]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
libceph: rename MAX_OBJ_NAME_SIZE to CEPH_MAX_OID_NAME_LEN
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec *bv;
1160         unsigned long flags;
1161         void *buf;
1162         int i;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, i) {
1167                         if (pos + bv->bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv->bv_len - remainder);
1172                                 flush_dcache_page(bv->bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv->bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio_vec *bv;
1224         unsigned int resid;
1225         unsigned short idx;
1226         unsigned int voff;
1227         unsigned short end_idx;
1228         unsigned short vcnt;
1229         struct bio *bio;
1230
1231         /* Handle the easy case for the caller */
1232
1233         if (!offset && len == bio_src->bi_size)
1234                 return bio_clone(bio_src, gfpmask);
1235
1236         if (WARN_ON_ONCE(!len))
1237                 return NULL;
1238         if (WARN_ON_ONCE(len > bio_src->bi_size))
1239                 return NULL;
1240         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1241                 return NULL;
1242
1243         /* Find first affected segment... */
1244
1245         resid = offset;
1246         bio_for_each_segment(bv, bio_src, idx) {
1247                 if (resid < bv->bv_len)
1248                         break;
1249                 resid -= bv->bv_len;
1250         }
1251         voff = resid;
1252
1253         /* ...and the last affected segment */
1254
1255         resid += len;
1256         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1257                 if (resid <= bv->bv_len)
1258                         break;
1259                 resid -= bv->bv_len;
1260         }
1261         vcnt = end_idx - idx + 1;
1262
1263         /* Build the clone */
1264
1265         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1266         if (!bio)
1267                 return NULL;    /* ENOMEM */
1268
1269         bio->bi_bdev = bio_src->bi_bdev;
1270         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1271         bio->bi_rw = bio_src->bi_rw;
1272         bio->bi_flags |= 1 << BIO_CLONED;
1273
1274         /*
1275          * Copy over our part of the bio_vec, then update the first
1276          * and last (or only) entries.
1277          */
1278         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1279                         vcnt * sizeof (struct bio_vec));
1280         bio->bi_io_vec[0].bv_offset += voff;
1281         if (vcnt > 1) {
1282                 bio->bi_io_vec[0].bv_len -= voff;
1283                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1284         } else {
1285                 bio->bi_io_vec[0].bv_len = len;
1286         }
1287
1288         bio->bi_vcnt = vcnt;
1289         bio->bi_size = len;
1290         bio->bi_idx = 0;
1291
1292         return bio;
1293 }
1294
1295 /*
1296  * Clone a portion of a bio chain, starting at the given byte offset
1297  * into the first bio in the source chain and continuing for the
1298  * number of bytes indicated.  The result is another bio chain of
1299  * exactly the given length, or a null pointer on error.
1300  *
1301  * The bio_src and offset parameters are both in-out.  On entry they
1302  * refer to the first source bio and the offset into that bio where
1303  * the start of data to be cloned is located.
1304  *
1305  * On return, bio_src is updated to refer to the bio in the source
1306  * chain that contains first un-cloned byte, and *offset will
1307  * contain the offset of that byte within that bio.
1308  */
1309 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1310                                         unsigned int *offset,
1311                                         unsigned int len,
1312                                         gfp_t gfpmask)
1313 {
1314         struct bio *bi = *bio_src;
1315         unsigned int off = *offset;
1316         struct bio *chain = NULL;
1317         struct bio **end;
1318
1319         /* Build up a chain of clone bios up to the limit */
1320
1321         if (!bi || off >= bi->bi_size || !len)
1322                 return NULL;            /* Nothing to clone */
1323
1324         end = &chain;
1325         while (len) {
1326                 unsigned int bi_size;
1327                 struct bio *bio;
1328
1329                 if (!bi) {
1330                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1331                         goto out_err;   /* EINVAL; ran out of bio's */
1332                 }
1333                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1334                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1335                 if (!bio)
1336                         goto out_err;   /* ENOMEM */
1337
1338                 *end = bio;
1339                 end = &bio->bi_next;
1340
1341                 off += bi_size;
1342                 if (off == bi->bi_size) {
1343                         bi = bi->bi_next;
1344                         off = 0;
1345                 }
1346                 len -= bi_size;
1347         }
1348         *bio_src = bi;
1349         *offset = off;
1350
1351         return chain;
1352 out_err:
1353         bio_chain_put(chain);
1354
1355         return NULL;
1356 }
1357
1358 /*
1359  * The default/initial value for all object request flags is 0.  For
1360  * each flag, once its value is set to 1 it is never reset to 0
1361  * again.
1362  */
1363 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1364 {
1365         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1366                 struct rbd_device *rbd_dev;
1367
1368                 rbd_dev = obj_request->img_request->rbd_dev;
1369                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1370                         obj_request);
1371         }
1372 }
1373
1374 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1375 {
1376         smp_mb();
1377         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1378 }
1379
1380 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1381 {
1382         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1383                 struct rbd_device *rbd_dev = NULL;
1384
1385                 if (obj_request_img_data_test(obj_request))
1386                         rbd_dev = obj_request->img_request->rbd_dev;
1387                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1388                         obj_request);
1389         }
1390 }
1391
1392 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1393 {
1394         smp_mb();
1395         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1396 }
1397
1398 /*
1399  * This sets the KNOWN flag after (possibly) setting the EXISTS
1400  * flag.  The latter is set based on the "exists" value provided.
1401  *
1402  * Note that for our purposes once an object exists it never goes
1403  * away again.  It's possible that the response from two existence
1404  * checks are separated by the creation of the target object, and
1405  * the first ("doesn't exist") response arrives *after* the second
1406  * ("does exist").  In that case we ignore the second one.
1407  */
1408 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1409                                 bool exists)
1410 {
1411         if (exists)
1412                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1413         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1414         smp_mb();
1415 }
1416
1417 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1418 {
1419         smp_mb();
1420         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1421 }
1422
1423 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1424 {
1425         smp_mb();
1426         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1427 }
1428
1429 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1430 {
1431         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1432                 atomic_read(&obj_request->kref.refcount));
1433         kref_get(&obj_request->kref);
1434 }
1435
1436 static void rbd_obj_request_destroy(struct kref *kref);
1437 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1438 {
1439         rbd_assert(obj_request != NULL);
1440         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1441                 atomic_read(&obj_request->kref.refcount));
1442         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1443 }
1444
1445 static bool img_request_child_test(struct rbd_img_request *img_request);
1446 static void rbd_parent_request_destroy(struct kref *kref);
1447 static void rbd_img_request_destroy(struct kref *kref);
1448 static void rbd_img_request_put(struct rbd_img_request *img_request)
1449 {
1450         rbd_assert(img_request != NULL);
1451         dout("%s: img %p (was %d)\n", __func__, img_request,
1452                 atomic_read(&img_request->kref.refcount));
1453         if (img_request_child_test(img_request))
1454                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1455         else
1456                 kref_put(&img_request->kref, rbd_img_request_destroy);
1457 }
1458
1459 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1460                                         struct rbd_obj_request *obj_request)
1461 {
1462         rbd_assert(obj_request->img_request == NULL);
1463
1464         /* Image request now owns object's original reference */
1465         obj_request->img_request = img_request;
1466         obj_request->which = img_request->obj_request_count;
1467         rbd_assert(!obj_request_img_data_test(obj_request));
1468         obj_request_img_data_set(obj_request);
1469         rbd_assert(obj_request->which != BAD_WHICH);
1470         img_request->obj_request_count++;
1471         list_add_tail(&obj_request->links, &img_request->obj_requests);
1472         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1473                 obj_request->which);
1474 }
1475
1476 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1477                                         struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request->which != BAD_WHICH);
1480
1481         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1482                 obj_request->which);
1483         list_del(&obj_request->links);
1484         rbd_assert(img_request->obj_request_count > 0);
1485         img_request->obj_request_count--;
1486         rbd_assert(obj_request->which == img_request->obj_request_count);
1487         obj_request->which = BAD_WHICH;
1488         rbd_assert(obj_request_img_data_test(obj_request));
1489         rbd_assert(obj_request->img_request == img_request);
1490         obj_request->img_request = NULL;
1491         obj_request->callback = NULL;
1492         rbd_obj_request_put(obj_request);
1493 }
1494
1495 static bool obj_request_type_valid(enum obj_request_type type)
1496 {
1497         switch (type) {
1498         case OBJ_REQUEST_NODATA:
1499         case OBJ_REQUEST_BIO:
1500         case OBJ_REQUEST_PAGES:
1501                 return true;
1502         default:
1503                 return false;
1504         }
1505 }
1506
1507 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1508                                 struct rbd_obj_request *obj_request)
1509 {
1510         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1511
1512         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1513 }
1514
1515 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1516 {
1517
1518         dout("%s: img %p\n", __func__, img_request);
1519
1520         /*
1521          * If no error occurred, compute the aggregate transfer
1522          * count for the image request.  We could instead use
1523          * atomic64_cmpxchg() to update it as each object request
1524          * completes; not clear which way is better off hand.
1525          */
1526         if (!img_request->result) {
1527                 struct rbd_obj_request *obj_request;
1528                 u64 xferred = 0;
1529
1530                 for_each_obj_request(img_request, obj_request)
1531                         xferred += obj_request->xferred;
1532                 img_request->xferred = xferred;
1533         }
1534
1535         if (img_request->callback)
1536                 img_request->callback(img_request);
1537         else
1538                 rbd_img_request_put(img_request);
1539 }
1540
1541 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1542
1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1544 {
1545         dout("%s: obj %p\n", __func__, obj_request);
1546
1547         return wait_for_completion_interruptible(&obj_request->completion);
1548 }
1549
1550 /*
1551  * The default/initial value for all image request flags is 0.  Each
1552  * is conditionally set to 1 at image request initialization time
1553  * and currently never change thereafter.
1554  */
1555 static void img_request_write_set(struct rbd_img_request *img_request)
1556 {
1557         set_bit(IMG_REQ_WRITE, &img_request->flags);
1558         smp_mb();
1559 }
1560
1561 static bool img_request_write_test(struct rbd_img_request *img_request)
1562 {
1563         smp_mb();
1564         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1565 }
1566
1567 static void img_request_child_set(struct rbd_img_request *img_request)
1568 {
1569         set_bit(IMG_REQ_CHILD, &img_request->flags);
1570         smp_mb();
1571 }
1572
1573 static void img_request_child_clear(struct rbd_img_request *img_request)
1574 {
1575         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1576         smp_mb();
1577 }
1578
1579 static bool img_request_child_test(struct rbd_img_request *img_request)
1580 {
1581         smp_mb();
1582         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1583 }
1584
1585 static void img_request_layered_set(struct rbd_img_request *img_request)
1586 {
1587         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1588         smp_mb();
1589 }
1590
1591 static void img_request_layered_clear(struct rbd_img_request *img_request)
1592 {
1593         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1594         smp_mb();
1595 }
1596
1597 static bool img_request_layered_test(struct rbd_img_request *img_request)
1598 {
1599         smp_mb();
1600         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1601 }
1602
1603 static void
1604 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606         u64 xferred = obj_request->xferred;
1607         u64 length = obj_request->length;
1608
1609         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1610                 obj_request, obj_request->img_request, obj_request->result,
1611                 xferred, length);
1612         /*
1613          * ENOENT means a hole in the image.  We zero-fill the entire
1614          * length of the request.  A short read also implies zero-fill
1615          * to the end of the request.  An error requires the whole
1616          * length of the request to be reported finished with an error
1617          * to the block layer.  In each case we update the xferred
1618          * count to indicate the whole request was satisfied.
1619          */
1620         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1621         if (obj_request->result == -ENOENT) {
1622                 if (obj_request->type == OBJ_REQUEST_BIO)
1623                         zero_bio_chain(obj_request->bio_list, 0);
1624                 else
1625                         zero_pages(obj_request->pages, 0, length);
1626                 obj_request->result = 0;
1627         } else if (xferred < length && !obj_request->result) {
1628                 if (obj_request->type == OBJ_REQUEST_BIO)
1629                         zero_bio_chain(obj_request->bio_list, xferred);
1630                 else
1631                         zero_pages(obj_request->pages, xferred, length);
1632         }
1633         obj_request->xferred = length;
1634         obj_request_done_set(obj_request);
1635 }
1636
1637 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1638 {
1639         dout("%s: obj %p cb %p\n", __func__, obj_request,
1640                 obj_request->callback);
1641         if (obj_request->callback)
1642                 obj_request->callback(obj_request);
1643         else
1644                 complete_all(&obj_request->completion);
1645 }
1646
1647 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1648 {
1649         dout("%s: obj %p\n", __func__, obj_request);
1650         obj_request_done_set(obj_request);
1651 }
1652
1653 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1654 {
1655         struct rbd_img_request *img_request = NULL;
1656         struct rbd_device *rbd_dev = NULL;
1657         bool layered = false;
1658
1659         if (obj_request_img_data_test(obj_request)) {
1660                 img_request = obj_request->img_request;
1661                 layered = img_request && img_request_layered_test(img_request);
1662                 rbd_dev = img_request->rbd_dev;
1663         }
1664
1665         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1666                 obj_request, img_request, obj_request->result,
1667                 obj_request->xferred, obj_request->length);
1668         if (layered && obj_request->result == -ENOENT &&
1669                         obj_request->img_offset < rbd_dev->parent_overlap)
1670                 rbd_img_parent_read(obj_request);
1671         else if (img_request)
1672                 rbd_img_obj_request_read_callback(obj_request);
1673         else
1674                 obj_request_done_set(obj_request);
1675 }
1676
1677 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1678 {
1679         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1680                 obj_request->result, obj_request->length);
1681         /*
1682          * There is no such thing as a successful short write.  Set
1683          * it to our originally-requested length.
1684          */
1685         obj_request->xferred = obj_request->length;
1686         obj_request_done_set(obj_request);
1687 }
1688
1689 /*
1690  * For a simple stat call there's nothing to do.  We'll do more if
1691  * this is part of a write sequence for a layered image.
1692  */
1693 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1694 {
1695         dout("%s: obj %p\n", __func__, obj_request);
1696         obj_request_done_set(obj_request);
1697 }
1698
1699 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1700                                 struct ceph_msg *msg)
1701 {
1702         struct rbd_obj_request *obj_request = osd_req->r_priv;
1703         u16 opcode;
1704
1705         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1706         rbd_assert(osd_req == obj_request->osd_req);
1707         if (obj_request_img_data_test(obj_request)) {
1708                 rbd_assert(obj_request->img_request);
1709                 rbd_assert(obj_request->which != BAD_WHICH);
1710         } else {
1711                 rbd_assert(obj_request->which == BAD_WHICH);
1712         }
1713
1714         if (osd_req->r_result < 0)
1715                 obj_request->result = osd_req->r_result;
1716
1717         BUG_ON(osd_req->r_num_ops > 2);
1718
1719         /*
1720          * We support a 64-bit length, but ultimately it has to be
1721          * passed to blk_end_request(), which takes an unsigned int.
1722          */
1723         obj_request->xferred = osd_req->r_reply_op_len[0];
1724         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1725         opcode = osd_req->r_ops[0].op;
1726         switch (opcode) {
1727         case CEPH_OSD_OP_READ:
1728                 rbd_osd_read_callback(obj_request);
1729                 break;
1730         case CEPH_OSD_OP_WRITE:
1731                 rbd_osd_write_callback(obj_request);
1732                 break;
1733         case CEPH_OSD_OP_STAT:
1734                 rbd_osd_stat_callback(obj_request);
1735                 break;
1736         case CEPH_OSD_OP_CALL:
1737         case CEPH_OSD_OP_NOTIFY_ACK:
1738         case CEPH_OSD_OP_WATCH:
1739                 rbd_osd_trivial_callback(obj_request);
1740                 break;
1741         default:
1742                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1743                         obj_request->object_name, (unsigned short) opcode);
1744                 break;
1745         }
1746
1747         if (obj_request_done_test(obj_request))
1748                 rbd_obj_request_complete(obj_request);
1749 }
1750
1751 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1752 {
1753         struct rbd_img_request *img_request = obj_request->img_request;
1754         struct ceph_osd_request *osd_req = obj_request->osd_req;
1755         u64 snap_id;
1756
1757         rbd_assert(osd_req != NULL);
1758
1759         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1760         ceph_osdc_build_request(osd_req, obj_request->offset,
1761                         NULL, snap_id, NULL);
1762 }
1763
1764 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1765 {
1766         struct rbd_img_request *img_request = obj_request->img_request;
1767         struct ceph_osd_request *osd_req = obj_request->osd_req;
1768         struct ceph_snap_context *snapc;
1769         struct timespec mtime = CURRENT_TIME;
1770
1771         rbd_assert(osd_req != NULL);
1772
1773         snapc = img_request ? img_request->snapc : NULL;
1774         ceph_osdc_build_request(osd_req, obj_request->offset,
1775                         snapc, CEPH_NOSNAP, &mtime);
1776 }
1777
1778 static struct ceph_osd_request *rbd_osd_req_create(
1779                                         struct rbd_device *rbd_dev,
1780                                         bool write_request,
1781                                         struct rbd_obj_request *obj_request)
1782 {
1783         struct ceph_snap_context *snapc = NULL;
1784         struct ceph_osd_client *osdc;
1785         struct ceph_osd_request *osd_req;
1786
1787         if (obj_request_img_data_test(obj_request)) {
1788                 struct rbd_img_request *img_request = obj_request->img_request;
1789
1790                 rbd_assert(write_request ==
1791                                 img_request_write_test(img_request));
1792                 if (write_request)
1793                         snapc = img_request->snapc;
1794         }
1795
1796         /* Allocate and initialize the request, for the single op */
1797
1798         osdc = &rbd_dev->rbd_client->client->osdc;
1799         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1800         if (!osd_req)
1801                 return NULL;    /* ENOMEM */
1802
1803         if (write_request)
1804                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1805         else
1806                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1807
1808         osd_req->r_callback = rbd_osd_req_callback;
1809         osd_req->r_priv = obj_request;
1810
1811         osd_req->r_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1812
1813         osd_req->r_oid_len = strlen(obj_request->object_name);
1814         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1815         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1816
1817         return osd_req;
1818 }
1819
1820 /*
1821  * Create a copyup osd request based on the information in the
1822  * object request supplied.  A copyup request has two osd ops,
1823  * a copyup method call, and a "normal" write request.
1824  */
1825 static struct ceph_osd_request *
1826 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1827 {
1828         struct rbd_img_request *img_request;
1829         struct ceph_snap_context *snapc;
1830         struct rbd_device *rbd_dev;
1831         struct ceph_osd_client *osdc;
1832         struct ceph_osd_request *osd_req;
1833
1834         rbd_assert(obj_request_img_data_test(obj_request));
1835         img_request = obj_request->img_request;
1836         rbd_assert(img_request);
1837         rbd_assert(img_request_write_test(img_request));
1838
1839         /* Allocate and initialize the request, for the two ops */
1840
1841         snapc = img_request->snapc;
1842         rbd_dev = img_request->rbd_dev;
1843         osdc = &rbd_dev->rbd_client->client->osdc;
1844         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1845         if (!osd_req)
1846                 return NULL;    /* ENOMEM */
1847
1848         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1849         osd_req->r_callback = rbd_osd_req_callback;
1850         osd_req->r_priv = obj_request;
1851
1852         osd_req->r_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1853
1854         osd_req->r_oid_len = strlen(obj_request->object_name);
1855         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1856         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1857
1858         return osd_req;
1859 }
1860
1861
1862 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1863 {
1864         ceph_osdc_put_request(osd_req);
1865 }
1866
1867 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1868
1869 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1870                                                 u64 offset, u64 length,
1871                                                 enum obj_request_type type)
1872 {
1873         struct rbd_obj_request *obj_request;
1874         size_t size;
1875         char *name;
1876
1877         rbd_assert(obj_request_type_valid(type));
1878
1879         size = strlen(object_name) + 1;
1880         name = kmalloc(size, GFP_KERNEL);
1881         if (!name)
1882                 return NULL;
1883
1884         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1885         if (!obj_request) {
1886                 kfree(name);
1887                 return NULL;
1888         }
1889
1890         obj_request->object_name = memcpy(name, object_name, size);
1891         obj_request->offset = offset;
1892         obj_request->length = length;
1893         obj_request->flags = 0;
1894         obj_request->which = BAD_WHICH;
1895         obj_request->type = type;
1896         INIT_LIST_HEAD(&obj_request->links);
1897         init_completion(&obj_request->completion);
1898         kref_init(&obj_request->kref);
1899
1900         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1901                 offset, length, (int)type, obj_request);
1902
1903         return obj_request;
1904 }
1905
1906 static void rbd_obj_request_destroy(struct kref *kref)
1907 {
1908         struct rbd_obj_request *obj_request;
1909
1910         obj_request = container_of(kref, struct rbd_obj_request, kref);
1911
1912         dout("%s: obj %p\n", __func__, obj_request);
1913
1914         rbd_assert(obj_request->img_request == NULL);
1915         rbd_assert(obj_request->which == BAD_WHICH);
1916
1917         if (obj_request->osd_req)
1918                 rbd_osd_req_destroy(obj_request->osd_req);
1919
1920         rbd_assert(obj_request_type_valid(obj_request->type));
1921         switch (obj_request->type) {
1922         case OBJ_REQUEST_NODATA:
1923                 break;          /* Nothing to do */
1924         case OBJ_REQUEST_BIO:
1925                 if (obj_request->bio_list)
1926                         bio_chain_put(obj_request->bio_list);
1927                 break;
1928         case OBJ_REQUEST_PAGES:
1929                 if (obj_request->pages)
1930                         ceph_release_page_vector(obj_request->pages,
1931                                                 obj_request->page_count);
1932                 break;
1933         }
1934
1935         kfree(obj_request->object_name);
1936         obj_request->object_name = NULL;
1937         kmem_cache_free(rbd_obj_request_cache, obj_request);
1938 }
1939
1940 /* It's OK to call this for a device with no parent */
1941
1942 static void rbd_spec_put(struct rbd_spec *spec);
1943 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1944 {
1945         rbd_dev_remove_parent(rbd_dev);
1946         rbd_spec_put(rbd_dev->parent_spec);
1947         rbd_dev->parent_spec = NULL;
1948         rbd_dev->parent_overlap = 0;
1949 }
1950
1951 /*
1952  * Parent image reference counting is used to determine when an
1953  * image's parent fields can be safely torn down--after there are no
1954  * more in-flight requests to the parent image.  When the last
1955  * reference is dropped, cleaning them up is safe.
1956  */
1957 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1958 {
1959         int counter;
1960
1961         if (!rbd_dev->parent_spec)
1962                 return;
1963
1964         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1965         if (counter > 0)
1966                 return;
1967
1968         /* Last reference; clean up parent data structures */
1969
1970         if (!counter)
1971                 rbd_dev_unparent(rbd_dev);
1972         else
1973                 rbd_warn(rbd_dev, "parent reference underflow\n");
1974 }
1975
1976 /*
1977  * If an image has a non-zero parent overlap, get a reference to its
1978  * parent.
1979  *
1980  * We must get the reference before checking for the overlap to
1981  * coordinate properly with zeroing the parent overlap in
1982  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1983  * drop it again if there is no overlap.
1984  *
1985  * Returns true if the rbd device has a parent with a non-zero
1986  * overlap and a reference for it was successfully taken, or
1987  * false otherwise.
1988  */
1989 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1990 {
1991         int counter;
1992
1993         if (!rbd_dev->parent_spec)
1994                 return false;
1995
1996         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1997         if (counter > 0 && rbd_dev->parent_overlap)
1998                 return true;
1999
2000         /* Image was flattened, but parent is not yet torn down */
2001
2002         if (counter < 0)
2003                 rbd_warn(rbd_dev, "parent reference overflow\n");
2004
2005         return false;
2006 }
2007
2008 /*
2009  * Caller is responsible for filling in the list of object requests
2010  * that comprises the image request, and the Linux request pointer
2011  * (if there is one).
2012  */
2013 static struct rbd_img_request *rbd_img_request_create(
2014                                         struct rbd_device *rbd_dev,
2015                                         u64 offset, u64 length,
2016                                         bool write_request)
2017 {
2018         struct rbd_img_request *img_request;
2019
2020         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2021         if (!img_request)
2022                 return NULL;
2023
2024         if (write_request) {
2025                 down_read(&rbd_dev->header_rwsem);
2026                 ceph_get_snap_context(rbd_dev->header.snapc);
2027                 up_read(&rbd_dev->header_rwsem);
2028         }
2029
2030         img_request->rq = NULL;
2031         img_request->rbd_dev = rbd_dev;
2032         img_request->offset = offset;
2033         img_request->length = length;
2034         img_request->flags = 0;
2035         if (write_request) {
2036                 img_request_write_set(img_request);
2037                 img_request->snapc = rbd_dev->header.snapc;
2038         } else {
2039                 img_request->snap_id = rbd_dev->spec->snap_id;
2040         }
2041         if (rbd_dev_parent_get(rbd_dev))
2042                 img_request_layered_set(img_request);
2043         spin_lock_init(&img_request->completion_lock);
2044         img_request->next_completion = 0;
2045         img_request->callback = NULL;
2046         img_request->result = 0;
2047         img_request->obj_request_count = 0;
2048         INIT_LIST_HEAD(&img_request->obj_requests);
2049         kref_init(&img_request->kref);
2050
2051         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2052                 write_request ? "write" : "read", offset, length,
2053                 img_request);
2054
2055         return img_request;
2056 }
2057
2058 static void rbd_img_request_destroy(struct kref *kref)
2059 {
2060         struct rbd_img_request *img_request;
2061         struct rbd_obj_request *obj_request;
2062         struct rbd_obj_request *next_obj_request;
2063
2064         img_request = container_of(kref, struct rbd_img_request, kref);
2065
2066         dout("%s: img %p\n", __func__, img_request);
2067
2068         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2069                 rbd_img_obj_request_del(img_request, obj_request);
2070         rbd_assert(img_request->obj_request_count == 0);
2071
2072         if (img_request_layered_test(img_request)) {
2073                 img_request_layered_clear(img_request);
2074                 rbd_dev_parent_put(img_request->rbd_dev);
2075         }
2076
2077         if (img_request_write_test(img_request))
2078                 ceph_put_snap_context(img_request->snapc);
2079
2080         kmem_cache_free(rbd_img_request_cache, img_request);
2081 }
2082
2083 static struct rbd_img_request *rbd_parent_request_create(
2084                                         struct rbd_obj_request *obj_request,
2085                                         u64 img_offset, u64 length)
2086 {
2087         struct rbd_img_request *parent_request;
2088         struct rbd_device *rbd_dev;
2089
2090         rbd_assert(obj_request->img_request);
2091         rbd_dev = obj_request->img_request->rbd_dev;
2092
2093         parent_request = rbd_img_request_create(rbd_dev->parent,
2094                                                 img_offset, length, false);
2095         if (!parent_request)
2096                 return NULL;
2097
2098         img_request_child_set(parent_request);
2099         rbd_obj_request_get(obj_request);
2100         parent_request->obj_request = obj_request;
2101
2102         return parent_request;
2103 }
2104
2105 static void rbd_parent_request_destroy(struct kref *kref)
2106 {
2107         struct rbd_img_request *parent_request;
2108         struct rbd_obj_request *orig_request;
2109
2110         parent_request = container_of(kref, struct rbd_img_request, kref);
2111         orig_request = parent_request->obj_request;
2112
2113         parent_request->obj_request = NULL;
2114         rbd_obj_request_put(orig_request);
2115         img_request_child_clear(parent_request);
2116
2117         rbd_img_request_destroy(kref);
2118 }
2119
2120 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2121 {
2122         struct rbd_img_request *img_request;
2123         unsigned int xferred;
2124         int result;
2125         bool more;
2126
2127         rbd_assert(obj_request_img_data_test(obj_request));
2128         img_request = obj_request->img_request;
2129
2130         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2131         xferred = (unsigned int)obj_request->xferred;
2132         result = obj_request->result;
2133         if (result) {
2134                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2135
2136                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2137                         img_request_write_test(img_request) ? "write" : "read",
2138                         obj_request->length, obj_request->img_offset,
2139                         obj_request->offset);
2140                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2141                         result, xferred);
2142                 if (!img_request->result)
2143                         img_request->result = result;
2144         }
2145
2146         /* Image object requests don't own their page array */
2147
2148         if (obj_request->type == OBJ_REQUEST_PAGES) {
2149                 obj_request->pages = NULL;
2150                 obj_request->page_count = 0;
2151         }
2152
2153         if (img_request_child_test(img_request)) {
2154                 rbd_assert(img_request->obj_request != NULL);
2155                 more = obj_request->which < img_request->obj_request_count - 1;
2156         } else {
2157                 rbd_assert(img_request->rq != NULL);
2158                 more = blk_end_request(img_request->rq, result, xferred);
2159         }
2160
2161         return more;
2162 }
2163
2164 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2165 {
2166         struct rbd_img_request *img_request;
2167         u32 which = obj_request->which;
2168         bool more = true;
2169
2170         rbd_assert(obj_request_img_data_test(obj_request));
2171         img_request = obj_request->img_request;
2172
2173         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2174         rbd_assert(img_request != NULL);
2175         rbd_assert(img_request->obj_request_count > 0);
2176         rbd_assert(which != BAD_WHICH);
2177         rbd_assert(which < img_request->obj_request_count);
2178         rbd_assert(which >= img_request->next_completion);
2179
2180         spin_lock_irq(&img_request->completion_lock);
2181         if (which != img_request->next_completion)
2182                 goto out;
2183
2184         for_each_obj_request_from(img_request, obj_request) {
2185                 rbd_assert(more);
2186                 rbd_assert(which < img_request->obj_request_count);
2187
2188                 if (!obj_request_done_test(obj_request))
2189                         break;
2190                 more = rbd_img_obj_end_request(obj_request);
2191                 which++;
2192         }
2193
2194         rbd_assert(more ^ (which == img_request->obj_request_count));
2195         img_request->next_completion = which;
2196 out:
2197         spin_unlock_irq(&img_request->completion_lock);
2198
2199         if (!more)
2200                 rbd_img_request_complete(img_request);
2201 }
2202
2203 /*
2204  * Split up an image request into one or more object requests, each
2205  * to a different object.  The "type" parameter indicates whether
2206  * "data_desc" is the pointer to the head of a list of bio
2207  * structures, or the base of a page array.  In either case this
2208  * function assumes data_desc describes memory sufficient to hold
2209  * all data described by the image request.
2210  */
2211 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2212                                         enum obj_request_type type,
2213                                         void *data_desc)
2214 {
2215         struct rbd_device *rbd_dev = img_request->rbd_dev;
2216         struct rbd_obj_request *obj_request = NULL;
2217         struct rbd_obj_request *next_obj_request;
2218         bool write_request = img_request_write_test(img_request);
2219         struct bio *bio_list = NULL;
2220         unsigned int bio_offset = 0;
2221         struct page **pages = NULL;
2222         u64 img_offset;
2223         u64 resid;
2224         u16 opcode;
2225
2226         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2227                 (int)type, data_desc);
2228
2229         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2230         img_offset = img_request->offset;
2231         resid = img_request->length;
2232         rbd_assert(resid > 0);
2233
2234         if (type == OBJ_REQUEST_BIO) {
2235                 bio_list = data_desc;
2236                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2237         } else {
2238                 rbd_assert(type == OBJ_REQUEST_PAGES);
2239                 pages = data_desc;
2240         }
2241
2242         while (resid) {
2243                 struct ceph_osd_request *osd_req;
2244                 const char *object_name;
2245                 u64 offset;
2246                 u64 length;
2247
2248                 object_name = rbd_segment_name(rbd_dev, img_offset);
2249                 if (!object_name)
2250                         goto out_unwind;
2251                 offset = rbd_segment_offset(rbd_dev, img_offset);
2252                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2253                 obj_request = rbd_obj_request_create(object_name,
2254                                                 offset, length, type);
2255                 /* object request has its own copy of the object name */
2256                 rbd_segment_name_free(object_name);
2257                 if (!obj_request)
2258                         goto out_unwind;
2259                 /*
2260                  * set obj_request->img_request before creating the
2261                  * osd_request so that it gets the right snapc
2262                  */
2263                 rbd_img_obj_request_add(img_request, obj_request);
2264
2265                 if (type == OBJ_REQUEST_BIO) {
2266                         unsigned int clone_size;
2267
2268                         rbd_assert(length <= (u64)UINT_MAX);
2269                         clone_size = (unsigned int)length;
2270                         obj_request->bio_list =
2271                                         bio_chain_clone_range(&bio_list,
2272                                                                 &bio_offset,
2273                                                                 clone_size,
2274                                                                 GFP_ATOMIC);
2275                         if (!obj_request->bio_list)
2276                                 goto out_partial;
2277                 } else {
2278                         unsigned int page_count;
2279
2280                         obj_request->pages = pages;
2281                         page_count = (u32)calc_pages_for(offset, length);
2282                         obj_request->page_count = page_count;
2283                         if ((offset + length) & ~PAGE_MASK)
2284                                 page_count--;   /* more on last page */
2285                         pages += page_count;
2286                 }
2287
2288                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2289                                                 obj_request);
2290                 if (!osd_req)
2291                         goto out_partial;
2292                 obj_request->osd_req = osd_req;
2293                 obj_request->callback = rbd_img_obj_callback;
2294
2295                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2296                                                 0, 0);
2297                 if (type == OBJ_REQUEST_BIO)
2298                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2299                                         obj_request->bio_list, length);
2300                 else
2301                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2302                                         obj_request->pages, length,
2303                                         offset & ~PAGE_MASK, false, false);
2304
2305                 if (write_request)
2306                         rbd_osd_req_format_write(obj_request);
2307                 else
2308                         rbd_osd_req_format_read(obj_request);
2309
2310                 obj_request->img_offset = img_offset;
2311
2312                 img_offset += length;
2313                 resid -= length;
2314         }
2315
2316         return 0;
2317
2318 out_partial:
2319         rbd_obj_request_put(obj_request);
2320 out_unwind:
2321         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2322                 rbd_obj_request_put(obj_request);
2323
2324         return -ENOMEM;
2325 }
2326
2327 static void
2328 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2329 {
2330         struct rbd_img_request *img_request;
2331         struct rbd_device *rbd_dev;
2332         struct page **pages;
2333         u32 page_count;
2334
2335         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2336         rbd_assert(obj_request_img_data_test(obj_request));
2337         img_request = obj_request->img_request;
2338         rbd_assert(img_request);
2339
2340         rbd_dev = img_request->rbd_dev;
2341         rbd_assert(rbd_dev);
2342
2343         pages = obj_request->copyup_pages;
2344         rbd_assert(pages != NULL);
2345         obj_request->copyup_pages = NULL;
2346         page_count = obj_request->copyup_page_count;
2347         rbd_assert(page_count);
2348         obj_request->copyup_page_count = 0;
2349         ceph_release_page_vector(pages, page_count);
2350
2351         /*
2352          * We want the transfer count to reflect the size of the
2353          * original write request.  There is no such thing as a
2354          * successful short write, so if the request was successful
2355          * we can just set it to the originally-requested length.
2356          */
2357         if (!obj_request->result)
2358                 obj_request->xferred = obj_request->length;
2359
2360         /* Finish up with the normal image object callback */
2361
2362         rbd_img_obj_callback(obj_request);
2363 }
2364
2365 static void
2366 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2367 {
2368         struct rbd_obj_request *orig_request;
2369         struct ceph_osd_request *osd_req;
2370         struct ceph_osd_client *osdc;
2371         struct rbd_device *rbd_dev;
2372         struct page **pages;
2373         u32 page_count;
2374         int img_result;
2375         u64 parent_length;
2376         u64 offset;
2377         u64 length;
2378
2379         rbd_assert(img_request_child_test(img_request));
2380
2381         /* First get what we need from the image request */
2382
2383         pages = img_request->copyup_pages;
2384         rbd_assert(pages != NULL);
2385         img_request->copyup_pages = NULL;
2386         page_count = img_request->copyup_page_count;
2387         rbd_assert(page_count);
2388         img_request->copyup_page_count = 0;
2389
2390         orig_request = img_request->obj_request;
2391         rbd_assert(orig_request != NULL);
2392         rbd_assert(obj_request_type_valid(orig_request->type));
2393         img_result = img_request->result;
2394         parent_length = img_request->length;
2395         rbd_assert(parent_length == img_request->xferred);
2396         rbd_img_request_put(img_request);
2397
2398         rbd_assert(orig_request->img_request);
2399         rbd_dev = orig_request->img_request->rbd_dev;
2400         rbd_assert(rbd_dev);
2401
2402         /*
2403          * If the overlap has become 0 (most likely because the
2404          * image has been flattened) we need to free the pages
2405          * and re-submit the original write request.
2406          */
2407         if (!rbd_dev->parent_overlap) {
2408                 struct ceph_osd_client *osdc;
2409
2410                 ceph_release_page_vector(pages, page_count);
2411                 osdc = &rbd_dev->rbd_client->client->osdc;
2412                 img_result = rbd_obj_request_submit(osdc, orig_request);
2413                 if (!img_result)
2414                         return;
2415         }
2416
2417         if (img_result)
2418                 goto out_err;
2419
2420         /*
2421          * The original osd request is of no use to use any more.
2422          * We need a new one that can hold the two ops in a copyup
2423          * request.  Allocate the new copyup osd request for the
2424          * original request, and release the old one.
2425          */
2426         img_result = -ENOMEM;
2427         osd_req = rbd_osd_req_create_copyup(orig_request);
2428         if (!osd_req)
2429                 goto out_err;
2430         rbd_osd_req_destroy(orig_request->osd_req);
2431         orig_request->osd_req = osd_req;
2432         orig_request->copyup_pages = pages;
2433         orig_request->copyup_page_count = page_count;
2434
2435         /* Initialize the copyup op */
2436
2437         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2438         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2439                                                 false, false);
2440
2441         /* Then the original write request op */
2442
2443         offset = orig_request->offset;
2444         length = orig_request->length;
2445         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2446                                         offset, length, 0, 0);
2447         if (orig_request->type == OBJ_REQUEST_BIO)
2448                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2449                                         orig_request->bio_list, length);
2450         else
2451                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2452                                         orig_request->pages, length,
2453                                         offset & ~PAGE_MASK, false, false);
2454
2455         rbd_osd_req_format_write(orig_request);
2456
2457         /* All set, send it off. */
2458
2459         orig_request->callback = rbd_img_obj_copyup_callback;
2460         osdc = &rbd_dev->rbd_client->client->osdc;
2461         img_result = rbd_obj_request_submit(osdc, orig_request);
2462         if (!img_result)
2463                 return;
2464 out_err:
2465         /* Record the error code and complete the request */
2466
2467         orig_request->result = img_result;
2468         orig_request->xferred = 0;
2469         obj_request_done_set(orig_request);
2470         rbd_obj_request_complete(orig_request);
2471 }
2472
2473 /*
2474  * Read from the parent image the range of data that covers the
2475  * entire target of the given object request.  This is used for
2476  * satisfying a layered image write request when the target of an
2477  * object request from the image request does not exist.
2478  *
2479  * A page array big enough to hold the returned data is allocated
2480  * and supplied to rbd_img_request_fill() as the "data descriptor."
2481  * When the read completes, this page array will be transferred to
2482  * the original object request for the copyup operation.
2483  *
2484  * If an error occurs, record it as the result of the original
2485  * object request and mark it done so it gets completed.
2486  */
2487 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2488 {
2489         struct rbd_img_request *img_request = NULL;
2490         struct rbd_img_request *parent_request = NULL;
2491         struct rbd_device *rbd_dev;
2492         u64 img_offset;
2493         u64 length;
2494         struct page **pages = NULL;
2495         u32 page_count;
2496         int result;
2497
2498         rbd_assert(obj_request_img_data_test(obj_request));
2499         rbd_assert(obj_request_type_valid(obj_request->type));
2500
2501         img_request = obj_request->img_request;
2502         rbd_assert(img_request != NULL);
2503         rbd_dev = img_request->rbd_dev;
2504         rbd_assert(rbd_dev->parent != NULL);
2505
2506         /*
2507          * Determine the byte range covered by the object in the
2508          * child image to which the original request was to be sent.
2509          */
2510         img_offset = obj_request->img_offset - obj_request->offset;
2511         length = (u64)1 << rbd_dev->header.obj_order;
2512
2513         /*
2514          * There is no defined parent data beyond the parent
2515          * overlap, so limit what we read at that boundary if
2516          * necessary.
2517          */
2518         if (img_offset + length > rbd_dev->parent_overlap) {
2519                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2520                 length = rbd_dev->parent_overlap - img_offset;
2521         }
2522
2523         /*
2524          * Allocate a page array big enough to receive the data read
2525          * from the parent.
2526          */
2527         page_count = (u32)calc_pages_for(0, length);
2528         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2529         if (IS_ERR(pages)) {
2530                 result = PTR_ERR(pages);
2531                 pages = NULL;
2532                 goto out_err;
2533         }
2534
2535         result = -ENOMEM;
2536         parent_request = rbd_parent_request_create(obj_request,
2537                                                 img_offset, length);
2538         if (!parent_request)
2539                 goto out_err;
2540
2541         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2542         if (result)
2543                 goto out_err;
2544         parent_request->copyup_pages = pages;
2545         parent_request->copyup_page_count = page_count;
2546
2547         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2548         result = rbd_img_request_submit(parent_request);
2549         if (!result)
2550                 return 0;
2551
2552         parent_request->copyup_pages = NULL;
2553         parent_request->copyup_page_count = 0;
2554         parent_request->obj_request = NULL;
2555         rbd_obj_request_put(obj_request);
2556 out_err:
2557         if (pages)
2558                 ceph_release_page_vector(pages, page_count);
2559         if (parent_request)
2560                 rbd_img_request_put(parent_request);
2561         obj_request->result = result;
2562         obj_request->xferred = 0;
2563         obj_request_done_set(obj_request);
2564
2565         return result;
2566 }
2567
2568 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2569 {
2570         struct rbd_obj_request *orig_request;
2571         struct rbd_device *rbd_dev;
2572         int result;
2573
2574         rbd_assert(!obj_request_img_data_test(obj_request));
2575
2576         /*
2577          * All we need from the object request is the original
2578          * request and the result of the STAT op.  Grab those, then
2579          * we're done with the request.
2580          */
2581         orig_request = obj_request->obj_request;
2582         obj_request->obj_request = NULL;
2583         rbd_obj_request_put(orig_request);
2584         rbd_assert(orig_request);
2585         rbd_assert(orig_request->img_request);
2586
2587         result = obj_request->result;
2588         obj_request->result = 0;
2589
2590         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2591                 obj_request, orig_request, result,
2592                 obj_request->xferred, obj_request->length);
2593         rbd_obj_request_put(obj_request);
2594
2595         /*
2596          * If the overlap has become 0 (most likely because the
2597          * image has been flattened) we need to free the pages
2598          * and re-submit the original write request.
2599          */
2600         rbd_dev = orig_request->img_request->rbd_dev;
2601         if (!rbd_dev->parent_overlap) {
2602                 struct ceph_osd_client *osdc;
2603
2604                 osdc = &rbd_dev->rbd_client->client->osdc;
2605                 result = rbd_obj_request_submit(osdc, orig_request);
2606                 if (!result)
2607                         return;
2608         }
2609
2610         /*
2611          * Our only purpose here is to determine whether the object
2612          * exists, and we don't want to treat the non-existence as
2613          * an error.  If something else comes back, transfer the
2614          * error to the original request and complete it now.
2615          */
2616         if (!result) {
2617                 obj_request_existence_set(orig_request, true);
2618         } else if (result == -ENOENT) {
2619                 obj_request_existence_set(orig_request, false);
2620         } else if (result) {
2621                 orig_request->result = result;
2622                 goto out;
2623         }
2624
2625         /*
2626          * Resubmit the original request now that we have recorded
2627          * whether the target object exists.
2628          */
2629         orig_request->result = rbd_img_obj_request_submit(orig_request);
2630 out:
2631         if (orig_request->result)
2632                 rbd_obj_request_complete(orig_request);
2633 }
2634
2635 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2636 {
2637         struct rbd_obj_request *stat_request;
2638         struct rbd_device *rbd_dev;
2639         struct ceph_osd_client *osdc;
2640         struct page **pages = NULL;
2641         u32 page_count;
2642         size_t size;
2643         int ret;
2644
2645         /*
2646          * The response data for a STAT call consists of:
2647          *     le64 length;
2648          *     struct {
2649          *         le32 tv_sec;
2650          *         le32 tv_nsec;
2651          *     } mtime;
2652          */
2653         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2654         page_count = (u32)calc_pages_for(0, size);
2655         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2656         if (IS_ERR(pages))
2657                 return PTR_ERR(pages);
2658
2659         ret = -ENOMEM;
2660         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2661                                                         OBJ_REQUEST_PAGES);
2662         if (!stat_request)
2663                 goto out;
2664
2665         rbd_obj_request_get(obj_request);
2666         stat_request->obj_request = obj_request;
2667         stat_request->pages = pages;
2668         stat_request->page_count = page_count;
2669
2670         rbd_assert(obj_request->img_request);
2671         rbd_dev = obj_request->img_request->rbd_dev;
2672         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2673                                                 stat_request);
2674         if (!stat_request->osd_req)
2675                 goto out;
2676         stat_request->callback = rbd_img_obj_exists_callback;
2677
2678         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2679         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2680                                         false, false);
2681         rbd_osd_req_format_read(stat_request);
2682
2683         osdc = &rbd_dev->rbd_client->client->osdc;
2684         ret = rbd_obj_request_submit(osdc, stat_request);
2685 out:
2686         if (ret)
2687                 rbd_obj_request_put(obj_request);
2688
2689         return ret;
2690 }
2691
2692 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2693 {
2694         struct rbd_img_request *img_request;
2695         struct rbd_device *rbd_dev;
2696         bool known;
2697
2698         rbd_assert(obj_request_img_data_test(obj_request));
2699
2700         img_request = obj_request->img_request;
2701         rbd_assert(img_request);
2702         rbd_dev = img_request->rbd_dev;
2703
2704         /*
2705          * Only writes to layered images need special handling.
2706          * Reads and non-layered writes are simple object requests.
2707          * Layered writes that start beyond the end of the overlap
2708          * with the parent have no parent data, so they too are
2709          * simple object requests.  Finally, if the target object is
2710          * known to already exist, its parent data has already been
2711          * copied, so a write to the object can also be handled as a
2712          * simple object request.
2713          */
2714         if (!img_request_write_test(img_request) ||
2715                 !img_request_layered_test(img_request) ||
2716                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2717                 ((known = obj_request_known_test(obj_request)) &&
2718                         obj_request_exists_test(obj_request))) {
2719
2720                 struct rbd_device *rbd_dev;
2721                 struct ceph_osd_client *osdc;
2722
2723                 rbd_dev = obj_request->img_request->rbd_dev;
2724                 osdc = &rbd_dev->rbd_client->client->osdc;
2725
2726                 return rbd_obj_request_submit(osdc, obj_request);
2727         }
2728
2729         /*
2730          * It's a layered write.  The target object might exist but
2731          * we may not know that yet.  If we know it doesn't exist,
2732          * start by reading the data for the full target object from
2733          * the parent so we can use it for a copyup to the target.
2734          */
2735         if (known)
2736                 return rbd_img_obj_parent_read_full(obj_request);
2737
2738         /* We don't know whether the target exists.  Go find out. */
2739
2740         return rbd_img_obj_exists_submit(obj_request);
2741 }
2742
2743 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2744 {
2745         struct rbd_obj_request *obj_request;
2746         struct rbd_obj_request *next_obj_request;
2747
2748         dout("%s: img %p\n", __func__, img_request);
2749         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2750                 int ret;
2751
2752                 ret = rbd_img_obj_request_submit(obj_request);
2753                 if (ret)
2754                         return ret;
2755         }
2756
2757         return 0;
2758 }
2759
2760 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2761 {
2762         struct rbd_obj_request *obj_request;
2763         struct rbd_device *rbd_dev;
2764         u64 obj_end;
2765         u64 img_xferred;
2766         int img_result;
2767
2768         rbd_assert(img_request_child_test(img_request));
2769
2770         /* First get what we need from the image request and release it */
2771
2772         obj_request = img_request->obj_request;
2773         img_xferred = img_request->xferred;
2774         img_result = img_request->result;
2775         rbd_img_request_put(img_request);
2776
2777         /*
2778          * If the overlap has become 0 (most likely because the
2779          * image has been flattened) we need to re-submit the
2780          * original request.
2781          */
2782         rbd_assert(obj_request);
2783         rbd_assert(obj_request->img_request);
2784         rbd_dev = obj_request->img_request->rbd_dev;
2785         if (!rbd_dev->parent_overlap) {
2786                 struct ceph_osd_client *osdc;
2787
2788                 osdc = &rbd_dev->rbd_client->client->osdc;
2789                 img_result = rbd_obj_request_submit(osdc, obj_request);
2790                 if (!img_result)
2791                         return;
2792         }
2793
2794         obj_request->result = img_result;
2795         if (obj_request->result)
2796                 goto out;
2797
2798         /*
2799          * We need to zero anything beyond the parent overlap
2800          * boundary.  Since rbd_img_obj_request_read_callback()
2801          * will zero anything beyond the end of a short read, an
2802          * easy way to do this is to pretend the data from the
2803          * parent came up short--ending at the overlap boundary.
2804          */
2805         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2806         obj_end = obj_request->img_offset + obj_request->length;
2807         if (obj_end > rbd_dev->parent_overlap) {
2808                 u64 xferred = 0;
2809
2810                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2811                         xferred = rbd_dev->parent_overlap -
2812                                         obj_request->img_offset;
2813
2814                 obj_request->xferred = min(img_xferred, xferred);
2815         } else {
2816                 obj_request->xferred = img_xferred;
2817         }
2818 out:
2819         rbd_img_obj_request_read_callback(obj_request);
2820         rbd_obj_request_complete(obj_request);
2821 }
2822
2823 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2824 {
2825         struct rbd_img_request *img_request;
2826         int result;
2827
2828         rbd_assert(obj_request_img_data_test(obj_request));
2829         rbd_assert(obj_request->img_request != NULL);
2830         rbd_assert(obj_request->result == (s32) -ENOENT);
2831         rbd_assert(obj_request_type_valid(obj_request->type));
2832
2833         /* rbd_read_finish(obj_request, obj_request->length); */
2834         img_request = rbd_parent_request_create(obj_request,
2835                                                 obj_request->img_offset,
2836                                                 obj_request->length);
2837         result = -ENOMEM;
2838         if (!img_request)
2839                 goto out_err;
2840
2841         if (obj_request->type == OBJ_REQUEST_BIO)
2842                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2843                                                 obj_request->bio_list);
2844         else
2845                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2846                                                 obj_request->pages);
2847         if (result)
2848                 goto out_err;
2849
2850         img_request->callback = rbd_img_parent_read_callback;
2851         result = rbd_img_request_submit(img_request);
2852         if (result)
2853                 goto out_err;
2854
2855         return;
2856 out_err:
2857         if (img_request)
2858                 rbd_img_request_put(img_request);
2859         obj_request->result = result;
2860         obj_request->xferred = 0;
2861         obj_request_done_set(obj_request);
2862 }
2863
2864 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2865 {
2866         struct rbd_obj_request *obj_request;
2867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2868         int ret;
2869
2870         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2871                                                         OBJ_REQUEST_NODATA);
2872         if (!obj_request)
2873                 return -ENOMEM;
2874
2875         ret = -ENOMEM;
2876         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2877         if (!obj_request->osd_req)
2878                 goto out;
2879
2880         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2881                                         notify_id, 0, 0);
2882         rbd_osd_req_format_read(obj_request);
2883
2884         ret = rbd_obj_request_submit(osdc, obj_request);
2885         if (ret)
2886                 goto out;
2887         ret = rbd_obj_request_wait(obj_request);
2888 out:
2889         rbd_obj_request_put(obj_request);
2890
2891         return ret;
2892 }
2893
2894 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2895 {
2896         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2897         int ret;
2898
2899         if (!rbd_dev)
2900                 return;
2901
2902         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2903                 rbd_dev->header_name, (unsigned long long)notify_id,
2904                 (unsigned int)opcode);
2905         ret = rbd_dev_refresh(rbd_dev);
2906         if (ret)
2907                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2908
2909         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2910 }
2911
2912 /*
2913  * Request sync osd watch/unwatch.  The value of "start" determines
2914  * whether a watch request is being initiated or torn down.
2915  */
2916 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2917 {
2918         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2919         struct rbd_obj_request *obj_request;
2920         int ret;
2921
2922         rbd_assert(start ^ !!rbd_dev->watch_event);
2923         rbd_assert(start ^ !!rbd_dev->watch_request);
2924
2925         if (start) {
2926                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2927                                                 &rbd_dev->watch_event);
2928                 if (ret < 0)
2929                         return ret;
2930                 rbd_assert(rbd_dev->watch_event != NULL);
2931         }
2932
2933         ret = -ENOMEM;
2934         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2935                                                         OBJ_REQUEST_NODATA);
2936         if (!obj_request)
2937                 goto out_cancel;
2938
2939         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2940         if (!obj_request->osd_req)
2941                 goto out_cancel;
2942
2943         if (start)
2944                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2945         else
2946                 ceph_osdc_unregister_linger_request(osdc,
2947                                         rbd_dev->watch_request->osd_req);
2948
2949         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2950                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2951         rbd_osd_req_format_write(obj_request);
2952
2953         ret = rbd_obj_request_submit(osdc, obj_request);
2954         if (ret)
2955                 goto out_cancel;
2956         ret = rbd_obj_request_wait(obj_request);
2957         if (ret)
2958                 goto out_cancel;
2959         ret = obj_request->result;
2960         if (ret)
2961                 goto out_cancel;
2962
2963         /*
2964          * A watch request is set to linger, so the underlying osd
2965          * request won't go away until we unregister it.  We retain
2966          * a pointer to the object request during that time (in
2967          * rbd_dev->watch_request), so we'll keep a reference to
2968          * it.  We'll drop that reference (below) after we've
2969          * unregistered it.
2970          */
2971         if (start) {
2972                 rbd_dev->watch_request = obj_request;
2973
2974                 return 0;
2975         }
2976
2977         /* We have successfully torn down the watch request */
2978
2979         rbd_obj_request_put(rbd_dev->watch_request);
2980         rbd_dev->watch_request = NULL;
2981 out_cancel:
2982         /* Cancel the event if we're tearing down, or on error */
2983         ceph_osdc_cancel_event(rbd_dev->watch_event);
2984         rbd_dev->watch_event = NULL;
2985         if (obj_request)
2986                 rbd_obj_request_put(obj_request);
2987
2988         return ret;
2989 }
2990
2991 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2992 {
2993         return __rbd_dev_header_watch_sync(rbd_dev, true);
2994 }
2995
2996 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2997 {
2998         int ret;
2999
3000         ret = __rbd_dev_header_watch_sync(rbd_dev, false);
3001         if (ret) {
3002                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3003                          ret);
3004         }
3005 }
3006
3007 /*
3008  * Synchronous osd object method call.  Returns the number of bytes
3009  * returned in the outbound buffer, or a negative error code.
3010  */
3011 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3012                              const char *object_name,
3013                              const char *class_name,
3014                              const char *method_name,
3015                              const void *outbound,
3016                              size_t outbound_size,
3017                              void *inbound,
3018                              size_t inbound_size)
3019 {
3020         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3021         struct rbd_obj_request *obj_request;
3022         struct page **pages;
3023         u32 page_count;
3024         int ret;
3025
3026         /*
3027          * Method calls are ultimately read operations.  The result
3028          * should placed into the inbound buffer provided.  They
3029          * also supply outbound data--parameters for the object
3030          * method.  Currently if this is present it will be a
3031          * snapshot id.
3032          */
3033         page_count = (u32)calc_pages_for(0, inbound_size);
3034         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3035         if (IS_ERR(pages))
3036                 return PTR_ERR(pages);
3037
3038         ret = -ENOMEM;
3039         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3040                                                         OBJ_REQUEST_PAGES);
3041         if (!obj_request)
3042                 goto out;
3043
3044         obj_request->pages = pages;
3045         obj_request->page_count = page_count;
3046
3047         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3048         if (!obj_request->osd_req)
3049                 goto out;
3050
3051         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3052                                         class_name, method_name);
3053         if (outbound_size) {
3054                 struct ceph_pagelist *pagelist;
3055
3056                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3057                 if (!pagelist)
3058                         goto out;
3059
3060                 ceph_pagelist_init(pagelist);
3061                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3062                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3063                                                 pagelist);
3064         }
3065         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3066                                         obj_request->pages, inbound_size,
3067                                         0, false, false);
3068         rbd_osd_req_format_read(obj_request);
3069
3070         ret = rbd_obj_request_submit(osdc, obj_request);
3071         if (ret)
3072                 goto out;
3073         ret = rbd_obj_request_wait(obj_request);
3074         if (ret)
3075                 goto out;
3076
3077         ret = obj_request->result;
3078         if (ret < 0)
3079                 goto out;
3080
3081         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3082         ret = (int)obj_request->xferred;
3083         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3084 out:
3085         if (obj_request)
3086                 rbd_obj_request_put(obj_request);
3087         else
3088                 ceph_release_page_vector(pages, page_count);
3089
3090         return ret;
3091 }
3092
3093 static void rbd_request_fn(struct request_queue *q)
3094                 __releases(q->queue_lock) __acquires(q->queue_lock)
3095 {
3096         struct rbd_device *rbd_dev = q->queuedata;
3097         bool read_only = rbd_dev->mapping.read_only;
3098         struct request *rq;
3099         int result;
3100
3101         while ((rq = blk_fetch_request(q))) {
3102                 bool write_request = rq_data_dir(rq) == WRITE;
3103                 struct rbd_img_request *img_request;
3104                 u64 offset;
3105                 u64 length;
3106
3107                 /* Ignore any non-FS requests that filter through. */
3108
3109                 if (rq->cmd_type != REQ_TYPE_FS) {
3110                         dout("%s: non-fs request type %d\n", __func__,
3111                                 (int) rq->cmd_type);
3112                         __blk_end_request_all(rq, 0);
3113                         continue;
3114                 }
3115
3116                 /* Ignore/skip any zero-length requests */
3117
3118                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3119                 length = (u64) blk_rq_bytes(rq);
3120
3121                 if (!length) {
3122                         dout("%s: zero-length request\n", __func__);
3123                         __blk_end_request_all(rq, 0);
3124                         continue;
3125                 }
3126
3127                 spin_unlock_irq(q->queue_lock);
3128
3129                 /* Disallow writes to a read-only device */
3130
3131                 if (write_request) {
3132                         result = -EROFS;
3133                         if (read_only)
3134                                 goto end_request;
3135                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3136                 }
3137
3138                 /*
3139                  * Quit early if the mapped snapshot no longer
3140                  * exists.  It's still possible the snapshot will
3141                  * have disappeared by the time our request arrives
3142                  * at the osd, but there's no sense in sending it if
3143                  * we already know.
3144                  */
3145                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3146                         dout("request for non-existent snapshot");
3147                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3148                         result = -ENXIO;
3149                         goto end_request;
3150                 }
3151
3152                 result = -EINVAL;
3153                 if (offset && length > U64_MAX - offset + 1) {
3154                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3155                                 offset, length);
3156                         goto end_request;       /* Shouldn't happen */
3157                 }
3158
3159                 result = -EIO;
3160                 if (offset + length > rbd_dev->mapping.size) {
3161                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3162                                 offset, length, rbd_dev->mapping.size);
3163                         goto end_request;
3164                 }
3165
3166                 result = -ENOMEM;
3167                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3168                                                         write_request);
3169                 if (!img_request)
3170                         goto end_request;
3171
3172                 img_request->rq = rq;
3173
3174                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3175                                                 rq->bio);
3176                 if (!result)
3177                         result = rbd_img_request_submit(img_request);
3178                 if (result)
3179                         rbd_img_request_put(img_request);
3180 end_request:
3181                 spin_lock_irq(q->queue_lock);
3182                 if (result < 0) {
3183                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3184                                 write_request ? "write" : "read",
3185                                 length, offset, result);
3186
3187                         __blk_end_request_all(rq, result);
3188                 }
3189         }
3190 }
3191
3192 /*
3193  * a queue callback. Makes sure that we don't create a bio that spans across
3194  * multiple osd objects. One exception would be with a single page bios,
3195  * which we handle later at bio_chain_clone_range()
3196  */
3197 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3198                           struct bio_vec *bvec)
3199 {
3200         struct rbd_device *rbd_dev = q->queuedata;
3201         sector_t sector_offset;
3202         sector_t sectors_per_obj;
3203         sector_t obj_sector_offset;
3204         int ret;
3205
3206         /*
3207          * Find how far into its rbd object the partition-relative
3208          * bio start sector is to offset relative to the enclosing
3209          * device.
3210          */
3211         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3212         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3213         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3214
3215         /*
3216          * Compute the number of bytes from that offset to the end
3217          * of the object.  Account for what's already used by the bio.
3218          */
3219         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3220         if (ret > bmd->bi_size)
3221                 ret -= bmd->bi_size;
3222         else
3223                 ret = 0;
3224
3225         /*
3226          * Don't send back more than was asked for.  And if the bio
3227          * was empty, let the whole thing through because:  "Note
3228          * that a block device *must* allow a single page to be
3229          * added to an empty bio."
3230          */
3231         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3232         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3233                 ret = (int) bvec->bv_len;
3234
3235         return ret;
3236 }
3237
3238 static void rbd_free_disk(struct rbd_device *rbd_dev)
3239 {
3240         struct gendisk *disk = rbd_dev->disk;
3241
3242         if (!disk)
3243                 return;
3244
3245         rbd_dev->disk = NULL;
3246         if (disk->flags & GENHD_FL_UP) {
3247                 del_gendisk(disk);
3248                 if (disk->queue)
3249                         blk_cleanup_queue(disk->queue);
3250         }
3251         put_disk(disk);
3252 }
3253
3254 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3255                                 const char *object_name,
3256                                 u64 offset, u64 length, void *buf)
3257
3258 {
3259         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3260         struct rbd_obj_request *obj_request;
3261         struct page **pages = NULL;
3262         u32 page_count;
3263         size_t size;
3264         int ret;
3265
3266         page_count = (u32) calc_pages_for(offset, length);
3267         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3268         if (IS_ERR(pages))
3269                 ret = PTR_ERR(pages);
3270
3271         ret = -ENOMEM;
3272         obj_request = rbd_obj_request_create(object_name, offset, length,
3273                                                         OBJ_REQUEST_PAGES);
3274         if (!obj_request)
3275                 goto out;
3276
3277         obj_request->pages = pages;
3278         obj_request->page_count = page_count;
3279
3280         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3281         if (!obj_request->osd_req)
3282                 goto out;
3283
3284         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3285                                         offset, length, 0, 0);
3286         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3287                                         obj_request->pages,
3288                                         obj_request->length,
3289                                         obj_request->offset & ~PAGE_MASK,
3290                                         false, false);
3291         rbd_osd_req_format_read(obj_request);
3292
3293         ret = rbd_obj_request_submit(osdc, obj_request);
3294         if (ret)
3295                 goto out;
3296         ret = rbd_obj_request_wait(obj_request);
3297         if (ret)
3298                 goto out;
3299
3300         ret = obj_request->result;
3301         if (ret < 0)
3302                 goto out;
3303
3304         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3305         size = (size_t) obj_request->xferred;
3306         ceph_copy_from_page_vector(pages, buf, 0, size);
3307         rbd_assert(size <= (size_t)INT_MAX);
3308         ret = (int)size;
3309 out:
3310         if (obj_request)
3311                 rbd_obj_request_put(obj_request);
3312         else
3313                 ceph_release_page_vector(pages, page_count);
3314
3315         return ret;
3316 }
3317
3318 /*
3319  * Read the complete header for the given rbd device.  On successful
3320  * return, the rbd_dev->header field will contain up-to-date
3321  * information about the image.
3322  */
3323 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3324 {
3325         struct rbd_image_header_ondisk *ondisk = NULL;
3326         u32 snap_count = 0;
3327         u64 names_size = 0;
3328         u32 want_count;
3329         int ret;
3330
3331         /*
3332          * The complete header will include an array of its 64-bit
3333          * snapshot ids, followed by the names of those snapshots as
3334          * a contiguous block of NUL-terminated strings.  Note that
3335          * the number of snapshots could change by the time we read
3336          * it in, in which case we re-read it.
3337          */
3338         do {
3339                 size_t size;
3340
3341                 kfree(ondisk);
3342
3343                 size = sizeof (*ondisk);
3344                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3345                 size += names_size;
3346                 ondisk = kmalloc(size, GFP_KERNEL);
3347                 if (!ondisk)
3348                         return -ENOMEM;
3349
3350                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3351                                        0, size, ondisk);
3352                 if (ret < 0)
3353                         goto out;
3354                 if ((size_t)ret < size) {
3355                         ret = -ENXIO;
3356                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3357                                 size, ret);
3358                         goto out;
3359                 }
3360                 if (!rbd_dev_ondisk_valid(ondisk)) {
3361                         ret = -ENXIO;
3362                         rbd_warn(rbd_dev, "invalid header");
3363                         goto out;
3364                 }
3365
3366                 names_size = le64_to_cpu(ondisk->snap_names_len);
3367                 want_count = snap_count;
3368                 snap_count = le32_to_cpu(ondisk->snap_count);
3369         } while (snap_count != want_count);
3370
3371         ret = rbd_header_from_disk(rbd_dev, ondisk);
3372 out:
3373         kfree(ondisk);
3374
3375         return ret;
3376 }
3377
3378 /*
3379  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3380  * has disappeared from the (just updated) snapshot context.
3381  */
3382 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3383 {
3384         u64 snap_id;
3385
3386         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3387                 return;
3388
3389         snap_id = rbd_dev->spec->snap_id;
3390         if (snap_id == CEPH_NOSNAP)
3391                 return;
3392
3393         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3394                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3395 }
3396
3397 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3398 {
3399         sector_t size;
3400         bool removing;
3401
3402         /*
3403          * Don't hold the lock while doing disk operations,
3404          * or lock ordering will conflict with the bdev mutex via:
3405          * rbd_add() -> blkdev_get() -> rbd_open()
3406          */
3407         spin_lock_irq(&rbd_dev->lock);
3408         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3409         spin_unlock_irq(&rbd_dev->lock);
3410         /*
3411          * If the device is being removed, rbd_dev->disk has
3412          * been destroyed, so don't try to update its size
3413          */
3414         if (!removing) {
3415                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3416                 dout("setting size to %llu sectors", (unsigned long long)size);
3417                 set_capacity(rbd_dev->disk, size);
3418                 revalidate_disk(rbd_dev->disk);
3419         }
3420 }
3421
3422 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3423 {
3424         u64 mapping_size;
3425         int ret;
3426
3427         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3428         down_write(&rbd_dev->header_rwsem);
3429         mapping_size = rbd_dev->mapping.size;
3430         if (rbd_dev->image_format == 1)
3431                 ret = rbd_dev_v1_header_info(rbd_dev);
3432         else
3433                 ret = rbd_dev_v2_header_info(rbd_dev);
3434
3435         /* If it's a mapped snapshot, validate its EXISTS flag */
3436
3437         rbd_exists_validate(rbd_dev);
3438         up_write(&rbd_dev->header_rwsem);
3439
3440         if (mapping_size != rbd_dev->mapping.size) {
3441                 rbd_dev_update_size(rbd_dev);
3442         }
3443
3444         return ret;
3445 }
3446
3447 static int rbd_init_disk(struct rbd_device *rbd_dev)
3448 {
3449         struct gendisk *disk;
3450         struct request_queue *q;
3451         u64 segment_size;
3452
3453         /* create gendisk info */
3454         disk = alloc_disk(single_major ?
3455                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3456                           RBD_MINORS_PER_MAJOR);
3457         if (!disk)
3458                 return -ENOMEM;
3459
3460         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3461                  rbd_dev->dev_id);
3462         disk->major = rbd_dev->major;
3463         disk->first_minor = rbd_dev->minor;
3464         if (single_major)
3465                 disk->flags |= GENHD_FL_EXT_DEVT;
3466         disk->fops = &rbd_bd_ops;
3467         disk->private_data = rbd_dev;
3468
3469         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3470         if (!q)
3471                 goto out_disk;
3472
3473         /* We use the default size, but let's be explicit about it. */
3474         blk_queue_physical_block_size(q, SECTOR_SIZE);
3475
3476         /* set io sizes to object size */
3477         segment_size = rbd_obj_bytes(&rbd_dev->header);
3478         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3479         blk_queue_max_segment_size(q, segment_size);
3480         blk_queue_io_min(q, segment_size);
3481         blk_queue_io_opt(q, segment_size);
3482
3483         blk_queue_merge_bvec(q, rbd_merge_bvec);
3484         disk->queue = q;
3485
3486         q->queuedata = rbd_dev;
3487
3488         rbd_dev->disk = disk;
3489
3490         return 0;
3491 out_disk:
3492         put_disk(disk);
3493
3494         return -ENOMEM;
3495 }
3496
3497 /*
3498   sysfs
3499 */
3500
3501 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3502 {
3503         return container_of(dev, struct rbd_device, dev);
3504 }
3505
3506 static ssize_t rbd_size_show(struct device *dev,
3507                              struct device_attribute *attr, char *buf)
3508 {
3509         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3510
3511         return sprintf(buf, "%llu\n",
3512                 (unsigned long long)rbd_dev->mapping.size);
3513 }
3514
3515 /*
3516  * Note this shows the features for whatever's mapped, which is not
3517  * necessarily the base image.
3518  */
3519 static ssize_t rbd_features_show(struct device *dev,
3520                              struct device_attribute *attr, char *buf)
3521 {
3522         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3523
3524         return sprintf(buf, "0x%016llx\n",
3525                         (unsigned long long)rbd_dev->mapping.features);
3526 }
3527
3528 static ssize_t rbd_major_show(struct device *dev,
3529                               struct device_attribute *attr, char *buf)
3530 {
3531         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3532
3533         if (rbd_dev->major)
3534                 return sprintf(buf, "%d\n", rbd_dev->major);
3535
3536         return sprintf(buf, "(none)\n");
3537 }
3538
3539 static ssize_t rbd_minor_show(struct device *dev,
3540                               struct device_attribute *attr, char *buf)
3541 {
3542         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3543
3544         return sprintf(buf, "%d\n", rbd_dev->minor);
3545 }
3546
3547 static ssize_t rbd_client_id_show(struct device *dev,
3548                                   struct device_attribute *attr, char *buf)
3549 {
3550         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3551
3552         return sprintf(buf, "client%lld\n",
3553                         ceph_client_id(rbd_dev->rbd_client->client));
3554 }
3555
3556 static ssize_t rbd_pool_show(struct device *dev,
3557                              struct device_attribute *attr, char *buf)
3558 {
3559         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3560
3561         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3562 }
3563
3564 static ssize_t rbd_pool_id_show(struct device *dev,
3565                              struct device_attribute *attr, char *buf)
3566 {
3567         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3568
3569         return sprintf(buf, "%llu\n",
3570                         (unsigned long long) rbd_dev->spec->pool_id);
3571 }
3572
3573 static ssize_t rbd_name_show(struct device *dev,
3574                              struct device_attribute *attr, char *buf)
3575 {
3576         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3577
3578         if (rbd_dev->spec->image_name)
3579                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3580
3581         return sprintf(buf, "(unknown)\n");
3582 }
3583
3584 static ssize_t rbd_image_id_show(struct device *dev,
3585                              struct device_attribute *attr, char *buf)
3586 {
3587         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3588
3589         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3590 }
3591
3592 /*
3593  * Shows the name of the currently-mapped snapshot (or
3594  * RBD_SNAP_HEAD_NAME for the base image).
3595  */
3596 static ssize_t rbd_snap_show(struct device *dev,
3597                              struct device_attribute *attr,
3598                              char *buf)
3599 {
3600         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3601
3602         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3603 }
3604
3605 /*
3606  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3607  * for the parent image.  If there is no parent, simply shows
3608  * "(no parent image)".
3609  */
3610 static ssize_t rbd_parent_show(struct device *dev,
3611                              struct device_attribute *attr,
3612                              char *buf)
3613 {
3614         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3615         struct rbd_spec *spec = rbd_dev->parent_spec;
3616         int count;
3617         char *bufp = buf;
3618
3619         if (!spec)
3620                 return sprintf(buf, "(no parent image)\n");
3621
3622         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3623                         (unsigned long long) spec->pool_id, spec->pool_name);
3624         if (count < 0)
3625                 return count;
3626         bufp += count;
3627
3628         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3629                         spec->image_name ? spec->image_name : "(unknown)");
3630         if (count < 0)
3631                 return count;
3632         bufp += count;
3633
3634         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3635                         (unsigned long long) spec->snap_id, spec->snap_name);
3636         if (count < 0)
3637                 return count;
3638         bufp += count;
3639
3640         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3641         if (count < 0)
3642                 return count;
3643         bufp += count;
3644
3645         return (ssize_t) (bufp - buf);
3646 }
3647
3648 static ssize_t rbd_image_refresh(struct device *dev,
3649                                  struct device_attribute *attr,
3650                                  const char *buf,
3651                                  size_t size)
3652 {
3653         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3654         int ret;
3655
3656         ret = rbd_dev_refresh(rbd_dev);
3657         if (ret)
3658                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3659
3660         return ret < 0 ? ret : size;
3661 }
3662
3663 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3664 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3665 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3666 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3667 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3668 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3669 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3670 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3671 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3672 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3673 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3674 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3675
3676 static struct attribute *rbd_attrs[] = {
3677         &dev_attr_size.attr,
3678         &dev_attr_features.attr,
3679         &dev_attr_major.attr,
3680         &dev_attr_minor.attr,
3681         &dev_attr_client_id.attr,
3682         &dev_attr_pool.attr,
3683         &dev_attr_pool_id.attr,
3684         &dev_attr_name.attr,
3685         &dev_attr_image_id.attr,
3686         &dev_attr_current_snap.attr,
3687         &dev_attr_parent.attr,
3688         &dev_attr_refresh.attr,
3689         NULL
3690 };
3691
3692 static struct attribute_group rbd_attr_group = {
3693         .attrs = rbd_attrs,
3694 };
3695
3696 static const struct attribute_group *rbd_attr_groups[] = {
3697         &rbd_attr_group,
3698         NULL
3699 };
3700
3701 static void rbd_sysfs_dev_release(struct device *dev)
3702 {
3703 }
3704
3705 static struct device_type rbd_device_type = {
3706         .name           = "rbd",
3707         .groups         = rbd_attr_groups,
3708         .release        = rbd_sysfs_dev_release,
3709 };
3710
3711 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3712 {
3713         kref_get(&spec->kref);
3714
3715         return spec;
3716 }
3717
3718 static void rbd_spec_free(struct kref *kref);
3719 static void rbd_spec_put(struct rbd_spec *spec)
3720 {
3721         if (spec)
3722                 kref_put(&spec->kref, rbd_spec_free);
3723 }
3724
3725 static struct rbd_spec *rbd_spec_alloc(void)
3726 {
3727         struct rbd_spec *spec;
3728
3729         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3730         if (!spec)
3731                 return NULL;
3732         kref_init(&spec->kref);
3733
3734         return spec;
3735 }
3736
3737 static void rbd_spec_free(struct kref *kref)
3738 {
3739         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3740
3741         kfree(spec->pool_name);
3742         kfree(spec->image_id);
3743         kfree(spec->image_name);
3744         kfree(spec->snap_name);
3745         kfree(spec);
3746 }
3747
3748 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3749                                 struct rbd_spec *spec)
3750 {
3751         struct rbd_device *rbd_dev;
3752
3753         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3754         if (!rbd_dev)
3755                 return NULL;
3756
3757         spin_lock_init(&rbd_dev->lock);
3758         rbd_dev->flags = 0;
3759         atomic_set(&rbd_dev->parent_ref, 0);
3760         INIT_LIST_HEAD(&rbd_dev->node);
3761         init_rwsem(&rbd_dev->header_rwsem);
3762
3763         rbd_dev->spec = spec;
3764         rbd_dev->rbd_client = rbdc;
3765
3766         /* Initialize the layout used for all rbd requests */
3767
3768         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3769         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3770         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3771         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3772
3773         return rbd_dev;
3774 }
3775
3776 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3777 {
3778         rbd_put_client(rbd_dev->rbd_client);
3779         rbd_spec_put(rbd_dev->spec);
3780         kfree(rbd_dev);
3781 }
3782
3783 /*
3784  * Get the size and object order for an image snapshot, or if
3785  * snap_id is CEPH_NOSNAP, gets this information for the base
3786  * image.
3787  */
3788 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3789                                 u8 *order, u64 *snap_size)
3790 {
3791         __le64 snapid = cpu_to_le64(snap_id);
3792         int ret;
3793         struct {
3794                 u8 order;
3795                 __le64 size;
3796         } __attribute__ ((packed)) size_buf = { 0 };
3797
3798         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3799                                 "rbd", "get_size",
3800                                 &snapid, sizeof (snapid),
3801                                 &size_buf, sizeof (size_buf));
3802         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3803         if (ret < 0)
3804                 return ret;
3805         if (ret < sizeof (size_buf))
3806                 return -ERANGE;
3807
3808         if (order) {
3809                 *order = size_buf.order;
3810                 dout("  order %u", (unsigned int)*order);
3811         }
3812         *snap_size = le64_to_cpu(size_buf.size);
3813
3814         dout("  snap_id 0x%016llx snap_size = %llu\n",
3815                 (unsigned long long)snap_id,
3816                 (unsigned long long)*snap_size);
3817
3818         return 0;
3819 }
3820
3821 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3822 {
3823         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3824                                         &rbd_dev->header.obj_order,
3825                                         &rbd_dev->header.image_size);
3826 }
3827
3828 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3829 {
3830         void *reply_buf;
3831         int ret;
3832         void *p;
3833
3834         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3835         if (!reply_buf)
3836                 return -ENOMEM;
3837
3838         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839                                 "rbd", "get_object_prefix", NULL, 0,
3840                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3841         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3842         if (ret < 0)
3843                 goto out;
3844
3845         p = reply_buf;
3846         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3847                                                 p + ret, NULL, GFP_NOIO);
3848         ret = 0;
3849
3850         if (IS_ERR(rbd_dev->header.object_prefix)) {
3851                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3852                 rbd_dev->header.object_prefix = NULL;
3853         } else {
3854                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3855         }
3856 out:
3857         kfree(reply_buf);
3858
3859         return ret;
3860 }
3861
3862 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3863                 u64 *snap_features)
3864 {
3865         __le64 snapid = cpu_to_le64(snap_id);
3866         struct {
3867                 __le64 features;
3868                 __le64 incompat;
3869         } __attribute__ ((packed)) features_buf = { 0 };
3870         u64 incompat;
3871         int ret;
3872
3873         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3874                                 "rbd", "get_features",
3875                                 &snapid, sizeof (snapid),
3876                                 &features_buf, sizeof (features_buf));
3877         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3878         if (ret < 0)
3879                 return ret;
3880         if (ret < sizeof (features_buf))
3881                 return -ERANGE;
3882
3883         incompat = le64_to_cpu(features_buf.incompat);
3884         if (incompat & ~RBD_FEATURES_SUPPORTED)
3885                 return -ENXIO;
3886
3887         *snap_features = le64_to_cpu(features_buf.features);
3888
3889         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3890                 (unsigned long long)snap_id,
3891                 (unsigned long long)*snap_features,
3892                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3893
3894         return 0;
3895 }
3896
3897 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3898 {
3899         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3900                                                 &rbd_dev->header.features);
3901 }
3902
3903 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3904 {
3905         struct rbd_spec *parent_spec;
3906         size_t size;
3907         void *reply_buf = NULL;
3908         __le64 snapid;
3909         void *p;
3910         void *end;
3911         u64 pool_id;
3912         char *image_id;
3913         u64 snap_id;
3914         u64 overlap;
3915         int ret;
3916
3917         parent_spec = rbd_spec_alloc();
3918         if (!parent_spec)
3919                 return -ENOMEM;
3920
3921         size = sizeof (__le64) +                                /* pool_id */
3922                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3923                 sizeof (__le64) +                               /* snap_id */
3924                 sizeof (__le64);                                /* overlap */
3925         reply_buf = kmalloc(size, GFP_KERNEL);
3926         if (!reply_buf) {
3927                 ret = -ENOMEM;
3928                 goto out_err;
3929         }
3930
3931         snapid = cpu_to_le64(CEPH_NOSNAP);
3932         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3933                                 "rbd", "get_parent",
3934                                 &snapid, sizeof (snapid),
3935                                 reply_buf, size);
3936         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3937         if (ret < 0)
3938                 goto out_err;
3939
3940         p = reply_buf;
3941         end = reply_buf + ret;
3942         ret = -ERANGE;
3943         ceph_decode_64_safe(&p, end, pool_id, out_err);
3944         if (pool_id == CEPH_NOPOOL) {
3945                 /*
3946                  * Either the parent never existed, or we have
3947                  * record of it but the image got flattened so it no
3948                  * longer has a parent.  When the parent of a
3949                  * layered image disappears we immediately set the
3950                  * overlap to 0.  The effect of this is that all new
3951                  * requests will be treated as if the image had no
3952                  * parent.
3953                  */
3954                 if (rbd_dev->parent_overlap) {
3955                         rbd_dev->parent_overlap = 0;
3956                         smp_mb();
3957                         rbd_dev_parent_put(rbd_dev);
3958                         pr_info("%s: clone image has been flattened\n",
3959                                 rbd_dev->disk->disk_name);
3960                 }
3961
3962                 goto out;       /* No parent?  No problem. */
3963         }
3964
3965         /* The ceph file layout needs to fit pool id in 32 bits */
3966
3967         ret = -EIO;
3968         if (pool_id > (u64)U32_MAX) {
3969                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3970                         (unsigned long long)pool_id, U32_MAX);
3971                 goto out_err;
3972         }
3973
3974         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3975         if (IS_ERR(image_id)) {
3976                 ret = PTR_ERR(image_id);
3977                 goto out_err;
3978         }
3979         ceph_decode_64_safe(&p, end, snap_id, out_err);
3980         ceph_decode_64_safe(&p, end, overlap, out_err);
3981
3982         /*
3983          * The parent won't change (except when the clone is
3984          * flattened, already handled that).  So we only need to
3985          * record the parent spec we have not already done so.
3986          */
3987         if (!rbd_dev->parent_spec) {
3988                 parent_spec->pool_id = pool_id;
3989                 parent_spec->image_id = image_id;
3990                 parent_spec->snap_id = snap_id;
3991                 rbd_dev->parent_spec = parent_spec;
3992                 parent_spec = NULL;     /* rbd_dev now owns this */
3993         }
3994
3995         /*
3996          * We always update the parent overlap.  If it's zero we
3997          * treat it specially.
3998          */
3999         rbd_dev->parent_overlap = overlap;
4000         smp_mb();
4001         if (!overlap) {
4002
4003                 /* A null parent_spec indicates it's the initial probe */
4004
4005                 if (parent_spec) {
4006                         /*
4007                          * The overlap has become zero, so the clone
4008                          * must have been resized down to 0 at some
4009                          * point.  Treat this the same as a flatten.
4010                          */
4011                         rbd_dev_parent_put(rbd_dev);
4012                         pr_info("%s: clone image now standalone\n",
4013                                 rbd_dev->disk->disk_name);
4014                 } else {
4015                         /*
4016                          * For the initial probe, if we find the
4017                          * overlap is zero we just pretend there was
4018                          * no parent image.
4019                          */
4020                         rbd_warn(rbd_dev, "ignoring parent of "
4021                                                 "clone with overlap 0\n");
4022                 }
4023         }
4024 out:
4025         ret = 0;
4026 out_err:
4027         kfree(reply_buf);
4028         rbd_spec_put(parent_spec);
4029
4030         return ret;
4031 }
4032
4033 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4034 {
4035         struct {
4036                 __le64 stripe_unit;
4037                 __le64 stripe_count;
4038         } __attribute__ ((packed)) striping_info_buf = { 0 };
4039         size_t size = sizeof (striping_info_buf);
4040         void *p;
4041         u64 obj_size;
4042         u64 stripe_unit;
4043         u64 stripe_count;
4044         int ret;
4045
4046         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4047                                 "rbd", "get_stripe_unit_count", NULL, 0,
4048                                 (char *)&striping_info_buf, size);
4049         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4050         if (ret < 0)
4051                 return ret;
4052         if (ret < size)
4053                 return -ERANGE;
4054
4055         /*
4056          * We don't actually support the "fancy striping" feature
4057          * (STRIPINGV2) yet, but if the striping sizes are the
4058          * defaults the behavior is the same as before.  So find
4059          * out, and only fail if the image has non-default values.
4060          */
4061         ret = -EINVAL;
4062         obj_size = (u64)1 << rbd_dev->header.obj_order;
4063         p = &striping_info_buf;
4064         stripe_unit = ceph_decode_64(&p);
4065         if (stripe_unit != obj_size) {
4066                 rbd_warn(rbd_dev, "unsupported stripe unit "
4067                                 "(got %llu want %llu)",
4068                                 stripe_unit, obj_size);
4069                 return -EINVAL;
4070         }
4071         stripe_count = ceph_decode_64(&p);
4072         if (stripe_count != 1) {
4073                 rbd_warn(rbd_dev, "unsupported stripe count "
4074                                 "(got %llu want 1)", stripe_count);
4075                 return -EINVAL;
4076         }
4077         rbd_dev->header.stripe_unit = stripe_unit;
4078         rbd_dev->header.stripe_count = stripe_count;
4079
4080         return 0;
4081 }
4082
4083 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4084 {
4085         size_t image_id_size;
4086         char *image_id;
4087         void *p;
4088         void *end;
4089         size_t size;
4090         void *reply_buf = NULL;
4091         size_t len = 0;
4092         char *image_name = NULL;
4093         int ret;
4094
4095         rbd_assert(!rbd_dev->spec->image_name);
4096
4097         len = strlen(rbd_dev->spec->image_id);
4098         image_id_size = sizeof (__le32) + len;
4099         image_id = kmalloc(image_id_size, GFP_KERNEL);
4100         if (!image_id)
4101                 return NULL;
4102
4103         p = image_id;
4104         end = image_id + image_id_size;
4105         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4106
4107         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4108         reply_buf = kmalloc(size, GFP_KERNEL);
4109         if (!reply_buf)
4110                 goto out;
4111
4112         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4113                                 "rbd", "dir_get_name",
4114                                 image_id, image_id_size,
4115                                 reply_buf, size);
4116         if (ret < 0)
4117                 goto out;
4118         p = reply_buf;
4119         end = reply_buf + ret;
4120
4121         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4122         if (IS_ERR(image_name))
4123                 image_name = NULL;
4124         else
4125                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4126 out:
4127         kfree(reply_buf);
4128         kfree(image_id);
4129
4130         return image_name;
4131 }
4132
4133 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4134 {
4135         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4136         const char *snap_name;
4137         u32 which = 0;
4138
4139         /* Skip over names until we find the one we are looking for */
4140
4141         snap_name = rbd_dev->header.snap_names;
4142         while (which < snapc->num_snaps) {
4143                 if (!strcmp(name, snap_name))
4144                         return snapc->snaps[which];
4145                 snap_name += strlen(snap_name) + 1;
4146                 which++;
4147         }
4148         return CEPH_NOSNAP;
4149 }
4150
4151 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4152 {
4153         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4154         u32 which;
4155         bool found = false;
4156         u64 snap_id;
4157
4158         for (which = 0; !found && which < snapc->num_snaps; which++) {
4159                 const char *snap_name;
4160
4161                 snap_id = snapc->snaps[which];
4162                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4163                 if (IS_ERR(snap_name)) {
4164                         /* ignore no-longer existing snapshots */
4165                         if (PTR_ERR(snap_name) == -ENOENT)
4166                                 continue;
4167                         else
4168                                 break;
4169                 }
4170                 found = !strcmp(name, snap_name);
4171                 kfree(snap_name);
4172         }
4173         return found ? snap_id : CEPH_NOSNAP;
4174 }
4175
4176 /*
4177  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4178  * no snapshot by that name is found, or if an error occurs.
4179  */
4180 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4181 {
4182         if (rbd_dev->image_format == 1)
4183                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4184
4185         return rbd_v2_snap_id_by_name(rbd_dev, name);
4186 }
4187
4188 /*
4189  * When an rbd image has a parent image, it is identified by the
4190  * pool, image, and snapshot ids (not names).  This function fills
4191  * in the names for those ids.  (It's OK if we can't figure out the
4192  * name for an image id, but the pool and snapshot ids should always
4193  * exist and have names.)  All names in an rbd spec are dynamically
4194  * allocated.
4195  *
4196  * When an image being mapped (not a parent) is probed, we have the
4197  * pool name and pool id, image name and image id, and the snapshot
4198  * name.  The only thing we're missing is the snapshot id.
4199  */
4200 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4201 {
4202         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4203         struct rbd_spec *spec = rbd_dev->spec;
4204         const char *pool_name;
4205         const char *image_name;
4206         const char *snap_name;
4207         int ret;
4208
4209         /*
4210          * An image being mapped will have the pool name (etc.), but
4211          * we need to look up the snapshot id.
4212          */
4213         if (spec->pool_name) {
4214                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4215                         u64 snap_id;
4216
4217                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4218                         if (snap_id == CEPH_NOSNAP)
4219                                 return -ENOENT;
4220                         spec->snap_id = snap_id;
4221                 } else {
4222                         spec->snap_id = CEPH_NOSNAP;
4223                 }
4224
4225                 return 0;
4226         }
4227
4228         /* Get the pool name; we have to make our own copy of this */
4229
4230         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4231         if (!pool_name) {
4232                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4233                 return -EIO;
4234         }
4235         pool_name = kstrdup(pool_name, GFP_KERNEL);
4236         if (!pool_name)
4237                 return -ENOMEM;
4238
4239         /* Fetch the image name; tolerate failure here */
4240
4241         image_name = rbd_dev_image_name(rbd_dev);
4242         if (!image_name)
4243                 rbd_warn(rbd_dev, "unable to get image name");
4244
4245         /* Look up the snapshot name, and make a copy */
4246
4247         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4248         if (IS_ERR(snap_name)) {
4249                 ret = PTR_ERR(snap_name);
4250                 goto out_err;
4251         }
4252
4253         spec->pool_name = pool_name;
4254         spec->image_name = image_name;
4255         spec->snap_name = snap_name;
4256
4257         return 0;
4258 out_err:
4259         kfree(image_name);
4260         kfree(pool_name);
4261
4262         return ret;
4263 }
4264
4265 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4266 {
4267         size_t size;
4268         int ret;
4269         void *reply_buf;
4270         void *p;
4271         void *end;
4272         u64 seq;
4273         u32 snap_count;
4274         struct ceph_snap_context *snapc;
4275         u32 i;
4276
4277         /*
4278          * We'll need room for the seq value (maximum snapshot id),
4279          * snapshot count, and array of that many snapshot ids.
4280          * For now we have a fixed upper limit on the number we're
4281          * prepared to receive.
4282          */
4283         size = sizeof (__le64) + sizeof (__le32) +
4284                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4285         reply_buf = kzalloc(size, GFP_KERNEL);
4286         if (!reply_buf)
4287                 return -ENOMEM;
4288
4289         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4290                                 "rbd", "get_snapcontext", NULL, 0,
4291                                 reply_buf, size);
4292         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4293         if (ret < 0)
4294                 goto out;
4295
4296         p = reply_buf;
4297         end = reply_buf + ret;
4298         ret = -ERANGE;
4299         ceph_decode_64_safe(&p, end, seq, out);
4300         ceph_decode_32_safe(&p, end, snap_count, out);
4301
4302         /*
4303          * Make sure the reported number of snapshot ids wouldn't go
4304          * beyond the end of our buffer.  But before checking that,
4305          * make sure the computed size of the snapshot context we
4306          * allocate is representable in a size_t.
4307          */
4308         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4309                                  / sizeof (u64)) {
4310                 ret = -EINVAL;
4311                 goto out;
4312         }
4313         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4314                 goto out;
4315         ret = 0;
4316
4317         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4318         if (!snapc) {
4319                 ret = -ENOMEM;
4320                 goto out;
4321         }
4322         snapc->seq = seq;
4323         for (i = 0; i < snap_count; i++)
4324                 snapc->snaps[i] = ceph_decode_64(&p);
4325
4326         ceph_put_snap_context(rbd_dev->header.snapc);
4327         rbd_dev->header.snapc = snapc;
4328
4329         dout("  snap context seq = %llu, snap_count = %u\n",
4330                 (unsigned long long)seq, (unsigned int)snap_count);
4331 out:
4332         kfree(reply_buf);
4333
4334         return ret;
4335 }
4336
4337 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4338                                         u64 snap_id)
4339 {
4340         size_t size;
4341         void *reply_buf;
4342         __le64 snapid;
4343         int ret;
4344         void *p;
4345         void *end;
4346         char *snap_name;
4347
4348         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4349         reply_buf = kmalloc(size, GFP_KERNEL);
4350         if (!reply_buf)
4351                 return ERR_PTR(-ENOMEM);
4352
4353         snapid = cpu_to_le64(snap_id);
4354         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4355                                 "rbd", "get_snapshot_name",
4356                                 &snapid, sizeof (snapid),
4357                                 reply_buf, size);
4358         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4359         if (ret < 0) {
4360                 snap_name = ERR_PTR(ret);
4361                 goto out;
4362         }
4363
4364         p = reply_buf;
4365         end = reply_buf + ret;
4366         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4367         if (IS_ERR(snap_name))
4368                 goto out;
4369
4370         dout("  snap_id 0x%016llx snap_name = %s\n",
4371                 (unsigned long long)snap_id, snap_name);
4372 out:
4373         kfree(reply_buf);
4374
4375         return snap_name;
4376 }
4377
4378 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4379 {
4380         bool first_time = rbd_dev->header.object_prefix == NULL;
4381         int ret;
4382
4383         ret = rbd_dev_v2_image_size(rbd_dev);
4384         if (ret)
4385                 return ret;
4386
4387         if (first_time) {
4388                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4389                 if (ret)
4390                         return ret;
4391         }
4392
4393         /*
4394          * If the image supports layering, get the parent info.  We
4395          * need to probe the first time regardless.  Thereafter we
4396          * only need to if there's a parent, to see if it has
4397          * disappeared due to the mapped image getting flattened.
4398          */
4399         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4400                         (first_time || rbd_dev->parent_spec)) {
4401                 bool warn;
4402
4403                 ret = rbd_dev_v2_parent_info(rbd_dev);
4404                 if (ret)
4405                         return ret;
4406
4407                 /*
4408                  * Print a warning if this is the initial probe and
4409                  * the image has a parent.  Don't print it if the
4410                  * image now being probed is itself a parent.  We
4411                  * can tell at this point because we won't know its
4412                  * pool name yet (just its pool id).
4413                  */
4414                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4415                 if (first_time && warn)
4416                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4417                                         "is EXPERIMENTAL!");
4418         }
4419
4420         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4421                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4422                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4423
4424         ret = rbd_dev_v2_snap_context(rbd_dev);
4425         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4426
4427         return ret;
4428 }
4429
4430 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4431 {
4432         struct device *dev;
4433         int ret;
4434
4435         dev = &rbd_dev->dev;
4436         dev->bus = &rbd_bus_type;
4437         dev->type = &rbd_device_type;
4438         dev->parent = &rbd_root_dev;
4439         dev->release = rbd_dev_device_release;
4440         dev_set_name(dev, "%d", rbd_dev->dev_id);
4441         ret = device_register(dev);
4442
4443         return ret;
4444 }
4445
4446 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4447 {
4448         device_unregister(&rbd_dev->dev);
4449 }
4450
4451 /*
4452  * Get a unique rbd identifier for the given new rbd_dev, and add
4453  * the rbd_dev to the global list.
4454  */
4455 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4456 {
4457         int new_dev_id;
4458
4459         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4460                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4461                                     GFP_KERNEL);
4462         if (new_dev_id < 0)
4463                 return new_dev_id;
4464
4465         rbd_dev->dev_id = new_dev_id;
4466
4467         spin_lock(&rbd_dev_list_lock);
4468         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4469         spin_unlock(&rbd_dev_list_lock);
4470
4471         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4472
4473         return 0;
4474 }
4475
4476 /*
4477  * Remove an rbd_dev from the global list, and record that its
4478  * identifier is no longer in use.
4479  */
4480 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4481 {
4482         spin_lock(&rbd_dev_list_lock);
4483         list_del_init(&rbd_dev->node);
4484         spin_unlock(&rbd_dev_list_lock);
4485
4486         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4487
4488         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4489 }
4490
4491 /*
4492  * Skips over white space at *buf, and updates *buf to point to the
4493  * first found non-space character (if any). Returns the length of
4494  * the token (string of non-white space characters) found.  Note
4495  * that *buf must be terminated with '\0'.
4496  */
4497 static inline size_t next_token(const char **buf)
4498 {
4499         /*
4500         * These are the characters that produce nonzero for
4501         * isspace() in the "C" and "POSIX" locales.
4502         */
4503         const char *spaces = " \f\n\r\t\v";
4504
4505         *buf += strspn(*buf, spaces);   /* Find start of token */
4506
4507         return strcspn(*buf, spaces);   /* Return token length */
4508 }
4509
4510 /*
4511  * Finds the next token in *buf, and if the provided token buffer is
4512  * big enough, copies the found token into it.  The result, if
4513  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4514  * must be terminated with '\0' on entry.
4515  *
4516  * Returns the length of the token found (not including the '\0').
4517  * Return value will be 0 if no token is found, and it will be >=
4518  * token_size if the token would not fit.
4519  *
4520  * The *buf pointer will be updated to point beyond the end of the
4521  * found token.  Note that this occurs even if the token buffer is
4522  * too small to hold it.
4523  */
4524 static inline size_t copy_token(const char **buf,
4525                                 char *token,
4526                                 size_t token_size)
4527 {
4528         size_t len;
4529
4530         len = next_token(buf);
4531         if (len < token_size) {
4532                 memcpy(token, *buf, len);
4533                 *(token + len) = '\0';
4534         }
4535         *buf += len;
4536
4537         return len;
4538 }
4539
4540 /*
4541  * Finds the next token in *buf, dynamically allocates a buffer big
4542  * enough to hold a copy of it, and copies the token into the new
4543  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4544  * that a duplicate buffer is created even for a zero-length token.
4545  *
4546  * Returns a pointer to the newly-allocated duplicate, or a null
4547  * pointer if memory for the duplicate was not available.  If
4548  * the lenp argument is a non-null pointer, the length of the token
4549  * (not including the '\0') is returned in *lenp.
4550  *
4551  * If successful, the *buf pointer will be updated to point beyond
4552  * the end of the found token.
4553  *
4554  * Note: uses GFP_KERNEL for allocation.
4555  */
4556 static inline char *dup_token(const char **buf, size_t *lenp)
4557 {
4558         char *dup;
4559         size_t len;
4560
4561         len = next_token(buf);
4562         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4563         if (!dup)
4564                 return NULL;
4565         *(dup + len) = '\0';
4566         *buf += len;
4567
4568         if (lenp)
4569                 *lenp = len;
4570
4571         return dup;
4572 }
4573
4574 /*
4575  * Parse the options provided for an "rbd add" (i.e., rbd image
4576  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4577  * and the data written is passed here via a NUL-terminated buffer.
4578  * Returns 0 if successful or an error code otherwise.
4579  *
4580  * The information extracted from these options is recorded in
4581  * the other parameters which return dynamically-allocated
4582  * structures:
4583  *  ceph_opts
4584  *      The address of a pointer that will refer to a ceph options
4585  *      structure.  Caller must release the returned pointer using
4586  *      ceph_destroy_options() when it is no longer needed.
4587  *  rbd_opts
4588  *      Address of an rbd options pointer.  Fully initialized by
4589  *      this function; caller must release with kfree().
4590  *  spec
4591  *      Address of an rbd image specification pointer.  Fully
4592  *      initialized by this function based on parsed options.
4593  *      Caller must release with rbd_spec_put().
4594  *
4595  * The options passed take this form:
4596  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4597  * where:
4598  *  <mon_addrs>
4599  *      A comma-separated list of one or more monitor addresses.
4600  *      A monitor address is an ip address, optionally followed
4601  *      by a port number (separated by a colon).
4602  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4603  *  <options>
4604  *      A comma-separated list of ceph and/or rbd options.
4605  *  <pool_name>
4606  *      The name of the rados pool containing the rbd image.
4607  *  <image_name>
4608  *      The name of the image in that pool to map.
4609  *  <snap_id>
4610  *      An optional snapshot id.  If provided, the mapping will
4611  *      present data from the image at the time that snapshot was
4612  *      created.  The image head is used if no snapshot id is
4613  *      provided.  Snapshot mappings are always read-only.
4614  */
4615 static int rbd_add_parse_args(const char *buf,
4616                                 struct ceph_options **ceph_opts,
4617                                 struct rbd_options **opts,
4618                                 struct rbd_spec **rbd_spec)
4619 {
4620         size_t len;
4621         char *options;
4622         const char *mon_addrs;
4623         char *snap_name;
4624         size_t mon_addrs_size;
4625         struct rbd_spec *spec = NULL;
4626         struct rbd_options *rbd_opts = NULL;
4627         struct ceph_options *copts;
4628         int ret;
4629
4630         /* The first four tokens are required */
4631
4632         len = next_token(&buf);
4633         if (!len) {
4634                 rbd_warn(NULL, "no monitor address(es) provided");
4635                 return -EINVAL;
4636         }
4637         mon_addrs = buf;
4638         mon_addrs_size = len + 1;
4639         buf += len;
4640
4641         ret = -EINVAL;
4642         options = dup_token(&buf, NULL);
4643         if (!options)
4644                 return -ENOMEM;
4645         if (!*options) {
4646                 rbd_warn(NULL, "no options provided");
4647                 goto out_err;
4648         }
4649
4650         spec = rbd_spec_alloc();
4651         if (!spec)
4652                 goto out_mem;
4653
4654         spec->pool_name = dup_token(&buf, NULL);
4655         if (!spec->pool_name)
4656                 goto out_mem;
4657         if (!*spec->pool_name) {
4658                 rbd_warn(NULL, "no pool name provided");
4659                 goto out_err;
4660         }
4661
4662         spec->image_name = dup_token(&buf, NULL);
4663         if (!spec->image_name)
4664                 goto out_mem;
4665         if (!*spec->image_name) {
4666                 rbd_warn(NULL, "no image name provided");
4667                 goto out_err;
4668         }
4669
4670         /*
4671          * Snapshot name is optional; default is to use "-"
4672          * (indicating the head/no snapshot).
4673          */
4674         len = next_token(&buf);
4675         if (!len) {
4676                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4677                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4678         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4679                 ret = -ENAMETOOLONG;
4680                 goto out_err;
4681         }
4682         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4683         if (!snap_name)
4684                 goto out_mem;
4685         *(snap_name + len) = '\0';
4686         spec->snap_name = snap_name;
4687
4688         /* Initialize all rbd options to the defaults */
4689
4690         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4691         if (!rbd_opts)
4692                 goto out_mem;
4693
4694         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4695
4696         copts = ceph_parse_options(options, mon_addrs,
4697                                         mon_addrs + mon_addrs_size - 1,
4698                                         parse_rbd_opts_token, rbd_opts);
4699         if (IS_ERR(copts)) {
4700                 ret = PTR_ERR(copts);
4701                 goto out_err;
4702         }
4703         kfree(options);
4704
4705         *ceph_opts = copts;
4706         *opts = rbd_opts;
4707         *rbd_spec = spec;
4708
4709         return 0;
4710 out_mem:
4711         ret = -ENOMEM;
4712 out_err:
4713         kfree(rbd_opts);
4714         rbd_spec_put(spec);
4715         kfree(options);
4716
4717         return ret;
4718 }
4719
4720 /*
4721  * An rbd format 2 image has a unique identifier, distinct from the
4722  * name given to it by the user.  Internally, that identifier is
4723  * what's used to specify the names of objects related to the image.
4724  *
4725  * A special "rbd id" object is used to map an rbd image name to its
4726  * id.  If that object doesn't exist, then there is no v2 rbd image
4727  * with the supplied name.
4728  *
4729  * This function will record the given rbd_dev's image_id field if
4730  * it can be determined, and in that case will return 0.  If any
4731  * errors occur a negative errno will be returned and the rbd_dev's
4732  * image_id field will be unchanged (and should be NULL).
4733  */
4734 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4735 {
4736         int ret;
4737         size_t size;
4738         char *object_name;
4739         void *response;
4740         char *image_id;
4741
4742         /*
4743          * When probing a parent image, the image id is already
4744          * known (and the image name likely is not).  There's no
4745          * need to fetch the image id again in this case.  We
4746          * do still need to set the image format though.
4747          */
4748         if (rbd_dev->spec->image_id) {
4749                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4750
4751                 return 0;
4752         }
4753
4754         /*
4755          * First, see if the format 2 image id file exists, and if
4756          * so, get the image's persistent id from it.
4757          */
4758         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4759         object_name = kmalloc(size, GFP_NOIO);
4760         if (!object_name)
4761                 return -ENOMEM;
4762         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4763         dout("rbd id object name is %s\n", object_name);
4764
4765         /* Response will be an encoded string, which includes a length */
4766
4767         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4768         response = kzalloc(size, GFP_NOIO);
4769         if (!response) {
4770                 ret = -ENOMEM;
4771                 goto out;
4772         }
4773
4774         /* If it doesn't exist we'll assume it's a format 1 image */
4775
4776         ret = rbd_obj_method_sync(rbd_dev, object_name,
4777                                 "rbd", "get_id", NULL, 0,
4778                                 response, RBD_IMAGE_ID_LEN_MAX);
4779         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4780         if (ret == -ENOENT) {
4781                 image_id = kstrdup("", GFP_KERNEL);
4782                 ret = image_id ? 0 : -ENOMEM;
4783                 if (!ret)
4784                         rbd_dev->image_format = 1;
4785         } else if (ret > sizeof (__le32)) {
4786                 void *p = response;
4787
4788                 image_id = ceph_extract_encoded_string(&p, p + ret,
4789                                                 NULL, GFP_NOIO);
4790                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4791                 if (!ret)
4792                         rbd_dev->image_format = 2;
4793         } else {
4794                 ret = -EINVAL;
4795         }
4796
4797         if (!ret) {
4798                 rbd_dev->spec->image_id = image_id;
4799                 dout("image_id is %s\n", image_id);
4800         }
4801 out:
4802         kfree(response);
4803         kfree(object_name);
4804
4805         return ret;
4806 }
4807
4808 /*
4809  * Undo whatever state changes are made by v1 or v2 header info
4810  * call.
4811  */
4812 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4813 {
4814         struct rbd_image_header *header;
4815
4816         /* Drop parent reference unless it's already been done (or none) */
4817
4818         if (rbd_dev->parent_overlap)
4819                 rbd_dev_parent_put(rbd_dev);
4820
4821         /* Free dynamic fields from the header, then zero it out */
4822
4823         header = &rbd_dev->header;
4824         ceph_put_snap_context(header->snapc);
4825         kfree(header->snap_sizes);
4826         kfree(header->snap_names);
4827         kfree(header->object_prefix);
4828         memset(header, 0, sizeof (*header));
4829 }
4830
4831 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4832 {
4833         int ret;
4834
4835         ret = rbd_dev_v2_object_prefix(rbd_dev);
4836         if (ret)
4837                 goto out_err;
4838
4839         /*
4840          * Get the and check features for the image.  Currently the
4841          * features are assumed to never change.
4842          */
4843         ret = rbd_dev_v2_features(rbd_dev);
4844         if (ret)
4845                 goto out_err;
4846
4847         /* If the image supports fancy striping, get its parameters */
4848
4849         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4850                 ret = rbd_dev_v2_striping_info(rbd_dev);
4851                 if (ret < 0)
4852                         goto out_err;
4853         }
4854         /* No support for crypto and compression type format 2 images */
4855
4856         return 0;
4857 out_err:
4858         rbd_dev->header.features = 0;
4859         kfree(rbd_dev->header.object_prefix);
4860         rbd_dev->header.object_prefix = NULL;
4861
4862         return ret;
4863 }
4864
4865 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4866 {
4867         struct rbd_device *parent = NULL;
4868         struct rbd_spec *parent_spec;
4869         struct rbd_client *rbdc;
4870         int ret;
4871
4872         if (!rbd_dev->parent_spec)
4873                 return 0;
4874         /*
4875          * We need to pass a reference to the client and the parent
4876          * spec when creating the parent rbd_dev.  Images related by
4877          * parent/child relationships always share both.
4878          */
4879         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4880         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4881
4882         ret = -ENOMEM;
4883         parent = rbd_dev_create(rbdc, parent_spec);
4884         if (!parent)
4885                 goto out_err;
4886
4887         ret = rbd_dev_image_probe(parent, false);
4888         if (ret < 0)
4889                 goto out_err;
4890         rbd_dev->parent = parent;
4891         atomic_set(&rbd_dev->parent_ref, 1);
4892
4893         return 0;
4894 out_err:
4895         if (parent) {
4896                 rbd_dev_unparent(rbd_dev);
4897                 kfree(rbd_dev->header_name);
4898                 rbd_dev_destroy(parent);
4899         } else {
4900                 rbd_put_client(rbdc);
4901                 rbd_spec_put(parent_spec);
4902         }
4903
4904         return ret;
4905 }
4906
4907 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4908 {
4909         int ret;
4910
4911         /* Get an id and fill in device name. */
4912
4913         ret = rbd_dev_id_get(rbd_dev);
4914         if (ret)
4915                 return ret;
4916
4917         BUILD_BUG_ON(DEV_NAME_LEN
4918                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4919         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4920
4921         /* Record our major and minor device numbers. */
4922
4923         if (!single_major) {
4924                 ret = register_blkdev(0, rbd_dev->name);
4925                 if (ret < 0)
4926                         goto err_out_id;
4927
4928                 rbd_dev->major = ret;
4929                 rbd_dev->minor = 0;
4930         } else {
4931                 rbd_dev->major = rbd_major;
4932                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4933         }
4934
4935         /* Set up the blkdev mapping. */
4936
4937         ret = rbd_init_disk(rbd_dev);
4938         if (ret)
4939                 goto err_out_blkdev;
4940
4941         ret = rbd_dev_mapping_set(rbd_dev);
4942         if (ret)
4943                 goto err_out_disk;
4944         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4945
4946         ret = rbd_bus_add_dev(rbd_dev);
4947         if (ret)
4948                 goto err_out_mapping;
4949
4950         /* Everything's ready.  Announce the disk to the world. */
4951
4952         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4953         add_disk(rbd_dev->disk);
4954
4955         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4956                 (unsigned long long) rbd_dev->mapping.size);
4957
4958         return ret;
4959
4960 err_out_mapping:
4961         rbd_dev_mapping_clear(rbd_dev);
4962 err_out_disk:
4963         rbd_free_disk(rbd_dev);
4964 err_out_blkdev:
4965         if (!single_major)
4966                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4967 err_out_id:
4968         rbd_dev_id_put(rbd_dev);
4969         rbd_dev_mapping_clear(rbd_dev);
4970
4971         return ret;
4972 }
4973
4974 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4975 {
4976         struct rbd_spec *spec = rbd_dev->spec;
4977         size_t size;
4978
4979         /* Record the header object name for this rbd image. */
4980
4981         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4982
4983         if (rbd_dev->image_format == 1)
4984                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4985         else
4986                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4987
4988         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4989         if (!rbd_dev->header_name)
4990                 return -ENOMEM;
4991
4992         if (rbd_dev->image_format == 1)
4993                 sprintf(rbd_dev->header_name, "%s%s",
4994                         spec->image_name, RBD_SUFFIX);
4995         else
4996                 sprintf(rbd_dev->header_name, "%s%s",
4997                         RBD_HEADER_PREFIX, spec->image_id);
4998         return 0;
4999 }
5000
5001 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5002 {
5003         rbd_dev_unprobe(rbd_dev);
5004         kfree(rbd_dev->header_name);
5005         rbd_dev->header_name = NULL;
5006         rbd_dev->image_format = 0;
5007         kfree(rbd_dev->spec->image_id);
5008         rbd_dev->spec->image_id = NULL;
5009
5010         rbd_dev_destroy(rbd_dev);
5011 }
5012
5013 /*
5014  * Probe for the existence of the header object for the given rbd
5015  * device.  If this image is the one being mapped (i.e., not a
5016  * parent), initiate a watch on its header object before using that
5017  * object to get detailed information about the rbd image.
5018  */
5019 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5020 {
5021         int ret;
5022
5023         /*
5024          * Get the id from the image id object.  Unless there's an
5025          * error, rbd_dev->spec->image_id will be filled in with
5026          * a dynamically-allocated string, and rbd_dev->image_format
5027          * will be set to either 1 or 2.
5028          */
5029         ret = rbd_dev_image_id(rbd_dev);
5030         if (ret)
5031                 return ret;
5032         rbd_assert(rbd_dev->spec->image_id);
5033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5034
5035         ret = rbd_dev_header_name(rbd_dev);
5036         if (ret)
5037                 goto err_out_format;
5038
5039         if (mapping) {
5040                 ret = rbd_dev_header_watch_sync(rbd_dev);
5041                 if (ret)
5042                         goto out_header_name;
5043         }
5044
5045         if (rbd_dev->image_format == 1)
5046                 ret = rbd_dev_v1_header_info(rbd_dev);
5047         else
5048                 ret = rbd_dev_v2_header_info(rbd_dev);
5049         if (ret)
5050                 goto err_out_watch;
5051
5052         ret = rbd_dev_spec_update(rbd_dev);
5053         if (ret)
5054                 goto err_out_probe;
5055
5056         ret = rbd_dev_probe_parent(rbd_dev);
5057         if (ret)
5058                 goto err_out_probe;
5059
5060         dout("discovered format %u image, header name is %s\n",
5061                 rbd_dev->image_format, rbd_dev->header_name);
5062
5063         return 0;
5064 err_out_probe:
5065         rbd_dev_unprobe(rbd_dev);
5066 err_out_watch:
5067         if (mapping)
5068                 rbd_dev_header_unwatch_sync(rbd_dev);
5069 out_header_name:
5070         kfree(rbd_dev->header_name);
5071         rbd_dev->header_name = NULL;
5072 err_out_format:
5073         rbd_dev->image_format = 0;
5074         kfree(rbd_dev->spec->image_id);
5075         rbd_dev->spec->image_id = NULL;
5076
5077         dout("probe failed, returning %d\n", ret);
5078
5079         return ret;
5080 }
5081
5082 static ssize_t do_rbd_add(struct bus_type *bus,
5083                           const char *buf,
5084                           size_t count)
5085 {
5086         struct rbd_device *rbd_dev = NULL;
5087         struct ceph_options *ceph_opts = NULL;
5088         struct rbd_options *rbd_opts = NULL;
5089         struct rbd_spec *spec = NULL;
5090         struct rbd_client *rbdc;
5091         struct ceph_osd_client *osdc;
5092         bool read_only;
5093         int rc = -ENOMEM;
5094
5095         if (!try_module_get(THIS_MODULE))
5096                 return -ENODEV;
5097
5098         /* parse add command */
5099         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5100         if (rc < 0)
5101                 goto err_out_module;
5102         read_only = rbd_opts->read_only;
5103         kfree(rbd_opts);
5104         rbd_opts = NULL;        /* done with this */
5105
5106         rbdc = rbd_get_client(ceph_opts);
5107         if (IS_ERR(rbdc)) {
5108                 rc = PTR_ERR(rbdc);
5109                 goto err_out_args;
5110         }
5111
5112         /* pick the pool */
5113         osdc = &rbdc->client->osdc;
5114         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5115         if (rc < 0)
5116                 goto err_out_client;
5117         spec->pool_id = (u64)rc;
5118
5119         /* The ceph file layout needs to fit pool id in 32 bits */
5120
5121         if (spec->pool_id > (u64)U32_MAX) {
5122                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5123                                 (unsigned long long)spec->pool_id, U32_MAX);
5124                 rc = -EIO;
5125                 goto err_out_client;
5126         }
5127
5128         rbd_dev = rbd_dev_create(rbdc, spec);
5129         if (!rbd_dev)
5130                 goto err_out_client;
5131         rbdc = NULL;            /* rbd_dev now owns this */
5132         spec = NULL;            /* rbd_dev now owns this */
5133
5134         rc = rbd_dev_image_probe(rbd_dev, true);
5135         if (rc < 0)
5136                 goto err_out_rbd_dev;
5137
5138         /* If we are mapping a snapshot it must be marked read-only */
5139
5140         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5141                 read_only = true;
5142         rbd_dev->mapping.read_only = read_only;
5143
5144         rc = rbd_dev_device_setup(rbd_dev);
5145         if (rc) {
5146                 /*
5147                  * rbd_dev_header_unwatch_sync() can't be moved into
5148                  * rbd_dev_image_release() without refactoring, see
5149                  * commit 1f3ef78861ac.
5150                  */
5151                 rbd_dev_header_unwatch_sync(rbd_dev);
5152                 rbd_dev_image_release(rbd_dev);
5153                 goto err_out_module;
5154         }
5155
5156         return count;
5157
5158 err_out_rbd_dev:
5159         rbd_dev_destroy(rbd_dev);
5160 err_out_client:
5161         rbd_put_client(rbdc);
5162 err_out_args:
5163         rbd_spec_put(spec);
5164 err_out_module:
5165         module_put(THIS_MODULE);
5166
5167         dout("Error adding device %s\n", buf);
5168
5169         return (ssize_t)rc;
5170 }
5171
5172 static ssize_t rbd_add(struct bus_type *bus,
5173                        const char *buf,
5174                        size_t count)
5175 {
5176         if (single_major)
5177                 return -EINVAL;
5178
5179         return do_rbd_add(bus, buf, count);
5180 }
5181
5182 static ssize_t rbd_add_single_major(struct bus_type *bus,
5183                                     const char *buf,
5184                                     size_t count)
5185 {
5186         return do_rbd_add(bus, buf, count);
5187 }
5188
5189 static void rbd_dev_device_release(struct device *dev)
5190 {
5191         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5192
5193         rbd_free_disk(rbd_dev);
5194         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5195         rbd_dev_mapping_clear(rbd_dev);
5196         if (!single_major)
5197                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5198         rbd_dev_id_put(rbd_dev);
5199         rbd_dev_mapping_clear(rbd_dev);
5200 }
5201
5202 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5203 {
5204         while (rbd_dev->parent) {
5205                 struct rbd_device *first = rbd_dev;
5206                 struct rbd_device *second = first->parent;
5207                 struct rbd_device *third;
5208
5209                 /*
5210                  * Follow to the parent with no grandparent and
5211                  * remove it.
5212                  */
5213                 while (second && (third = second->parent)) {
5214                         first = second;
5215                         second = third;
5216                 }
5217                 rbd_assert(second);
5218                 rbd_dev_image_release(second);
5219                 first->parent = NULL;
5220                 first->parent_overlap = 0;
5221
5222                 rbd_assert(first->parent_spec);
5223                 rbd_spec_put(first->parent_spec);
5224                 first->parent_spec = NULL;
5225         }
5226 }
5227
5228 static ssize_t do_rbd_remove(struct bus_type *bus,
5229                              const char *buf,
5230                              size_t count)
5231 {
5232         struct rbd_device *rbd_dev = NULL;
5233         struct list_head *tmp;
5234         int dev_id;
5235         unsigned long ul;
5236         bool already = false;
5237         int ret;
5238
5239         ret = kstrtoul(buf, 10, &ul);
5240         if (ret)
5241                 return ret;
5242
5243         /* convert to int; abort if we lost anything in the conversion */
5244         dev_id = (int)ul;
5245         if (dev_id != ul)
5246                 return -EINVAL;
5247
5248         ret = -ENOENT;
5249         spin_lock(&rbd_dev_list_lock);
5250         list_for_each(tmp, &rbd_dev_list) {
5251                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5252                 if (rbd_dev->dev_id == dev_id) {
5253                         ret = 0;
5254                         break;
5255                 }
5256         }
5257         if (!ret) {
5258                 spin_lock_irq(&rbd_dev->lock);
5259                 if (rbd_dev->open_count)
5260                         ret = -EBUSY;
5261                 else
5262                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5263                                                         &rbd_dev->flags);
5264                 spin_unlock_irq(&rbd_dev->lock);
5265         }
5266         spin_unlock(&rbd_dev_list_lock);
5267         if (ret < 0 || already)
5268                 return ret;
5269
5270         rbd_dev_header_unwatch_sync(rbd_dev);
5271         /*
5272          * flush remaining watch callbacks - these must be complete
5273          * before the osd_client is shutdown
5274          */
5275         dout("%s: flushing notifies", __func__);
5276         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5277
5278         /*
5279          * Don't free anything from rbd_dev->disk until after all
5280          * notifies are completely processed. Otherwise
5281          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5282          * in a potential use after free of rbd_dev->disk or rbd_dev.
5283          */
5284         rbd_bus_del_dev(rbd_dev);
5285         rbd_dev_image_release(rbd_dev);
5286         module_put(THIS_MODULE);
5287
5288         return count;
5289 }
5290
5291 static ssize_t rbd_remove(struct bus_type *bus,
5292                           const char *buf,
5293                           size_t count)
5294 {
5295         if (single_major)
5296                 return -EINVAL;
5297
5298         return do_rbd_remove(bus, buf, count);
5299 }
5300
5301 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5302                                        const char *buf,
5303                                        size_t count)
5304 {
5305         return do_rbd_remove(bus, buf, count);
5306 }
5307
5308 /*
5309  * create control files in sysfs
5310  * /sys/bus/rbd/...
5311  */
5312 static int rbd_sysfs_init(void)
5313 {
5314         int ret;
5315
5316         ret = device_register(&rbd_root_dev);
5317         if (ret < 0)
5318                 return ret;
5319
5320         ret = bus_register(&rbd_bus_type);
5321         if (ret < 0)
5322                 device_unregister(&rbd_root_dev);
5323
5324         return ret;
5325 }
5326
5327 static void rbd_sysfs_cleanup(void)
5328 {
5329         bus_unregister(&rbd_bus_type);
5330         device_unregister(&rbd_root_dev);
5331 }
5332
5333 static int rbd_slab_init(void)
5334 {
5335         rbd_assert(!rbd_img_request_cache);
5336         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5337                                         sizeof (struct rbd_img_request),
5338                                         __alignof__(struct rbd_img_request),
5339                                         0, NULL);
5340         if (!rbd_img_request_cache)
5341                 return -ENOMEM;
5342
5343         rbd_assert(!rbd_obj_request_cache);
5344         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5345                                         sizeof (struct rbd_obj_request),
5346                                         __alignof__(struct rbd_obj_request),
5347                                         0, NULL);
5348         if (!rbd_obj_request_cache)
5349                 goto out_err;
5350
5351         rbd_assert(!rbd_segment_name_cache);
5352         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5353                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5354         if (rbd_segment_name_cache)
5355                 return 0;
5356 out_err:
5357         if (rbd_obj_request_cache) {
5358                 kmem_cache_destroy(rbd_obj_request_cache);
5359                 rbd_obj_request_cache = NULL;
5360         }
5361
5362         kmem_cache_destroy(rbd_img_request_cache);
5363         rbd_img_request_cache = NULL;
5364
5365         return -ENOMEM;
5366 }
5367
5368 static void rbd_slab_exit(void)
5369 {
5370         rbd_assert(rbd_segment_name_cache);
5371         kmem_cache_destroy(rbd_segment_name_cache);
5372         rbd_segment_name_cache = NULL;
5373
5374         rbd_assert(rbd_obj_request_cache);
5375         kmem_cache_destroy(rbd_obj_request_cache);
5376         rbd_obj_request_cache = NULL;
5377
5378         rbd_assert(rbd_img_request_cache);
5379         kmem_cache_destroy(rbd_img_request_cache);
5380         rbd_img_request_cache = NULL;
5381 }
5382
5383 static int __init rbd_init(void)
5384 {
5385         int rc;
5386
5387         if (!libceph_compatible(NULL)) {
5388                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5389                 return -EINVAL;
5390         }
5391
5392         rc = rbd_slab_init();
5393         if (rc)
5394                 return rc;
5395
5396         if (single_major) {
5397                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5398                 if (rbd_major < 0) {
5399                         rc = rbd_major;
5400                         goto err_out_slab;
5401                 }
5402         }
5403
5404         rc = rbd_sysfs_init();
5405         if (rc)
5406                 goto err_out_blkdev;
5407
5408         if (single_major)
5409                 pr_info("loaded (major %d)\n", rbd_major);
5410         else
5411                 pr_info("loaded\n");
5412
5413         return 0;
5414
5415 err_out_blkdev:
5416         if (single_major)
5417                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5418 err_out_slab:
5419         rbd_slab_exit();
5420         return rc;
5421 }
5422
5423 static void __exit rbd_exit(void)
5424 {
5425         rbd_sysfs_cleanup();
5426         if (single_major)
5427                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5428         rbd_slab_exit();
5429 }
5430
5431 module_init(rbd_init);
5432 module_exit(rbd_exit);
5433
5434 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5435 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5436 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5437 /* following authorship retained from original osdblk.c */
5438 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5439
5440 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5441 MODULE_LICENSE("GPL");