]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
a62e59a0aea7e3480a858502a3335a916b74d2db
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN   \
65                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME      "-"
70
71 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX    64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX  64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING    (1<<0)
82 #define RBD_FEATURE_STRIPINGV2  (1<<1)
83 #define RBD_FEATURES_ALL \
84             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
89
90 /*
91  * An RBD device name will be "rbd#", where the "rbd" comes from
92  * RBD_DRV_NAME above, and # is a unique integer identifier.
93  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94  * enough to hold all possible device names.
95  */
96 #define DEV_NAME_LEN            32
97 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100  * block device image metadata (in-memory version)
101  */
102 struct rbd_image_header {
103         /* These four fields never change for a given rbd image */
104         char *object_prefix;
105         u64 features;
106         __u8 obj_order;
107         __u8 crypt_type;
108         __u8 comp_type;
109
110         /* The remaining fields need to be updated occasionally */
111         u64 image_size;
112         struct ceph_snap_context *snapc;
113         char *snap_names;
114         u64 *snap_sizes;
115
116         u64 stripe_unit;
117         u64 stripe_count;
118 };
119
120 /*
121  * An rbd image specification.
122  *
123  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
124  * identify an image.  Each rbd_dev structure includes a pointer to
125  * an rbd_spec structure that encapsulates this identity.
126  *
127  * Each of the id's in an rbd_spec has an associated name.  For a
128  * user-mapped image, the names are supplied and the id's associated
129  * with them are looked up.  For a layered image, a parent image is
130  * defined by the tuple, and the names are looked up.
131  *
132  * An rbd_dev structure contains a parent_spec pointer which is
133  * non-null if the image it represents is a child in a layered
134  * image.  This pointer will refer to the rbd_spec structure used
135  * by the parent rbd_dev for its own identity (i.e., the structure
136  * is shared between the parent and child).
137  *
138  * Since these structures are populated once, during the discovery
139  * phase of image construction, they are effectively immutable so
140  * we make no effort to synchronize access to them.
141  *
142  * Note that code herein does not assume the image name is known (it
143  * could be a null pointer).
144  */
145 struct rbd_spec {
146         u64             pool_id;
147         const char      *pool_name;
148
149         const char      *image_id;
150         const char      *image_name;
151
152         u64             snap_id;
153         const char      *snap_name;
154
155         struct kref     kref;
156 };
157
158 /*
159  * an instance of the client.  multiple devices may share an rbd client.
160  */
161 struct rbd_client {
162         struct ceph_client      *client;
163         struct kref             kref;
164         struct list_head        node;
165 };
166
167 struct rbd_img_request;
168 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
169
170 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
171
172 struct rbd_obj_request;
173 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
174
175 enum obj_request_type {
176         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
177 };
178
179 enum obj_req_flags {
180         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
181         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
182         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
183         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
184 };
185
186 struct rbd_obj_request {
187         const char              *object_name;
188         u64                     offset;         /* object start byte */
189         u64                     length;         /* bytes from offset */
190         unsigned long           flags;
191
192         /*
193          * An object request associated with an image will have its
194          * img_data flag set; a standalone object request will not.
195          *
196          * A standalone object request will have which == BAD_WHICH
197          * and a null obj_request pointer.
198          *
199          * An object request initiated in support of a layered image
200          * object (to check for its existence before a write) will
201          * have which == BAD_WHICH and a non-null obj_request pointer.
202          *
203          * Finally, an object request for rbd image data will have
204          * which != BAD_WHICH, and will have a non-null img_request
205          * pointer.  The value of which will be in the range
206          * 0..(img_request->obj_request_count-1).
207          */
208         union {
209                 struct rbd_obj_request  *obj_request;   /* STAT op */
210                 struct {
211                         struct rbd_img_request  *img_request;
212                         u64                     img_offset;
213                         /* links for img_request->obj_requests list */
214                         struct list_head        links;
215                 };
216         };
217         u32                     which;          /* posn image request list */
218
219         enum obj_request_type   type;
220         union {
221                 struct bio      *bio_list;
222                 struct {
223                         struct page     **pages;
224                         u32             page_count;
225                 };
226         };
227         struct page             **copyup_pages;
228
229         struct ceph_osd_request *osd_req;
230
231         u64                     xferred;        /* bytes transferred */
232         int                     result;
233
234         rbd_obj_callback_t      callback;
235         struct completion       completion;
236
237         struct kref             kref;
238 };
239
240 enum img_req_flags {
241         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
242         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
243         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
244 };
245
246 struct rbd_img_request {
247         struct rbd_device       *rbd_dev;
248         u64                     offset; /* starting image byte offset */
249         u64                     length; /* byte count from offset */
250         unsigned long           flags;
251         union {
252                 u64                     snap_id;        /* for reads */
253                 struct ceph_snap_context *snapc;        /* for writes */
254         };
255         union {
256                 struct request          *rq;            /* block request */
257                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
258         };
259         struct page             **copyup_pages;
260         spinlock_t              completion_lock;/* protects next_completion */
261         u32                     next_completion;
262         rbd_img_callback_t      callback;
263         u64                     xferred;/* aggregate bytes transferred */
264         int                     result; /* first nonzero obj_request result */
265
266         u32                     obj_request_count;
267         struct list_head        obj_requests;   /* rbd_obj_request structs */
268
269         struct kref             kref;
270 };
271
272 #define for_each_obj_request(ireq, oreq) \
273         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_from(ireq, oreq) \
275         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
276 #define for_each_obj_request_safe(ireq, oreq, n) \
277         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
278
279 struct rbd_mapping {
280         u64                     size;
281         u64                     features;
282         bool                    read_only;
283 };
284
285 /*
286  * a single device
287  */
288 struct rbd_device {
289         int                     dev_id;         /* blkdev unique id */
290
291         int                     major;          /* blkdev assigned major */
292         struct gendisk          *disk;          /* blkdev's gendisk and rq */
293
294         u32                     image_format;   /* Either 1 or 2 */
295         struct rbd_client       *rbd_client;
296
297         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
298
299         spinlock_t              lock;           /* queue, flags, open_count */
300
301         struct rbd_image_header header;
302         unsigned long           flags;          /* possibly lock protected */
303         struct rbd_spec         *spec;
304
305         char                    *header_name;
306
307         struct ceph_file_layout layout;
308
309         struct ceph_osd_event   *watch_event;
310         struct rbd_obj_request  *watch_request;
311
312         struct rbd_spec         *parent_spec;
313         u64                     parent_overlap;
314         struct rbd_device       *parent;
315
316         /* protects updating the header */
317         struct rw_semaphore     header_rwsem;
318
319         struct rbd_mapping      mapping;
320
321         struct list_head        node;
322
323         /* sysfs related */
324         struct device           dev;
325         unsigned long           open_count;     /* protected by lock */
326 };
327
328 /*
329  * Flag bits for rbd_dev->flags.  If atomicity is required,
330  * rbd_dev->lock is used to protect access.
331  *
332  * Currently, only the "removing" flag (which is coupled with the
333  * "open_count" field) requires atomic access.
334  */
335 enum rbd_dev_flags {
336         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
337         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
338 };
339
340 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
341
342 static LIST_HEAD(rbd_dev_list);    /* devices */
343 static DEFINE_SPINLOCK(rbd_dev_list_lock);
344
345 static LIST_HEAD(rbd_client_list);              /* clients */
346 static DEFINE_SPINLOCK(rbd_client_list_lock);
347
348 /* Slab caches for frequently-allocated structures */
349
350 static struct kmem_cache        *rbd_img_request_cache;
351 static struct kmem_cache        *rbd_obj_request_cache;
352 static struct kmem_cache        *rbd_segment_name_cache;
353
354 static int rbd_img_request_submit(struct rbd_img_request *img_request);
355
356 static void rbd_dev_device_release(struct device *dev);
357
358 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
359                        size_t count);
360 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
361                           size_t count);
362 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
363
364 static struct bus_attribute rbd_bus_attrs[] = {
365         __ATTR(add, S_IWUSR, NULL, rbd_add),
366         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
367         __ATTR_NULL
368 };
369
370 static struct bus_type rbd_bus_type = {
371         .name           = "rbd",
372         .bus_attrs      = rbd_bus_attrs,
373 };
374
375 static void rbd_root_dev_release(struct device *dev)
376 {
377 }
378
379 static struct device rbd_root_dev = {
380         .init_name =    "rbd",
381         .release =      rbd_root_dev_release,
382 };
383
384 static __printf(2, 3)
385 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
386 {
387         struct va_format vaf;
388         va_list args;
389
390         va_start(args, fmt);
391         vaf.fmt = fmt;
392         vaf.va = &args;
393
394         if (!rbd_dev)
395                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
396         else if (rbd_dev->disk)
397                 printk(KERN_WARNING "%s: %s: %pV\n",
398                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
399         else if (rbd_dev->spec && rbd_dev->spec->image_name)
400                 printk(KERN_WARNING "%s: image %s: %pV\n",
401                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
402         else if (rbd_dev->spec && rbd_dev->spec->image_id)
403                 printk(KERN_WARNING "%s: id %s: %pV\n",
404                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
405         else    /* punt */
406                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
407                         RBD_DRV_NAME, rbd_dev, &vaf);
408         va_end(args);
409 }
410
411 #ifdef RBD_DEBUG
412 #define rbd_assert(expr)                                                \
413                 if (unlikely(!(expr))) {                                \
414                         printk(KERN_ERR "\nAssertion failure in %s() "  \
415                                                 "at line %d:\n\n"       \
416                                         "\trbd_assert(%s);\n\n",        \
417                                         __func__, __LINE__, #expr);     \
418                         BUG();                                          \
419                 }
420 #else /* !RBD_DEBUG */
421 #  define rbd_assert(expr)      ((void) 0)
422 #endif /* !RBD_DEBUG */
423
424 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
427
428 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431                                         u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433                                 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435                 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441         bool removing = false;
442
443         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444                 return -EROFS;
445
446         spin_lock_irq(&rbd_dev->lock);
447         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448                 removing = true;
449         else
450                 rbd_dev->open_count++;
451         spin_unlock_irq(&rbd_dev->lock);
452         if (removing)
453                 return -ENOENT;
454
455         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456         (void) get_device(&rbd_dev->dev);
457         set_device_ro(bdev, rbd_dev->mapping.read_only);
458         mutex_unlock(&ctl_mutex);
459
460         return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465         struct rbd_device *rbd_dev = disk->private_data;
466         unsigned long open_count_before;
467
468         spin_lock_irq(&rbd_dev->lock);
469         open_count_before = rbd_dev->open_count--;
470         spin_unlock_irq(&rbd_dev->lock);
471         rbd_assert(open_count_before > 0);
472
473         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474         put_device(&rbd_dev->dev);
475         mutex_unlock(&ctl_mutex);
476
477         return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481         .owner                  = THIS_MODULE,
482         .open                   = rbd_open,
483         .release                = rbd_release,
484 };
485
486 /*
487  * Initialize an rbd client instance.
488  * We own *ceph_opts.
489  */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492         struct rbd_client *rbdc;
493         int ret = -ENOMEM;
494
495         dout("%s:\n", __func__);
496         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497         if (!rbdc)
498                 goto out_opt;
499
500         kref_init(&rbdc->kref);
501         INIT_LIST_HEAD(&rbdc->node);
502
503         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506         if (IS_ERR(rbdc->client))
507                 goto out_mutex;
508         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510         ret = ceph_open_session(rbdc->client);
511         if (ret < 0)
512                 goto out_err;
513
514         spin_lock(&rbd_client_list_lock);
515         list_add_tail(&rbdc->node, &rbd_client_list);
516         spin_unlock(&rbd_client_list_lock);
517
518         mutex_unlock(&ctl_mutex);
519         dout("%s: rbdc %p\n", __func__, rbdc);
520
521         return rbdc;
522
523 out_err:
524         ceph_destroy_client(rbdc->client);
525 out_mutex:
526         mutex_unlock(&ctl_mutex);
527         kfree(rbdc);
528 out_opt:
529         if (ceph_opts)
530                 ceph_destroy_options(ceph_opts);
531         dout("%s: error %d\n", __func__, ret);
532
533         return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538         kref_get(&rbdc->kref);
539
540         return rbdc;
541 }
542
543 /*
544  * Find a ceph client with specific addr and configuration.  If
545  * found, bump its reference count.
546  */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549         struct rbd_client *client_node;
550         bool found = false;
551
552         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553                 return NULL;
554
555         spin_lock(&rbd_client_list_lock);
556         list_for_each_entry(client_node, &rbd_client_list, node) {
557                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558                         __rbd_get_client(client_node);
559
560                         found = true;
561                         break;
562                 }
563         }
564         spin_unlock(&rbd_client_list_lock);
565
566         return found ? client_node : NULL;
567 }
568
569 /*
570  * mount options
571  */
572 enum {
573         Opt_last_int,
574         /* int args above */
575         Opt_last_string,
576         /* string args above */
577         Opt_read_only,
578         Opt_read_write,
579         /* Boolean args above */
580         Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584         /* int args above */
585         /* string args above */
586         {Opt_read_only, "read_only"},
587         {Opt_read_only, "ro"},          /* Alternate spelling */
588         {Opt_read_write, "read_write"},
589         {Opt_read_write, "rw"},         /* Alternate spelling */
590         /* Boolean args above */
591         {-1, NULL}
592 };
593
594 struct rbd_options {
595         bool    read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT   false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602         struct rbd_options *rbd_opts = private;
603         substring_t argstr[MAX_OPT_ARGS];
604         int token, intval, ret;
605
606         token = match_token(c, rbd_opts_tokens, argstr);
607         if (token < 0)
608                 return -EINVAL;
609
610         if (token < Opt_last_int) {
611                 ret = match_int(&argstr[0], &intval);
612                 if (ret < 0) {
613                         pr_err("bad mount option arg (not int) "
614                                "at '%s'\n", c);
615                         return ret;
616                 }
617                 dout("got int token %d val %d\n", token, intval);
618         } else if (token > Opt_last_int && token < Opt_last_string) {
619                 dout("got string token %d val %s\n", token,
620                      argstr[0].from);
621         } else if (token > Opt_last_string && token < Opt_last_bool) {
622                 dout("got Boolean token %d\n", token);
623         } else {
624                 dout("got token %d\n", token);
625         }
626
627         switch (token) {
628         case Opt_read_only:
629                 rbd_opts->read_only = true;
630                 break;
631         case Opt_read_write:
632                 rbd_opts->read_only = false;
633                 break;
634         default:
635                 rbd_assert(false);
636                 break;
637         }
638         return 0;
639 }
640
641 /*
642  * Get a ceph client with specific addr and configuration, if one does
643  * not exist create it.
644  */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647         struct rbd_client *rbdc;
648
649         rbdc = rbd_client_find(ceph_opts);
650         if (rbdc)       /* using an existing client */
651                 ceph_destroy_options(ceph_opts);
652         else
653                 rbdc = rbd_client_create(ceph_opts);
654
655         return rbdc;
656 }
657
658 /*
659  * Destroy ceph client
660  *
661  * Caller must hold rbd_client_list_lock.
662  */
663 static void rbd_client_release(struct kref *kref)
664 {
665         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667         dout("%s: rbdc %p\n", __func__, rbdc);
668         spin_lock(&rbd_client_list_lock);
669         list_del(&rbdc->node);
670         spin_unlock(&rbd_client_list_lock);
671
672         ceph_destroy_client(rbdc->client);
673         kfree(rbdc);
674 }
675
676 /*
677  * Drop reference to ceph client node. If it's not referenced anymore, release
678  * it.
679  */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682         if (rbdc)
683                 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688         return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693         size_t size;
694         u32 snap_count;
695
696         /* The header has to start with the magic rbd header text */
697         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698                 return false;
699
700         /* The bio layer requires at least sector-sized I/O */
701
702         if (ondisk->options.order < SECTOR_SHIFT)
703                 return false;
704
705         /* If we use u64 in a few spots we may be able to loosen this */
706
707         if (ondisk->options.order > 8 * sizeof (int) - 1)
708                 return false;
709
710         /*
711          * The size of a snapshot header has to fit in a size_t, and
712          * that limits the number of snapshots.
713          */
714         snap_count = le32_to_cpu(ondisk->snap_count);
715         size = SIZE_MAX - sizeof (struct ceph_snap_context);
716         if (snap_count > size / sizeof (__le64))
717                 return false;
718
719         /*
720          * Not only that, but the size of the entire the snapshot
721          * header must also be representable in a size_t.
722          */
723         size -= snap_count * sizeof (__le64);
724         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725                 return false;
726
727         return true;
728 }
729
730 /*
731  * Create a new header structure, translate header format from the on-disk
732  * header.
733  */
734 static int rbd_header_from_disk(struct rbd_image_header *header,
735                                  struct rbd_image_header_ondisk *ondisk)
736 {
737         u32 snap_count;
738         size_t len;
739         size_t size;
740         u32 i;
741
742         memset(header, 0, sizeof (*header));
743
744         snap_count = le32_to_cpu(ondisk->snap_count);
745
746         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
747         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
748         if (!header->object_prefix)
749                 return -ENOMEM;
750         memcpy(header->object_prefix, ondisk->object_prefix, len);
751         header->object_prefix[len] = '\0';
752
753         if (snap_count) {
754                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
755
756                 /* Save a copy of the snapshot names */
757
758                 if (snap_names_len > (u64) SIZE_MAX)
759                         return -EIO;
760                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
761                 if (!header->snap_names)
762                         goto out_err;
763                 /*
764                  * Note that rbd_dev_v1_header_read() guarantees
765                  * the ondisk buffer we're working with has
766                  * snap_names_len bytes beyond the end of the
767                  * snapshot id array, this memcpy() is safe.
768                  */
769                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
770                         snap_names_len);
771
772                 /* Record each snapshot's size */
773
774                 size = snap_count * sizeof (*header->snap_sizes);
775                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
776                 if (!header->snap_sizes)
777                         goto out_err;
778                 for (i = 0; i < snap_count; i++)
779                         header->snap_sizes[i] =
780                                 le64_to_cpu(ondisk->snaps[i].image_size);
781         } else {
782                 header->snap_names = NULL;
783                 header->snap_sizes = NULL;
784         }
785
786         header->features = 0;   /* No features support in v1 images */
787         header->obj_order = ondisk->options.order;
788         header->crypt_type = ondisk->options.crypt_type;
789         header->comp_type = ondisk->options.comp_type;
790
791         /* Allocate and fill in the snapshot context */
792
793         header->image_size = le64_to_cpu(ondisk->image_size);
794
795         header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
796         if (!header->snapc)
797                 goto out_err;
798         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
799         for (i = 0; i < snap_count; i++)
800                 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
801
802         return 0;
803
804 out_err:
805         kfree(header->snap_sizes);
806         header->snap_sizes = NULL;
807         kfree(header->snap_names);
808         header->snap_names = NULL;
809         kfree(header->object_prefix);
810         header->object_prefix = NULL;
811
812         return -ENOMEM;
813 }
814
815 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
816 {
817         const char *snap_name;
818
819         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
820
821         /* Skip over names until we find the one we are looking for */
822
823         snap_name = rbd_dev->header.snap_names;
824         while (which--)
825                 snap_name += strlen(snap_name) + 1;
826
827         return kstrdup(snap_name, GFP_KERNEL);
828 }
829
830 /*
831  * Snapshot id comparison function for use with qsort()/bsearch().
832  * Note that result is for snapshots in *descending* order.
833  */
834 static int snapid_compare_reverse(const void *s1, const void *s2)
835 {
836         u64 snap_id1 = *(u64 *)s1;
837         u64 snap_id2 = *(u64 *)s2;
838
839         if (snap_id1 < snap_id2)
840                 return 1;
841         return snap_id1 == snap_id2 ? 0 : -1;
842 }
843
844 /*
845  * Search a snapshot context to see if the given snapshot id is
846  * present.
847  *
848  * Returns the position of the snapshot id in the array if it's found,
849  * or BAD_SNAP_INDEX otherwise.
850  *
851  * Note: The snapshot array is in kept sorted (by the osd) in
852  * reverse order, highest snapshot id first.
853  */
854 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
855 {
856         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
857         u64 *found;
858
859         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
860                                 sizeof (snap_id), snapid_compare_reverse);
861
862         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
863 }
864
865 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
866                                         u64 snap_id)
867 {
868         u32 which;
869
870         which = rbd_dev_snap_index(rbd_dev, snap_id);
871         if (which == BAD_SNAP_INDEX)
872                 return NULL;
873
874         return _rbd_dev_v1_snap_name(rbd_dev, which);
875 }
876
877 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
878 {
879         if (snap_id == CEPH_NOSNAP)
880                 return RBD_SNAP_HEAD_NAME;
881
882         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
883         if (rbd_dev->image_format == 1)
884                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
885
886         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
887 }
888
889 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
890                                 u64 *snap_size)
891 {
892         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
893         if (snap_id == CEPH_NOSNAP) {
894                 *snap_size = rbd_dev->header.image_size;
895         } else if (rbd_dev->image_format == 1) {
896                 u32 which;
897
898                 which = rbd_dev_snap_index(rbd_dev, snap_id);
899                 if (which == BAD_SNAP_INDEX)
900                         return -ENOENT;
901
902                 *snap_size = rbd_dev->header.snap_sizes[which];
903         } else {
904                 u64 size = 0;
905                 int ret;
906
907                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
908                 if (ret)
909                         return ret;
910
911                 *snap_size = size;
912         }
913         return 0;
914 }
915
916 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
917                         u64 *snap_features)
918 {
919         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
920         if (snap_id == CEPH_NOSNAP) {
921                 *snap_features = rbd_dev->header.features;
922         } else if (rbd_dev->image_format == 1) {
923                 *snap_features = 0;     /* No features for format 1 */
924         } else {
925                 u64 features = 0;
926                 int ret;
927
928                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
929                 if (ret)
930                         return ret;
931
932                 *snap_features = features;
933         }
934         return 0;
935 }
936
937 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
938 {
939         u64 snap_id = rbd_dev->spec->snap_id;
940         u64 size = 0;
941         u64 features = 0;
942         int ret;
943
944         ret = rbd_snap_size(rbd_dev, snap_id, &size);
945         if (ret)
946                 return ret;
947         ret = rbd_snap_features(rbd_dev, snap_id, &features);
948         if (ret)
949                 return ret;
950
951         rbd_dev->mapping.size = size;
952         rbd_dev->mapping.features = features;
953
954         /* If we are mapping a snapshot it must be marked read-only */
955
956         if (snap_id != CEPH_NOSNAP)
957                 rbd_dev->mapping.read_only = true;
958
959         return 0;
960 }
961
962 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
963 {
964         rbd_dev->mapping.size = 0;
965         rbd_dev->mapping.features = 0;
966         rbd_dev->mapping.read_only = true;
967 }
968
969 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
970 {
971         char *name;
972         u64 segment;
973         int ret;
974
975         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
976         if (!name)
977                 return NULL;
978         segment = offset >> rbd_dev->header.obj_order;
979         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
980                         rbd_dev->header.object_prefix, segment);
981         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
982                 pr_err("error formatting segment name for #%llu (%d)\n",
983                         segment, ret);
984                 kfree(name);
985                 name = NULL;
986         }
987
988         return name;
989 }
990
991 static void rbd_segment_name_free(const char *name)
992 {
993         /* The explicit cast here is needed to drop the const qualifier */
994
995         kmem_cache_free(rbd_segment_name_cache, (void *)name);
996 }
997
998 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
999 {
1000         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1001
1002         return offset & (segment_size - 1);
1003 }
1004
1005 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1006                                 u64 offset, u64 length)
1007 {
1008         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1009
1010         offset &= segment_size - 1;
1011
1012         rbd_assert(length <= U64_MAX - offset);
1013         if (offset + length > segment_size)
1014                 length = segment_size - offset;
1015
1016         return length;
1017 }
1018
1019 /*
1020  * returns the size of an object in the image
1021  */
1022 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1023 {
1024         return 1 << header->obj_order;
1025 }
1026
1027 /*
1028  * bio helpers
1029  */
1030
1031 static void bio_chain_put(struct bio *chain)
1032 {
1033         struct bio *tmp;
1034
1035         while (chain) {
1036                 tmp = chain;
1037                 chain = chain->bi_next;
1038                 bio_put(tmp);
1039         }
1040 }
1041
1042 /*
1043  * zeros a bio chain, starting at specific offset
1044  */
1045 static void zero_bio_chain(struct bio *chain, int start_ofs)
1046 {
1047         struct bio_vec *bv;
1048         unsigned long flags;
1049         void *buf;
1050         int i;
1051         int pos = 0;
1052
1053         while (chain) {
1054                 bio_for_each_segment(bv, chain, i) {
1055                         if (pos + bv->bv_len > start_ofs) {
1056                                 int remainder = max(start_ofs - pos, 0);
1057                                 buf = bvec_kmap_irq(bv, &flags);
1058                                 memset(buf + remainder, 0,
1059                                        bv->bv_len - remainder);
1060                                 bvec_kunmap_irq(buf, &flags);
1061                         }
1062                         pos += bv->bv_len;
1063                 }
1064
1065                 chain = chain->bi_next;
1066         }
1067 }
1068
1069 /*
1070  * similar to zero_bio_chain(), zeros data defined by a page array,
1071  * starting at the given byte offset from the start of the array and
1072  * continuing up to the given end offset.  The pages array is
1073  * assumed to be big enough to hold all bytes up to the end.
1074  */
1075 static void zero_pages(struct page **pages, u64 offset, u64 end)
1076 {
1077         struct page **page = &pages[offset >> PAGE_SHIFT];
1078
1079         rbd_assert(end > offset);
1080         rbd_assert(end - offset <= (u64)SIZE_MAX);
1081         while (offset < end) {
1082                 size_t page_offset;
1083                 size_t length;
1084                 unsigned long flags;
1085                 void *kaddr;
1086
1087                 page_offset = (size_t)(offset & ~PAGE_MASK);
1088                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1089                 local_irq_save(flags);
1090                 kaddr = kmap_atomic(*page);
1091                 memset(kaddr + page_offset, 0, length);
1092                 kunmap_atomic(kaddr);
1093                 local_irq_restore(flags);
1094
1095                 offset += length;
1096                 page++;
1097         }
1098 }
1099
1100 /*
1101  * Clone a portion of a bio, starting at the given byte offset
1102  * and continuing for the number of bytes indicated.
1103  */
1104 static struct bio *bio_clone_range(struct bio *bio_src,
1105                                         unsigned int offset,
1106                                         unsigned int len,
1107                                         gfp_t gfpmask)
1108 {
1109         struct bio_vec *bv;
1110         unsigned int resid;
1111         unsigned short idx;
1112         unsigned int voff;
1113         unsigned short end_idx;
1114         unsigned short vcnt;
1115         struct bio *bio;
1116
1117         /* Handle the easy case for the caller */
1118
1119         if (!offset && len == bio_src->bi_size)
1120                 return bio_clone(bio_src, gfpmask);
1121
1122         if (WARN_ON_ONCE(!len))
1123                 return NULL;
1124         if (WARN_ON_ONCE(len > bio_src->bi_size))
1125                 return NULL;
1126         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1127                 return NULL;
1128
1129         /* Find first affected segment... */
1130
1131         resid = offset;
1132         __bio_for_each_segment(bv, bio_src, idx, 0) {
1133                 if (resid < bv->bv_len)
1134                         break;
1135                 resid -= bv->bv_len;
1136         }
1137         voff = resid;
1138
1139         /* ...and the last affected segment */
1140
1141         resid += len;
1142         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1143                 if (resid <= bv->bv_len)
1144                         break;
1145                 resid -= bv->bv_len;
1146         }
1147         vcnt = end_idx - idx + 1;
1148
1149         /* Build the clone */
1150
1151         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1152         if (!bio)
1153                 return NULL;    /* ENOMEM */
1154
1155         bio->bi_bdev = bio_src->bi_bdev;
1156         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1157         bio->bi_rw = bio_src->bi_rw;
1158         bio->bi_flags |= 1 << BIO_CLONED;
1159
1160         /*
1161          * Copy over our part of the bio_vec, then update the first
1162          * and last (or only) entries.
1163          */
1164         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1165                         vcnt * sizeof (struct bio_vec));
1166         bio->bi_io_vec[0].bv_offset += voff;
1167         if (vcnt > 1) {
1168                 bio->bi_io_vec[0].bv_len -= voff;
1169                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1170         } else {
1171                 bio->bi_io_vec[0].bv_len = len;
1172         }
1173
1174         bio->bi_vcnt = vcnt;
1175         bio->bi_size = len;
1176         bio->bi_idx = 0;
1177
1178         return bio;
1179 }
1180
1181 /*
1182  * Clone a portion of a bio chain, starting at the given byte offset
1183  * into the first bio in the source chain and continuing for the
1184  * number of bytes indicated.  The result is another bio chain of
1185  * exactly the given length, or a null pointer on error.
1186  *
1187  * The bio_src and offset parameters are both in-out.  On entry they
1188  * refer to the first source bio and the offset into that bio where
1189  * the start of data to be cloned is located.
1190  *
1191  * On return, bio_src is updated to refer to the bio in the source
1192  * chain that contains first un-cloned byte, and *offset will
1193  * contain the offset of that byte within that bio.
1194  */
1195 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1196                                         unsigned int *offset,
1197                                         unsigned int len,
1198                                         gfp_t gfpmask)
1199 {
1200         struct bio *bi = *bio_src;
1201         unsigned int off = *offset;
1202         struct bio *chain = NULL;
1203         struct bio **end;
1204
1205         /* Build up a chain of clone bios up to the limit */
1206
1207         if (!bi || off >= bi->bi_size || !len)
1208                 return NULL;            /* Nothing to clone */
1209
1210         end = &chain;
1211         while (len) {
1212                 unsigned int bi_size;
1213                 struct bio *bio;
1214
1215                 if (!bi) {
1216                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1217                         goto out_err;   /* EINVAL; ran out of bio's */
1218                 }
1219                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1220                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1221                 if (!bio)
1222                         goto out_err;   /* ENOMEM */
1223
1224                 *end = bio;
1225                 end = &bio->bi_next;
1226
1227                 off += bi_size;
1228                 if (off == bi->bi_size) {
1229                         bi = bi->bi_next;
1230                         off = 0;
1231                 }
1232                 len -= bi_size;
1233         }
1234         *bio_src = bi;
1235         *offset = off;
1236
1237         return chain;
1238 out_err:
1239         bio_chain_put(chain);
1240
1241         return NULL;
1242 }
1243
1244 /*
1245  * The default/initial value for all object request flags is 0.  For
1246  * each flag, once its value is set to 1 it is never reset to 0
1247  * again.
1248  */
1249 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1250 {
1251         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1252                 struct rbd_device *rbd_dev;
1253
1254                 rbd_dev = obj_request->img_request->rbd_dev;
1255                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1256                         obj_request);
1257         }
1258 }
1259
1260 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1261 {
1262         smp_mb();
1263         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1264 }
1265
1266 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1267 {
1268         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1269                 struct rbd_device *rbd_dev = NULL;
1270
1271                 if (obj_request_img_data_test(obj_request))
1272                         rbd_dev = obj_request->img_request->rbd_dev;
1273                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1274                         obj_request);
1275         }
1276 }
1277
1278 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1279 {
1280         smp_mb();
1281         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1282 }
1283
1284 /*
1285  * This sets the KNOWN flag after (possibly) setting the EXISTS
1286  * flag.  The latter is set based on the "exists" value provided.
1287  *
1288  * Note that for our purposes once an object exists it never goes
1289  * away again.  It's possible that the response from two existence
1290  * checks are separated by the creation of the target object, and
1291  * the first ("doesn't exist") response arrives *after* the second
1292  * ("does exist").  In that case we ignore the second one.
1293  */
1294 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1295                                 bool exists)
1296 {
1297         if (exists)
1298                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1299         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1300         smp_mb();
1301 }
1302
1303 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1304 {
1305         smp_mb();
1306         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1307 }
1308
1309 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1310 {
1311         smp_mb();
1312         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1313 }
1314
1315 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1316 {
1317         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1318                 atomic_read(&obj_request->kref.refcount));
1319         kref_get(&obj_request->kref);
1320 }
1321
1322 static void rbd_obj_request_destroy(struct kref *kref);
1323 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1324 {
1325         rbd_assert(obj_request != NULL);
1326         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1327                 atomic_read(&obj_request->kref.refcount));
1328         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1329 }
1330
1331 static void rbd_img_request_get(struct rbd_img_request *img_request)
1332 {
1333         dout("%s: img %p (was %d)\n", __func__, img_request,
1334                 atomic_read(&img_request->kref.refcount));
1335         kref_get(&img_request->kref);
1336 }
1337
1338 static void rbd_img_request_destroy(struct kref *kref);
1339 static void rbd_img_request_put(struct rbd_img_request *img_request)
1340 {
1341         rbd_assert(img_request != NULL);
1342         dout("%s: img %p (was %d)\n", __func__, img_request,
1343                 atomic_read(&img_request->kref.refcount));
1344         kref_put(&img_request->kref, rbd_img_request_destroy);
1345 }
1346
1347 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1348                                         struct rbd_obj_request *obj_request)
1349 {
1350         rbd_assert(obj_request->img_request == NULL);
1351
1352         /* Image request now owns object's original reference */
1353         obj_request->img_request = img_request;
1354         obj_request->which = img_request->obj_request_count;
1355         rbd_assert(!obj_request_img_data_test(obj_request));
1356         obj_request_img_data_set(obj_request);
1357         rbd_assert(obj_request->which != BAD_WHICH);
1358         img_request->obj_request_count++;
1359         list_add_tail(&obj_request->links, &img_request->obj_requests);
1360         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1361                 obj_request->which);
1362 }
1363
1364 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1365                                         struct rbd_obj_request *obj_request)
1366 {
1367         rbd_assert(obj_request->which != BAD_WHICH);
1368
1369         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1370                 obj_request->which);
1371         list_del(&obj_request->links);
1372         rbd_assert(img_request->obj_request_count > 0);
1373         img_request->obj_request_count--;
1374         rbd_assert(obj_request->which == img_request->obj_request_count);
1375         obj_request->which = BAD_WHICH;
1376         rbd_assert(obj_request_img_data_test(obj_request));
1377         rbd_assert(obj_request->img_request == img_request);
1378         obj_request->img_request = NULL;
1379         obj_request->callback = NULL;
1380         rbd_obj_request_put(obj_request);
1381 }
1382
1383 static bool obj_request_type_valid(enum obj_request_type type)
1384 {
1385         switch (type) {
1386         case OBJ_REQUEST_NODATA:
1387         case OBJ_REQUEST_BIO:
1388         case OBJ_REQUEST_PAGES:
1389                 return true;
1390         default:
1391                 return false;
1392         }
1393 }
1394
1395 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1396                                 struct rbd_obj_request *obj_request)
1397 {
1398         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1399
1400         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1401 }
1402
1403 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1404 {
1405
1406         dout("%s: img %p\n", __func__, img_request);
1407
1408         /*
1409          * If no error occurred, compute the aggregate transfer
1410          * count for the image request.  We could instead use
1411          * atomic64_cmpxchg() to update it as each object request
1412          * completes; not clear which way is better off hand.
1413          */
1414         if (!img_request->result) {
1415                 struct rbd_obj_request *obj_request;
1416                 u64 xferred = 0;
1417
1418                 for_each_obj_request(img_request, obj_request)
1419                         xferred += obj_request->xferred;
1420                 img_request->xferred = xferred;
1421         }
1422
1423         if (img_request->callback)
1424                 img_request->callback(img_request);
1425         else
1426                 rbd_img_request_put(img_request);
1427 }
1428
1429 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1430
1431 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1432 {
1433         dout("%s: obj %p\n", __func__, obj_request);
1434
1435         return wait_for_completion_interruptible(&obj_request->completion);
1436 }
1437
1438 /*
1439  * The default/initial value for all image request flags is 0.  Each
1440  * is conditionally set to 1 at image request initialization time
1441  * and currently never change thereafter.
1442  */
1443 static void img_request_write_set(struct rbd_img_request *img_request)
1444 {
1445         set_bit(IMG_REQ_WRITE, &img_request->flags);
1446         smp_mb();
1447 }
1448
1449 static bool img_request_write_test(struct rbd_img_request *img_request)
1450 {
1451         smp_mb();
1452         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1453 }
1454
1455 static void img_request_child_set(struct rbd_img_request *img_request)
1456 {
1457         set_bit(IMG_REQ_CHILD, &img_request->flags);
1458         smp_mb();
1459 }
1460
1461 static bool img_request_child_test(struct rbd_img_request *img_request)
1462 {
1463         smp_mb();
1464         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1465 }
1466
1467 static void img_request_layered_set(struct rbd_img_request *img_request)
1468 {
1469         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1470         smp_mb();
1471 }
1472
1473 static bool img_request_layered_test(struct rbd_img_request *img_request)
1474 {
1475         smp_mb();
1476         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1477 }
1478
1479 static void
1480 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1481 {
1482         u64 xferred = obj_request->xferred;
1483         u64 length = obj_request->length;
1484
1485         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1486                 obj_request, obj_request->img_request, obj_request->result,
1487                 xferred, length);
1488         /*
1489          * ENOENT means a hole in the image.  We zero-fill the
1490          * entire length of the request.  A short read also implies
1491          * zero-fill to the end of the request.  Either way we
1492          * update the xferred count to indicate the whole request
1493          * was satisfied.
1494          */
1495         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1496         if (obj_request->result == -ENOENT) {
1497                 if (obj_request->type == OBJ_REQUEST_BIO)
1498                         zero_bio_chain(obj_request->bio_list, 0);
1499                 else
1500                         zero_pages(obj_request->pages, 0, length);
1501                 obj_request->result = 0;
1502                 obj_request->xferred = length;
1503         } else if (xferred < length && !obj_request->result) {
1504                 if (obj_request->type == OBJ_REQUEST_BIO)
1505                         zero_bio_chain(obj_request->bio_list, xferred);
1506                 else
1507                         zero_pages(obj_request->pages, xferred, length);
1508                 obj_request->xferred = length;
1509         }
1510         obj_request_done_set(obj_request);
1511 }
1512
1513 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1514 {
1515         dout("%s: obj %p cb %p\n", __func__, obj_request,
1516                 obj_request->callback);
1517         if (obj_request->callback)
1518                 obj_request->callback(obj_request);
1519         else
1520                 complete_all(&obj_request->completion);
1521 }
1522
1523 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1524 {
1525         dout("%s: obj %p\n", __func__, obj_request);
1526         obj_request_done_set(obj_request);
1527 }
1528
1529 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1530 {
1531         struct rbd_img_request *img_request = NULL;
1532         struct rbd_device *rbd_dev = NULL;
1533         bool layered = false;
1534
1535         if (obj_request_img_data_test(obj_request)) {
1536                 img_request = obj_request->img_request;
1537                 layered = img_request && img_request_layered_test(img_request);
1538                 rbd_dev = img_request->rbd_dev;
1539         }
1540
1541         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1542                 obj_request, img_request, obj_request->result,
1543                 obj_request->xferred, obj_request->length);
1544         if (layered && obj_request->result == -ENOENT &&
1545                         obj_request->img_offset < rbd_dev->parent_overlap)
1546                 rbd_img_parent_read(obj_request);
1547         else if (img_request)
1548                 rbd_img_obj_request_read_callback(obj_request);
1549         else
1550                 obj_request_done_set(obj_request);
1551 }
1552
1553 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1554 {
1555         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1556                 obj_request->result, obj_request->length);
1557         /*
1558          * There is no such thing as a successful short write.  Set
1559          * it to our originally-requested length.
1560          */
1561         obj_request->xferred = obj_request->length;
1562         obj_request_done_set(obj_request);
1563 }
1564
1565 /*
1566  * For a simple stat call there's nothing to do.  We'll do more if
1567  * this is part of a write sequence for a layered image.
1568  */
1569 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1570 {
1571         dout("%s: obj %p\n", __func__, obj_request);
1572         obj_request_done_set(obj_request);
1573 }
1574
1575 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1576                                 struct ceph_msg *msg)
1577 {
1578         struct rbd_obj_request *obj_request = osd_req->r_priv;
1579         u16 opcode;
1580
1581         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1582         rbd_assert(osd_req == obj_request->osd_req);
1583         if (obj_request_img_data_test(obj_request)) {
1584                 rbd_assert(obj_request->img_request);
1585                 rbd_assert(obj_request->which != BAD_WHICH);
1586         } else {
1587                 rbd_assert(obj_request->which == BAD_WHICH);
1588         }
1589
1590         if (osd_req->r_result < 0)
1591                 obj_request->result = osd_req->r_result;
1592
1593         BUG_ON(osd_req->r_num_ops > 2);
1594
1595         /*
1596          * We support a 64-bit length, but ultimately it has to be
1597          * passed to blk_end_request(), which takes an unsigned int.
1598          */
1599         obj_request->xferred = osd_req->r_reply_op_len[0];
1600         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1601         opcode = osd_req->r_ops[0].op;
1602         switch (opcode) {
1603         case CEPH_OSD_OP_READ:
1604                 rbd_osd_read_callback(obj_request);
1605                 break;
1606         case CEPH_OSD_OP_WRITE:
1607                 rbd_osd_write_callback(obj_request);
1608                 break;
1609         case CEPH_OSD_OP_STAT:
1610                 rbd_osd_stat_callback(obj_request);
1611                 break;
1612         case CEPH_OSD_OP_CALL:
1613         case CEPH_OSD_OP_NOTIFY_ACK:
1614         case CEPH_OSD_OP_WATCH:
1615                 rbd_osd_trivial_callback(obj_request);
1616                 break;
1617         default:
1618                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1619                         obj_request->object_name, (unsigned short) opcode);
1620                 break;
1621         }
1622
1623         if (obj_request_done_test(obj_request))
1624                 rbd_obj_request_complete(obj_request);
1625 }
1626
1627 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1628 {
1629         struct rbd_img_request *img_request = obj_request->img_request;
1630         struct ceph_osd_request *osd_req = obj_request->osd_req;
1631         u64 snap_id;
1632
1633         rbd_assert(osd_req != NULL);
1634
1635         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1636         ceph_osdc_build_request(osd_req, obj_request->offset,
1637                         NULL, snap_id, NULL);
1638 }
1639
1640 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1641 {
1642         struct rbd_img_request *img_request = obj_request->img_request;
1643         struct ceph_osd_request *osd_req = obj_request->osd_req;
1644         struct ceph_snap_context *snapc;
1645         struct timespec mtime = CURRENT_TIME;
1646
1647         rbd_assert(osd_req != NULL);
1648
1649         snapc = img_request ? img_request->snapc : NULL;
1650         ceph_osdc_build_request(osd_req, obj_request->offset,
1651                         snapc, CEPH_NOSNAP, &mtime);
1652 }
1653
1654 static struct ceph_osd_request *rbd_osd_req_create(
1655                                         struct rbd_device *rbd_dev,
1656                                         bool write_request,
1657                                         struct rbd_obj_request *obj_request)
1658 {
1659         struct ceph_snap_context *snapc = NULL;
1660         struct ceph_osd_client *osdc;
1661         struct ceph_osd_request *osd_req;
1662
1663         if (obj_request_img_data_test(obj_request)) {
1664                 struct rbd_img_request *img_request = obj_request->img_request;
1665
1666                 rbd_assert(write_request ==
1667                                 img_request_write_test(img_request));
1668                 if (write_request)
1669                         snapc = img_request->snapc;
1670         }
1671
1672         /* Allocate and initialize the request, for the single op */
1673
1674         osdc = &rbd_dev->rbd_client->client->osdc;
1675         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1676         if (!osd_req)
1677                 return NULL;    /* ENOMEM */
1678
1679         if (write_request)
1680                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1681         else
1682                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1683
1684         osd_req->r_callback = rbd_osd_req_callback;
1685         osd_req->r_priv = obj_request;
1686
1687         osd_req->r_oid_len = strlen(obj_request->object_name);
1688         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1689         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1690
1691         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1692
1693         return osd_req;
1694 }
1695
1696 /*
1697  * Create a copyup osd request based on the information in the
1698  * object request supplied.  A copyup request has two osd ops,
1699  * a copyup method call, and a "normal" write request.
1700  */
1701 static struct ceph_osd_request *
1702 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1703 {
1704         struct rbd_img_request *img_request;
1705         struct ceph_snap_context *snapc;
1706         struct rbd_device *rbd_dev;
1707         struct ceph_osd_client *osdc;
1708         struct ceph_osd_request *osd_req;
1709
1710         rbd_assert(obj_request_img_data_test(obj_request));
1711         img_request = obj_request->img_request;
1712         rbd_assert(img_request);
1713         rbd_assert(img_request_write_test(img_request));
1714
1715         /* Allocate and initialize the request, for the two ops */
1716
1717         snapc = img_request->snapc;
1718         rbd_dev = img_request->rbd_dev;
1719         osdc = &rbd_dev->rbd_client->client->osdc;
1720         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1721         if (!osd_req)
1722                 return NULL;    /* ENOMEM */
1723
1724         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1725         osd_req->r_callback = rbd_osd_req_callback;
1726         osd_req->r_priv = obj_request;
1727
1728         osd_req->r_oid_len = strlen(obj_request->object_name);
1729         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1730         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1731
1732         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1733
1734         return osd_req;
1735 }
1736
1737
1738 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1739 {
1740         ceph_osdc_put_request(osd_req);
1741 }
1742
1743 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1744
1745 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1746                                                 u64 offset, u64 length,
1747                                                 enum obj_request_type type)
1748 {
1749         struct rbd_obj_request *obj_request;
1750         size_t size;
1751         char *name;
1752
1753         rbd_assert(obj_request_type_valid(type));
1754
1755         size = strlen(object_name) + 1;
1756         name = kmalloc(size, GFP_KERNEL);
1757         if (!name)
1758                 return NULL;
1759
1760         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1761         if (!obj_request) {
1762                 kfree(name);
1763                 return NULL;
1764         }
1765
1766         obj_request->object_name = memcpy(name, object_name, size);
1767         obj_request->offset = offset;
1768         obj_request->length = length;
1769         obj_request->flags = 0;
1770         obj_request->which = BAD_WHICH;
1771         obj_request->type = type;
1772         INIT_LIST_HEAD(&obj_request->links);
1773         init_completion(&obj_request->completion);
1774         kref_init(&obj_request->kref);
1775
1776         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1777                 offset, length, (int)type, obj_request);
1778
1779         return obj_request;
1780 }
1781
1782 static void rbd_obj_request_destroy(struct kref *kref)
1783 {
1784         struct rbd_obj_request *obj_request;
1785
1786         obj_request = container_of(kref, struct rbd_obj_request, kref);
1787
1788         dout("%s: obj %p\n", __func__, obj_request);
1789
1790         rbd_assert(obj_request->img_request == NULL);
1791         rbd_assert(obj_request->which == BAD_WHICH);
1792
1793         if (obj_request->osd_req)
1794                 rbd_osd_req_destroy(obj_request->osd_req);
1795
1796         rbd_assert(obj_request_type_valid(obj_request->type));
1797         switch (obj_request->type) {
1798         case OBJ_REQUEST_NODATA:
1799                 break;          /* Nothing to do */
1800         case OBJ_REQUEST_BIO:
1801                 if (obj_request->bio_list)
1802                         bio_chain_put(obj_request->bio_list);
1803                 break;
1804         case OBJ_REQUEST_PAGES:
1805                 if (obj_request->pages)
1806                         ceph_release_page_vector(obj_request->pages,
1807                                                 obj_request->page_count);
1808                 break;
1809         }
1810
1811         kfree(obj_request->object_name);
1812         obj_request->object_name = NULL;
1813         kmem_cache_free(rbd_obj_request_cache, obj_request);
1814 }
1815
1816 /*
1817  * Caller is responsible for filling in the list of object requests
1818  * that comprises the image request, and the Linux request pointer
1819  * (if there is one).
1820  */
1821 static struct rbd_img_request *rbd_img_request_create(
1822                                         struct rbd_device *rbd_dev,
1823                                         u64 offset, u64 length,
1824                                         bool write_request,
1825                                         bool child_request)
1826 {
1827         struct rbd_img_request *img_request;
1828
1829         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1830         if (!img_request)
1831                 return NULL;
1832
1833         if (write_request) {
1834                 down_read(&rbd_dev->header_rwsem);
1835                 ceph_get_snap_context(rbd_dev->header.snapc);
1836                 up_read(&rbd_dev->header_rwsem);
1837         }
1838
1839         img_request->rq = NULL;
1840         img_request->rbd_dev = rbd_dev;
1841         img_request->offset = offset;
1842         img_request->length = length;
1843         img_request->flags = 0;
1844         if (write_request) {
1845                 img_request_write_set(img_request);
1846                 img_request->snapc = rbd_dev->header.snapc;
1847         } else {
1848                 img_request->snap_id = rbd_dev->spec->snap_id;
1849         }
1850         if (child_request)
1851                 img_request_child_set(img_request);
1852         if (rbd_dev->parent_spec)
1853                 img_request_layered_set(img_request);
1854         spin_lock_init(&img_request->completion_lock);
1855         img_request->next_completion = 0;
1856         img_request->callback = NULL;
1857         img_request->result = 0;
1858         img_request->obj_request_count = 0;
1859         INIT_LIST_HEAD(&img_request->obj_requests);
1860         kref_init(&img_request->kref);
1861
1862         rbd_img_request_get(img_request);       /* Avoid a warning */
1863         rbd_img_request_put(img_request);       /* TEMPORARY */
1864
1865         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1866                 write_request ? "write" : "read", offset, length,
1867                 img_request);
1868
1869         return img_request;
1870 }
1871
1872 static void rbd_img_request_destroy(struct kref *kref)
1873 {
1874         struct rbd_img_request *img_request;
1875         struct rbd_obj_request *obj_request;
1876         struct rbd_obj_request *next_obj_request;
1877
1878         img_request = container_of(kref, struct rbd_img_request, kref);
1879
1880         dout("%s: img %p\n", __func__, img_request);
1881
1882         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1883                 rbd_img_obj_request_del(img_request, obj_request);
1884         rbd_assert(img_request->obj_request_count == 0);
1885
1886         if (img_request_write_test(img_request))
1887                 ceph_put_snap_context(img_request->snapc);
1888
1889         if (img_request_child_test(img_request))
1890                 rbd_obj_request_put(img_request->obj_request);
1891
1892         kmem_cache_free(rbd_img_request_cache, img_request);
1893 }
1894
1895 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1896 {
1897         struct rbd_img_request *img_request;
1898         unsigned int xferred;
1899         int result;
1900         bool more;
1901
1902         rbd_assert(obj_request_img_data_test(obj_request));
1903         img_request = obj_request->img_request;
1904
1905         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1906         xferred = (unsigned int)obj_request->xferred;
1907         result = obj_request->result;
1908         if (result) {
1909                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1910
1911                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1912                         img_request_write_test(img_request) ? "write" : "read",
1913                         obj_request->length, obj_request->img_offset,
1914                         obj_request->offset);
1915                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1916                         result, xferred);
1917                 if (!img_request->result)
1918                         img_request->result = result;
1919         }
1920
1921         /* Image object requests don't own their page array */
1922
1923         if (obj_request->type == OBJ_REQUEST_PAGES) {
1924                 obj_request->pages = NULL;
1925                 obj_request->page_count = 0;
1926         }
1927
1928         if (img_request_child_test(img_request)) {
1929                 rbd_assert(img_request->obj_request != NULL);
1930                 more = obj_request->which < img_request->obj_request_count - 1;
1931         } else {
1932                 rbd_assert(img_request->rq != NULL);
1933                 more = blk_end_request(img_request->rq, result, xferred);
1934         }
1935
1936         return more;
1937 }
1938
1939 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1940 {
1941         struct rbd_img_request *img_request;
1942         u32 which = obj_request->which;
1943         bool more = true;
1944
1945         rbd_assert(obj_request_img_data_test(obj_request));
1946         img_request = obj_request->img_request;
1947
1948         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1949         rbd_assert(img_request != NULL);
1950         rbd_assert(img_request->obj_request_count > 0);
1951         rbd_assert(which != BAD_WHICH);
1952         rbd_assert(which < img_request->obj_request_count);
1953         rbd_assert(which >= img_request->next_completion);
1954
1955         spin_lock_irq(&img_request->completion_lock);
1956         if (which != img_request->next_completion)
1957                 goto out;
1958
1959         for_each_obj_request_from(img_request, obj_request) {
1960                 rbd_assert(more);
1961                 rbd_assert(which < img_request->obj_request_count);
1962
1963                 if (!obj_request_done_test(obj_request))
1964                         break;
1965                 more = rbd_img_obj_end_request(obj_request);
1966                 which++;
1967         }
1968
1969         rbd_assert(more ^ (which == img_request->obj_request_count));
1970         img_request->next_completion = which;
1971 out:
1972         spin_unlock_irq(&img_request->completion_lock);
1973
1974         if (!more)
1975                 rbd_img_request_complete(img_request);
1976 }
1977
1978 /*
1979  * Split up an image request into one or more object requests, each
1980  * to a different object.  The "type" parameter indicates whether
1981  * "data_desc" is the pointer to the head of a list of bio
1982  * structures, or the base of a page array.  In either case this
1983  * function assumes data_desc describes memory sufficient to hold
1984  * all data described by the image request.
1985  */
1986 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1987                                         enum obj_request_type type,
1988                                         void *data_desc)
1989 {
1990         struct rbd_device *rbd_dev = img_request->rbd_dev;
1991         struct rbd_obj_request *obj_request = NULL;
1992         struct rbd_obj_request *next_obj_request;
1993         bool write_request = img_request_write_test(img_request);
1994         struct bio *bio_list;
1995         unsigned int bio_offset = 0;
1996         struct page **pages;
1997         u64 img_offset;
1998         u64 resid;
1999         u16 opcode;
2000
2001         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2002                 (int)type, data_desc);
2003
2004         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2005         img_offset = img_request->offset;
2006         resid = img_request->length;
2007         rbd_assert(resid > 0);
2008
2009         if (type == OBJ_REQUEST_BIO) {
2010                 bio_list = data_desc;
2011                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2012         } else {
2013                 rbd_assert(type == OBJ_REQUEST_PAGES);
2014                 pages = data_desc;
2015         }
2016
2017         while (resid) {
2018                 struct ceph_osd_request *osd_req;
2019                 const char *object_name;
2020                 u64 offset;
2021                 u64 length;
2022
2023                 object_name = rbd_segment_name(rbd_dev, img_offset);
2024                 if (!object_name)
2025                         goto out_unwind;
2026                 offset = rbd_segment_offset(rbd_dev, img_offset);
2027                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2028                 obj_request = rbd_obj_request_create(object_name,
2029                                                 offset, length, type);
2030                 /* object request has its own copy of the object name */
2031                 rbd_segment_name_free(object_name);
2032                 if (!obj_request)
2033                         goto out_unwind;
2034
2035                 if (type == OBJ_REQUEST_BIO) {
2036                         unsigned int clone_size;
2037
2038                         rbd_assert(length <= (u64)UINT_MAX);
2039                         clone_size = (unsigned int)length;
2040                         obj_request->bio_list =
2041                                         bio_chain_clone_range(&bio_list,
2042                                                                 &bio_offset,
2043                                                                 clone_size,
2044                                                                 GFP_ATOMIC);
2045                         if (!obj_request->bio_list)
2046                                 goto out_partial;
2047                 } else {
2048                         unsigned int page_count;
2049
2050                         obj_request->pages = pages;
2051                         page_count = (u32)calc_pages_for(offset, length);
2052                         obj_request->page_count = page_count;
2053                         if ((offset + length) & ~PAGE_MASK)
2054                                 page_count--;   /* more on last page */
2055                         pages += page_count;
2056                 }
2057
2058                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2059                                                 obj_request);
2060                 if (!osd_req)
2061                         goto out_partial;
2062                 obj_request->osd_req = osd_req;
2063                 obj_request->callback = rbd_img_obj_callback;
2064
2065                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2066                                                 0, 0);
2067                 if (type == OBJ_REQUEST_BIO)
2068                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2069                                         obj_request->bio_list, length);
2070                 else
2071                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2072                                         obj_request->pages, length,
2073                                         offset & ~PAGE_MASK, false, false);
2074
2075                 if (write_request)
2076                         rbd_osd_req_format_write(obj_request);
2077                 else
2078                         rbd_osd_req_format_read(obj_request);
2079
2080                 obj_request->img_offset = img_offset;
2081                 rbd_img_obj_request_add(img_request, obj_request);
2082
2083                 img_offset += length;
2084                 resid -= length;
2085         }
2086
2087         return 0;
2088
2089 out_partial:
2090         rbd_obj_request_put(obj_request);
2091 out_unwind:
2092         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2093                 rbd_obj_request_put(obj_request);
2094
2095         return -ENOMEM;
2096 }
2097
2098 static void
2099 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2100 {
2101         struct rbd_img_request *img_request;
2102         struct rbd_device *rbd_dev;
2103         u64 length;
2104         u32 page_count;
2105
2106         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2107         rbd_assert(obj_request_img_data_test(obj_request));
2108         img_request = obj_request->img_request;
2109         rbd_assert(img_request);
2110
2111         rbd_dev = img_request->rbd_dev;
2112         rbd_assert(rbd_dev);
2113         length = (u64)1 << rbd_dev->header.obj_order;
2114         page_count = (u32)calc_pages_for(0, length);
2115
2116         rbd_assert(obj_request->copyup_pages);
2117         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2118         obj_request->copyup_pages = NULL;
2119
2120         /*
2121          * We want the transfer count to reflect the size of the
2122          * original write request.  There is no such thing as a
2123          * successful short write, so if the request was successful
2124          * we can just set it to the originally-requested length.
2125          */
2126         if (!obj_request->result)
2127                 obj_request->xferred = obj_request->length;
2128
2129         /* Finish up with the normal image object callback */
2130
2131         rbd_img_obj_callback(obj_request);
2132 }
2133
2134 static void
2135 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2136 {
2137         struct rbd_obj_request *orig_request;
2138         struct ceph_osd_request *osd_req;
2139         struct ceph_osd_client *osdc;
2140         struct rbd_device *rbd_dev;
2141         struct page **pages;
2142         int result;
2143         u64 obj_size;
2144         u64 xferred;
2145
2146         rbd_assert(img_request_child_test(img_request));
2147
2148         /* First get what we need from the image request */
2149
2150         pages = img_request->copyup_pages;
2151         rbd_assert(pages != NULL);
2152         img_request->copyup_pages = NULL;
2153
2154         orig_request = img_request->obj_request;
2155         rbd_assert(orig_request != NULL);
2156         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2157         result = img_request->result;
2158         obj_size = img_request->length;
2159         xferred = img_request->xferred;
2160
2161         rbd_dev = img_request->rbd_dev;
2162         rbd_assert(rbd_dev);
2163         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2164
2165         rbd_img_request_put(img_request);
2166
2167         if (result)
2168                 goto out_err;
2169
2170         /* Allocate the new copyup osd request for the original request */
2171
2172         result = -ENOMEM;
2173         rbd_assert(!orig_request->osd_req);
2174         osd_req = rbd_osd_req_create_copyup(orig_request);
2175         if (!osd_req)
2176                 goto out_err;
2177         orig_request->osd_req = osd_req;
2178         orig_request->copyup_pages = pages;
2179
2180         /* Initialize the copyup op */
2181
2182         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2183         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2184                                                 false, false);
2185
2186         /* Then the original write request op */
2187
2188         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2189                                         orig_request->offset,
2190                                         orig_request->length, 0, 0);
2191         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2192                                         orig_request->length);
2193
2194         rbd_osd_req_format_write(orig_request);
2195
2196         /* All set, send it off. */
2197
2198         orig_request->callback = rbd_img_obj_copyup_callback;
2199         osdc = &rbd_dev->rbd_client->client->osdc;
2200         result = rbd_obj_request_submit(osdc, orig_request);
2201         if (!result)
2202                 return;
2203 out_err:
2204         /* Record the error code and complete the request */
2205
2206         orig_request->result = result;
2207         orig_request->xferred = 0;
2208         obj_request_done_set(orig_request);
2209         rbd_obj_request_complete(orig_request);
2210 }
2211
2212 /*
2213  * Read from the parent image the range of data that covers the
2214  * entire target of the given object request.  This is used for
2215  * satisfying a layered image write request when the target of an
2216  * object request from the image request does not exist.
2217  *
2218  * A page array big enough to hold the returned data is allocated
2219  * and supplied to rbd_img_request_fill() as the "data descriptor."
2220  * When the read completes, this page array will be transferred to
2221  * the original object request for the copyup operation.
2222  *
2223  * If an error occurs, record it as the result of the original
2224  * object request and mark it done so it gets completed.
2225  */
2226 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2227 {
2228         struct rbd_img_request *img_request = NULL;
2229         struct rbd_img_request *parent_request = NULL;
2230         struct rbd_device *rbd_dev;
2231         u64 img_offset;
2232         u64 length;
2233         struct page **pages = NULL;
2234         u32 page_count;
2235         int result;
2236
2237         rbd_assert(obj_request_img_data_test(obj_request));
2238         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2239
2240         img_request = obj_request->img_request;
2241         rbd_assert(img_request != NULL);
2242         rbd_dev = img_request->rbd_dev;
2243         rbd_assert(rbd_dev->parent != NULL);
2244
2245         /*
2246          * First things first.  The original osd request is of no
2247          * use to use any more, we'll need a new one that can hold
2248          * the two ops in a copyup request.  We'll get that later,
2249          * but for now we can release the old one.
2250          */
2251         rbd_osd_req_destroy(obj_request->osd_req);
2252         obj_request->osd_req = NULL;
2253
2254         /*
2255          * Determine the byte range covered by the object in the
2256          * child image to which the original request was to be sent.
2257          */
2258         img_offset = obj_request->img_offset - obj_request->offset;
2259         length = (u64)1 << rbd_dev->header.obj_order;
2260
2261         /*
2262          * There is no defined parent data beyond the parent
2263          * overlap, so limit what we read at that boundary if
2264          * necessary.
2265          */
2266         if (img_offset + length > rbd_dev->parent_overlap) {
2267                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2268                 length = rbd_dev->parent_overlap - img_offset;
2269         }
2270
2271         /*
2272          * Allocate a page array big enough to receive the data read
2273          * from the parent.
2274          */
2275         page_count = (u32)calc_pages_for(0, length);
2276         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2277         if (IS_ERR(pages)) {
2278                 result = PTR_ERR(pages);
2279                 pages = NULL;
2280                 goto out_err;
2281         }
2282
2283         result = -ENOMEM;
2284         parent_request = rbd_img_request_create(rbd_dev->parent,
2285                                                 img_offset, length,
2286                                                 false, true);
2287         if (!parent_request)
2288                 goto out_err;
2289         rbd_obj_request_get(obj_request);
2290         parent_request->obj_request = obj_request;
2291
2292         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2293         if (result)
2294                 goto out_err;
2295         parent_request->copyup_pages = pages;
2296
2297         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2298         result = rbd_img_request_submit(parent_request);
2299         if (!result)
2300                 return 0;
2301
2302         parent_request->copyup_pages = NULL;
2303         parent_request->obj_request = NULL;
2304         rbd_obj_request_put(obj_request);
2305 out_err:
2306         if (pages)
2307                 ceph_release_page_vector(pages, page_count);
2308         if (parent_request)
2309                 rbd_img_request_put(parent_request);
2310         obj_request->result = result;
2311         obj_request->xferred = 0;
2312         obj_request_done_set(obj_request);
2313
2314         return result;
2315 }
2316
2317 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2318 {
2319         struct rbd_obj_request *orig_request;
2320         int result;
2321
2322         rbd_assert(!obj_request_img_data_test(obj_request));
2323
2324         /*
2325          * All we need from the object request is the original
2326          * request and the result of the STAT op.  Grab those, then
2327          * we're done with the request.
2328          */
2329         orig_request = obj_request->obj_request;
2330         obj_request->obj_request = NULL;
2331         rbd_assert(orig_request);
2332         rbd_assert(orig_request->img_request);
2333
2334         result = obj_request->result;
2335         obj_request->result = 0;
2336
2337         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2338                 obj_request, orig_request, result,
2339                 obj_request->xferred, obj_request->length);
2340         rbd_obj_request_put(obj_request);
2341
2342         rbd_assert(orig_request);
2343         rbd_assert(orig_request->img_request);
2344
2345         /*
2346          * Our only purpose here is to determine whether the object
2347          * exists, and we don't want to treat the non-existence as
2348          * an error.  If something else comes back, transfer the
2349          * error to the original request and complete it now.
2350          */
2351         if (!result) {
2352                 obj_request_existence_set(orig_request, true);
2353         } else if (result == -ENOENT) {
2354                 obj_request_existence_set(orig_request, false);
2355         } else if (result) {
2356                 orig_request->result = result;
2357                 goto out;
2358         }
2359
2360         /*
2361          * Resubmit the original request now that we have recorded
2362          * whether the target object exists.
2363          */
2364         orig_request->result = rbd_img_obj_request_submit(orig_request);
2365 out:
2366         if (orig_request->result)
2367                 rbd_obj_request_complete(orig_request);
2368         rbd_obj_request_put(orig_request);
2369 }
2370
2371 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2372 {
2373         struct rbd_obj_request *stat_request;
2374         struct rbd_device *rbd_dev;
2375         struct ceph_osd_client *osdc;
2376         struct page **pages = NULL;
2377         u32 page_count;
2378         size_t size;
2379         int ret;
2380
2381         /*
2382          * The response data for a STAT call consists of:
2383          *     le64 length;
2384          *     struct {
2385          *         le32 tv_sec;
2386          *         le32 tv_nsec;
2387          *     } mtime;
2388          */
2389         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2390         page_count = (u32)calc_pages_for(0, size);
2391         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2392         if (IS_ERR(pages))
2393                 return PTR_ERR(pages);
2394
2395         ret = -ENOMEM;
2396         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2397                                                         OBJ_REQUEST_PAGES);
2398         if (!stat_request)
2399                 goto out;
2400
2401         rbd_obj_request_get(obj_request);
2402         stat_request->obj_request = obj_request;
2403         stat_request->pages = pages;
2404         stat_request->page_count = page_count;
2405
2406         rbd_assert(obj_request->img_request);
2407         rbd_dev = obj_request->img_request->rbd_dev;
2408         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2409                                                 stat_request);
2410         if (!stat_request->osd_req)
2411                 goto out;
2412         stat_request->callback = rbd_img_obj_exists_callback;
2413
2414         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2415         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2416                                         false, false);
2417         rbd_osd_req_format_read(stat_request);
2418
2419         osdc = &rbd_dev->rbd_client->client->osdc;
2420         ret = rbd_obj_request_submit(osdc, stat_request);
2421 out:
2422         if (ret)
2423                 rbd_obj_request_put(obj_request);
2424
2425         return ret;
2426 }
2427
2428 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2429 {
2430         struct rbd_img_request *img_request;
2431         struct rbd_device *rbd_dev;
2432         bool known;
2433
2434         rbd_assert(obj_request_img_data_test(obj_request));
2435
2436         img_request = obj_request->img_request;
2437         rbd_assert(img_request);
2438         rbd_dev = img_request->rbd_dev;
2439
2440         /*
2441          * Only writes to layered images need special handling.
2442          * Reads and non-layered writes are simple object requests.
2443          * Layered writes that start beyond the end of the overlap
2444          * with the parent have no parent data, so they too are
2445          * simple object requests.  Finally, if the target object is
2446          * known to already exist, its parent data has already been
2447          * copied, so a write to the object can also be handled as a
2448          * simple object request.
2449          */
2450         if (!img_request_write_test(img_request) ||
2451                 !img_request_layered_test(img_request) ||
2452                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2453                 ((known = obj_request_known_test(obj_request)) &&
2454                         obj_request_exists_test(obj_request))) {
2455
2456                 struct rbd_device *rbd_dev;
2457                 struct ceph_osd_client *osdc;
2458
2459                 rbd_dev = obj_request->img_request->rbd_dev;
2460                 osdc = &rbd_dev->rbd_client->client->osdc;
2461
2462                 return rbd_obj_request_submit(osdc, obj_request);
2463         }
2464
2465         /*
2466          * It's a layered write.  The target object might exist but
2467          * we may not know that yet.  If we know it doesn't exist,
2468          * start by reading the data for the full target object from
2469          * the parent so we can use it for a copyup to the target.
2470          */
2471         if (known)
2472                 return rbd_img_obj_parent_read_full(obj_request);
2473
2474         /* We don't know whether the target exists.  Go find out. */
2475
2476         return rbd_img_obj_exists_submit(obj_request);
2477 }
2478
2479 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2480 {
2481         struct rbd_obj_request *obj_request;
2482         struct rbd_obj_request *next_obj_request;
2483
2484         dout("%s: img %p\n", __func__, img_request);
2485         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2486                 int ret;
2487
2488                 ret = rbd_img_obj_request_submit(obj_request);
2489                 if (ret)
2490                         return ret;
2491         }
2492
2493         return 0;
2494 }
2495
2496 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2497 {
2498         struct rbd_obj_request *obj_request;
2499         struct rbd_device *rbd_dev;
2500         u64 obj_end;
2501
2502         rbd_assert(img_request_child_test(img_request));
2503
2504         obj_request = img_request->obj_request;
2505         rbd_assert(obj_request);
2506         rbd_assert(obj_request->img_request);
2507
2508         obj_request->result = img_request->result;
2509         if (obj_request->result)
2510                 goto out;
2511
2512         /*
2513          * We need to zero anything beyond the parent overlap
2514          * boundary.  Since rbd_img_obj_request_read_callback()
2515          * will zero anything beyond the end of a short read, an
2516          * easy way to do this is to pretend the data from the
2517          * parent came up short--ending at the overlap boundary.
2518          */
2519         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2520         obj_end = obj_request->img_offset + obj_request->length;
2521         rbd_dev = obj_request->img_request->rbd_dev;
2522         if (obj_end > rbd_dev->parent_overlap) {
2523                 u64 xferred = 0;
2524
2525                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2526                         xferred = rbd_dev->parent_overlap -
2527                                         obj_request->img_offset;
2528
2529                 obj_request->xferred = min(img_request->xferred, xferred);
2530         } else {
2531                 obj_request->xferred = img_request->xferred;
2532         }
2533 out:
2534         rbd_img_request_put(img_request);
2535         rbd_img_obj_request_read_callback(obj_request);
2536         rbd_obj_request_complete(obj_request);
2537 }
2538
2539 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2540 {
2541         struct rbd_device *rbd_dev;
2542         struct rbd_img_request *img_request;
2543         int result;
2544
2545         rbd_assert(obj_request_img_data_test(obj_request));
2546         rbd_assert(obj_request->img_request != NULL);
2547         rbd_assert(obj_request->result == (s32) -ENOENT);
2548         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2549
2550         rbd_dev = obj_request->img_request->rbd_dev;
2551         rbd_assert(rbd_dev->parent != NULL);
2552         /* rbd_read_finish(obj_request, obj_request->length); */
2553         img_request = rbd_img_request_create(rbd_dev->parent,
2554                                                 obj_request->img_offset,
2555                                                 obj_request->length,
2556                                                 false, true);
2557         result = -ENOMEM;
2558         if (!img_request)
2559                 goto out_err;
2560
2561         rbd_obj_request_get(obj_request);
2562         img_request->obj_request = obj_request;
2563
2564         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2565                                         obj_request->bio_list);
2566         if (result)
2567                 goto out_err;
2568
2569         img_request->callback = rbd_img_parent_read_callback;
2570         result = rbd_img_request_submit(img_request);
2571         if (result)
2572                 goto out_err;
2573
2574         return;
2575 out_err:
2576         if (img_request)
2577                 rbd_img_request_put(img_request);
2578         obj_request->result = result;
2579         obj_request->xferred = 0;
2580         obj_request_done_set(obj_request);
2581 }
2582
2583 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2584 {
2585         struct rbd_obj_request *obj_request;
2586         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2587         int ret;
2588
2589         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2590                                                         OBJ_REQUEST_NODATA);
2591         if (!obj_request)
2592                 return -ENOMEM;
2593
2594         ret = -ENOMEM;
2595         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2596         if (!obj_request->osd_req)
2597                 goto out;
2598         obj_request->callback = rbd_obj_request_put;
2599
2600         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2601                                         notify_id, 0, 0);
2602         rbd_osd_req_format_read(obj_request);
2603
2604         ret = rbd_obj_request_submit(osdc, obj_request);
2605 out:
2606         if (ret)
2607                 rbd_obj_request_put(obj_request);
2608
2609         return ret;
2610 }
2611
2612 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2613 {
2614         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2615         int ret;
2616
2617         if (!rbd_dev)
2618                 return;
2619
2620         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2621                 rbd_dev->header_name, (unsigned long long)notify_id,
2622                 (unsigned int)opcode);
2623         ret = rbd_dev_refresh(rbd_dev);
2624         if (ret)
2625                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2626
2627         rbd_obj_notify_ack(rbd_dev, notify_id);
2628 }
2629
2630 /*
2631  * Request sync osd watch/unwatch.  The value of "start" determines
2632  * whether a watch request is being initiated or torn down.
2633  */
2634 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2635 {
2636         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2637         struct rbd_obj_request *obj_request;
2638         int ret;
2639
2640         rbd_assert(start ^ !!rbd_dev->watch_event);
2641         rbd_assert(start ^ !!rbd_dev->watch_request);
2642
2643         if (start) {
2644                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2645                                                 &rbd_dev->watch_event);
2646                 if (ret < 0)
2647                         return ret;
2648                 rbd_assert(rbd_dev->watch_event != NULL);
2649         }
2650
2651         ret = -ENOMEM;
2652         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2653                                                         OBJ_REQUEST_NODATA);
2654         if (!obj_request)
2655                 goto out_cancel;
2656
2657         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2658         if (!obj_request->osd_req)
2659                 goto out_cancel;
2660
2661         if (start)
2662                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2663         else
2664                 ceph_osdc_unregister_linger_request(osdc,
2665                                         rbd_dev->watch_request->osd_req);
2666
2667         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2668                                 rbd_dev->watch_event->cookie, 0, start);
2669         rbd_osd_req_format_write(obj_request);
2670
2671         ret = rbd_obj_request_submit(osdc, obj_request);
2672         if (ret)
2673                 goto out_cancel;
2674         ret = rbd_obj_request_wait(obj_request);
2675         if (ret)
2676                 goto out_cancel;
2677         ret = obj_request->result;
2678         if (ret)
2679                 goto out_cancel;
2680
2681         /*
2682          * A watch request is set to linger, so the underlying osd
2683          * request won't go away until we unregister it.  We retain
2684          * a pointer to the object request during that time (in
2685          * rbd_dev->watch_request), so we'll keep a reference to
2686          * it.  We'll drop that reference (below) after we've
2687          * unregistered it.
2688          */
2689         if (start) {
2690                 rbd_dev->watch_request = obj_request;
2691
2692                 return 0;
2693         }
2694
2695         /* We have successfully torn down the watch request */
2696
2697         rbd_obj_request_put(rbd_dev->watch_request);
2698         rbd_dev->watch_request = NULL;
2699 out_cancel:
2700         /* Cancel the event if we're tearing down, or on error */
2701         ceph_osdc_cancel_event(rbd_dev->watch_event);
2702         rbd_dev->watch_event = NULL;
2703         if (obj_request)
2704                 rbd_obj_request_put(obj_request);
2705
2706         return ret;
2707 }
2708
2709 /*
2710  * Synchronous osd object method call.  Returns the number of bytes
2711  * returned in the outbound buffer, or a negative error code.
2712  */
2713 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2714                              const char *object_name,
2715                              const char *class_name,
2716                              const char *method_name,
2717                              const void *outbound,
2718                              size_t outbound_size,
2719                              void *inbound,
2720                              size_t inbound_size)
2721 {
2722         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2723         struct rbd_obj_request *obj_request;
2724         struct page **pages;
2725         u32 page_count;
2726         int ret;
2727
2728         /*
2729          * Method calls are ultimately read operations.  The result
2730          * should placed into the inbound buffer provided.  They
2731          * also supply outbound data--parameters for the object
2732          * method.  Currently if this is present it will be a
2733          * snapshot id.
2734          */
2735         page_count = (u32)calc_pages_for(0, inbound_size);
2736         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2737         if (IS_ERR(pages))
2738                 return PTR_ERR(pages);
2739
2740         ret = -ENOMEM;
2741         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2742                                                         OBJ_REQUEST_PAGES);
2743         if (!obj_request)
2744                 goto out;
2745
2746         obj_request->pages = pages;
2747         obj_request->page_count = page_count;
2748
2749         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2750         if (!obj_request->osd_req)
2751                 goto out;
2752
2753         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2754                                         class_name, method_name);
2755         if (outbound_size) {
2756                 struct ceph_pagelist *pagelist;
2757
2758                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2759                 if (!pagelist)
2760                         goto out;
2761
2762                 ceph_pagelist_init(pagelist);
2763                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2764                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2765                                                 pagelist);
2766         }
2767         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2768                                         obj_request->pages, inbound_size,
2769                                         0, false, false);
2770         rbd_osd_req_format_read(obj_request);
2771
2772         ret = rbd_obj_request_submit(osdc, obj_request);
2773         if (ret)
2774                 goto out;
2775         ret = rbd_obj_request_wait(obj_request);
2776         if (ret)
2777                 goto out;
2778
2779         ret = obj_request->result;
2780         if (ret < 0)
2781                 goto out;
2782
2783         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2784         ret = (int)obj_request->xferred;
2785         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2786 out:
2787         if (obj_request)
2788                 rbd_obj_request_put(obj_request);
2789         else
2790                 ceph_release_page_vector(pages, page_count);
2791
2792         return ret;
2793 }
2794
2795 static void rbd_request_fn(struct request_queue *q)
2796                 __releases(q->queue_lock) __acquires(q->queue_lock)
2797 {
2798         struct rbd_device *rbd_dev = q->queuedata;
2799         bool read_only = rbd_dev->mapping.read_only;
2800         struct request *rq;
2801         int result;
2802
2803         while ((rq = blk_fetch_request(q))) {
2804                 bool write_request = rq_data_dir(rq) == WRITE;
2805                 struct rbd_img_request *img_request;
2806                 u64 offset;
2807                 u64 length;
2808
2809                 /* Ignore any non-FS requests that filter through. */
2810
2811                 if (rq->cmd_type != REQ_TYPE_FS) {
2812                         dout("%s: non-fs request type %d\n", __func__,
2813                                 (int) rq->cmd_type);
2814                         __blk_end_request_all(rq, 0);
2815                         continue;
2816                 }
2817
2818                 /* Ignore/skip any zero-length requests */
2819
2820                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2821                 length = (u64) blk_rq_bytes(rq);
2822
2823                 if (!length) {
2824                         dout("%s: zero-length request\n", __func__);
2825                         __blk_end_request_all(rq, 0);
2826                         continue;
2827                 }
2828
2829                 spin_unlock_irq(q->queue_lock);
2830
2831                 /* Disallow writes to a read-only device */
2832
2833                 if (write_request) {
2834                         result = -EROFS;
2835                         if (read_only)
2836                                 goto end_request;
2837                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2838                 }
2839
2840                 /*
2841                  * Quit early if the mapped snapshot no longer
2842                  * exists.  It's still possible the snapshot will
2843                  * have disappeared by the time our request arrives
2844                  * at the osd, but there's no sense in sending it if
2845                  * we already know.
2846                  */
2847                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2848                         dout("request for non-existent snapshot");
2849                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2850                         result = -ENXIO;
2851                         goto end_request;
2852                 }
2853
2854                 result = -EINVAL;
2855                 if (offset && length > U64_MAX - offset + 1) {
2856                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2857                                 offset, length);
2858                         goto end_request;       /* Shouldn't happen */
2859                 }
2860
2861                 result = -EIO;
2862                 if (offset + length > rbd_dev->mapping.size) {
2863                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
2864                                 offset, length, rbd_dev->mapping.size);
2865                         goto end_request;
2866                 }
2867
2868                 result = -ENOMEM;
2869                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2870                                                         write_request, false);
2871                 if (!img_request)
2872                         goto end_request;
2873
2874                 img_request->rq = rq;
2875
2876                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2877                                                 rq->bio);
2878                 if (!result)
2879                         result = rbd_img_request_submit(img_request);
2880                 if (result)
2881                         rbd_img_request_put(img_request);
2882 end_request:
2883                 spin_lock_irq(q->queue_lock);
2884                 if (result < 0) {
2885                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2886                                 write_request ? "write" : "read",
2887                                 length, offset, result);
2888
2889                         __blk_end_request_all(rq, result);
2890                 }
2891         }
2892 }
2893
2894 /*
2895  * a queue callback. Makes sure that we don't create a bio that spans across
2896  * multiple osd objects. One exception would be with a single page bios,
2897  * which we handle later at bio_chain_clone_range()
2898  */
2899 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2900                           struct bio_vec *bvec)
2901 {
2902         struct rbd_device *rbd_dev = q->queuedata;
2903         sector_t sector_offset;
2904         sector_t sectors_per_obj;
2905         sector_t obj_sector_offset;
2906         int ret;
2907
2908         /*
2909          * Find how far into its rbd object the partition-relative
2910          * bio start sector is to offset relative to the enclosing
2911          * device.
2912          */
2913         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2914         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2915         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2916
2917         /*
2918          * Compute the number of bytes from that offset to the end
2919          * of the object.  Account for what's already used by the bio.
2920          */
2921         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2922         if (ret > bmd->bi_size)
2923                 ret -= bmd->bi_size;
2924         else
2925                 ret = 0;
2926
2927         /*
2928          * Don't send back more than was asked for.  And if the bio
2929          * was empty, let the whole thing through because:  "Note
2930          * that a block device *must* allow a single page to be
2931          * added to an empty bio."
2932          */
2933         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2934         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2935                 ret = (int) bvec->bv_len;
2936
2937         return ret;
2938 }
2939
2940 static void rbd_free_disk(struct rbd_device *rbd_dev)
2941 {
2942         struct gendisk *disk = rbd_dev->disk;
2943
2944         if (!disk)
2945                 return;
2946
2947         rbd_dev->disk = NULL;
2948         if (disk->flags & GENHD_FL_UP) {
2949                 del_gendisk(disk);
2950                 if (disk->queue)
2951                         blk_cleanup_queue(disk->queue);
2952         }
2953         put_disk(disk);
2954 }
2955
2956 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2957                                 const char *object_name,
2958                                 u64 offset, u64 length, void *buf)
2959
2960 {
2961         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2962         struct rbd_obj_request *obj_request;
2963         struct page **pages = NULL;
2964         u32 page_count;
2965         size_t size;
2966         int ret;
2967
2968         page_count = (u32) calc_pages_for(offset, length);
2969         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2970         if (IS_ERR(pages))
2971                 ret = PTR_ERR(pages);
2972
2973         ret = -ENOMEM;
2974         obj_request = rbd_obj_request_create(object_name, offset, length,
2975                                                         OBJ_REQUEST_PAGES);
2976         if (!obj_request)
2977                 goto out;
2978
2979         obj_request->pages = pages;
2980         obj_request->page_count = page_count;
2981
2982         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2983         if (!obj_request->osd_req)
2984                 goto out;
2985
2986         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2987                                         offset, length, 0, 0);
2988         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2989                                         obj_request->pages,
2990                                         obj_request->length,
2991                                         obj_request->offset & ~PAGE_MASK,
2992                                         false, false);
2993         rbd_osd_req_format_read(obj_request);
2994
2995         ret = rbd_obj_request_submit(osdc, obj_request);
2996         if (ret)
2997                 goto out;
2998         ret = rbd_obj_request_wait(obj_request);
2999         if (ret)
3000                 goto out;
3001
3002         ret = obj_request->result;
3003         if (ret < 0)
3004                 goto out;
3005
3006         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3007         size = (size_t) obj_request->xferred;
3008         ceph_copy_from_page_vector(pages, buf, 0, size);
3009         rbd_assert(size <= (size_t)INT_MAX);
3010         ret = (int)size;
3011 out:
3012         if (obj_request)
3013                 rbd_obj_request_put(obj_request);
3014         else
3015                 ceph_release_page_vector(pages, page_count);
3016
3017         return ret;
3018 }
3019
3020 /*
3021  * Read the complete header for the given rbd device.
3022  *
3023  * Returns a pointer to a dynamically-allocated buffer containing
3024  * the complete and validated header.  Caller can pass the address
3025  * of a variable that will be filled in with the version of the
3026  * header object at the time it was read.
3027  *
3028  * Returns a pointer-coded errno if a failure occurs.
3029  */
3030 static struct rbd_image_header_ondisk *
3031 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
3032 {
3033         struct rbd_image_header_ondisk *ondisk = NULL;
3034         u32 snap_count = 0;
3035         u64 names_size = 0;
3036         u32 want_count;
3037         int ret;
3038
3039         /*
3040          * The complete header will include an array of its 64-bit
3041          * snapshot ids, followed by the names of those snapshots as
3042          * a contiguous block of NUL-terminated strings.  Note that
3043          * the number of snapshots could change by the time we read
3044          * it in, in which case we re-read it.
3045          */
3046         do {
3047                 size_t size;
3048
3049                 kfree(ondisk);
3050
3051                 size = sizeof (*ondisk);
3052                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3053                 size += names_size;
3054                 ondisk = kmalloc(size, GFP_KERNEL);
3055                 if (!ondisk)
3056                         return ERR_PTR(-ENOMEM);
3057
3058                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3059                                        0, size, ondisk);
3060                 if (ret < 0)
3061                         goto out_err;
3062                 if ((size_t)ret < size) {
3063                         ret = -ENXIO;
3064                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3065                                 size, ret);
3066                         goto out_err;
3067                 }
3068                 if (!rbd_dev_ondisk_valid(ondisk)) {
3069                         ret = -ENXIO;
3070                         rbd_warn(rbd_dev, "invalid header");
3071                         goto out_err;
3072                 }
3073
3074                 names_size = le64_to_cpu(ondisk->snap_names_len);
3075                 want_count = snap_count;
3076                 snap_count = le32_to_cpu(ondisk->snap_count);
3077         } while (snap_count != want_count);
3078
3079         return ondisk;
3080
3081 out_err:
3082         kfree(ondisk);
3083
3084         return ERR_PTR(ret);
3085 }
3086
3087 /*
3088  * reload the ondisk the header
3089  */
3090 static int rbd_read_header(struct rbd_device *rbd_dev,
3091                            struct rbd_image_header *header)
3092 {
3093         struct rbd_image_header_ondisk *ondisk;
3094         int ret;
3095
3096         ondisk = rbd_dev_v1_header_read(rbd_dev);
3097         if (IS_ERR(ondisk))
3098                 return PTR_ERR(ondisk);
3099         ret = rbd_header_from_disk(header, ondisk);
3100         kfree(ondisk);
3101
3102         return ret;
3103 }
3104
3105 /*
3106  * only read the first part of the ondisk header, without the snaps info
3107  */
3108 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3109 {
3110         int ret;
3111         struct rbd_image_header h;
3112
3113         ret = rbd_read_header(rbd_dev, &h);
3114         if (ret < 0)
3115                 return ret;
3116
3117         down_write(&rbd_dev->header_rwsem);
3118
3119         /* Update image size, and check for resize of mapped image */
3120         rbd_dev->header.image_size = h.image_size;
3121         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
3122                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3123                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3124
3125         /* rbd_dev->header.object_prefix shouldn't change */
3126         kfree(rbd_dev->header.snap_sizes);
3127         kfree(rbd_dev->header.snap_names);
3128         /* osd requests may still refer to snapc */
3129         ceph_put_snap_context(rbd_dev->header.snapc);
3130
3131         rbd_dev->header.image_size = h.image_size;
3132         rbd_dev->header.snapc = h.snapc;
3133         rbd_dev->header.snap_names = h.snap_names;
3134         rbd_dev->header.snap_sizes = h.snap_sizes;
3135         /* Free the extra copy of the object prefix */
3136         if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3137                 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3138         kfree(h.object_prefix);
3139
3140         up_write(&rbd_dev->header_rwsem);
3141
3142         return ret;
3143 }
3144
3145 /*
3146  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3147  * has disappeared from the (just updated) snapshot context.
3148  */
3149 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3150 {
3151         u64 snap_id;
3152
3153         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3154                 return;
3155
3156         snap_id = rbd_dev->spec->snap_id;
3157         if (snap_id == CEPH_NOSNAP)
3158                 return;
3159
3160         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3161                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3162 }
3163
3164 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3165 {
3166         u64 mapping_size;
3167         int ret;
3168
3169         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3170         mapping_size = rbd_dev->mapping.size;
3171         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3172         if (rbd_dev->image_format == 1)
3173                 ret = rbd_dev_v1_refresh(rbd_dev);
3174         else
3175                 ret = rbd_dev_v2_refresh(rbd_dev);
3176
3177         /* If it's a mapped snapshot, validate its EXISTS flag */
3178
3179         rbd_exists_validate(rbd_dev);
3180         mutex_unlock(&ctl_mutex);
3181         if (mapping_size != rbd_dev->mapping.size) {
3182                 sector_t size;
3183
3184                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3185                 dout("setting size to %llu sectors", (unsigned long long)size);
3186                 set_capacity(rbd_dev->disk, size);
3187                 revalidate_disk(rbd_dev->disk);
3188         }
3189
3190         return ret;
3191 }
3192
3193 static int rbd_init_disk(struct rbd_device *rbd_dev)
3194 {
3195         struct gendisk *disk;
3196         struct request_queue *q;
3197         u64 segment_size;
3198
3199         /* create gendisk info */
3200         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3201         if (!disk)
3202                 return -ENOMEM;
3203
3204         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3205                  rbd_dev->dev_id);
3206         disk->major = rbd_dev->major;
3207         disk->first_minor = 0;
3208         disk->fops = &rbd_bd_ops;
3209         disk->private_data = rbd_dev;
3210
3211         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3212         if (!q)
3213                 goto out_disk;
3214
3215         /* We use the default size, but let's be explicit about it. */
3216         blk_queue_physical_block_size(q, SECTOR_SIZE);
3217
3218         /* set io sizes to object size */
3219         segment_size = rbd_obj_bytes(&rbd_dev->header);
3220         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3221         blk_queue_max_segment_size(q, segment_size);
3222         blk_queue_io_min(q, segment_size);
3223         blk_queue_io_opt(q, segment_size);
3224
3225         blk_queue_merge_bvec(q, rbd_merge_bvec);
3226         disk->queue = q;
3227
3228         q->queuedata = rbd_dev;
3229
3230         rbd_dev->disk = disk;
3231
3232         return 0;
3233 out_disk:
3234         put_disk(disk);
3235
3236         return -ENOMEM;
3237 }
3238
3239 /*
3240   sysfs
3241 */
3242
3243 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3244 {
3245         return container_of(dev, struct rbd_device, dev);
3246 }
3247
3248 static ssize_t rbd_size_show(struct device *dev,
3249                              struct device_attribute *attr, char *buf)
3250 {
3251         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3252
3253         return sprintf(buf, "%llu\n",
3254                 (unsigned long long)rbd_dev->mapping.size);
3255 }
3256
3257 /*
3258  * Note this shows the features for whatever's mapped, which is not
3259  * necessarily the base image.
3260  */
3261 static ssize_t rbd_features_show(struct device *dev,
3262                              struct device_attribute *attr, char *buf)
3263 {
3264         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3265
3266         return sprintf(buf, "0x%016llx\n",
3267                         (unsigned long long)rbd_dev->mapping.features);
3268 }
3269
3270 static ssize_t rbd_major_show(struct device *dev,
3271                               struct device_attribute *attr, char *buf)
3272 {
3273         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3274
3275         if (rbd_dev->major)
3276                 return sprintf(buf, "%d\n", rbd_dev->major);
3277
3278         return sprintf(buf, "(none)\n");
3279
3280 }
3281
3282 static ssize_t rbd_client_id_show(struct device *dev,
3283                                   struct device_attribute *attr, char *buf)
3284 {
3285         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3286
3287         return sprintf(buf, "client%lld\n",
3288                         ceph_client_id(rbd_dev->rbd_client->client));
3289 }
3290
3291 static ssize_t rbd_pool_show(struct device *dev,
3292                              struct device_attribute *attr, char *buf)
3293 {
3294         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3295
3296         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3297 }
3298
3299 static ssize_t rbd_pool_id_show(struct device *dev,
3300                              struct device_attribute *attr, char *buf)
3301 {
3302         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3303
3304         return sprintf(buf, "%llu\n",
3305                         (unsigned long long) rbd_dev->spec->pool_id);
3306 }
3307
3308 static ssize_t rbd_name_show(struct device *dev,
3309                              struct device_attribute *attr, char *buf)
3310 {
3311         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3312
3313         if (rbd_dev->spec->image_name)
3314                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3315
3316         return sprintf(buf, "(unknown)\n");
3317 }
3318
3319 static ssize_t rbd_image_id_show(struct device *dev,
3320                              struct device_attribute *attr, char *buf)
3321 {
3322         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3323
3324         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3325 }
3326
3327 /*
3328  * Shows the name of the currently-mapped snapshot (or
3329  * RBD_SNAP_HEAD_NAME for the base image).
3330  */
3331 static ssize_t rbd_snap_show(struct device *dev,
3332                              struct device_attribute *attr,
3333                              char *buf)
3334 {
3335         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3336
3337         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3338 }
3339
3340 /*
3341  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3342  * for the parent image.  If there is no parent, simply shows
3343  * "(no parent image)".
3344  */
3345 static ssize_t rbd_parent_show(struct device *dev,
3346                              struct device_attribute *attr,
3347                              char *buf)
3348 {
3349         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3350         struct rbd_spec *spec = rbd_dev->parent_spec;
3351         int count;
3352         char *bufp = buf;
3353
3354         if (!spec)
3355                 return sprintf(buf, "(no parent image)\n");
3356
3357         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3358                         (unsigned long long) spec->pool_id, spec->pool_name);
3359         if (count < 0)
3360                 return count;
3361         bufp += count;
3362
3363         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3364                         spec->image_name ? spec->image_name : "(unknown)");
3365         if (count < 0)
3366                 return count;
3367         bufp += count;
3368
3369         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3370                         (unsigned long long) spec->snap_id, spec->snap_name);
3371         if (count < 0)
3372                 return count;
3373         bufp += count;
3374
3375         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3376         if (count < 0)
3377                 return count;
3378         bufp += count;
3379
3380         return (ssize_t) (bufp - buf);
3381 }
3382
3383 static ssize_t rbd_image_refresh(struct device *dev,
3384                                  struct device_attribute *attr,
3385                                  const char *buf,
3386                                  size_t size)
3387 {
3388         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3389         int ret;
3390
3391         ret = rbd_dev_refresh(rbd_dev);
3392         if (ret)
3393                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3394
3395         return ret < 0 ? ret : size;
3396 }
3397
3398 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3399 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3400 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3401 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3402 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3403 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3404 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3405 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3406 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3407 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3408 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3409
3410 static struct attribute *rbd_attrs[] = {
3411         &dev_attr_size.attr,
3412         &dev_attr_features.attr,
3413         &dev_attr_major.attr,
3414         &dev_attr_client_id.attr,
3415         &dev_attr_pool.attr,
3416         &dev_attr_pool_id.attr,
3417         &dev_attr_name.attr,
3418         &dev_attr_image_id.attr,
3419         &dev_attr_current_snap.attr,
3420         &dev_attr_parent.attr,
3421         &dev_attr_refresh.attr,
3422         NULL
3423 };
3424
3425 static struct attribute_group rbd_attr_group = {
3426         .attrs = rbd_attrs,
3427 };
3428
3429 static const struct attribute_group *rbd_attr_groups[] = {
3430         &rbd_attr_group,
3431         NULL
3432 };
3433
3434 static void rbd_sysfs_dev_release(struct device *dev)
3435 {
3436 }
3437
3438 static struct device_type rbd_device_type = {
3439         .name           = "rbd",
3440         .groups         = rbd_attr_groups,
3441         .release        = rbd_sysfs_dev_release,
3442 };
3443
3444 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3445 {
3446         kref_get(&spec->kref);
3447
3448         return spec;
3449 }
3450
3451 static void rbd_spec_free(struct kref *kref);
3452 static void rbd_spec_put(struct rbd_spec *spec)
3453 {
3454         if (spec)
3455                 kref_put(&spec->kref, rbd_spec_free);
3456 }
3457
3458 static struct rbd_spec *rbd_spec_alloc(void)
3459 {
3460         struct rbd_spec *spec;
3461
3462         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3463         if (!spec)
3464                 return NULL;
3465         kref_init(&spec->kref);
3466
3467         return spec;
3468 }
3469
3470 static void rbd_spec_free(struct kref *kref)
3471 {
3472         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3473
3474         kfree(spec->pool_name);
3475         kfree(spec->image_id);
3476         kfree(spec->image_name);
3477         kfree(spec->snap_name);
3478         kfree(spec);
3479 }
3480
3481 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3482                                 struct rbd_spec *spec)
3483 {
3484         struct rbd_device *rbd_dev;
3485
3486         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3487         if (!rbd_dev)
3488                 return NULL;
3489
3490         spin_lock_init(&rbd_dev->lock);
3491         rbd_dev->flags = 0;
3492         INIT_LIST_HEAD(&rbd_dev->node);
3493         init_rwsem(&rbd_dev->header_rwsem);
3494
3495         rbd_dev->spec = spec;
3496         rbd_dev->rbd_client = rbdc;
3497
3498         /* Initialize the layout used for all rbd requests */
3499
3500         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3501         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3502         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3503         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3504
3505         return rbd_dev;
3506 }
3507
3508 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3509 {
3510         rbd_put_client(rbd_dev->rbd_client);
3511         rbd_spec_put(rbd_dev->spec);
3512         kfree(rbd_dev);
3513 }
3514
3515 /*
3516  * Get the size and object order for an image snapshot, or if
3517  * snap_id is CEPH_NOSNAP, gets this information for the base
3518  * image.
3519  */
3520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3521                                 u8 *order, u64 *snap_size)
3522 {
3523         __le64 snapid = cpu_to_le64(snap_id);
3524         int ret;
3525         struct {
3526                 u8 order;
3527                 __le64 size;
3528         } __attribute__ ((packed)) size_buf = { 0 };
3529
3530         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3531                                 "rbd", "get_size",
3532                                 &snapid, sizeof (snapid),
3533                                 &size_buf, sizeof (size_buf));
3534         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3535         if (ret < 0)
3536                 return ret;
3537         if (ret < sizeof (size_buf))
3538                 return -ERANGE;
3539
3540         if (order)
3541                 *order = size_buf.order;
3542         *snap_size = le64_to_cpu(size_buf.size);
3543
3544         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3545                 (unsigned long long)snap_id, (unsigned int)*order,
3546                 (unsigned long long)*snap_size);
3547
3548         return 0;
3549 }
3550
3551 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3552 {
3553         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3554                                         &rbd_dev->header.obj_order,
3555                                         &rbd_dev->header.image_size);
3556 }
3557
3558 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3559 {
3560         void *reply_buf;
3561         int ret;
3562         void *p;
3563
3564         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3565         if (!reply_buf)
3566                 return -ENOMEM;
3567
3568         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3569                                 "rbd", "get_object_prefix", NULL, 0,
3570                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3571         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3572         if (ret < 0)
3573                 goto out;
3574
3575         p = reply_buf;
3576         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3577                                                 p + ret, NULL, GFP_NOIO);
3578         ret = 0;
3579
3580         if (IS_ERR(rbd_dev->header.object_prefix)) {
3581                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3582                 rbd_dev->header.object_prefix = NULL;
3583         } else {
3584                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3585         }
3586 out:
3587         kfree(reply_buf);
3588
3589         return ret;
3590 }
3591
3592 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3593                 u64 *snap_features)
3594 {
3595         __le64 snapid = cpu_to_le64(snap_id);
3596         struct {
3597                 __le64 features;
3598                 __le64 incompat;
3599         } __attribute__ ((packed)) features_buf = { 0 };
3600         u64 incompat;
3601         int ret;
3602
3603         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3604                                 "rbd", "get_features",
3605                                 &snapid, sizeof (snapid),
3606                                 &features_buf, sizeof (features_buf));
3607         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3608         if (ret < 0)
3609                 return ret;
3610         if (ret < sizeof (features_buf))
3611                 return -ERANGE;
3612
3613         incompat = le64_to_cpu(features_buf.incompat);
3614         if (incompat & ~RBD_FEATURES_SUPPORTED)
3615                 return -ENXIO;
3616
3617         *snap_features = le64_to_cpu(features_buf.features);
3618
3619         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3620                 (unsigned long long)snap_id,
3621                 (unsigned long long)*snap_features,
3622                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3623
3624         return 0;
3625 }
3626
3627 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3628 {
3629         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3630                                                 &rbd_dev->header.features);
3631 }
3632
3633 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3634 {
3635         struct rbd_spec *parent_spec;
3636         size_t size;
3637         void *reply_buf = NULL;
3638         __le64 snapid;
3639         void *p;
3640         void *end;
3641         char *image_id;
3642         u64 overlap;
3643         int ret;
3644
3645         parent_spec = rbd_spec_alloc();
3646         if (!parent_spec)
3647                 return -ENOMEM;
3648
3649         size = sizeof (__le64) +                                /* pool_id */
3650                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3651                 sizeof (__le64) +                               /* snap_id */
3652                 sizeof (__le64);                                /* overlap */
3653         reply_buf = kmalloc(size, GFP_KERNEL);
3654         if (!reply_buf) {
3655                 ret = -ENOMEM;
3656                 goto out_err;
3657         }
3658
3659         snapid = cpu_to_le64(CEPH_NOSNAP);
3660         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3661                                 "rbd", "get_parent",
3662                                 &snapid, sizeof (snapid),
3663                                 reply_buf, size);
3664         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3665         if (ret < 0)
3666                 goto out_err;
3667
3668         p = reply_buf;
3669         end = reply_buf + ret;
3670         ret = -ERANGE;
3671         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3672         if (parent_spec->pool_id == CEPH_NOPOOL)
3673                 goto out;       /* No parent?  No problem. */
3674
3675         /* The ceph file layout needs to fit pool id in 32 bits */
3676
3677         ret = -EIO;
3678         if (parent_spec->pool_id > (u64)U32_MAX) {
3679                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3680                         (unsigned long long)parent_spec->pool_id, U32_MAX);
3681                 goto out_err;
3682         }
3683
3684         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3685         if (IS_ERR(image_id)) {
3686                 ret = PTR_ERR(image_id);
3687                 goto out_err;
3688         }
3689         parent_spec->image_id = image_id;
3690         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3691         ceph_decode_64_safe(&p, end, overlap, out_err);
3692
3693         rbd_dev->parent_overlap = overlap;
3694         rbd_dev->parent_spec = parent_spec;
3695         parent_spec = NULL;     /* rbd_dev now owns this */
3696 out:
3697         ret = 0;
3698 out_err:
3699         kfree(reply_buf);
3700         rbd_spec_put(parent_spec);
3701
3702         return ret;
3703 }
3704
3705 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3706 {
3707         struct {
3708                 __le64 stripe_unit;
3709                 __le64 stripe_count;
3710         } __attribute__ ((packed)) striping_info_buf = { 0 };
3711         size_t size = sizeof (striping_info_buf);
3712         void *p;
3713         u64 obj_size;
3714         u64 stripe_unit;
3715         u64 stripe_count;
3716         int ret;
3717
3718         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3719                                 "rbd", "get_stripe_unit_count", NULL, 0,
3720                                 (char *)&striping_info_buf, size);
3721         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3722         if (ret < 0)
3723                 return ret;
3724         if (ret < size)
3725                 return -ERANGE;
3726
3727         /*
3728          * We don't actually support the "fancy striping" feature
3729          * (STRIPINGV2) yet, but if the striping sizes are the
3730          * defaults the behavior is the same as before.  So find
3731          * out, and only fail if the image has non-default values.
3732          */
3733         ret = -EINVAL;
3734         obj_size = (u64)1 << rbd_dev->header.obj_order;
3735         p = &striping_info_buf;
3736         stripe_unit = ceph_decode_64(&p);
3737         if (stripe_unit != obj_size) {
3738                 rbd_warn(rbd_dev, "unsupported stripe unit "
3739                                 "(got %llu want %llu)",
3740                                 stripe_unit, obj_size);
3741                 return -EINVAL;
3742         }
3743         stripe_count = ceph_decode_64(&p);
3744         if (stripe_count != 1) {
3745                 rbd_warn(rbd_dev, "unsupported stripe count "
3746                                 "(got %llu want 1)", stripe_count);
3747                 return -EINVAL;
3748         }
3749         rbd_dev->header.stripe_unit = stripe_unit;
3750         rbd_dev->header.stripe_count = stripe_count;
3751
3752         return 0;
3753 }
3754
3755 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3756 {
3757         size_t image_id_size;
3758         char *image_id;
3759         void *p;
3760         void *end;
3761         size_t size;
3762         void *reply_buf = NULL;
3763         size_t len = 0;
3764         char *image_name = NULL;
3765         int ret;
3766
3767         rbd_assert(!rbd_dev->spec->image_name);
3768
3769         len = strlen(rbd_dev->spec->image_id);
3770         image_id_size = sizeof (__le32) + len;
3771         image_id = kmalloc(image_id_size, GFP_KERNEL);
3772         if (!image_id)
3773                 return NULL;
3774
3775         p = image_id;
3776         end = image_id + image_id_size;
3777         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3778
3779         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3780         reply_buf = kmalloc(size, GFP_KERNEL);
3781         if (!reply_buf)
3782                 goto out;
3783
3784         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3785                                 "rbd", "dir_get_name",
3786                                 image_id, image_id_size,
3787                                 reply_buf, size);
3788         if (ret < 0)
3789                 goto out;
3790         p = reply_buf;
3791         end = reply_buf + ret;
3792
3793         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3794         if (IS_ERR(image_name))
3795                 image_name = NULL;
3796         else
3797                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3798 out:
3799         kfree(reply_buf);
3800         kfree(image_id);
3801
3802         return image_name;
3803 }
3804
3805 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3806 {
3807         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3808         const char *snap_name;
3809         u32 which = 0;
3810
3811         /* Skip over names until we find the one we are looking for */
3812
3813         snap_name = rbd_dev->header.snap_names;
3814         while (which < snapc->num_snaps) {
3815                 if (!strcmp(name, snap_name))
3816                         return snapc->snaps[which];
3817                 snap_name += strlen(snap_name) + 1;
3818                 which++;
3819         }
3820         return CEPH_NOSNAP;
3821 }
3822
3823 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3824 {
3825         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3826         u32 which;
3827         bool found = false;
3828         u64 snap_id;
3829
3830         for (which = 0; !found && which < snapc->num_snaps; which++) {
3831                 const char *snap_name;
3832
3833                 snap_id = snapc->snaps[which];
3834                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3835                 if (IS_ERR(snap_name))
3836                         break;
3837                 found = !strcmp(name, snap_name);
3838                 kfree(snap_name);
3839         }
3840         return found ? snap_id : CEPH_NOSNAP;
3841 }
3842
3843 /*
3844  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3845  * no snapshot by that name is found, or if an error occurs.
3846  */
3847 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3848 {
3849         if (rbd_dev->image_format == 1)
3850                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3851
3852         return rbd_v2_snap_id_by_name(rbd_dev, name);
3853 }
3854
3855 /*
3856  * When an rbd image has a parent image, it is identified by the
3857  * pool, image, and snapshot ids (not names).  This function fills
3858  * in the names for those ids.  (It's OK if we can't figure out the
3859  * name for an image id, but the pool and snapshot ids should always
3860  * exist and have names.)  All names in an rbd spec are dynamically
3861  * allocated.
3862  *
3863  * When an image being mapped (not a parent) is probed, we have the
3864  * pool name and pool id, image name and image id, and the snapshot
3865  * name.  The only thing we're missing is the snapshot id.
3866  */
3867 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3868 {
3869         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3870         struct rbd_spec *spec = rbd_dev->spec;
3871         const char *pool_name;
3872         const char *image_name;
3873         const char *snap_name;
3874         int ret;
3875
3876         /*
3877          * An image being mapped will have the pool name (etc.), but
3878          * we need to look up the snapshot id.
3879          */
3880         if (spec->pool_name) {
3881                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3882                         u64 snap_id;
3883
3884                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3885                         if (snap_id == CEPH_NOSNAP)
3886                                 return -ENOENT;
3887                         spec->snap_id = snap_id;
3888                 } else {
3889                         spec->snap_id = CEPH_NOSNAP;
3890                 }
3891
3892                 return 0;
3893         }
3894
3895         /* Get the pool name; we have to make our own copy of this */
3896
3897         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3898         if (!pool_name) {
3899                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3900                 return -EIO;
3901         }
3902         pool_name = kstrdup(pool_name, GFP_KERNEL);
3903         if (!pool_name)
3904                 return -ENOMEM;
3905
3906         /* Fetch the image name; tolerate failure here */
3907
3908         image_name = rbd_dev_image_name(rbd_dev);
3909         if (!image_name)
3910                 rbd_warn(rbd_dev, "unable to get image name");
3911
3912         /* Look up the snapshot name, and make a copy */
3913
3914         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3915         if (!snap_name) {
3916                 ret = -ENOMEM;
3917                 goto out_err;
3918         }
3919
3920         spec->pool_name = pool_name;
3921         spec->image_name = image_name;
3922         spec->snap_name = snap_name;
3923
3924         return 0;
3925 out_err:
3926         kfree(image_name);
3927         kfree(pool_name);
3928
3929         return ret;
3930 }
3931
3932 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3933 {
3934         size_t size;
3935         int ret;
3936         void *reply_buf;
3937         void *p;
3938         void *end;
3939         u64 seq;
3940         u32 snap_count;
3941         struct ceph_snap_context *snapc;
3942         u32 i;
3943
3944         /*
3945          * We'll need room for the seq value (maximum snapshot id),
3946          * snapshot count, and array of that many snapshot ids.
3947          * For now we have a fixed upper limit on the number we're
3948          * prepared to receive.
3949          */
3950         size = sizeof (__le64) + sizeof (__le32) +
3951                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3952         reply_buf = kzalloc(size, GFP_KERNEL);
3953         if (!reply_buf)
3954                 return -ENOMEM;
3955
3956         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3957                                 "rbd", "get_snapcontext", NULL, 0,
3958                                 reply_buf, size);
3959         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3960         if (ret < 0)
3961                 goto out;
3962
3963         p = reply_buf;
3964         end = reply_buf + ret;
3965         ret = -ERANGE;
3966         ceph_decode_64_safe(&p, end, seq, out);
3967         ceph_decode_32_safe(&p, end, snap_count, out);
3968
3969         /*
3970          * Make sure the reported number of snapshot ids wouldn't go
3971          * beyond the end of our buffer.  But before checking that,
3972          * make sure the computed size of the snapshot context we
3973          * allocate is representable in a size_t.
3974          */
3975         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3976                                  / sizeof (u64)) {
3977                 ret = -EINVAL;
3978                 goto out;
3979         }
3980         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3981                 goto out;
3982         ret = 0;
3983
3984         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
3985         if (!snapc) {
3986                 ret = -ENOMEM;
3987                 goto out;
3988         }
3989         snapc->seq = seq;
3990         for (i = 0; i < snap_count; i++)
3991                 snapc->snaps[i] = ceph_decode_64(&p);
3992
3993         ceph_put_snap_context(rbd_dev->header.snapc);
3994         rbd_dev->header.snapc = snapc;
3995
3996         dout("  snap context seq = %llu, snap_count = %u\n",
3997                 (unsigned long long)seq, (unsigned int)snap_count);
3998 out:
3999         kfree(reply_buf);
4000
4001         return ret;
4002 }
4003
4004 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4005                                         u64 snap_id)
4006 {
4007         size_t size;
4008         void *reply_buf;
4009         __le64 snapid;
4010         int ret;
4011         void *p;
4012         void *end;
4013         char *snap_name;
4014
4015         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4016         reply_buf = kmalloc(size, GFP_KERNEL);
4017         if (!reply_buf)
4018                 return ERR_PTR(-ENOMEM);
4019
4020         snapid = cpu_to_le64(snap_id);
4021         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4022                                 "rbd", "get_snapshot_name",
4023                                 &snapid, sizeof (snapid),
4024                                 reply_buf, size);
4025         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4026         if (ret < 0) {
4027                 snap_name = ERR_PTR(ret);
4028                 goto out;
4029         }
4030
4031         p = reply_buf;
4032         end = reply_buf + ret;
4033         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4034         if (IS_ERR(snap_name))
4035                 goto out;
4036
4037         dout("  snap_id 0x%016llx snap_name = %s\n",
4038                 (unsigned long long)snap_id, snap_name);
4039 out:
4040         kfree(reply_buf);
4041
4042         return snap_name;
4043 }
4044
4045 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4046 {
4047         int ret;
4048
4049         down_write(&rbd_dev->header_rwsem);
4050
4051         ret = rbd_dev_v2_image_size(rbd_dev);
4052         if (ret)
4053                 goto out;
4054         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4055                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4056                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4057
4058         ret = rbd_dev_v2_snap_context(rbd_dev);
4059         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4060         if (ret)
4061                 goto out;
4062 out:
4063         up_write(&rbd_dev->header_rwsem);
4064
4065         return ret;
4066 }
4067
4068 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4069 {
4070         struct device *dev;
4071         int ret;
4072
4073         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4074
4075         dev = &rbd_dev->dev;
4076         dev->bus = &rbd_bus_type;
4077         dev->type = &rbd_device_type;
4078         dev->parent = &rbd_root_dev;
4079         dev->release = rbd_dev_device_release;
4080         dev_set_name(dev, "%d", rbd_dev->dev_id);
4081         ret = device_register(dev);
4082
4083         mutex_unlock(&ctl_mutex);
4084
4085         return ret;
4086 }
4087
4088 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4089 {
4090         device_unregister(&rbd_dev->dev);
4091 }
4092
4093 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4094
4095 /*
4096  * Get a unique rbd identifier for the given new rbd_dev, and add
4097  * the rbd_dev to the global list.  The minimum rbd id is 1.
4098  */
4099 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4100 {
4101         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4102
4103         spin_lock(&rbd_dev_list_lock);
4104         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4105         spin_unlock(&rbd_dev_list_lock);
4106         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4107                 (unsigned long long) rbd_dev->dev_id);
4108 }
4109
4110 /*
4111  * Remove an rbd_dev from the global list, and record that its
4112  * identifier is no longer in use.
4113  */
4114 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4115 {
4116         struct list_head *tmp;
4117         int rbd_id = rbd_dev->dev_id;
4118         int max_id;
4119
4120         rbd_assert(rbd_id > 0);
4121
4122         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4123                 (unsigned long long) rbd_dev->dev_id);
4124         spin_lock(&rbd_dev_list_lock);
4125         list_del_init(&rbd_dev->node);
4126
4127         /*
4128          * If the id being "put" is not the current maximum, there
4129          * is nothing special we need to do.
4130          */
4131         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4132                 spin_unlock(&rbd_dev_list_lock);
4133                 return;
4134         }
4135
4136         /*
4137          * We need to update the current maximum id.  Search the
4138          * list to find out what it is.  We're more likely to find
4139          * the maximum at the end, so search the list backward.
4140          */
4141         max_id = 0;
4142         list_for_each_prev(tmp, &rbd_dev_list) {
4143                 struct rbd_device *rbd_dev;
4144
4145                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4146                 if (rbd_dev->dev_id > max_id)
4147                         max_id = rbd_dev->dev_id;
4148         }
4149         spin_unlock(&rbd_dev_list_lock);
4150
4151         /*
4152          * The max id could have been updated by rbd_dev_id_get(), in
4153          * which case it now accurately reflects the new maximum.
4154          * Be careful not to overwrite the maximum value in that
4155          * case.
4156          */
4157         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4158         dout("  max dev id has been reset\n");
4159 }
4160
4161 /*
4162  * Skips over white space at *buf, and updates *buf to point to the
4163  * first found non-space character (if any). Returns the length of
4164  * the token (string of non-white space characters) found.  Note
4165  * that *buf must be terminated with '\0'.
4166  */
4167 static inline size_t next_token(const char **buf)
4168 {
4169         /*
4170         * These are the characters that produce nonzero for
4171         * isspace() in the "C" and "POSIX" locales.
4172         */
4173         const char *spaces = " \f\n\r\t\v";
4174
4175         *buf += strspn(*buf, spaces);   /* Find start of token */
4176
4177         return strcspn(*buf, spaces);   /* Return token length */
4178 }
4179
4180 /*
4181  * Finds the next token in *buf, and if the provided token buffer is
4182  * big enough, copies the found token into it.  The result, if
4183  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4184  * must be terminated with '\0' on entry.
4185  *
4186  * Returns the length of the token found (not including the '\0').
4187  * Return value will be 0 if no token is found, and it will be >=
4188  * token_size if the token would not fit.
4189  *
4190  * The *buf pointer will be updated to point beyond the end of the
4191  * found token.  Note that this occurs even if the token buffer is
4192  * too small to hold it.
4193  */
4194 static inline size_t copy_token(const char **buf,
4195                                 char *token,
4196                                 size_t token_size)
4197 {
4198         size_t len;
4199
4200         len = next_token(buf);
4201         if (len < token_size) {
4202                 memcpy(token, *buf, len);
4203                 *(token + len) = '\0';
4204         }
4205         *buf += len;
4206
4207         return len;
4208 }
4209
4210 /*
4211  * Finds the next token in *buf, dynamically allocates a buffer big
4212  * enough to hold a copy of it, and copies the token into the new
4213  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4214  * that a duplicate buffer is created even for a zero-length token.
4215  *
4216  * Returns a pointer to the newly-allocated duplicate, or a null
4217  * pointer if memory for the duplicate was not available.  If
4218  * the lenp argument is a non-null pointer, the length of the token
4219  * (not including the '\0') is returned in *lenp.
4220  *
4221  * If successful, the *buf pointer will be updated to point beyond
4222  * the end of the found token.
4223  *
4224  * Note: uses GFP_KERNEL for allocation.
4225  */
4226 static inline char *dup_token(const char **buf, size_t *lenp)
4227 {
4228         char *dup;
4229         size_t len;
4230
4231         len = next_token(buf);
4232         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4233         if (!dup)
4234                 return NULL;
4235         *(dup + len) = '\0';
4236         *buf += len;
4237
4238         if (lenp)
4239                 *lenp = len;
4240
4241         return dup;
4242 }
4243
4244 /*
4245  * Parse the options provided for an "rbd add" (i.e., rbd image
4246  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4247  * and the data written is passed here via a NUL-terminated buffer.
4248  * Returns 0 if successful or an error code otherwise.
4249  *
4250  * The information extracted from these options is recorded in
4251  * the other parameters which return dynamically-allocated
4252  * structures:
4253  *  ceph_opts
4254  *      The address of a pointer that will refer to a ceph options
4255  *      structure.  Caller must release the returned pointer using
4256  *      ceph_destroy_options() when it is no longer needed.
4257  *  rbd_opts
4258  *      Address of an rbd options pointer.  Fully initialized by
4259  *      this function; caller must release with kfree().
4260  *  spec
4261  *      Address of an rbd image specification pointer.  Fully
4262  *      initialized by this function based on parsed options.
4263  *      Caller must release with rbd_spec_put().
4264  *
4265  * The options passed take this form:
4266  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4267  * where:
4268  *  <mon_addrs>
4269  *      A comma-separated list of one or more monitor addresses.
4270  *      A monitor address is an ip address, optionally followed
4271  *      by a port number (separated by a colon).
4272  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4273  *  <options>
4274  *      A comma-separated list of ceph and/or rbd options.
4275  *  <pool_name>
4276  *      The name of the rados pool containing the rbd image.
4277  *  <image_name>
4278  *      The name of the image in that pool to map.
4279  *  <snap_id>
4280  *      An optional snapshot id.  If provided, the mapping will
4281  *      present data from the image at the time that snapshot was
4282  *      created.  The image head is used if no snapshot id is
4283  *      provided.  Snapshot mappings are always read-only.
4284  */
4285 static int rbd_add_parse_args(const char *buf,
4286                                 struct ceph_options **ceph_opts,
4287                                 struct rbd_options **opts,
4288                                 struct rbd_spec **rbd_spec)
4289 {
4290         size_t len;
4291         char *options;
4292         const char *mon_addrs;
4293         char *snap_name;
4294         size_t mon_addrs_size;
4295         struct rbd_spec *spec = NULL;
4296         struct rbd_options *rbd_opts = NULL;
4297         struct ceph_options *copts;
4298         int ret;
4299
4300         /* The first four tokens are required */
4301
4302         len = next_token(&buf);
4303         if (!len) {
4304                 rbd_warn(NULL, "no monitor address(es) provided");
4305                 return -EINVAL;
4306         }
4307         mon_addrs = buf;
4308         mon_addrs_size = len + 1;
4309         buf += len;
4310
4311         ret = -EINVAL;
4312         options = dup_token(&buf, NULL);
4313         if (!options)
4314                 return -ENOMEM;
4315         if (!*options) {
4316                 rbd_warn(NULL, "no options provided");
4317                 goto out_err;
4318         }
4319
4320         spec = rbd_spec_alloc();
4321         if (!spec)
4322                 goto out_mem;
4323
4324         spec->pool_name = dup_token(&buf, NULL);
4325         if (!spec->pool_name)
4326                 goto out_mem;
4327         if (!*spec->pool_name) {
4328                 rbd_warn(NULL, "no pool name provided");
4329                 goto out_err;
4330         }
4331
4332         spec->image_name = dup_token(&buf, NULL);
4333         if (!spec->image_name)
4334                 goto out_mem;
4335         if (!*spec->image_name) {
4336                 rbd_warn(NULL, "no image name provided");
4337                 goto out_err;
4338         }
4339
4340         /*
4341          * Snapshot name is optional; default is to use "-"
4342          * (indicating the head/no snapshot).
4343          */
4344         len = next_token(&buf);
4345         if (!len) {
4346                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4347                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4348         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4349                 ret = -ENAMETOOLONG;
4350                 goto out_err;
4351         }
4352         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4353         if (!snap_name)
4354                 goto out_mem;
4355         *(snap_name + len) = '\0';
4356         spec->snap_name = snap_name;
4357
4358         /* Initialize all rbd options to the defaults */
4359
4360         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4361         if (!rbd_opts)
4362                 goto out_mem;
4363
4364         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4365
4366         copts = ceph_parse_options(options, mon_addrs,
4367                                         mon_addrs + mon_addrs_size - 1,
4368                                         parse_rbd_opts_token, rbd_opts);
4369         if (IS_ERR(copts)) {
4370                 ret = PTR_ERR(copts);
4371                 goto out_err;
4372         }
4373         kfree(options);
4374
4375         *ceph_opts = copts;
4376         *opts = rbd_opts;
4377         *rbd_spec = spec;
4378
4379         return 0;
4380 out_mem:
4381         ret = -ENOMEM;
4382 out_err:
4383         kfree(rbd_opts);
4384         rbd_spec_put(spec);
4385         kfree(options);
4386
4387         return ret;
4388 }
4389
4390 /*
4391  * An rbd format 2 image has a unique identifier, distinct from the
4392  * name given to it by the user.  Internally, that identifier is
4393  * what's used to specify the names of objects related to the image.
4394  *
4395  * A special "rbd id" object is used to map an rbd image name to its
4396  * id.  If that object doesn't exist, then there is no v2 rbd image
4397  * with the supplied name.
4398  *
4399  * This function will record the given rbd_dev's image_id field if
4400  * it can be determined, and in that case will return 0.  If any
4401  * errors occur a negative errno will be returned and the rbd_dev's
4402  * image_id field will be unchanged (and should be NULL).
4403  */
4404 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4405 {
4406         int ret;
4407         size_t size;
4408         char *object_name;
4409         void *response;
4410         char *image_id;
4411
4412         /*
4413          * When probing a parent image, the image id is already
4414          * known (and the image name likely is not).  There's no
4415          * need to fetch the image id again in this case.  We
4416          * do still need to set the image format though.
4417          */
4418         if (rbd_dev->spec->image_id) {
4419                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4420
4421                 return 0;
4422         }
4423
4424         /*
4425          * First, see if the format 2 image id file exists, and if
4426          * so, get the image's persistent id from it.
4427          */
4428         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4429         object_name = kmalloc(size, GFP_NOIO);
4430         if (!object_name)
4431                 return -ENOMEM;
4432         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4433         dout("rbd id object name is %s\n", object_name);
4434
4435         /* Response will be an encoded string, which includes a length */
4436
4437         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4438         response = kzalloc(size, GFP_NOIO);
4439         if (!response) {
4440                 ret = -ENOMEM;
4441                 goto out;
4442         }
4443
4444         /* If it doesn't exist we'll assume it's a format 1 image */
4445
4446         ret = rbd_obj_method_sync(rbd_dev, object_name,
4447                                 "rbd", "get_id", NULL, 0,
4448                                 response, RBD_IMAGE_ID_LEN_MAX);
4449         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4450         if (ret == -ENOENT) {
4451                 image_id = kstrdup("", GFP_KERNEL);
4452                 ret = image_id ? 0 : -ENOMEM;
4453                 if (!ret)
4454                         rbd_dev->image_format = 1;
4455         } else if (ret > sizeof (__le32)) {
4456                 void *p = response;
4457
4458                 image_id = ceph_extract_encoded_string(&p, p + ret,
4459                                                 NULL, GFP_NOIO);
4460                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4461                 if (!ret)
4462                         rbd_dev->image_format = 2;
4463         } else {
4464                 ret = -EINVAL;
4465         }
4466
4467         if (!ret) {
4468                 rbd_dev->spec->image_id = image_id;
4469                 dout("image_id is %s\n", image_id);
4470         }
4471 out:
4472         kfree(response);
4473         kfree(object_name);
4474
4475         return ret;
4476 }
4477
4478 /* Undo whatever state changes are made by v1 or v2 image probe */
4479
4480 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4481 {
4482         struct rbd_image_header *header;
4483
4484         rbd_dev_remove_parent(rbd_dev);
4485         rbd_spec_put(rbd_dev->parent_spec);
4486         rbd_dev->parent_spec = NULL;
4487         rbd_dev->parent_overlap = 0;
4488
4489         /* Free dynamic fields from the header, then zero it out */
4490
4491         header = &rbd_dev->header;
4492         ceph_put_snap_context(header->snapc);
4493         kfree(header->snap_sizes);
4494         kfree(header->snap_names);
4495         kfree(header->object_prefix);
4496         memset(header, 0, sizeof (*header));
4497 }
4498
4499 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4500 {
4501         int ret;
4502
4503         /* Populate rbd image metadata */
4504
4505         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4506         if (ret < 0)
4507                 goto out_err;
4508
4509         /* Version 1 images have no parent (no layering) */
4510
4511         rbd_dev->parent_spec = NULL;
4512         rbd_dev->parent_overlap = 0;
4513
4514         dout("discovered version 1 image, header name is %s\n",
4515                 rbd_dev->header_name);
4516
4517         return 0;
4518
4519 out_err:
4520         kfree(rbd_dev->header_name);
4521         rbd_dev->header_name = NULL;
4522         kfree(rbd_dev->spec->image_id);
4523         rbd_dev->spec->image_id = NULL;
4524
4525         return ret;
4526 }
4527
4528 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4529 {
4530         int ret;
4531
4532         ret = rbd_dev_v2_image_size(rbd_dev);
4533         if (ret)
4534                 goto out_err;
4535
4536         /* Get the object prefix (a.k.a. block_name) for the image */
4537
4538         ret = rbd_dev_v2_object_prefix(rbd_dev);
4539         if (ret)
4540                 goto out_err;
4541
4542         /* Get the and check features for the image */
4543
4544         ret = rbd_dev_v2_features(rbd_dev);
4545         if (ret)
4546                 goto out_err;
4547
4548         /* If the image supports layering, get the parent info */
4549
4550         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4551                 ret = rbd_dev_v2_parent_info(rbd_dev);
4552                 if (ret)
4553                         goto out_err;
4554                 /*
4555                  * Print a warning if this image has a parent.
4556                  * Don't print it if the image now being probed
4557                  * is itself a parent.  We can tell at this point
4558                  * because we won't know its pool name yet (just its
4559                  * pool id).
4560                  */
4561                 if (rbd_dev->parent_spec && rbd_dev->spec->pool_name)
4562                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4563                                         "is EXPERIMENTAL!");
4564         }
4565
4566         /* If the image supports fancy striping, get its parameters */
4567
4568         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4569                 ret = rbd_dev_v2_striping_info(rbd_dev);
4570                 if (ret < 0)
4571                         goto out_err;
4572         }
4573
4574         /* crypto and compression type aren't (yet) supported for v2 images */
4575
4576         rbd_dev->header.crypt_type = 0;
4577         rbd_dev->header.comp_type = 0;
4578
4579         /* Get the snapshot context, plus the header version */
4580
4581         ret = rbd_dev_v2_snap_context(rbd_dev);
4582         if (ret)
4583                 goto out_err;
4584
4585         dout("discovered version 2 image, header name is %s\n",
4586                 rbd_dev->header_name);
4587
4588         return 0;
4589 out_err:
4590         rbd_dev->parent_overlap = 0;
4591         rbd_spec_put(rbd_dev->parent_spec);
4592         rbd_dev->parent_spec = NULL;
4593         kfree(rbd_dev->header_name);
4594         rbd_dev->header_name = NULL;
4595         kfree(rbd_dev->header.object_prefix);
4596         rbd_dev->header.object_prefix = NULL;
4597
4598         return ret;
4599 }
4600
4601 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4602 {
4603         struct rbd_device *parent = NULL;
4604         struct rbd_spec *parent_spec;
4605         struct rbd_client *rbdc;
4606         int ret;
4607
4608         if (!rbd_dev->parent_spec)
4609                 return 0;
4610         /*
4611          * We need to pass a reference to the client and the parent
4612          * spec when creating the parent rbd_dev.  Images related by
4613          * parent/child relationships always share both.
4614          */
4615         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4616         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4617
4618         ret = -ENOMEM;
4619         parent = rbd_dev_create(rbdc, parent_spec);
4620         if (!parent)
4621                 goto out_err;
4622
4623         ret = rbd_dev_image_probe(parent);
4624         if (ret < 0)
4625                 goto out_err;
4626         rbd_dev->parent = parent;
4627
4628         return 0;
4629 out_err:
4630         if (parent) {
4631                 rbd_spec_put(rbd_dev->parent_spec);
4632                 kfree(rbd_dev->header_name);
4633                 rbd_dev_destroy(parent);
4634         } else {
4635                 rbd_put_client(rbdc);
4636                 rbd_spec_put(parent_spec);
4637         }
4638
4639         return ret;
4640 }
4641
4642 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4643 {
4644         int ret;
4645
4646         ret = rbd_dev_mapping_set(rbd_dev);
4647         if (ret)
4648                 return ret;
4649
4650         /* generate unique id: find highest unique id, add one */
4651         rbd_dev_id_get(rbd_dev);
4652
4653         /* Fill in the device name, now that we have its id. */
4654         BUILD_BUG_ON(DEV_NAME_LEN
4655                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4656         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4657
4658         /* Get our block major device number. */
4659
4660         ret = register_blkdev(0, rbd_dev->name);
4661         if (ret < 0)
4662                 goto err_out_id;
4663         rbd_dev->major = ret;
4664
4665         /* Set up the blkdev mapping. */
4666
4667         ret = rbd_init_disk(rbd_dev);
4668         if (ret)
4669                 goto err_out_blkdev;
4670
4671         ret = rbd_bus_add_dev(rbd_dev);
4672         if (ret)
4673                 goto err_out_disk;
4674
4675         /* Everything's ready.  Announce the disk to the world. */
4676
4677         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4678         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4679         add_disk(rbd_dev->disk);
4680
4681         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4682                 (unsigned long long) rbd_dev->mapping.size);
4683
4684         return ret;
4685
4686 err_out_disk:
4687         rbd_free_disk(rbd_dev);
4688 err_out_blkdev:
4689         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4690 err_out_id:
4691         rbd_dev_id_put(rbd_dev);
4692         rbd_dev_mapping_clear(rbd_dev);
4693
4694         return ret;
4695 }
4696
4697 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4698 {
4699         struct rbd_spec *spec = rbd_dev->spec;
4700         size_t size;
4701
4702         /* Record the header object name for this rbd image. */
4703
4704         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4705
4706         if (rbd_dev->image_format == 1)
4707                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4708         else
4709                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4710
4711         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4712         if (!rbd_dev->header_name)
4713                 return -ENOMEM;
4714
4715         if (rbd_dev->image_format == 1)
4716                 sprintf(rbd_dev->header_name, "%s%s",
4717                         spec->image_name, RBD_SUFFIX);
4718         else
4719                 sprintf(rbd_dev->header_name, "%s%s",
4720                         RBD_HEADER_PREFIX, spec->image_id);
4721         return 0;
4722 }
4723
4724 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4725 {
4726         int ret;
4727
4728         rbd_dev_unprobe(rbd_dev);
4729         ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4730         if (ret)
4731                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4732         kfree(rbd_dev->header_name);
4733         rbd_dev->header_name = NULL;
4734         rbd_dev->image_format = 0;
4735         kfree(rbd_dev->spec->image_id);
4736         rbd_dev->spec->image_id = NULL;
4737
4738         rbd_dev_destroy(rbd_dev);
4739 }
4740
4741 /*
4742  * Probe for the existence of the header object for the given rbd
4743  * device.  For format 2 images this includes determining the image
4744  * id.
4745  */
4746 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4747 {
4748         int ret;
4749         int tmp;
4750
4751         /*
4752          * Get the id from the image id object.  If it's not a
4753          * format 2 image, we'll get ENOENT back, and we'll assume
4754          * it's a format 1 image.
4755          */
4756         ret = rbd_dev_image_id(rbd_dev);
4757         if (ret)
4758                 return ret;
4759         rbd_assert(rbd_dev->spec->image_id);
4760         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4761
4762         ret = rbd_dev_header_name(rbd_dev);
4763         if (ret)
4764                 goto err_out_format;
4765
4766         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4767         if (ret)
4768                 goto out_header_name;
4769
4770         if (rbd_dev->image_format == 1)
4771                 ret = rbd_dev_v1_probe(rbd_dev);
4772         else
4773                 ret = rbd_dev_v2_probe(rbd_dev);
4774         if (ret)
4775                 goto err_out_watch;
4776
4777         ret = rbd_dev_spec_update(rbd_dev);
4778         if (ret)
4779                 goto err_out_probe;
4780
4781         ret = rbd_dev_probe_parent(rbd_dev);
4782         if (!ret)
4783                 return 0;
4784
4785 err_out_probe:
4786         rbd_dev_unprobe(rbd_dev);
4787 err_out_watch:
4788         tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4789         if (tmp)
4790                 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4791 out_header_name:
4792         kfree(rbd_dev->header_name);
4793         rbd_dev->header_name = NULL;
4794 err_out_format:
4795         rbd_dev->image_format = 0;
4796         kfree(rbd_dev->spec->image_id);
4797         rbd_dev->spec->image_id = NULL;
4798
4799         dout("probe failed, returning %d\n", ret);
4800
4801         return ret;
4802 }
4803
4804 static ssize_t rbd_add(struct bus_type *bus,
4805                        const char *buf,
4806                        size_t count)
4807 {
4808         struct rbd_device *rbd_dev = NULL;
4809         struct ceph_options *ceph_opts = NULL;
4810         struct rbd_options *rbd_opts = NULL;
4811         struct rbd_spec *spec = NULL;
4812         struct rbd_client *rbdc;
4813         struct ceph_osd_client *osdc;
4814         int rc = -ENOMEM;
4815
4816         if (!try_module_get(THIS_MODULE))
4817                 return -ENODEV;
4818
4819         /* parse add command */
4820         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4821         if (rc < 0)
4822                 goto err_out_module;
4823
4824         rbdc = rbd_get_client(ceph_opts);
4825         if (IS_ERR(rbdc)) {
4826                 rc = PTR_ERR(rbdc);
4827                 goto err_out_args;
4828         }
4829         ceph_opts = NULL;       /* rbd_dev client now owns this */
4830
4831         /* pick the pool */
4832         osdc = &rbdc->client->osdc;
4833         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4834         if (rc < 0)
4835                 goto err_out_client;
4836         spec->pool_id = (u64)rc;
4837
4838         /* The ceph file layout needs to fit pool id in 32 bits */
4839
4840         if (spec->pool_id > (u64)U32_MAX) {
4841                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4842                                 (unsigned long long)spec->pool_id, U32_MAX);
4843                 rc = -EIO;
4844                 goto err_out_client;
4845         }
4846
4847         rbd_dev = rbd_dev_create(rbdc, spec);
4848         if (!rbd_dev)
4849                 goto err_out_client;
4850         rbdc = NULL;            /* rbd_dev now owns this */
4851         spec = NULL;            /* rbd_dev now owns this */
4852
4853         rbd_dev->mapping.read_only = rbd_opts->read_only;
4854         kfree(rbd_opts);
4855         rbd_opts = NULL;        /* done with this */
4856
4857         rc = rbd_dev_image_probe(rbd_dev);
4858         if (rc < 0)
4859                 goto err_out_rbd_dev;
4860
4861         rc = rbd_dev_device_setup(rbd_dev);
4862         if (!rc)
4863                 return count;
4864
4865         rbd_dev_image_release(rbd_dev);
4866 err_out_rbd_dev:
4867         rbd_dev_destroy(rbd_dev);
4868 err_out_client:
4869         rbd_put_client(rbdc);
4870 err_out_args:
4871         if (ceph_opts)
4872                 ceph_destroy_options(ceph_opts);
4873         kfree(rbd_opts);
4874         rbd_spec_put(spec);
4875 err_out_module:
4876         module_put(THIS_MODULE);
4877
4878         dout("Error adding device %s\n", buf);
4879
4880         return (ssize_t)rc;
4881 }
4882
4883 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4884 {
4885         struct list_head *tmp;
4886         struct rbd_device *rbd_dev;
4887
4888         spin_lock(&rbd_dev_list_lock);
4889         list_for_each(tmp, &rbd_dev_list) {
4890                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4891                 if (rbd_dev->dev_id == dev_id) {
4892                         spin_unlock(&rbd_dev_list_lock);
4893                         return rbd_dev;
4894                 }
4895         }
4896         spin_unlock(&rbd_dev_list_lock);
4897         return NULL;
4898 }
4899
4900 static void rbd_dev_device_release(struct device *dev)
4901 {
4902         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4903
4904         rbd_free_disk(rbd_dev);
4905         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4906         rbd_dev_mapping_clear(rbd_dev);
4907         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4908         rbd_dev->major = 0;
4909         rbd_dev_id_put(rbd_dev);
4910         rbd_dev_mapping_clear(rbd_dev);
4911 }
4912
4913 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4914 {
4915         while (rbd_dev->parent) {
4916                 struct rbd_device *first = rbd_dev;
4917                 struct rbd_device *second = first->parent;
4918                 struct rbd_device *third;
4919
4920                 /*
4921                  * Follow to the parent with no grandparent and
4922                  * remove it.
4923                  */
4924                 while (second && (third = second->parent)) {
4925                         first = second;
4926                         second = third;
4927                 }
4928                 rbd_assert(second);
4929                 rbd_dev_image_release(second);
4930                 first->parent = NULL;
4931                 first->parent_overlap = 0;
4932
4933                 rbd_assert(first->parent_spec);
4934                 rbd_spec_put(first->parent_spec);
4935                 first->parent_spec = NULL;
4936         }
4937 }
4938
4939 static ssize_t rbd_remove(struct bus_type *bus,
4940                           const char *buf,
4941                           size_t count)
4942 {
4943         struct rbd_device *rbd_dev = NULL;
4944         int target_id;
4945         unsigned long ul;
4946         int ret;
4947
4948         ret = strict_strtoul(buf, 10, &ul);
4949         if (ret)
4950                 return ret;
4951
4952         /* convert to int; abort if we lost anything in the conversion */
4953         target_id = (int) ul;
4954         if (target_id != ul)
4955                 return -EINVAL;
4956
4957         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4958
4959         rbd_dev = __rbd_get_dev(target_id);
4960         if (!rbd_dev) {
4961                 ret = -ENOENT;
4962                 goto done;
4963         }
4964
4965         spin_lock_irq(&rbd_dev->lock);
4966         if (rbd_dev->open_count)
4967                 ret = -EBUSY;
4968         else
4969                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4970         spin_unlock_irq(&rbd_dev->lock);
4971         if (ret < 0)
4972                 goto done;
4973         ret = count;
4974         rbd_bus_del_dev(rbd_dev);
4975         rbd_dev_image_release(rbd_dev);
4976         module_put(THIS_MODULE);
4977 done:
4978         mutex_unlock(&ctl_mutex);
4979
4980         return ret;
4981 }
4982
4983 /*
4984  * create control files in sysfs
4985  * /sys/bus/rbd/...
4986  */
4987 static int rbd_sysfs_init(void)
4988 {
4989         int ret;
4990
4991         ret = device_register(&rbd_root_dev);
4992         if (ret < 0)
4993                 return ret;
4994
4995         ret = bus_register(&rbd_bus_type);
4996         if (ret < 0)
4997                 device_unregister(&rbd_root_dev);
4998
4999         return ret;
5000 }
5001
5002 static void rbd_sysfs_cleanup(void)
5003 {
5004         bus_unregister(&rbd_bus_type);
5005         device_unregister(&rbd_root_dev);
5006 }
5007
5008 static int rbd_slab_init(void)
5009 {
5010         rbd_assert(!rbd_img_request_cache);
5011         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5012                                         sizeof (struct rbd_img_request),
5013                                         __alignof__(struct rbd_img_request),
5014                                         0, NULL);
5015         if (!rbd_img_request_cache)
5016                 return -ENOMEM;
5017
5018         rbd_assert(!rbd_obj_request_cache);
5019         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5020                                         sizeof (struct rbd_obj_request),
5021                                         __alignof__(struct rbd_obj_request),
5022                                         0, NULL);
5023         if (!rbd_obj_request_cache)
5024                 goto out_err;
5025
5026         rbd_assert(!rbd_segment_name_cache);
5027         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5028                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5029         if (rbd_segment_name_cache)
5030                 return 0;
5031 out_err:
5032         if (rbd_obj_request_cache) {
5033                 kmem_cache_destroy(rbd_obj_request_cache);
5034                 rbd_obj_request_cache = NULL;
5035         }
5036
5037         kmem_cache_destroy(rbd_img_request_cache);
5038         rbd_img_request_cache = NULL;
5039
5040         return -ENOMEM;
5041 }
5042
5043 static void rbd_slab_exit(void)
5044 {
5045         rbd_assert(rbd_segment_name_cache);
5046         kmem_cache_destroy(rbd_segment_name_cache);
5047         rbd_segment_name_cache = NULL;
5048
5049         rbd_assert(rbd_obj_request_cache);
5050         kmem_cache_destroy(rbd_obj_request_cache);
5051         rbd_obj_request_cache = NULL;
5052
5053         rbd_assert(rbd_img_request_cache);
5054         kmem_cache_destroy(rbd_img_request_cache);
5055         rbd_img_request_cache = NULL;
5056 }
5057
5058 static int __init rbd_init(void)
5059 {
5060         int rc;
5061
5062         if (!libceph_compatible(NULL)) {
5063                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5064
5065                 return -EINVAL;
5066         }
5067         rc = rbd_slab_init();
5068         if (rc)
5069                 return rc;
5070         rc = rbd_sysfs_init();
5071         if (rc)
5072                 rbd_slab_exit();
5073         else
5074                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5075
5076         return rc;
5077 }
5078
5079 static void __exit rbd_exit(void)
5080 {
5081         rbd_sysfs_cleanup();
5082         rbd_slab_exit();
5083 }
5084
5085 module_init(rbd_init);
5086 module_exit(rbd_exit);
5087
5088 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5089 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5090 MODULE_DESCRIPTION("rados block device");
5091
5092 /* following authorship retained from original osdblk.c */
5093 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5094
5095 MODULE_LICENSE("GPL");