]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
e95a92e89330122785b21b52f50530305de88e8b
[~andy/linux] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG       /* Activate rbd_assert() calls */
45
46 /*
47  * The basic unit of block I/O is a sector.  It is interpreted in a
48  * number of contexts in Linux (blk, bio, genhd), but the default is
49  * universally 512 bytes.  These symbols are just slightly more
50  * meaningful than the bare numbers they represent.
51  */
52 #define SECTOR_SHIFT    9
53 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN   \
62                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME      "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX    64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX  64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING      1
77
78 /* Features supported by this (client software) implementation. */
79
80 #define RBD_FEATURES_ALL          (0)
81
82 /*
83  * An RBD device name will be "rbd#", where the "rbd" comes from
84  * RBD_DRV_NAME above, and # is a unique integer identifier.
85  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
86  * enough to hold all possible device names.
87  */
88 #define DEV_NAME_LEN            32
89 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
90
91 /*
92  * block device image metadata (in-memory version)
93  */
94 struct rbd_image_header {
95         /* These four fields never change for a given rbd image */
96         char *object_prefix;
97         u64 features;
98         __u8 obj_order;
99         __u8 crypt_type;
100         __u8 comp_type;
101
102         /* The remaining fields need to be updated occasionally */
103         u64 image_size;
104         struct ceph_snap_context *snapc;
105         char *snap_names;
106         u64 *snap_sizes;
107
108         u64 obj_version;
109 };
110
111 /*
112  * An rbd image specification.
113  *
114  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
115  * identify an image.  Each rbd_dev structure includes a pointer to
116  * an rbd_spec structure that encapsulates this identity.
117  *
118  * Each of the id's in an rbd_spec has an associated name.  For a
119  * user-mapped image, the names are supplied and the id's associated
120  * with them are looked up.  For a layered image, a parent image is
121  * defined by the tuple, and the names are looked up.
122  *
123  * An rbd_dev structure contains a parent_spec pointer which is
124  * non-null if the image it represents is a child in a layered
125  * image.  This pointer will refer to the rbd_spec structure used
126  * by the parent rbd_dev for its own identity (i.e., the structure
127  * is shared between the parent and child).
128  *
129  * Since these structures are populated once, during the discovery
130  * phase of image construction, they are effectively immutable so
131  * we make no effort to synchronize access to them.
132  *
133  * Note that code herein does not assume the image name is known (it
134  * could be a null pointer).
135  */
136 struct rbd_spec {
137         u64             pool_id;
138         char            *pool_name;
139
140         char            *image_id;
141         char            *image_name;
142
143         u64             snap_id;
144         char            *snap_name;
145
146         struct kref     kref;
147 };
148
149 /*
150  * an instance of the client.  multiple devices may share an rbd client.
151  */
152 struct rbd_client {
153         struct ceph_client      *client;
154         struct kref             kref;
155         struct list_head        node;
156 };
157
158 struct rbd_img_request;
159 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
160
161 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
162
163 struct rbd_obj_request;
164 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
165
166 enum obj_request_type {
167         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
168 };
169
170 struct rbd_obj_request {
171         const char              *object_name;
172         u64                     offset;         /* object start byte */
173         u64                     length;         /* bytes from offset */
174
175         struct rbd_img_request  *img_request;
176         struct list_head        links;          /* img_request->obj_requests */
177         u32                     which;          /* posn image request list */
178
179         enum obj_request_type   type;
180         union {
181                 struct bio      *bio_list;
182                 struct {
183                         struct page     **pages;
184                         u32             page_count;
185                 };
186         };
187
188         struct ceph_osd_request *osd_req;
189
190         u64                     xferred;        /* bytes transferred */
191         u64                     version;
192         int                     result;
193         atomic_t                done;
194
195         rbd_obj_callback_t      callback;
196         struct completion       completion;
197
198         struct kref             kref;
199 };
200
201 struct rbd_img_request {
202         struct request          *rq;
203         struct rbd_device       *rbd_dev;
204         u64                     offset; /* starting image byte offset */
205         u64                     length; /* byte count from offset */
206         bool                    write_request;  /* false for read */
207         union {
208                 struct ceph_snap_context *snapc;        /* for writes */
209                 u64             snap_id;                /* for reads */
210         };
211         spinlock_t              completion_lock;/* protects next_completion */
212         u32                     next_completion;
213         rbd_img_callback_t      callback;
214
215         u32                     obj_request_count;
216         struct list_head        obj_requests;   /* rbd_obj_request structs */
217
218         struct kref             kref;
219 };
220
221 #define for_each_obj_request(ireq, oreq) \
222         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
223 #define for_each_obj_request_from(ireq, oreq) \
224         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
225 #define for_each_obj_request_safe(ireq, oreq, n) \
226         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
227
228 struct rbd_snap {
229         struct  device          dev;
230         const char              *name;
231         u64                     size;
232         struct list_head        node;
233         u64                     id;
234         u64                     features;
235 };
236
237 struct rbd_mapping {
238         u64                     size;
239         u64                     features;
240         bool                    read_only;
241 };
242
243 /*
244  * a single device
245  */
246 struct rbd_device {
247         int                     dev_id;         /* blkdev unique id */
248
249         int                     major;          /* blkdev assigned major */
250         struct gendisk          *disk;          /* blkdev's gendisk and rq */
251
252         u32                     image_format;   /* Either 1 or 2 */
253         struct rbd_client       *rbd_client;
254
255         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
256
257         spinlock_t              lock;           /* queue, flags, open_count */
258
259         struct rbd_image_header header;
260         unsigned long           flags;          /* possibly lock protected */
261         struct rbd_spec         *spec;
262
263         char                    *header_name;
264
265         struct ceph_file_layout layout;
266
267         struct ceph_osd_event   *watch_event;
268         struct rbd_obj_request  *watch_request;
269
270         struct rbd_spec         *parent_spec;
271         u64                     parent_overlap;
272
273         /* protects updating the header */
274         struct rw_semaphore     header_rwsem;
275
276         struct rbd_mapping      mapping;
277
278         struct list_head        node;
279
280         /* list of snapshots */
281         struct list_head        snaps;
282
283         /* sysfs related */
284         struct device           dev;
285         unsigned long           open_count;     /* protected by lock */
286 };
287
288 /*
289  * Flag bits for rbd_dev->flags.  If atomicity is required,
290  * rbd_dev->lock is used to protect access.
291  *
292  * Currently, only the "removing" flag (which is coupled with the
293  * "open_count" field) requires atomic access.
294  */
295 enum rbd_dev_flags {
296         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
297         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
298 };
299
300 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
301
302 static LIST_HEAD(rbd_dev_list);    /* devices */
303 static DEFINE_SPINLOCK(rbd_dev_list_lock);
304
305 static LIST_HEAD(rbd_client_list);              /* clients */
306 static DEFINE_SPINLOCK(rbd_client_list_lock);
307
308 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
309 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
310
311 static void rbd_dev_release(struct device *dev);
312 static void rbd_remove_snap_dev(struct rbd_snap *snap);
313
314 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
315                        size_t count);
316 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
317                           size_t count);
318
319 static struct bus_attribute rbd_bus_attrs[] = {
320         __ATTR(add, S_IWUSR, NULL, rbd_add),
321         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
322         __ATTR_NULL
323 };
324
325 static struct bus_type rbd_bus_type = {
326         .name           = "rbd",
327         .bus_attrs      = rbd_bus_attrs,
328 };
329
330 static void rbd_root_dev_release(struct device *dev)
331 {
332 }
333
334 static struct device rbd_root_dev = {
335         .init_name =    "rbd",
336         .release =      rbd_root_dev_release,
337 };
338
339 static __printf(2, 3)
340 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
341 {
342         struct va_format vaf;
343         va_list args;
344
345         va_start(args, fmt);
346         vaf.fmt = fmt;
347         vaf.va = &args;
348
349         if (!rbd_dev)
350                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
351         else if (rbd_dev->disk)
352                 printk(KERN_WARNING "%s: %s: %pV\n",
353                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
354         else if (rbd_dev->spec && rbd_dev->spec->image_name)
355                 printk(KERN_WARNING "%s: image %s: %pV\n",
356                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
357         else if (rbd_dev->spec && rbd_dev->spec->image_id)
358                 printk(KERN_WARNING "%s: id %s: %pV\n",
359                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
360         else    /* punt */
361                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
362                         RBD_DRV_NAME, rbd_dev, &vaf);
363         va_end(args);
364 }
365
366 #ifdef RBD_DEBUG
367 #define rbd_assert(expr)                                                \
368                 if (unlikely(!(expr))) {                                \
369                         printk(KERN_ERR "\nAssertion failure in %s() "  \
370                                                 "at line %d:\n\n"       \
371                                         "\trbd_assert(%s);\n\n",        \
372                                         __func__, __LINE__, #expr);     \
373                         BUG();                                          \
374                 }
375 #else /* !RBD_DEBUG */
376 #  define rbd_assert(expr)      ((void) 0)
377 #endif /* !RBD_DEBUG */
378
379 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
380 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
381
382 static int rbd_open(struct block_device *bdev, fmode_t mode)
383 {
384         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
385         bool removing = false;
386
387         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
388                 return -EROFS;
389
390         spin_lock_irq(&rbd_dev->lock);
391         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
392                 removing = true;
393         else
394                 rbd_dev->open_count++;
395         spin_unlock_irq(&rbd_dev->lock);
396         if (removing)
397                 return -ENOENT;
398
399         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
400         (void) get_device(&rbd_dev->dev);
401         set_device_ro(bdev, rbd_dev->mapping.read_only);
402         mutex_unlock(&ctl_mutex);
403
404         return 0;
405 }
406
407 static int rbd_release(struct gendisk *disk, fmode_t mode)
408 {
409         struct rbd_device *rbd_dev = disk->private_data;
410         unsigned long open_count_before;
411
412         spin_lock_irq(&rbd_dev->lock);
413         open_count_before = rbd_dev->open_count--;
414         spin_unlock_irq(&rbd_dev->lock);
415         rbd_assert(open_count_before > 0);
416
417         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
418         put_device(&rbd_dev->dev);
419         mutex_unlock(&ctl_mutex);
420
421         return 0;
422 }
423
424 static const struct block_device_operations rbd_bd_ops = {
425         .owner                  = THIS_MODULE,
426         .open                   = rbd_open,
427         .release                = rbd_release,
428 };
429
430 /*
431  * Initialize an rbd client instance.
432  * We own *ceph_opts.
433  */
434 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
435 {
436         struct rbd_client *rbdc;
437         int ret = -ENOMEM;
438
439         dout("%s:\n", __func__);
440         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
441         if (!rbdc)
442                 goto out_opt;
443
444         kref_init(&rbdc->kref);
445         INIT_LIST_HEAD(&rbdc->node);
446
447         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448
449         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
450         if (IS_ERR(rbdc->client))
451                 goto out_mutex;
452         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
453
454         ret = ceph_open_session(rbdc->client);
455         if (ret < 0)
456                 goto out_err;
457
458         spin_lock(&rbd_client_list_lock);
459         list_add_tail(&rbdc->node, &rbd_client_list);
460         spin_unlock(&rbd_client_list_lock);
461
462         mutex_unlock(&ctl_mutex);
463         dout("%s: rbdc %p\n", __func__, rbdc);
464
465         return rbdc;
466
467 out_err:
468         ceph_destroy_client(rbdc->client);
469 out_mutex:
470         mutex_unlock(&ctl_mutex);
471         kfree(rbdc);
472 out_opt:
473         if (ceph_opts)
474                 ceph_destroy_options(ceph_opts);
475         dout("%s: error %d\n", __func__, ret);
476
477         return ERR_PTR(ret);
478 }
479
480 /*
481  * Find a ceph client with specific addr and configuration.  If
482  * found, bump its reference count.
483  */
484 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
485 {
486         struct rbd_client *client_node;
487         bool found = false;
488
489         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
490                 return NULL;
491
492         spin_lock(&rbd_client_list_lock);
493         list_for_each_entry(client_node, &rbd_client_list, node) {
494                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
495                         kref_get(&client_node->kref);
496                         found = true;
497                         break;
498                 }
499         }
500         spin_unlock(&rbd_client_list_lock);
501
502         return found ? client_node : NULL;
503 }
504
505 /*
506  * mount options
507  */
508 enum {
509         Opt_last_int,
510         /* int args above */
511         Opt_last_string,
512         /* string args above */
513         Opt_read_only,
514         Opt_read_write,
515         /* Boolean args above */
516         Opt_last_bool,
517 };
518
519 static match_table_t rbd_opts_tokens = {
520         /* int args above */
521         /* string args above */
522         {Opt_read_only, "read_only"},
523         {Opt_read_only, "ro"},          /* Alternate spelling */
524         {Opt_read_write, "read_write"},
525         {Opt_read_write, "rw"},         /* Alternate spelling */
526         /* Boolean args above */
527         {-1, NULL}
528 };
529
530 struct rbd_options {
531         bool    read_only;
532 };
533
534 #define RBD_READ_ONLY_DEFAULT   false
535
536 static int parse_rbd_opts_token(char *c, void *private)
537 {
538         struct rbd_options *rbd_opts = private;
539         substring_t argstr[MAX_OPT_ARGS];
540         int token, intval, ret;
541
542         token = match_token(c, rbd_opts_tokens, argstr);
543         if (token < 0)
544                 return -EINVAL;
545
546         if (token < Opt_last_int) {
547                 ret = match_int(&argstr[0], &intval);
548                 if (ret < 0) {
549                         pr_err("bad mount option arg (not int) "
550                                "at '%s'\n", c);
551                         return ret;
552                 }
553                 dout("got int token %d val %d\n", token, intval);
554         } else if (token > Opt_last_int && token < Opt_last_string) {
555                 dout("got string token %d val %s\n", token,
556                      argstr[0].from);
557         } else if (token > Opt_last_string && token < Opt_last_bool) {
558                 dout("got Boolean token %d\n", token);
559         } else {
560                 dout("got token %d\n", token);
561         }
562
563         switch (token) {
564         case Opt_read_only:
565                 rbd_opts->read_only = true;
566                 break;
567         case Opt_read_write:
568                 rbd_opts->read_only = false;
569                 break;
570         default:
571                 rbd_assert(false);
572                 break;
573         }
574         return 0;
575 }
576
577 /*
578  * Get a ceph client with specific addr and configuration, if one does
579  * not exist create it.
580  */
581 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
582 {
583         struct rbd_client *rbdc;
584
585         rbdc = rbd_client_find(ceph_opts);
586         if (rbdc)       /* using an existing client */
587                 ceph_destroy_options(ceph_opts);
588         else
589                 rbdc = rbd_client_create(ceph_opts);
590
591         return rbdc;
592 }
593
594 /*
595  * Destroy ceph client
596  *
597  * Caller must hold rbd_client_list_lock.
598  */
599 static void rbd_client_release(struct kref *kref)
600 {
601         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
602
603         dout("%s: rbdc %p\n", __func__, rbdc);
604         spin_lock(&rbd_client_list_lock);
605         list_del(&rbdc->node);
606         spin_unlock(&rbd_client_list_lock);
607
608         ceph_destroy_client(rbdc->client);
609         kfree(rbdc);
610 }
611
612 /*
613  * Drop reference to ceph client node. If it's not referenced anymore, release
614  * it.
615  */
616 static void rbd_put_client(struct rbd_client *rbdc)
617 {
618         if (rbdc)
619                 kref_put(&rbdc->kref, rbd_client_release);
620 }
621
622 static bool rbd_image_format_valid(u32 image_format)
623 {
624         return image_format == 1 || image_format == 2;
625 }
626
627 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
628 {
629         size_t size;
630         u32 snap_count;
631
632         /* The header has to start with the magic rbd header text */
633         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
634                 return false;
635
636         /* The bio layer requires at least sector-sized I/O */
637
638         if (ondisk->options.order < SECTOR_SHIFT)
639                 return false;
640
641         /* If we use u64 in a few spots we may be able to loosen this */
642
643         if (ondisk->options.order > 8 * sizeof (int) - 1)
644                 return false;
645
646         /*
647          * The size of a snapshot header has to fit in a size_t, and
648          * that limits the number of snapshots.
649          */
650         snap_count = le32_to_cpu(ondisk->snap_count);
651         size = SIZE_MAX - sizeof (struct ceph_snap_context);
652         if (snap_count > size / sizeof (__le64))
653                 return false;
654
655         /*
656          * Not only that, but the size of the entire the snapshot
657          * header must also be representable in a size_t.
658          */
659         size -= snap_count * sizeof (__le64);
660         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
661                 return false;
662
663         return true;
664 }
665
666 /*
667  * Create a new header structure, translate header format from the on-disk
668  * header.
669  */
670 static int rbd_header_from_disk(struct rbd_image_header *header,
671                                  struct rbd_image_header_ondisk *ondisk)
672 {
673         u32 snap_count;
674         size_t len;
675         size_t size;
676         u32 i;
677
678         memset(header, 0, sizeof (*header));
679
680         snap_count = le32_to_cpu(ondisk->snap_count);
681
682         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
683         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
684         if (!header->object_prefix)
685                 return -ENOMEM;
686         memcpy(header->object_prefix, ondisk->object_prefix, len);
687         header->object_prefix[len] = '\0';
688
689         if (snap_count) {
690                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
691
692                 /* Save a copy of the snapshot names */
693
694                 if (snap_names_len > (u64) SIZE_MAX)
695                         return -EIO;
696                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
697                 if (!header->snap_names)
698                         goto out_err;
699                 /*
700                  * Note that rbd_dev_v1_header_read() guarantees
701                  * the ondisk buffer we're working with has
702                  * snap_names_len bytes beyond the end of the
703                  * snapshot id array, this memcpy() is safe.
704                  */
705                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
706                         snap_names_len);
707
708                 /* Record each snapshot's size */
709
710                 size = snap_count * sizeof (*header->snap_sizes);
711                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
712                 if (!header->snap_sizes)
713                         goto out_err;
714                 for (i = 0; i < snap_count; i++)
715                         header->snap_sizes[i] =
716                                 le64_to_cpu(ondisk->snaps[i].image_size);
717         } else {
718                 WARN_ON(ondisk->snap_names_len);
719                 header->snap_names = NULL;
720                 header->snap_sizes = NULL;
721         }
722
723         header->features = 0;   /* No features support in v1 images */
724         header->obj_order = ondisk->options.order;
725         header->crypt_type = ondisk->options.crypt_type;
726         header->comp_type = ondisk->options.comp_type;
727
728         /* Allocate and fill in the snapshot context */
729
730         header->image_size = le64_to_cpu(ondisk->image_size);
731         size = sizeof (struct ceph_snap_context);
732         size += snap_count * sizeof (header->snapc->snaps[0]);
733         header->snapc = kzalloc(size, GFP_KERNEL);
734         if (!header->snapc)
735                 goto out_err;
736
737         atomic_set(&header->snapc->nref, 1);
738         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
739         header->snapc->num_snaps = snap_count;
740         for (i = 0; i < snap_count; i++)
741                 header->snapc->snaps[i] =
742                         le64_to_cpu(ondisk->snaps[i].id);
743
744         return 0;
745
746 out_err:
747         kfree(header->snap_sizes);
748         header->snap_sizes = NULL;
749         kfree(header->snap_names);
750         header->snap_names = NULL;
751         kfree(header->object_prefix);
752         header->object_prefix = NULL;
753
754         return -ENOMEM;
755 }
756
757 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
758 {
759         struct rbd_snap *snap;
760
761         if (snap_id == CEPH_NOSNAP)
762                 return RBD_SNAP_HEAD_NAME;
763
764         list_for_each_entry(snap, &rbd_dev->snaps, node)
765                 if (snap_id == snap->id)
766                         return snap->name;
767
768         return NULL;
769 }
770
771 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
772 {
773
774         struct rbd_snap *snap;
775
776         list_for_each_entry(snap, &rbd_dev->snaps, node) {
777                 if (!strcmp(snap_name, snap->name)) {
778                         rbd_dev->spec->snap_id = snap->id;
779                         rbd_dev->mapping.size = snap->size;
780                         rbd_dev->mapping.features = snap->features;
781
782                         return 0;
783                 }
784         }
785
786         return -ENOENT;
787 }
788
789 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
790 {
791         int ret;
792
793         if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
794                     sizeof (RBD_SNAP_HEAD_NAME))) {
795                 rbd_dev->spec->snap_id = CEPH_NOSNAP;
796                 rbd_dev->mapping.size = rbd_dev->header.image_size;
797                 rbd_dev->mapping.features = rbd_dev->header.features;
798                 ret = 0;
799         } else {
800                 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
801                 if (ret < 0)
802                         goto done;
803                 rbd_dev->mapping.read_only = true;
804         }
805         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
806
807 done:
808         return ret;
809 }
810
811 static void rbd_header_free(struct rbd_image_header *header)
812 {
813         kfree(header->object_prefix);
814         header->object_prefix = NULL;
815         kfree(header->snap_sizes);
816         header->snap_sizes = NULL;
817         kfree(header->snap_names);
818         header->snap_names = NULL;
819         ceph_put_snap_context(header->snapc);
820         header->snapc = NULL;
821 }
822
823 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
824 {
825         char *name;
826         u64 segment;
827         int ret;
828
829         name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
830         if (!name)
831                 return NULL;
832         segment = offset >> rbd_dev->header.obj_order;
833         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
834                         rbd_dev->header.object_prefix, segment);
835         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
836                 pr_err("error formatting segment name for #%llu (%d)\n",
837                         segment, ret);
838                 kfree(name);
839                 name = NULL;
840         }
841
842         return name;
843 }
844
845 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
846 {
847         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
848
849         return offset & (segment_size - 1);
850 }
851
852 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
853                                 u64 offset, u64 length)
854 {
855         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
856
857         offset &= segment_size - 1;
858
859         rbd_assert(length <= U64_MAX - offset);
860         if (offset + length > segment_size)
861                 length = segment_size - offset;
862
863         return length;
864 }
865
866 /*
867  * returns the size of an object in the image
868  */
869 static u64 rbd_obj_bytes(struct rbd_image_header *header)
870 {
871         return 1 << header->obj_order;
872 }
873
874 /*
875  * bio helpers
876  */
877
878 static void bio_chain_put(struct bio *chain)
879 {
880         struct bio *tmp;
881
882         while (chain) {
883                 tmp = chain;
884                 chain = chain->bi_next;
885                 bio_put(tmp);
886         }
887 }
888
889 /*
890  * zeros a bio chain, starting at specific offset
891  */
892 static void zero_bio_chain(struct bio *chain, int start_ofs)
893 {
894         struct bio_vec *bv;
895         unsigned long flags;
896         void *buf;
897         int i;
898         int pos = 0;
899
900         while (chain) {
901                 bio_for_each_segment(bv, chain, i) {
902                         if (pos + bv->bv_len > start_ofs) {
903                                 int remainder = max(start_ofs - pos, 0);
904                                 buf = bvec_kmap_irq(bv, &flags);
905                                 memset(buf + remainder, 0,
906                                        bv->bv_len - remainder);
907                                 bvec_kunmap_irq(buf, &flags);
908                         }
909                         pos += bv->bv_len;
910                 }
911
912                 chain = chain->bi_next;
913         }
914 }
915
916 /*
917  * Clone a portion of a bio, starting at the given byte offset
918  * and continuing for the number of bytes indicated.
919  */
920 static struct bio *bio_clone_range(struct bio *bio_src,
921                                         unsigned int offset,
922                                         unsigned int len,
923                                         gfp_t gfpmask)
924 {
925         struct bio_vec *bv;
926         unsigned int resid;
927         unsigned short idx;
928         unsigned int voff;
929         unsigned short end_idx;
930         unsigned short vcnt;
931         struct bio *bio;
932
933         /* Handle the easy case for the caller */
934
935         if (!offset && len == bio_src->bi_size)
936                 return bio_clone(bio_src, gfpmask);
937
938         if (WARN_ON_ONCE(!len))
939                 return NULL;
940         if (WARN_ON_ONCE(len > bio_src->bi_size))
941                 return NULL;
942         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
943                 return NULL;
944
945         /* Find first affected segment... */
946
947         resid = offset;
948         __bio_for_each_segment(bv, bio_src, idx, 0) {
949                 if (resid < bv->bv_len)
950                         break;
951                 resid -= bv->bv_len;
952         }
953         voff = resid;
954
955         /* ...and the last affected segment */
956
957         resid += len;
958         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
959                 if (resid <= bv->bv_len)
960                         break;
961                 resid -= bv->bv_len;
962         }
963         vcnt = end_idx - idx + 1;
964
965         /* Build the clone */
966
967         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
968         if (!bio)
969                 return NULL;    /* ENOMEM */
970
971         bio->bi_bdev = bio_src->bi_bdev;
972         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
973         bio->bi_rw = bio_src->bi_rw;
974         bio->bi_flags |= 1 << BIO_CLONED;
975
976         /*
977          * Copy over our part of the bio_vec, then update the first
978          * and last (or only) entries.
979          */
980         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
981                         vcnt * sizeof (struct bio_vec));
982         bio->bi_io_vec[0].bv_offset += voff;
983         if (vcnt > 1) {
984                 bio->bi_io_vec[0].bv_len -= voff;
985                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
986         } else {
987                 bio->bi_io_vec[0].bv_len = len;
988         }
989
990         bio->bi_vcnt = vcnt;
991         bio->bi_size = len;
992         bio->bi_idx = 0;
993
994         return bio;
995 }
996
997 /*
998  * Clone a portion of a bio chain, starting at the given byte offset
999  * into the first bio in the source chain and continuing for the
1000  * number of bytes indicated.  The result is another bio chain of
1001  * exactly the given length, or a null pointer on error.
1002  *
1003  * The bio_src and offset parameters are both in-out.  On entry they
1004  * refer to the first source bio and the offset into that bio where
1005  * the start of data to be cloned is located.
1006  *
1007  * On return, bio_src is updated to refer to the bio in the source
1008  * chain that contains first un-cloned byte, and *offset will
1009  * contain the offset of that byte within that bio.
1010  */
1011 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1012                                         unsigned int *offset,
1013                                         unsigned int len,
1014                                         gfp_t gfpmask)
1015 {
1016         struct bio *bi = *bio_src;
1017         unsigned int off = *offset;
1018         struct bio *chain = NULL;
1019         struct bio **end;
1020
1021         /* Build up a chain of clone bios up to the limit */
1022
1023         if (!bi || off >= bi->bi_size || !len)
1024                 return NULL;            /* Nothing to clone */
1025
1026         end = &chain;
1027         while (len) {
1028                 unsigned int bi_size;
1029                 struct bio *bio;
1030
1031                 if (!bi) {
1032                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1033                         goto out_err;   /* EINVAL; ran out of bio's */
1034                 }
1035                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1036                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1037                 if (!bio)
1038                         goto out_err;   /* ENOMEM */
1039
1040                 *end = bio;
1041                 end = &bio->bi_next;
1042
1043                 off += bi_size;
1044                 if (off == bi->bi_size) {
1045                         bi = bi->bi_next;
1046                         off = 0;
1047                 }
1048                 len -= bi_size;
1049         }
1050         *bio_src = bi;
1051         *offset = off;
1052
1053         return chain;
1054 out_err:
1055         bio_chain_put(chain);
1056
1057         return NULL;
1058 }
1059
1060 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1061 {
1062         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1063                 atomic_read(&obj_request->kref.refcount));
1064         kref_get(&obj_request->kref);
1065 }
1066
1067 static void rbd_obj_request_destroy(struct kref *kref);
1068 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1069 {
1070         rbd_assert(obj_request != NULL);
1071         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1072                 atomic_read(&obj_request->kref.refcount));
1073         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1074 }
1075
1076 static void rbd_img_request_get(struct rbd_img_request *img_request)
1077 {
1078         dout("%s: img %p (was %d)\n", __func__, img_request,
1079                 atomic_read(&img_request->kref.refcount));
1080         kref_get(&img_request->kref);
1081 }
1082
1083 static void rbd_img_request_destroy(struct kref *kref);
1084 static void rbd_img_request_put(struct rbd_img_request *img_request)
1085 {
1086         rbd_assert(img_request != NULL);
1087         dout("%s: img %p (was %d)\n", __func__, img_request,
1088                 atomic_read(&img_request->kref.refcount));
1089         kref_put(&img_request->kref, rbd_img_request_destroy);
1090 }
1091
1092 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1093                                         struct rbd_obj_request *obj_request)
1094 {
1095         rbd_assert(obj_request->img_request == NULL);
1096
1097         rbd_obj_request_get(obj_request);
1098         obj_request->img_request = img_request;
1099         obj_request->which = img_request->obj_request_count;
1100         rbd_assert(obj_request->which != BAD_WHICH);
1101         img_request->obj_request_count++;
1102         list_add_tail(&obj_request->links, &img_request->obj_requests);
1103         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1104                 obj_request->which);
1105 }
1106
1107 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1108                                         struct rbd_obj_request *obj_request)
1109 {
1110         rbd_assert(obj_request->which != BAD_WHICH);
1111
1112         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1113                 obj_request->which);
1114         list_del(&obj_request->links);
1115         rbd_assert(img_request->obj_request_count > 0);
1116         img_request->obj_request_count--;
1117         rbd_assert(obj_request->which == img_request->obj_request_count);
1118         obj_request->which = BAD_WHICH;
1119         rbd_assert(obj_request->img_request == img_request);
1120         obj_request->img_request = NULL;
1121         obj_request->callback = NULL;
1122         rbd_obj_request_put(obj_request);
1123 }
1124
1125 static bool obj_request_type_valid(enum obj_request_type type)
1126 {
1127         switch (type) {
1128         case OBJ_REQUEST_NODATA:
1129         case OBJ_REQUEST_BIO:
1130         case OBJ_REQUEST_PAGES:
1131                 return true;
1132         default:
1133                 return false;
1134         }
1135 }
1136
1137 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1138                                 struct rbd_obj_request *obj_request)
1139 {
1140         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1141
1142         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1143 }
1144
1145 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1146 {
1147         dout("%s: img %p\n", __func__, img_request);
1148         if (img_request->callback)
1149                 img_request->callback(img_request);
1150         else
1151                 rbd_img_request_put(img_request);
1152 }
1153
1154 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1155
1156 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1157 {
1158         dout("%s: obj %p\n", __func__, obj_request);
1159
1160         return wait_for_completion_interruptible(&obj_request->completion);
1161 }
1162
1163 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1164 {
1165         atomic_set(&obj_request->done, 0);
1166         smp_wmb();
1167 }
1168
1169 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1170 {
1171         int done;
1172
1173         done = atomic_inc_return(&obj_request->done);
1174         if (done > 1) {
1175                 struct rbd_img_request *img_request = obj_request->img_request;
1176                 struct rbd_device *rbd_dev;
1177
1178                 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1179                 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1180                         obj_request);
1181         }
1182 }
1183
1184 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1185 {
1186         smp_mb();
1187         return atomic_read(&obj_request->done) != 0;
1188 }
1189
1190 static void
1191 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1192 {
1193         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1194                 obj_request, obj_request->img_request, obj_request->result,
1195                 obj_request->xferred, obj_request->length);
1196         /*
1197          * ENOENT means a hole in the image.  We zero-fill the
1198          * entire length of the request.  A short read also implies
1199          * zero-fill to the end of the request.  Either way we
1200          * update the xferred count to indicate the whole request
1201          * was satisfied.
1202          */
1203         BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1204         if (obj_request->result == -ENOENT) {
1205                 zero_bio_chain(obj_request->bio_list, 0);
1206                 obj_request->result = 0;
1207                 obj_request->xferred = obj_request->length;
1208         } else if (obj_request->xferred < obj_request->length &&
1209                         !obj_request->result) {
1210                 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1211                 obj_request->xferred = obj_request->length;
1212         }
1213         obj_request_done_set(obj_request);
1214 }
1215
1216 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1217 {
1218         dout("%s: obj %p cb %p\n", __func__, obj_request,
1219                 obj_request->callback);
1220         if (obj_request->callback)
1221                 obj_request->callback(obj_request);
1222         else
1223                 complete_all(&obj_request->completion);
1224 }
1225
1226 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1227 {
1228         dout("%s: obj %p\n", __func__, obj_request);
1229         obj_request_done_set(obj_request);
1230 }
1231
1232 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1233 {
1234         dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1235                 obj_request->result, obj_request->xferred, obj_request->length);
1236         if (obj_request->img_request)
1237                 rbd_img_obj_request_read_callback(obj_request);
1238         else
1239                 obj_request_done_set(obj_request);
1240 }
1241
1242 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1243 {
1244         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1245                 obj_request->result, obj_request->length);
1246         /*
1247          * There is no such thing as a successful short write.
1248          * Our xferred value is the number of bytes transferred
1249          * back.  Set it to our originally-requested length.
1250          */
1251         obj_request->xferred = obj_request->length;
1252         obj_request_done_set(obj_request);
1253 }
1254
1255 /*
1256  * For a simple stat call there's nothing to do.  We'll do more if
1257  * this is part of a write sequence for a layered image.
1258  */
1259 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1260 {
1261         dout("%s: obj %p\n", __func__, obj_request);
1262         obj_request_done_set(obj_request);
1263 }
1264
1265 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1266                                 struct ceph_msg *msg)
1267 {
1268         struct rbd_obj_request *obj_request = osd_req->r_priv;
1269         u16 opcode;
1270
1271         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1272         rbd_assert(osd_req == obj_request->osd_req);
1273         rbd_assert(!!obj_request->img_request ^
1274                                 (obj_request->which == BAD_WHICH));
1275
1276         if (osd_req->r_result < 0)
1277                 obj_request->result = osd_req->r_result;
1278         obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1279
1280         WARN_ON(osd_req->r_num_ops != 1);       /* For now */
1281
1282         /*
1283          * We support a 64-bit length, but ultimately it has to be
1284          * passed to blk_end_request(), which takes an unsigned int.
1285          */
1286         obj_request->xferred = osd_req->r_reply_op_len[0];
1287         rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1288         opcode = osd_req->r_request_ops[0].op;
1289         switch (opcode) {
1290         case CEPH_OSD_OP_READ:
1291                 rbd_osd_read_callback(obj_request);
1292                 break;
1293         case CEPH_OSD_OP_WRITE:
1294                 rbd_osd_write_callback(obj_request);
1295                 break;
1296         case CEPH_OSD_OP_STAT:
1297                 rbd_osd_stat_callback(obj_request);
1298                 break;
1299         case CEPH_OSD_OP_CALL:
1300         case CEPH_OSD_OP_NOTIFY_ACK:
1301         case CEPH_OSD_OP_WATCH:
1302                 rbd_osd_trivial_callback(obj_request);
1303                 break;
1304         default:
1305                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1306                         obj_request->object_name, (unsigned short) opcode);
1307                 break;
1308         }
1309
1310         if (obj_request_done_test(obj_request))
1311                 rbd_obj_request_complete(obj_request);
1312 }
1313
1314 static struct ceph_osd_request *rbd_osd_req_create(
1315                                         struct rbd_device *rbd_dev,
1316                                         bool write_request,
1317                                         struct rbd_obj_request *obj_request,
1318                                         struct ceph_osd_req_op *op)
1319 {
1320         struct rbd_img_request *img_request = obj_request->img_request;
1321         struct ceph_snap_context *snapc = NULL;
1322         struct ceph_osd_client *osdc;
1323         struct ceph_osd_request *osd_req;
1324         struct ceph_osd_data *osd_data;
1325         struct timespec now;
1326         struct timespec *mtime;
1327         u64 snap_id = CEPH_NOSNAP;
1328         u64 offset = obj_request->offset;
1329         u64 length = obj_request->length;
1330
1331         if (img_request) {
1332                 rbd_assert(img_request->write_request == write_request);
1333                 if (img_request->write_request)
1334                         snapc = img_request->snapc;
1335                 else
1336                         snap_id = img_request->snap_id;
1337         }
1338
1339         /* Allocate and initialize the request, for the single op */
1340
1341         osdc = &rbd_dev->rbd_client->client->osdc;
1342         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1343         if (!osd_req)
1344                 return NULL;    /* ENOMEM */
1345         osd_data = write_request ? &osd_req->r_data_out : &osd_req->r_data_in;
1346
1347         rbd_assert(obj_request_type_valid(obj_request->type));
1348         switch (obj_request->type) {
1349         case OBJ_REQUEST_NODATA:
1350                 break;          /* Nothing to do */
1351         case OBJ_REQUEST_BIO:
1352                 rbd_assert(obj_request->bio_list != NULL);
1353                 osd_data->type = CEPH_OSD_DATA_TYPE_BIO;
1354                 osd_data->bio = obj_request->bio_list;
1355                 osd_data->bio_length = obj_request->length;
1356                 break;
1357         case OBJ_REQUEST_PAGES:
1358                 osd_data->type = CEPH_OSD_DATA_TYPE_PAGES;
1359                 osd_data->pages = obj_request->pages;
1360                 osd_data->length = obj_request->length;
1361                 osd_data->alignment = offset & ~PAGE_MASK;
1362                 osd_data->pages_from_pool = false;
1363                 osd_data->own_pages = false;
1364                 break;
1365         }
1366
1367         if (write_request) {
1368                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1369                 now = CURRENT_TIME;
1370                 mtime = &now;
1371         } else {
1372                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1373                 mtime = NULL;   /* not needed for reads */
1374                 offset = 0;     /* These are not used... */
1375                 length = 0;     /* ...for osd read requests */
1376         }
1377
1378         osd_req->r_callback = rbd_osd_req_callback;
1379         osd_req->r_priv = obj_request;
1380
1381         osd_req->r_oid_len = strlen(obj_request->object_name);
1382         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1383         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1384
1385         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1386
1387         /* osd_req will get its own reference to snapc (if non-null) */
1388
1389         ceph_osdc_build_request(osd_req, offset, 1, op,
1390                                 snapc, snap_id, mtime);
1391
1392         return osd_req;
1393 }
1394
1395 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1396 {
1397         ceph_osdc_put_request(osd_req);
1398 }
1399
1400 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1401
1402 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1403                                                 u64 offset, u64 length,
1404                                                 enum obj_request_type type)
1405 {
1406         struct rbd_obj_request *obj_request;
1407         size_t size;
1408         char *name;
1409
1410         rbd_assert(obj_request_type_valid(type));
1411
1412         size = strlen(object_name) + 1;
1413         obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1414         if (!obj_request)
1415                 return NULL;
1416
1417         name = (char *)(obj_request + 1);
1418         obj_request->object_name = memcpy(name, object_name, size);
1419         obj_request->offset = offset;
1420         obj_request->length = length;
1421         obj_request->which = BAD_WHICH;
1422         obj_request->type = type;
1423         INIT_LIST_HEAD(&obj_request->links);
1424         obj_request_done_init(obj_request);
1425         init_completion(&obj_request->completion);
1426         kref_init(&obj_request->kref);
1427
1428         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1429                 offset, length, (int)type, obj_request);
1430
1431         return obj_request;
1432 }
1433
1434 static void rbd_obj_request_destroy(struct kref *kref)
1435 {
1436         struct rbd_obj_request *obj_request;
1437
1438         obj_request = container_of(kref, struct rbd_obj_request, kref);
1439
1440         dout("%s: obj %p\n", __func__, obj_request);
1441
1442         rbd_assert(obj_request->img_request == NULL);
1443         rbd_assert(obj_request->which == BAD_WHICH);
1444
1445         if (obj_request->osd_req)
1446                 rbd_osd_req_destroy(obj_request->osd_req);
1447
1448         rbd_assert(obj_request_type_valid(obj_request->type));
1449         switch (obj_request->type) {
1450         case OBJ_REQUEST_NODATA:
1451                 break;          /* Nothing to do */
1452         case OBJ_REQUEST_BIO:
1453                 if (obj_request->bio_list)
1454                         bio_chain_put(obj_request->bio_list);
1455                 break;
1456         case OBJ_REQUEST_PAGES:
1457                 if (obj_request->pages)
1458                         ceph_release_page_vector(obj_request->pages,
1459                                                 obj_request->page_count);
1460                 break;
1461         }
1462
1463         kfree(obj_request);
1464 }
1465
1466 /*
1467  * Caller is responsible for filling in the list of object requests
1468  * that comprises the image request, and the Linux request pointer
1469  * (if there is one).
1470  */
1471 static struct rbd_img_request *rbd_img_request_create(
1472                                         struct rbd_device *rbd_dev,
1473                                         u64 offset, u64 length,
1474                                         bool write_request)
1475 {
1476         struct rbd_img_request *img_request;
1477         struct ceph_snap_context *snapc = NULL;
1478
1479         img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1480         if (!img_request)
1481                 return NULL;
1482
1483         if (write_request) {
1484                 down_read(&rbd_dev->header_rwsem);
1485                 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1486                 up_read(&rbd_dev->header_rwsem);
1487                 if (WARN_ON(!snapc)) {
1488                         kfree(img_request);
1489                         return NULL;    /* Shouldn't happen */
1490                 }
1491         }
1492
1493         img_request->rq = NULL;
1494         img_request->rbd_dev = rbd_dev;
1495         img_request->offset = offset;
1496         img_request->length = length;
1497         img_request->write_request = write_request;
1498         if (write_request)
1499                 img_request->snapc = snapc;
1500         else
1501                 img_request->snap_id = rbd_dev->spec->snap_id;
1502         spin_lock_init(&img_request->completion_lock);
1503         img_request->next_completion = 0;
1504         img_request->callback = NULL;
1505         img_request->obj_request_count = 0;
1506         INIT_LIST_HEAD(&img_request->obj_requests);
1507         kref_init(&img_request->kref);
1508
1509         rbd_img_request_get(img_request);       /* Avoid a warning */
1510         rbd_img_request_put(img_request);       /* TEMPORARY */
1511
1512         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1513                 write_request ? "write" : "read", offset, length,
1514                 img_request);
1515
1516         return img_request;
1517 }
1518
1519 static void rbd_img_request_destroy(struct kref *kref)
1520 {
1521         struct rbd_img_request *img_request;
1522         struct rbd_obj_request *obj_request;
1523         struct rbd_obj_request *next_obj_request;
1524
1525         img_request = container_of(kref, struct rbd_img_request, kref);
1526
1527         dout("%s: img %p\n", __func__, img_request);
1528
1529         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1530                 rbd_img_obj_request_del(img_request, obj_request);
1531         rbd_assert(img_request->obj_request_count == 0);
1532
1533         if (img_request->write_request)
1534                 ceph_put_snap_context(img_request->snapc);
1535
1536         kfree(img_request);
1537 }
1538
1539 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1540                                         struct bio *bio_list)
1541 {
1542         struct rbd_device *rbd_dev = img_request->rbd_dev;
1543         struct rbd_obj_request *obj_request = NULL;
1544         struct rbd_obj_request *next_obj_request;
1545         unsigned int bio_offset;
1546         u64 image_offset;
1547         u64 resid;
1548         u16 opcode;
1549
1550         dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1551
1552         opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1553                                               : CEPH_OSD_OP_READ;
1554         bio_offset = 0;
1555         image_offset = img_request->offset;
1556         rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1557         resid = img_request->length;
1558         rbd_assert(resid > 0);
1559         while (resid) {
1560                 const char *object_name;
1561                 unsigned int clone_size;
1562                 struct ceph_osd_req_op op;
1563                 u64 offset;
1564                 u64 length;
1565
1566                 object_name = rbd_segment_name(rbd_dev, image_offset);
1567                 if (!object_name)
1568                         goto out_unwind;
1569                 offset = rbd_segment_offset(rbd_dev, image_offset);
1570                 length = rbd_segment_length(rbd_dev, image_offset, resid);
1571                 obj_request = rbd_obj_request_create(object_name,
1572                                                 offset, length,
1573                                                 OBJ_REQUEST_BIO);
1574                 kfree(object_name);     /* object request has its own copy */
1575                 if (!obj_request)
1576                         goto out_unwind;
1577
1578                 rbd_assert(length <= (u64) UINT_MAX);
1579                 clone_size = (unsigned int) length;
1580                 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1581                                                 &bio_offset, clone_size,
1582                                                 GFP_ATOMIC);
1583                 if (!obj_request->bio_list)
1584                         goto out_partial;
1585
1586                 /*
1587                  * Build up the op to use in building the osd
1588                  * request.  Note that the contents of the op are
1589                  * copied by rbd_osd_req_create().
1590                  */
1591                 osd_req_op_extent_init(&op, opcode, offset, length, 0, 0);
1592                 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1593                                                 img_request->write_request,
1594                                                 obj_request, &op);
1595                 if (!obj_request->osd_req)
1596                         goto out_partial;
1597                 /* status and version are initially zero-filled */
1598
1599                 rbd_img_obj_request_add(img_request, obj_request);
1600
1601                 image_offset += length;
1602                 resid -= length;
1603         }
1604
1605         return 0;
1606
1607 out_partial:
1608         rbd_obj_request_put(obj_request);
1609 out_unwind:
1610         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1611                 rbd_obj_request_put(obj_request);
1612
1613         return -ENOMEM;
1614 }
1615
1616 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1617 {
1618         struct rbd_img_request *img_request;
1619         u32 which = obj_request->which;
1620         bool more = true;
1621
1622         img_request = obj_request->img_request;
1623
1624         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1625         rbd_assert(img_request != NULL);
1626         rbd_assert(img_request->rq != NULL);
1627         rbd_assert(img_request->obj_request_count > 0);
1628         rbd_assert(which != BAD_WHICH);
1629         rbd_assert(which < img_request->obj_request_count);
1630         rbd_assert(which >= img_request->next_completion);
1631
1632         spin_lock_irq(&img_request->completion_lock);
1633         if (which != img_request->next_completion)
1634                 goto out;
1635
1636         for_each_obj_request_from(img_request, obj_request) {
1637                 unsigned int xferred;
1638                 int result;
1639
1640                 rbd_assert(more);
1641                 rbd_assert(which < img_request->obj_request_count);
1642
1643                 if (!obj_request_done_test(obj_request))
1644                         break;
1645
1646                 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1647                 xferred = (unsigned int) obj_request->xferred;
1648                 result = (int) obj_request->result;
1649                 if (result)
1650                         rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1651                                 img_request->write_request ? "write" : "read",
1652                                 result, xferred);
1653
1654                 more = blk_end_request(img_request->rq, result, xferred);
1655                 which++;
1656         }
1657
1658         rbd_assert(more ^ (which == img_request->obj_request_count));
1659         img_request->next_completion = which;
1660 out:
1661         spin_unlock_irq(&img_request->completion_lock);
1662
1663         if (!more)
1664                 rbd_img_request_complete(img_request);
1665 }
1666
1667 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1668 {
1669         struct rbd_device *rbd_dev = img_request->rbd_dev;
1670         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1671         struct rbd_obj_request *obj_request;
1672         struct rbd_obj_request *next_obj_request;
1673
1674         dout("%s: img %p\n", __func__, img_request);
1675         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1676                 int ret;
1677
1678                 obj_request->callback = rbd_img_obj_callback;
1679                 ret = rbd_obj_request_submit(osdc, obj_request);
1680                 if (ret)
1681                         return ret;
1682                 /*
1683                  * The image request has its own reference to each
1684                  * of its object requests, so we can safely drop the
1685                  * initial one here.
1686                  */
1687                 rbd_obj_request_put(obj_request);
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1694                                    u64 ver, u64 notify_id)
1695 {
1696         struct rbd_obj_request *obj_request;
1697         struct ceph_osd_req_op op;
1698         struct ceph_osd_client *osdc;
1699         int ret;
1700
1701         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1702                                                         OBJ_REQUEST_NODATA);
1703         if (!obj_request)
1704                 return -ENOMEM;
1705
1706         ret = -ENOMEM;
1707         osd_req_op_watch_init(&op, CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver, 0);
1708         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1709                                                 obj_request, &op);
1710         if (!obj_request->osd_req)
1711                 goto out;
1712
1713         osdc = &rbd_dev->rbd_client->client->osdc;
1714         obj_request->callback = rbd_obj_request_put;
1715         ret = rbd_obj_request_submit(osdc, obj_request);
1716 out:
1717         if (ret)
1718                 rbd_obj_request_put(obj_request);
1719
1720         return ret;
1721 }
1722
1723 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1724 {
1725         struct rbd_device *rbd_dev = (struct rbd_device *)data;
1726         u64 hver;
1727         int rc;
1728
1729         if (!rbd_dev)
1730                 return;
1731
1732         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1733                 rbd_dev->header_name, (unsigned long long) notify_id,
1734                 (unsigned int) opcode);
1735         rc = rbd_dev_refresh(rbd_dev, &hver);
1736         if (rc)
1737                 rbd_warn(rbd_dev, "got notification but failed to "
1738                            " update snaps: %d\n", rc);
1739
1740         rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1741 }
1742
1743 /*
1744  * Request sync osd watch/unwatch.  The value of "start" determines
1745  * whether a watch request is being initiated or torn down.
1746  */
1747 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1748 {
1749         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1750         struct rbd_obj_request *obj_request;
1751         struct ceph_osd_req_op op;
1752         int ret;
1753
1754         rbd_assert(start ^ !!rbd_dev->watch_event);
1755         rbd_assert(start ^ !!rbd_dev->watch_request);
1756
1757         if (start) {
1758                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1759                                                 &rbd_dev->watch_event);
1760                 if (ret < 0)
1761                         return ret;
1762                 rbd_assert(rbd_dev->watch_event != NULL);
1763         }
1764
1765         ret = -ENOMEM;
1766         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1767                                                         OBJ_REQUEST_NODATA);
1768         if (!obj_request)
1769                 goto out_cancel;
1770
1771         osd_req_op_watch_init(&op, CEPH_OSD_OP_WATCH,
1772                                 rbd_dev->watch_event->cookie,
1773                                 rbd_dev->header.obj_version, start);
1774         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1775                                                         obj_request, &op);
1776         if (!obj_request->osd_req)
1777                 goto out_cancel;
1778
1779         if (start)
1780                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1781         else
1782                 ceph_osdc_unregister_linger_request(osdc,
1783                                         rbd_dev->watch_request->osd_req);
1784         ret = rbd_obj_request_submit(osdc, obj_request);
1785         if (ret)
1786                 goto out_cancel;
1787         ret = rbd_obj_request_wait(obj_request);
1788         if (ret)
1789                 goto out_cancel;
1790         ret = obj_request->result;
1791         if (ret)
1792                 goto out_cancel;
1793
1794         /*
1795          * A watch request is set to linger, so the underlying osd
1796          * request won't go away until we unregister it.  We retain
1797          * a pointer to the object request during that time (in
1798          * rbd_dev->watch_request), so we'll keep a reference to
1799          * it.  We'll drop that reference (below) after we've
1800          * unregistered it.
1801          */
1802         if (start) {
1803                 rbd_dev->watch_request = obj_request;
1804
1805                 return 0;
1806         }
1807
1808         /* We have successfully torn down the watch request */
1809
1810         rbd_obj_request_put(rbd_dev->watch_request);
1811         rbd_dev->watch_request = NULL;
1812 out_cancel:
1813         /* Cancel the event if we're tearing down, or on error */
1814         ceph_osdc_cancel_event(rbd_dev->watch_event);
1815         rbd_dev->watch_event = NULL;
1816         if (obj_request)
1817                 rbd_obj_request_put(obj_request);
1818
1819         return ret;
1820 }
1821
1822 /*
1823  * Synchronous osd object method call
1824  */
1825 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1826                              const char *object_name,
1827                              const char *class_name,
1828                              const char *method_name,
1829                              const char *outbound,
1830                              size_t outbound_size,
1831                              char *inbound,
1832                              size_t inbound_size,
1833                              u64 *version)
1834 {
1835         struct rbd_obj_request *obj_request;
1836         struct ceph_osd_client *osdc;
1837         struct ceph_osd_req_op op;
1838         struct page **pages;
1839         u32 page_count;
1840         int ret;
1841
1842         /*
1843          * Method calls are ultimately read operations but they
1844          * don't involve object data (so no offset or length).
1845          * The result should placed into the inbound buffer
1846          * provided.  They also supply outbound data--parameters for
1847          * the object method.  Currently if this is present it will
1848          * be a snapshot id.
1849          */
1850         page_count = (u32) calc_pages_for(0, inbound_size);
1851         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1852         if (IS_ERR(pages))
1853                 return PTR_ERR(pages);
1854
1855         ret = -ENOMEM;
1856         obj_request = rbd_obj_request_create(object_name, 0, 0,
1857                                                         OBJ_REQUEST_PAGES);
1858         if (!obj_request)
1859                 goto out;
1860
1861         obj_request->pages = pages;
1862         obj_request->page_count = page_count;
1863
1864         osd_req_op_cls_init(&op, CEPH_OSD_OP_CALL, class_name, method_name,
1865                                         outbound, outbound_size);
1866         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1867                                                 obj_request, &op);
1868         if (!obj_request->osd_req)
1869                 goto out;
1870
1871         osdc = &rbd_dev->rbd_client->client->osdc;
1872         ret = rbd_obj_request_submit(osdc, obj_request);
1873         if (ret)
1874                 goto out;
1875         ret = rbd_obj_request_wait(obj_request);
1876         if (ret)
1877                 goto out;
1878
1879         ret = obj_request->result;
1880         if (ret < 0)
1881                 goto out;
1882         ret = 0;
1883         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1884         if (version)
1885                 *version = obj_request->version;
1886 out:
1887         if (obj_request)
1888                 rbd_obj_request_put(obj_request);
1889         else
1890                 ceph_release_page_vector(pages, page_count);
1891
1892         return ret;
1893 }
1894
1895 static void rbd_request_fn(struct request_queue *q)
1896                 __releases(q->queue_lock) __acquires(q->queue_lock)
1897 {
1898         struct rbd_device *rbd_dev = q->queuedata;
1899         bool read_only = rbd_dev->mapping.read_only;
1900         struct request *rq;
1901         int result;
1902
1903         while ((rq = blk_fetch_request(q))) {
1904                 bool write_request = rq_data_dir(rq) == WRITE;
1905                 struct rbd_img_request *img_request;
1906                 u64 offset;
1907                 u64 length;
1908
1909                 /* Ignore any non-FS requests that filter through. */
1910
1911                 if (rq->cmd_type != REQ_TYPE_FS) {
1912                         dout("%s: non-fs request type %d\n", __func__,
1913                                 (int) rq->cmd_type);
1914                         __blk_end_request_all(rq, 0);
1915                         continue;
1916                 }
1917
1918                 /* Ignore/skip any zero-length requests */
1919
1920                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1921                 length = (u64) blk_rq_bytes(rq);
1922
1923                 if (!length) {
1924                         dout("%s: zero-length request\n", __func__);
1925                         __blk_end_request_all(rq, 0);
1926                         continue;
1927                 }
1928
1929                 spin_unlock_irq(q->queue_lock);
1930
1931                 /* Disallow writes to a read-only device */
1932
1933                 if (write_request) {
1934                         result = -EROFS;
1935                         if (read_only)
1936                                 goto end_request;
1937                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1938                 }
1939
1940                 /*
1941                  * Quit early if the mapped snapshot no longer
1942                  * exists.  It's still possible the snapshot will
1943                  * have disappeared by the time our request arrives
1944                  * at the osd, but there's no sense in sending it if
1945                  * we already know.
1946                  */
1947                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1948                         dout("request for non-existent snapshot");
1949                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1950                         result = -ENXIO;
1951                         goto end_request;
1952                 }
1953
1954                 result = -EINVAL;
1955                 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1956                         goto end_request;       /* Shouldn't happen */
1957
1958                 result = -ENOMEM;
1959                 img_request = rbd_img_request_create(rbd_dev, offset, length,
1960                                                         write_request);
1961                 if (!img_request)
1962                         goto end_request;
1963
1964                 img_request->rq = rq;
1965
1966                 result = rbd_img_request_fill_bio(img_request, rq->bio);
1967                 if (!result)
1968                         result = rbd_img_request_submit(img_request);
1969                 if (result)
1970                         rbd_img_request_put(img_request);
1971 end_request:
1972                 spin_lock_irq(q->queue_lock);
1973                 if (result < 0) {
1974                         rbd_warn(rbd_dev, "obj_request %s result %d\n",
1975                                 write_request ? "write" : "read", result);
1976                         __blk_end_request_all(rq, result);
1977                 }
1978         }
1979 }
1980
1981 /*
1982  * a queue callback. Makes sure that we don't create a bio that spans across
1983  * multiple osd objects. One exception would be with a single page bios,
1984  * which we handle later at bio_chain_clone_range()
1985  */
1986 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1987                           struct bio_vec *bvec)
1988 {
1989         struct rbd_device *rbd_dev = q->queuedata;
1990         sector_t sector_offset;
1991         sector_t sectors_per_obj;
1992         sector_t obj_sector_offset;
1993         int ret;
1994
1995         /*
1996          * Find how far into its rbd object the partition-relative
1997          * bio start sector is to offset relative to the enclosing
1998          * device.
1999          */
2000         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2001         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2002         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2003
2004         /*
2005          * Compute the number of bytes from that offset to the end
2006          * of the object.  Account for what's already used by the bio.
2007          */
2008         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2009         if (ret > bmd->bi_size)
2010                 ret -= bmd->bi_size;
2011         else
2012                 ret = 0;
2013
2014         /*
2015          * Don't send back more than was asked for.  And if the bio
2016          * was empty, let the whole thing through because:  "Note
2017          * that a block device *must* allow a single page to be
2018          * added to an empty bio."
2019          */
2020         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2021         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2022                 ret = (int) bvec->bv_len;
2023
2024         return ret;
2025 }
2026
2027 static void rbd_free_disk(struct rbd_device *rbd_dev)
2028 {
2029         struct gendisk *disk = rbd_dev->disk;
2030
2031         if (!disk)
2032                 return;
2033
2034         if (disk->flags & GENHD_FL_UP)
2035                 del_gendisk(disk);
2036         if (disk->queue)
2037                 blk_cleanup_queue(disk->queue);
2038         put_disk(disk);
2039 }
2040
2041 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2042                                 const char *object_name,
2043                                 u64 offset, u64 length,
2044                                 char *buf, u64 *version)
2045
2046 {
2047         struct ceph_osd_req_op op;
2048         struct rbd_obj_request *obj_request;
2049         struct ceph_osd_client *osdc;
2050         struct page **pages = NULL;
2051         u32 page_count;
2052         size_t size;
2053         int ret;
2054
2055         page_count = (u32) calc_pages_for(offset, length);
2056         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2057         if (IS_ERR(pages))
2058                 ret = PTR_ERR(pages);
2059
2060         ret = -ENOMEM;
2061         obj_request = rbd_obj_request_create(object_name, offset, length,
2062                                                         OBJ_REQUEST_PAGES);
2063         if (!obj_request)
2064                 goto out;
2065
2066         obj_request->pages = pages;
2067         obj_request->page_count = page_count;
2068
2069         osd_req_op_extent_init(&op, CEPH_OSD_OP_READ, offset, length, 0, 0);
2070         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2071                                                 obj_request, &op);
2072         if (!obj_request->osd_req)
2073                 goto out;
2074
2075         osdc = &rbd_dev->rbd_client->client->osdc;
2076         ret = rbd_obj_request_submit(osdc, obj_request);
2077         if (ret)
2078                 goto out;
2079         ret = rbd_obj_request_wait(obj_request);
2080         if (ret)
2081                 goto out;
2082
2083         ret = obj_request->result;
2084         if (ret < 0)
2085                 goto out;
2086
2087         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2088         size = (size_t) obj_request->xferred;
2089         ceph_copy_from_page_vector(pages, buf, 0, size);
2090         rbd_assert(size <= (size_t) INT_MAX);
2091         ret = (int) size;
2092         if (version)
2093                 *version = obj_request->version;
2094 out:
2095         if (obj_request)
2096                 rbd_obj_request_put(obj_request);
2097         else
2098                 ceph_release_page_vector(pages, page_count);
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * Read the complete header for the given rbd device.
2105  *
2106  * Returns a pointer to a dynamically-allocated buffer containing
2107  * the complete and validated header.  Caller can pass the address
2108  * of a variable that will be filled in with the version of the
2109  * header object at the time it was read.
2110  *
2111  * Returns a pointer-coded errno if a failure occurs.
2112  */
2113 static struct rbd_image_header_ondisk *
2114 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2115 {
2116         struct rbd_image_header_ondisk *ondisk = NULL;
2117         u32 snap_count = 0;
2118         u64 names_size = 0;
2119         u32 want_count;
2120         int ret;
2121
2122         /*
2123          * The complete header will include an array of its 64-bit
2124          * snapshot ids, followed by the names of those snapshots as
2125          * a contiguous block of NUL-terminated strings.  Note that
2126          * the number of snapshots could change by the time we read
2127          * it in, in which case we re-read it.
2128          */
2129         do {
2130                 size_t size;
2131
2132                 kfree(ondisk);
2133
2134                 size = sizeof (*ondisk);
2135                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2136                 size += names_size;
2137                 ondisk = kmalloc(size, GFP_KERNEL);
2138                 if (!ondisk)
2139                         return ERR_PTR(-ENOMEM);
2140
2141                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2142                                        0, size,
2143                                        (char *) ondisk, version);
2144                 if (ret < 0)
2145                         goto out_err;
2146                 if (WARN_ON((size_t) ret < size)) {
2147                         ret = -ENXIO;
2148                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2149                                 size, ret);
2150                         goto out_err;
2151                 }
2152                 if (!rbd_dev_ondisk_valid(ondisk)) {
2153                         ret = -ENXIO;
2154                         rbd_warn(rbd_dev, "invalid header");
2155                         goto out_err;
2156                 }
2157
2158                 names_size = le64_to_cpu(ondisk->snap_names_len);
2159                 want_count = snap_count;
2160                 snap_count = le32_to_cpu(ondisk->snap_count);
2161         } while (snap_count != want_count);
2162
2163         return ondisk;
2164
2165 out_err:
2166         kfree(ondisk);
2167
2168         return ERR_PTR(ret);
2169 }
2170
2171 /*
2172  * reload the ondisk the header
2173  */
2174 static int rbd_read_header(struct rbd_device *rbd_dev,
2175                            struct rbd_image_header *header)
2176 {
2177         struct rbd_image_header_ondisk *ondisk;
2178         u64 ver = 0;
2179         int ret;
2180
2181         ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2182         if (IS_ERR(ondisk))
2183                 return PTR_ERR(ondisk);
2184         ret = rbd_header_from_disk(header, ondisk);
2185         if (ret >= 0)
2186                 header->obj_version = ver;
2187         kfree(ondisk);
2188
2189         return ret;
2190 }
2191
2192 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2193 {
2194         struct rbd_snap *snap;
2195         struct rbd_snap *next;
2196
2197         list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2198                 rbd_remove_snap_dev(snap);
2199 }
2200
2201 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2202 {
2203         sector_t size;
2204
2205         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2206                 return;
2207
2208         size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2209         dout("setting size to %llu sectors", (unsigned long long) size);
2210         rbd_dev->mapping.size = (u64) size;
2211         set_capacity(rbd_dev->disk, size);
2212 }
2213
2214 /*
2215  * only read the first part of the ondisk header, without the snaps info
2216  */
2217 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2218 {
2219         int ret;
2220         struct rbd_image_header h;
2221
2222         ret = rbd_read_header(rbd_dev, &h);
2223         if (ret < 0)
2224                 return ret;
2225
2226         down_write(&rbd_dev->header_rwsem);
2227
2228         /* Update image size, and check for resize of mapped image */
2229         rbd_dev->header.image_size = h.image_size;
2230         rbd_update_mapping_size(rbd_dev);
2231
2232         /* rbd_dev->header.object_prefix shouldn't change */
2233         kfree(rbd_dev->header.snap_sizes);
2234         kfree(rbd_dev->header.snap_names);
2235         /* osd requests may still refer to snapc */
2236         ceph_put_snap_context(rbd_dev->header.snapc);
2237
2238         if (hver)
2239                 *hver = h.obj_version;
2240         rbd_dev->header.obj_version = h.obj_version;
2241         rbd_dev->header.image_size = h.image_size;
2242         rbd_dev->header.snapc = h.snapc;
2243         rbd_dev->header.snap_names = h.snap_names;
2244         rbd_dev->header.snap_sizes = h.snap_sizes;
2245         /* Free the extra copy of the object prefix */
2246         WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2247         kfree(h.object_prefix);
2248
2249         ret = rbd_dev_snaps_update(rbd_dev);
2250         if (!ret)
2251                 ret = rbd_dev_snaps_register(rbd_dev);
2252
2253         up_write(&rbd_dev->header_rwsem);
2254
2255         return ret;
2256 }
2257
2258 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2259 {
2260         int ret;
2261
2262         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2263         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2264         if (rbd_dev->image_format == 1)
2265                 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2266         else
2267                 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2268         mutex_unlock(&ctl_mutex);
2269
2270         return ret;
2271 }
2272
2273 static int rbd_init_disk(struct rbd_device *rbd_dev)
2274 {
2275         struct gendisk *disk;
2276         struct request_queue *q;
2277         u64 segment_size;
2278
2279         /* create gendisk info */
2280         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2281         if (!disk)
2282                 return -ENOMEM;
2283
2284         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2285                  rbd_dev->dev_id);
2286         disk->major = rbd_dev->major;
2287         disk->first_minor = 0;
2288         disk->fops = &rbd_bd_ops;
2289         disk->private_data = rbd_dev;
2290
2291         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2292         if (!q)
2293                 goto out_disk;
2294
2295         /* We use the default size, but let's be explicit about it. */
2296         blk_queue_physical_block_size(q, SECTOR_SIZE);
2297
2298         /* set io sizes to object size */
2299         segment_size = rbd_obj_bytes(&rbd_dev->header);
2300         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2301         blk_queue_max_segment_size(q, segment_size);
2302         blk_queue_io_min(q, segment_size);
2303         blk_queue_io_opt(q, segment_size);
2304
2305         blk_queue_merge_bvec(q, rbd_merge_bvec);
2306         disk->queue = q;
2307
2308         q->queuedata = rbd_dev;
2309
2310         rbd_dev->disk = disk;
2311
2312         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2313
2314         return 0;
2315 out_disk:
2316         put_disk(disk);
2317
2318         return -ENOMEM;
2319 }
2320
2321 /*
2322   sysfs
2323 */
2324
2325 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2326 {
2327         return container_of(dev, struct rbd_device, dev);
2328 }
2329
2330 static ssize_t rbd_size_show(struct device *dev,
2331                              struct device_attribute *attr, char *buf)
2332 {
2333         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2334         sector_t size;
2335
2336         down_read(&rbd_dev->header_rwsem);
2337         size = get_capacity(rbd_dev->disk);
2338         up_read(&rbd_dev->header_rwsem);
2339
2340         return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2341 }
2342
2343 /*
2344  * Note this shows the features for whatever's mapped, which is not
2345  * necessarily the base image.
2346  */
2347 static ssize_t rbd_features_show(struct device *dev,
2348                              struct device_attribute *attr, char *buf)
2349 {
2350         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2351
2352         return sprintf(buf, "0x%016llx\n",
2353                         (unsigned long long) rbd_dev->mapping.features);
2354 }
2355
2356 static ssize_t rbd_major_show(struct device *dev,
2357                               struct device_attribute *attr, char *buf)
2358 {
2359         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2360
2361         return sprintf(buf, "%d\n", rbd_dev->major);
2362 }
2363
2364 static ssize_t rbd_client_id_show(struct device *dev,
2365                                   struct device_attribute *attr, char *buf)
2366 {
2367         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2368
2369         return sprintf(buf, "client%lld\n",
2370                         ceph_client_id(rbd_dev->rbd_client->client));
2371 }
2372
2373 static ssize_t rbd_pool_show(struct device *dev,
2374                              struct device_attribute *attr, char *buf)
2375 {
2376         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2377
2378         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2379 }
2380
2381 static ssize_t rbd_pool_id_show(struct device *dev,
2382                              struct device_attribute *attr, char *buf)
2383 {
2384         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2385
2386         return sprintf(buf, "%llu\n",
2387                 (unsigned long long) rbd_dev->spec->pool_id);
2388 }
2389
2390 static ssize_t rbd_name_show(struct device *dev,
2391                              struct device_attribute *attr, char *buf)
2392 {
2393         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2394
2395         if (rbd_dev->spec->image_name)
2396                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2397
2398         return sprintf(buf, "(unknown)\n");
2399 }
2400
2401 static ssize_t rbd_image_id_show(struct device *dev,
2402                              struct device_attribute *attr, char *buf)
2403 {
2404         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2405
2406         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2407 }
2408
2409 /*
2410  * Shows the name of the currently-mapped snapshot (or
2411  * RBD_SNAP_HEAD_NAME for the base image).
2412  */
2413 static ssize_t rbd_snap_show(struct device *dev,
2414                              struct device_attribute *attr,
2415                              char *buf)
2416 {
2417         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2418
2419         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2420 }
2421
2422 /*
2423  * For an rbd v2 image, shows the pool id, image id, and snapshot id
2424  * for the parent image.  If there is no parent, simply shows
2425  * "(no parent image)".
2426  */
2427 static ssize_t rbd_parent_show(struct device *dev,
2428                              struct device_attribute *attr,
2429                              char *buf)
2430 {
2431         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2432         struct rbd_spec *spec = rbd_dev->parent_spec;
2433         int count;
2434         char *bufp = buf;
2435
2436         if (!spec)
2437                 return sprintf(buf, "(no parent image)\n");
2438
2439         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2440                         (unsigned long long) spec->pool_id, spec->pool_name);
2441         if (count < 0)
2442                 return count;
2443         bufp += count;
2444
2445         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2446                         spec->image_name ? spec->image_name : "(unknown)");
2447         if (count < 0)
2448                 return count;
2449         bufp += count;
2450
2451         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2452                         (unsigned long long) spec->snap_id, spec->snap_name);
2453         if (count < 0)
2454                 return count;
2455         bufp += count;
2456
2457         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2458         if (count < 0)
2459                 return count;
2460         bufp += count;
2461
2462         return (ssize_t) (bufp - buf);
2463 }
2464
2465 static ssize_t rbd_image_refresh(struct device *dev,
2466                                  struct device_attribute *attr,
2467                                  const char *buf,
2468                                  size_t size)
2469 {
2470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2471         int ret;
2472
2473         ret = rbd_dev_refresh(rbd_dev, NULL);
2474
2475         return ret < 0 ? ret : size;
2476 }
2477
2478 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2479 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2480 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2481 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2482 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2483 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2484 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2485 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2486 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2487 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2488 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2489
2490 static struct attribute *rbd_attrs[] = {
2491         &dev_attr_size.attr,
2492         &dev_attr_features.attr,
2493         &dev_attr_major.attr,
2494         &dev_attr_client_id.attr,
2495         &dev_attr_pool.attr,
2496         &dev_attr_pool_id.attr,
2497         &dev_attr_name.attr,
2498         &dev_attr_image_id.attr,
2499         &dev_attr_current_snap.attr,
2500         &dev_attr_parent.attr,
2501         &dev_attr_refresh.attr,
2502         NULL
2503 };
2504
2505 static struct attribute_group rbd_attr_group = {
2506         .attrs = rbd_attrs,
2507 };
2508
2509 static const struct attribute_group *rbd_attr_groups[] = {
2510         &rbd_attr_group,
2511         NULL
2512 };
2513
2514 static void rbd_sysfs_dev_release(struct device *dev)
2515 {
2516 }
2517
2518 static struct device_type rbd_device_type = {
2519         .name           = "rbd",
2520         .groups         = rbd_attr_groups,
2521         .release        = rbd_sysfs_dev_release,
2522 };
2523
2524
2525 /*
2526   sysfs - snapshots
2527 */
2528
2529 static ssize_t rbd_snap_size_show(struct device *dev,
2530                                   struct device_attribute *attr,
2531                                   char *buf)
2532 {
2533         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2534
2535         return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2536 }
2537
2538 static ssize_t rbd_snap_id_show(struct device *dev,
2539                                 struct device_attribute *attr,
2540                                 char *buf)
2541 {
2542         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2543
2544         return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2545 }
2546
2547 static ssize_t rbd_snap_features_show(struct device *dev,
2548                                 struct device_attribute *attr,
2549                                 char *buf)
2550 {
2551         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2552
2553         return sprintf(buf, "0x%016llx\n",
2554                         (unsigned long long) snap->features);
2555 }
2556
2557 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2558 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2559 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2560
2561 static struct attribute *rbd_snap_attrs[] = {
2562         &dev_attr_snap_size.attr,
2563         &dev_attr_snap_id.attr,
2564         &dev_attr_snap_features.attr,
2565         NULL,
2566 };
2567
2568 static struct attribute_group rbd_snap_attr_group = {
2569         .attrs = rbd_snap_attrs,
2570 };
2571
2572 static void rbd_snap_dev_release(struct device *dev)
2573 {
2574         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2575         kfree(snap->name);
2576         kfree(snap);
2577 }
2578
2579 static const struct attribute_group *rbd_snap_attr_groups[] = {
2580         &rbd_snap_attr_group,
2581         NULL
2582 };
2583
2584 static struct device_type rbd_snap_device_type = {
2585         .groups         = rbd_snap_attr_groups,
2586         .release        = rbd_snap_dev_release,
2587 };
2588
2589 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2590 {
2591         kref_get(&spec->kref);
2592
2593         return spec;
2594 }
2595
2596 static void rbd_spec_free(struct kref *kref);
2597 static void rbd_spec_put(struct rbd_spec *spec)
2598 {
2599         if (spec)
2600                 kref_put(&spec->kref, rbd_spec_free);
2601 }
2602
2603 static struct rbd_spec *rbd_spec_alloc(void)
2604 {
2605         struct rbd_spec *spec;
2606
2607         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2608         if (!spec)
2609                 return NULL;
2610         kref_init(&spec->kref);
2611
2612         rbd_spec_put(rbd_spec_get(spec));       /* TEMPORARY */
2613
2614         return spec;
2615 }
2616
2617 static void rbd_spec_free(struct kref *kref)
2618 {
2619         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2620
2621         kfree(spec->pool_name);
2622         kfree(spec->image_id);
2623         kfree(spec->image_name);
2624         kfree(spec->snap_name);
2625         kfree(spec);
2626 }
2627
2628 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2629                                 struct rbd_spec *spec)
2630 {
2631         struct rbd_device *rbd_dev;
2632
2633         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2634         if (!rbd_dev)
2635                 return NULL;
2636
2637         spin_lock_init(&rbd_dev->lock);
2638         rbd_dev->flags = 0;
2639         INIT_LIST_HEAD(&rbd_dev->node);
2640         INIT_LIST_HEAD(&rbd_dev->snaps);
2641         init_rwsem(&rbd_dev->header_rwsem);
2642
2643         rbd_dev->spec = spec;
2644         rbd_dev->rbd_client = rbdc;
2645
2646         /* Initialize the layout used for all rbd requests */
2647
2648         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2649         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2650         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2651         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2652
2653         return rbd_dev;
2654 }
2655
2656 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2657 {
2658         rbd_spec_put(rbd_dev->parent_spec);
2659         kfree(rbd_dev->header_name);
2660         rbd_put_client(rbd_dev->rbd_client);
2661         rbd_spec_put(rbd_dev->spec);
2662         kfree(rbd_dev);
2663 }
2664
2665 static bool rbd_snap_registered(struct rbd_snap *snap)
2666 {
2667         bool ret = snap->dev.type == &rbd_snap_device_type;
2668         bool reg = device_is_registered(&snap->dev);
2669
2670         rbd_assert(!ret ^ reg);
2671
2672         return ret;
2673 }
2674
2675 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2676 {
2677         list_del(&snap->node);
2678         if (device_is_registered(&snap->dev))
2679                 device_unregister(&snap->dev);
2680 }
2681
2682 static int rbd_register_snap_dev(struct rbd_snap *snap,
2683                                   struct device *parent)
2684 {
2685         struct device *dev = &snap->dev;
2686         int ret;
2687
2688         dev->type = &rbd_snap_device_type;
2689         dev->parent = parent;
2690         dev->release = rbd_snap_dev_release;
2691         dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2692         dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2693
2694         ret = device_register(dev);
2695
2696         return ret;
2697 }
2698
2699 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2700                                                 const char *snap_name,
2701                                                 u64 snap_id, u64 snap_size,
2702                                                 u64 snap_features)
2703 {
2704         struct rbd_snap *snap;
2705         int ret;
2706
2707         snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2708         if (!snap)
2709                 return ERR_PTR(-ENOMEM);
2710
2711         ret = -ENOMEM;
2712         snap->name = kstrdup(snap_name, GFP_KERNEL);
2713         if (!snap->name)
2714                 goto err;
2715
2716         snap->id = snap_id;
2717         snap->size = snap_size;
2718         snap->features = snap_features;
2719
2720         return snap;
2721
2722 err:
2723         kfree(snap->name);
2724         kfree(snap);
2725
2726         return ERR_PTR(ret);
2727 }
2728
2729 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2730                 u64 *snap_size, u64 *snap_features)
2731 {
2732         char *snap_name;
2733
2734         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2735
2736         *snap_size = rbd_dev->header.snap_sizes[which];
2737         *snap_features = 0;     /* No features for v1 */
2738
2739         /* Skip over names until we find the one we are looking for */
2740
2741         snap_name = rbd_dev->header.snap_names;
2742         while (which--)
2743                 snap_name += strlen(snap_name) + 1;
2744
2745         return snap_name;
2746 }
2747
2748 /*
2749  * Get the size and object order for an image snapshot, or if
2750  * snap_id is CEPH_NOSNAP, gets this information for the base
2751  * image.
2752  */
2753 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2754                                 u8 *order, u64 *snap_size)
2755 {
2756         __le64 snapid = cpu_to_le64(snap_id);
2757         int ret;
2758         struct {
2759                 u8 order;
2760                 __le64 size;
2761         } __attribute__ ((packed)) size_buf = { 0 };
2762
2763         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2764                                 "rbd", "get_size",
2765                                 (char *) &snapid, sizeof (snapid),
2766                                 (char *) &size_buf, sizeof (size_buf), NULL);
2767         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2768         if (ret < 0)
2769                 return ret;
2770
2771         *order = size_buf.order;
2772         *snap_size = le64_to_cpu(size_buf.size);
2773
2774         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
2775                 (unsigned long long) snap_id, (unsigned int) *order,
2776                 (unsigned long long) *snap_size);
2777
2778         return 0;
2779 }
2780
2781 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2782 {
2783         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2784                                         &rbd_dev->header.obj_order,
2785                                         &rbd_dev->header.image_size);
2786 }
2787
2788 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2789 {
2790         void *reply_buf;
2791         int ret;
2792         void *p;
2793
2794         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2795         if (!reply_buf)
2796                 return -ENOMEM;
2797
2798         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2799                                 "rbd", "get_object_prefix",
2800                                 NULL, 0,
2801                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2802         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2803         if (ret < 0)
2804                 goto out;
2805
2806         p = reply_buf;
2807         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2808                                                 p + RBD_OBJ_PREFIX_LEN_MAX,
2809                                                 NULL, GFP_NOIO);
2810
2811         if (IS_ERR(rbd_dev->header.object_prefix)) {
2812                 ret = PTR_ERR(rbd_dev->header.object_prefix);
2813                 rbd_dev->header.object_prefix = NULL;
2814         } else {
2815                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
2816         }
2817
2818 out:
2819         kfree(reply_buf);
2820
2821         return ret;
2822 }
2823
2824 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2825                 u64 *snap_features)
2826 {
2827         __le64 snapid = cpu_to_le64(snap_id);
2828         struct {
2829                 __le64 features;
2830                 __le64 incompat;
2831         } features_buf = { 0 };
2832         u64 incompat;
2833         int ret;
2834
2835         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2836                                 "rbd", "get_features",
2837                                 (char *) &snapid, sizeof (snapid),
2838                                 (char *) &features_buf, sizeof (features_buf),
2839                                 NULL);
2840         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2841         if (ret < 0)
2842                 return ret;
2843
2844         incompat = le64_to_cpu(features_buf.incompat);
2845         if (incompat & ~RBD_FEATURES_ALL)
2846                 return -ENXIO;
2847
2848         *snap_features = le64_to_cpu(features_buf.features);
2849
2850         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2851                 (unsigned long long) snap_id,
2852                 (unsigned long long) *snap_features,
2853                 (unsigned long long) le64_to_cpu(features_buf.incompat));
2854
2855         return 0;
2856 }
2857
2858 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2859 {
2860         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2861                                                 &rbd_dev->header.features);
2862 }
2863
2864 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2865 {
2866         struct rbd_spec *parent_spec;
2867         size_t size;
2868         void *reply_buf = NULL;
2869         __le64 snapid;
2870         void *p;
2871         void *end;
2872         char *image_id;
2873         u64 overlap;
2874         int ret;
2875
2876         parent_spec = rbd_spec_alloc();
2877         if (!parent_spec)
2878                 return -ENOMEM;
2879
2880         size = sizeof (__le64) +                                /* pool_id */
2881                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
2882                 sizeof (__le64) +                               /* snap_id */
2883                 sizeof (__le64);                                /* overlap */
2884         reply_buf = kmalloc(size, GFP_KERNEL);
2885         if (!reply_buf) {
2886                 ret = -ENOMEM;
2887                 goto out_err;
2888         }
2889
2890         snapid = cpu_to_le64(CEPH_NOSNAP);
2891         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2892                                 "rbd", "get_parent",
2893                                 (char *) &snapid, sizeof (snapid),
2894                                 (char *) reply_buf, size, NULL);
2895         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2896         if (ret < 0)
2897                 goto out_err;
2898
2899         ret = -ERANGE;
2900         p = reply_buf;
2901         end = (char *) reply_buf + size;
2902         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2903         if (parent_spec->pool_id == CEPH_NOPOOL)
2904                 goto out;       /* No parent?  No problem. */
2905
2906         /* The ceph file layout needs to fit pool id in 32 bits */
2907
2908         ret = -EIO;
2909         if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2910                 goto out;
2911
2912         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2913         if (IS_ERR(image_id)) {
2914                 ret = PTR_ERR(image_id);
2915                 goto out_err;
2916         }
2917         parent_spec->image_id = image_id;
2918         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2919         ceph_decode_64_safe(&p, end, overlap, out_err);
2920
2921         rbd_dev->parent_overlap = overlap;
2922         rbd_dev->parent_spec = parent_spec;
2923         parent_spec = NULL;     /* rbd_dev now owns this */
2924 out:
2925         ret = 0;
2926 out_err:
2927         kfree(reply_buf);
2928         rbd_spec_put(parent_spec);
2929
2930         return ret;
2931 }
2932
2933 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2934 {
2935         size_t image_id_size;
2936         char *image_id;
2937         void *p;
2938         void *end;
2939         size_t size;
2940         void *reply_buf = NULL;
2941         size_t len = 0;
2942         char *image_name = NULL;
2943         int ret;
2944
2945         rbd_assert(!rbd_dev->spec->image_name);
2946
2947         len = strlen(rbd_dev->spec->image_id);
2948         image_id_size = sizeof (__le32) + len;
2949         image_id = kmalloc(image_id_size, GFP_KERNEL);
2950         if (!image_id)
2951                 return NULL;
2952
2953         p = image_id;
2954         end = (char *) image_id + image_id_size;
2955         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2956
2957         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2958         reply_buf = kmalloc(size, GFP_KERNEL);
2959         if (!reply_buf)
2960                 goto out;
2961
2962         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2963                                 "rbd", "dir_get_name",
2964                                 image_id, image_id_size,
2965                                 (char *) reply_buf, size, NULL);
2966         if (ret < 0)
2967                 goto out;
2968         p = reply_buf;
2969         end = (char *) reply_buf + size;
2970         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2971         if (IS_ERR(image_name))
2972                 image_name = NULL;
2973         else
2974                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2975 out:
2976         kfree(reply_buf);
2977         kfree(image_id);
2978
2979         return image_name;
2980 }
2981
2982 /*
2983  * When a parent image gets probed, we only have the pool, image,
2984  * and snapshot ids but not the names of any of them.  This call
2985  * is made later to fill in those names.  It has to be done after
2986  * rbd_dev_snaps_update() has completed because some of the
2987  * information (in particular, snapshot name) is not available
2988  * until then.
2989  */
2990 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2991 {
2992         struct ceph_osd_client *osdc;
2993         const char *name;
2994         void *reply_buf = NULL;
2995         int ret;
2996
2997         if (rbd_dev->spec->pool_name)
2998                 return 0;       /* Already have the names */
2999
3000         /* Look up the pool name */
3001
3002         osdc = &rbd_dev->rbd_client->client->osdc;
3003         name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3004         if (!name) {
3005                 rbd_warn(rbd_dev, "there is no pool with id %llu",
3006                         rbd_dev->spec->pool_id);        /* Really a BUG() */
3007                 return -EIO;
3008         }
3009
3010         rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3011         if (!rbd_dev->spec->pool_name)
3012                 return -ENOMEM;
3013
3014         /* Fetch the image name; tolerate failure here */
3015
3016         name = rbd_dev_image_name(rbd_dev);
3017         if (name)
3018                 rbd_dev->spec->image_name = (char *) name;
3019         else
3020                 rbd_warn(rbd_dev, "unable to get image name");
3021
3022         /* Look up the snapshot name. */
3023
3024         name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3025         if (!name) {
3026                 rbd_warn(rbd_dev, "no snapshot with id %llu",
3027                         rbd_dev->spec->snap_id);        /* Really a BUG() */
3028                 ret = -EIO;
3029                 goto out_err;
3030         }
3031         rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3032         if(!rbd_dev->spec->snap_name)
3033                 goto out_err;
3034
3035         return 0;
3036 out_err:
3037         kfree(reply_buf);
3038         kfree(rbd_dev->spec->pool_name);
3039         rbd_dev->spec->pool_name = NULL;
3040
3041         return ret;
3042 }
3043
3044 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3045 {
3046         size_t size;
3047         int ret;
3048         void *reply_buf;
3049         void *p;
3050         void *end;
3051         u64 seq;
3052         u32 snap_count;
3053         struct ceph_snap_context *snapc;
3054         u32 i;
3055
3056         /*
3057          * We'll need room for the seq value (maximum snapshot id),
3058          * snapshot count, and array of that many snapshot ids.
3059          * For now we have a fixed upper limit on the number we're
3060          * prepared to receive.
3061          */
3062         size = sizeof (__le64) + sizeof (__le32) +
3063                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3064         reply_buf = kzalloc(size, GFP_KERNEL);
3065         if (!reply_buf)
3066                 return -ENOMEM;
3067
3068         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3069                                 "rbd", "get_snapcontext",
3070                                 NULL, 0,
3071                                 reply_buf, size, ver);
3072         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3073         if (ret < 0)
3074                 goto out;
3075
3076         ret = -ERANGE;
3077         p = reply_buf;
3078         end = (char *) reply_buf + size;
3079         ceph_decode_64_safe(&p, end, seq, out);
3080         ceph_decode_32_safe(&p, end, snap_count, out);
3081
3082         /*
3083          * Make sure the reported number of snapshot ids wouldn't go
3084          * beyond the end of our buffer.  But before checking that,
3085          * make sure the computed size of the snapshot context we
3086          * allocate is representable in a size_t.
3087          */
3088         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3089                                  / sizeof (u64)) {
3090                 ret = -EINVAL;
3091                 goto out;
3092         }
3093         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3094                 goto out;
3095
3096         size = sizeof (struct ceph_snap_context) +
3097                                 snap_count * sizeof (snapc->snaps[0]);
3098         snapc = kmalloc(size, GFP_KERNEL);
3099         if (!snapc) {
3100                 ret = -ENOMEM;
3101                 goto out;
3102         }
3103
3104         atomic_set(&snapc->nref, 1);
3105         snapc->seq = seq;
3106         snapc->num_snaps = snap_count;
3107         for (i = 0; i < snap_count; i++)
3108                 snapc->snaps[i] = ceph_decode_64(&p);
3109
3110         rbd_dev->header.snapc = snapc;
3111
3112         dout("  snap context seq = %llu, snap_count = %u\n",
3113                 (unsigned long long) seq, (unsigned int) snap_count);
3114
3115 out:
3116         kfree(reply_buf);
3117
3118         return 0;
3119 }
3120
3121 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3122 {
3123         size_t size;
3124         void *reply_buf;
3125         __le64 snap_id;
3126         int ret;
3127         void *p;
3128         void *end;
3129         char *snap_name;
3130
3131         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3132         reply_buf = kmalloc(size, GFP_KERNEL);
3133         if (!reply_buf)
3134                 return ERR_PTR(-ENOMEM);
3135
3136         snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3137         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3138                                 "rbd", "get_snapshot_name",
3139                                 (char *) &snap_id, sizeof (snap_id),
3140                                 reply_buf, size, NULL);
3141         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3142         if (ret < 0)
3143                 goto out;
3144
3145         p = reply_buf;
3146         end = (char *) reply_buf + size;
3147         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3148         if (IS_ERR(snap_name)) {
3149                 ret = PTR_ERR(snap_name);
3150                 goto out;
3151         } else {
3152                 dout("  snap_id 0x%016llx snap_name = %s\n",
3153                         (unsigned long long) le64_to_cpu(snap_id), snap_name);
3154         }
3155         kfree(reply_buf);
3156
3157         return snap_name;
3158 out:
3159         kfree(reply_buf);
3160
3161         return ERR_PTR(ret);
3162 }
3163
3164 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3165                 u64 *snap_size, u64 *snap_features)
3166 {
3167         u64 snap_id;
3168         u8 order;
3169         int ret;
3170
3171         snap_id = rbd_dev->header.snapc->snaps[which];
3172         ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3173         if (ret)
3174                 return ERR_PTR(ret);
3175         ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3176         if (ret)
3177                 return ERR_PTR(ret);
3178
3179         return rbd_dev_v2_snap_name(rbd_dev, which);
3180 }
3181
3182 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3183                 u64 *snap_size, u64 *snap_features)
3184 {
3185         if (rbd_dev->image_format == 1)
3186                 return rbd_dev_v1_snap_info(rbd_dev, which,
3187                                         snap_size, snap_features);
3188         if (rbd_dev->image_format == 2)
3189                 return rbd_dev_v2_snap_info(rbd_dev, which,
3190                                         snap_size, snap_features);
3191         return ERR_PTR(-EINVAL);
3192 }
3193
3194 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3195 {
3196         int ret;
3197         __u8 obj_order;
3198
3199         down_write(&rbd_dev->header_rwsem);
3200
3201         /* Grab old order first, to see if it changes */
3202
3203         obj_order = rbd_dev->header.obj_order,
3204         ret = rbd_dev_v2_image_size(rbd_dev);
3205         if (ret)
3206                 goto out;
3207         if (rbd_dev->header.obj_order != obj_order) {
3208                 ret = -EIO;
3209                 goto out;
3210         }
3211         rbd_update_mapping_size(rbd_dev);
3212
3213         ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3214         dout("rbd_dev_v2_snap_context returned %d\n", ret);
3215         if (ret)
3216                 goto out;
3217         ret = rbd_dev_snaps_update(rbd_dev);
3218         dout("rbd_dev_snaps_update returned %d\n", ret);
3219         if (ret)
3220                 goto out;
3221         ret = rbd_dev_snaps_register(rbd_dev);
3222         dout("rbd_dev_snaps_register returned %d\n", ret);
3223 out:
3224         up_write(&rbd_dev->header_rwsem);
3225
3226         return ret;
3227 }
3228
3229 /*
3230  * Scan the rbd device's current snapshot list and compare it to the
3231  * newly-received snapshot context.  Remove any existing snapshots
3232  * not present in the new snapshot context.  Add a new snapshot for
3233  * any snaphots in the snapshot context not in the current list.
3234  * And verify there are no changes to snapshots we already know
3235  * about.
3236  *
3237  * Assumes the snapshots in the snapshot context are sorted by
3238  * snapshot id, highest id first.  (Snapshots in the rbd_dev's list
3239  * are also maintained in that order.)
3240  */
3241 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3242 {
3243         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3244         const u32 snap_count = snapc->num_snaps;
3245         struct list_head *head = &rbd_dev->snaps;
3246         struct list_head *links = head->next;
3247         u32 index = 0;
3248
3249         dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3250         while (index < snap_count || links != head) {
3251                 u64 snap_id;
3252                 struct rbd_snap *snap;
3253                 char *snap_name;
3254                 u64 snap_size = 0;
3255                 u64 snap_features = 0;
3256
3257                 snap_id = index < snap_count ? snapc->snaps[index]
3258                                              : CEPH_NOSNAP;
3259                 snap = links != head ? list_entry(links, struct rbd_snap, node)
3260                                      : NULL;
3261                 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3262
3263                 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3264                         struct list_head *next = links->next;
3265
3266                         /*
3267                          * A previously-existing snapshot is not in
3268                          * the new snap context.
3269                          *
3270                          * If the now missing snapshot is the one the
3271                          * image is mapped to, clear its exists flag
3272                          * so we can avoid sending any more requests
3273                          * to it.
3274                          */
3275                         if (rbd_dev->spec->snap_id == snap->id)
3276                                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3277                         rbd_remove_snap_dev(snap);
3278                         dout("%ssnap id %llu has been removed\n",
3279                                 rbd_dev->spec->snap_id == snap->id ?
3280                                                         "mapped " : "",
3281                                 (unsigned long long) snap->id);
3282
3283                         /* Done with this list entry; advance */
3284
3285                         links = next;
3286                         continue;
3287                 }
3288
3289                 snap_name = rbd_dev_snap_info(rbd_dev, index,
3290                                         &snap_size, &snap_features);
3291                 if (IS_ERR(snap_name))
3292                         return PTR_ERR(snap_name);
3293
3294                 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3295                         (unsigned long long) snap_id);
3296                 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3297                         struct rbd_snap *new_snap;
3298
3299                         /* We haven't seen this snapshot before */
3300
3301                         new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3302                                         snap_id, snap_size, snap_features);
3303                         if (IS_ERR(new_snap)) {
3304                                 int err = PTR_ERR(new_snap);
3305
3306                                 dout("  failed to add dev, error %d\n", err);
3307
3308                                 return err;
3309                         }
3310
3311                         /* New goes before existing, or at end of list */
3312
3313                         dout("  added dev%s\n", snap ? "" : " at end\n");
3314                         if (snap)
3315                                 list_add_tail(&new_snap->node, &snap->node);
3316                         else
3317                                 list_add_tail(&new_snap->node, head);
3318                 } else {
3319                         /* Already have this one */
3320
3321                         dout("  already present\n");
3322
3323                         rbd_assert(snap->size == snap_size);
3324                         rbd_assert(!strcmp(snap->name, snap_name));
3325                         rbd_assert(snap->features == snap_features);
3326
3327                         /* Done with this list entry; advance */
3328
3329                         links = links->next;
3330                 }
3331
3332                 /* Advance to the next entry in the snapshot context */
3333
3334                 index++;
3335         }
3336         dout("%s: done\n", __func__);
3337
3338         return 0;
3339 }
3340
3341 /*
3342  * Scan the list of snapshots and register the devices for any that
3343  * have not already been registered.
3344  */
3345 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3346 {
3347         struct rbd_snap *snap;
3348         int ret = 0;
3349
3350         dout("%s:\n", __func__);
3351         if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3352                 return -EIO;
3353
3354         list_for_each_entry(snap, &rbd_dev->snaps, node) {
3355                 if (!rbd_snap_registered(snap)) {
3356                         ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3357                         if (ret < 0)
3358                                 break;
3359                 }
3360         }
3361         dout("%s: returning %d\n", __func__, ret);
3362
3363         return ret;
3364 }
3365
3366 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3367 {
3368         struct device *dev;
3369         int ret;
3370
3371         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3372
3373         dev = &rbd_dev->dev;
3374         dev->bus = &rbd_bus_type;
3375         dev->type = &rbd_device_type;
3376         dev->parent = &rbd_root_dev;
3377         dev->release = rbd_dev_release;
3378         dev_set_name(dev, "%d", rbd_dev->dev_id);
3379         ret = device_register(dev);
3380
3381         mutex_unlock(&ctl_mutex);
3382
3383         return ret;
3384 }
3385
3386 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3387 {
3388         device_unregister(&rbd_dev->dev);
3389 }
3390
3391 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3392
3393 /*
3394  * Get a unique rbd identifier for the given new rbd_dev, and add
3395  * the rbd_dev to the global list.  The minimum rbd id is 1.
3396  */
3397 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3398 {
3399         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3400
3401         spin_lock(&rbd_dev_list_lock);
3402         list_add_tail(&rbd_dev->node, &rbd_dev_list);
3403         spin_unlock(&rbd_dev_list_lock);
3404         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3405                 (unsigned long long) rbd_dev->dev_id);
3406 }
3407
3408 /*
3409  * Remove an rbd_dev from the global list, and record that its
3410  * identifier is no longer in use.
3411  */
3412 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3413 {
3414         struct list_head *tmp;
3415         int rbd_id = rbd_dev->dev_id;
3416         int max_id;
3417
3418         rbd_assert(rbd_id > 0);
3419
3420         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3421                 (unsigned long long) rbd_dev->dev_id);
3422         spin_lock(&rbd_dev_list_lock);
3423         list_del_init(&rbd_dev->node);
3424
3425         /*
3426          * If the id being "put" is not the current maximum, there
3427          * is nothing special we need to do.
3428          */
3429         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3430                 spin_unlock(&rbd_dev_list_lock);
3431                 return;
3432         }
3433
3434         /*
3435          * We need to update the current maximum id.  Search the
3436          * list to find out what it is.  We're more likely to find
3437          * the maximum at the end, so search the list backward.
3438          */
3439         max_id = 0;
3440         list_for_each_prev(tmp, &rbd_dev_list) {
3441                 struct rbd_device *rbd_dev;
3442
3443                 rbd_dev = list_entry(tmp, struct rbd_device, node);
3444                 if (rbd_dev->dev_id > max_id)
3445                         max_id = rbd_dev->dev_id;
3446         }
3447         spin_unlock(&rbd_dev_list_lock);
3448
3449         /*
3450          * The max id could have been updated by rbd_dev_id_get(), in
3451          * which case it now accurately reflects the new maximum.
3452          * Be careful not to overwrite the maximum value in that
3453          * case.
3454          */
3455         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3456         dout("  max dev id has been reset\n");
3457 }
3458
3459 /*
3460  * Skips over white space at *buf, and updates *buf to point to the
3461  * first found non-space character (if any). Returns the length of
3462  * the token (string of non-white space characters) found.  Note
3463  * that *buf must be terminated with '\0'.
3464  */
3465 static inline size_t next_token(const char **buf)
3466 {
3467         /*
3468         * These are the characters that produce nonzero for
3469         * isspace() in the "C" and "POSIX" locales.
3470         */
3471         const char *spaces = " \f\n\r\t\v";
3472
3473         *buf += strspn(*buf, spaces);   /* Find start of token */
3474
3475         return strcspn(*buf, spaces);   /* Return token length */
3476 }
3477
3478 /*
3479  * Finds the next token in *buf, and if the provided token buffer is
3480  * big enough, copies the found token into it.  The result, if
3481  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
3482  * must be terminated with '\0' on entry.
3483  *
3484  * Returns the length of the token found (not including the '\0').
3485  * Return value will be 0 if no token is found, and it will be >=
3486  * token_size if the token would not fit.
3487  *
3488  * The *buf pointer will be updated to point beyond the end of the
3489  * found token.  Note that this occurs even if the token buffer is
3490  * too small to hold it.
3491  */
3492 static inline size_t copy_token(const char **buf,
3493                                 char *token,
3494                                 size_t token_size)
3495 {
3496         size_t len;
3497
3498         len = next_token(buf);
3499         if (len < token_size) {
3500                 memcpy(token, *buf, len);
3501                 *(token + len) = '\0';
3502         }
3503         *buf += len;
3504
3505         return len;
3506 }
3507
3508 /*
3509  * Finds the next token in *buf, dynamically allocates a buffer big
3510  * enough to hold a copy of it, and copies the token into the new
3511  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
3512  * that a duplicate buffer is created even for a zero-length token.
3513  *
3514  * Returns a pointer to the newly-allocated duplicate, or a null
3515  * pointer if memory for the duplicate was not available.  If
3516  * the lenp argument is a non-null pointer, the length of the token
3517  * (not including the '\0') is returned in *lenp.
3518  *
3519  * If successful, the *buf pointer will be updated to point beyond
3520  * the end of the found token.
3521  *
3522  * Note: uses GFP_KERNEL for allocation.
3523  */
3524 static inline char *dup_token(const char **buf, size_t *lenp)
3525 {
3526         char *dup;
3527         size_t len;
3528
3529         len = next_token(buf);
3530         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3531         if (!dup)
3532                 return NULL;
3533         *(dup + len) = '\0';
3534         *buf += len;
3535
3536         if (lenp)
3537                 *lenp = len;
3538
3539         return dup;
3540 }
3541
3542 /*
3543  * Parse the options provided for an "rbd add" (i.e., rbd image
3544  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
3545  * and the data written is passed here via a NUL-terminated buffer.
3546  * Returns 0 if successful or an error code otherwise.
3547  *
3548  * The information extracted from these options is recorded in
3549  * the other parameters which return dynamically-allocated
3550  * structures:
3551  *  ceph_opts
3552  *      The address of a pointer that will refer to a ceph options
3553  *      structure.  Caller must release the returned pointer using
3554  *      ceph_destroy_options() when it is no longer needed.
3555  *  rbd_opts
3556  *      Address of an rbd options pointer.  Fully initialized by
3557  *      this function; caller must release with kfree().
3558  *  spec
3559  *      Address of an rbd image specification pointer.  Fully
3560  *      initialized by this function based on parsed options.
3561  *      Caller must release with rbd_spec_put().
3562  *
3563  * The options passed take this form:
3564  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3565  * where:
3566  *  <mon_addrs>
3567  *      A comma-separated list of one or more monitor addresses.
3568  *      A monitor address is an ip address, optionally followed
3569  *      by a port number (separated by a colon).
3570  *        I.e.:  ip1[:port1][,ip2[:port2]...]
3571  *  <options>
3572  *      A comma-separated list of ceph and/or rbd options.
3573  *  <pool_name>
3574  *      The name of the rados pool containing the rbd image.
3575  *  <image_name>
3576  *      The name of the image in that pool to map.
3577  *  <snap_id>
3578  *      An optional snapshot id.  If provided, the mapping will
3579  *      present data from the image at the time that snapshot was
3580  *      created.  The image head is used if no snapshot id is
3581  *      provided.  Snapshot mappings are always read-only.
3582  */
3583 static int rbd_add_parse_args(const char *buf,
3584                                 struct ceph_options **ceph_opts,
3585                                 struct rbd_options **opts,
3586                                 struct rbd_spec **rbd_spec)
3587 {
3588         size_t len;
3589         char *options;
3590         const char *mon_addrs;
3591         size_t mon_addrs_size;
3592         struct rbd_spec *spec = NULL;
3593         struct rbd_options *rbd_opts = NULL;
3594         struct ceph_options *copts;
3595         int ret;
3596
3597         /* The first four tokens are required */
3598
3599         len = next_token(&buf);
3600         if (!len) {
3601                 rbd_warn(NULL, "no monitor address(es) provided");
3602                 return -EINVAL;
3603         }
3604         mon_addrs = buf;
3605         mon_addrs_size = len + 1;
3606         buf += len;
3607
3608         ret = -EINVAL;
3609         options = dup_token(&buf, NULL);
3610         if (!options)
3611                 return -ENOMEM;
3612         if (!*options) {
3613                 rbd_warn(NULL, "no options provided");
3614                 goto out_err;
3615         }
3616
3617         spec = rbd_spec_alloc();
3618         if (!spec)
3619                 goto out_mem;
3620
3621         spec->pool_name = dup_token(&buf, NULL);
3622         if (!spec->pool_name)
3623                 goto out_mem;
3624         if (!*spec->pool_name) {
3625                 rbd_warn(NULL, "no pool name provided");
3626                 goto out_err;
3627         }
3628
3629         spec->image_name = dup_token(&buf, NULL);
3630         if (!spec->image_name)
3631                 goto out_mem;
3632         if (!*spec->image_name) {
3633                 rbd_warn(NULL, "no image name provided");
3634                 goto out_err;
3635         }
3636
3637         /*
3638          * Snapshot name is optional; default is to use "-"
3639          * (indicating the head/no snapshot).
3640          */
3641         len = next_token(&buf);
3642         if (!len) {
3643                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3644                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3645         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3646                 ret = -ENAMETOOLONG;
3647                 goto out_err;
3648         }
3649         spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3650         if (!spec->snap_name)
3651                 goto out_mem;
3652         *(spec->snap_name + len) = '\0';
3653
3654         /* Initialize all rbd options to the defaults */
3655
3656         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3657         if (!rbd_opts)
3658                 goto out_mem;
3659
3660         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3661
3662         copts = ceph_parse_options(options, mon_addrs,
3663                                         mon_addrs + mon_addrs_size - 1,
3664                                         parse_rbd_opts_token, rbd_opts);
3665         if (IS_ERR(copts)) {
3666                 ret = PTR_ERR(copts);
3667                 goto out_err;
3668         }
3669         kfree(options);
3670
3671         *ceph_opts = copts;
3672         *opts = rbd_opts;
3673         *rbd_spec = spec;
3674
3675         return 0;
3676 out_mem:
3677         ret = -ENOMEM;
3678 out_err:
3679         kfree(rbd_opts);
3680         rbd_spec_put(spec);
3681         kfree(options);
3682
3683         return ret;
3684 }
3685
3686 /*
3687  * An rbd format 2 image has a unique identifier, distinct from the
3688  * name given to it by the user.  Internally, that identifier is
3689  * what's used to specify the names of objects related to the image.
3690  *
3691  * A special "rbd id" object is used to map an rbd image name to its
3692  * id.  If that object doesn't exist, then there is no v2 rbd image
3693  * with the supplied name.
3694  *
3695  * This function will record the given rbd_dev's image_id field if
3696  * it can be determined, and in that case will return 0.  If any
3697  * errors occur a negative errno will be returned and the rbd_dev's
3698  * image_id field will be unchanged (and should be NULL).
3699  */
3700 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3701 {
3702         int ret;
3703         size_t size;
3704         char *object_name;
3705         void *response;
3706         void *p;
3707
3708         /*
3709          * When probing a parent image, the image id is already
3710          * known (and the image name likely is not).  There's no
3711          * need to fetch the image id again in this case.
3712          */
3713         if (rbd_dev->spec->image_id)
3714                 return 0;
3715
3716         /*
3717          * First, see if the format 2 image id file exists, and if
3718          * so, get the image's persistent id from it.
3719          */
3720         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3721         object_name = kmalloc(size, GFP_NOIO);
3722         if (!object_name)
3723                 return -ENOMEM;
3724         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3725         dout("rbd id object name is %s\n", object_name);
3726
3727         /* Response will be an encoded string, which includes a length */
3728
3729         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3730         response = kzalloc(size, GFP_NOIO);
3731         if (!response) {
3732                 ret = -ENOMEM;
3733                 goto out;
3734         }
3735
3736         ret = rbd_obj_method_sync(rbd_dev, object_name,
3737                                 "rbd", "get_id",
3738                                 NULL, 0,
3739                                 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3740         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3741         if (ret < 0)
3742                 goto out;
3743
3744         p = response;
3745         rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3746                                                 p + RBD_IMAGE_ID_LEN_MAX,
3747                                                 NULL, GFP_NOIO);
3748         if (IS_ERR(rbd_dev->spec->image_id)) {
3749                 ret = PTR_ERR(rbd_dev->spec->image_id);
3750                 rbd_dev->spec->image_id = NULL;
3751         } else {
3752                 dout("image_id is %s\n", rbd_dev->spec->image_id);
3753         }
3754 out:
3755         kfree(response);
3756         kfree(object_name);
3757
3758         return ret;
3759 }
3760
3761 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3762 {
3763         int ret;
3764         size_t size;
3765
3766         /* Version 1 images have no id; empty string is used */
3767
3768         rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3769         if (!rbd_dev->spec->image_id)
3770                 return -ENOMEM;
3771
3772         /* Record the header object name for this rbd image. */
3773
3774         size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3775         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3776         if (!rbd_dev->header_name) {
3777                 ret = -ENOMEM;
3778                 goto out_err;
3779         }
3780         sprintf(rbd_dev->header_name, "%s%s",
3781                 rbd_dev->spec->image_name, RBD_SUFFIX);
3782
3783         /* Populate rbd image metadata */
3784
3785         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3786         if (ret < 0)
3787                 goto out_err;
3788
3789         /* Version 1 images have no parent (no layering) */
3790
3791         rbd_dev->parent_spec = NULL;
3792         rbd_dev->parent_overlap = 0;
3793
3794         rbd_dev->image_format = 1;
3795
3796         dout("discovered version 1 image, header name is %s\n",
3797                 rbd_dev->header_name);
3798
3799         return 0;
3800
3801 out_err:
3802         kfree(rbd_dev->header_name);
3803         rbd_dev->header_name = NULL;
3804         kfree(rbd_dev->spec->image_id);
3805         rbd_dev->spec->image_id = NULL;
3806
3807         return ret;
3808 }
3809
3810 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3811 {
3812         size_t size;
3813         int ret;
3814         u64 ver = 0;
3815
3816         /*
3817          * Image id was filled in by the caller.  Record the header
3818          * object name for this rbd image.
3819          */
3820         size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3821         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3822         if (!rbd_dev->header_name)
3823                 return -ENOMEM;
3824         sprintf(rbd_dev->header_name, "%s%s",
3825                         RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3826
3827         /* Get the size and object order for the image */
3828
3829         ret = rbd_dev_v2_image_size(rbd_dev);
3830         if (ret < 0)
3831                 goto out_err;
3832
3833         /* Get the object prefix (a.k.a. block_name) for the image */
3834
3835         ret = rbd_dev_v2_object_prefix(rbd_dev);
3836         if (ret < 0)
3837                 goto out_err;
3838
3839         /* Get the and check features for the image */
3840
3841         ret = rbd_dev_v2_features(rbd_dev);
3842         if (ret < 0)
3843                 goto out_err;
3844
3845         /* If the image supports layering, get the parent info */
3846
3847         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3848                 ret = rbd_dev_v2_parent_info(rbd_dev);
3849                 if (ret < 0)
3850                         goto out_err;
3851         }
3852
3853         /* crypto and compression type aren't (yet) supported for v2 images */
3854
3855         rbd_dev->header.crypt_type = 0;
3856         rbd_dev->header.comp_type = 0;
3857
3858         /* Get the snapshot context, plus the header version */
3859
3860         ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3861         if (ret)
3862                 goto out_err;
3863         rbd_dev->header.obj_version = ver;
3864
3865         rbd_dev->image_format = 2;
3866
3867         dout("discovered version 2 image, header name is %s\n",
3868                 rbd_dev->header_name);
3869
3870         return 0;
3871 out_err:
3872         rbd_dev->parent_overlap = 0;
3873         rbd_spec_put(rbd_dev->parent_spec);
3874         rbd_dev->parent_spec = NULL;
3875         kfree(rbd_dev->header_name);
3876         rbd_dev->header_name = NULL;
3877         kfree(rbd_dev->header.object_prefix);
3878         rbd_dev->header.object_prefix = NULL;
3879
3880         return ret;
3881 }
3882
3883 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3884 {
3885         int ret;
3886
3887         /* no need to lock here, as rbd_dev is not registered yet */
3888         ret = rbd_dev_snaps_update(rbd_dev);
3889         if (ret)
3890                 return ret;
3891
3892         ret = rbd_dev_probe_update_spec(rbd_dev);
3893         if (ret)
3894                 goto err_out_snaps;
3895
3896         ret = rbd_dev_set_mapping(rbd_dev);
3897         if (ret)
3898                 goto err_out_snaps;
3899
3900         /* generate unique id: find highest unique id, add one */
3901         rbd_dev_id_get(rbd_dev);
3902
3903         /* Fill in the device name, now that we have its id. */
3904         BUILD_BUG_ON(DEV_NAME_LEN
3905                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3906         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3907
3908         /* Get our block major device number. */
3909
3910         ret = register_blkdev(0, rbd_dev->name);
3911         if (ret < 0)
3912                 goto err_out_id;
3913         rbd_dev->major = ret;
3914
3915         /* Set up the blkdev mapping. */
3916
3917         ret = rbd_init_disk(rbd_dev);
3918         if (ret)
3919                 goto err_out_blkdev;
3920
3921         ret = rbd_bus_add_dev(rbd_dev);
3922         if (ret)
3923                 goto err_out_disk;
3924
3925         /*
3926          * At this point cleanup in the event of an error is the job
3927          * of the sysfs code (initiated by rbd_bus_del_dev()).
3928          */
3929         down_write(&rbd_dev->header_rwsem);
3930         ret = rbd_dev_snaps_register(rbd_dev);
3931         up_write(&rbd_dev->header_rwsem);
3932         if (ret)
3933                 goto err_out_bus;
3934
3935         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3936         if (ret)
3937                 goto err_out_bus;
3938
3939         /* Everything's ready.  Announce the disk to the world. */
3940
3941         add_disk(rbd_dev->disk);
3942
3943         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3944                 (unsigned long long) rbd_dev->mapping.size);
3945
3946         return ret;
3947 err_out_bus:
3948         /* this will also clean up rest of rbd_dev stuff */
3949
3950         rbd_bus_del_dev(rbd_dev);
3951
3952         return ret;
3953 err_out_disk:
3954         rbd_free_disk(rbd_dev);
3955 err_out_blkdev:
3956         unregister_blkdev(rbd_dev->major, rbd_dev->name);
3957 err_out_id:
3958         rbd_dev_id_put(rbd_dev);
3959 err_out_snaps:
3960         rbd_remove_all_snaps(rbd_dev);
3961
3962         return ret;
3963 }
3964
3965 /*
3966  * Probe for the existence of the header object for the given rbd
3967  * device.  For format 2 images this includes determining the image
3968  * id.
3969  */
3970 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3971 {
3972         int ret;
3973
3974         /*
3975          * Get the id from the image id object.  If it's not a
3976          * format 2 image, we'll get ENOENT back, and we'll assume
3977          * it's a format 1 image.
3978          */
3979         ret = rbd_dev_image_id(rbd_dev);
3980         if (ret)
3981                 ret = rbd_dev_v1_probe(rbd_dev);
3982         else
3983                 ret = rbd_dev_v2_probe(rbd_dev);
3984         if (ret) {
3985                 dout("probe failed, returning %d\n", ret);
3986
3987                 return ret;
3988         }
3989
3990         ret = rbd_dev_probe_finish(rbd_dev);
3991         if (ret)
3992                 rbd_header_free(&rbd_dev->header);
3993
3994         return ret;
3995 }
3996
3997 static ssize_t rbd_add(struct bus_type *bus,
3998                        const char *buf,
3999                        size_t count)
4000 {
4001         struct rbd_device *rbd_dev = NULL;
4002         struct ceph_options *ceph_opts = NULL;
4003         struct rbd_options *rbd_opts = NULL;
4004         struct rbd_spec *spec = NULL;
4005         struct rbd_client *rbdc;
4006         struct ceph_osd_client *osdc;
4007         int rc = -ENOMEM;
4008
4009         if (!try_module_get(THIS_MODULE))
4010                 return -ENODEV;
4011
4012         /* parse add command */
4013         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4014         if (rc < 0)
4015                 goto err_out_module;
4016
4017         rbdc = rbd_get_client(ceph_opts);
4018         if (IS_ERR(rbdc)) {
4019                 rc = PTR_ERR(rbdc);
4020                 goto err_out_args;
4021         }
4022         ceph_opts = NULL;       /* rbd_dev client now owns this */
4023
4024         /* pick the pool */
4025         osdc = &rbdc->client->osdc;
4026         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4027         if (rc < 0)
4028                 goto err_out_client;
4029         spec->pool_id = (u64) rc;
4030
4031         /* The ceph file layout needs to fit pool id in 32 bits */
4032
4033         if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4034                 rc = -EIO;
4035                 goto err_out_client;
4036         }
4037
4038         rbd_dev = rbd_dev_create(rbdc, spec);
4039         if (!rbd_dev)
4040                 goto err_out_client;
4041         rbdc = NULL;            /* rbd_dev now owns this */
4042         spec = NULL;            /* rbd_dev now owns this */
4043
4044         rbd_dev->mapping.read_only = rbd_opts->read_only;
4045         kfree(rbd_opts);
4046         rbd_opts = NULL;        /* done with this */
4047
4048         rc = rbd_dev_probe(rbd_dev);
4049         if (rc < 0)
4050                 goto err_out_rbd_dev;
4051
4052         return count;
4053 err_out_rbd_dev:
4054         rbd_dev_destroy(rbd_dev);
4055 err_out_client:
4056         rbd_put_client(rbdc);
4057 err_out_args:
4058         if (ceph_opts)
4059                 ceph_destroy_options(ceph_opts);
4060         kfree(rbd_opts);
4061         rbd_spec_put(spec);
4062 err_out_module:
4063         module_put(THIS_MODULE);
4064
4065         dout("Error adding device %s\n", buf);
4066
4067         return (ssize_t) rc;
4068 }
4069
4070 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4071 {
4072         struct list_head *tmp;
4073         struct rbd_device *rbd_dev;
4074
4075         spin_lock(&rbd_dev_list_lock);
4076         list_for_each(tmp, &rbd_dev_list) {
4077                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4078                 if (rbd_dev->dev_id == dev_id) {
4079                         spin_unlock(&rbd_dev_list_lock);
4080                         return rbd_dev;
4081                 }
4082         }
4083         spin_unlock(&rbd_dev_list_lock);
4084         return NULL;
4085 }
4086
4087 static void rbd_dev_release(struct device *dev)
4088 {
4089         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4090
4091         if (rbd_dev->watch_event)
4092                 rbd_dev_header_watch_sync(rbd_dev, 0);
4093
4094         /* clean up and free blkdev */
4095         rbd_free_disk(rbd_dev);
4096         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4097
4098         /* release allocated disk header fields */
4099         rbd_header_free(&rbd_dev->header);
4100
4101         /* done with the id, and with the rbd_dev */
4102         rbd_dev_id_put(rbd_dev);
4103         rbd_assert(rbd_dev->rbd_client != NULL);
4104         rbd_dev_destroy(rbd_dev);
4105
4106         /* release module ref */
4107         module_put(THIS_MODULE);
4108 }
4109
4110 static ssize_t rbd_remove(struct bus_type *bus,
4111                           const char *buf,
4112                           size_t count)
4113 {
4114         struct rbd_device *rbd_dev = NULL;
4115         int target_id, rc;
4116         unsigned long ul;
4117         int ret = count;
4118
4119         rc = strict_strtoul(buf, 10, &ul);
4120         if (rc)
4121                 return rc;
4122
4123         /* convert to int; abort if we lost anything in the conversion */
4124         target_id = (int) ul;
4125         if (target_id != ul)
4126                 return -EINVAL;
4127
4128         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4129
4130         rbd_dev = __rbd_get_dev(target_id);
4131         if (!rbd_dev) {
4132                 ret = -ENOENT;
4133                 goto done;
4134         }
4135
4136         spin_lock_irq(&rbd_dev->lock);
4137         if (rbd_dev->open_count)
4138                 ret = -EBUSY;
4139         else
4140                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4141         spin_unlock_irq(&rbd_dev->lock);
4142         if (ret < 0)
4143                 goto done;
4144
4145         rbd_remove_all_snaps(rbd_dev);
4146         rbd_bus_del_dev(rbd_dev);
4147
4148 done:
4149         mutex_unlock(&ctl_mutex);
4150
4151         return ret;
4152 }
4153
4154 /*
4155  * create control files in sysfs
4156  * /sys/bus/rbd/...
4157  */
4158 static int rbd_sysfs_init(void)
4159 {
4160         int ret;
4161
4162         ret = device_register(&rbd_root_dev);
4163         if (ret < 0)
4164                 return ret;
4165
4166         ret = bus_register(&rbd_bus_type);
4167         if (ret < 0)
4168                 device_unregister(&rbd_root_dev);
4169
4170         return ret;
4171 }
4172
4173 static void rbd_sysfs_cleanup(void)
4174 {
4175         bus_unregister(&rbd_bus_type);
4176         device_unregister(&rbd_root_dev);
4177 }
4178
4179 static int __init rbd_init(void)
4180 {
4181         int rc;
4182
4183         if (!libceph_compatible(NULL)) {
4184                 rbd_warn(NULL, "libceph incompatibility (quitting)");
4185
4186                 return -EINVAL;
4187         }
4188         rc = rbd_sysfs_init();
4189         if (rc)
4190                 return rc;
4191         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4192         return 0;
4193 }
4194
4195 static void __exit rbd_exit(void)
4196 {
4197         rbd_sysfs_cleanup();
4198 }
4199
4200 module_init(rbd_init);
4201 module_exit(rbd_exit);
4202
4203 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4204 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4205 MODULE_DESCRIPTION("rados block device");
4206
4207 /* following authorship retained from original osdblk.c */
4208 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4209
4210 MODULE_LICENSE("GPL");