]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
4edcb6d85f01debc7678753b5cf49a6481350e6d
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static int rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513
514         return 0;
515 }
516
517 static const struct block_device_operations rbd_bd_ops = {
518         .owner                  = THIS_MODULE,
519         .open                   = rbd_open,
520         .release                = rbd_release,
521 };
522
523 /*
524  * Initialize an rbd client instance.
525  * We own *ceph_opts.
526  */
527 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
528 {
529         struct rbd_client *rbdc;
530         int ret = -ENOMEM;
531
532         dout("%s:\n", __func__);
533         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
534         if (!rbdc)
535                 goto out_opt;
536
537         kref_init(&rbdc->kref);
538         INIT_LIST_HEAD(&rbdc->node);
539
540         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
541
542         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
543         if (IS_ERR(rbdc->client))
544                 goto out_mutex;
545         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
546
547         ret = ceph_open_session(rbdc->client);
548         if (ret < 0)
549                 goto out_err;
550
551         spin_lock(&rbd_client_list_lock);
552         list_add_tail(&rbdc->node, &rbd_client_list);
553         spin_unlock(&rbd_client_list_lock);
554
555         mutex_unlock(&ctl_mutex);
556         dout("%s: rbdc %p\n", __func__, rbdc);
557
558         return rbdc;
559
560 out_err:
561         ceph_destroy_client(rbdc->client);
562 out_mutex:
563         mutex_unlock(&ctl_mutex);
564         kfree(rbdc);
565 out_opt:
566         if (ceph_opts)
567                 ceph_destroy_options(ceph_opts);
568         dout("%s: error %d\n", __func__, ret);
569
570         return ERR_PTR(ret);
571 }
572
573 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
574 {
575         kref_get(&rbdc->kref);
576
577         return rbdc;
578 }
579
580 /*
581  * Find a ceph client with specific addr and configuration.  If
582  * found, bump its reference count.
583  */
584 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
585 {
586         struct rbd_client *client_node;
587         bool found = false;
588
589         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590                 return NULL;
591
592         spin_lock(&rbd_client_list_lock);
593         list_for_each_entry(client_node, &rbd_client_list, node) {
594                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
595                         __rbd_get_client(client_node);
596
597                         found = true;
598                         break;
599                 }
600         }
601         spin_unlock(&rbd_client_list_lock);
602
603         return found ? client_node : NULL;
604 }
605
606 /*
607  * mount options
608  */
609 enum {
610         Opt_last_int,
611         /* int args above */
612         Opt_last_string,
613         /* string args above */
614         Opt_read_only,
615         Opt_read_write,
616         /* Boolean args above */
617         Opt_last_bool,
618 };
619
620 static match_table_t rbd_opts_tokens = {
621         /* int args above */
622         /* string args above */
623         {Opt_read_only, "read_only"},
624         {Opt_read_only, "ro"},          /* Alternate spelling */
625         {Opt_read_write, "read_write"},
626         {Opt_read_write, "rw"},         /* Alternate spelling */
627         /* Boolean args above */
628         {-1, NULL}
629 };
630
631 struct rbd_options {
632         bool    read_only;
633 };
634
635 #define RBD_READ_ONLY_DEFAULT   false
636
637 static int parse_rbd_opts_token(char *c, void *private)
638 {
639         struct rbd_options *rbd_opts = private;
640         substring_t argstr[MAX_OPT_ARGS];
641         int token, intval, ret;
642
643         token = match_token(c, rbd_opts_tokens, argstr);
644         if (token < 0)
645                 return -EINVAL;
646
647         if (token < Opt_last_int) {
648                 ret = match_int(&argstr[0], &intval);
649                 if (ret < 0) {
650                         pr_err("bad mount option arg (not int) "
651                                "at '%s'\n", c);
652                         return ret;
653                 }
654                 dout("got int token %d val %d\n", token, intval);
655         } else if (token > Opt_last_int && token < Opt_last_string) {
656                 dout("got string token %d val %s\n", token,
657                      argstr[0].from);
658         } else if (token > Opt_last_string && token < Opt_last_bool) {
659                 dout("got Boolean token %d\n", token);
660         } else {
661                 dout("got token %d\n", token);
662         }
663
664         switch (token) {
665         case Opt_read_only:
666                 rbd_opts->read_only = true;
667                 break;
668         case Opt_read_write:
669                 rbd_opts->read_only = false;
670                 break;
671         default:
672                 rbd_assert(false);
673                 break;
674         }
675         return 0;
676 }
677
678 /*
679  * Get a ceph client with specific addr and configuration, if one does
680  * not exist create it.
681  */
682 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
683 {
684         struct rbd_client *rbdc;
685
686         rbdc = rbd_client_find(ceph_opts);
687         if (rbdc)       /* using an existing client */
688                 ceph_destroy_options(ceph_opts);
689         else
690                 rbdc = rbd_client_create(ceph_opts);
691
692         return rbdc;
693 }
694
695 /*
696  * Destroy ceph client
697  *
698  * Caller must hold rbd_client_list_lock.
699  */
700 static void rbd_client_release(struct kref *kref)
701 {
702         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
703
704         dout("%s: rbdc %p\n", __func__, rbdc);
705         spin_lock(&rbd_client_list_lock);
706         list_del(&rbdc->node);
707         spin_unlock(&rbd_client_list_lock);
708
709         ceph_destroy_client(rbdc->client);
710         kfree(rbdc);
711 }
712
713 /*
714  * Drop reference to ceph client node. If it's not referenced anymore, release
715  * it.
716  */
717 static void rbd_put_client(struct rbd_client *rbdc)
718 {
719         if (rbdc)
720                 kref_put(&rbdc->kref, rbd_client_release);
721 }
722
723 static bool rbd_image_format_valid(u32 image_format)
724 {
725         return image_format == 1 || image_format == 2;
726 }
727
728 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
729 {
730         size_t size;
731         u32 snap_count;
732
733         /* The header has to start with the magic rbd header text */
734         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
735                 return false;
736
737         /* The bio layer requires at least sector-sized I/O */
738
739         if (ondisk->options.order < SECTOR_SHIFT)
740                 return false;
741
742         /* If we use u64 in a few spots we may be able to loosen this */
743
744         if (ondisk->options.order > 8 * sizeof (int) - 1)
745                 return false;
746
747         /*
748          * The size of a snapshot header has to fit in a size_t, and
749          * that limits the number of snapshots.
750          */
751         snap_count = le32_to_cpu(ondisk->snap_count);
752         size = SIZE_MAX - sizeof (struct ceph_snap_context);
753         if (snap_count > size / sizeof (__le64))
754                 return false;
755
756         /*
757          * Not only that, but the size of the entire the snapshot
758          * header must also be representable in a size_t.
759          */
760         size -= snap_count * sizeof (__le64);
761         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
762                 return false;
763
764         return true;
765 }
766
767 /*
768  * Fill an rbd image header with information from the given format 1
769  * on-disk header.
770  */
771 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
772                                  struct rbd_image_header_ondisk *ondisk)
773 {
774         struct rbd_image_header *header = &rbd_dev->header;
775         bool first_time = header->object_prefix == NULL;
776         struct ceph_snap_context *snapc;
777         char *object_prefix = NULL;
778         char *snap_names = NULL;
779         u64 *snap_sizes = NULL;
780         u32 snap_count;
781         size_t size;
782         int ret = -ENOMEM;
783         u32 i;
784
785         /* Allocate this now to avoid having to handle failure below */
786
787         if (first_time) {
788                 size_t len;
789
790                 len = strnlen(ondisk->object_prefix,
791                                 sizeof (ondisk->object_prefix));
792                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
793                 if (!object_prefix)
794                         return -ENOMEM;
795                 memcpy(object_prefix, ondisk->object_prefix, len);
796                 object_prefix[len] = '\0';
797         }
798
799         /* Allocate the snapshot context and fill it in */
800
801         snap_count = le32_to_cpu(ondisk->snap_count);
802         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
803         if (!snapc)
804                 goto out_err;
805         snapc->seq = le64_to_cpu(ondisk->snap_seq);
806         if (snap_count) {
807                 struct rbd_image_snap_ondisk *snaps;
808                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
809
810                 /* We'll keep a copy of the snapshot names... */
811
812                 if (snap_names_len > (u64)SIZE_MAX)
813                         goto out_2big;
814                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
815                 if (!snap_names)
816                         goto out_err;
817
818                 /* ...as well as the array of their sizes. */
819
820                 size = snap_count * sizeof (*header->snap_sizes);
821                 snap_sizes = kmalloc(size, GFP_KERNEL);
822                 if (!snap_sizes)
823                         goto out_err;
824
825                 /*
826                  * Copy the names, and fill in each snapshot's id
827                  * and size.
828                  *
829                  * Note that rbd_dev_v1_header_info() guarantees the
830                  * ondisk buffer we're working with has
831                  * snap_names_len bytes beyond the end of the
832                  * snapshot id array, this memcpy() is safe.
833                  */
834                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
835                 snaps = ondisk->snaps;
836                 for (i = 0; i < snap_count; i++) {
837                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
838                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
839                 }
840         }
841
842         /* We won't fail any more, fill in the header */
843
844         down_write(&rbd_dev->header_rwsem);
845         if (first_time) {
846                 header->object_prefix = object_prefix;
847                 header->obj_order = ondisk->options.order;
848                 header->crypt_type = ondisk->options.crypt_type;
849                 header->comp_type = ondisk->options.comp_type;
850                 /* The rest aren't used for format 1 images */
851                 header->stripe_unit = 0;
852                 header->stripe_count = 0;
853                 header->features = 0;
854         } else {
855                 ceph_put_snap_context(header->snapc);
856                 kfree(header->snap_names);
857                 kfree(header->snap_sizes);
858         }
859
860         /* The remaining fields always get updated (when we refresh) */
861
862         header->image_size = le64_to_cpu(ondisk->image_size);
863         header->snapc = snapc;
864         header->snap_names = snap_names;
865         header->snap_sizes = snap_sizes;
866
867         /* Make sure mapping size is consistent with header info */
868
869         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
870                 if (rbd_dev->mapping.size != header->image_size)
871                         rbd_dev->mapping.size = header->image_size;
872
873         up_write(&rbd_dev->header_rwsem);
874
875         return 0;
876 out_2big:
877         ret = -EIO;
878 out_err:
879         kfree(snap_sizes);
880         kfree(snap_names);
881         ceph_put_snap_context(snapc);
882         kfree(object_prefix);
883
884         return ret;
885 }
886
887 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
888 {
889         const char *snap_name;
890
891         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
892
893         /* Skip over names until we find the one we are looking for */
894
895         snap_name = rbd_dev->header.snap_names;
896         while (which--)
897                 snap_name += strlen(snap_name) + 1;
898
899         return kstrdup(snap_name, GFP_KERNEL);
900 }
901
902 /*
903  * Snapshot id comparison function for use with qsort()/bsearch().
904  * Note that result is for snapshots in *descending* order.
905  */
906 static int snapid_compare_reverse(const void *s1, const void *s2)
907 {
908         u64 snap_id1 = *(u64 *)s1;
909         u64 snap_id2 = *(u64 *)s2;
910
911         if (snap_id1 < snap_id2)
912                 return 1;
913         return snap_id1 == snap_id2 ? 0 : -1;
914 }
915
916 /*
917  * Search a snapshot context to see if the given snapshot id is
918  * present.
919  *
920  * Returns the position of the snapshot id in the array if it's found,
921  * or BAD_SNAP_INDEX otherwise.
922  *
923  * Note: The snapshot array is in kept sorted (by the osd) in
924  * reverse order, highest snapshot id first.
925  */
926 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
927 {
928         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
929         u64 *found;
930
931         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
932                                 sizeof (snap_id), snapid_compare_reverse);
933
934         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
935 }
936
937 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
938                                         u64 snap_id)
939 {
940         u32 which;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return NULL;
945
946         return _rbd_dev_v1_snap_name(rbd_dev, which);
947 }
948
949 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
950 {
951         if (snap_id == CEPH_NOSNAP)
952                 return RBD_SNAP_HEAD_NAME;
953
954         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
955         if (rbd_dev->image_format == 1)
956                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
957
958         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
959 }
960
961 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
962                                 u64 *snap_size)
963 {
964         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
965         if (snap_id == CEPH_NOSNAP) {
966                 *snap_size = rbd_dev->header.image_size;
967         } else if (rbd_dev->image_format == 1) {
968                 u32 which;
969
970                 which = rbd_dev_snap_index(rbd_dev, snap_id);
971                 if (which == BAD_SNAP_INDEX)
972                         return -ENOENT;
973
974                 *snap_size = rbd_dev->header.snap_sizes[which];
975         } else {
976                 u64 size = 0;
977                 int ret;
978
979                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
980                 if (ret)
981                         return ret;
982
983                 *snap_size = size;
984         }
985         return 0;
986 }
987
988 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
989                         u64 *snap_features)
990 {
991         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
992         if (snap_id == CEPH_NOSNAP) {
993                 *snap_features = rbd_dev->header.features;
994         } else if (rbd_dev->image_format == 1) {
995                 *snap_features = 0;     /* No features for format 1 */
996         } else {
997                 u64 features = 0;
998                 int ret;
999
1000                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1001                 if (ret)
1002                         return ret;
1003
1004                 *snap_features = features;
1005         }
1006         return 0;
1007 }
1008
1009 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1010 {
1011         u64 snap_id = rbd_dev->spec->snap_id;
1012         u64 size = 0;
1013         u64 features = 0;
1014         int ret;
1015
1016         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1017         if (ret)
1018                 return ret;
1019         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1020         if (ret)
1021                 return ret;
1022
1023         rbd_dev->mapping.size = size;
1024         rbd_dev->mapping.features = features;
1025
1026         return 0;
1027 }
1028
1029 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1030 {
1031         rbd_dev->mapping.size = 0;
1032         rbd_dev->mapping.features = 0;
1033 }
1034
1035 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1036 {
1037         char *name;
1038         u64 segment;
1039         int ret;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1046                         rbd_dev->header.object_prefix, segment);
1047         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1048                 pr_err("error formatting segment name for #%llu (%d)\n",
1049                         segment, ret);
1050                 kfree(name);
1051                 name = NULL;
1052         }
1053
1054         return name;
1055 }
1056
1057 static void rbd_segment_name_free(const char *name)
1058 {
1059         /* The explicit cast here is needed to drop the const qualifier */
1060
1061         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1062 }
1063
1064 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1065 {
1066         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1067
1068         return offset & (segment_size - 1);
1069 }
1070
1071 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1072                                 u64 offset, u64 length)
1073 {
1074         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1075
1076         offset &= segment_size - 1;
1077
1078         rbd_assert(length <= U64_MAX - offset);
1079         if (offset + length > segment_size)
1080                 length = segment_size - offset;
1081
1082         return length;
1083 }
1084
1085 /*
1086  * returns the size of an object in the image
1087  */
1088 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1089 {
1090         return 1 << header->obj_order;
1091 }
1092
1093 /*
1094  * bio helpers
1095  */
1096
1097 static void bio_chain_put(struct bio *chain)
1098 {
1099         struct bio *tmp;
1100
1101         while (chain) {
1102                 tmp = chain;
1103                 chain = chain->bi_next;
1104                 bio_put(tmp);
1105         }
1106 }
1107
1108 /*
1109  * zeros a bio chain, starting at specific offset
1110  */
1111 static void zero_bio_chain(struct bio *chain, int start_ofs)
1112 {
1113         struct bio_vec *bv;
1114         unsigned long flags;
1115         void *buf;
1116         int i;
1117         int pos = 0;
1118
1119         while (chain) {
1120                 bio_for_each_segment(bv, chain, i) {
1121                         if (pos + bv->bv_len > start_ofs) {
1122                                 int remainder = max(start_ofs - pos, 0);
1123                                 buf = bvec_kmap_irq(bv, &flags);
1124                                 memset(buf + remainder, 0,
1125                                        bv->bv_len - remainder);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv->bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = (size_t)(offset & ~PAGE_MASK);
1154                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 kunmap_atomic(kaddr);
1159                 local_irq_restore(flags);
1160
1161                 offset += length;
1162                 page++;
1163         }
1164 }
1165
1166 /*
1167  * Clone a portion of a bio, starting at the given byte offset
1168  * and continuing for the number of bytes indicated.
1169  */
1170 static struct bio *bio_clone_range(struct bio *bio_src,
1171                                         unsigned int offset,
1172                                         unsigned int len,
1173                                         gfp_t gfpmask)
1174 {
1175         struct bio_vec *bv;
1176         unsigned int resid;
1177         unsigned short idx;
1178         unsigned int voff;
1179         unsigned short end_idx;
1180         unsigned short vcnt;
1181         struct bio *bio;
1182
1183         /* Handle the easy case for the caller */
1184
1185         if (!offset && len == bio_src->bi_size)
1186                 return bio_clone(bio_src, gfpmask);
1187
1188         if (WARN_ON_ONCE(!len))
1189                 return NULL;
1190         if (WARN_ON_ONCE(len > bio_src->bi_size))
1191                 return NULL;
1192         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1193                 return NULL;
1194
1195         /* Find first affected segment... */
1196
1197         resid = offset;
1198         __bio_for_each_segment(bv, bio_src, idx, 0) {
1199                 if (resid < bv->bv_len)
1200                         break;
1201                 resid -= bv->bv_len;
1202         }
1203         voff = resid;
1204
1205         /* ...and the last affected segment */
1206
1207         resid += len;
1208         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1209                 if (resid <= bv->bv_len)
1210                         break;
1211                 resid -= bv->bv_len;
1212         }
1213         vcnt = end_idx - idx + 1;
1214
1215         /* Build the clone */
1216
1217         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1218         if (!bio)
1219                 return NULL;    /* ENOMEM */
1220
1221         bio->bi_bdev = bio_src->bi_bdev;
1222         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1223         bio->bi_rw = bio_src->bi_rw;
1224         bio->bi_flags |= 1 << BIO_CLONED;
1225
1226         /*
1227          * Copy over our part of the bio_vec, then update the first
1228          * and last (or only) entries.
1229          */
1230         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1231                         vcnt * sizeof (struct bio_vec));
1232         bio->bi_io_vec[0].bv_offset += voff;
1233         if (vcnt > 1) {
1234                 bio->bi_io_vec[0].bv_len -= voff;
1235                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1236         } else {
1237                 bio->bi_io_vec[0].bv_len = len;
1238         }
1239
1240         bio->bi_vcnt = vcnt;
1241         bio->bi_size = len;
1242         bio->bi_idx = 0;
1243
1244         return bio;
1245 }
1246
1247 /*
1248  * Clone a portion of a bio chain, starting at the given byte offset
1249  * into the first bio in the source chain and continuing for the
1250  * number of bytes indicated.  The result is another bio chain of
1251  * exactly the given length, or a null pointer on error.
1252  *
1253  * The bio_src and offset parameters are both in-out.  On entry they
1254  * refer to the first source bio and the offset into that bio where
1255  * the start of data to be cloned is located.
1256  *
1257  * On return, bio_src is updated to refer to the bio in the source
1258  * chain that contains first un-cloned byte, and *offset will
1259  * contain the offset of that byte within that bio.
1260  */
1261 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1262                                         unsigned int *offset,
1263                                         unsigned int len,
1264                                         gfp_t gfpmask)
1265 {
1266         struct bio *bi = *bio_src;
1267         unsigned int off = *offset;
1268         struct bio *chain = NULL;
1269         struct bio **end;
1270
1271         /* Build up a chain of clone bios up to the limit */
1272
1273         if (!bi || off >= bi->bi_size || !len)
1274                 return NULL;            /* Nothing to clone */
1275
1276         end = &chain;
1277         while (len) {
1278                 unsigned int bi_size;
1279                 struct bio *bio;
1280
1281                 if (!bi) {
1282                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1283                         goto out_err;   /* EINVAL; ran out of bio's */
1284                 }
1285                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1286                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1287                 if (!bio)
1288                         goto out_err;   /* ENOMEM */
1289
1290                 *end = bio;
1291                 end = &bio->bi_next;
1292
1293                 off += bi_size;
1294                 if (off == bi->bi_size) {
1295                         bi = bi->bi_next;
1296                         off = 0;
1297                 }
1298                 len -= bi_size;
1299         }
1300         *bio_src = bi;
1301         *offset = off;
1302
1303         return chain;
1304 out_err:
1305         bio_chain_put(chain);
1306
1307         return NULL;
1308 }
1309
1310 /*
1311  * The default/initial value for all object request flags is 0.  For
1312  * each flag, once its value is set to 1 it is never reset to 0
1313  * again.
1314  */
1315 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1316 {
1317         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1318                 struct rbd_device *rbd_dev;
1319
1320                 rbd_dev = obj_request->img_request->rbd_dev;
1321                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1322                         obj_request);
1323         }
1324 }
1325
1326 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1327 {
1328         smp_mb();
1329         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1330 }
1331
1332 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1333 {
1334         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1335                 struct rbd_device *rbd_dev = NULL;
1336
1337                 if (obj_request_img_data_test(obj_request))
1338                         rbd_dev = obj_request->img_request->rbd_dev;
1339                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1340                         obj_request);
1341         }
1342 }
1343
1344 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1345 {
1346         smp_mb();
1347         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1348 }
1349
1350 /*
1351  * This sets the KNOWN flag after (possibly) setting the EXISTS
1352  * flag.  The latter is set based on the "exists" value provided.
1353  *
1354  * Note that for our purposes once an object exists it never goes
1355  * away again.  It's possible that the response from two existence
1356  * checks are separated by the creation of the target object, and
1357  * the first ("doesn't exist") response arrives *after* the second
1358  * ("does exist").  In that case we ignore the second one.
1359  */
1360 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1361                                 bool exists)
1362 {
1363         if (exists)
1364                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1365         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1366         smp_mb();
1367 }
1368
1369 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1370 {
1371         smp_mb();
1372         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1373 }
1374
1375 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1376 {
1377         smp_mb();
1378         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1379 }
1380
1381 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1382 {
1383         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1384                 atomic_read(&obj_request->kref.refcount));
1385         kref_get(&obj_request->kref);
1386 }
1387
1388 static void rbd_obj_request_destroy(struct kref *kref);
1389 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1390 {
1391         rbd_assert(obj_request != NULL);
1392         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1393                 atomic_read(&obj_request->kref.refcount));
1394         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1395 }
1396
1397 static bool img_request_child_test(struct rbd_img_request *img_request);
1398 static void rbd_parent_request_destroy(struct kref *kref);
1399 static void rbd_img_request_destroy(struct kref *kref);
1400 static void rbd_img_request_put(struct rbd_img_request *img_request)
1401 {
1402         rbd_assert(img_request != NULL);
1403         dout("%s: img %p (was %d)\n", __func__, img_request,
1404                 atomic_read(&img_request->kref.refcount));
1405         if (img_request_child_test(img_request))
1406                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1407         else
1408                 kref_put(&img_request->kref, rbd_img_request_destroy);
1409 }
1410
1411 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1412                                         struct rbd_obj_request *obj_request)
1413 {
1414         rbd_assert(obj_request->img_request == NULL);
1415
1416         /* Image request now owns object's original reference */
1417         obj_request->img_request = img_request;
1418         obj_request->which = img_request->obj_request_count;
1419         rbd_assert(!obj_request_img_data_test(obj_request));
1420         obj_request_img_data_set(obj_request);
1421         rbd_assert(obj_request->which != BAD_WHICH);
1422         img_request->obj_request_count++;
1423         list_add_tail(&obj_request->links, &img_request->obj_requests);
1424         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1425                 obj_request->which);
1426 }
1427
1428 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1429                                         struct rbd_obj_request *obj_request)
1430 {
1431         rbd_assert(obj_request->which != BAD_WHICH);
1432
1433         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1434                 obj_request->which);
1435         list_del(&obj_request->links);
1436         rbd_assert(img_request->obj_request_count > 0);
1437         img_request->obj_request_count--;
1438         rbd_assert(obj_request->which == img_request->obj_request_count);
1439         obj_request->which = BAD_WHICH;
1440         rbd_assert(obj_request_img_data_test(obj_request));
1441         rbd_assert(obj_request->img_request == img_request);
1442         obj_request->img_request = NULL;
1443         obj_request->callback = NULL;
1444         rbd_obj_request_put(obj_request);
1445 }
1446
1447 static bool obj_request_type_valid(enum obj_request_type type)
1448 {
1449         switch (type) {
1450         case OBJ_REQUEST_NODATA:
1451         case OBJ_REQUEST_BIO:
1452         case OBJ_REQUEST_PAGES:
1453                 return true;
1454         default:
1455                 return false;
1456         }
1457 }
1458
1459 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1460                                 struct rbd_obj_request *obj_request)
1461 {
1462         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1463
1464         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1465 }
1466
1467 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1468 {
1469
1470         dout("%s: img %p\n", __func__, img_request);
1471
1472         /*
1473          * If no error occurred, compute the aggregate transfer
1474          * count for the image request.  We could instead use
1475          * atomic64_cmpxchg() to update it as each object request
1476          * completes; not clear which way is better off hand.
1477          */
1478         if (!img_request->result) {
1479                 struct rbd_obj_request *obj_request;
1480                 u64 xferred = 0;
1481
1482                 for_each_obj_request(img_request, obj_request)
1483                         xferred += obj_request->xferred;
1484                 img_request->xferred = xferred;
1485         }
1486
1487         if (img_request->callback)
1488                 img_request->callback(img_request);
1489         else
1490                 rbd_img_request_put(img_request);
1491 }
1492
1493 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1494
1495 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1496 {
1497         dout("%s: obj %p\n", __func__, obj_request);
1498
1499         return wait_for_completion_interruptible(&obj_request->completion);
1500 }
1501
1502 /*
1503  * The default/initial value for all image request flags is 0.  Each
1504  * is conditionally set to 1 at image request initialization time
1505  * and currently never change thereafter.
1506  */
1507 static void img_request_write_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_WRITE, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static bool img_request_write_test(struct rbd_img_request *img_request)
1514 {
1515         smp_mb();
1516         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1517 }
1518
1519 static void img_request_child_set(struct rbd_img_request *img_request)
1520 {
1521         set_bit(IMG_REQ_CHILD, &img_request->flags);
1522         smp_mb();
1523 }
1524
1525 static void img_request_child_clear(struct rbd_img_request *img_request)
1526 {
1527         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static bool img_request_child_test(struct rbd_img_request *img_request)
1532 {
1533         smp_mb();
1534         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1535 }
1536
1537 static void img_request_layered_set(struct rbd_img_request *img_request)
1538 {
1539         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1540         smp_mb();
1541 }
1542
1543 static void img_request_layered_clear(struct rbd_img_request *img_request)
1544 {
1545         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1546         smp_mb();
1547 }
1548
1549 static bool img_request_layered_test(struct rbd_img_request *img_request)
1550 {
1551         smp_mb();
1552         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1553 }
1554
1555 static void
1556 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1557 {
1558         u64 xferred = obj_request->xferred;
1559         u64 length = obj_request->length;
1560
1561         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1562                 obj_request, obj_request->img_request, obj_request->result,
1563                 xferred, length);
1564         /*
1565          * ENOENT means a hole in the image.  We zero-fill the
1566          * entire length of the request.  A short read also implies
1567          * zero-fill to the end of the request.  Either way we
1568          * update the xferred count to indicate the whole request
1569          * was satisfied.
1570          */
1571         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1572         if (obj_request->result == -ENOENT) {
1573                 if (obj_request->type == OBJ_REQUEST_BIO)
1574                         zero_bio_chain(obj_request->bio_list, 0);
1575                 else
1576                         zero_pages(obj_request->pages, 0, length);
1577                 obj_request->result = 0;
1578                 obj_request->xferred = length;
1579         } else if (xferred < length && !obj_request->result) {
1580                 if (obj_request->type == OBJ_REQUEST_BIO)
1581                         zero_bio_chain(obj_request->bio_list, xferred);
1582                 else
1583                         zero_pages(obj_request->pages, xferred, length);
1584                 obj_request->xferred = length;
1585         }
1586         obj_request_done_set(obj_request);
1587 }
1588
1589 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1590 {
1591         dout("%s: obj %p cb %p\n", __func__, obj_request,
1592                 obj_request->callback);
1593         if (obj_request->callback)
1594                 obj_request->callback(obj_request);
1595         else
1596                 complete_all(&obj_request->completion);
1597 }
1598
1599 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1600 {
1601         dout("%s: obj %p\n", __func__, obj_request);
1602         obj_request_done_set(obj_request);
1603 }
1604
1605 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1606 {
1607         struct rbd_img_request *img_request = NULL;
1608         struct rbd_device *rbd_dev = NULL;
1609         bool layered = false;
1610
1611         if (obj_request_img_data_test(obj_request)) {
1612                 img_request = obj_request->img_request;
1613                 layered = img_request && img_request_layered_test(img_request);
1614                 rbd_dev = img_request->rbd_dev;
1615         }
1616
1617         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1618                 obj_request, img_request, obj_request->result,
1619                 obj_request->xferred, obj_request->length);
1620         if (layered && obj_request->result == -ENOENT &&
1621                         obj_request->img_offset < rbd_dev->parent_overlap)
1622                 rbd_img_parent_read(obj_request);
1623         else if (img_request)
1624                 rbd_img_obj_request_read_callback(obj_request);
1625         else
1626                 obj_request_done_set(obj_request);
1627 }
1628
1629 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1630 {
1631         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1632                 obj_request->result, obj_request->length);
1633         /*
1634          * There is no such thing as a successful short write.  Set
1635          * it to our originally-requested length.
1636          */
1637         obj_request->xferred = obj_request->length;
1638         obj_request_done_set(obj_request);
1639 }
1640
1641 /*
1642  * For a simple stat call there's nothing to do.  We'll do more if
1643  * this is part of a write sequence for a layered image.
1644  */
1645 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1646 {
1647         dout("%s: obj %p\n", __func__, obj_request);
1648         obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1652                                 struct ceph_msg *msg)
1653 {
1654         struct rbd_obj_request *obj_request = osd_req->r_priv;
1655         u16 opcode;
1656
1657         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1658         rbd_assert(osd_req == obj_request->osd_req);
1659         if (obj_request_img_data_test(obj_request)) {
1660                 rbd_assert(obj_request->img_request);
1661                 rbd_assert(obj_request->which != BAD_WHICH);
1662         } else {
1663                 rbd_assert(obj_request->which == BAD_WHICH);
1664         }
1665
1666         if (osd_req->r_result < 0)
1667                 obj_request->result = osd_req->r_result;
1668
1669         BUG_ON(osd_req->r_num_ops > 2);
1670
1671         /*
1672          * We support a 64-bit length, but ultimately it has to be
1673          * passed to blk_end_request(), which takes an unsigned int.
1674          */
1675         obj_request->xferred = osd_req->r_reply_op_len[0];
1676         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1677         opcode = osd_req->r_ops[0].op;
1678         switch (opcode) {
1679         case CEPH_OSD_OP_READ:
1680                 rbd_osd_read_callback(obj_request);
1681                 break;
1682         case CEPH_OSD_OP_WRITE:
1683                 rbd_osd_write_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_STAT:
1686                 rbd_osd_stat_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_CALL:
1689         case CEPH_OSD_OP_NOTIFY_ACK:
1690         case CEPH_OSD_OP_WATCH:
1691                 rbd_osd_trivial_callback(obj_request);
1692                 break;
1693         default:
1694                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1695                         obj_request->object_name, (unsigned short) opcode);
1696                 break;
1697         }
1698
1699         if (obj_request_done_test(obj_request))
1700                 rbd_obj_request_complete(obj_request);
1701 }
1702
1703 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1704 {
1705         struct rbd_img_request *img_request = obj_request->img_request;
1706         struct ceph_osd_request *osd_req = obj_request->osd_req;
1707         u64 snap_id;
1708
1709         rbd_assert(osd_req != NULL);
1710
1711         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1712         ceph_osdc_build_request(osd_req, obj_request->offset,
1713                         NULL, snap_id, NULL);
1714 }
1715
1716 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1717 {
1718         struct rbd_img_request *img_request = obj_request->img_request;
1719         struct ceph_osd_request *osd_req = obj_request->osd_req;
1720         struct ceph_snap_context *snapc;
1721         struct timespec mtime = CURRENT_TIME;
1722
1723         rbd_assert(osd_req != NULL);
1724
1725         snapc = img_request ? img_request->snapc : NULL;
1726         ceph_osdc_build_request(osd_req, obj_request->offset,
1727                         snapc, CEPH_NOSNAP, &mtime);
1728 }
1729
1730 static struct ceph_osd_request *rbd_osd_req_create(
1731                                         struct rbd_device *rbd_dev,
1732                                         bool write_request,
1733                                         struct rbd_obj_request *obj_request)
1734 {
1735         struct ceph_snap_context *snapc = NULL;
1736         struct ceph_osd_client *osdc;
1737         struct ceph_osd_request *osd_req;
1738
1739         if (obj_request_img_data_test(obj_request)) {
1740                 struct rbd_img_request *img_request = obj_request->img_request;
1741
1742                 rbd_assert(write_request ==
1743                                 img_request_write_test(img_request));
1744                 if (write_request)
1745                         snapc = img_request->snapc;
1746         }
1747
1748         /* Allocate and initialize the request, for the single op */
1749
1750         osdc = &rbd_dev->rbd_client->client->osdc;
1751         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1752         if (!osd_req)
1753                 return NULL;    /* ENOMEM */
1754
1755         if (write_request)
1756                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1757         else
1758                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1759
1760         osd_req->r_callback = rbd_osd_req_callback;
1761         osd_req->r_priv = obj_request;
1762
1763         osd_req->r_oid_len = strlen(obj_request->object_name);
1764         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1765         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1766
1767         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1768
1769         return osd_req;
1770 }
1771
1772 /*
1773  * Create a copyup osd request based on the information in the
1774  * object request supplied.  A copyup request has two osd ops,
1775  * a copyup method call, and a "normal" write request.
1776  */
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1779 {
1780         struct rbd_img_request *img_request;
1781         struct ceph_snap_context *snapc;
1782         struct rbd_device *rbd_dev;
1783         struct ceph_osd_client *osdc;
1784         struct ceph_osd_request *osd_req;
1785
1786         rbd_assert(obj_request_img_data_test(obj_request));
1787         img_request = obj_request->img_request;
1788         rbd_assert(img_request);
1789         rbd_assert(img_request_write_test(img_request));
1790
1791         /* Allocate and initialize the request, for the two ops */
1792
1793         snapc = img_request->snapc;
1794         rbd_dev = img_request->rbd_dev;
1795         osdc = &rbd_dev->rbd_client->client->osdc;
1796         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1797         if (!osd_req)
1798                 return NULL;    /* ENOMEM */
1799
1800         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801         osd_req->r_callback = rbd_osd_req_callback;
1802         osd_req->r_priv = obj_request;
1803
1804         osd_req->r_oid_len = strlen(obj_request->object_name);
1805         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1806         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1807
1808         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1809
1810         return osd_req;
1811 }
1812
1813
1814 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1815 {
1816         ceph_osdc_put_request(osd_req);
1817 }
1818
1819 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1820
1821 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1822                                                 u64 offset, u64 length,
1823                                                 enum obj_request_type type)
1824 {
1825         struct rbd_obj_request *obj_request;
1826         size_t size;
1827         char *name;
1828
1829         rbd_assert(obj_request_type_valid(type));
1830
1831         size = strlen(object_name) + 1;
1832         name = kmalloc(size, GFP_KERNEL);
1833         if (!name)
1834                 return NULL;
1835
1836         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1837         if (!obj_request) {
1838                 kfree(name);
1839                 return NULL;
1840         }
1841
1842         obj_request->object_name = memcpy(name, object_name, size);
1843         obj_request->offset = offset;
1844         obj_request->length = length;
1845         obj_request->flags = 0;
1846         obj_request->which = BAD_WHICH;
1847         obj_request->type = type;
1848         INIT_LIST_HEAD(&obj_request->links);
1849         init_completion(&obj_request->completion);
1850         kref_init(&obj_request->kref);
1851
1852         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1853                 offset, length, (int)type, obj_request);
1854
1855         return obj_request;
1856 }
1857
1858 static void rbd_obj_request_destroy(struct kref *kref)
1859 {
1860         struct rbd_obj_request *obj_request;
1861
1862         obj_request = container_of(kref, struct rbd_obj_request, kref);
1863
1864         dout("%s: obj %p\n", __func__, obj_request);
1865
1866         rbd_assert(obj_request->img_request == NULL);
1867         rbd_assert(obj_request->which == BAD_WHICH);
1868
1869         if (obj_request->osd_req)
1870                 rbd_osd_req_destroy(obj_request->osd_req);
1871
1872         rbd_assert(obj_request_type_valid(obj_request->type));
1873         switch (obj_request->type) {
1874         case OBJ_REQUEST_NODATA:
1875                 break;          /* Nothing to do */
1876         case OBJ_REQUEST_BIO:
1877                 if (obj_request->bio_list)
1878                         bio_chain_put(obj_request->bio_list);
1879                 break;
1880         case OBJ_REQUEST_PAGES:
1881                 if (obj_request->pages)
1882                         ceph_release_page_vector(obj_request->pages,
1883                                                 obj_request->page_count);
1884                 break;
1885         }
1886
1887         kfree(obj_request->object_name);
1888         obj_request->object_name = NULL;
1889         kmem_cache_free(rbd_obj_request_cache, obj_request);
1890 }
1891
1892 /* It's OK to call this for a device with no parent */
1893
1894 static void rbd_spec_put(struct rbd_spec *spec);
1895 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1896 {
1897         rbd_dev_remove_parent(rbd_dev);
1898         rbd_spec_put(rbd_dev->parent_spec);
1899         rbd_dev->parent_spec = NULL;
1900         rbd_dev->parent_overlap = 0;
1901 }
1902
1903 /*
1904  * Parent image reference counting is used to determine when an
1905  * image's parent fields can be safely torn down--after there are no
1906  * more in-flight requests to the parent image.  When the last
1907  * reference is dropped, cleaning them up is safe.
1908  */
1909 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1910 {
1911         int counter;
1912
1913         if (!rbd_dev->parent_spec)
1914                 return;
1915
1916         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1917         if (counter > 0)
1918                 return;
1919
1920         /* Last reference; clean up parent data structures */
1921
1922         if (!counter)
1923                 rbd_dev_unparent(rbd_dev);
1924         else
1925                 rbd_warn(rbd_dev, "parent reference underflow\n");
1926 }
1927
1928 /*
1929  * If an image has a non-zero parent overlap, get a reference to its
1930  * parent.
1931  *
1932  * We must get the reference before checking for the overlap to
1933  * coordinate properly with zeroing the parent overlap in
1934  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1935  * drop it again if there is no overlap.
1936  *
1937  * Returns true if the rbd device has a parent with a non-zero
1938  * overlap and a reference for it was successfully taken, or
1939  * false otherwise.
1940  */
1941 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1942 {
1943         int counter;
1944
1945         if (!rbd_dev->parent_spec)
1946                 return false;
1947
1948         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1949         if (counter > 0 && rbd_dev->parent_overlap)
1950                 return true;
1951
1952         /* Image was flattened, but parent is not yet torn down */
1953
1954         if (counter < 0)
1955                 rbd_warn(rbd_dev, "parent reference overflow\n");
1956
1957         return false;
1958 }
1959
1960 /*
1961  * Caller is responsible for filling in the list of object requests
1962  * that comprises the image request, and the Linux request pointer
1963  * (if there is one).
1964  */
1965 static struct rbd_img_request *rbd_img_request_create(
1966                                         struct rbd_device *rbd_dev,
1967                                         u64 offset, u64 length,
1968                                         bool write_request)
1969 {
1970         struct rbd_img_request *img_request;
1971
1972         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1973         if (!img_request)
1974                 return NULL;
1975
1976         if (write_request) {
1977                 down_read(&rbd_dev->header_rwsem);
1978                 ceph_get_snap_context(rbd_dev->header.snapc);
1979                 up_read(&rbd_dev->header_rwsem);
1980         }
1981
1982         img_request->rq = NULL;
1983         img_request->rbd_dev = rbd_dev;
1984         img_request->offset = offset;
1985         img_request->length = length;
1986         img_request->flags = 0;
1987         if (write_request) {
1988                 img_request_write_set(img_request);
1989                 img_request->snapc = rbd_dev->header.snapc;
1990         } else {
1991                 img_request->snap_id = rbd_dev->spec->snap_id;
1992         }
1993         if (rbd_dev_parent_get(rbd_dev))
1994                 img_request_layered_set(img_request);
1995         spin_lock_init(&img_request->completion_lock);
1996         img_request->next_completion = 0;
1997         img_request->callback = NULL;
1998         img_request->result = 0;
1999         img_request->obj_request_count = 0;
2000         INIT_LIST_HEAD(&img_request->obj_requests);
2001         kref_init(&img_request->kref);
2002
2003         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2004                 write_request ? "write" : "read", offset, length,
2005                 img_request);
2006
2007         return img_request;
2008 }
2009
2010 static void rbd_img_request_destroy(struct kref *kref)
2011 {
2012         struct rbd_img_request *img_request;
2013         struct rbd_obj_request *obj_request;
2014         struct rbd_obj_request *next_obj_request;
2015
2016         img_request = container_of(kref, struct rbd_img_request, kref);
2017
2018         dout("%s: img %p\n", __func__, img_request);
2019
2020         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2021                 rbd_img_obj_request_del(img_request, obj_request);
2022         rbd_assert(img_request->obj_request_count == 0);
2023
2024         if (img_request_layered_test(img_request)) {
2025                 img_request_layered_clear(img_request);
2026                 rbd_dev_parent_put(img_request->rbd_dev);
2027         }
2028
2029         if (img_request_write_test(img_request))
2030                 ceph_put_snap_context(img_request->snapc);
2031
2032         kmem_cache_free(rbd_img_request_cache, img_request);
2033 }
2034
2035 static struct rbd_img_request *rbd_parent_request_create(
2036                                         struct rbd_obj_request *obj_request,
2037                                         u64 img_offset, u64 length)
2038 {
2039         struct rbd_img_request *parent_request;
2040         struct rbd_device *rbd_dev;
2041
2042         rbd_assert(obj_request->img_request);
2043         rbd_dev = obj_request->img_request->rbd_dev;
2044
2045         parent_request = rbd_img_request_create(rbd_dev->parent,
2046                                                 img_offset, length, false);
2047         if (!parent_request)
2048                 return NULL;
2049
2050         img_request_child_set(parent_request);
2051         rbd_obj_request_get(obj_request);
2052         parent_request->obj_request = obj_request;
2053
2054         return parent_request;
2055 }
2056
2057 static void rbd_parent_request_destroy(struct kref *kref)
2058 {
2059         struct rbd_img_request *parent_request;
2060         struct rbd_obj_request *orig_request;
2061
2062         parent_request = container_of(kref, struct rbd_img_request, kref);
2063         orig_request = parent_request->obj_request;
2064
2065         parent_request->obj_request = NULL;
2066         rbd_obj_request_put(orig_request);
2067         img_request_child_clear(parent_request);
2068
2069         rbd_img_request_destroy(kref);
2070 }
2071
2072 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2073 {
2074         struct rbd_img_request *img_request;
2075         unsigned int xferred;
2076         int result;
2077         bool more;
2078
2079         rbd_assert(obj_request_img_data_test(obj_request));
2080         img_request = obj_request->img_request;
2081
2082         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2083         xferred = (unsigned int)obj_request->xferred;
2084         result = obj_request->result;
2085         if (result) {
2086                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2087
2088                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2089                         img_request_write_test(img_request) ? "write" : "read",
2090                         obj_request->length, obj_request->img_offset,
2091                         obj_request->offset);
2092                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2093                         result, xferred);
2094                 if (!img_request->result)
2095                         img_request->result = result;
2096         }
2097
2098         /* Image object requests don't own their page array */
2099
2100         if (obj_request->type == OBJ_REQUEST_PAGES) {
2101                 obj_request->pages = NULL;
2102                 obj_request->page_count = 0;
2103         }
2104
2105         if (img_request_child_test(img_request)) {
2106                 rbd_assert(img_request->obj_request != NULL);
2107                 more = obj_request->which < img_request->obj_request_count - 1;
2108         } else {
2109                 rbd_assert(img_request->rq != NULL);
2110                 more = blk_end_request(img_request->rq, result, xferred);
2111         }
2112
2113         return more;
2114 }
2115
2116 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2117 {
2118         struct rbd_img_request *img_request;
2119         u32 which = obj_request->which;
2120         bool more = true;
2121
2122         rbd_assert(obj_request_img_data_test(obj_request));
2123         img_request = obj_request->img_request;
2124
2125         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2126         rbd_assert(img_request != NULL);
2127         rbd_assert(img_request->obj_request_count > 0);
2128         rbd_assert(which != BAD_WHICH);
2129         rbd_assert(which < img_request->obj_request_count);
2130         rbd_assert(which >= img_request->next_completion);
2131
2132         spin_lock_irq(&img_request->completion_lock);
2133         if (which != img_request->next_completion)
2134                 goto out;
2135
2136         for_each_obj_request_from(img_request, obj_request) {
2137                 rbd_assert(more);
2138                 rbd_assert(which < img_request->obj_request_count);
2139
2140                 if (!obj_request_done_test(obj_request))
2141                         break;
2142                 more = rbd_img_obj_end_request(obj_request);
2143                 which++;
2144         }
2145
2146         rbd_assert(more ^ (which == img_request->obj_request_count));
2147         img_request->next_completion = which;
2148 out:
2149         spin_unlock_irq(&img_request->completion_lock);
2150
2151         if (!more)
2152                 rbd_img_request_complete(img_request);
2153 }
2154
2155 /*
2156  * Split up an image request into one or more object requests, each
2157  * to a different object.  The "type" parameter indicates whether
2158  * "data_desc" is the pointer to the head of a list of bio
2159  * structures, or the base of a page array.  In either case this
2160  * function assumes data_desc describes memory sufficient to hold
2161  * all data described by the image request.
2162  */
2163 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2164                                         enum obj_request_type type,
2165                                         void *data_desc)
2166 {
2167         struct rbd_device *rbd_dev = img_request->rbd_dev;
2168         struct rbd_obj_request *obj_request = NULL;
2169         struct rbd_obj_request *next_obj_request;
2170         bool write_request = img_request_write_test(img_request);
2171         struct bio *bio_list;
2172         unsigned int bio_offset = 0;
2173         struct page **pages;
2174         u64 img_offset;
2175         u64 resid;
2176         u16 opcode;
2177
2178         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2179                 (int)type, data_desc);
2180
2181         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2182         img_offset = img_request->offset;
2183         resid = img_request->length;
2184         rbd_assert(resid > 0);
2185
2186         if (type == OBJ_REQUEST_BIO) {
2187                 bio_list = data_desc;
2188                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2189         } else {
2190                 rbd_assert(type == OBJ_REQUEST_PAGES);
2191                 pages = data_desc;
2192         }
2193
2194         while (resid) {
2195                 struct ceph_osd_request *osd_req;
2196                 const char *object_name;
2197                 u64 offset;
2198                 u64 length;
2199
2200                 object_name = rbd_segment_name(rbd_dev, img_offset);
2201                 if (!object_name)
2202                         goto out_unwind;
2203                 offset = rbd_segment_offset(rbd_dev, img_offset);
2204                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2205                 obj_request = rbd_obj_request_create(object_name,
2206                                                 offset, length, type);
2207                 /* object request has its own copy of the object name */
2208                 rbd_segment_name_free(object_name);
2209                 if (!obj_request)
2210                         goto out_unwind;
2211
2212                 if (type == OBJ_REQUEST_BIO) {
2213                         unsigned int clone_size;
2214
2215                         rbd_assert(length <= (u64)UINT_MAX);
2216                         clone_size = (unsigned int)length;
2217                         obj_request->bio_list =
2218                                         bio_chain_clone_range(&bio_list,
2219                                                                 &bio_offset,
2220                                                                 clone_size,
2221                                                                 GFP_ATOMIC);
2222                         if (!obj_request->bio_list)
2223                                 goto out_partial;
2224                 } else {
2225                         unsigned int page_count;
2226
2227                         obj_request->pages = pages;
2228                         page_count = (u32)calc_pages_for(offset, length);
2229                         obj_request->page_count = page_count;
2230                         if ((offset + length) & ~PAGE_MASK)
2231                                 page_count--;   /* more on last page */
2232                         pages += page_count;
2233                 }
2234
2235                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2236                                                 obj_request);
2237                 if (!osd_req)
2238                         goto out_partial;
2239                 obj_request->osd_req = osd_req;
2240                 obj_request->callback = rbd_img_obj_callback;
2241
2242                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2243                                                 0, 0);
2244                 if (type == OBJ_REQUEST_BIO)
2245                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2246                                         obj_request->bio_list, length);
2247                 else
2248                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2249                                         obj_request->pages, length,
2250                                         offset & ~PAGE_MASK, false, false);
2251
2252                 if (write_request)
2253                         rbd_osd_req_format_write(obj_request);
2254                 else
2255                         rbd_osd_req_format_read(obj_request);
2256
2257                 obj_request->img_offset = img_offset;
2258                 rbd_img_obj_request_add(img_request, obj_request);
2259
2260                 img_offset += length;
2261                 resid -= length;
2262         }
2263
2264         return 0;
2265
2266 out_partial:
2267         rbd_obj_request_put(obj_request);
2268 out_unwind:
2269         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2270                 rbd_obj_request_put(obj_request);
2271
2272         return -ENOMEM;
2273 }
2274
2275 static void
2276 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2277 {
2278         struct rbd_img_request *img_request;
2279         struct rbd_device *rbd_dev;
2280         struct page **pages;
2281         u32 page_count;
2282
2283         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2284         rbd_assert(obj_request_img_data_test(obj_request));
2285         img_request = obj_request->img_request;
2286         rbd_assert(img_request);
2287
2288         rbd_dev = img_request->rbd_dev;
2289         rbd_assert(rbd_dev);
2290
2291         pages = obj_request->copyup_pages;
2292         rbd_assert(pages != NULL);
2293         obj_request->copyup_pages = NULL;
2294         page_count = obj_request->copyup_page_count;
2295         rbd_assert(page_count);
2296         obj_request->copyup_page_count = 0;
2297         ceph_release_page_vector(pages, page_count);
2298
2299         /*
2300          * We want the transfer count to reflect the size of the
2301          * original write request.  There is no such thing as a
2302          * successful short write, so if the request was successful
2303          * we can just set it to the originally-requested length.
2304          */
2305         if (!obj_request->result)
2306                 obj_request->xferred = obj_request->length;
2307
2308         /* Finish up with the normal image object callback */
2309
2310         rbd_img_obj_callback(obj_request);
2311 }
2312
2313 static void
2314 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2315 {
2316         struct rbd_obj_request *orig_request;
2317         struct ceph_osd_request *osd_req;
2318         struct ceph_osd_client *osdc;
2319         struct rbd_device *rbd_dev;
2320         struct page **pages;
2321         u32 page_count;
2322         int result;
2323         u64 parent_length;
2324         u64 offset;
2325         u64 length;
2326
2327         rbd_assert(img_request_child_test(img_request));
2328
2329         /* First get what we need from the image request */
2330
2331         pages = img_request->copyup_pages;
2332         rbd_assert(pages != NULL);
2333         img_request->copyup_pages = NULL;
2334         page_count = img_request->copyup_page_count;
2335         rbd_assert(page_count);
2336         img_request->copyup_page_count = 0;
2337
2338         orig_request = img_request->obj_request;
2339         rbd_assert(orig_request != NULL);
2340         rbd_assert(obj_request_type_valid(orig_request->type));
2341         result = img_request->result;
2342         parent_length = img_request->length;
2343         rbd_assert(parent_length == img_request->xferred);
2344         rbd_img_request_put(img_request);
2345
2346         rbd_assert(orig_request->img_request);
2347         rbd_dev = orig_request->img_request->rbd_dev;
2348         rbd_assert(rbd_dev);
2349
2350         if (result)
2351                 goto out_err;
2352
2353         /*
2354          * The original osd request is of no use to use any more.
2355          * We need a new one that can hold the two ops in a copyup
2356          * request.  Allocate the new copyup osd request for the
2357          * original request, and release the old one.
2358          */
2359         result = -ENOMEM;
2360         osd_req = rbd_osd_req_create_copyup(orig_request);
2361         if (!osd_req)
2362                 goto out_err;
2363         rbd_osd_req_destroy(orig_request->osd_req);
2364         orig_request->osd_req = osd_req;
2365         orig_request->copyup_pages = pages;
2366         orig_request->copyup_page_count = page_count;
2367
2368         /* Initialize the copyup op */
2369
2370         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2371         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2372                                                 false, false);
2373
2374         /* Then the original write request op */
2375
2376         offset = orig_request->offset;
2377         length = orig_request->length;
2378         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2379                                         offset, length, 0, 0);
2380         if (orig_request->type == OBJ_REQUEST_BIO)
2381                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2382                                         orig_request->bio_list, length);
2383         else
2384                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2385                                         orig_request->pages, length,
2386                                         offset & ~PAGE_MASK, false, false);
2387
2388         rbd_osd_req_format_write(orig_request);
2389
2390         /* All set, send it off. */
2391
2392         orig_request->callback = rbd_img_obj_copyup_callback;
2393         osdc = &rbd_dev->rbd_client->client->osdc;
2394         result = rbd_obj_request_submit(osdc, orig_request);
2395         if (!result)
2396                 return;
2397 out_err:
2398         /* Record the error code and complete the request */
2399
2400         orig_request->result = result;
2401         orig_request->xferred = 0;
2402         obj_request_done_set(orig_request);
2403         rbd_obj_request_complete(orig_request);
2404 }
2405
2406 /*
2407  * Read from the parent image the range of data that covers the
2408  * entire target of the given object request.  This is used for
2409  * satisfying a layered image write request when the target of an
2410  * object request from the image request does not exist.
2411  *
2412  * A page array big enough to hold the returned data is allocated
2413  * and supplied to rbd_img_request_fill() as the "data descriptor."
2414  * When the read completes, this page array will be transferred to
2415  * the original object request for the copyup operation.
2416  *
2417  * If an error occurs, record it as the result of the original
2418  * object request and mark it done so it gets completed.
2419  */
2420 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2421 {
2422         struct rbd_img_request *img_request = NULL;
2423         struct rbd_img_request *parent_request = NULL;
2424         struct rbd_device *rbd_dev;
2425         u64 img_offset;
2426         u64 length;
2427         struct page **pages = NULL;
2428         u32 page_count;
2429         int result;
2430
2431         rbd_assert(obj_request_img_data_test(obj_request));
2432         rbd_assert(obj_request_type_valid(obj_request->type));
2433
2434         img_request = obj_request->img_request;
2435         rbd_assert(img_request != NULL);
2436         rbd_dev = img_request->rbd_dev;
2437         rbd_assert(rbd_dev->parent != NULL);
2438
2439         /*
2440          * Determine the byte range covered by the object in the
2441          * child image to which the original request was to be sent.
2442          */
2443         img_offset = obj_request->img_offset - obj_request->offset;
2444         length = (u64)1 << rbd_dev->header.obj_order;
2445
2446         /*
2447          * There is no defined parent data beyond the parent
2448          * overlap, so limit what we read at that boundary if
2449          * necessary.
2450          */
2451         if (img_offset + length > rbd_dev->parent_overlap) {
2452                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2453                 length = rbd_dev->parent_overlap - img_offset;
2454         }
2455
2456         /*
2457          * Allocate a page array big enough to receive the data read
2458          * from the parent.
2459          */
2460         page_count = (u32)calc_pages_for(0, length);
2461         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2462         if (IS_ERR(pages)) {
2463                 result = PTR_ERR(pages);
2464                 pages = NULL;
2465                 goto out_err;
2466         }
2467
2468         result = -ENOMEM;
2469         parent_request = rbd_parent_request_create(obj_request,
2470                                                 img_offset, length);
2471         if (!parent_request)
2472                 goto out_err;
2473
2474         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2475         if (result)
2476                 goto out_err;
2477         parent_request->copyup_pages = pages;
2478         parent_request->copyup_page_count = page_count;
2479
2480         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2481         result = rbd_img_request_submit(parent_request);
2482         if (!result)
2483                 return 0;
2484
2485         parent_request->copyup_pages = NULL;
2486         parent_request->copyup_page_count = 0;
2487         parent_request->obj_request = NULL;
2488         rbd_obj_request_put(obj_request);
2489 out_err:
2490         if (pages)
2491                 ceph_release_page_vector(pages, page_count);
2492         if (parent_request)
2493                 rbd_img_request_put(parent_request);
2494         obj_request->result = result;
2495         obj_request->xferred = 0;
2496         obj_request_done_set(obj_request);
2497
2498         return result;
2499 }
2500
2501 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2502 {
2503         struct rbd_obj_request *orig_request;
2504         int result;
2505
2506         rbd_assert(!obj_request_img_data_test(obj_request));
2507
2508         /*
2509          * All we need from the object request is the original
2510          * request and the result of the STAT op.  Grab those, then
2511          * we're done with the request.
2512          */
2513         orig_request = obj_request->obj_request;
2514         obj_request->obj_request = NULL;
2515         rbd_assert(orig_request);
2516         rbd_assert(orig_request->img_request);
2517
2518         result = obj_request->result;
2519         obj_request->result = 0;
2520
2521         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2522                 obj_request, orig_request, result,
2523                 obj_request->xferred, obj_request->length);
2524         rbd_obj_request_put(obj_request);
2525
2526         rbd_assert(orig_request);
2527         rbd_assert(orig_request->img_request);
2528
2529         /*
2530          * Our only purpose here is to determine whether the object
2531          * exists, and we don't want to treat the non-existence as
2532          * an error.  If something else comes back, transfer the
2533          * error to the original request and complete it now.
2534          */
2535         if (!result) {
2536                 obj_request_existence_set(orig_request, true);
2537         } else if (result == -ENOENT) {
2538                 obj_request_existence_set(orig_request, false);
2539         } else if (result) {
2540                 orig_request->result = result;
2541                 goto out;
2542         }
2543
2544         /*
2545          * Resubmit the original request now that we have recorded
2546          * whether the target object exists.
2547          */
2548         orig_request->result = rbd_img_obj_request_submit(orig_request);
2549 out:
2550         if (orig_request->result)
2551                 rbd_obj_request_complete(orig_request);
2552         rbd_obj_request_put(orig_request);
2553 }
2554
2555 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2556 {
2557         struct rbd_obj_request *stat_request;
2558         struct rbd_device *rbd_dev;
2559         struct ceph_osd_client *osdc;
2560         struct page **pages = NULL;
2561         u32 page_count;
2562         size_t size;
2563         int ret;
2564
2565         /*
2566          * The response data for a STAT call consists of:
2567          *     le64 length;
2568          *     struct {
2569          *         le32 tv_sec;
2570          *         le32 tv_nsec;
2571          *     } mtime;
2572          */
2573         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2574         page_count = (u32)calc_pages_for(0, size);
2575         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2576         if (IS_ERR(pages))
2577                 return PTR_ERR(pages);
2578
2579         ret = -ENOMEM;
2580         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2581                                                         OBJ_REQUEST_PAGES);
2582         if (!stat_request)
2583                 goto out;
2584
2585         rbd_obj_request_get(obj_request);
2586         stat_request->obj_request = obj_request;
2587         stat_request->pages = pages;
2588         stat_request->page_count = page_count;
2589
2590         rbd_assert(obj_request->img_request);
2591         rbd_dev = obj_request->img_request->rbd_dev;
2592         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2593                                                 stat_request);
2594         if (!stat_request->osd_req)
2595                 goto out;
2596         stat_request->callback = rbd_img_obj_exists_callback;
2597
2598         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2599         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2600                                         false, false);
2601         rbd_osd_req_format_read(stat_request);
2602
2603         osdc = &rbd_dev->rbd_client->client->osdc;
2604         ret = rbd_obj_request_submit(osdc, stat_request);
2605 out:
2606         if (ret)
2607                 rbd_obj_request_put(obj_request);
2608
2609         return ret;
2610 }
2611
2612 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2613 {
2614         struct rbd_img_request *img_request;
2615         struct rbd_device *rbd_dev;
2616         bool known;
2617
2618         rbd_assert(obj_request_img_data_test(obj_request));
2619
2620         img_request = obj_request->img_request;
2621         rbd_assert(img_request);
2622         rbd_dev = img_request->rbd_dev;
2623
2624         /*
2625          * Only writes to layered images need special handling.
2626          * Reads and non-layered writes are simple object requests.
2627          * Layered writes that start beyond the end of the overlap
2628          * with the parent have no parent data, so they too are
2629          * simple object requests.  Finally, if the target object is
2630          * known to already exist, its parent data has already been
2631          * copied, so a write to the object can also be handled as a
2632          * simple object request.
2633          */
2634         if (!img_request_write_test(img_request) ||
2635                 !img_request_layered_test(img_request) ||
2636                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2637                 ((known = obj_request_known_test(obj_request)) &&
2638                         obj_request_exists_test(obj_request))) {
2639
2640                 struct rbd_device *rbd_dev;
2641                 struct ceph_osd_client *osdc;
2642
2643                 rbd_dev = obj_request->img_request->rbd_dev;
2644                 osdc = &rbd_dev->rbd_client->client->osdc;
2645
2646                 return rbd_obj_request_submit(osdc, obj_request);
2647         }
2648
2649         /*
2650          * It's a layered write.  The target object might exist but
2651          * we may not know that yet.  If we know it doesn't exist,
2652          * start by reading the data for the full target object from
2653          * the parent so we can use it for a copyup to the target.
2654          */
2655         if (known)
2656                 return rbd_img_obj_parent_read_full(obj_request);
2657
2658         /* We don't know whether the target exists.  Go find out. */
2659
2660         return rbd_img_obj_exists_submit(obj_request);
2661 }
2662
2663 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2664 {
2665         struct rbd_obj_request *obj_request;
2666         struct rbd_obj_request *next_obj_request;
2667
2668         dout("%s: img %p\n", __func__, img_request);
2669         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2670                 int ret;
2671
2672                 ret = rbd_img_obj_request_submit(obj_request);
2673                 if (ret)
2674                         return ret;
2675         }
2676
2677         return 0;
2678 }
2679
2680 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2681 {
2682         struct rbd_obj_request *obj_request;
2683         struct rbd_device *rbd_dev;
2684         u64 obj_end;
2685         u64 img_xferred;
2686         int img_result;
2687
2688         rbd_assert(img_request_child_test(img_request));
2689
2690         /* First get what we need from the image request and release it */
2691
2692         obj_request = img_request->obj_request;
2693         img_xferred = img_request->xferred;
2694         img_result = img_request->result;
2695         rbd_img_request_put(img_request);
2696
2697         /*
2698          * If the overlap has become 0 (most likely because the
2699          * image has been flattened) we need to re-submit the
2700          * original request.
2701          */
2702         rbd_assert(obj_request);
2703         rbd_assert(obj_request->img_request);
2704         rbd_dev = obj_request->img_request->rbd_dev;
2705         if (!rbd_dev->parent_overlap) {
2706                 struct ceph_osd_client *osdc;
2707
2708                 osdc = &rbd_dev->rbd_client->client->osdc;
2709                 img_result = rbd_obj_request_submit(osdc, obj_request);
2710                 if (!img_result)
2711                         return;
2712         }
2713
2714         obj_request->result = img_result;
2715         if (obj_request->result)
2716                 goto out;
2717
2718         /*
2719          * We need to zero anything beyond the parent overlap
2720          * boundary.  Since rbd_img_obj_request_read_callback()
2721          * will zero anything beyond the end of a short read, an
2722          * easy way to do this is to pretend the data from the
2723          * parent came up short--ending at the overlap boundary.
2724          */
2725         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2726         obj_end = obj_request->img_offset + obj_request->length;
2727         if (obj_end > rbd_dev->parent_overlap) {
2728                 u64 xferred = 0;
2729
2730                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2731                         xferred = rbd_dev->parent_overlap -
2732                                         obj_request->img_offset;
2733
2734                 obj_request->xferred = min(img_xferred, xferred);
2735         } else {
2736                 obj_request->xferred = img_xferred;
2737         }
2738 out:
2739         rbd_img_obj_request_read_callback(obj_request);
2740         rbd_obj_request_complete(obj_request);
2741 }
2742
2743 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2744 {
2745         struct rbd_img_request *img_request;
2746         int result;
2747
2748         rbd_assert(obj_request_img_data_test(obj_request));
2749         rbd_assert(obj_request->img_request != NULL);
2750         rbd_assert(obj_request->result == (s32) -ENOENT);
2751         rbd_assert(obj_request_type_valid(obj_request->type));
2752
2753         /* rbd_read_finish(obj_request, obj_request->length); */
2754         img_request = rbd_parent_request_create(obj_request,
2755                                                 obj_request->img_offset,
2756                                                 obj_request->length);
2757         result = -ENOMEM;
2758         if (!img_request)
2759                 goto out_err;
2760
2761         if (obj_request->type == OBJ_REQUEST_BIO)
2762                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2763                                                 obj_request->bio_list);
2764         else
2765                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2766                                                 obj_request->pages);
2767         if (result)
2768                 goto out_err;
2769
2770         img_request->callback = rbd_img_parent_read_callback;
2771         result = rbd_img_request_submit(img_request);
2772         if (result)
2773                 goto out_err;
2774
2775         return;
2776 out_err:
2777         if (img_request)
2778                 rbd_img_request_put(img_request);
2779         obj_request->result = result;
2780         obj_request->xferred = 0;
2781         obj_request_done_set(obj_request);
2782 }
2783
2784 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2785 {
2786         struct rbd_obj_request *obj_request;
2787         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2788         int ret;
2789
2790         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2791                                                         OBJ_REQUEST_NODATA);
2792         if (!obj_request)
2793                 return -ENOMEM;
2794
2795         ret = -ENOMEM;
2796         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2797         if (!obj_request->osd_req)
2798                 goto out;
2799         obj_request->callback = rbd_obj_request_put;
2800
2801         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2802                                         notify_id, 0, 0);
2803         rbd_osd_req_format_read(obj_request);
2804
2805         ret = rbd_obj_request_submit(osdc, obj_request);
2806 out:
2807         if (ret)
2808                 rbd_obj_request_put(obj_request);
2809
2810         return ret;
2811 }
2812
2813 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2814 {
2815         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2816         int ret;
2817
2818         if (!rbd_dev)
2819                 return;
2820
2821         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2822                 rbd_dev->header_name, (unsigned long long)notify_id,
2823                 (unsigned int)opcode);
2824         ret = rbd_dev_refresh(rbd_dev);
2825         if (ret)
2826                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2827
2828         rbd_obj_notify_ack(rbd_dev, notify_id);
2829 }
2830
2831 /*
2832  * Request sync osd watch/unwatch.  The value of "start" determines
2833  * whether a watch request is being initiated or torn down.
2834  */
2835 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2836 {
2837         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2838         struct rbd_obj_request *obj_request;
2839         int ret;
2840
2841         rbd_assert(start ^ !!rbd_dev->watch_event);
2842         rbd_assert(start ^ !!rbd_dev->watch_request);
2843
2844         if (start) {
2845                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2846                                                 &rbd_dev->watch_event);
2847                 if (ret < 0)
2848                         return ret;
2849                 rbd_assert(rbd_dev->watch_event != NULL);
2850         }
2851
2852         ret = -ENOMEM;
2853         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2854                                                         OBJ_REQUEST_NODATA);
2855         if (!obj_request)
2856                 goto out_cancel;
2857
2858         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2859         if (!obj_request->osd_req)
2860                 goto out_cancel;
2861
2862         if (start)
2863                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2864         else
2865                 ceph_osdc_unregister_linger_request(osdc,
2866                                         rbd_dev->watch_request->osd_req);
2867
2868         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2869                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2870         rbd_osd_req_format_write(obj_request);
2871
2872         ret = rbd_obj_request_submit(osdc, obj_request);
2873         if (ret)
2874                 goto out_cancel;
2875         ret = rbd_obj_request_wait(obj_request);
2876         if (ret)
2877                 goto out_cancel;
2878         ret = obj_request->result;
2879         if (ret)
2880                 goto out_cancel;
2881
2882         /*
2883          * A watch request is set to linger, so the underlying osd
2884          * request won't go away until we unregister it.  We retain
2885          * a pointer to the object request during that time (in
2886          * rbd_dev->watch_request), so we'll keep a reference to
2887          * it.  We'll drop that reference (below) after we've
2888          * unregistered it.
2889          */
2890         if (start) {
2891                 rbd_dev->watch_request = obj_request;
2892
2893                 return 0;
2894         }
2895
2896         /* We have successfully torn down the watch request */
2897
2898         rbd_obj_request_put(rbd_dev->watch_request);
2899         rbd_dev->watch_request = NULL;
2900 out_cancel:
2901         /* Cancel the event if we're tearing down, or on error */
2902         ceph_osdc_cancel_event(rbd_dev->watch_event);
2903         rbd_dev->watch_event = NULL;
2904         if (obj_request)
2905                 rbd_obj_request_put(obj_request);
2906
2907         return ret;
2908 }
2909
2910 /*
2911  * Synchronous osd object method call.  Returns the number of bytes
2912  * returned in the outbound buffer, or a negative error code.
2913  */
2914 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2915                              const char *object_name,
2916                              const char *class_name,
2917                              const char *method_name,
2918                              const void *outbound,
2919                              size_t outbound_size,
2920                              void *inbound,
2921                              size_t inbound_size)
2922 {
2923         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2924         struct rbd_obj_request *obj_request;
2925         struct page **pages;
2926         u32 page_count;
2927         int ret;
2928
2929         /*
2930          * Method calls are ultimately read operations.  The result
2931          * should placed into the inbound buffer provided.  They
2932          * also supply outbound data--parameters for the object
2933          * method.  Currently if this is present it will be a
2934          * snapshot id.
2935          */
2936         page_count = (u32)calc_pages_for(0, inbound_size);
2937         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2938         if (IS_ERR(pages))
2939                 return PTR_ERR(pages);
2940
2941         ret = -ENOMEM;
2942         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2943                                                         OBJ_REQUEST_PAGES);
2944         if (!obj_request)
2945                 goto out;
2946
2947         obj_request->pages = pages;
2948         obj_request->page_count = page_count;
2949
2950         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2951         if (!obj_request->osd_req)
2952                 goto out;
2953
2954         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2955                                         class_name, method_name);
2956         if (outbound_size) {
2957                 struct ceph_pagelist *pagelist;
2958
2959                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2960                 if (!pagelist)
2961                         goto out;
2962
2963                 ceph_pagelist_init(pagelist);
2964                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2965                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2966                                                 pagelist);
2967         }
2968         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2969                                         obj_request->pages, inbound_size,
2970                                         0, false, false);
2971         rbd_osd_req_format_read(obj_request);
2972
2973         ret = rbd_obj_request_submit(osdc, obj_request);
2974         if (ret)
2975                 goto out;
2976         ret = rbd_obj_request_wait(obj_request);
2977         if (ret)
2978                 goto out;
2979
2980         ret = obj_request->result;
2981         if (ret < 0)
2982                 goto out;
2983
2984         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2985         ret = (int)obj_request->xferred;
2986         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2987 out:
2988         if (obj_request)
2989                 rbd_obj_request_put(obj_request);
2990         else
2991                 ceph_release_page_vector(pages, page_count);
2992
2993         return ret;
2994 }
2995
2996 static void rbd_request_fn(struct request_queue *q)
2997                 __releases(q->queue_lock) __acquires(q->queue_lock)
2998 {
2999         struct rbd_device *rbd_dev = q->queuedata;
3000         bool read_only = rbd_dev->mapping.read_only;
3001         struct request *rq;
3002         int result;
3003
3004         while ((rq = blk_fetch_request(q))) {
3005                 bool write_request = rq_data_dir(rq) == WRITE;
3006                 struct rbd_img_request *img_request;
3007                 u64 offset;
3008                 u64 length;
3009
3010                 /* Ignore any non-FS requests that filter through. */
3011
3012                 if (rq->cmd_type != REQ_TYPE_FS) {
3013                         dout("%s: non-fs request type %d\n", __func__,
3014                                 (int) rq->cmd_type);
3015                         __blk_end_request_all(rq, 0);
3016                         continue;
3017                 }
3018
3019                 /* Ignore/skip any zero-length requests */
3020
3021                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3022                 length = (u64) blk_rq_bytes(rq);
3023
3024                 if (!length) {
3025                         dout("%s: zero-length request\n", __func__);
3026                         __blk_end_request_all(rq, 0);
3027                         continue;
3028                 }
3029
3030                 spin_unlock_irq(q->queue_lock);
3031
3032                 /* Disallow writes to a read-only device */
3033
3034                 if (write_request) {
3035                         result = -EROFS;
3036                         if (read_only)
3037                                 goto end_request;
3038                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3039                 }
3040
3041                 /*
3042                  * Quit early if the mapped snapshot no longer
3043                  * exists.  It's still possible the snapshot will
3044                  * have disappeared by the time our request arrives
3045                  * at the osd, but there's no sense in sending it if
3046                  * we already know.
3047                  */
3048                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3049                         dout("request for non-existent snapshot");
3050                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3051                         result = -ENXIO;
3052                         goto end_request;
3053                 }
3054
3055                 result = -EINVAL;
3056                 if (offset && length > U64_MAX - offset + 1) {
3057                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3058                                 offset, length);
3059                         goto end_request;       /* Shouldn't happen */
3060                 }
3061
3062                 result = -EIO;
3063                 if (offset + length > rbd_dev->mapping.size) {
3064                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3065                                 offset, length, rbd_dev->mapping.size);
3066                         goto end_request;
3067                 }
3068
3069                 result = -ENOMEM;
3070                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3071                                                         write_request);
3072                 if (!img_request)
3073                         goto end_request;
3074
3075                 img_request->rq = rq;
3076
3077                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3078                                                 rq->bio);
3079                 if (!result)
3080                         result = rbd_img_request_submit(img_request);
3081                 if (result)
3082                         rbd_img_request_put(img_request);
3083 end_request:
3084                 spin_lock_irq(q->queue_lock);
3085                 if (result < 0) {
3086                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3087                                 write_request ? "write" : "read",
3088                                 length, offset, result);
3089
3090                         __blk_end_request_all(rq, result);
3091                 }
3092         }
3093 }
3094
3095 /*
3096  * a queue callback. Makes sure that we don't create a bio that spans across
3097  * multiple osd objects. One exception would be with a single page bios,
3098  * which we handle later at bio_chain_clone_range()
3099  */
3100 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3101                           struct bio_vec *bvec)
3102 {
3103         struct rbd_device *rbd_dev = q->queuedata;
3104         sector_t sector_offset;
3105         sector_t sectors_per_obj;
3106         sector_t obj_sector_offset;
3107         int ret;
3108
3109         /*
3110          * Find how far into its rbd object the partition-relative
3111          * bio start sector is to offset relative to the enclosing
3112          * device.
3113          */
3114         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3115         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3116         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3117
3118         /*
3119          * Compute the number of bytes from that offset to the end
3120          * of the object.  Account for what's already used by the bio.
3121          */
3122         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3123         if (ret > bmd->bi_size)
3124                 ret -= bmd->bi_size;
3125         else
3126                 ret = 0;
3127
3128         /*
3129          * Don't send back more than was asked for.  And if the bio
3130          * was empty, let the whole thing through because:  "Note
3131          * that a block device *must* allow a single page to be
3132          * added to an empty bio."
3133          */
3134         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3135         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3136                 ret = (int) bvec->bv_len;
3137
3138         return ret;
3139 }
3140
3141 static void rbd_free_disk(struct rbd_device *rbd_dev)
3142 {
3143         struct gendisk *disk = rbd_dev->disk;
3144
3145         if (!disk)
3146                 return;
3147
3148         rbd_dev->disk = NULL;
3149         if (disk->flags & GENHD_FL_UP) {
3150                 del_gendisk(disk);
3151                 if (disk->queue)
3152                         blk_cleanup_queue(disk->queue);
3153         }
3154         put_disk(disk);
3155 }
3156
3157 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3158                                 const char *object_name,
3159                                 u64 offset, u64 length, void *buf)
3160
3161 {
3162         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3163         struct rbd_obj_request *obj_request;
3164         struct page **pages = NULL;
3165         u32 page_count;
3166         size_t size;
3167         int ret;
3168
3169         page_count = (u32) calc_pages_for(offset, length);
3170         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3171         if (IS_ERR(pages))
3172                 ret = PTR_ERR(pages);
3173
3174         ret = -ENOMEM;
3175         obj_request = rbd_obj_request_create(object_name, offset, length,
3176                                                         OBJ_REQUEST_PAGES);
3177         if (!obj_request)
3178                 goto out;
3179
3180         obj_request->pages = pages;
3181         obj_request->page_count = page_count;
3182
3183         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3184         if (!obj_request->osd_req)
3185                 goto out;
3186
3187         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3188                                         offset, length, 0, 0);
3189         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3190                                         obj_request->pages,
3191                                         obj_request->length,
3192                                         obj_request->offset & ~PAGE_MASK,
3193                                         false, false);
3194         rbd_osd_req_format_read(obj_request);
3195
3196         ret = rbd_obj_request_submit(osdc, obj_request);
3197         if (ret)
3198                 goto out;
3199         ret = rbd_obj_request_wait(obj_request);
3200         if (ret)
3201                 goto out;
3202
3203         ret = obj_request->result;
3204         if (ret < 0)
3205                 goto out;
3206
3207         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3208         size = (size_t) obj_request->xferred;
3209         ceph_copy_from_page_vector(pages, buf, 0, size);
3210         rbd_assert(size <= (size_t)INT_MAX);
3211         ret = (int)size;
3212 out:
3213         if (obj_request)
3214                 rbd_obj_request_put(obj_request);
3215         else
3216                 ceph_release_page_vector(pages, page_count);
3217
3218         return ret;
3219 }
3220
3221 /*
3222  * Read the complete header for the given rbd device.  On successful
3223  * return, the rbd_dev->header field will contain up-to-date
3224  * information about the image.
3225  */
3226 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3227 {
3228         struct rbd_image_header_ondisk *ondisk = NULL;
3229         u32 snap_count = 0;
3230         u64 names_size = 0;
3231         u32 want_count;
3232         int ret;
3233
3234         /*
3235          * The complete header will include an array of its 64-bit
3236          * snapshot ids, followed by the names of those snapshots as
3237          * a contiguous block of NUL-terminated strings.  Note that
3238          * the number of snapshots could change by the time we read
3239          * it in, in which case we re-read it.
3240          */
3241         do {
3242                 size_t size;
3243
3244                 kfree(ondisk);
3245
3246                 size = sizeof (*ondisk);
3247                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3248                 size += names_size;
3249                 ondisk = kmalloc(size, GFP_KERNEL);
3250                 if (!ondisk)
3251                         return -ENOMEM;
3252
3253                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3254                                        0, size, ondisk);
3255                 if (ret < 0)
3256                         goto out;
3257                 if ((size_t)ret < size) {
3258                         ret = -ENXIO;
3259                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3260                                 size, ret);
3261                         goto out;
3262                 }
3263                 if (!rbd_dev_ondisk_valid(ondisk)) {
3264                         ret = -ENXIO;
3265                         rbd_warn(rbd_dev, "invalid header");
3266                         goto out;
3267                 }
3268
3269                 names_size = le64_to_cpu(ondisk->snap_names_len);
3270                 want_count = snap_count;
3271                 snap_count = le32_to_cpu(ondisk->snap_count);
3272         } while (snap_count != want_count);
3273
3274         ret = rbd_header_from_disk(rbd_dev, ondisk);
3275 out:
3276         kfree(ondisk);
3277
3278         return ret;
3279 }
3280
3281 /*
3282  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3283  * has disappeared from the (just updated) snapshot context.
3284  */
3285 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3286 {
3287         u64 snap_id;
3288
3289         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3290                 return;
3291
3292         snap_id = rbd_dev->spec->snap_id;
3293         if (snap_id == CEPH_NOSNAP)
3294                 return;
3295
3296         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3297                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3298 }
3299
3300 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3301 {
3302         u64 mapping_size;
3303         int ret;
3304
3305         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3306         mapping_size = rbd_dev->mapping.size;
3307         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3308         if (rbd_dev->image_format == 1)
3309                 ret = rbd_dev_v1_header_info(rbd_dev);
3310         else
3311                 ret = rbd_dev_v2_header_info(rbd_dev);
3312
3313         /* If it's a mapped snapshot, validate its EXISTS flag */
3314
3315         rbd_exists_validate(rbd_dev);
3316         mutex_unlock(&ctl_mutex);
3317         if (mapping_size != rbd_dev->mapping.size) {
3318                 sector_t size;
3319
3320                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3321                 dout("setting size to %llu sectors", (unsigned long long)size);
3322                 set_capacity(rbd_dev->disk, size);
3323                 revalidate_disk(rbd_dev->disk);
3324         }
3325
3326         return ret;
3327 }
3328
3329 static int rbd_init_disk(struct rbd_device *rbd_dev)
3330 {
3331         struct gendisk *disk;
3332         struct request_queue *q;
3333         u64 segment_size;
3334
3335         /* create gendisk info */
3336         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3337         if (!disk)
3338                 return -ENOMEM;
3339
3340         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3341                  rbd_dev->dev_id);
3342         disk->major = rbd_dev->major;
3343         disk->first_minor = 0;
3344         disk->fops = &rbd_bd_ops;
3345         disk->private_data = rbd_dev;
3346
3347         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3348         if (!q)
3349                 goto out_disk;
3350
3351         /* We use the default size, but let's be explicit about it. */
3352         blk_queue_physical_block_size(q, SECTOR_SIZE);
3353
3354         /* set io sizes to object size */
3355         segment_size = rbd_obj_bytes(&rbd_dev->header);
3356         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3357         blk_queue_max_segment_size(q, segment_size);
3358         blk_queue_io_min(q, segment_size);
3359         blk_queue_io_opt(q, segment_size);
3360
3361         blk_queue_merge_bvec(q, rbd_merge_bvec);
3362         disk->queue = q;
3363
3364         q->queuedata = rbd_dev;
3365
3366         rbd_dev->disk = disk;
3367
3368         return 0;
3369 out_disk:
3370         put_disk(disk);
3371
3372         return -ENOMEM;
3373 }
3374
3375 /*
3376   sysfs
3377 */
3378
3379 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3380 {
3381         return container_of(dev, struct rbd_device, dev);
3382 }
3383
3384 static ssize_t rbd_size_show(struct device *dev,
3385                              struct device_attribute *attr, char *buf)
3386 {
3387         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3388
3389         return sprintf(buf, "%llu\n",
3390                 (unsigned long long)rbd_dev->mapping.size);
3391 }
3392
3393 /*
3394  * Note this shows the features for whatever's mapped, which is not
3395  * necessarily the base image.
3396  */
3397 static ssize_t rbd_features_show(struct device *dev,
3398                              struct device_attribute *attr, char *buf)
3399 {
3400         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3401
3402         return sprintf(buf, "0x%016llx\n",
3403                         (unsigned long long)rbd_dev->mapping.features);
3404 }
3405
3406 static ssize_t rbd_major_show(struct device *dev,
3407                               struct device_attribute *attr, char *buf)
3408 {
3409         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3410
3411         if (rbd_dev->major)
3412                 return sprintf(buf, "%d\n", rbd_dev->major);
3413
3414         return sprintf(buf, "(none)\n");
3415
3416 }
3417
3418 static ssize_t rbd_client_id_show(struct device *dev,
3419                                   struct device_attribute *attr, char *buf)
3420 {
3421         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3422
3423         return sprintf(buf, "client%lld\n",
3424                         ceph_client_id(rbd_dev->rbd_client->client));
3425 }
3426
3427 static ssize_t rbd_pool_show(struct device *dev,
3428                              struct device_attribute *attr, char *buf)
3429 {
3430         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3431
3432         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3433 }
3434
3435 static ssize_t rbd_pool_id_show(struct device *dev,
3436                              struct device_attribute *attr, char *buf)
3437 {
3438         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3439
3440         return sprintf(buf, "%llu\n",
3441                         (unsigned long long) rbd_dev->spec->pool_id);
3442 }
3443
3444 static ssize_t rbd_name_show(struct device *dev,
3445                              struct device_attribute *attr, char *buf)
3446 {
3447         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3448
3449         if (rbd_dev->spec->image_name)
3450                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3451
3452         return sprintf(buf, "(unknown)\n");
3453 }
3454
3455 static ssize_t rbd_image_id_show(struct device *dev,
3456                              struct device_attribute *attr, char *buf)
3457 {
3458         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3459
3460         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3461 }
3462
3463 /*
3464  * Shows the name of the currently-mapped snapshot (or
3465  * RBD_SNAP_HEAD_NAME for the base image).
3466  */
3467 static ssize_t rbd_snap_show(struct device *dev,
3468                              struct device_attribute *attr,
3469                              char *buf)
3470 {
3471         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3472
3473         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3474 }
3475
3476 /*
3477  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3478  * for the parent image.  If there is no parent, simply shows
3479  * "(no parent image)".
3480  */
3481 static ssize_t rbd_parent_show(struct device *dev,
3482                              struct device_attribute *attr,
3483                              char *buf)
3484 {
3485         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486         struct rbd_spec *spec = rbd_dev->parent_spec;
3487         int count;
3488         char *bufp = buf;
3489
3490         if (!spec)
3491                 return sprintf(buf, "(no parent image)\n");
3492
3493         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3494                         (unsigned long long) spec->pool_id, spec->pool_name);
3495         if (count < 0)
3496                 return count;
3497         bufp += count;
3498
3499         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3500                         spec->image_name ? spec->image_name : "(unknown)");
3501         if (count < 0)
3502                 return count;
3503         bufp += count;
3504
3505         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3506                         (unsigned long long) spec->snap_id, spec->snap_name);
3507         if (count < 0)
3508                 return count;
3509         bufp += count;
3510
3511         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3512         if (count < 0)
3513                 return count;
3514         bufp += count;
3515
3516         return (ssize_t) (bufp - buf);
3517 }
3518
3519 static ssize_t rbd_image_refresh(struct device *dev,
3520                                  struct device_attribute *attr,
3521                                  const char *buf,
3522                                  size_t size)
3523 {
3524         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525         int ret;
3526
3527         ret = rbd_dev_refresh(rbd_dev);
3528         if (ret)
3529                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3530
3531         return ret < 0 ? ret : size;
3532 }
3533
3534 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3535 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3536 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3537 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3538 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3539 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3540 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3541 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3542 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3543 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3544 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3545
3546 static struct attribute *rbd_attrs[] = {
3547         &dev_attr_size.attr,
3548         &dev_attr_features.attr,
3549         &dev_attr_major.attr,
3550         &dev_attr_client_id.attr,
3551         &dev_attr_pool.attr,
3552         &dev_attr_pool_id.attr,
3553         &dev_attr_name.attr,
3554         &dev_attr_image_id.attr,
3555         &dev_attr_current_snap.attr,
3556         &dev_attr_parent.attr,
3557         &dev_attr_refresh.attr,
3558         NULL
3559 };
3560
3561 static struct attribute_group rbd_attr_group = {
3562         .attrs = rbd_attrs,
3563 };
3564
3565 static const struct attribute_group *rbd_attr_groups[] = {
3566         &rbd_attr_group,
3567         NULL
3568 };
3569
3570 static void rbd_sysfs_dev_release(struct device *dev)
3571 {
3572 }
3573
3574 static struct device_type rbd_device_type = {
3575         .name           = "rbd",
3576         .groups         = rbd_attr_groups,
3577         .release        = rbd_sysfs_dev_release,
3578 };
3579
3580 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3581 {
3582         kref_get(&spec->kref);
3583
3584         return spec;
3585 }
3586
3587 static void rbd_spec_free(struct kref *kref);
3588 static void rbd_spec_put(struct rbd_spec *spec)
3589 {
3590         if (spec)
3591                 kref_put(&spec->kref, rbd_spec_free);
3592 }
3593
3594 static struct rbd_spec *rbd_spec_alloc(void)
3595 {
3596         struct rbd_spec *spec;
3597
3598         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3599         if (!spec)
3600                 return NULL;
3601         kref_init(&spec->kref);
3602
3603         return spec;
3604 }
3605
3606 static void rbd_spec_free(struct kref *kref)
3607 {
3608         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3609
3610         kfree(spec->pool_name);
3611         kfree(spec->image_id);
3612         kfree(spec->image_name);
3613         kfree(spec->snap_name);
3614         kfree(spec);
3615 }
3616
3617 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3618                                 struct rbd_spec *spec)
3619 {
3620         struct rbd_device *rbd_dev;
3621
3622         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3623         if (!rbd_dev)
3624                 return NULL;
3625
3626         spin_lock_init(&rbd_dev->lock);
3627         rbd_dev->flags = 0;
3628         atomic_set(&rbd_dev->parent_ref, 0);
3629         INIT_LIST_HEAD(&rbd_dev->node);
3630         init_rwsem(&rbd_dev->header_rwsem);
3631
3632         rbd_dev->spec = spec;
3633         rbd_dev->rbd_client = rbdc;
3634
3635         /* Initialize the layout used for all rbd requests */
3636
3637         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3638         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3639         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3640         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3641
3642         return rbd_dev;
3643 }
3644
3645 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3646 {
3647         rbd_put_client(rbd_dev->rbd_client);
3648         rbd_spec_put(rbd_dev->spec);
3649         kfree(rbd_dev);
3650 }
3651
3652 /*
3653  * Get the size and object order for an image snapshot, or if
3654  * snap_id is CEPH_NOSNAP, gets this information for the base
3655  * image.
3656  */
3657 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3658                                 u8 *order, u64 *snap_size)
3659 {
3660         __le64 snapid = cpu_to_le64(snap_id);
3661         int ret;
3662         struct {
3663                 u8 order;
3664                 __le64 size;
3665         } __attribute__ ((packed)) size_buf = { 0 };
3666
3667         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3668                                 "rbd", "get_size",
3669                                 &snapid, sizeof (snapid),
3670                                 &size_buf, sizeof (size_buf));
3671         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3672         if (ret < 0)
3673                 return ret;
3674         if (ret < sizeof (size_buf))
3675                 return -ERANGE;
3676
3677         if (order)
3678                 *order = size_buf.order;
3679         *snap_size = le64_to_cpu(size_buf.size);
3680
3681         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3682                 (unsigned long long)snap_id, (unsigned int)*order,
3683                 (unsigned long long)*snap_size);
3684
3685         return 0;
3686 }
3687
3688 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3689 {
3690         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3691                                         &rbd_dev->header.obj_order,
3692                                         &rbd_dev->header.image_size);
3693 }
3694
3695 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3696 {
3697         void *reply_buf;
3698         int ret;
3699         void *p;
3700
3701         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3702         if (!reply_buf)
3703                 return -ENOMEM;
3704
3705         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3706                                 "rbd", "get_object_prefix", NULL, 0,
3707                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3708         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3709         if (ret < 0)
3710                 goto out;
3711
3712         p = reply_buf;
3713         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3714                                                 p + ret, NULL, GFP_NOIO);
3715         ret = 0;
3716
3717         if (IS_ERR(rbd_dev->header.object_prefix)) {
3718                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3719                 rbd_dev->header.object_prefix = NULL;
3720         } else {
3721                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3722         }
3723 out:
3724         kfree(reply_buf);
3725
3726         return ret;
3727 }
3728
3729 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3730                 u64 *snap_features)
3731 {
3732         __le64 snapid = cpu_to_le64(snap_id);
3733         struct {
3734                 __le64 features;
3735                 __le64 incompat;
3736         } __attribute__ ((packed)) features_buf = { 0 };
3737         u64 incompat;
3738         int ret;
3739
3740         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3741                                 "rbd", "get_features",
3742                                 &snapid, sizeof (snapid),
3743                                 &features_buf, sizeof (features_buf));
3744         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3745         if (ret < 0)
3746                 return ret;
3747         if (ret < sizeof (features_buf))
3748                 return -ERANGE;
3749
3750         incompat = le64_to_cpu(features_buf.incompat);
3751         if (incompat & ~RBD_FEATURES_SUPPORTED)
3752                 return -ENXIO;
3753
3754         *snap_features = le64_to_cpu(features_buf.features);
3755
3756         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3757                 (unsigned long long)snap_id,
3758                 (unsigned long long)*snap_features,
3759                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3760
3761         return 0;
3762 }
3763
3764 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3765 {
3766         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3767                                                 &rbd_dev->header.features);
3768 }
3769
3770 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3771 {
3772         struct rbd_spec *parent_spec;
3773         size_t size;
3774         void *reply_buf = NULL;
3775         __le64 snapid;
3776         void *p;
3777         void *end;
3778         u64 pool_id;
3779         char *image_id;
3780         u64 overlap;
3781         int ret;
3782
3783         parent_spec = rbd_spec_alloc();
3784         if (!parent_spec)
3785                 return -ENOMEM;
3786
3787         size = sizeof (__le64) +                                /* pool_id */
3788                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3789                 sizeof (__le64) +                               /* snap_id */
3790                 sizeof (__le64);                                /* overlap */
3791         reply_buf = kmalloc(size, GFP_KERNEL);
3792         if (!reply_buf) {
3793                 ret = -ENOMEM;
3794                 goto out_err;
3795         }
3796
3797         snapid = cpu_to_le64(CEPH_NOSNAP);
3798         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3799                                 "rbd", "get_parent",
3800                                 &snapid, sizeof (snapid),
3801                                 reply_buf, size);
3802         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3803         if (ret < 0)
3804                 goto out_err;
3805
3806         p = reply_buf;
3807         end = reply_buf + ret;
3808         ret = -ERANGE;
3809         ceph_decode_64_safe(&p, end, pool_id, out_err);
3810         if (pool_id == CEPH_NOPOOL) {
3811                 /*
3812                  * Either the parent never existed, or we have
3813                  * record of it but the image got flattened so it no
3814                  * longer has a parent.  When the parent of a
3815                  * layered image disappears we immediately set the
3816                  * overlap to 0.  The effect of this is that all new
3817                  * requests will be treated as if the image had no
3818                  * parent.
3819                  */
3820                 if (rbd_dev->parent_overlap) {
3821                         rbd_dev->parent_overlap = 0;
3822                         smp_mb();
3823                         rbd_dev_parent_put(rbd_dev);
3824                         pr_info("%s: clone image has been flattened\n",
3825                                 rbd_dev->disk->disk_name);
3826                 }
3827
3828                 goto out;       /* No parent?  No problem. */
3829         }
3830
3831         /* The ceph file layout needs to fit pool id in 32 bits */
3832
3833         ret = -EIO;
3834         if (pool_id > (u64)U32_MAX) {
3835                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3836                         (unsigned long long)pool_id, U32_MAX);
3837                 goto out_err;
3838         }
3839         parent_spec->pool_id = pool_id;
3840
3841         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3842         if (IS_ERR(image_id)) {
3843                 ret = PTR_ERR(image_id);
3844                 goto out_err;
3845         }
3846         parent_spec->image_id = image_id;
3847         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3848         ceph_decode_64_safe(&p, end, overlap, out_err);
3849
3850         if (overlap) {
3851                 rbd_spec_put(rbd_dev->parent_spec);
3852                 rbd_dev->parent_spec = parent_spec;
3853                 parent_spec = NULL;     /* rbd_dev now owns this */
3854                 rbd_dev->parent_overlap = overlap;
3855         } else {
3856                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3857         }
3858 out:
3859         ret = 0;
3860 out_err:
3861         kfree(reply_buf);
3862         rbd_spec_put(parent_spec);
3863
3864         return ret;
3865 }
3866
3867 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3868 {
3869         struct {
3870                 __le64 stripe_unit;
3871                 __le64 stripe_count;
3872         } __attribute__ ((packed)) striping_info_buf = { 0 };
3873         size_t size = sizeof (striping_info_buf);
3874         void *p;
3875         u64 obj_size;
3876         u64 stripe_unit;
3877         u64 stripe_count;
3878         int ret;
3879
3880         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3881                                 "rbd", "get_stripe_unit_count", NULL, 0,
3882                                 (char *)&striping_info_buf, size);
3883         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3884         if (ret < 0)
3885                 return ret;
3886         if (ret < size)
3887                 return -ERANGE;
3888
3889         /*
3890          * We don't actually support the "fancy striping" feature
3891          * (STRIPINGV2) yet, but if the striping sizes are the
3892          * defaults the behavior is the same as before.  So find
3893          * out, and only fail if the image has non-default values.
3894          */
3895         ret = -EINVAL;
3896         obj_size = (u64)1 << rbd_dev->header.obj_order;
3897         p = &striping_info_buf;
3898         stripe_unit = ceph_decode_64(&p);
3899         if (stripe_unit != obj_size) {
3900                 rbd_warn(rbd_dev, "unsupported stripe unit "
3901                                 "(got %llu want %llu)",
3902                                 stripe_unit, obj_size);
3903                 return -EINVAL;
3904         }
3905         stripe_count = ceph_decode_64(&p);
3906         if (stripe_count != 1) {
3907                 rbd_warn(rbd_dev, "unsupported stripe count "
3908                                 "(got %llu want 1)", stripe_count);
3909                 return -EINVAL;
3910         }
3911         rbd_dev->header.stripe_unit = stripe_unit;
3912         rbd_dev->header.stripe_count = stripe_count;
3913
3914         return 0;
3915 }
3916
3917 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3918 {
3919         size_t image_id_size;
3920         char *image_id;
3921         void *p;
3922         void *end;
3923         size_t size;
3924         void *reply_buf = NULL;
3925         size_t len = 0;
3926         char *image_name = NULL;
3927         int ret;
3928
3929         rbd_assert(!rbd_dev->spec->image_name);
3930
3931         len = strlen(rbd_dev->spec->image_id);
3932         image_id_size = sizeof (__le32) + len;
3933         image_id = kmalloc(image_id_size, GFP_KERNEL);
3934         if (!image_id)
3935                 return NULL;
3936
3937         p = image_id;
3938         end = image_id + image_id_size;
3939         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3940
3941         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3942         reply_buf = kmalloc(size, GFP_KERNEL);
3943         if (!reply_buf)
3944                 goto out;
3945
3946         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3947                                 "rbd", "dir_get_name",
3948                                 image_id, image_id_size,
3949                                 reply_buf, size);
3950         if (ret < 0)
3951                 goto out;
3952         p = reply_buf;
3953         end = reply_buf + ret;
3954
3955         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3956         if (IS_ERR(image_name))
3957                 image_name = NULL;
3958         else
3959                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3960 out:
3961         kfree(reply_buf);
3962         kfree(image_id);
3963
3964         return image_name;
3965 }
3966
3967 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3968 {
3969         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3970         const char *snap_name;
3971         u32 which = 0;
3972
3973         /* Skip over names until we find the one we are looking for */
3974
3975         snap_name = rbd_dev->header.snap_names;
3976         while (which < snapc->num_snaps) {
3977                 if (!strcmp(name, snap_name))
3978                         return snapc->snaps[which];
3979                 snap_name += strlen(snap_name) + 1;
3980                 which++;
3981         }
3982         return CEPH_NOSNAP;
3983 }
3984
3985 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3986 {
3987         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3988         u32 which;
3989         bool found = false;
3990         u64 snap_id;
3991
3992         for (which = 0; !found && which < snapc->num_snaps; which++) {
3993                 const char *snap_name;
3994
3995                 snap_id = snapc->snaps[which];
3996                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3997                 if (IS_ERR(snap_name))
3998                         break;
3999                 found = !strcmp(name, snap_name);
4000                 kfree(snap_name);
4001         }
4002         return found ? snap_id : CEPH_NOSNAP;
4003 }
4004
4005 /*
4006  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4007  * no snapshot by that name is found, or if an error occurs.
4008  */
4009 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4010 {
4011         if (rbd_dev->image_format == 1)
4012                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4013
4014         return rbd_v2_snap_id_by_name(rbd_dev, name);
4015 }
4016
4017 /*
4018  * When an rbd image has a parent image, it is identified by the
4019  * pool, image, and snapshot ids (not names).  This function fills
4020  * in the names for those ids.  (It's OK if we can't figure out the
4021  * name for an image id, but the pool and snapshot ids should always
4022  * exist and have names.)  All names in an rbd spec are dynamically
4023  * allocated.
4024  *
4025  * When an image being mapped (not a parent) is probed, we have the
4026  * pool name and pool id, image name and image id, and the snapshot
4027  * name.  The only thing we're missing is the snapshot id.
4028  */
4029 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4030 {
4031         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4032         struct rbd_spec *spec = rbd_dev->spec;
4033         const char *pool_name;
4034         const char *image_name;
4035         const char *snap_name;
4036         int ret;
4037
4038         /*
4039          * An image being mapped will have the pool name (etc.), but
4040          * we need to look up the snapshot id.
4041          */
4042         if (spec->pool_name) {
4043                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4044                         u64 snap_id;
4045
4046                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4047                         if (snap_id == CEPH_NOSNAP)
4048                                 return -ENOENT;
4049                         spec->snap_id = snap_id;
4050                 } else {
4051                         spec->snap_id = CEPH_NOSNAP;
4052                 }
4053
4054                 return 0;
4055         }
4056
4057         /* Get the pool name; we have to make our own copy of this */
4058
4059         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4060         if (!pool_name) {
4061                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4062                 return -EIO;
4063         }
4064         pool_name = kstrdup(pool_name, GFP_KERNEL);
4065         if (!pool_name)
4066                 return -ENOMEM;
4067
4068         /* Fetch the image name; tolerate failure here */
4069
4070         image_name = rbd_dev_image_name(rbd_dev);
4071         if (!image_name)
4072                 rbd_warn(rbd_dev, "unable to get image name");
4073
4074         /* Look up the snapshot name, and make a copy */
4075
4076         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4077         if (!snap_name) {
4078                 ret = -ENOMEM;
4079                 goto out_err;
4080         }
4081
4082         spec->pool_name = pool_name;
4083         spec->image_name = image_name;
4084         spec->snap_name = snap_name;
4085
4086         return 0;
4087 out_err:
4088         kfree(image_name);
4089         kfree(pool_name);
4090
4091         return ret;
4092 }
4093
4094 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4095 {
4096         size_t size;
4097         int ret;
4098         void *reply_buf;
4099         void *p;
4100         void *end;
4101         u64 seq;
4102         u32 snap_count;
4103         struct ceph_snap_context *snapc;
4104         u32 i;
4105
4106         /*
4107          * We'll need room for the seq value (maximum snapshot id),
4108          * snapshot count, and array of that many snapshot ids.
4109          * For now we have a fixed upper limit on the number we're
4110          * prepared to receive.
4111          */
4112         size = sizeof (__le64) + sizeof (__le32) +
4113                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4114         reply_buf = kzalloc(size, GFP_KERNEL);
4115         if (!reply_buf)
4116                 return -ENOMEM;
4117
4118         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119                                 "rbd", "get_snapcontext", NULL, 0,
4120                                 reply_buf, size);
4121         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4122         if (ret < 0)
4123                 goto out;
4124
4125         p = reply_buf;
4126         end = reply_buf + ret;
4127         ret = -ERANGE;
4128         ceph_decode_64_safe(&p, end, seq, out);
4129         ceph_decode_32_safe(&p, end, snap_count, out);
4130
4131         /*
4132          * Make sure the reported number of snapshot ids wouldn't go
4133          * beyond the end of our buffer.  But before checking that,
4134          * make sure the computed size of the snapshot context we
4135          * allocate is representable in a size_t.
4136          */
4137         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4138                                  / sizeof (u64)) {
4139                 ret = -EINVAL;
4140                 goto out;
4141         }
4142         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4143                 goto out;
4144         ret = 0;
4145
4146         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4147         if (!snapc) {
4148                 ret = -ENOMEM;
4149                 goto out;
4150         }
4151         snapc->seq = seq;
4152         for (i = 0; i < snap_count; i++)
4153                 snapc->snaps[i] = ceph_decode_64(&p);
4154
4155         ceph_put_snap_context(rbd_dev->header.snapc);
4156         rbd_dev->header.snapc = snapc;
4157
4158         dout("  snap context seq = %llu, snap_count = %u\n",
4159                 (unsigned long long)seq, (unsigned int)snap_count);
4160 out:
4161         kfree(reply_buf);
4162
4163         return ret;
4164 }
4165
4166 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4167                                         u64 snap_id)
4168 {
4169         size_t size;
4170         void *reply_buf;
4171         __le64 snapid;
4172         int ret;
4173         void *p;
4174         void *end;
4175         char *snap_name;
4176
4177         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4178         reply_buf = kmalloc(size, GFP_KERNEL);
4179         if (!reply_buf)
4180                 return ERR_PTR(-ENOMEM);
4181
4182         snapid = cpu_to_le64(snap_id);
4183         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4184                                 "rbd", "get_snapshot_name",
4185                                 &snapid, sizeof (snapid),
4186                                 reply_buf, size);
4187         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4188         if (ret < 0) {
4189                 snap_name = ERR_PTR(ret);
4190                 goto out;
4191         }
4192
4193         p = reply_buf;
4194         end = reply_buf + ret;
4195         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4196         if (IS_ERR(snap_name))
4197                 goto out;
4198
4199         dout("  snap_id 0x%016llx snap_name = %s\n",
4200                 (unsigned long long)snap_id, snap_name);
4201 out:
4202         kfree(reply_buf);
4203
4204         return snap_name;
4205 }
4206
4207 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4208 {
4209         bool first_time = rbd_dev->header.object_prefix == NULL;
4210         int ret;
4211
4212         down_write(&rbd_dev->header_rwsem);
4213
4214         if (first_time) {
4215                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4216                 if (ret)
4217                         goto out;
4218         }
4219
4220         /*
4221          * If the image supports layering, get the parent info.  We
4222          * need to probe the first time regardless.  Thereafter we
4223          * only need to if there's a parent, to see if it has
4224          * disappeared due to the mapped image getting flattened.
4225          */
4226         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4227                         (first_time || rbd_dev->parent_spec)) {
4228                 bool warn;
4229
4230                 ret = rbd_dev_v2_parent_info(rbd_dev);
4231                 if (ret)
4232                         goto out;
4233
4234                 /*
4235                  * Print a warning if this is the initial probe and
4236                  * the image has a parent.  Don't print it if the
4237                  * image now being probed is itself a parent.  We
4238                  * can tell at this point because we won't know its
4239                  * pool name yet (just its pool id).
4240                  */
4241                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4242                 if (first_time && warn)
4243                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4244                                         "is EXPERIMENTAL!");
4245         }
4246
4247         ret = rbd_dev_v2_image_size(rbd_dev);
4248         if (ret)
4249                 goto out;
4250
4251         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4252                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4253                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4254
4255         ret = rbd_dev_v2_snap_context(rbd_dev);
4256         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4257 out:
4258         up_write(&rbd_dev->header_rwsem);
4259
4260         return ret;
4261 }
4262
4263 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4264 {
4265         struct device *dev;
4266         int ret;
4267
4268         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4269
4270         dev = &rbd_dev->dev;
4271         dev->bus = &rbd_bus_type;
4272         dev->type = &rbd_device_type;
4273         dev->parent = &rbd_root_dev;
4274         dev->release = rbd_dev_device_release;
4275         dev_set_name(dev, "%d", rbd_dev->dev_id);
4276         ret = device_register(dev);
4277
4278         mutex_unlock(&ctl_mutex);
4279
4280         return ret;
4281 }
4282
4283 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4284 {
4285         device_unregister(&rbd_dev->dev);
4286 }
4287
4288 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4289
4290 /*
4291  * Get a unique rbd identifier for the given new rbd_dev, and add
4292  * the rbd_dev to the global list.  The minimum rbd id is 1.
4293  */
4294 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4295 {
4296         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4297
4298         spin_lock(&rbd_dev_list_lock);
4299         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4300         spin_unlock(&rbd_dev_list_lock);
4301         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4302                 (unsigned long long) rbd_dev->dev_id);
4303 }
4304
4305 /*
4306  * Remove an rbd_dev from the global list, and record that its
4307  * identifier is no longer in use.
4308  */
4309 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4310 {
4311         struct list_head *tmp;
4312         int rbd_id = rbd_dev->dev_id;
4313         int max_id;
4314
4315         rbd_assert(rbd_id > 0);
4316
4317         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4318                 (unsigned long long) rbd_dev->dev_id);
4319         spin_lock(&rbd_dev_list_lock);
4320         list_del_init(&rbd_dev->node);
4321
4322         /*
4323          * If the id being "put" is not the current maximum, there
4324          * is nothing special we need to do.
4325          */
4326         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4327                 spin_unlock(&rbd_dev_list_lock);
4328                 return;
4329         }
4330
4331         /*
4332          * We need to update the current maximum id.  Search the
4333          * list to find out what it is.  We're more likely to find
4334          * the maximum at the end, so search the list backward.
4335          */
4336         max_id = 0;
4337         list_for_each_prev(tmp, &rbd_dev_list) {
4338                 struct rbd_device *rbd_dev;
4339
4340                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4341                 if (rbd_dev->dev_id > max_id)
4342                         max_id = rbd_dev->dev_id;
4343         }
4344         spin_unlock(&rbd_dev_list_lock);
4345
4346         /*
4347          * The max id could have been updated by rbd_dev_id_get(), in
4348          * which case it now accurately reflects the new maximum.
4349          * Be careful not to overwrite the maximum value in that
4350          * case.
4351          */
4352         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4353         dout("  max dev id has been reset\n");
4354 }
4355
4356 /*
4357  * Skips over white space at *buf, and updates *buf to point to the
4358  * first found non-space character (if any). Returns the length of
4359  * the token (string of non-white space characters) found.  Note
4360  * that *buf must be terminated with '\0'.
4361  */
4362 static inline size_t next_token(const char **buf)
4363 {
4364         /*
4365         * These are the characters that produce nonzero for
4366         * isspace() in the "C" and "POSIX" locales.
4367         */
4368         const char *spaces = " \f\n\r\t\v";
4369
4370         *buf += strspn(*buf, spaces);   /* Find start of token */
4371
4372         return strcspn(*buf, spaces);   /* Return token length */
4373 }
4374
4375 /*
4376  * Finds the next token in *buf, and if the provided token buffer is
4377  * big enough, copies the found token into it.  The result, if
4378  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4379  * must be terminated with '\0' on entry.
4380  *
4381  * Returns the length of the token found (not including the '\0').
4382  * Return value will be 0 if no token is found, and it will be >=
4383  * token_size if the token would not fit.
4384  *
4385  * The *buf pointer will be updated to point beyond the end of the
4386  * found token.  Note that this occurs even if the token buffer is
4387  * too small to hold it.
4388  */
4389 static inline size_t copy_token(const char **buf,
4390                                 char *token,
4391                                 size_t token_size)
4392 {
4393         size_t len;
4394
4395         len = next_token(buf);
4396         if (len < token_size) {
4397                 memcpy(token, *buf, len);
4398                 *(token + len) = '\0';
4399         }
4400         *buf += len;
4401
4402         return len;
4403 }
4404
4405 /*
4406  * Finds the next token in *buf, dynamically allocates a buffer big
4407  * enough to hold a copy of it, and copies the token into the new
4408  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4409  * that a duplicate buffer is created even for a zero-length token.
4410  *
4411  * Returns a pointer to the newly-allocated duplicate, or a null
4412  * pointer if memory for the duplicate was not available.  If
4413  * the lenp argument is a non-null pointer, the length of the token
4414  * (not including the '\0') is returned in *lenp.
4415  *
4416  * If successful, the *buf pointer will be updated to point beyond
4417  * the end of the found token.
4418  *
4419  * Note: uses GFP_KERNEL for allocation.
4420  */
4421 static inline char *dup_token(const char **buf, size_t *lenp)
4422 {
4423         char *dup;
4424         size_t len;
4425
4426         len = next_token(buf);
4427         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4428         if (!dup)
4429                 return NULL;
4430         *(dup + len) = '\0';
4431         *buf += len;
4432
4433         if (lenp)
4434                 *lenp = len;
4435
4436         return dup;
4437 }
4438
4439 /*
4440  * Parse the options provided for an "rbd add" (i.e., rbd image
4441  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4442  * and the data written is passed here via a NUL-terminated buffer.
4443  * Returns 0 if successful or an error code otherwise.
4444  *
4445  * The information extracted from these options is recorded in
4446  * the other parameters which return dynamically-allocated
4447  * structures:
4448  *  ceph_opts
4449  *      The address of a pointer that will refer to a ceph options
4450  *      structure.  Caller must release the returned pointer using
4451  *      ceph_destroy_options() when it is no longer needed.
4452  *  rbd_opts
4453  *      Address of an rbd options pointer.  Fully initialized by
4454  *      this function; caller must release with kfree().
4455  *  spec
4456  *      Address of an rbd image specification pointer.  Fully
4457  *      initialized by this function based on parsed options.
4458  *      Caller must release with rbd_spec_put().
4459  *
4460  * The options passed take this form:
4461  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4462  * where:
4463  *  <mon_addrs>
4464  *      A comma-separated list of one or more monitor addresses.
4465  *      A monitor address is an ip address, optionally followed
4466  *      by a port number (separated by a colon).
4467  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4468  *  <options>
4469  *      A comma-separated list of ceph and/or rbd options.
4470  *  <pool_name>
4471  *      The name of the rados pool containing the rbd image.
4472  *  <image_name>
4473  *      The name of the image in that pool to map.
4474  *  <snap_id>
4475  *      An optional snapshot id.  If provided, the mapping will
4476  *      present data from the image at the time that snapshot was
4477  *      created.  The image head is used if no snapshot id is
4478  *      provided.  Snapshot mappings are always read-only.
4479  */
4480 static int rbd_add_parse_args(const char *buf,
4481                                 struct ceph_options **ceph_opts,
4482                                 struct rbd_options **opts,
4483                                 struct rbd_spec **rbd_spec)
4484 {
4485         size_t len;
4486         char *options;
4487         const char *mon_addrs;
4488         char *snap_name;
4489         size_t mon_addrs_size;
4490         struct rbd_spec *spec = NULL;
4491         struct rbd_options *rbd_opts = NULL;
4492         struct ceph_options *copts;
4493         int ret;
4494
4495         /* The first four tokens are required */
4496
4497         len = next_token(&buf);
4498         if (!len) {
4499                 rbd_warn(NULL, "no monitor address(es) provided");
4500                 return -EINVAL;
4501         }
4502         mon_addrs = buf;
4503         mon_addrs_size = len + 1;
4504         buf += len;
4505
4506         ret = -EINVAL;
4507         options = dup_token(&buf, NULL);
4508         if (!options)
4509                 return -ENOMEM;
4510         if (!*options) {
4511                 rbd_warn(NULL, "no options provided");
4512                 goto out_err;
4513         }
4514
4515         spec = rbd_spec_alloc();
4516         if (!spec)
4517                 goto out_mem;
4518
4519         spec->pool_name = dup_token(&buf, NULL);
4520         if (!spec->pool_name)
4521                 goto out_mem;
4522         if (!*spec->pool_name) {
4523                 rbd_warn(NULL, "no pool name provided");
4524                 goto out_err;
4525         }
4526
4527         spec->image_name = dup_token(&buf, NULL);
4528         if (!spec->image_name)
4529                 goto out_mem;
4530         if (!*spec->image_name) {
4531                 rbd_warn(NULL, "no image name provided");
4532                 goto out_err;
4533         }
4534
4535         /*
4536          * Snapshot name is optional; default is to use "-"
4537          * (indicating the head/no snapshot).
4538          */
4539         len = next_token(&buf);
4540         if (!len) {
4541                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4542                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4543         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4544                 ret = -ENAMETOOLONG;
4545                 goto out_err;
4546         }
4547         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4548         if (!snap_name)
4549                 goto out_mem;
4550         *(snap_name + len) = '\0';
4551         spec->snap_name = snap_name;
4552
4553         /* Initialize all rbd options to the defaults */
4554
4555         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4556         if (!rbd_opts)
4557                 goto out_mem;
4558
4559         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4560
4561         copts = ceph_parse_options(options, mon_addrs,
4562                                         mon_addrs + mon_addrs_size - 1,
4563                                         parse_rbd_opts_token, rbd_opts);
4564         if (IS_ERR(copts)) {
4565                 ret = PTR_ERR(copts);
4566                 goto out_err;
4567         }
4568         kfree(options);
4569
4570         *ceph_opts = copts;
4571         *opts = rbd_opts;
4572         *rbd_spec = spec;
4573
4574         return 0;
4575 out_mem:
4576         ret = -ENOMEM;
4577 out_err:
4578         kfree(rbd_opts);
4579         rbd_spec_put(spec);
4580         kfree(options);
4581
4582         return ret;
4583 }
4584
4585 /*
4586  * An rbd format 2 image has a unique identifier, distinct from the
4587  * name given to it by the user.  Internally, that identifier is
4588  * what's used to specify the names of objects related to the image.
4589  *
4590  * A special "rbd id" object is used to map an rbd image name to its
4591  * id.  If that object doesn't exist, then there is no v2 rbd image
4592  * with the supplied name.
4593  *
4594  * This function will record the given rbd_dev's image_id field if
4595  * it can be determined, and in that case will return 0.  If any
4596  * errors occur a negative errno will be returned and the rbd_dev's
4597  * image_id field will be unchanged (and should be NULL).
4598  */
4599 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4600 {
4601         int ret;
4602         size_t size;
4603         char *object_name;
4604         void *response;
4605         char *image_id;
4606
4607         /*
4608          * When probing a parent image, the image id is already
4609          * known (and the image name likely is not).  There's no
4610          * need to fetch the image id again in this case.  We
4611          * do still need to set the image format though.
4612          */
4613         if (rbd_dev->spec->image_id) {
4614                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4615
4616                 return 0;
4617         }
4618
4619         /*
4620          * First, see if the format 2 image id file exists, and if
4621          * so, get the image's persistent id from it.
4622          */
4623         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4624         object_name = kmalloc(size, GFP_NOIO);
4625         if (!object_name)
4626                 return -ENOMEM;
4627         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4628         dout("rbd id object name is %s\n", object_name);
4629
4630         /* Response will be an encoded string, which includes a length */
4631
4632         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4633         response = kzalloc(size, GFP_NOIO);
4634         if (!response) {
4635                 ret = -ENOMEM;
4636                 goto out;
4637         }
4638
4639         /* If it doesn't exist we'll assume it's a format 1 image */
4640
4641         ret = rbd_obj_method_sync(rbd_dev, object_name,
4642                                 "rbd", "get_id", NULL, 0,
4643                                 response, RBD_IMAGE_ID_LEN_MAX);
4644         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4645         if (ret == -ENOENT) {
4646                 image_id = kstrdup("", GFP_KERNEL);
4647                 ret = image_id ? 0 : -ENOMEM;
4648                 if (!ret)
4649                         rbd_dev->image_format = 1;
4650         } else if (ret > sizeof (__le32)) {
4651                 void *p = response;
4652
4653                 image_id = ceph_extract_encoded_string(&p, p + ret,
4654                                                 NULL, GFP_NOIO);
4655                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4656                 if (!ret)
4657                         rbd_dev->image_format = 2;
4658         } else {
4659                 ret = -EINVAL;
4660         }
4661
4662         if (!ret) {
4663                 rbd_dev->spec->image_id = image_id;
4664                 dout("image_id is %s\n", image_id);
4665         }
4666 out:
4667         kfree(response);
4668         kfree(object_name);
4669
4670         return ret;
4671 }
4672
4673 /* Undo whatever state changes are made by v1 or v2 image probe */
4674
4675 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4676 {
4677         struct rbd_image_header *header;
4678
4679         /* Drop parent reference unless it's already been done (or none) */
4680
4681         if (rbd_dev->parent_overlap)
4682                 rbd_dev_parent_put(rbd_dev);
4683
4684         /* Free dynamic fields from the header, then zero it out */
4685
4686         header = &rbd_dev->header;
4687         ceph_put_snap_context(header->snapc);
4688         kfree(header->snap_sizes);
4689         kfree(header->snap_names);
4690         kfree(header->object_prefix);
4691         memset(header, 0, sizeof (*header));
4692 }
4693
4694 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4695 {
4696         int ret;
4697
4698         ret = rbd_dev_v2_object_prefix(rbd_dev);
4699         if (ret)
4700                 goto out_err;
4701
4702         /*
4703          * Get the and check features for the image.  Currently the
4704          * features are assumed to never change.
4705          */
4706         ret = rbd_dev_v2_features(rbd_dev);
4707         if (ret)
4708                 goto out_err;
4709
4710         /* If the image supports fancy striping, get its parameters */
4711
4712         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4713                 ret = rbd_dev_v2_striping_info(rbd_dev);
4714                 if (ret < 0)
4715                         goto out_err;
4716         }
4717         /* No support for crypto and compression type format 2 images */
4718
4719         return 0;
4720 out_err:
4721         rbd_dev->header.features = 0;
4722         kfree(rbd_dev->header.object_prefix);
4723         rbd_dev->header.object_prefix = NULL;
4724
4725         return ret;
4726 }
4727
4728 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4729 {
4730         struct rbd_device *parent = NULL;
4731         struct rbd_spec *parent_spec;
4732         struct rbd_client *rbdc;
4733         int ret;
4734
4735         if (!rbd_dev->parent_spec)
4736                 return 0;
4737         /*
4738          * We need to pass a reference to the client and the parent
4739          * spec when creating the parent rbd_dev.  Images related by
4740          * parent/child relationships always share both.
4741          */
4742         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4743         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4744
4745         ret = -ENOMEM;
4746         parent = rbd_dev_create(rbdc, parent_spec);
4747         if (!parent)
4748                 goto out_err;
4749
4750         ret = rbd_dev_image_probe(parent, false);
4751         if (ret < 0)
4752                 goto out_err;
4753         rbd_dev->parent = parent;
4754         atomic_set(&rbd_dev->parent_ref, 1);
4755
4756         return 0;
4757 out_err:
4758         if (parent) {
4759                 rbd_dev_unparent(rbd_dev);
4760                 kfree(rbd_dev->header_name);
4761                 rbd_dev_destroy(parent);
4762         } else {
4763                 rbd_put_client(rbdc);
4764                 rbd_spec_put(parent_spec);
4765         }
4766
4767         return ret;
4768 }
4769
4770 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4771 {
4772         int ret;
4773
4774         /* generate unique id: find highest unique id, add one */
4775         rbd_dev_id_get(rbd_dev);
4776
4777         /* Fill in the device name, now that we have its id. */
4778         BUILD_BUG_ON(DEV_NAME_LEN
4779                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4780         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4781
4782         /* Get our block major device number. */
4783
4784         ret = register_blkdev(0, rbd_dev->name);
4785         if (ret < 0)
4786                 goto err_out_id;
4787         rbd_dev->major = ret;
4788
4789         /* Set up the blkdev mapping. */
4790
4791         ret = rbd_init_disk(rbd_dev);
4792         if (ret)
4793                 goto err_out_blkdev;
4794
4795         ret = rbd_dev_mapping_set(rbd_dev);
4796         if (ret)
4797                 goto err_out_disk;
4798         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4799
4800         ret = rbd_bus_add_dev(rbd_dev);
4801         if (ret)
4802                 goto err_out_mapping;
4803
4804         /* Everything's ready.  Announce the disk to the world. */
4805
4806         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4807         add_disk(rbd_dev->disk);
4808
4809         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4810                 (unsigned long long) rbd_dev->mapping.size);
4811
4812         return ret;
4813
4814 err_out_mapping:
4815         rbd_dev_mapping_clear(rbd_dev);
4816 err_out_disk:
4817         rbd_free_disk(rbd_dev);
4818 err_out_blkdev:
4819         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4820 err_out_id:
4821         rbd_dev_id_put(rbd_dev);
4822         rbd_dev_mapping_clear(rbd_dev);
4823
4824         return ret;
4825 }
4826
4827 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4828 {
4829         struct rbd_spec *spec = rbd_dev->spec;
4830         size_t size;
4831
4832         /* Record the header object name for this rbd image. */
4833
4834         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4835
4836         if (rbd_dev->image_format == 1)
4837                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4838         else
4839                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4840
4841         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4842         if (!rbd_dev->header_name)
4843                 return -ENOMEM;
4844
4845         if (rbd_dev->image_format == 1)
4846                 sprintf(rbd_dev->header_name, "%s%s",
4847                         spec->image_name, RBD_SUFFIX);
4848         else
4849                 sprintf(rbd_dev->header_name, "%s%s",
4850                         RBD_HEADER_PREFIX, spec->image_id);
4851         return 0;
4852 }
4853
4854 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4855 {
4856         rbd_dev_unprobe(rbd_dev);
4857         kfree(rbd_dev->header_name);
4858         rbd_dev->header_name = NULL;
4859         rbd_dev->image_format = 0;
4860         kfree(rbd_dev->spec->image_id);
4861         rbd_dev->spec->image_id = NULL;
4862
4863         rbd_dev_destroy(rbd_dev);
4864 }
4865
4866 /*
4867  * Probe for the existence of the header object for the given rbd
4868  * device.  If this image is the one being mapped (i.e., not a
4869  * parent), initiate a watch on its header object before using that
4870  * object to get detailed information about the rbd image.
4871  */
4872 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4873 {
4874         int ret;
4875         int tmp;
4876
4877         /*
4878          * Get the id from the image id object.  If it's not a
4879          * format 2 image, we'll get ENOENT back, and we'll assume
4880          * it's a format 1 image.
4881          */
4882         ret = rbd_dev_image_id(rbd_dev);
4883         if (ret)
4884                 return ret;
4885         rbd_assert(rbd_dev->spec->image_id);
4886         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4887
4888         ret = rbd_dev_header_name(rbd_dev);
4889         if (ret)
4890                 goto err_out_format;
4891
4892         if (mapping) {
4893                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4894                 if (ret)
4895                         goto out_header_name;
4896         }
4897
4898         if (rbd_dev->image_format == 1)
4899                 ret = rbd_dev_v1_header_info(rbd_dev);
4900         else
4901                 ret = rbd_dev_v2_header_info(rbd_dev);
4902         if (ret)
4903                 goto err_out_watch;
4904
4905         ret = rbd_dev_spec_update(rbd_dev);
4906         if (ret)
4907                 goto err_out_probe;
4908
4909         ret = rbd_dev_probe_parent(rbd_dev);
4910         if (ret)
4911                 goto err_out_probe;
4912
4913         dout("discovered format %u image, header name is %s\n",
4914                 rbd_dev->image_format, rbd_dev->header_name);
4915
4916         return 0;
4917 err_out_probe:
4918         rbd_dev_unprobe(rbd_dev);
4919 err_out_watch:
4920         if (mapping) {
4921                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4922                 if (tmp)
4923                         rbd_warn(rbd_dev, "unable to tear down "
4924                                         "watch request (%d)\n", tmp);
4925         }
4926 out_header_name:
4927         kfree(rbd_dev->header_name);
4928         rbd_dev->header_name = NULL;
4929 err_out_format:
4930         rbd_dev->image_format = 0;
4931         kfree(rbd_dev->spec->image_id);
4932         rbd_dev->spec->image_id = NULL;
4933
4934         dout("probe failed, returning %d\n", ret);
4935
4936         return ret;
4937 }
4938
4939 static ssize_t rbd_add(struct bus_type *bus,
4940                        const char *buf,
4941                        size_t count)
4942 {
4943         struct rbd_device *rbd_dev = NULL;
4944         struct ceph_options *ceph_opts = NULL;
4945         struct rbd_options *rbd_opts = NULL;
4946         struct rbd_spec *spec = NULL;
4947         struct rbd_client *rbdc;
4948         struct ceph_osd_client *osdc;
4949         bool read_only;
4950         int rc = -ENOMEM;
4951
4952         if (!try_module_get(THIS_MODULE))
4953                 return -ENODEV;
4954
4955         /* parse add command */
4956         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4957         if (rc < 0)
4958                 goto err_out_module;
4959         read_only = rbd_opts->read_only;
4960         kfree(rbd_opts);
4961         rbd_opts = NULL;        /* done with this */
4962
4963         rbdc = rbd_get_client(ceph_opts);
4964         if (IS_ERR(rbdc)) {
4965                 rc = PTR_ERR(rbdc);
4966                 goto err_out_args;
4967         }
4968         ceph_opts = NULL;       /* rbd_dev client now owns this */
4969
4970         /* pick the pool */
4971         osdc = &rbdc->client->osdc;
4972         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4973         if (rc < 0)
4974                 goto err_out_client;
4975         spec->pool_id = (u64)rc;
4976
4977         /* The ceph file layout needs to fit pool id in 32 bits */
4978
4979         if (spec->pool_id > (u64)U32_MAX) {
4980                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4981                                 (unsigned long long)spec->pool_id, U32_MAX);
4982                 rc = -EIO;
4983                 goto err_out_client;
4984         }
4985
4986         rbd_dev = rbd_dev_create(rbdc, spec);
4987         if (!rbd_dev)
4988                 goto err_out_client;
4989         rbdc = NULL;            /* rbd_dev now owns this */
4990         spec = NULL;            /* rbd_dev now owns this */
4991
4992         rc = rbd_dev_image_probe(rbd_dev, true);
4993         if (rc < 0)
4994                 goto err_out_rbd_dev;
4995
4996         /* If we are mapping a snapshot it must be marked read-only */
4997
4998         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
4999                 read_only = true;
5000         rbd_dev->mapping.read_only = read_only;
5001
5002         rc = rbd_dev_device_setup(rbd_dev);
5003         if (!rc)
5004                 return count;
5005
5006         rbd_dev_image_release(rbd_dev);
5007 err_out_rbd_dev:
5008         rbd_dev_destroy(rbd_dev);
5009 err_out_client:
5010         rbd_put_client(rbdc);
5011 err_out_args:
5012         if (ceph_opts)
5013                 ceph_destroy_options(ceph_opts);
5014         kfree(rbd_opts);
5015         rbd_spec_put(spec);
5016 err_out_module:
5017         module_put(THIS_MODULE);
5018
5019         dout("Error adding device %s\n", buf);
5020
5021         return (ssize_t)rc;
5022 }
5023
5024 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5025 {
5026         struct list_head *tmp;
5027         struct rbd_device *rbd_dev;
5028
5029         spin_lock(&rbd_dev_list_lock);
5030         list_for_each(tmp, &rbd_dev_list) {
5031                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5032                 if (rbd_dev->dev_id == dev_id) {
5033                         spin_unlock(&rbd_dev_list_lock);
5034                         return rbd_dev;
5035                 }
5036         }
5037         spin_unlock(&rbd_dev_list_lock);
5038         return NULL;
5039 }
5040
5041 static void rbd_dev_device_release(struct device *dev)
5042 {
5043         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5044
5045         rbd_free_disk(rbd_dev);
5046         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5047         rbd_dev_mapping_clear(rbd_dev);
5048         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5049         rbd_dev->major = 0;
5050         rbd_dev_id_put(rbd_dev);
5051         rbd_dev_mapping_clear(rbd_dev);
5052 }
5053
5054 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5055 {
5056         while (rbd_dev->parent) {
5057                 struct rbd_device *first = rbd_dev;
5058                 struct rbd_device *second = first->parent;
5059                 struct rbd_device *third;
5060
5061                 /*
5062                  * Follow to the parent with no grandparent and
5063                  * remove it.
5064                  */
5065                 while (second && (third = second->parent)) {
5066                         first = second;
5067                         second = third;
5068                 }
5069                 rbd_assert(second);
5070                 rbd_dev_image_release(second);
5071                 first->parent = NULL;
5072                 first->parent_overlap = 0;
5073
5074                 rbd_assert(first->parent_spec);
5075                 rbd_spec_put(first->parent_spec);
5076                 first->parent_spec = NULL;
5077         }
5078 }
5079
5080 static ssize_t rbd_remove(struct bus_type *bus,
5081                           const char *buf,
5082                           size_t count)
5083 {
5084         struct rbd_device *rbd_dev = NULL;
5085         int target_id;
5086         unsigned long ul;
5087         int ret;
5088
5089         ret = strict_strtoul(buf, 10, &ul);
5090         if (ret)
5091                 return ret;
5092
5093         /* convert to int; abort if we lost anything in the conversion */
5094         target_id = (int) ul;
5095         if (target_id != ul)
5096                 return -EINVAL;
5097
5098         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5099
5100         rbd_dev = __rbd_get_dev(target_id);
5101         if (!rbd_dev) {
5102                 ret = -ENOENT;
5103                 goto done;
5104         }
5105
5106         spin_lock_irq(&rbd_dev->lock);
5107         if (rbd_dev->open_count)
5108                 ret = -EBUSY;
5109         else
5110                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5111         spin_unlock_irq(&rbd_dev->lock);
5112         if (ret < 0)
5113                 goto done;
5114         rbd_bus_del_dev(rbd_dev);
5115         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5116         if (ret)
5117                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5118         rbd_dev_image_release(rbd_dev);
5119         module_put(THIS_MODULE);
5120         ret = count;
5121 done:
5122         mutex_unlock(&ctl_mutex);
5123
5124         return ret;
5125 }
5126
5127 /*
5128  * create control files in sysfs
5129  * /sys/bus/rbd/...
5130  */
5131 static int rbd_sysfs_init(void)
5132 {
5133         int ret;
5134
5135         ret = device_register(&rbd_root_dev);
5136         if (ret < 0)
5137                 return ret;
5138
5139         ret = bus_register(&rbd_bus_type);
5140         if (ret < 0)
5141                 device_unregister(&rbd_root_dev);
5142
5143         return ret;
5144 }
5145
5146 static void rbd_sysfs_cleanup(void)
5147 {
5148         bus_unregister(&rbd_bus_type);
5149         device_unregister(&rbd_root_dev);
5150 }
5151
5152 static int rbd_slab_init(void)
5153 {
5154         rbd_assert(!rbd_img_request_cache);
5155         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5156                                         sizeof (struct rbd_img_request),
5157                                         __alignof__(struct rbd_img_request),
5158                                         0, NULL);
5159         if (!rbd_img_request_cache)
5160                 return -ENOMEM;
5161
5162         rbd_assert(!rbd_obj_request_cache);
5163         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5164                                         sizeof (struct rbd_obj_request),
5165                                         __alignof__(struct rbd_obj_request),
5166                                         0, NULL);
5167         if (!rbd_obj_request_cache)
5168                 goto out_err;
5169
5170         rbd_assert(!rbd_segment_name_cache);
5171         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5172                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5173         if (rbd_segment_name_cache)
5174                 return 0;
5175 out_err:
5176         if (rbd_obj_request_cache) {
5177                 kmem_cache_destroy(rbd_obj_request_cache);
5178                 rbd_obj_request_cache = NULL;
5179         }
5180
5181         kmem_cache_destroy(rbd_img_request_cache);
5182         rbd_img_request_cache = NULL;
5183
5184         return -ENOMEM;
5185 }
5186
5187 static void rbd_slab_exit(void)
5188 {
5189         rbd_assert(rbd_segment_name_cache);
5190         kmem_cache_destroy(rbd_segment_name_cache);
5191         rbd_segment_name_cache = NULL;
5192
5193         rbd_assert(rbd_obj_request_cache);
5194         kmem_cache_destroy(rbd_obj_request_cache);
5195         rbd_obj_request_cache = NULL;
5196
5197         rbd_assert(rbd_img_request_cache);
5198         kmem_cache_destroy(rbd_img_request_cache);
5199         rbd_img_request_cache = NULL;
5200 }
5201
5202 static int __init rbd_init(void)
5203 {
5204         int rc;
5205
5206         if (!libceph_compatible(NULL)) {
5207                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5208
5209                 return -EINVAL;
5210         }
5211         rc = rbd_slab_init();
5212         if (rc)
5213                 return rc;
5214         rc = rbd_sysfs_init();
5215         if (rc)
5216                 rbd_slab_exit();
5217         else
5218                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5219
5220         return rc;
5221 }
5222
5223 static void __exit rbd_exit(void)
5224 {
5225         rbd_sysfs_cleanup();
5226         rbd_slab_exit();
5227 }
5228
5229 module_init(rbd_init);
5230 module_exit(rbd_exit);
5231
5232 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5233 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5234 MODULE_DESCRIPTION("rados block device");
5235
5236 /* following authorship retained from original osdblk.c */
5237 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5238
5239 MODULE_LICENSE("GPL");