
3221         rbd_osd_req_format_read(obj_request);
3222
3223         ret = rbd_obj_request_submit(osdc, obj_request);
3224         if (ret)
3225                 goto out;
3226         ret = rbd_obj_request_wait(obj_request);
3227         if (ret)
3228                 goto out;
3229
3230         ret = obj_request->result;
3231         if (ret < 0)
3232                 goto out;
3233
3234         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3235         size = (size_t) obj_request->xferred;
3236         ceph_copy_from_page_vector(pages, buf, 0, size);
3237         rbd_assert(size <= (size_t)INT_MAX);
3238         ret = (int)size;
3239 out:
3240         if (obj_request)
3241                 rbd_obj_request_put(obj_request);
3242         else
3243                 ceph_release_page_vector(pages, page_count);
3244
3245         return ret;
3246 }
3247
3248 /*
3249  * Read the complete header for the given rbd device.  On successful
3250  * return, the rbd_dev->header field will contain up-to-date
3251  * information about the image.
3252  */
3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3254 {
3255         struct rbd_image_header_ondisk *ondisk = NULL;
3256         u32 snap_count = 0;
3257         u64 names_size = 0;
3258         u32 want_count;
3259         int ret;
3260
3261         /*
3262          * The complete header will include an array of its 64-bit
3263          * snapshot ids, followed by the names of those snapshots as
3264          * a contiguous block of NUL-terminated strings.  Note that
3265          * the number of snapshots could change by the time we read
3266          * it in, in which case we re-read it.
3267          */
3268         do {
3269                 size_t size;
3270
3271                 kfree(ondisk);
3272
3273                 size = sizeof (*ondisk);
3274                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3275                 size += names_size;
3276                 ondisk = kmalloc(size, GFP_KERNEL);
3277                 if (!ondisk)
3278                         return -ENOMEM;
3279
3280                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3281                                        0, size, ondisk);
3282                 if (ret < 0)
3283                         goto out;
3284                 if ((size_t)ret < size) {
3285                         ret = -ENXIO;
3286                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3287                                 size, ret);
3288                         goto out;
3289                 }
3290                 if (!rbd_dev_ondisk_valid(ondisk)) {
3291                         ret = -ENXIO;
3292                         rbd_warn(rbd_dev, "invalid header");
3293                         goto out;
3294                 }
3295
3296                 names_size = le64_to_cpu(ondisk->snap_names_len);
3297                 want_count = snap_count;
3298                 snap_count = le32_to_cpu(ondisk->snap_count);
3299         } while (snap_count != want_count);
3300
3301         ret = rbd_header_from_disk(rbd_dev, ondisk);
3302 out:
3303         kfree(ondisk);
3304
3305         return ret;
3306 }
3307
3308 /*
3309  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3310  * has disappeared from the (just updated) snapshot context.
3311  */
3312 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3313 {
3314         u64 snap_id;
3315
3316         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3317                 return;
3318
3319         snap_id = rbd_dev->spec->snap_id;
3320         if (snap_id == CEPH_NOSNAP)
3321                 return;
3322
3323         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3324                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3325 }
3326
3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3328 {
3329         u64 mapping_size;
3330         int ret;
3331
3332         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3333         mapping_size = rbd_dev->mapping.size;
3334         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3335         if (rbd_dev->image_format == 1)
3336                 ret = rbd_dev_v1_header_info(rbd_dev);
3337         else
3338                 ret = rbd_dev_v2_header_info(rbd_dev);
3339
3340         /* If it's a mapped snapshot, validate its EXISTS flag */
3341
3342         rbd_exists_validate(rbd_dev);
3343         mutex_unlock(&ctl_mutex);
3344         if (mapping_size != rbd_dev->mapping.size) {
3345                 sector_t size;
3346
3347                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3348                 dout("setting size to %llu sectors", (unsigned long long)size);
3349                 set_capacity(rbd_dev->disk, size);
3350                 revalidate_disk(rbd_dev->disk);
3351         }
3352
3353         return ret;
3354 }
3355
3356 static int rbd_init_disk(struct rbd_device *rbd_dev)
3357 {
3358         struct gendisk *disk;
3359         struct request_queue *q;
3360         u64 segment_size;
3361
3362         /* create gendisk info */
3363         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3364         if (!disk)
3365                 return -ENOMEM;
3366
3367         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3368                  rbd_dev->dev_id);
3369         disk->major = rbd_dev->major;
3370         disk->first_minor = 0;
3371         disk->fops = &rbd_bd_ops;
3372         disk->private_data = rbd_dev;
3373
3374         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3375         if (!q)
3376                 goto out_disk;
3377
3378         /* We use the default size, but let's be explicit about it. */
3379         blk_queue_physical_block_size(q, SECTOR_SIZE);
3380
3381         /* set io sizes to object size */
3382         segment_size = rbd_obj_bytes(&rbd_dev->header);
3383         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3384         blk_queue_max_segment_size(q, segment_size);
3385         blk_queue_io_min(q, segment_size);
3386         blk_queue_io_opt(q, segment_size);
3387
3388         blk_queue_merge_bvec(q, rbd_merge_bvec);
3389         disk->queue = q;
3390
3391         q->queuedata = rbd_dev;
3392
3393         rbd_dev->disk = disk;
3394
3395         return 0;
3396 out_disk:
3397         put_disk(disk);
3398
3399         return -ENOMEM;
3400 }
3401
3402 /*
3403   sysfs
3404 */
3405
3406 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3407 {
3408         return container_of(dev, struct rbd_device, dev);
3409 }
3410
3411 static ssize_t rbd_size_show(struct device *dev,
3412                              struct device_attribute *attr, char *buf)
3413 {
3414         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3415
3416         return sprintf(buf, "%llu\n",
3417                 (unsigned long long)rbd_dev->mapping.size);
3418 }
3419
3420 /*
3421  * Note this shows the features for whatever's mapped, which is not
3422  * necessarily the base image.
3423  */
3424 static ssize_t rbd_features_show(struct device *dev,
3425                              struct device_attribute *attr, char *buf)
3426 {
3427         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3428
3429         return sprintf(buf, "0x%016llx\n",
3430                         (unsigned long long)rbd_dev->mapping.features);
3431 }
3432
3433 static ssize_t rbd_major_show(struct device *dev,
3434                               struct device_attribute *attr, char *buf)
3435 {
3436         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3437
3438         if (rbd_dev->major)
3439                 return sprintf(buf, "%d\n", rbd_dev->major);
3440
3441         return sprintf(buf, "(none)\n");
3442
3443 }
3444
3445 static ssize_t rbd_client_id_show(struct device *dev,
3446                                   struct device_attribute *attr, char *buf)
3447 {
3448         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3449
3450         return sprintf(buf, "client%lld\n",
3451                         ceph_client_id(rbd_dev->rbd_client->client));
3452 }
3453
3454 static ssize_t rbd_pool_show(struct device *dev,
3455                              struct device_attribute *attr, char *buf)
3456 {
3457         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3460 }
3461
3462 static ssize_t rbd_pool_id_show(struct device *dev,
3463                              struct device_attribute *attr, char *buf)
3464 {
3465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467         return sprintf(buf, "%llu\n",
3468                         (unsigned long long) rbd_dev->spec->pool_id);
3469 }
3470
3471 static ssize_t rbd_name_show(struct device *dev,
3472                              struct device_attribute *attr, char *buf)
3473 {
3474         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476         if (rbd_dev->spec->image_name)
3477                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3478
3479         return sprintf(buf, "(unknown)\n");
3480 }
3481
3482 static ssize_t rbd_image_id_show(struct device *dev,
3483                              struct device_attribute *attr, char *buf)
3484 {
3485         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3488 }
3489
3490 /*
3491  * Shows the name of the currently-mapped snapshot (or
3492  * RBD_SNAP_HEAD_NAME for the base image).
3493  */
3494 static ssize_t rbd_snap_show(struct device *dev,
3495                              struct device_attribute *attr,
3496                              char *buf)
3497 {
3498         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3499
3500         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3501 }
3502
3503 /*
3504  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3505  * for the parent image.  If there is no parent, simply shows
3506  * "(no parent image)".
3507  */
3508 static ssize_t rbd_parent_show(struct device *dev,
3509                              struct device_attribute *attr,
3510                              char *buf)
3511 {
3512         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3513         struct rbd_spec *spec = rbd_dev->parent_spec;
3514         int count;
3515         char *bufp = buf;
3516
3517         if (!spec)
3518                 return sprintf(buf, "(no parent image)\n");
3519
3520         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3521                         (unsigned long long) spec->pool_id, spec->pool_name);
3522         if (count < 0)
3523                 return count;
3524         bufp += count;
3525
3526         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3527                         spec->image_name ? spec->image_name : "(unknown)");
3528         if (count < 0)
3529                 return count;
3530         bufp += count;
3531
3532         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3533                         (unsigned long long) spec->snap_id, spec->snap_name);
3534         if (count < 0)
3535                 return count;
3536         bufp += count;
3537
3538         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3539         if (count < 0)
3540                 return count;
3541         bufp += count;
3542
3543         return (ssize_t) (bufp - buf);
3544 }
3545
3546 static ssize_t rbd_image_refresh(struct device *dev,
3547                                  struct device_attribute *attr,
3548                                  const char *buf,
3549                                  size_t size)
3550 {
3551         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3552         int ret;
3553
3554         ret = rbd_dev_refresh(rbd_dev);
3555         if (ret)
3556                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3557
3558         return ret < 0 ? ret : size;
3559 }
3560
3561 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3562 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3563 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3564 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3565 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3566 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3567 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3568 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3569 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3570 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3571 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3572
3573 static struct attribute *rbd_attrs[] = {
3574         &dev_attr_size.attr,
3575         &dev_attr_features.attr,
3576         &dev_attr_major.attr,
3577         &dev_attr_client_id.attr,
3578         &dev_attr_pool.attr,
3579         &dev_attr_pool_id.attr,
3580         &dev_attr_name.attr,
3581         &dev_attr_image_id.attr,
3582         &dev_attr_current_snap.attr,
3583         &dev_attr_parent.attr,
3584         &dev_attr_refresh.attr,
3585         NULL
3586 };
3587
3588 static struct attribute_group rbd_attr_group = {
3589         .attrs = rbd_attrs,
3590 };
3591
3592 static const struct attribute_group *rbd_attr_groups[] = {
3593         &rbd_attr_group,
3594         NULL
3595 };
3596
3597 static void rbd_sysfs_dev_release(struct device *dev)
3598 {
3599 }
3600
3601 static struct device_type rbd_device_type = {
3602         .name           = "rbd",
3603         .groups         = rbd_attr_groups,
3604         .release        = rbd_sysfs_dev_release,
3605 };
3606
3607 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3608 {
3609         kref_get(&spec->kref);
3610
3611         return spec;
3612 }
3613
3614 static void rbd_spec_free(struct kref *kref);
3615 static void rbd_spec_put(struct rbd_spec *spec)
3616 {
3617         if (spec)
3618                 kref_put(&spec->kref, rbd_spec_free);
3619 }
3620
3621 static struct rbd_spec *rbd_spec_alloc(void)
3622 {
3623         struct rbd_spec *spec;
3624
3625         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3626         if (!spec)
3627                 return NULL;
3628         kref_init(&spec->kref);
3629
3630         return spec;
3631 }
3632
3633 static void rbd_spec_free(struct kref *kref)
3634 {
3635         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3636
3637         kfree(spec->pool_name);
3638         kfree(spec->image_id);
3639         kfree(spec->image_name);
3640         kfree(spec->snap_name);
3641         kfree(spec);
3642 }
3643
3644 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3645                                 struct rbd_spec *spec)
3646 {
3647         struct rbd_device *rbd_dev;
3648
3649         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3650         if (!rbd_dev)
3651                 return NULL;
3652
3653         spin_lock_init(&rbd_dev->lock);
3654         rbd_dev->flags = 0;
3655         atomic_set(&rbd_dev->parent_ref, 0);
3656         INIT_LIST_HEAD(&rbd_dev->node);
3657         init_rwsem(&rbd_dev->header_rwsem);
3658
3659         rbd_dev->spec = spec;
3660         rbd_dev->rbd_client = rbdc;
3661
3662         /* Initialize the layout used for all rbd requests */
3663
3664         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3665         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3666         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3667         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3668
3669         return rbd_dev;
3670 }
3671
3672 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3673 {
3674         rbd_put_client(rbd_dev->rbd_client);
3675         rbd_spec_put(rbd_dev->spec);
3676         kfree(rbd_dev);
3677 }
3678
3679 /*
3680  * Get the size and object order for an image snapshot, or if
3681  * snap_id is CEPH_NOSNAP, gets this information for the base
3682  * image.
3683  */
3684 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3685                                 u8 *order, u64 *snap_size)
3686 {
3687         __le64 snapid = cpu_to_le64(snap_id);
3688         int ret;
3689         struct {
3690                 u8 order;
3691                 __le64 size;
3692         } __attribute__ ((packed)) size_buf = { 0 };
3693
3694         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3695                                 "rbd", "get_size",
3696                                 &snapid, sizeof (snapid),
3697                                 &size_buf, sizeof (size_buf));
3698         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3699         if (ret < 0)
3700                 return ret;
3701         if (ret < sizeof (size_buf))
3702                 return -ERANGE;
3703
3704         if (order)
3705                 *order = size_buf.order;
3706         *snap_size = le64_to_cpu(size_buf.size);
3707
3708         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3709                 (unsigned long long)snap_id, (unsigned int)*order,
3710                 (unsigned long long)*snap_size);
3711
3712         return 0;
3713 }
3714
3715 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3716 {
3717         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3718                                         &rbd_dev->header.obj_order,
3719                                         &rbd_dev->header.image_size);
3720 }
3721
3722 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3723 {
3724         void *reply_buf;
3725         int ret;
3726         void *p;
3727
3728         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3729         if (!reply_buf)
3730                 return -ENOMEM;
3731
3732         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3733                                 "rbd", "get_object_prefix", NULL, 0,
3734                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3735         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3736         if (ret < 0)
3737                 goto out;
3738
3739         p = reply_buf;
3740         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3741                                                 p + ret, NULL, GFP_NOIO);
3742         ret = 0;
3743
3744         if (IS_ERR(rbd_dev->header.object_prefix)) {
3745                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3746                 rbd_dev->header.object_prefix = NULL;
3747         } else {
3748                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3749         }
3750 out:
3751         kfree(reply_buf);
3752
3753         return ret;
3754 }
3755
3756 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3757                 u64 *snap_features)
3758 {
3759         __le64 snapid = cpu_to_le64(snap_id);
3760         struct {
3761                 __le64 features;
3762                 __le64 incompat;
3763         } __attribute__ ((packed)) features_buf = { 0 };
3764         u64 incompat;
3765         int ret;
3766
3767         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3768                                 "rbd", "get_features",
3769                                 &snapid, sizeof (snapid),
3770                                 &features_buf, sizeof (features_buf));
3771         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3772         if (ret < 0)
3773                 return ret;
3774         if (ret < sizeof (features_buf))
3775                 return -ERANGE;
3776
3777         incompat = le64_to_cpu(features_buf.incompat);
3778         if (incompat & ~RBD_FEATURES_SUPPORTED)
3779                 return -ENXIO;
3780
3781         *snap_features = le64_to_cpu(features_buf.features);
3782
3783         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3784                 (unsigned long long)snap_id,
3785                 (unsigned long long)*snap_features,
3786                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3787
3788         return 0;
3789 }
3790
3791 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3792 {
3793         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3794                                                 &rbd_dev->header.features);
3795 }
3796
3797 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3798 {
3799         struct rbd_spec *parent_spec;
3800         size_t size;
3801         void *reply_buf = NULL;
3802         __le64 snapid;
3803         void *p;
3804         void *end;
3805         u64 pool_id;
3806         char *image_id;
3807         u64 overlap;
3808         int ret;
3809
3810         parent_spec = rbd_spec_alloc();
3811         if (!parent_spec)
3812                 return -ENOMEM;
3813
3814         size = sizeof (__le64) +                                /* pool_id */
3815                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3816                 sizeof (__le64) +                               /* snap_id */
3817                 sizeof (__le64);                                /* overlap */
3818         reply_buf = kmalloc(size, GFP_KERNEL);
3819         if (!reply_buf) {
3820                 ret = -ENOMEM;
3821                 goto out_err;
3822         }
3823
3824         snapid = cpu_to_le64(CEPH_NOSNAP);
3825         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3826                                 "rbd", "get_parent",
3827                                 &snapid, sizeof (snapid),
3828                                 reply_buf, size);
3829         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3830         if (ret < 0)
3831                 goto out_err;
3832
3833         p = reply_buf;
3834         end = reply_buf + ret;
3835         ret = -ERANGE;
3836         ceph_decode_64_safe(&p, end, pool_id, out_err);
3837         if (pool_id == CEPH_NOPOOL) {
3838                 /*
3839                  * Either the parent never existed, or we have
3840                  * record of it but the image got flattened so it no
3841                  * longer has a parent.  When the parent of a
3842                  * layered image disappears we immediately set the
3843                  * overlap to 0.  The effect of this is that all new
3844                  * requests will be treated as if the image had no
3845                  * parent.
3846                  */
3847                 if (rbd_dev->parent_overlap) {
3848                         rbd_dev->parent_overlap = 0;
3849                         smp_mb();
3850                         rbd_dev_parent_put(rbd_dev);
3851                         pr_info("%s: clone image has been flattened\n",
3852                                 rbd_dev->disk->disk_name);
3853                 }
3854
3855                 goto out;       /* No parent?  No problem. */
3856         }
3857
3858         /* The ceph file layout needs to fit pool id in 32 bits */
3859
3860         ret = -EIO;
3861         if (pool_id > (u64)U32_MAX) {
3862                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3863                         (unsigned long long)pool_id, U32_MAX);
3864                 goto out_err;
3865         }
3866         parent_spec->pool_id = pool_id;
3867
3868         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3869         if (IS_ERR(image_id)) {
3870                 ret = PTR_ERR(image_id);
3871                 goto out_err;
3872         }
3873         parent_spec->image_id = image_id;
3874         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3875         ceph_decode_64_safe(&p, end, overlap, out_err);
3876
3877         if (overlap) {
3878                 rbd_spec_put(rbd_dev->parent_spec);
3879                 rbd_dev->parent_spec = parent_spec;
3880                 parent_spec = NULL;     /* rbd_dev now owns this */
3881                 rbd_dev->parent_overlap = overlap;
3882         } else {
3883                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3884         }
3885 out:
3886         ret = 0;
3887 out_err:
3888         kfree(reply_buf);
3889         rbd_spec_put(parent_spec);
3890
3891         return ret;
3892 }
3893
3894 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3895 {
3896         struct {
3897                 __le64 stripe_unit;
3898                 __le64 stripe_count;
3899         } __attribute__ ((packed)) striping_info_buf = { 0 };
3900         size_t size = sizeof (striping_info_buf);
3901         void *p;
3902         u64 obj_size;
3903         u64 stripe_unit;
3904         u64 stripe_count;
3905         int ret;
3906
3907         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3908                                 "rbd", "get_stripe_unit_count", NULL, 0,
3909                                 (char *)&striping_info_buf, size);
3910         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3911         if (ret < 0)
3912                 return ret;
3913         if (ret < size)
3914                 return -ERANGE;
3915
3916         /*
3917          * We don't actually support the "fancy striping" feature
3918          * (STRIPINGV2) yet, but if the striping sizes are the
3919          * defaults the behavior is the same as before.  So find
3920          * out, and only fail if the image has non-default values.
3921          */
3922         ret = -EINVAL;
3923         obj_size = (u64)1 << rbd_dev->header.obj_order;
3924         p = &striping_info_buf;
3925         stripe_unit = ceph_decode_64(&p);
3926         if (stripe_unit != obj_size) {
3927                 rbd_warn(rbd_dev, "unsupported stripe unit "
3928                                 "(got %llu want %llu)",
3929                                 stripe_unit, obj_size);
3930                 return -EINVAL;
3931         }
3932         stripe_count = ceph_decode_64(&p);
3933         if (stripe_count != 1) {
3934                 rbd_warn(rbd_dev, "unsupported stripe count "
3935                                 "(got %llu want 1)", stripe_count);
3936                 return -EINVAL;
3937         }
3938         rbd_dev->header.stripe_unit = stripe_unit;
3939         rbd_dev->header.stripe_count = stripe_count;
3940
3941         return 0;
3942 }
3943
3944 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3945 {
3946         size_t image_id_size;
3947         char *image_id;
3948         void *p;
3949         void *end;
3950         size_t size;
3951         void *reply_buf = NULL;
3952         size_t len = 0;
3953         char *image_name = NULL;
3954         int ret;
3955
3956         rbd_assert(!rbd_dev->spec->image_name);
3957
3958         len = strlen(rbd_dev->spec->image_id);
3959         image_id_size = sizeof (__le32) + len;
3960         image_id = kmalloc(image_id_size, GFP_KERNEL);
3961         if (!image_id)
3962                 return NULL;
3963
3964         p = image_id;
3965         end = image_id + image_id_size;
3966         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3967
3968         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3969         reply_buf = kmalloc(size, GFP_KERNEL);
3970         if (!reply_buf)
3971                 goto out;
3972
3973         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3974                                 "rbd", "dir_get_name",
3975                                 image_id, image_id_size,
3976                                 reply_buf, size);
3977         if (ret < 0)
3978                 goto out;
3979         p = reply_buf;
3980         end = reply_buf + ret;
3981
3982         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3983         if (IS_ERR(image_name))
3984                 image_name = NULL;
3985         else
3986                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3987 out:
3988         kfree(reply_buf);
3989         kfree(image_id);
3990
3991         return image_name;
3992 }
3993
3994 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3995 {
3996         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3997         const char *snap_name;
3998         u32 which = 0;
3999
4000         /* Skip over names until we find the one we are looking for */
4001
4002         snap_name = rbd_dev->header.snap_names;
4003         while (which < snapc->num_snaps) {
4004                 if (!strcmp(name, snap_name))
4005                         return snapc->snaps[which];
4006                 snap_name += strlen(snap_name) + 1;
4007                 which++;
4008         }
4009         return CEPH_NOSNAP;
4010 }
4011
4012 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4013 {
4014         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4015         u32 which;
4016         bool found = false;
4017         u64 snap_id;
4018
4019         for (which = 0; !found && which < snapc->num_snaps; which++) {
4020                 const char *snap_name;
4021
4022                 snap_id = snapc->snaps[which];
4023                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4024                 if (IS_ERR(snap_name))
4025                         break;
4026                 found = !strcmp(name, snap_name);
4027                 kfree(snap_name);
4028         }
4029         return found ? snap_id : CEPH_NOSNAP;
4030 }
4031
4032 /*
4033  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4034  * no snapshot by that name is found, or if an error occurs.
4035  */
4036 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4037 {
4038         if (rbd_dev->image_format == 1)
4039                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4040
4041         return rbd_v2_snap_id_by_name(rbd_dev, name);
4042 }
4043
4044 /*
4045  * When an rbd image has a parent image, it is identified by the
4046  * pool, image, and snapshot ids (not names).  This function fills
4047  * in the names for those ids.  (It's OK if we can't figure out the
4048  * name for an image id, but the pool and snapshot ids should always
4049  * exist and have names.)  All names in an rbd spec are dynamically
4050  * allocated.
4051  *
4052  * When an image being mapped (not a parent) is probed, we have the
4053  * pool name and pool id, image name and image id, and the snapshot
4054  * name.  The only thing we're missing is the snapshot id.
4055  */
4056 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4057 {
4058         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4059         struct rbd_spec *spec = rbd_dev->spec;
4060         const char *pool_name;
4061         const char *image_name;
4062         const char *snap_name;
4063         int ret;
4064
4065         /*
4066          * An image being mapped will have the pool name (etc.), but
4067          * we need to look up the snapshot id.
4068          */
4069         if (spec->pool_name) {
4070                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4071                         u64 snap_id;
4072
4073                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4074                         if (snap_id == CEPH_NOSNAP)
4075                                 return -ENOENT;
4076                         spec->snap_id = snap_id;
4077                 } else {
4078                         spec->snap_id = CEPH_NOSNAP;
4079                 }
4080
4081                 return 0;
4082         }
4083
4084         /* Get the pool name; we have to make our own copy of this */
4085
4086         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4087         if (!pool_name) {
4088                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4089                 return -EIO;
4090         }
4091         pool_name = kstrdup(pool_name, GFP_KERNEL);
4092         if (!pool_name)
4093                 return -ENOMEM;
4094
4095         /* Fetch the image name; tolerate failure here */
4096
4097         image_name = rbd_dev_image_name(rbd_dev);
4098         if (!image_name)
4099                 rbd_warn(rbd_dev, "unable to get image name");
4100
4101         /* Look up the snapshot name, and make a copy */
4102
4103         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4104         if (!snap_name) {
4105                 ret = -ENOMEM;
4106                 goto out_err;
4107         }
4108
4109         spec->pool_name = pool_name;
4110         spec->image_name = image_name;
4111         spec->snap_name = snap_name;
4112
4113         return 0;
4114 out_err:
4115         kfree(image_name);
4116         kfree(pool_name);
4117
4118         return ret;
4119 }
4120
4121 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4122 {
4123         size_t size;
4124         int ret;
4125         void *reply_buf;
4126         void *p;
4127         void *end;
4128         u64 seq;
4129         u32 snap_count;
4130         struct ceph_snap_context *snapc;
4131         u32 i;
4132
4133         /*
4134          * We'll need room for the seq value (maximum snapshot id),
4135          * snapshot count, and array of that many snapshot ids.
4136          * For now we have a fixed upper limit on the number we're
4137          * prepared to receive.
4138          */
4139         size = sizeof (__le64) + sizeof (__le32) +
4140                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4141         reply_buf = kzalloc(size, GFP_KERNEL);
4142         if (!reply_buf)
4143                 return -ENOMEM;
4144
4145         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4146                                 "rbd", "get_snapcontext", NULL, 0,
4147                                 reply_buf, size);
4148         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4149         if (ret < 0)
4150                 goto out;
4151
4152         p = reply_buf;
4153         end = reply_buf + ret;
4154         ret = -ERANGE;
4155         ceph_decode_64_safe(&p, end, seq, out);
4156         ceph_decode_32_safe(&p, end, snap_count, out);
4157
4158         /*
4159          * Make sure the reported number of snapshot ids wouldn't go
4160          * beyond the end of our buffer.  But before checking that,
4161          * make sure the computed size of the snapshot context we
4162          * allocate is representable in a size_t.
4163          */
4164         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4165                                  / sizeof (u64)) {
4166                 ret = -EINVAL;
4167                 goto out;
4168         }
4169         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4170                 goto out;
4171         ret = 0;
4172
4173         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4174         if (!snapc) {
4175                 ret = -ENOMEM;
4176                 goto out;
4177         }
4178         snapc->seq = seq;
4179         for (i = 0; i < snap_count; i++)
4180                 snapc->snaps[i] = ceph_decode_64(&p);
4181
4182         ceph_put_snap_context(rbd_dev->header.snapc);
4183         rbd_dev->header.snapc = snapc;
4184
4185         dout("  snap context seq = %llu, snap_count = %u\n",
4186                 (unsigned long long)seq, (unsigned int)snap_count);
4187 out:
4188         kfree(reply_buf);
4189
4190         return ret;
4191 }
4192
4193 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4194                                         u64 snap_id)
4195 {
4196         size_t size;
4197         void *reply_buf;
4198         __le64 snapid;
4199         int ret;
4200         void *p;
4201         void *end;
4202         char *snap_name;
4203
4204         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4205         reply_buf = kmalloc(size, GFP_KERNEL);
4206         if (!reply_buf)
4207                 return ERR_PTR(-ENOMEM);
4208
4209         snapid = cpu_to_le64(snap_id);
4210         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4211                                 "rbd", "get_snapshot_name",
4212                                 &snapid, sizeof (snapid),
4213                                 reply_buf, size);
4214         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4215         if (ret < 0) {
4216                 snap_name = ERR_PTR(ret);
4217                 goto out;
4218         }
4219
4220         p = reply_buf;
4221         end = reply_buf + ret;
4222         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4223         if (IS_ERR(snap_name))
4224                 goto out;
4225
4226         dout("  snap_id 0x%016llx snap_name = %s\n",
4227                 (unsigned long long)snap_id, snap_name);
4228 out:
4229         kfree(reply_buf);
4230
4231         return snap_name;
4232 }
4233
4234 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4235 {
4236         bool first_time = rbd_dev->header.object_prefix == NULL;
4237         int ret;
4238
4239         down_write(&rbd_dev->header_rwsem);
4240
4241         if (first_time) {
4242                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4243                 if (ret)
4244                         goto out;
4245         }
4246
4247         /*
4248          * If the image supports layering, get the parent info.  We
4249          * need to probe the first time regardless.  Thereafter we
4250          * only need to if there's a parent, to see if it has
4251          * disappeared due to the mapped image getting flattened.
4252          */
4253         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4254                         (first_time || rbd_dev->parent_spec)) {
4255                 bool warn;
4256
4257                 ret = rbd_dev_v2_parent_info(rbd_dev);
4258                 if (ret)
4259                         goto out;
4260
4261                 /*
4262                  * Print a warning if this is the initial probe and
4263                  * the image has a parent.  Don't print it if the
4264                  * image now being probed is itself a parent.  We
4265                  * can tell at this point because we won't know its
4266                  * pool name yet (just its pool id).
4267                  */
4268                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4269                 if (first_time && warn)
4270                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4271                                         "is EXPERIMENTAL!");
4272         }
4273
4274         ret = rbd_dev_v2_image_size(rbd_dev);
4275         if (ret)
4276                 goto out;
4277
4278         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4279                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4280                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4281
4282         ret = rbd_dev_v2_snap_context(rbd_dev);
4283         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4284 out:
4285         up_write(&rbd_dev->header_rwsem);
4286
4287         return ret;
4288 }
4289
4290 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4291 {
4292         struct device *dev;
4293         int ret;
4294
4295         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4296
4297         dev = &rbd_dev->dev;
4298         dev->bus = &rbd_bus_type;
4299         dev->type = &rbd_device_type;
4300         dev->parent = &rbd_root_dev;
4301         dev->release = rbd_dev_device_release;
4302         dev_set_name(dev, "%d", rbd_dev->dev_id);
4303         ret = device_register(dev);
4304
4305         mutex_unlock(&ctl_mutex);
4306
4307         return ret;
4308 }
4309
4310 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4311 {
4312         device_unregister(&rbd_dev->dev);
4313 }
4314
4315 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4316
4317 /*
4318  * Get a unique rbd identifier for the given new rbd_dev, and add
4319  * the rbd_dev to the global list.  The minimum rbd id is 1.
4320  */
4321 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4322 {
4323         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4324
4325         spin_lock(&rbd_dev_list_lock);
4326         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4327         spin_unlock(&rbd_dev_list_lock);
4328         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4329                 (unsigned long long) rbd_dev->dev_id);
4330 }
4331
4332 /*
4333  * Remove an rbd_dev from the global list, and record that its
4334  * identifier is no longer in use.
4335  */
4336 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4337 {
4338         struct list_head *tmp;
4339         int rbd_id = rbd_dev->dev_id;
4340         int max_id;
4341
4342         rbd_assert(rbd_id > 0);
4343
4344         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4345                 (unsigned long long) rbd_dev->dev_id);
4346         spin_lock(&rbd_dev_list_lock);
4347         list_del_init(&rbd_dev->node);
4348
4349         /*
4350          * If the id being "put" is not the current maximum, there
4351          * is nothing special we need to do.
4352          */
4353         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4354                 spin_unlock(&rbd_dev_list_lock);
4355                 return;
4356         }
4357
4358         /*
4359          * We need to update the current maximum id.  Search the
4360          * list to find out what it is.  We're more likely to find
4361          * the maximum at the end, so search the list backward.
4362          */
4363         max_id = 0;
4364         list_for_each_prev(tmp, &rbd_dev_list) {
4365                 struct rbd_device *rbd_dev;
4366
4367                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4368                 if (rbd_dev->dev_id > max_id)
4369                         max_id = rbd_dev->dev_id;
4370         }
4371         spin_unlock(&rbd_dev_list_lock);
4372
4373         /*
4374          * The max id could have been updated by rbd_dev_id_get(), in
4375          * which case it now accurately reflects the new maximum.
4376          * Be careful not to overwrite the maximum value in that
4377          * case.
4378          */
4379         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4380         dout("  max dev id has been reset\n");
4381 }
4382
4383 /*
4384  * Skips over white space at *buf, and updates *buf to point to the
4385  * first found non-space character (if any). Returns the length of
4386  * the token (string of non-white space characters) found.  Note
4387  * that *buf must be terminated with '\0'.
4388  */
4389 static inline size_t next_token(const char **buf)
4390 {
4391         /*
4392         * These are the characters that produce nonzero for
4393         * isspace() in the "C" and "POSIX" locales.
4394         */
4395         const char *spaces = " \f\n\r\t\v";
4396
4397         *buf += strspn(*buf, spaces);   /* Find start of token */
4398
4399         return strcspn(*buf, spaces);   /* Return token length */
4400 }
4401
4402 /*
4403  * Finds the next token in *buf, and if the provided token buffer is
4404  * big enough, copies the found token into it.  The result, if
4405  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4406  * must be terminated with '\0' on entry.
4407  *
4408  * Returns the length of the token found (not including the '\0').
4409  * Return value will be 0 if no token is found, and it will be >=
4410  * token_size if the token would not fit.
4411  *
4412  * The *buf pointer will be updated to point beyond the end of the
4413  * found token.  Note that this occurs even if the token buffer is
4414  * too small to hold it.
4415  */
4416 static inline size_t copy_token(const char **buf,
4417                                 char *token,
4418                                 size_t token_size)
4419 {
4420         size_t len;
4421
4422         len = next_token(buf);
4423         if (len < token_size) {
4424                 memcpy(token, *buf, len);
4425                 *(token + len) = '\0';
4426         }
4427         *buf += len;
4428
4429         return len;
4430 }
4431
4432 /*
4433  * Finds the next token in *buf, dynamically allocates a buffer big
4434  * enough to hold a copy of it, and copies the token into the new
4435  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4436  * that a duplicate buffer is created even for a zero-length token.
4437  *
4438  * Returns a pointer to the newly-allocated duplicate, or a null
4439  * pointer if memory for the duplicate was not available.  If
4440  * the lenp argument is a non-null pointer, the length of the token
4441  * (not including the '\0') is returned in *lenp.
4442  *
4443  * If successful, the *buf pointer will be updated to point beyond
4444  * the end of the found token.
4445  *
4446  * Note: uses GFP_KERNEL for allocation.
4447  */
4448 static inline char *dup_token(const char **buf, size_t *lenp)
4449 {
4450         char *dup;
4451         size_t len;
4452
4453         len = next_token(buf);
4454         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4455         if (!dup)
4456                 return NULL;
4457         *(dup + len) = '\0';
4458         *buf += len;
4459
4460         if (lenp)
4461                 *lenp = len;
4462
4463         return dup;
4464 }
4465
4466 /*
4467  * Parse the options provided for an "rbd add" (i.e., rbd image
4468  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4469  * and the data written is passed here via a NUL-terminated buffer.
4470  * Returns 0 if successful or an error code otherwise.
4471  *
4472  * The information extracted from these options is recorded in
4473  * the other parameters which return dynamically-allocated
4474  * structures:
4475  *  ceph_opts
4476  *      The address of a pointer that will refer to a ceph options
4477  *      structure.  Caller must release the returned pointer using
4478  *      ceph_destroy_options() when it is no longer needed.
4479  *  rbd_opts
4480  *      Address of an rbd options pointer.  Fully initialized by
4481  *      this function; caller must release with kfree().
4482  *  spec
4483  *      Address of an rbd image specification pointer.  Fully
4484  *      initialized by this function based on parsed options.
4485  *      Caller must release with rbd_spec_put().
4486  *
4487  * The options passed take this form:
4488  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4489  * where:
4490  *  <mon_addrs>
4491  *      A comma-separated list of one or more monitor addresses.
4492  *      A monitor address is an ip address, optionally followed
4493  *      by a port number (separated by a colon).
4494  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4495  *  <options>
4496  *      A comma-separated list of ceph and/or rbd options.
4497  *  <pool_name>
4498  *      The name of the rados pool containing the rbd image.
4499  *  <image_name>
4500  *      The name of the image in that pool to map.
4501  *  <snap_id>
4502  *      An optional snapshot id.  If provided, the mapping will
4503  *      present data from the image at the time that snapshot was
4504  *      created.  The image head is used if no snapshot id is
4505  *      provided.  Snapshot mappings are always read-only.
4506  */
4507 static int rbd_add_parse_args(const char *buf,
4508                                 struct ceph_options **ceph_opts,
4509                                 struct rbd_options **opts,
4510                                 struct rbd_spec **rbd_spec)
4511 {
4512         size_t len;
4513         char *options;
4514         const char *mon_addrs;
4515         char *snap_name;
4516         size_t mon_addrs_size;
4517         struct rbd_spec *spec = NULL;
4518         struct rbd_options *rbd_opts = NULL;
4519         struct ceph_options *copts;
4520         int ret;
4521
4522         /* The first four tokens are required */
4523
4524         len = next_token(&buf);
4525         if (!len) {
4526                 rbd_warn(NULL, "no monitor address(es) provided");
4527                 return -EINVAL;
4528         }
4529         mon_addrs = buf;
4530         mon_addrs_size = len + 1;
4531         buf += len;
4532
4533         ret = -EINVAL;
4534         options = dup_token(&buf, NULL);
4535         if (!options)
4536                 return -ENOMEM;
4537         if (!*options) {
4538                 rbd_warn(NULL, "no options provided");
4539                 goto out_err;
4540         }
4541
4542         spec = rbd_spec_alloc();
4543         if (!spec)
4544                 goto out_mem;
4545
4546         spec->pool_name = dup_token(&buf, NULL);
4547         if (!spec->pool_name)
4548                 goto out_mem;
4549         if (!*spec->pool_name) {
4550                 rbd_warn(NULL, "no pool name provided");
4551                 goto out_err;
4552         }
4553
4554         spec->image_name = dup_token(&buf, NULL);
4555         if (!spec->image_name)
4556                 goto out_mem;
4557         if (!*spec->image_name) {
4558                 rbd_warn(NULL, "no image name provided");
4559                 goto out_err;
4560         }
4561
4562         /*
4563          * Snapshot name is optional; default is to use "-"
4564          * (indicating the head/no snapshot).
4565          */
4566         len = next_token(&buf);
4567         if (!len) {
4568                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4569                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4570         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4571                 ret = -ENAMETOOLONG;
4572                 goto out_err;
4573         }
4574         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4575         if (!snap_name)
4576                 goto out_mem;
4577         *(snap_name + len) = '\0';
4578         spec->snap_name = snap_name;
4579
4580         /* Initialize all rbd options to the defaults */
4581
4582         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4583         if (!rbd_opts)
4584                 goto out_mem;
4585
4586         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4587
4588         copts = ceph_parse_options(options, mon_addrs,
4589                                         mon_addrs + mon_addrs_size - 1,
4590                                         parse_rbd_opts_token, rbd_opts);
4591         if (IS_ERR(copts)) {
4592                 ret = PTR_ERR(copts);
4593                 goto out_err;
4594         }
4595         kfree(options);
4596
4597         *ceph_opts = copts;
4598         *opts = rbd_opts;
4599         *rbd_spec = spec;
4600
4601         return 0;
4602 out_mem:
4603         ret = -ENOMEM;
4604 out_err:
4605         kfree(rbd_opts);
4606         rbd_spec_put(spec);
4607         kfree(options);
4608
4609         return ret;
4610 }
4611
4612 /*
4613  * An rbd format 2 image has a unique identifier, distinct from the
4614  * name given to it by the user.  Internally, that identifier is
4615  * what's used to specify the names of objects related to the image.
4616  *
4617  * A special "rbd id" object is used to map an rbd image name to its
4618  * id.  If that object doesn't exist, then there is no v2 rbd image
4619  * with the supplied name.
4620  *
4621  * This function will record the given rbd_dev's image_id field if
4622  * it can be determined, and in that case will return 0.  If any
4623  * errors occur a negative errno will be returned and the rbd_dev's
4624  * image_id field will be unchanged (and should be NULL).
4625  */
4626 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4627 {
4628         int ret;
4629         size_t size;
4630         char *object_name;
4631         void *response;
4632         char *image_id;
4633
4634         /*
4635          * When probing a parent image, the image id is already
4636          * known (and the image name likely is not).  There's no
4637          * need to fetch the image id again in this case.  We
4638          * do still need to set the image format though.
4639          */
4640         if (rbd_dev->spec->image_id) {
4641                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4642
4643                 return 0;
4644         }
4645
4646         /*
4647          * First, see if the format 2 image id file exists, and if
4648          * so, get the image's persistent id from it.
4649          */
4650         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4651         object_name = kmalloc(size, GFP_NOIO);
4652         if (!object_name)
4653                 return -ENOMEM;
4654         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4655         dout("rbd id object name is %s\n", object_name);
4656
4657         /* Response will be an encoded string, which includes a length */
4658
4659         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4660         response = kzalloc(size, GFP_NOIO);
4661         if (!response) {
4662                 ret = -ENOMEM;
4663                 goto out;
4664         }
4665
4666         /* If it doesn't exist we'll assume it's a format 1 image */
4667
4668         ret = rbd_obj_method_sync(rbd_dev, object_name,
4669                                 "rbd", "get_id", NULL, 0,
4670                                 response, RBD_IMAGE_ID_LEN_MAX);
4671         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672         if (ret == -ENOENT) {
4673                 image_id = kstrdup("", GFP_KERNEL);
4674                 ret = image_id ? 0 : -ENOMEM;
4675                 if (!ret)
4676                         rbd_dev->image_format = 1;
4677         } else if (ret > sizeof (__le32)) {
4678                 void *p = response;
4679
4680                 image_id = ceph_extract_encoded_string(&p, p + ret,
4681                                                 NULL, GFP_NOIO);
4682                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4683                 if (!ret)
4684                         rbd_dev->image_format = 2;
4685         } else {
4686                 ret = -EINVAL;
4687         }
4688
4689         if (!ret) {
4690                 rbd_dev->spec->image_id = image_id;
4691                 dout("image_id is %s\n", image_id);
4692         }
4693 out:
4694         kfree(response);
4695         kfree(object_name);
4696
4697         return ret;
4698 }
4699
4700 /* Undo whatever state changes are made by v1 or v2 image probe */
4701
4702 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4703 {
4704         struct rbd_image_header *header;
4705
4706         /* Drop parent reference unless it's already been done (or none) */
4707
4708         if (rbd_dev->parent_overlap)
4709                 rbd_dev_parent_put(rbd_dev);
4710
4711         /* Free dynamic fields from the header, then zero it out */
4712
4713         header = &rbd_dev->header;
4714         ceph_put_snap_context(header->snapc);
4715         kfree(header->snap_sizes);
4716         kfree(header->snap_names);
4717         kfree(header->object_prefix);
4718         memset(header, 0, sizeof (*header));
4719 }
4720
4721 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4722 {
4723         int ret;
4724
4725         ret = rbd_dev_v2_object_prefix(rbd_dev);
4726         if (ret)
4727                 goto out_err;
4728
4729         /*
4730          * Get the and check features for the image.  Currently the
4731          * features are assumed to never change.
4732          */
4733         ret = rbd_dev_v2_features(rbd_dev);
4734         if (ret)
4735                 goto out_err;
4736
4737         /* If the image supports fancy striping, get its parameters */
4738
4739         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4740                 ret = rbd_dev_v2_striping_info(rbd_dev);
4741                 if (ret < 0)
4742                         goto out_err;
4743         }
4744         /* No support for crypto and compression type format 2 images */
4745
4746         return 0;
4747 out_err:
4748         rbd_dev->header.features = 0;
4749         kfree(rbd_dev->header.object_prefix);
4750         rbd_dev->header.object_prefix = NULL;
4751
4752         return ret;
4753 }
4754
4755 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4756 {
4757         struct rbd_device *parent = NULL;
4758         struct rbd_spec *parent_spec;
4759         struct rbd_client *rbdc;
4760         int ret;
4761
4762         if (!rbd_dev->parent_spec)
4763                 return 0;
4764         /*
4765          * We need to pass a reference to the client and the parent
4766          * spec when creating the parent rbd_dev.  Images related by
4767          * parent/child relationships always share both.
4768          */
4769         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4770         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4771
4772         ret = -ENOMEM;
4773         parent = rbd_dev_create(rbdc, parent_spec);
4774         if (!parent)
4775                 goto out_err;
4776
4777         ret = rbd_dev_image_probe(parent, false);
4778         if (ret < 0)
4779                 goto out_err;
4780         rbd_dev->parent = parent;
4781         atomic_set(&rbd_dev->parent_ref, 1);
4782
4783         return 0;
4784 out_err:
4785         if (parent) {
4786                 rbd_dev_unparent(rbd_dev);
4787                 kfree(rbd_dev->header_name);
4788                 rbd_dev_destroy(parent);
4789         } else {
4790                 rbd_put_client(rbdc);
4791                 rbd_spec_put(parent_spec);
4792         }
4793
4794         return ret;
4795 }
4796
4797 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4798 {
4799         int ret;
4800
4801         /* generate unique id: find highest unique id, add one */
4802         rbd_dev_id_get(rbd_dev);
4803
4804         /* Fill in the device name, now that we have its id. */
4805         BUILD_BUG_ON(DEV_NAME_LEN
4806                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4807         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4808
4809         /* Get our block major device number. */
4810
4811         ret = register_blkdev(0, rbd_dev->name);
4812         if (ret < 0)
4813                 goto err_out_id;
4814         rbd_dev->major = ret;
4815
4816         /* Set up the blkdev mapping. */
4817
4818         ret = rbd_init_disk(rbd_dev);
4819         if (ret)
4820                 goto err_out_blkdev;
4821
4822         ret = rbd_dev_mapping_set(rbd_dev);
4823         if (ret)
4824                 goto err_out_disk;
4825         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4826
4827         ret = rbd_bus_add_dev(rbd_dev);
4828         if (ret)
4829                 goto err_out_mapping;
4830
4831         /* Everything's ready.  Announce the disk to the world. */
4832
4833         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4834         add_disk(rbd_dev->disk);
4835
4836         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4837                 (unsigned long long) rbd_dev->mapping.size);
4838
4839         return ret;
4840
4841 err_out_mapping:
4842         rbd_dev_mapping_clear(rbd_dev);
4843 err_out_disk:
4844         rbd_free_disk(rbd_dev);
4845 err_out_blkdev:
4846         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4847 err_out_id:
4848         rbd_dev_id_put(rbd_dev);
4849         rbd_dev_mapping_clear(rbd_dev);
4850
4851         return ret;
4852 }
4853
4854 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4855 {
4856         struct rbd_spec *spec = rbd_dev->spec;
4857         size_t size;
4858
4859         /* Record the header object name for this rbd image. */
4860
4861         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4862
4863         if (rbd_dev->image_format == 1)
4864                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4865         else
4866                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4867
4868         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4869         if (!rbd_dev->header_name)
4870                 return -ENOMEM;
4871
4872         if (rbd_dev->image_format == 1)
4873                 sprintf(rbd_dev->header_name, "%s%s",
4874                         spec->image_name, RBD_SUFFIX);
4875         else
4876                 sprintf(rbd_dev->header_name, "%s%s",
4877                         RBD_HEADER_PREFIX, spec->image_id);
4878         return 0;
4879 }
4880
4881 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4882 {
4883         rbd_dev_unprobe(rbd_dev);
4884         kfree(rbd_dev->header_name);
4885         rbd_dev->header_name = NULL;
4886         rbd_dev->image_format = 0;
4887         kfree(rbd_dev->spec->image_id);
4888         rbd_dev->spec->image_id = NULL;
4889
4890         rbd_dev_destroy(rbd_dev);
4891 }
4892
4893 /*
4894  * Probe for the existence of the header object for the given rbd
4895  * device.  If this image is the one being mapped (i.e., not a
4896  * parent), initiate a watch on its header object before using that
4897  * object to get detailed information about the rbd image.
4898  */
4899 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4900 {
4901         int ret;
4902         int tmp;
4903
4904         /*
4905          * Get the id from the image id object.  If it's not a
4906          * format 2 image, we'll get ENOENT back, and we'll assume
4907          * it's a format 1 image.
4908          */
4909         ret = rbd_dev_image_id(rbd_dev);
4910         if (ret)
4911                 return ret;
4912         rbd_assert(rbd_dev->spec->image_id);
4913         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4914
4915         ret = rbd_dev_header_name(rbd_dev);
4916         if (ret)
4917                 goto err_out_format;
4918
4919         if (mapping) {
4920                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4921                 if (ret)
4922                         goto out_header_name;
4923         }
4924
4925         if (rbd_dev->image_format == 1)
4926                 ret = rbd_dev_v1_header_info(rbd_dev);
4927         else
4928                 ret = rbd_dev_v2_header_info(rbd_dev);
4929         if (ret)
4930                 goto err_out_watch;
4931
4932         ret = rbd_dev_spec_update(rbd_dev);
4933         if (ret)
4934                 goto err_out_probe;
4935
4936         ret = rbd_dev_probe_parent(rbd_dev);
4937         if (ret)
4938                 goto err_out_probe;
4939
4940         dout("discovered format %u image, header name is %s\n",
4941                 rbd_dev->image_format, rbd_dev->header_name);
4942
4943         return 0;
4944 err_out_probe:
4945         rbd_dev_unprobe(rbd_dev);
4946 err_out_watch:
4947         if (mapping) {
4948                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4949                 if (tmp)
4950                         rbd_warn(rbd_dev, "unable to tear down "
4951                                         "watch request (%d)\n", tmp);
4952         }
4953 out_header_name:
4954         kfree(rbd_dev->header_name);
4955         rbd_dev->header_name = NULL;
4956 err_out_format:
4957         rbd_dev->image_format = 0;
4958         kfree(rbd_dev->spec->image_id);
4959         rbd_dev->spec->image_id = NULL;
4960
4961         dout("probe failed, returning %d\n", ret);
4962
4963         return ret;
4964 }
4965
4966 static ssize_t rbd_add(struct bus_type *bus,
4967                        const char *buf,
4968                        size_t count)
4969 {
4970         struct rbd_device *rbd_dev = NULL;
4971         struct ceph_options *ceph_opts = NULL;
4972         struct rbd_options *rbd_opts = NULL;
4973         struct rbd_spec *spec = NULL;
4974         struct rbd_client *rbdc;
4975         struct ceph_osd_client *osdc;
4976         bool read_only;
4977         int rc = -ENOMEM;
4978
4979         if (!try_module_get(THIS_MODULE))
4980                 return -ENODEV;
4981
4982         /* parse add command */
4983         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4984         if (rc < 0)
4985                 goto err_out_module;
4986         read_only = rbd_opts->read_only;
4987         kfree(rbd_opts);
4988         rbd_opts = NULL;        /* done with this */
4989
4990         rbdc = rbd_get_client(ceph_opts);
4991         if (IS_ERR(rbdc)) {
4992                 rc = PTR_ERR(rbdc);
4993                 goto err_out_args;
4994         }
4995         ceph_opts = NULL;       /* rbd_dev client now owns this */
4996
4997         /* pick the pool */
4998         osdc = &rbdc->client->osdc;
4999         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5000         if (rc < 0)
5001                 goto err_out_client;
5002         spec->pool_id = (u64)rc;
5003
5004         /* The ceph file layout needs to fit pool id in 32 bits */
5005
5006         if (spec->pool_id > (u64)U32_MAX) {
5007                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5008                                 (unsigned long long)spec->pool_id, U32_MAX);
5009                 rc = -EIO;
5010                 goto err_out_client;
5011         }
5012
5013         rbd_dev = rbd_dev_create(rbdc, spec);
5014         if (!rbd_dev)
5015                 goto err_out_client;
5016         rbdc = NULL;            /* rbd_dev now owns this */
5017         spec = NULL;            /* rbd_dev now owns this */
5018
5019         rc = rbd_dev_image_probe(rbd_dev, true);
5020         if (rc < 0)
5021                 goto err_out_rbd_dev;
5022
5023         /* If we are mapping a snapshot it must be marked read-only */
5024
5025         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5026                 read_only = true;
5027         rbd_dev->mapping.read_only = read_only;
5028
5029         rc = rbd_dev_device_setup(rbd_dev);
5030         if (!rc)
5031                 return count;
5032
5033         rbd_dev_image_release(rbd_dev);
5034 err_out_rbd_dev:
5035         rbd_dev_destroy(rbd_dev);
5036 err_out_client:
5037         rbd_put_client(rbdc);
5038 err_out_args:
5039         if (ceph_opts)
5040                 ceph_destroy_options(ceph_opts);
5041         kfree(rbd_opts);
5042         rbd_spec_put(spec);
5043 err_out_module:
5044         module_put(THIS_MODULE);
5045
5046         dout("Error adding device %s\n", buf);
5047
5048         return (ssize_t)rc;
5049 }
5050
5051 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5052 {
5053         struct list_head *tmp;
5054         struct rbd_device *rbd_dev;
5055
5056         spin_lock(&rbd_dev_list_lock);
5057         list_for_each(tmp, &rbd_dev_list) {
5058                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5059                 if (rbd_dev->dev_id == dev_id) {
5060                         spin_unlock(&rbd_dev_list_lock);
5061                         return rbd_dev;
5062                 }
5063         }
5064         spin_unlock(&rbd_dev_list_lock);
5065         return NULL;
5066 }
5067
5068 static void rbd_dev_device_release(struct device *dev)
5069 {
5070         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5071
5072         rbd_free_disk(rbd_dev);
5073         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5074         rbd_dev_mapping_clear(rbd_dev);
5075         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5076         rbd_dev->major = 0;
5077         rbd_dev_id_put(rbd_dev);
5078         rbd_dev_mapping_clear(rbd_dev);
5079 }
5080
5081 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5082 {
5083         while (rbd_dev->parent) {
5084                 struct rbd_device *first = rbd_dev;
5085                 struct rbd_device *second = first->parent;
5086                 struct rbd_device *third;
5087
5088                 /*
5089                  * Follow to the parent with no grandparent and
5090                  * remove it.
5091                  */
5092                 while (second && (third = second->parent)) {
5093                         first = second;
5094                         second = third;
5095                 }
5096                 rbd_assert(second);
5097                 rbd_dev_image_release(second);
5098                 first->parent = NULL;
5099                 first->parent_overlap = 0;
5100
5101                 rbd_assert(first->parent_spec);
5102                 rbd_spec_put(first->parent_spec);
5103                 first->parent_spec = NULL;
5104         }
5105 }
5106
5107 static ssize_t rbd_remove(struct bus_type *bus,
5108                           const char *buf,
5109                           size_t count)
5110 {
5111         struct rbd_device *rbd_dev = NULL;
5112         int target_id;
5113         unsigned long ul;
5114         int ret;
5115
5116         ret = strict_strtoul(buf, 10, &ul);
5117         if (ret)
5118                 return ret;
5119
5120         /* convert to int; abort if we lost anything in the conversion */
5121         target_id = (int) ul;
5122         if (target_id != ul)
5123                 return -EINVAL;
5124
5125         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5126
5127         rbd_dev = __rbd_get_dev(target_id);
5128         if (!rbd_dev) {
5129                 ret = -ENOENT;
5130                 goto done;
5131         }
5132
5133         spin_lock_irq(&rbd_dev->lock);
5134         if (rbd_dev->open_count)
5135                 ret = -EBUSY;
5136         else
5137                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5138         spin_unlock_irq(&rbd_dev->lock);
5139         if (ret < 0)
5140                 goto done;
5141         rbd_bus_del_dev(rbd_dev);
5142         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5143         if (ret)
5144                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5145         rbd_dev_image_release(rbd_dev);
5146         module_put(THIS_MODULE);
5147         ret = count;
5148 done:
5149         mutex_unlock(&ctl_mutex);
5150
5151         return ret;
5152 }
5153
5154 /*
5155  * create control files in sysfs
5156  * /sys/bus/rbd/...
5157  */
5158 static int rbd_sysfs_init(void)
5159 {
5160         int ret;
5161
5162         ret = device_register(&rbd_root_dev);
5163         if (ret < 0)
5164                 return ret;
5165
5166         ret = bus_register(&rbd_bus_type);
5167         if (ret < 0)
5168                 device_unregister(&rbd_root_dev);
5169
5170         return ret;
5171 }
5172
5173 static void rbd_sysfs_cleanup(void)
5174 {
5175         bus_unregister(&rbd_bus_type);
5176         device_unregister(&rbd_root_dev);
5177 }
5178
5179 static int rbd_slab_init(void)
5180 {
5181         rbd_assert(!rbd_img_request_cache);
5182         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5183                                         sizeof (struct rbd_img_request),
5184                                         __alignof__(struct rbd_img_request),
5185                                         0, NULL);
5186         if (!rbd_img_request_cache)
5187                 return -ENOMEM;
5188
5189         rbd_assert(!rbd_obj_request_cache);
5190         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5191                                         sizeof (struct rbd_obj_request),
5192                                         __alignof__(struct rbd_obj_request),
5193                                         0, NULL);
5194         if (!rbd_obj_request_cache)
5195                 goto out_err;
5196
5197         rbd_assert(!rbd_segment_name_cache);
5198         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5199                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5200         if (rbd_segment_name_cache)
5201                 return 0;
5202 out_err:
5203         if (rbd_obj_request_cache) {
5204                 kmem_cache_destroy(rbd_obj_request_cache);
5205                 rbd_obj_request_cache = NULL;
5206         }
5207
5208         kmem_cache_destroy(rbd_img_request_cache);
5209         rbd_img_request_cache = NULL;
5210
5211         return -ENOMEM;
5212 }
5213
5214 static void rbd_slab_exit(void)
5215 {
5216         rbd_assert(rbd_segment_name_cache);
5217         kmem_cache_destroy(rbd_segment_name_cache);
5218         rbd_segment_name_cache = NULL;
5219
5220         rbd_assert(rbd_obj_request_cache);
5221         kmem_cache_destroy(rbd_obj_request_cache);
5222         rbd_obj_request_cache = NULL;
5223
5224         rbd_assert(rbd_img_request_cache);
5225         kmem_cache_destroy(rbd_img_request_cache);
5226         rbd_img_request_cache = NULL;
5227 }
5228
5229 static int __init rbd_init(void)
5230 {
5231         int rc;
5232
5233         if (!libceph_compatible(NULL)) {
5234                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5235
5236                 return -EINVAL;
5237         }
5238         rc = rbd_slab_init();
5239         if (rc)
5240                 return rc;
5241         rc = rbd_sysfs_init();
5242         if (rc)
5243                 rbd_slab_exit();
5244         else
5245                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5246
5247         return rc;
5248 }
5249
5250 static void __exit rbd_exit(void)
5251 {
5252         rbd_sysfs_cleanup();
5253         rbd_slab_exit();
5254 }
5255
5256 module_init(rbd_init);
5257 module_exit(rbd_exit);
5258
5259 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5260 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5261 MODULE_DESCRIPTION("rados block device");
5262
5263 /* following authorship retained from original osdblk.c */
5264 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5265
5266 MODULE_LICENSE("GPL");