]> Pileus Git - ~andy/linux/blob - drivers/block/nvme.c
3cf82c27a5447ff068ba43923d2d599ef52a6dc9
[~andy/linux] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define NVME_IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
63  */
64 struct nvme_dev {
65         struct list_head node;
66         struct nvme_queue **queues;
67         u32 __iomem *dbs;
68         struct pci_dev *pci_dev;
69         struct dma_pool *prp_page_pool;
70         struct dma_pool *prp_small_pool;
71         int instance;
72         int queue_count;
73         int db_stride;
74         u32 ctrl_config;
75         struct msix_entry *entry;
76         struct nvme_bar __iomem *bar;
77         struct list_head namespaces;
78         char serial[20];
79         char model[40];
80         char firmware_rev[8];
81 };
82
83 /*
84  * An NVM Express namespace is equivalent to a SCSI LUN
85  */
86 struct nvme_ns {
87         struct list_head list;
88
89         struct nvme_dev *dev;
90         struct request_queue *queue;
91         struct gendisk *disk;
92
93         int ns_id;
94         int lba_shift;
95 };
96
97 /*
98  * An NVM Express queue.  Each device has at least two (one for admin
99  * commands and one for I/O commands).
100  */
101 struct nvme_queue {
102         struct device *q_dmadev;
103         struct nvme_dev *dev;
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         dma_addr_t sq_dma_addr;
108         dma_addr_t cq_dma_addr;
109         wait_queue_head_t sq_full;
110         wait_queue_t sq_cong_wait;
111         struct bio_list sq_cong;
112         u32 __iomem *q_db;
113         u16 q_depth;
114         u16 cq_vector;
115         u16 sq_head;
116         u16 sq_tail;
117         u16 cq_head;
118         u16 cq_phase;
119         unsigned long cmdid_data[];
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 }
137
138 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
139                                                 struct nvme_completion *);
140
141 struct nvme_cmd_info {
142         nvme_completion_fn fn;
143         void *ctx;
144         unsigned long timeout;
145 };
146
147 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148 {
149         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150 }
151
152 /**
153  * alloc_cmdid() - Allocate a Command ID
154  * @nvmeq: The queue that will be used for this command
155  * @ctx: A pointer that will be passed to the handler
156  * @handler: The function to call on completion
157  *
158  * Allocate a Command ID for a queue.  The data passed in will
159  * be passed to the completion handler.  This is implemented by using
160  * the bottom two bits of the ctx pointer to store the handler ID.
161  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162  * We can change this if it becomes a problem.
163  *
164  * May be called with local interrupts disabled and the q_lock held,
165  * or with interrupts enabled and no locks held.
166  */
167 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168                                 nvme_completion_fn handler, unsigned timeout)
169 {
170         int depth = nvmeq->q_depth - 1;
171         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
172         int cmdid;
173
174         do {
175                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176                 if (cmdid >= depth)
177                         return -EBUSY;
178         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
180         info[cmdid].fn = handler;
181         info[cmdid].ctx = ctx;
182         info[cmdid].timeout = jiffies + timeout;
183         return cmdid;
184 }
185
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187                                 nvme_completion_fn handler, unsigned timeout)
188 {
189         int cmdid;
190         wait_event_killable(nvmeq->sq_full,
191                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192         return (cmdid < 0) ? -EINTR : cmdid;
193 }
194
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static void special_completion(struct nvme_dev *dev, void *ctx,
203                                                 struct nvme_completion *cqe)
204 {
205         if (ctx == CMD_CTX_CANCELLED)
206                 return;
207         if (ctx == CMD_CTX_FLUSH)
208                 return;
209         if (ctx == CMD_CTX_COMPLETED) {
210                 dev_warn(&dev->pci_dev->dev,
211                                 "completed id %d twice on queue %d\n",
212                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213                 return;
214         }
215         if (ctx == CMD_CTX_INVALID) {
216                 dev_warn(&dev->pci_dev->dev,
217                                 "invalid id %d completed on queue %d\n",
218                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219                 return;
220         }
221
222         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
223 }
224
225 /*
226  * Called with local interrupts disabled and the q_lock held.  May not sleep.
227  */
228 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229                                                 nvme_completion_fn *fn)
230 {
231         void *ctx;
232         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
233
234         if (cmdid >= nvmeq->q_depth) {
235                 *fn = special_completion;
236                 return CMD_CTX_INVALID;
237         }
238         *fn = info[cmdid].fn;
239         ctx = info[cmdid].ctx;
240         info[cmdid].fn = special_completion;
241         info[cmdid].ctx = CMD_CTX_COMPLETED;
242         clear_bit(cmdid, nvmeq->cmdid_data);
243         wake_up(&nvmeq->sq_full);
244         return ctx;
245 }
246
247 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248                                                 nvme_completion_fn *fn)
249 {
250         void *ctx;
251         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252         if (fn)
253                 *fn = info[cmdid].fn;
254         ctx = info[cmdid].ctx;
255         info[cmdid].fn = special_completion;
256         info[cmdid].ctx = CMD_CTX_CANCELLED;
257         return ctx;
258 }
259
260 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
261 {
262         return dev->queues[get_cpu() + 1];
263 }
264
265 static void put_nvmeq(struct nvme_queue *nvmeq)
266 {
267         put_cpu();
268 }
269
270 /**
271  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
272  * @nvmeq: The queue to use
273  * @cmd: The command to send
274  *
275  * Safe to use from interrupt context
276  */
277 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278 {
279         unsigned long flags;
280         u16 tail;
281         spin_lock_irqsave(&nvmeq->q_lock, flags);
282         tail = nvmeq->sq_tail;
283         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
284         if (++tail == nvmeq->q_depth)
285                 tail = 0;
286         writel(tail, nvmeq->q_db);
287         nvmeq->sq_tail = tail;
288         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290         return 0;
291 }
292
293 /*
294  * The nvme_iod describes the data in an I/O, including the list of PRP
295  * entries.  You can't see it in this data structure because C doesn't let
296  * me express that.  Use nvme_alloc_iod to ensure there's enough space
297  * allocated to store the PRP list.
298  */
299 struct nvme_iod {
300         void *private;          /* For the use of the submitter of the I/O */
301         int npages;             /* In the PRP list. 0 means small pool in use */
302         int offset;             /* Of PRP list */
303         int nents;              /* Used in scatterlist */
304         int length;             /* Of data, in bytes */
305         dma_addr_t first_dma;
306         struct scatterlist sg[0];
307 };
308
309 static __le64 **iod_list(struct nvme_iod *iod)
310 {
311         return ((void *)iod) + iod->offset;
312 }
313
314 /*
315  * Will slightly overestimate the number of pages needed.  This is OK
316  * as it only leads to a small amount of wasted memory for the lifetime of
317  * the I/O.
318  */
319 static int nvme_npages(unsigned size)
320 {
321         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
322         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
323 }
324
325 static struct nvme_iod *
326 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
327 {
328         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
329                                 sizeof(__le64 *) * nvme_npages(nbytes) +
330                                 sizeof(struct scatterlist) * nseg, gfp);
331
332         if (iod) {
333                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
334                 iod->npages = -1;
335                 iod->length = nbytes;
336         }
337
338         return iod;
339 }
340
341 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
342 {
343         const int last_prp = PAGE_SIZE / 8 - 1;
344         int i;
345         __le64 **list = iod_list(iod);
346         dma_addr_t prp_dma = iod->first_dma;
347
348         if (iod->npages == 0)
349                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
350         for (i = 0; i < iod->npages; i++) {
351                 __le64 *prp_list = list[i];
352                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
353                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
354                 prp_dma = next_prp_dma;
355         }
356         kfree(iod);
357 }
358
359 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
360 {
361         struct nvme_queue *nvmeq = get_nvmeq(dev);
362         if (bio_list_empty(&nvmeq->sq_cong))
363                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
364         bio_list_add(&nvmeq->sq_cong, bio);
365         put_nvmeq(nvmeq);
366         wake_up_process(nvme_thread);
367 }
368
369 static void bio_completion(struct nvme_dev *dev, void *ctx,
370                                                 struct nvme_completion *cqe)
371 {
372         struct nvme_iod *iod = ctx;
373         struct bio *bio = iod->private;
374         u16 status = le16_to_cpup(&cqe->status) >> 1;
375
376         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
377                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
378         nvme_free_iod(dev, iod);
379         if (status) {
380                 bio_endio(bio, -EIO);
381         } else if (bio->bi_vcnt > bio->bi_idx) {
382                 requeue_bio(dev, bio);
383         } else {
384                 bio_endio(bio, 0);
385         }
386 }
387
388 /* length is in bytes.  gfp flags indicates whether we may sleep. */
389 static int nvme_setup_prps(struct nvme_dev *dev,
390                         struct nvme_common_command *cmd, struct nvme_iod *iod,
391                         int total_len, gfp_t gfp)
392 {
393         struct dma_pool *pool;
394         int length = total_len;
395         struct scatterlist *sg = iod->sg;
396         int dma_len = sg_dma_len(sg);
397         u64 dma_addr = sg_dma_address(sg);
398         int offset = offset_in_page(dma_addr);
399         __le64 *prp_list;
400         __le64 **list = iod_list(iod);
401         dma_addr_t prp_dma;
402         int nprps, i;
403
404         cmd->prp1 = cpu_to_le64(dma_addr);
405         length -= (PAGE_SIZE - offset);
406         if (length <= 0)
407                 return total_len;
408
409         dma_len -= (PAGE_SIZE - offset);
410         if (dma_len) {
411                 dma_addr += (PAGE_SIZE - offset);
412         } else {
413                 sg = sg_next(sg);
414                 dma_addr = sg_dma_address(sg);
415                 dma_len = sg_dma_len(sg);
416         }
417
418         if (length <= PAGE_SIZE) {
419                 cmd->prp2 = cpu_to_le64(dma_addr);
420                 return total_len;
421         }
422
423         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
424         if (nprps <= (256 / 8)) {
425                 pool = dev->prp_small_pool;
426                 iod->npages = 0;
427         } else {
428                 pool = dev->prp_page_pool;
429                 iod->npages = 1;
430         }
431
432         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
433         if (!prp_list) {
434                 cmd->prp2 = cpu_to_le64(dma_addr);
435                 iod->npages = -1;
436                 return (total_len - length) + PAGE_SIZE;
437         }
438         list[0] = prp_list;
439         iod->first_dma = prp_dma;
440         cmd->prp2 = cpu_to_le64(prp_dma);
441         i = 0;
442         for (;;) {
443                 if (i == PAGE_SIZE / 8) {
444                         __le64 *old_prp_list = prp_list;
445                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
446                         if (!prp_list)
447                                 return total_len - length;
448                         list[iod->npages++] = prp_list;
449                         prp_list[0] = old_prp_list[i - 1];
450                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
451                         i = 1;
452                 }
453                 prp_list[i++] = cpu_to_le64(dma_addr);
454                 dma_len -= PAGE_SIZE;
455                 dma_addr += PAGE_SIZE;
456                 length -= PAGE_SIZE;
457                 if (length <= 0)
458                         break;
459                 if (dma_len > 0)
460                         continue;
461                 BUG_ON(dma_len < 0);
462                 sg = sg_next(sg);
463                 dma_addr = sg_dma_address(sg);
464                 dma_len = sg_dma_len(sg);
465         }
466
467         return total_len;
468 }
469
470 /* NVMe scatterlists require no holes in the virtual address */
471 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
472                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
473
474 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
475                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
476 {
477         struct bio_vec *bvec, *bvprv = NULL;
478         struct scatterlist *sg = NULL;
479         int i, old_idx, length = 0, nsegs = 0;
480
481         sg_init_table(iod->sg, psegs);
482         old_idx = bio->bi_idx;
483         bio_for_each_segment(bvec, bio, i) {
484                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
485                         sg->length += bvec->bv_len;
486                 } else {
487                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
488                                 break;
489                         sg = sg ? sg + 1 : iod->sg;
490                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
491                                                         bvec->bv_offset);
492                         nsegs++;
493                 }
494                 length += bvec->bv_len;
495                 bvprv = bvec;
496         }
497         bio->bi_idx = i;
498         iod->nents = nsegs;
499         sg_mark_end(sg);
500         if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
501                 bio->bi_idx = old_idx;
502                 return -ENOMEM;
503         }
504         return length;
505 }
506
507 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
508                                                                 int cmdid)
509 {
510         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
511
512         memset(cmnd, 0, sizeof(*cmnd));
513         cmnd->common.opcode = nvme_cmd_flush;
514         cmnd->common.command_id = cmdid;
515         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
516
517         if (++nvmeq->sq_tail == nvmeq->q_depth)
518                 nvmeq->sq_tail = 0;
519         writel(nvmeq->sq_tail, nvmeq->q_db);
520
521         return 0;
522 }
523
524 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
525 {
526         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
527                                         special_completion, NVME_IO_TIMEOUT);
528         if (unlikely(cmdid < 0))
529                 return cmdid;
530
531         return nvme_submit_flush(nvmeq, ns, cmdid);
532 }
533
534 /*
535  * Called with local interrupts disabled and the q_lock held.  May not sleep.
536  */
537 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
538                                                                 struct bio *bio)
539 {
540         struct nvme_command *cmnd;
541         struct nvme_iod *iod;
542         enum dma_data_direction dma_dir;
543         int cmdid, length, result = -ENOMEM;
544         u16 control;
545         u32 dsmgmt;
546         int psegs = bio_phys_segments(ns->queue, bio);
547
548         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
549                 result = nvme_submit_flush_data(nvmeq, ns);
550                 if (result)
551                         return result;
552         }
553
554         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
555         if (!iod)
556                 goto nomem;
557         iod->private = bio;
558
559         result = -EBUSY;
560         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
561         if (unlikely(cmdid < 0))
562                 goto free_iod;
563
564         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
565                 return nvme_submit_flush(nvmeq, ns, cmdid);
566
567         control = 0;
568         if (bio->bi_rw & REQ_FUA)
569                 control |= NVME_RW_FUA;
570         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
571                 control |= NVME_RW_LR;
572
573         dsmgmt = 0;
574         if (bio->bi_rw & REQ_RAHEAD)
575                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
576
577         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
578
579         memset(cmnd, 0, sizeof(*cmnd));
580         if (bio_data_dir(bio)) {
581                 cmnd->rw.opcode = nvme_cmd_write;
582                 dma_dir = DMA_TO_DEVICE;
583         } else {
584                 cmnd->rw.opcode = nvme_cmd_read;
585                 dma_dir = DMA_FROM_DEVICE;
586         }
587
588         result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
589         if (result < 0)
590                 goto free_iod;
591         length = result;
592
593         cmnd->rw.command_id = cmdid;
594         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
595         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
596                                                                 GFP_ATOMIC);
597         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
598         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
599         cmnd->rw.control = cpu_to_le16(control);
600         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
601
602         bio->bi_sector += length >> 9;
603
604         if (++nvmeq->sq_tail == nvmeq->q_depth)
605                 nvmeq->sq_tail = 0;
606         writel(nvmeq->sq_tail, nvmeq->q_db);
607
608         return 0;
609
610  free_iod:
611         nvme_free_iod(nvmeq->dev, iod);
612  nomem:
613         return result;
614 }
615
616 /*
617  * NB: return value of non-zero would mean that we were a stacking driver.
618  * make_request must always succeed.
619  */
620 static int nvme_make_request(struct request_queue *q, struct bio *bio)
621 {
622         struct nvme_ns *ns = q->queuedata;
623         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
624         int result = -EBUSY;
625
626         spin_lock_irq(&nvmeq->q_lock);
627         if (bio_list_empty(&nvmeq->sq_cong))
628                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
629         if (unlikely(result)) {
630                 if (bio_list_empty(&nvmeq->sq_cong))
631                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
632                 bio_list_add(&nvmeq->sq_cong, bio);
633         }
634
635         spin_unlock_irq(&nvmeq->q_lock);
636         put_nvmeq(nvmeq);
637
638         return 0;
639 }
640
641 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
642 {
643         u16 head, phase;
644
645         head = nvmeq->cq_head;
646         phase = nvmeq->cq_phase;
647
648         for (;;) {
649                 void *ctx;
650                 nvme_completion_fn fn;
651                 struct nvme_completion cqe = nvmeq->cqes[head];
652                 if ((le16_to_cpu(cqe.status) & 1) != phase)
653                         break;
654                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655                 if (++head == nvmeq->q_depth) {
656                         head = 0;
657                         phase = !phase;
658                 }
659
660                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
661                 fn(nvmeq->dev, ctx, &cqe);
662         }
663
664         /* If the controller ignores the cq head doorbell and continuously
665          * writes to the queue, it is theoretically possible to wrap around
666          * the queue twice and mistakenly return IRQ_NONE.  Linux only
667          * requires that 0.1% of your interrupts are handled, so this isn't
668          * a big problem.
669          */
670         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
671                 return IRQ_NONE;
672
673         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
674         nvmeq->cq_head = head;
675         nvmeq->cq_phase = phase;
676
677         return IRQ_HANDLED;
678 }
679
680 static irqreturn_t nvme_irq(int irq, void *data)
681 {
682         irqreturn_t result;
683         struct nvme_queue *nvmeq = data;
684         spin_lock(&nvmeq->q_lock);
685         result = nvme_process_cq(nvmeq);
686         spin_unlock(&nvmeq->q_lock);
687         return result;
688 }
689
690 static irqreturn_t nvme_irq_check(int irq, void *data)
691 {
692         struct nvme_queue *nvmeq = data;
693         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
694         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
695                 return IRQ_NONE;
696         return IRQ_WAKE_THREAD;
697 }
698
699 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
700 {
701         spin_lock_irq(&nvmeq->q_lock);
702         cancel_cmdid(nvmeq, cmdid, NULL);
703         spin_unlock_irq(&nvmeq->q_lock);
704 }
705
706 struct sync_cmd_info {
707         struct task_struct *task;
708         u32 result;
709         int status;
710 };
711
712 static void sync_completion(struct nvme_dev *dev, void *ctx,
713                                                 struct nvme_completion *cqe)
714 {
715         struct sync_cmd_info *cmdinfo = ctx;
716         cmdinfo->result = le32_to_cpup(&cqe->result);
717         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
718         wake_up_process(cmdinfo->task);
719 }
720
721 /*
722  * Returns 0 on success.  If the result is negative, it's a Linux error code;
723  * if the result is positive, it's an NVM Express status code
724  */
725 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
726                         struct nvme_command *cmd, u32 *result, unsigned timeout)
727 {
728         int cmdid;
729         struct sync_cmd_info cmdinfo;
730
731         cmdinfo.task = current;
732         cmdinfo.status = -EINTR;
733
734         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
735                                                                 timeout);
736         if (cmdid < 0)
737                 return cmdid;
738         cmd->common.command_id = cmdid;
739
740         set_current_state(TASK_KILLABLE);
741         nvme_submit_cmd(nvmeq, cmd);
742         schedule();
743
744         if (cmdinfo.status == -EINTR) {
745                 nvme_abort_command(nvmeq, cmdid);
746                 return -EINTR;
747         }
748
749         if (result)
750                 *result = cmdinfo.result;
751
752         return cmdinfo.status;
753 }
754
755 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
756                                                                 u32 *result)
757 {
758         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
759 }
760
761 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
762 {
763         int status;
764         struct nvme_command c;
765
766         memset(&c, 0, sizeof(c));
767         c.delete_queue.opcode = opcode;
768         c.delete_queue.qid = cpu_to_le16(id);
769
770         status = nvme_submit_admin_cmd(dev, &c, NULL);
771         if (status)
772                 return -EIO;
773         return 0;
774 }
775
776 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
777                                                 struct nvme_queue *nvmeq)
778 {
779         int status;
780         struct nvme_command c;
781         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
782
783         memset(&c, 0, sizeof(c));
784         c.create_cq.opcode = nvme_admin_create_cq;
785         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
786         c.create_cq.cqid = cpu_to_le16(qid);
787         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
788         c.create_cq.cq_flags = cpu_to_le16(flags);
789         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
790
791         status = nvme_submit_admin_cmd(dev, &c, NULL);
792         if (status)
793                 return -EIO;
794         return 0;
795 }
796
797 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
798                                                 struct nvme_queue *nvmeq)
799 {
800         int status;
801         struct nvme_command c;
802         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
803
804         memset(&c, 0, sizeof(c));
805         c.create_sq.opcode = nvme_admin_create_sq;
806         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
807         c.create_sq.sqid = cpu_to_le16(qid);
808         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
809         c.create_sq.sq_flags = cpu_to_le16(flags);
810         c.create_sq.cqid = cpu_to_le16(qid);
811
812         status = nvme_submit_admin_cmd(dev, &c, NULL);
813         if (status)
814                 return -EIO;
815         return 0;
816 }
817
818 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
819 {
820         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
821 }
822
823 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
824 {
825         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
826 }
827
828 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
829                                                         dma_addr_t dma_addr)
830 {
831         struct nvme_command c;
832
833         memset(&c, 0, sizeof(c));
834         c.identify.opcode = nvme_admin_identify;
835         c.identify.nsid = cpu_to_le32(nsid);
836         c.identify.prp1 = cpu_to_le64(dma_addr);
837         c.identify.cns = cpu_to_le32(cns);
838
839         return nvme_submit_admin_cmd(dev, &c, NULL);
840 }
841
842 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
843                         unsigned dword11, dma_addr_t dma_addr, u32 *result)
844 {
845         struct nvme_command c;
846
847         memset(&c, 0, sizeof(c));
848         c.features.opcode = nvme_admin_get_features;
849         c.features.prp1 = cpu_to_le64(dma_addr);
850         c.features.fid = cpu_to_le32(fid);
851         c.features.dword11 = cpu_to_le32(dword11);
852
853         return nvme_submit_admin_cmd(dev, &c, result);
854 }
855
856 static void nvme_free_queue(struct nvme_dev *dev, int qid)
857 {
858         struct nvme_queue *nvmeq = dev->queues[qid];
859         int vector = dev->entry[nvmeq->cq_vector].vector;
860
861         irq_set_affinity_hint(vector, NULL);
862         free_irq(vector, nvmeq);
863
864         /* Don't tell the adapter to delete the admin queue */
865         if (qid) {
866                 adapter_delete_sq(dev, qid);
867                 adapter_delete_cq(dev, qid);
868         }
869
870         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
871                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
872         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
873                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
874         kfree(nvmeq);
875 }
876
877 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
878                                                         int depth, int vector)
879 {
880         struct device *dmadev = &dev->pci_dev->dev;
881         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
882         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
883         if (!nvmeq)
884                 return NULL;
885
886         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
887                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
888         if (!nvmeq->cqes)
889                 goto free_nvmeq;
890         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
891
892         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
893                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
894         if (!nvmeq->sq_cmds)
895                 goto free_cqdma;
896
897         nvmeq->q_dmadev = dmadev;
898         nvmeq->dev = dev;
899         spin_lock_init(&nvmeq->q_lock);
900         nvmeq->cq_head = 0;
901         nvmeq->cq_phase = 1;
902         init_waitqueue_head(&nvmeq->sq_full);
903         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
904         bio_list_init(&nvmeq->sq_cong);
905         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
906         nvmeq->q_depth = depth;
907         nvmeq->cq_vector = vector;
908
909         return nvmeq;
910
911  free_cqdma:
912         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
913                                                         nvmeq->cq_dma_addr);
914  free_nvmeq:
915         kfree(nvmeq);
916         return NULL;
917 }
918
919 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
920                                                         const char *name)
921 {
922         if (use_threaded_interrupts)
923                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
924                                         nvme_irq_check, nvme_irq,
925                                         IRQF_DISABLED | IRQF_SHARED,
926                                         name, nvmeq);
927         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
928                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
929 }
930
931 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
932                                         int qid, int cq_size, int vector)
933 {
934         int result;
935         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
936
937         if (!nvmeq)
938                 return ERR_PTR(-ENOMEM);
939
940         result = adapter_alloc_cq(dev, qid, nvmeq);
941         if (result < 0)
942                 goto free_nvmeq;
943
944         result = adapter_alloc_sq(dev, qid, nvmeq);
945         if (result < 0)
946                 goto release_cq;
947
948         result = queue_request_irq(dev, nvmeq, "nvme");
949         if (result < 0)
950                 goto release_sq;
951
952         return nvmeq;
953
954  release_sq:
955         adapter_delete_sq(dev, qid);
956  release_cq:
957         adapter_delete_cq(dev, qid);
958  free_nvmeq:
959         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
960                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
961         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
962                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
963         kfree(nvmeq);
964         return ERR_PTR(result);
965 }
966
967 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
968 {
969         int result;
970         u32 aqa;
971         u64 cap;
972         unsigned long timeout;
973         struct nvme_queue *nvmeq;
974
975         dev->dbs = ((void __iomem *)dev->bar) + 4096;
976
977         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
978         if (!nvmeq)
979                 return -ENOMEM;
980
981         aqa = nvmeq->q_depth - 1;
982         aqa |= aqa << 16;
983
984         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
985         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
986         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
987         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
988
989         writel(0, &dev->bar->cc);
990         writel(aqa, &dev->bar->aqa);
991         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
992         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
993         writel(dev->ctrl_config, &dev->bar->cc);
994
995         cap = readq(&dev->bar->cap);
996         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
997         dev->db_stride = NVME_CAP_STRIDE(cap);
998
999         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1000                 msleep(100);
1001                 if (fatal_signal_pending(current))
1002                         return -EINTR;
1003                 if (time_after(jiffies, timeout)) {
1004                         dev_err(&dev->pci_dev->dev,
1005                                 "Device not ready; aborting initialisation\n");
1006                         return -ENODEV;
1007                 }
1008         }
1009
1010         result = queue_request_irq(dev, nvmeq, "nvme admin");
1011         dev->queues[0] = nvmeq;
1012         return result;
1013 }
1014
1015 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1016                                 unsigned long addr, unsigned length)
1017 {
1018         int i, err, count, nents, offset;
1019         struct scatterlist *sg;
1020         struct page **pages;
1021         struct nvme_iod *iod;
1022
1023         if (addr & 3)
1024                 return ERR_PTR(-EINVAL);
1025         if (!length)
1026                 return ERR_PTR(-EINVAL);
1027
1028         offset = offset_in_page(addr);
1029         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1030         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1031
1032         err = get_user_pages_fast(addr, count, 1, pages);
1033         if (err < count) {
1034                 count = err;
1035                 err = -EFAULT;
1036                 goto put_pages;
1037         }
1038
1039         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1040         sg = iod->sg;
1041         sg_init_table(sg, count);
1042         for (i = 0; i < count; i++) {
1043                 sg_set_page(&sg[i], pages[i],
1044                                 min_t(int, length, PAGE_SIZE - offset), offset);
1045                 length -= (PAGE_SIZE - offset);
1046                 offset = 0;
1047         }
1048         sg_mark_end(&sg[i - 1]);
1049         iod->nents = count;
1050
1051         err = -ENOMEM;
1052         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1053                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1054         if (!nents)
1055                 goto free_iod;
1056
1057         kfree(pages);
1058         return iod;
1059
1060  free_iod:
1061         kfree(iod);
1062  put_pages:
1063         for (i = 0; i < count; i++)
1064                 put_page(pages[i]);
1065         kfree(pages);
1066         return ERR_PTR(err);
1067 }
1068
1069 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1070                         struct nvme_iod *iod)
1071 {
1072         int i;
1073
1074         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1075                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1076
1077         for (i = 0; i < iod->nents; i++)
1078                 put_page(sg_page(&iod->sg[i]));
1079 }
1080
1081 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1082 {
1083         struct nvme_dev *dev = ns->dev;
1084         struct nvme_queue *nvmeq;
1085         struct nvme_user_io io;
1086         struct nvme_command c;
1087         unsigned length;
1088         int status;
1089         struct nvme_iod *iod;
1090
1091         if (copy_from_user(&io, uio, sizeof(io)))
1092                 return -EFAULT;
1093         length = (io.nblocks + 1) << ns->lba_shift;
1094
1095         switch (io.opcode) {
1096         case nvme_cmd_write:
1097         case nvme_cmd_read:
1098         case nvme_cmd_compare:
1099                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1100                 break;
1101         default:
1102                 return -EINVAL;
1103         }
1104
1105         if (IS_ERR(iod))
1106                 return PTR_ERR(iod);
1107
1108         memset(&c, 0, sizeof(c));
1109         c.rw.opcode = io.opcode;
1110         c.rw.flags = io.flags;
1111         c.rw.nsid = cpu_to_le32(ns->ns_id);
1112         c.rw.slba = cpu_to_le64(io.slba);
1113         c.rw.length = cpu_to_le16(io.nblocks);
1114         c.rw.control = cpu_to_le16(io.control);
1115         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1116         c.rw.reftag = io.reftag;
1117         c.rw.apptag = io.apptag;
1118         c.rw.appmask = io.appmask;
1119         /* XXX: metadata */
1120         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1121
1122         nvmeq = get_nvmeq(dev);
1123         /*
1124          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1125          * disabled.  We may be preempted at any point, and be rescheduled
1126          * to a different CPU.  That will cause cacheline bouncing, but no
1127          * additional races since q_lock already protects against other CPUs.
1128          */
1129         put_nvmeq(nvmeq);
1130         if (length != (io.nblocks + 1) << ns->lba_shift)
1131                 status = -ENOMEM;
1132         else
1133                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1134
1135         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1136         nvme_free_iod(dev, iod);
1137         return status;
1138 }
1139
1140 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1141                                         struct nvme_admin_cmd __user *ucmd)
1142 {
1143         struct nvme_dev *dev = ns->dev;
1144         struct nvme_admin_cmd cmd;
1145         struct nvme_command c;
1146         int status, length;
1147         struct nvme_iod *iod;
1148
1149         if (!capable(CAP_SYS_ADMIN))
1150                 return -EACCES;
1151         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1152                 return -EFAULT;
1153
1154         memset(&c, 0, sizeof(c));
1155         c.common.opcode = cmd.opcode;
1156         c.common.flags = cmd.flags;
1157         c.common.nsid = cpu_to_le32(cmd.nsid);
1158         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1159         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1160         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1161         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1162         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1163         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1164         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1165         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1166
1167         length = cmd.data_len;
1168         if (cmd.data_len) {
1169                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1170                                                                 length);
1171                 if (IS_ERR(iod))
1172                         return PTR_ERR(iod);
1173                 length = nvme_setup_prps(dev, &c.common, iod, length,
1174                                                                 GFP_KERNEL);
1175         }
1176
1177         if (length != cmd.data_len)
1178                 status = -ENOMEM;
1179         else
1180                 status = nvme_submit_admin_cmd(dev, &c, NULL);
1181
1182         if (cmd.data_len) {
1183                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1184                 nvme_free_iod(dev, iod);
1185         }
1186         return status;
1187 }
1188
1189 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1190                                                         unsigned long arg)
1191 {
1192         struct nvme_ns *ns = bdev->bd_disk->private_data;
1193
1194         switch (cmd) {
1195         case NVME_IOCTL_ID:
1196                 return ns->ns_id;
1197         case NVME_IOCTL_ADMIN_CMD:
1198                 return nvme_user_admin_cmd(ns, (void __user *)arg);
1199         case NVME_IOCTL_SUBMIT_IO:
1200                 return nvme_submit_io(ns, (void __user *)arg);
1201         default:
1202                 return -ENOTTY;
1203         }
1204 }
1205
1206 static const struct block_device_operations nvme_fops = {
1207         .owner          = THIS_MODULE,
1208         .ioctl          = nvme_ioctl,
1209         .compat_ioctl   = nvme_ioctl,
1210 };
1211
1212 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1213 {
1214         int depth = nvmeq->q_depth - 1;
1215         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1216         unsigned long now = jiffies;
1217         int cmdid;
1218
1219         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1220                 void *ctx;
1221                 nvme_completion_fn fn;
1222                 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1223
1224                 if (!time_after(now, info[cmdid].timeout))
1225                         continue;
1226                 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1227                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1228                 fn(nvmeq->dev, ctx, &cqe);
1229         }
1230 }
1231
1232 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1233 {
1234         while (bio_list_peek(&nvmeq->sq_cong)) {
1235                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1236                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1237                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1238                         bio_list_add_head(&nvmeq->sq_cong, bio);
1239                         break;
1240                 }
1241                 if (bio_list_empty(&nvmeq->sq_cong))
1242                         remove_wait_queue(&nvmeq->sq_full,
1243                                                         &nvmeq->sq_cong_wait);
1244         }
1245 }
1246
1247 static int nvme_kthread(void *data)
1248 {
1249         struct nvme_dev *dev;
1250
1251         while (!kthread_should_stop()) {
1252                 __set_current_state(TASK_RUNNING);
1253                 spin_lock(&dev_list_lock);
1254                 list_for_each_entry(dev, &dev_list, node) {
1255                         int i;
1256                         for (i = 0; i < dev->queue_count; i++) {
1257                                 struct nvme_queue *nvmeq = dev->queues[i];
1258                                 if (!nvmeq)
1259                                         continue;
1260                                 spin_lock_irq(&nvmeq->q_lock);
1261                                 if (nvme_process_cq(nvmeq))
1262                                         printk("process_cq did something\n");
1263                                 nvme_timeout_ios(nvmeq);
1264                                 nvme_resubmit_bios(nvmeq);
1265                                 spin_unlock_irq(&nvmeq->q_lock);
1266                         }
1267                 }
1268                 spin_unlock(&dev_list_lock);
1269                 set_current_state(TASK_INTERRUPTIBLE);
1270                 schedule_timeout(HZ);
1271         }
1272         return 0;
1273 }
1274
1275 static DEFINE_IDA(nvme_index_ida);
1276
1277 static int nvme_get_ns_idx(void)
1278 {
1279         int index, error;
1280
1281         do {
1282                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1283                         return -1;
1284
1285                 spin_lock(&dev_list_lock);
1286                 error = ida_get_new(&nvme_index_ida, &index);
1287                 spin_unlock(&dev_list_lock);
1288         } while (error == -EAGAIN);
1289
1290         if (error)
1291                 index = -1;
1292         return index;
1293 }
1294
1295 static void nvme_put_ns_idx(int index)
1296 {
1297         spin_lock(&dev_list_lock);
1298         ida_remove(&nvme_index_ida, index);
1299         spin_unlock(&dev_list_lock);
1300 }
1301
1302 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1303                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1304 {
1305         struct nvme_ns *ns;
1306         struct gendisk *disk;
1307         int lbaf;
1308
1309         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1310                 return NULL;
1311
1312         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1313         if (!ns)
1314                 return NULL;
1315         ns->queue = blk_alloc_queue(GFP_KERNEL);
1316         if (!ns->queue)
1317                 goto out_free_ns;
1318         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1319                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1320         blk_queue_make_request(ns->queue, nvme_make_request);
1321         ns->dev = dev;
1322         ns->queue->queuedata = ns;
1323
1324         disk = alloc_disk(NVME_MINORS);
1325         if (!disk)
1326                 goto out_free_queue;
1327         ns->ns_id = nsid;
1328         ns->disk = disk;
1329         lbaf = id->flbas & 0xf;
1330         ns->lba_shift = id->lbaf[lbaf].ds;
1331
1332         disk->major = nvme_major;
1333         disk->minors = NVME_MINORS;
1334         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1335         disk->fops = &nvme_fops;
1336         disk->private_data = ns;
1337         disk->queue = ns->queue;
1338         disk->driverfs_dev = &dev->pci_dev->dev;
1339         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1340         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1341
1342         return ns;
1343
1344  out_free_queue:
1345         blk_cleanup_queue(ns->queue);
1346  out_free_ns:
1347         kfree(ns);
1348         return NULL;
1349 }
1350
1351 static void nvme_ns_free(struct nvme_ns *ns)
1352 {
1353         int index = ns->disk->first_minor / NVME_MINORS;
1354         put_disk(ns->disk);
1355         nvme_put_ns_idx(index);
1356         blk_cleanup_queue(ns->queue);
1357         kfree(ns);
1358 }
1359
1360 static int set_queue_count(struct nvme_dev *dev, int count)
1361 {
1362         int status;
1363         u32 result;
1364         u32 q_count = (count - 1) | ((count - 1) << 16);
1365
1366         status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1367                                                                 &result);
1368         if (status)
1369                 return -EIO;
1370         return min(result & 0xffff, result >> 16) + 1;
1371 }
1372
1373 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1374 {
1375         int result, cpu, i, nr_io_queues, db_bar_size;
1376
1377         nr_io_queues = num_online_cpus();
1378         result = set_queue_count(dev, nr_io_queues);
1379         if (result < 0)
1380                 return result;
1381         if (result < nr_io_queues)
1382                 nr_io_queues = result;
1383
1384         /* Deregister the admin queue's interrupt */
1385         free_irq(dev->entry[0].vector, dev->queues[0]);
1386
1387         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1388         if (db_bar_size > 8192) {
1389                 iounmap(dev->bar);
1390                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1391                                                                 db_bar_size);
1392                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1393                 dev->queues[0]->q_db = dev->dbs;
1394         }
1395
1396         for (i = 0; i < nr_io_queues; i++)
1397                 dev->entry[i].entry = i;
1398         for (;;) {
1399                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1400                                                                 nr_io_queues);
1401                 if (result == 0) {
1402                         break;
1403                 } else if (result > 0) {
1404                         nr_io_queues = result;
1405                         continue;
1406                 } else {
1407                         nr_io_queues = 1;
1408                         break;
1409                 }
1410         }
1411
1412         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1413         /* XXX: handle failure here */
1414
1415         cpu = cpumask_first(cpu_online_mask);
1416         for (i = 0; i < nr_io_queues; i++) {
1417                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1418                 cpu = cpumask_next(cpu, cpu_online_mask);
1419         }
1420
1421         for (i = 0; i < nr_io_queues; i++) {
1422                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1423                                                         NVME_Q_DEPTH, i);
1424                 if (IS_ERR(dev->queues[i + 1]))
1425                         return PTR_ERR(dev->queues[i + 1]);
1426                 dev->queue_count++;
1427         }
1428
1429         for (; i < num_possible_cpus(); i++) {
1430                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1431                 dev->queues[i + 1] = dev->queues[target + 1];
1432         }
1433
1434         return 0;
1435 }
1436
1437 static void nvme_free_queues(struct nvme_dev *dev)
1438 {
1439         int i;
1440
1441         for (i = dev->queue_count - 1; i >= 0; i--)
1442                 nvme_free_queue(dev, i);
1443 }
1444
1445 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1446 {
1447         int res, nn, i;
1448         struct nvme_ns *ns, *next;
1449         struct nvme_id_ctrl *ctrl;
1450         struct nvme_id_ns *id_ns;
1451         void *mem;
1452         dma_addr_t dma_addr;
1453
1454         res = nvme_setup_io_queues(dev);
1455         if (res)
1456                 return res;
1457
1458         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1459                                                                 GFP_KERNEL);
1460
1461         res = nvme_identify(dev, 0, 1, dma_addr);
1462         if (res) {
1463                 res = -EIO;
1464                 goto out_free;
1465         }
1466
1467         ctrl = mem;
1468         nn = le32_to_cpup(&ctrl->nn);
1469         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1470         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1471         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1472
1473         id_ns = mem;
1474         for (i = 1; i <= nn; i++) {
1475                 res = nvme_identify(dev, i, 0, dma_addr);
1476                 if (res)
1477                         continue;
1478
1479                 if (id_ns->ncap == 0)
1480                         continue;
1481
1482                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1483                                                         dma_addr + 4096, NULL);
1484                 if (res)
1485                         continue;
1486
1487                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1488                 if (ns)
1489                         list_add_tail(&ns->list, &dev->namespaces);
1490         }
1491         list_for_each_entry(ns, &dev->namespaces, list)
1492                 add_disk(ns->disk);
1493
1494         goto out;
1495
1496  out_free:
1497         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1498                 list_del(&ns->list);
1499                 nvme_ns_free(ns);
1500         }
1501
1502  out:
1503         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1504         return res;
1505 }
1506
1507 static int nvme_dev_remove(struct nvme_dev *dev)
1508 {
1509         struct nvme_ns *ns, *next;
1510
1511         spin_lock(&dev_list_lock);
1512         list_del(&dev->node);
1513         spin_unlock(&dev_list_lock);
1514
1515         /* TODO: wait all I/O finished or cancel them */
1516
1517         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1518                 list_del(&ns->list);
1519                 del_gendisk(ns->disk);
1520                 nvme_ns_free(ns);
1521         }
1522
1523         nvme_free_queues(dev);
1524
1525         return 0;
1526 }
1527
1528 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1529 {
1530         struct device *dmadev = &dev->pci_dev->dev;
1531         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1532                                                 PAGE_SIZE, PAGE_SIZE, 0);
1533         if (!dev->prp_page_pool)
1534                 return -ENOMEM;
1535
1536         /* Optimisation for I/Os between 4k and 128k */
1537         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1538                                                 256, 256, 0);
1539         if (!dev->prp_small_pool) {
1540                 dma_pool_destroy(dev->prp_page_pool);
1541                 return -ENOMEM;
1542         }
1543         return 0;
1544 }
1545
1546 static void nvme_release_prp_pools(struct nvme_dev *dev)
1547 {
1548         dma_pool_destroy(dev->prp_page_pool);
1549         dma_pool_destroy(dev->prp_small_pool);
1550 }
1551
1552 /* XXX: Use an ida or something to let remove / add work correctly */
1553 static void nvme_set_instance(struct nvme_dev *dev)
1554 {
1555         static int instance;
1556         dev->instance = instance++;
1557 }
1558
1559 static void nvme_release_instance(struct nvme_dev *dev)
1560 {
1561 }
1562
1563 static int __devinit nvme_probe(struct pci_dev *pdev,
1564                                                 const struct pci_device_id *id)
1565 {
1566         int bars, result = -ENOMEM;
1567         struct nvme_dev *dev;
1568
1569         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1570         if (!dev)
1571                 return -ENOMEM;
1572         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1573                                                                 GFP_KERNEL);
1574         if (!dev->entry)
1575                 goto free;
1576         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1577                                                                 GFP_KERNEL);
1578         if (!dev->queues)
1579                 goto free;
1580
1581         if (pci_enable_device_mem(pdev))
1582                 goto free;
1583         pci_set_master(pdev);
1584         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1585         if (pci_request_selected_regions(pdev, bars, "nvme"))
1586                 goto disable;
1587
1588         INIT_LIST_HEAD(&dev->namespaces);
1589         dev->pci_dev = pdev;
1590         pci_set_drvdata(pdev, dev);
1591         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1592         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1593         nvme_set_instance(dev);
1594         dev->entry[0].vector = pdev->irq;
1595
1596         result = nvme_setup_prp_pools(dev);
1597         if (result)
1598                 goto disable_msix;
1599
1600         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1601         if (!dev->bar) {
1602                 result = -ENOMEM;
1603                 goto disable_msix;
1604         }
1605
1606         result = nvme_configure_admin_queue(dev);
1607         if (result)
1608                 goto unmap;
1609         dev->queue_count++;
1610
1611         spin_lock(&dev_list_lock);
1612         list_add(&dev->node, &dev_list);
1613         spin_unlock(&dev_list_lock);
1614
1615         result = nvme_dev_add(dev);
1616         if (result)
1617                 goto delete;
1618
1619         return 0;
1620
1621  delete:
1622         spin_lock(&dev_list_lock);
1623         list_del(&dev->node);
1624         spin_unlock(&dev_list_lock);
1625
1626         nvme_free_queues(dev);
1627  unmap:
1628         iounmap(dev->bar);
1629  disable_msix:
1630         pci_disable_msix(pdev);
1631         nvme_release_instance(dev);
1632         nvme_release_prp_pools(dev);
1633  disable:
1634         pci_disable_device(pdev);
1635         pci_release_regions(pdev);
1636  free:
1637         kfree(dev->queues);
1638         kfree(dev->entry);
1639         kfree(dev);
1640         return result;
1641 }
1642
1643 static void __devexit nvme_remove(struct pci_dev *pdev)
1644 {
1645         struct nvme_dev *dev = pci_get_drvdata(pdev);
1646         nvme_dev_remove(dev);
1647         pci_disable_msix(pdev);
1648         iounmap(dev->bar);
1649         nvme_release_instance(dev);
1650         nvme_release_prp_pools(dev);
1651         pci_disable_device(pdev);
1652         pci_release_regions(pdev);
1653         kfree(dev->queues);
1654         kfree(dev->entry);
1655         kfree(dev);
1656 }
1657
1658 /* These functions are yet to be implemented */
1659 #define nvme_error_detected NULL
1660 #define nvme_dump_registers NULL
1661 #define nvme_link_reset NULL
1662 #define nvme_slot_reset NULL
1663 #define nvme_error_resume NULL
1664 #define nvme_suspend NULL
1665 #define nvme_resume NULL
1666
1667 static struct pci_error_handlers nvme_err_handler = {
1668         .error_detected = nvme_error_detected,
1669         .mmio_enabled   = nvme_dump_registers,
1670         .link_reset     = nvme_link_reset,
1671         .slot_reset     = nvme_slot_reset,
1672         .resume         = nvme_error_resume,
1673 };
1674
1675 /* Move to pci_ids.h later */
1676 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1677
1678 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1679         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1680         { 0, }
1681 };
1682 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1683
1684 static struct pci_driver nvme_driver = {
1685         .name           = "nvme",
1686         .id_table       = nvme_id_table,
1687         .probe          = nvme_probe,
1688         .remove         = __devexit_p(nvme_remove),
1689         .suspend        = nvme_suspend,
1690         .resume         = nvme_resume,
1691         .err_handler    = &nvme_err_handler,
1692 };
1693
1694 static int __init nvme_init(void)
1695 {
1696         int result = -EBUSY;
1697
1698         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1699         if (IS_ERR(nvme_thread))
1700                 return PTR_ERR(nvme_thread);
1701
1702         nvme_major = register_blkdev(nvme_major, "nvme");
1703         if (nvme_major <= 0)
1704                 goto kill_kthread;
1705
1706         result = pci_register_driver(&nvme_driver);
1707         if (result)
1708                 goto unregister_blkdev;
1709         return 0;
1710
1711  unregister_blkdev:
1712         unregister_blkdev(nvme_major, "nvme");
1713  kill_kthread:
1714         kthread_stop(nvme_thread);
1715         return result;
1716 }
1717
1718 static void __exit nvme_exit(void)
1719 {
1720         pci_unregister_driver(&nvme_driver);
1721         unregister_blkdev(nvme_major, "nvme");
1722         kthread_stop(nvme_thread);
1723 }
1724
1725 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1726 MODULE_LICENSE("GPL");
1727 MODULE_VERSION("0.7");
1728 module_init(nvme_init);
1729 module_exit(nvme_exit);