]> Pileus Git - ~andy/linux/blob - drivers/block/nvme-core.c
NVMe: Dynamically allocate partition numbers
[~andy/linux] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60 static struct workqueue_struct *nvme_workq;
61
62 static void nvme_reset_failed_dev(struct work_struct *ws);
63
64 struct async_cmd_info {
65         struct kthread_work work;
66         struct kthread_worker *worker;
67         u32 result;
68         int status;
69         void *ctx;
70 };
71
72 /*
73  * An NVM Express queue.  Each device has at least two (one for admin
74  * commands and one for I/O commands).
75  */
76 struct nvme_queue {
77         struct device *q_dmadev;
78         struct nvme_dev *dev;
79         spinlock_t q_lock;
80         struct nvme_command *sq_cmds;
81         volatile struct nvme_completion *cqes;
82         dma_addr_t sq_dma_addr;
83         dma_addr_t cq_dma_addr;
84         wait_queue_head_t sq_full;
85         wait_queue_t sq_cong_wait;
86         struct bio_list sq_cong;
87         u32 __iomem *q_db;
88         u16 q_depth;
89         u16 cq_vector;
90         u16 sq_head;
91         u16 sq_tail;
92         u16 cq_head;
93         u16 qid;
94         u8 cq_phase;
95         u8 cqe_seen;
96         u8 q_suspended;
97         struct async_cmd_info cmdinfo;
98         unsigned long cmdid_data[];
99 };
100
101 /*
102  * Check we didin't inadvertently grow the command struct
103  */
104 static inline void _nvme_check_size(void)
105 {
106         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
107         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
108         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
112         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
113         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
114         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
115         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
116         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
117         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
118 }
119
120 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
121                                                 struct nvme_completion *);
122
123 struct nvme_cmd_info {
124         nvme_completion_fn fn;
125         void *ctx;
126         unsigned long timeout;
127         int aborted;
128 };
129
130 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
131 {
132         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
133 }
134
135 static unsigned nvme_queue_extra(int depth)
136 {
137         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
138 }
139
140 /**
141  * alloc_cmdid() - Allocate a Command ID
142  * @nvmeq: The queue that will be used for this command
143  * @ctx: A pointer that will be passed to the handler
144  * @handler: The function to call on completion
145  *
146  * Allocate a Command ID for a queue.  The data passed in will
147  * be passed to the completion handler.  This is implemented by using
148  * the bottom two bits of the ctx pointer to store the handler ID.
149  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
150  * We can change this if it becomes a problem.
151  *
152  * May be called with local interrupts disabled and the q_lock held,
153  * or with interrupts enabled and no locks held.
154  */
155 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
156                                 nvme_completion_fn handler, unsigned timeout)
157 {
158         int depth = nvmeq->q_depth - 1;
159         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
160         int cmdid;
161
162         do {
163                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
164                 if (cmdid >= depth)
165                         return -EBUSY;
166         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
167
168         info[cmdid].fn = handler;
169         info[cmdid].ctx = ctx;
170         info[cmdid].timeout = jiffies + timeout;
171         info[cmdid].aborted = 0;
172         return cmdid;
173 }
174
175 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
176                                 nvme_completion_fn handler, unsigned timeout)
177 {
178         int cmdid;
179         wait_event_killable(nvmeq->sq_full,
180                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
181         return (cmdid < 0) ? -EINTR : cmdid;
182 }
183
184 /* Special values must be less than 0x1000 */
185 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
186 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
187 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
188 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
189 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
190 #define CMD_CTX_ABORT           (0x31C + CMD_CTX_BASE)
191
192 static void special_completion(struct nvme_dev *dev, void *ctx,
193                                                 struct nvme_completion *cqe)
194 {
195         if (ctx == CMD_CTX_CANCELLED)
196                 return;
197         if (ctx == CMD_CTX_FLUSH)
198                 return;
199         if (ctx == CMD_CTX_ABORT) {
200                 ++dev->abort_limit;
201                 return;
202         }
203         if (ctx == CMD_CTX_COMPLETED) {
204                 dev_warn(&dev->pci_dev->dev,
205                                 "completed id %d twice on queue %d\n",
206                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
207                 return;
208         }
209         if (ctx == CMD_CTX_INVALID) {
210                 dev_warn(&dev->pci_dev->dev,
211                                 "invalid id %d completed on queue %d\n",
212                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213                 return;
214         }
215
216         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
217 }
218
219 static void async_completion(struct nvme_dev *dev, void *ctx,
220                                                 struct nvme_completion *cqe)
221 {
222         struct async_cmd_info *cmdinfo = ctx;
223         cmdinfo->result = le32_to_cpup(&cqe->result);
224         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
225         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
226 }
227
228 /*
229  * Called with local interrupts disabled and the q_lock held.  May not sleep.
230  */
231 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
232                                                 nvme_completion_fn *fn)
233 {
234         void *ctx;
235         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
236
237         if (cmdid >= nvmeq->q_depth) {
238                 *fn = special_completion;
239                 return CMD_CTX_INVALID;
240         }
241         if (fn)
242                 *fn = info[cmdid].fn;
243         ctx = info[cmdid].ctx;
244         info[cmdid].fn = special_completion;
245         info[cmdid].ctx = CMD_CTX_COMPLETED;
246         clear_bit(cmdid, nvmeq->cmdid_data);
247         wake_up(&nvmeq->sq_full);
248         return ctx;
249 }
250
251 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
252                                                 nvme_completion_fn *fn)
253 {
254         void *ctx;
255         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
256         if (fn)
257                 *fn = info[cmdid].fn;
258         ctx = info[cmdid].ctx;
259         info[cmdid].fn = special_completion;
260         info[cmdid].ctx = CMD_CTX_CANCELLED;
261         return ctx;
262 }
263
264 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
265 {
266         return dev->queues[get_cpu() + 1];
267 }
268
269 void put_nvmeq(struct nvme_queue *nvmeq)
270 {
271         put_cpu();
272 }
273
274 /**
275  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
276  * @nvmeq: The queue to use
277  * @cmd: The command to send
278  *
279  * Safe to use from interrupt context
280  */
281 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
282 {
283         unsigned long flags;
284         u16 tail;
285         spin_lock_irqsave(&nvmeq->q_lock, flags);
286         tail = nvmeq->sq_tail;
287         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
288         if (++tail == nvmeq->q_depth)
289                 tail = 0;
290         writel(tail, nvmeq->q_db);
291         nvmeq->sq_tail = tail;
292         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
293
294         return 0;
295 }
296
297 static __le64 **iod_list(struct nvme_iod *iod)
298 {
299         return ((void *)iod) + iod->offset;
300 }
301
302 /*
303  * Will slightly overestimate the number of pages needed.  This is OK
304  * as it only leads to a small amount of wasted memory for the lifetime of
305  * the I/O.
306  */
307 static int nvme_npages(unsigned size)
308 {
309         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
310         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
311 }
312
313 static struct nvme_iod *
314 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
315 {
316         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
317                                 sizeof(__le64 *) * nvme_npages(nbytes) +
318                                 sizeof(struct scatterlist) * nseg, gfp);
319
320         if (iod) {
321                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
322                 iod->npages = -1;
323                 iod->length = nbytes;
324                 iod->nents = 0;
325                 iod->start_time = jiffies;
326         }
327
328         return iod;
329 }
330
331 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
332 {
333         const int last_prp = PAGE_SIZE / 8 - 1;
334         int i;
335         __le64 **list = iod_list(iod);
336         dma_addr_t prp_dma = iod->first_dma;
337
338         if (iod->npages == 0)
339                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
340         for (i = 0; i < iod->npages; i++) {
341                 __le64 *prp_list = list[i];
342                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
343                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
344                 prp_dma = next_prp_dma;
345         }
346         kfree(iod);
347 }
348
349 static void nvme_start_io_acct(struct bio *bio)
350 {
351         struct gendisk *disk = bio->bi_bdev->bd_disk;
352         const int rw = bio_data_dir(bio);
353         int cpu = part_stat_lock();
354         part_round_stats(cpu, &disk->part0);
355         part_stat_inc(cpu, &disk->part0, ios[rw]);
356         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
357         part_inc_in_flight(&disk->part0, rw);
358         part_stat_unlock();
359 }
360
361 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
362 {
363         struct gendisk *disk = bio->bi_bdev->bd_disk;
364         const int rw = bio_data_dir(bio);
365         unsigned long duration = jiffies - start_time;
366         int cpu = part_stat_lock();
367         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
368         part_round_stats(cpu, &disk->part0);
369         part_dec_in_flight(&disk->part0, rw);
370         part_stat_unlock();
371 }
372
373 static void bio_completion(struct nvme_dev *dev, void *ctx,
374                                                 struct nvme_completion *cqe)
375 {
376         struct nvme_iod *iod = ctx;
377         struct bio *bio = iod->private;
378         u16 status = le16_to_cpup(&cqe->status) >> 1;
379
380         if (iod->nents) {
381                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
382                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
383                 nvme_end_io_acct(bio, iod->start_time);
384         }
385         nvme_free_iod(dev, iod);
386         if (status)
387                 bio_endio(bio, -EIO);
388         else
389                 bio_endio(bio, 0);
390 }
391
392 /* length is in bytes.  gfp flags indicates whether we may sleep. */
393 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
394                         struct nvme_iod *iod, int total_len, gfp_t gfp)
395 {
396         struct dma_pool *pool;
397         int length = total_len;
398         struct scatterlist *sg = iod->sg;
399         int dma_len = sg_dma_len(sg);
400         u64 dma_addr = sg_dma_address(sg);
401         int offset = offset_in_page(dma_addr);
402         __le64 *prp_list;
403         __le64 **list = iod_list(iod);
404         dma_addr_t prp_dma;
405         int nprps, i;
406
407         cmd->prp1 = cpu_to_le64(dma_addr);
408         length -= (PAGE_SIZE - offset);
409         if (length <= 0)
410                 return total_len;
411
412         dma_len -= (PAGE_SIZE - offset);
413         if (dma_len) {
414                 dma_addr += (PAGE_SIZE - offset);
415         } else {
416                 sg = sg_next(sg);
417                 dma_addr = sg_dma_address(sg);
418                 dma_len = sg_dma_len(sg);
419         }
420
421         if (length <= PAGE_SIZE) {
422                 cmd->prp2 = cpu_to_le64(dma_addr);
423                 return total_len;
424         }
425
426         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
427         if (nprps <= (256 / 8)) {
428                 pool = dev->prp_small_pool;
429                 iod->npages = 0;
430         } else {
431                 pool = dev->prp_page_pool;
432                 iod->npages = 1;
433         }
434
435         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
436         if (!prp_list) {
437                 cmd->prp2 = cpu_to_le64(dma_addr);
438                 iod->npages = -1;
439                 return (total_len - length) + PAGE_SIZE;
440         }
441         list[0] = prp_list;
442         iod->first_dma = prp_dma;
443         cmd->prp2 = cpu_to_le64(prp_dma);
444         i = 0;
445         for (;;) {
446                 if (i == PAGE_SIZE / 8) {
447                         __le64 *old_prp_list = prp_list;
448                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
449                         if (!prp_list)
450                                 return total_len - length;
451                         list[iod->npages++] = prp_list;
452                         prp_list[0] = old_prp_list[i - 1];
453                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
454                         i = 1;
455                 }
456                 prp_list[i++] = cpu_to_le64(dma_addr);
457                 dma_len -= PAGE_SIZE;
458                 dma_addr += PAGE_SIZE;
459                 length -= PAGE_SIZE;
460                 if (length <= 0)
461                         break;
462                 if (dma_len > 0)
463                         continue;
464                 BUG_ON(dma_len < 0);
465                 sg = sg_next(sg);
466                 dma_addr = sg_dma_address(sg);
467                 dma_len = sg_dma_len(sg);
468         }
469
470         return total_len;
471 }
472
473 struct nvme_bio_pair {
474         struct bio b1, b2, *parent;
475         struct bio_vec *bv1, *bv2;
476         int err;
477         atomic_t cnt;
478 };
479
480 static void nvme_bio_pair_endio(struct bio *bio, int err)
481 {
482         struct nvme_bio_pair *bp = bio->bi_private;
483
484         if (err)
485                 bp->err = err;
486
487         if (atomic_dec_and_test(&bp->cnt)) {
488                 bio_endio(bp->parent, bp->err);
489                 kfree(bp->bv1);
490                 kfree(bp->bv2);
491                 kfree(bp);
492         }
493 }
494
495 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
496                                                         int len, int offset)
497 {
498         struct nvme_bio_pair *bp;
499
500         BUG_ON(len > bio->bi_size);
501         BUG_ON(idx > bio->bi_vcnt);
502
503         bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
504         if (!bp)
505                 return NULL;
506         bp->err = 0;
507
508         bp->b1 = *bio;
509         bp->b2 = *bio;
510
511         bp->b1.bi_size = len;
512         bp->b2.bi_size -= len;
513         bp->b1.bi_vcnt = idx;
514         bp->b2.bi_idx = idx;
515         bp->b2.bi_sector += len >> 9;
516
517         if (offset) {
518                 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
519                                                                 GFP_ATOMIC);
520                 if (!bp->bv1)
521                         goto split_fail_1;
522
523                 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
524                                                                 GFP_ATOMIC);
525                 if (!bp->bv2)
526                         goto split_fail_2;
527
528                 memcpy(bp->bv1, bio->bi_io_vec,
529                         bio->bi_max_vecs * sizeof(struct bio_vec));
530                 memcpy(bp->bv2, bio->bi_io_vec,
531                         bio->bi_max_vecs * sizeof(struct bio_vec));
532
533                 bp->b1.bi_io_vec = bp->bv1;
534                 bp->b2.bi_io_vec = bp->bv2;
535                 bp->b2.bi_io_vec[idx].bv_offset += offset;
536                 bp->b2.bi_io_vec[idx].bv_len -= offset;
537                 bp->b1.bi_io_vec[idx].bv_len = offset;
538                 bp->b1.bi_vcnt++;
539         } else
540                 bp->bv1 = bp->bv2 = NULL;
541
542         bp->b1.bi_private = bp;
543         bp->b2.bi_private = bp;
544
545         bp->b1.bi_end_io = nvme_bio_pair_endio;
546         bp->b2.bi_end_io = nvme_bio_pair_endio;
547
548         bp->parent = bio;
549         atomic_set(&bp->cnt, 2);
550
551         return bp;
552
553  split_fail_2:
554         kfree(bp->bv1);
555  split_fail_1:
556         kfree(bp);
557         return NULL;
558 }
559
560 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
561                                                 int idx, int len, int offset)
562 {
563         struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
564         if (!bp)
565                 return -ENOMEM;
566
567         if (bio_list_empty(&nvmeq->sq_cong))
568                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
569         bio_list_add(&nvmeq->sq_cong, &bp->b1);
570         bio_list_add(&nvmeq->sq_cong, &bp->b2);
571
572         return 0;
573 }
574
575 /* NVMe scatterlists require no holes in the virtual address */
576 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
577                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
578
579 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
580                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
581 {
582         struct bio_vec *bvec, *bvprv = NULL;
583         struct scatterlist *sg = NULL;
584         int i, length = 0, nsegs = 0, split_len = bio->bi_size;
585
586         if (nvmeq->dev->stripe_size)
587                 split_len = nvmeq->dev->stripe_size -
588                         ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
589
590         sg_init_table(iod->sg, psegs);
591         bio_for_each_segment(bvec, bio, i) {
592                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
593                         sg->length += bvec->bv_len;
594                 } else {
595                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
596                                 return nvme_split_and_submit(bio, nvmeq, i,
597                                                                 length, 0);
598
599                         sg = sg ? sg + 1 : iod->sg;
600                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
601                                                         bvec->bv_offset);
602                         nsegs++;
603                 }
604
605                 if (split_len - length < bvec->bv_len)
606                         return nvme_split_and_submit(bio, nvmeq, i, split_len,
607                                                         split_len - length);
608                 length += bvec->bv_len;
609                 bvprv = bvec;
610         }
611         iod->nents = nsegs;
612         sg_mark_end(sg);
613         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
614                 return -ENOMEM;
615
616         BUG_ON(length != bio->bi_size);
617         return length;
618 }
619
620 /*
621  * We reuse the small pool to allocate the 16-byte range here as it is not
622  * worth having a special pool for these or additional cases to handle freeing
623  * the iod.
624  */
625 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
626                 struct bio *bio, struct nvme_iod *iod, int cmdid)
627 {
628         struct nvme_dsm_range *range;
629         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
630
631         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
632                                                         &iod->first_dma);
633         if (!range)
634                 return -ENOMEM;
635
636         iod_list(iod)[0] = (__le64 *)range;
637         iod->npages = 0;
638
639         range->cattr = cpu_to_le32(0);
640         range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
641         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
642
643         memset(cmnd, 0, sizeof(*cmnd));
644         cmnd->dsm.opcode = nvme_cmd_dsm;
645         cmnd->dsm.command_id = cmdid;
646         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
647         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
648         cmnd->dsm.nr = 0;
649         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
650
651         if (++nvmeq->sq_tail == nvmeq->q_depth)
652                 nvmeq->sq_tail = 0;
653         writel(nvmeq->sq_tail, nvmeq->q_db);
654
655         return 0;
656 }
657
658 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
659                                                                 int cmdid)
660 {
661         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
662
663         memset(cmnd, 0, sizeof(*cmnd));
664         cmnd->common.opcode = nvme_cmd_flush;
665         cmnd->common.command_id = cmdid;
666         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
667
668         if (++nvmeq->sq_tail == nvmeq->q_depth)
669                 nvmeq->sq_tail = 0;
670         writel(nvmeq->sq_tail, nvmeq->q_db);
671
672         return 0;
673 }
674
675 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
676 {
677         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
678                                         special_completion, NVME_IO_TIMEOUT);
679         if (unlikely(cmdid < 0))
680                 return cmdid;
681
682         return nvme_submit_flush(nvmeq, ns, cmdid);
683 }
684
685 /*
686  * Called with local interrupts disabled and the q_lock held.  May not sleep.
687  */
688 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
689                                                                 struct bio *bio)
690 {
691         struct nvme_command *cmnd;
692         struct nvme_iod *iod;
693         enum dma_data_direction dma_dir;
694         int cmdid, length, result;
695         u16 control;
696         u32 dsmgmt;
697         int psegs = bio_phys_segments(ns->queue, bio);
698
699         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
700                 result = nvme_submit_flush_data(nvmeq, ns);
701                 if (result)
702                         return result;
703         }
704
705         result = -ENOMEM;
706         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
707         if (!iod)
708                 goto nomem;
709         iod->private = bio;
710
711         result = -EBUSY;
712         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
713         if (unlikely(cmdid < 0))
714                 goto free_iod;
715
716         if (bio->bi_rw & REQ_DISCARD) {
717                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
718                 if (result)
719                         goto free_cmdid;
720                 return result;
721         }
722         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
723                 return nvme_submit_flush(nvmeq, ns, cmdid);
724
725         control = 0;
726         if (bio->bi_rw & REQ_FUA)
727                 control |= NVME_RW_FUA;
728         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
729                 control |= NVME_RW_LR;
730
731         dsmgmt = 0;
732         if (bio->bi_rw & REQ_RAHEAD)
733                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
734
735         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
736
737         memset(cmnd, 0, sizeof(*cmnd));
738         if (bio_data_dir(bio)) {
739                 cmnd->rw.opcode = nvme_cmd_write;
740                 dma_dir = DMA_TO_DEVICE;
741         } else {
742                 cmnd->rw.opcode = nvme_cmd_read;
743                 dma_dir = DMA_FROM_DEVICE;
744         }
745
746         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
747         if (result <= 0)
748                 goto free_cmdid;
749         length = result;
750
751         cmnd->rw.command_id = cmdid;
752         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
753         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
754                                                                 GFP_ATOMIC);
755         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
756         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
757         cmnd->rw.control = cpu_to_le16(control);
758         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
759
760         nvme_start_io_acct(bio);
761         if (++nvmeq->sq_tail == nvmeq->q_depth)
762                 nvmeq->sq_tail = 0;
763         writel(nvmeq->sq_tail, nvmeq->q_db);
764
765         return 0;
766
767  free_cmdid:
768         free_cmdid(nvmeq, cmdid, NULL);
769  free_iod:
770         nvme_free_iod(nvmeq->dev, iod);
771  nomem:
772         return result;
773 }
774
775 static int nvme_process_cq(struct nvme_queue *nvmeq)
776 {
777         u16 head, phase;
778
779         head = nvmeq->cq_head;
780         phase = nvmeq->cq_phase;
781
782         for (;;) {
783                 void *ctx;
784                 nvme_completion_fn fn;
785                 struct nvme_completion cqe = nvmeq->cqes[head];
786                 if ((le16_to_cpu(cqe.status) & 1) != phase)
787                         break;
788                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
789                 if (++head == nvmeq->q_depth) {
790                         head = 0;
791                         phase = !phase;
792                 }
793
794                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
795                 fn(nvmeq->dev, ctx, &cqe);
796         }
797
798         /* If the controller ignores the cq head doorbell and continuously
799          * writes to the queue, it is theoretically possible to wrap around
800          * the queue twice and mistakenly return IRQ_NONE.  Linux only
801          * requires that 0.1% of your interrupts are handled, so this isn't
802          * a big problem.
803          */
804         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
805                 return 0;
806
807         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
808         nvmeq->cq_head = head;
809         nvmeq->cq_phase = phase;
810
811         nvmeq->cqe_seen = 1;
812         return 1;
813 }
814
815 static void nvme_make_request(struct request_queue *q, struct bio *bio)
816 {
817         struct nvme_ns *ns = q->queuedata;
818         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
819         int result = -EBUSY;
820
821         if (!nvmeq) {
822                 put_nvmeq(NULL);
823                 bio_endio(bio, -EIO);
824                 return;
825         }
826
827         spin_lock_irq(&nvmeq->q_lock);
828         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
829                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
830         if (unlikely(result)) {
831                 if (bio_list_empty(&nvmeq->sq_cong))
832                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
833                 bio_list_add(&nvmeq->sq_cong, bio);
834         }
835
836         nvme_process_cq(nvmeq);
837         spin_unlock_irq(&nvmeq->q_lock);
838         put_nvmeq(nvmeq);
839 }
840
841 static irqreturn_t nvme_irq(int irq, void *data)
842 {
843         irqreturn_t result;
844         struct nvme_queue *nvmeq = data;
845         spin_lock(&nvmeq->q_lock);
846         nvme_process_cq(nvmeq);
847         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
848         nvmeq->cqe_seen = 0;
849         spin_unlock(&nvmeq->q_lock);
850         return result;
851 }
852
853 static irqreturn_t nvme_irq_check(int irq, void *data)
854 {
855         struct nvme_queue *nvmeq = data;
856         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
857         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
858                 return IRQ_NONE;
859         return IRQ_WAKE_THREAD;
860 }
861
862 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
863 {
864         spin_lock_irq(&nvmeq->q_lock);
865         cancel_cmdid(nvmeq, cmdid, NULL);
866         spin_unlock_irq(&nvmeq->q_lock);
867 }
868
869 struct sync_cmd_info {
870         struct task_struct *task;
871         u32 result;
872         int status;
873 };
874
875 static void sync_completion(struct nvme_dev *dev, void *ctx,
876                                                 struct nvme_completion *cqe)
877 {
878         struct sync_cmd_info *cmdinfo = ctx;
879         cmdinfo->result = le32_to_cpup(&cqe->result);
880         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
881         wake_up_process(cmdinfo->task);
882 }
883
884 /*
885  * Returns 0 on success.  If the result is negative, it's a Linux error code;
886  * if the result is positive, it's an NVM Express status code
887  */
888 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
889                                                 u32 *result, unsigned timeout)
890 {
891         int cmdid;
892         struct sync_cmd_info cmdinfo;
893
894         cmdinfo.task = current;
895         cmdinfo.status = -EINTR;
896
897         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
898                                                                 timeout);
899         if (cmdid < 0)
900                 return cmdid;
901         cmd->common.command_id = cmdid;
902
903         set_current_state(TASK_KILLABLE);
904         nvme_submit_cmd(nvmeq, cmd);
905         schedule_timeout(timeout);
906
907         if (cmdinfo.status == -EINTR) {
908                 nvme_abort_command(nvmeq, cmdid);
909                 return -EINTR;
910         }
911
912         if (result)
913                 *result = cmdinfo.result;
914
915         return cmdinfo.status;
916 }
917
918 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
919                         struct nvme_command *cmd,
920                         struct async_cmd_info *cmdinfo, unsigned timeout)
921 {
922         int cmdid;
923
924         cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
925         if (cmdid < 0)
926                 return cmdid;
927         cmdinfo->status = -EINTR;
928         cmd->common.command_id = cmdid;
929         nvme_submit_cmd(nvmeq, cmd);
930         return 0;
931 }
932
933 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
934                                                                 u32 *result)
935 {
936         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
937 }
938
939 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
940                 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
941 {
942         return nvme_submit_async_cmd(dev->queues[0], cmd, cmdinfo,
943                                                                 ADMIN_TIMEOUT);
944 }
945
946 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
947 {
948         int status;
949         struct nvme_command c;
950
951         memset(&c, 0, sizeof(c));
952         c.delete_queue.opcode = opcode;
953         c.delete_queue.qid = cpu_to_le16(id);
954
955         status = nvme_submit_admin_cmd(dev, &c, NULL);
956         if (status)
957                 return -EIO;
958         return 0;
959 }
960
961 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
962                                                 struct nvme_queue *nvmeq)
963 {
964         int status;
965         struct nvme_command c;
966         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
967
968         memset(&c, 0, sizeof(c));
969         c.create_cq.opcode = nvme_admin_create_cq;
970         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
971         c.create_cq.cqid = cpu_to_le16(qid);
972         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
973         c.create_cq.cq_flags = cpu_to_le16(flags);
974         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
975
976         status = nvme_submit_admin_cmd(dev, &c, NULL);
977         if (status)
978                 return -EIO;
979         return 0;
980 }
981
982 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
983                                                 struct nvme_queue *nvmeq)
984 {
985         int status;
986         struct nvme_command c;
987         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
988
989         memset(&c, 0, sizeof(c));
990         c.create_sq.opcode = nvme_admin_create_sq;
991         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
992         c.create_sq.sqid = cpu_to_le16(qid);
993         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
994         c.create_sq.sq_flags = cpu_to_le16(flags);
995         c.create_sq.cqid = cpu_to_le16(qid);
996
997         status = nvme_submit_admin_cmd(dev, &c, NULL);
998         if (status)
999                 return -EIO;
1000         return 0;
1001 }
1002
1003 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1004 {
1005         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1006 }
1007
1008 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1009 {
1010         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1011 }
1012
1013 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1014                                                         dma_addr_t dma_addr)
1015 {
1016         struct nvme_command c;
1017
1018         memset(&c, 0, sizeof(c));
1019         c.identify.opcode = nvme_admin_identify;
1020         c.identify.nsid = cpu_to_le32(nsid);
1021         c.identify.prp1 = cpu_to_le64(dma_addr);
1022         c.identify.cns = cpu_to_le32(cns);
1023
1024         return nvme_submit_admin_cmd(dev, &c, NULL);
1025 }
1026
1027 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1028                                         dma_addr_t dma_addr, u32 *result)
1029 {
1030         struct nvme_command c;
1031
1032         memset(&c, 0, sizeof(c));
1033         c.features.opcode = nvme_admin_get_features;
1034         c.features.nsid = cpu_to_le32(nsid);
1035         c.features.prp1 = cpu_to_le64(dma_addr);
1036         c.features.fid = cpu_to_le32(fid);
1037
1038         return nvme_submit_admin_cmd(dev, &c, result);
1039 }
1040
1041 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1042                                         dma_addr_t dma_addr, u32 *result)
1043 {
1044         struct nvme_command c;
1045
1046         memset(&c, 0, sizeof(c));
1047         c.features.opcode = nvme_admin_set_features;
1048         c.features.prp1 = cpu_to_le64(dma_addr);
1049         c.features.fid = cpu_to_le32(fid);
1050         c.features.dword11 = cpu_to_le32(dword11);
1051
1052         return nvme_submit_admin_cmd(dev, &c, result);
1053 }
1054
1055 /**
1056  * nvme_abort_cmd - Attempt aborting a command
1057  * @cmdid: Command id of a timed out IO
1058  * @queue: The queue with timed out IO
1059  *
1060  * Schedule controller reset if the command was already aborted once before and
1061  * still hasn't been returned to the driver, or if this is the admin queue.
1062  */
1063 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1064 {
1065         int a_cmdid;
1066         struct nvme_command cmd;
1067         struct nvme_dev *dev = nvmeq->dev;
1068         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1069
1070         if (!nvmeq->qid || info[cmdid].aborted) {
1071                 if (work_busy(&dev->reset_work))
1072                         return;
1073                 list_del_init(&dev->node);
1074                 dev_warn(&dev->pci_dev->dev,
1075                         "I/O %d QID %d timeout, reset controller\n", cmdid,
1076                                                                 nvmeq->qid);
1077                 INIT_WORK(&dev->reset_work, nvme_reset_failed_dev);
1078                 queue_work(nvme_workq, &dev->reset_work);
1079                 return;
1080         }
1081
1082         if (!dev->abort_limit)
1083                 return;
1084
1085         a_cmdid = alloc_cmdid(dev->queues[0], CMD_CTX_ABORT, special_completion,
1086                                                                 ADMIN_TIMEOUT);
1087         if (a_cmdid < 0)
1088                 return;
1089
1090         memset(&cmd, 0, sizeof(cmd));
1091         cmd.abort.opcode = nvme_admin_abort_cmd;
1092         cmd.abort.cid = cmdid;
1093         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1094         cmd.abort.command_id = a_cmdid;
1095
1096         --dev->abort_limit;
1097         info[cmdid].aborted = 1;
1098         info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1099
1100         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1101                                                         nvmeq->qid);
1102         nvme_submit_cmd(dev->queues[0], &cmd);
1103 }
1104
1105 /**
1106  * nvme_cancel_ios - Cancel outstanding I/Os
1107  * @queue: The queue to cancel I/Os on
1108  * @timeout: True to only cancel I/Os which have timed out
1109  */
1110 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1111 {
1112         int depth = nvmeq->q_depth - 1;
1113         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1114         unsigned long now = jiffies;
1115         int cmdid;
1116
1117         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1118                 void *ctx;
1119                 nvme_completion_fn fn;
1120                 static struct nvme_completion cqe = {
1121                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1122                 };
1123
1124                 if (timeout && !time_after(now, info[cmdid].timeout))
1125                         continue;
1126                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1127                         continue;
1128                 if (timeout && nvmeq->dev->initialized) {
1129                         nvme_abort_cmd(cmdid, nvmeq);
1130                         continue;
1131                 }
1132                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1133                                                                 nvmeq->qid);
1134                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1135                 fn(nvmeq->dev, ctx, &cqe);
1136         }
1137 }
1138
1139 static void nvme_free_queue(struct nvme_queue *nvmeq)
1140 {
1141         spin_lock_irq(&nvmeq->q_lock);
1142         while (bio_list_peek(&nvmeq->sq_cong)) {
1143                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1144                 bio_endio(bio, -EIO);
1145         }
1146         spin_unlock_irq(&nvmeq->q_lock);
1147
1148         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1149                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1150         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1151                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1152         kfree(nvmeq);
1153 }
1154
1155 static void nvme_free_queues(struct nvme_dev *dev)
1156 {
1157         int i;
1158
1159         for (i = dev->queue_count - 1; i >= 0; i--) {
1160                 nvme_free_queue(dev->queues[i]);
1161                 dev->queue_count--;
1162                 dev->queues[i] = NULL;
1163         }
1164 }
1165
1166 /**
1167  * nvme_suspend_queue - put queue into suspended state
1168  * @nvmeq - queue to suspend
1169  *
1170  * Returns 1 if already suspended, 0 otherwise.
1171  */
1172 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1173 {
1174         int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1175
1176         spin_lock_irq(&nvmeq->q_lock);
1177         if (nvmeq->q_suspended) {
1178                 spin_unlock_irq(&nvmeq->q_lock);
1179                 return 1;
1180         }
1181         nvmeq->q_suspended = 1;
1182         spin_unlock_irq(&nvmeq->q_lock);
1183
1184         irq_set_affinity_hint(vector, NULL);
1185         free_irq(vector, nvmeq);
1186
1187         return 0;
1188 }
1189
1190 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1191 {
1192         spin_lock_irq(&nvmeq->q_lock);
1193         nvme_process_cq(nvmeq);
1194         nvme_cancel_ios(nvmeq, false);
1195         spin_unlock_irq(&nvmeq->q_lock);
1196 }
1197
1198 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1199 {
1200         struct nvme_queue *nvmeq = dev->queues[qid];
1201
1202         if (!nvmeq)
1203                 return;
1204         if (nvme_suspend_queue(nvmeq))
1205                 return;
1206
1207         /* Don't tell the adapter to delete the admin queue.
1208          * Don't tell a removed adapter to delete IO queues. */
1209         if (qid && readl(&dev->bar->csts) != -1) {
1210                 adapter_delete_sq(dev, qid);
1211                 adapter_delete_cq(dev, qid);
1212         }
1213         nvme_clear_queue(nvmeq);
1214 }
1215
1216 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1217                                                         int depth, int vector)
1218 {
1219         struct device *dmadev = &dev->pci_dev->dev;
1220         unsigned extra = nvme_queue_extra(depth);
1221         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1222         if (!nvmeq)
1223                 return NULL;
1224
1225         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1226                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1227         if (!nvmeq->cqes)
1228                 goto free_nvmeq;
1229         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1230
1231         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1232                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1233         if (!nvmeq->sq_cmds)
1234                 goto free_cqdma;
1235
1236         nvmeq->q_dmadev = dmadev;
1237         nvmeq->dev = dev;
1238         spin_lock_init(&nvmeq->q_lock);
1239         nvmeq->cq_head = 0;
1240         nvmeq->cq_phase = 1;
1241         init_waitqueue_head(&nvmeq->sq_full);
1242         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1243         bio_list_init(&nvmeq->sq_cong);
1244         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1245         nvmeq->q_depth = depth;
1246         nvmeq->cq_vector = vector;
1247         nvmeq->qid = qid;
1248         nvmeq->q_suspended = 1;
1249         dev->queue_count++;
1250
1251         return nvmeq;
1252
1253  free_cqdma:
1254         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1255                                                         nvmeq->cq_dma_addr);
1256  free_nvmeq:
1257         kfree(nvmeq);
1258         return NULL;
1259 }
1260
1261 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1262                                                         const char *name)
1263 {
1264         if (use_threaded_interrupts)
1265                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1266                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1267                                         name, nvmeq);
1268         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1269                                 IRQF_SHARED, name, nvmeq);
1270 }
1271
1272 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1273 {
1274         struct nvme_dev *dev = nvmeq->dev;
1275         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1276
1277         nvmeq->sq_tail = 0;
1278         nvmeq->cq_head = 0;
1279         nvmeq->cq_phase = 1;
1280         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1281         memset(nvmeq->cmdid_data, 0, extra);
1282         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1283         nvme_cancel_ios(nvmeq, false);
1284         nvmeq->q_suspended = 0;
1285 }
1286
1287 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1288 {
1289         struct nvme_dev *dev = nvmeq->dev;
1290         int result;
1291
1292         result = adapter_alloc_cq(dev, qid, nvmeq);
1293         if (result < 0)
1294                 return result;
1295
1296         result = adapter_alloc_sq(dev, qid, nvmeq);
1297         if (result < 0)
1298                 goto release_cq;
1299
1300         result = queue_request_irq(dev, nvmeq, "nvme");
1301         if (result < 0)
1302                 goto release_sq;
1303
1304         spin_lock_irq(&nvmeq->q_lock);
1305         nvme_init_queue(nvmeq, qid);
1306         spin_unlock_irq(&nvmeq->q_lock);
1307
1308         return result;
1309
1310  release_sq:
1311         adapter_delete_sq(dev, qid);
1312  release_cq:
1313         adapter_delete_cq(dev, qid);
1314         return result;
1315 }
1316
1317 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1318 {
1319         unsigned long timeout;
1320         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1321
1322         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1323
1324         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1325                 msleep(100);
1326                 if (fatal_signal_pending(current))
1327                         return -EINTR;
1328                 if (time_after(jiffies, timeout)) {
1329                         dev_err(&dev->pci_dev->dev,
1330                                 "Device not ready; aborting initialisation\n");
1331                         return -ENODEV;
1332                 }
1333         }
1334
1335         return 0;
1336 }
1337
1338 /*
1339  * If the device has been passed off to us in an enabled state, just clear
1340  * the enabled bit.  The spec says we should set the 'shutdown notification
1341  * bits', but doing so may cause the device to complete commands to the
1342  * admin queue ... and we don't know what memory that might be pointing at!
1343  */
1344 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1345 {
1346         u32 cc = readl(&dev->bar->cc);
1347
1348         if (cc & NVME_CC_ENABLE)
1349                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1350         return nvme_wait_ready(dev, cap, false);
1351 }
1352
1353 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1354 {
1355         return nvme_wait_ready(dev, cap, true);
1356 }
1357
1358 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1359 {
1360         unsigned long timeout;
1361         u32 cc;
1362
1363         cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1364         writel(cc, &dev->bar->cc);
1365
1366         timeout = 2 * HZ + jiffies;
1367         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1368                                                         NVME_CSTS_SHST_CMPLT) {
1369                 msleep(100);
1370                 if (fatal_signal_pending(current))
1371                         return -EINTR;
1372                 if (time_after(jiffies, timeout)) {
1373                         dev_err(&dev->pci_dev->dev,
1374                                 "Device shutdown incomplete; abort shutdown\n");
1375                         return -ENODEV;
1376                 }
1377         }
1378
1379         return 0;
1380 }
1381
1382 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1383 {
1384         int result;
1385         u32 aqa;
1386         u64 cap = readq(&dev->bar->cap);
1387         struct nvme_queue *nvmeq;
1388
1389         result = nvme_disable_ctrl(dev, cap);
1390         if (result < 0)
1391                 return result;
1392
1393         nvmeq = dev->queues[0];
1394         if (!nvmeq) {
1395                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1396                 if (!nvmeq)
1397                         return -ENOMEM;
1398                 dev->queues[0] = nvmeq;
1399         }
1400
1401         aqa = nvmeq->q_depth - 1;
1402         aqa |= aqa << 16;
1403
1404         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1405         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1406         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1407         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1408
1409         writel(aqa, &dev->bar->aqa);
1410         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1411         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1412         writel(dev->ctrl_config, &dev->bar->cc);
1413
1414         result = nvme_enable_ctrl(dev, cap);
1415         if (result)
1416                 return result;
1417
1418         result = queue_request_irq(dev, nvmeq, "nvme admin");
1419         if (result)
1420                 return result;
1421
1422         spin_lock_irq(&nvmeq->q_lock);
1423         nvme_init_queue(nvmeq, 0);
1424         spin_unlock_irq(&nvmeq->q_lock);
1425         return result;
1426 }
1427
1428 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1429                                 unsigned long addr, unsigned length)
1430 {
1431         int i, err, count, nents, offset;
1432         struct scatterlist *sg;
1433         struct page **pages;
1434         struct nvme_iod *iod;
1435
1436         if (addr & 3)
1437                 return ERR_PTR(-EINVAL);
1438         if (!length || length > INT_MAX - PAGE_SIZE)
1439                 return ERR_PTR(-EINVAL);
1440
1441         offset = offset_in_page(addr);
1442         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1443         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1444         if (!pages)
1445                 return ERR_PTR(-ENOMEM);
1446
1447         err = get_user_pages_fast(addr, count, 1, pages);
1448         if (err < count) {
1449                 count = err;
1450                 err = -EFAULT;
1451                 goto put_pages;
1452         }
1453
1454         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1455         sg = iod->sg;
1456         sg_init_table(sg, count);
1457         for (i = 0; i < count; i++) {
1458                 sg_set_page(&sg[i], pages[i],
1459                             min_t(unsigned, length, PAGE_SIZE - offset),
1460                             offset);
1461                 length -= (PAGE_SIZE - offset);
1462                 offset = 0;
1463         }
1464         sg_mark_end(&sg[i - 1]);
1465         iod->nents = count;
1466
1467         err = -ENOMEM;
1468         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1469                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1470         if (!nents)
1471                 goto free_iod;
1472
1473         kfree(pages);
1474         return iod;
1475
1476  free_iod:
1477         kfree(iod);
1478  put_pages:
1479         for (i = 0; i < count; i++)
1480                 put_page(pages[i]);
1481         kfree(pages);
1482         return ERR_PTR(err);
1483 }
1484
1485 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1486                         struct nvme_iod *iod)
1487 {
1488         int i;
1489
1490         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1491                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1492
1493         for (i = 0; i < iod->nents; i++)
1494                 put_page(sg_page(&iod->sg[i]));
1495 }
1496
1497 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1498 {
1499         struct nvme_dev *dev = ns->dev;
1500         struct nvme_queue *nvmeq;
1501         struct nvme_user_io io;
1502         struct nvme_command c;
1503         unsigned length, meta_len;
1504         int status, i;
1505         struct nvme_iod *iod, *meta_iod = NULL;
1506         dma_addr_t meta_dma_addr;
1507         void *meta, *uninitialized_var(meta_mem);
1508
1509         if (copy_from_user(&io, uio, sizeof(io)))
1510                 return -EFAULT;
1511         length = (io.nblocks + 1) << ns->lba_shift;
1512         meta_len = (io.nblocks + 1) * ns->ms;
1513
1514         if (meta_len && ((io.metadata & 3) || !io.metadata))
1515                 return -EINVAL;
1516
1517         switch (io.opcode) {
1518         case nvme_cmd_write:
1519         case nvme_cmd_read:
1520         case nvme_cmd_compare:
1521                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1522                 break;
1523         default:
1524                 return -EINVAL;
1525         }
1526
1527         if (IS_ERR(iod))
1528                 return PTR_ERR(iod);
1529
1530         memset(&c, 0, sizeof(c));
1531         c.rw.opcode = io.opcode;
1532         c.rw.flags = io.flags;
1533         c.rw.nsid = cpu_to_le32(ns->ns_id);
1534         c.rw.slba = cpu_to_le64(io.slba);
1535         c.rw.length = cpu_to_le16(io.nblocks);
1536         c.rw.control = cpu_to_le16(io.control);
1537         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1538         c.rw.reftag = cpu_to_le32(io.reftag);
1539         c.rw.apptag = cpu_to_le16(io.apptag);
1540         c.rw.appmask = cpu_to_le16(io.appmask);
1541
1542         if (meta_len) {
1543                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1544                                                                 meta_len);
1545                 if (IS_ERR(meta_iod)) {
1546                         status = PTR_ERR(meta_iod);
1547                         meta_iod = NULL;
1548                         goto unmap;
1549                 }
1550
1551                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1552                                                 &meta_dma_addr, GFP_KERNEL);
1553                 if (!meta_mem) {
1554                         status = -ENOMEM;
1555                         goto unmap;
1556                 }
1557
1558                 if (io.opcode & 1) {
1559                         int meta_offset = 0;
1560
1561                         for (i = 0; i < meta_iod->nents; i++) {
1562                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1563                                                 meta_iod->sg[i].offset;
1564                                 memcpy(meta_mem + meta_offset, meta,
1565                                                 meta_iod->sg[i].length);
1566                                 kunmap_atomic(meta);
1567                                 meta_offset += meta_iod->sg[i].length;
1568                         }
1569                 }
1570
1571                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1572         }
1573
1574         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1575
1576         nvmeq = get_nvmeq(dev);
1577         /*
1578          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1579          * disabled.  We may be preempted at any point, and be rescheduled
1580          * to a different CPU.  That will cause cacheline bouncing, but no
1581          * additional races since q_lock already protects against other CPUs.
1582          */
1583         put_nvmeq(nvmeq);
1584         if (length != (io.nblocks + 1) << ns->lba_shift)
1585                 status = -ENOMEM;
1586         else if (!nvmeq || nvmeq->q_suspended)
1587                 status = -EBUSY;
1588         else
1589                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1590
1591         if (meta_len) {
1592                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1593                         int meta_offset = 0;
1594
1595                         for (i = 0; i < meta_iod->nents; i++) {
1596                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1597                                                 meta_iod->sg[i].offset;
1598                                 memcpy(meta, meta_mem + meta_offset,
1599                                                 meta_iod->sg[i].length);
1600                                 kunmap_atomic(meta);
1601                                 meta_offset += meta_iod->sg[i].length;
1602                         }
1603                 }
1604
1605                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1606                                                                 meta_dma_addr);
1607         }
1608
1609  unmap:
1610         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1611         nvme_free_iod(dev, iod);
1612
1613         if (meta_iod) {
1614                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1615                 nvme_free_iod(dev, meta_iod);
1616         }
1617
1618         return status;
1619 }
1620
1621 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1622                                         struct nvme_admin_cmd __user *ucmd)
1623 {
1624         struct nvme_admin_cmd cmd;
1625         struct nvme_command c;
1626         int status, length;
1627         struct nvme_iod *uninitialized_var(iod);
1628         unsigned timeout;
1629
1630         if (!capable(CAP_SYS_ADMIN))
1631                 return -EACCES;
1632         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1633                 return -EFAULT;
1634
1635         memset(&c, 0, sizeof(c));
1636         c.common.opcode = cmd.opcode;
1637         c.common.flags = cmd.flags;
1638         c.common.nsid = cpu_to_le32(cmd.nsid);
1639         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1640         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1641         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1642         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1643         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1644         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1645         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1646         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1647
1648         length = cmd.data_len;
1649         if (cmd.data_len) {
1650                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1651                                                                 length);
1652                 if (IS_ERR(iod))
1653                         return PTR_ERR(iod);
1654                 length = nvme_setup_prps(dev, &c.common, iod, length,
1655                                                                 GFP_KERNEL);
1656         }
1657
1658         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1659                                                                 ADMIN_TIMEOUT;
1660         if (length != cmd.data_len)
1661                 status = -ENOMEM;
1662         else
1663                 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1664                                                                 timeout);
1665
1666         if (cmd.data_len) {
1667                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1668                 nvme_free_iod(dev, iod);
1669         }
1670
1671         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1672                                                         sizeof(cmd.result)))
1673                 status = -EFAULT;
1674
1675         return status;
1676 }
1677
1678 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1679                                                         unsigned long arg)
1680 {
1681         struct nvme_ns *ns = bdev->bd_disk->private_data;
1682
1683         switch (cmd) {
1684         case NVME_IOCTL_ID:
1685                 force_successful_syscall_return();
1686                 return ns->ns_id;
1687         case NVME_IOCTL_ADMIN_CMD:
1688                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1689         case NVME_IOCTL_SUBMIT_IO:
1690                 return nvme_submit_io(ns, (void __user *)arg);
1691         case SG_GET_VERSION_NUM:
1692                 return nvme_sg_get_version_num((void __user *)arg);
1693         case SG_IO:
1694                 return nvme_sg_io(ns, (void __user *)arg);
1695         default:
1696                 return -ENOTTY;
1697         }
1698 }
1699
1700 #ifdef CONFIG_COMPAT
1701 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1702                                         unsigned int cmd, unsigned long arg)
1703 {
1704         struct nvme_ns *ns = bdev->bd_disk->private_data;
1705
1706         switch (cmd) {
1707         case SG_IO:
1708                 return nvme_sg_io32(ns, arg);
1709         }
1710         return nvme_ioctl(bdev, mode, cmd, arg);
1711 }
1712 #else
1713 #define nvme_compat_ioctl       NULL
1714 #endif
1715
1716 static const struct block_device_operations nvme_fops = {
1717         .owner          = THIS_MODULE,
1718         .ioctl          = nvme_ioctl,
1719         .compat_ioctl   = nvme_compat_ioctl,
1720 };
1721
1722 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1723 {
1724         while (bio_list_peek(&nvmeq->sq_cong)) {
1725                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1726                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1727
1728                 if (bio_list_empty(&nvmeq->sq_cong))
1729                         remove_wait_queue(&nvmeq->sq_full,
1730                                                         &nvmeq->sq_cong_wait);
1731                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1732                         if (bio_list_empty(&nvmeq->sq_cong))
1733                                 add_wait_queue(&nvmeq->sq_full,
1734                                                         &nvmeq->sq_cong_wait);
1735                         bio_list_add_head(&nvmeq->sq_cong, bio);
1736                         break;
1737                 }
1738         }
1739 }
1740
1741 static int nvme_kthread(void *data)
1742 {
1743         struct nvme_dev *dev, *next;
1744
1745         while (!kthread_should_stop()) {
1746                 set_current_state(TASK_INTERRUPTIBLE);
1747                 spin_lock(&dev_list_lock);
1748                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1749                         int i;
1750                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1751                                                         dev->initialized) {
1752                                 if (work_busy(&dev->reset_work))
1753                                         continue;
1754                                 list_del_init(&dev->node);
1755                                 dev_warn(&dev->pci_dev->dev,
1756                                         "Failed status, reset controller\n");
1757                                 INIT_WORK(&dev->reset_work,
1758                                                         nvme_reset_failed_dev);
1759                                 queue_work(nvme_workq, &dev->reset_work);
1760                                 continue;
1761                         }
1762                         for (i = 0; i < dev->queue_count; i++) {
1763                                 struct nvme_queue *nvmeq = dev->queues[i];
1764                                 if (!nvmeq)
1765                                         continue;
1766                                 spin_lock_irq(&nvmeq->q_lock);
1767                                 if (nvmeq->q_suspended)
1768                                         goto unlock;
1769                                 nvme_process_cq(nvmeq);
1770                                 nvme_cancel_ios(nvmeq, true);
1771                                 nvme_resubmit_bios(nvmeq);
1772  unlock:
1773                                 spin_unlock_irq(&nvmeq->q_lock);
1774                         }
1775                 }
1776                 spin_unlock(&dev_list_lock);
1777                 schedule_timeout(round_jiffies_relative(HZ));
1778         }
1779         return 0;
1780 }
1781
1782 static void nvme_config_discard(struct nvme_ns *ns)
1783 {
1784         u32 logical_block_size = queue_logical_block_size(ns->queue);
1785         ns->queue->limits.discard_zeroes_data = 0;
1786         ns->queue->limits.discard_alignment = logical_block_size;
1787         ns->queue->limits.discard_granularity = logical_block_size;
1788         ns->queue->limits.max_discard_sectors = 0xffffffff;
1789         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1790 }
1791
1792 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1793                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1794 {
1795         struct nvme_ns *ns;
1796         struct gendisk *disk;
1797         int lbaf;
1798
1799         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1800                 return NULL;
1801
1802         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1803         if (!ns)
1804                 return NULL;
1805         ns->queue = blk_alloc_queue(GFP_KERNEL);
1806         if (!ns->queue)
1807                 goto out_free_ns;
1808         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1809         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1810         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1811         blk_queue_make_request(ns->queue, nvme_make_request);
1812         ns->dev = dev;
1813         ns->queue->queuedata = ns;
1814
1815         disk = alloc_disk(0);
1816         if (!disk)
1817                 goto out_free_queue;
1818         ns->ns_id = nsid;
1819         ns->disk = disk;
1820         lbaf = id->flbas & 0xf;
1821         ns->lba_shift = id->lbaf[lbaf].ds;
1822         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1823         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1824         if (dev->max_hw_sectors)
1825                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1826
1827         disk->major = nvme_major;
1828         disk->first_minor = 0;
1829         disk->fops = &nvme_fops;
1830         disk->private_data = ns;
1831         disk->queue = ns->queue;
1832         disk->driverfs_dev = &dev->pci_dev->dev;
1833         disk->flags = GENHD_FL_EXT_DEVT;
1834         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1835         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1836
1837         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1838                 nvme_config_discard(ns);
1839
1840         return ns;
1841
1842  out_free_queue:
1843         blk_cleanup_queue(ns->queue);
1844  out_free_ns:
1845         kfree(ns);
1846         return NULL;
1847 }
1848
1849 static void nvme_ns_free(struct nvme_ns *ns)
1850 {
1851         put_disk(ns->disk);
1852         blk_cleanup_queue(ns->queue);
1853         kfree(ns);
1854 }
1855
1856 static int set_queue_count(struct nvme_dev *dev, int count)
1857 {
1858         int status;
1859         u32 result;
1860         u32 q_count = (count - 1) | ((count - 1) << 16);
1861
1862         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1863                                                                 &result);
1864         if (status)
1865                 return status < 0 ? -EIO : -EBUSY;
1866         return min(result & 0xffff, result >> 16) + 1;
1867 }
1868
1869 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1870 {
1871         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1872 }
1873
1874 static int nvme_setup_io_queues(struct nvme_dev *dev)
1875 {
1876         struct pci_dev *pdev = dev->pci_dev;
1877         int result, cpu, i, vecs, nr_io_queues, size, q_depth;
1878
1879         nr_io_queues = num_online_cpus();
1880         result = set_queue_count(dev, nr_io_queues);
1881         if (result < 0)
1882                 return result;
1883         if (result < nr_io_queues)
1884                 nr_io_queues = result;
1885
1886         size = db_bar_size(dev, nr_io_queues);
1887         if (size > 8192) {
1888                 iounmap(dev->bar);
1889                 do {
1890                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1891                         if (dev->bar)
1892                                 break;
1893                         if (!--nr_io_queues)
1894                                 return -ENOMEM;
1895                         size = db_bar_size(dev, nr_io_queues);
1896                 } while (1);
1897                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1898                 dev->queues[0]->q_db = dev->dbs;
1899         }
1900
1901         /* Deregister the admin queue's interrupt */
1902         free_irq(dev->entry[0].vector, dev->queues[0]);
1903
1904         vecs = nr_io_queues;
1905         for (i = 0; i < vecs; i++)
1906                 dev->entry[i].entry = i;
1907         for (;;) {
1908                 result = pci_enable_msix(pdev, dev->entry, vecs);
1909                 if (result <= 0)
1910                         break;
1911                 vecs = result;
1912         }
1913
1914         if (result < 0) {
1915                 vecs = nr_io_queues;
1916                 if (vecs > 32)
1917                         vecs = 32;
1918                 for (;;) {
1919                         result = pci_enable_msi_block(pdev, vecs);
1920                         if (result == 0) {
1921                                 for (i = 0; i < vecs; i++)
1922                                         dev->entry[i].vector = i + pdev->irq;
1923                                 break;
1924                         } else if (result < 0) {
1925                                 vecs = 1;
1926                                 break;
1927                         }
1928                         vecs = result;
1929                 }
1930         }
1931
1932         /*
1933          * Should investigate if there's a performance win from allocating
1934          * more queues than interrupt vectors; it might allow the submission
1935          * path to scale better, even if the receive path is limited by the
1936          * number of interrupts.
1937          */
1938         nr_io_queues = vecs;
1939
1940         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1941         if (result) {
1942                 dev->queues[0]->q_suspended = 1;
1943                 goto free_queues;
1944         }
1945
1946         /* Free previously allocated queues that are no longer usable */
1947         spin_lock(&dev_list_lock);
1948         for (i = dev->queue_count - 1; i > nr_io_queues; i--) {
1949                 struct nvme_queue *nvmeq = dev->queues[i];
1950
1951                 spin_lock_irq(&nvmeq->q_lock);
1952                 nvme_cancel_ios(nvmeq, false);
1953                 spin_unlock_irq(&nvmeq->q_lock);
1954
1955                 nvme_free_queue(nvmeq);
1956                 dev->queue_count--;
1957                 dev->queues[i] = NULL;
1958         }
1959         spin_unlock(&dev_list_lock);
1960
1961         cpu = cpumask_first(cpu_online_mask);
1962         for (i = 0; i < nr_io_queues; i++) {
1963                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1964                 cpu = cpumask_next(cpu, cpu_online_mask);
1965         }
1966
1967         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1968                                                                 NVME_Q_DEPTH);
1969         for (i = dev->queue_count - 1; i < nr_io_queues; i++) {
1970                 dev->queues[i + 1] = nvme_alloc_queue(dev, i + 1, q_depth, i);
1971                 if (!dev->queues[i + 1]) {
1972                         result = -ENOMEM;
1973                         goto free_queues;
1974                 }
1975         }
1976
1977         for (; i < num_possible_cpus(); i++) {
1978                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1979                 dev->queues[i + 1] = dev->queues[target + 1];
1980         }
1981
1982         for (i = 1; i < dev->queue_count; i++) {
1983                 result = nvme_create_queue(dev->queues[i], i);
1984                 if (result) {
1985                         for (--i; i > 0; i--)
1986                                 nvme_disable_queue(dev, i);
1987                         goto free_queues;
1988                 }
1989         }
1990
1991         return 0;
1992
1993  free_queues:
1994         nvme_free_queues(dev);
1995         return result;
1996 }
1997
1998 /*
1999  * Return: error value if an error occurred setting up the queues or calling
2000  * Identify Device.  0 if these succeeded, even if adding some of the
2001  * namespaces failed.  At the moment, these failures are silent.  TBD which
2002  * failures should be reported.
2003  */
2004 static int nvme_dev_add(struct nvme_dev *dev)
2005 {
2006         struct pci_dev *pdev = dev->pci_dev;
2007         int res;
2008         unsigned nn, i;
2009         struct nvme_ns *ns;
2010         struct nvme_id_ctrl *ctrl;
2011         struct nvme_id_ns *id_ns;
2012         void *mem;
2013         dma_addr_t dma_addr;
2014         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2015
2016         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2017         if (!mem)
2018                 return -ENOMEM;
2019
2020         res = nvme_identify(dev, 0, 1, dma_addr);
2021         if (res) {
2022                 res = -EIO;
2023                 goto out;
2024         }
2025
2026         ctrl = mem;
2027         nn = le32_to_cpup(&ctrl->nn);
2028         dev->oncs = le16_to_cpup(&ctrl->oncs);
2029         dev->abort_limit = ctrl->acl + 1;
2030         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2031         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2032         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2033         if (ctrl->mdts)
2034                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2035         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2036                         (pdev->device == 0x0953) && ctrl->vs[3])
2037                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2038
2039         id_ns = mem;
2040         for (i = 1; i <= nn; i++) {
2041                 res = nvme_identify(dev, i, 0, dma_addr);
2042                 if (res)
2043                         continue;
2044
2045                 if (id_ns->ncap == 0)
2046                         continue;
2047
2048                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2049                                                         dma_addr + 4096, NULL);
2050                 if (res)
2051                         memset(mem + 4096, 0, 4096);
2052
2053                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2054                 if (ns)
2055                         list_add_tail(&ns->list, &dev->namespaces);
2056         }
2057         list_for_each_entry(ns, &dev->namespaces, list)
2058                 add_disk(ns->disk);
2059         res = 0;
2060
2061  out:
2062         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2063         return res;
2064 }
2065
2066 static int nvme_dev_map(struct nvme_dev *dev)
2067 {
2068         int bars, result = -ENOMEM;
2069         struct pci_dev *pdev = dev->pci_dev;
2070
2071         if (pci_enable_device_mem(pdev))
2072                 return result;
2073
2074         dev->entry[0].vector = pdev->irq;
2075         pci_set_master(pdev);
2076         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2077         if (pci_request_selected_regions(pdev, bars, "nvme"))
2078                 goto disable_pci;
2079
2080         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2081             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2082                 goto disable;
2083
2084         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2085         if (!dev->bar)
2086                 goto disable;
2087         if (readl(&dev->bar->csts) == -1) {
2088                 result = -ENODEV;
2089                 goto unmap;
2090         }
2091         dev->db_stride = 1 << NVME_CAP_STRIDE(readq(&dev->bar->cap));
2092         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2093
2094         return 0;
2095
2096  unmap:
2097         iounmap(dev->bar);
2098         dev->bar = NULL;
2099  disable:
2100         pci_release_regions(pdev);
2101  disable_pci:
2102         pci_disable_device(pdev);
2103         return result;
2104 }
2105
2106 static void nvme_dev_unmap(struct nvme_dev *dev)
2107 {
2108         if (dev->pci_dev->msi_enabled)
2109                 pci_disable_msi(dev->pci_dev);
2110         else if (dev->pci_dev->msix_enabled)
2111                 pci_disable_msix(dev->pci_dev);
2112
2113         if (dev->bar) {
2114                 iounmap(dev->bar);
2115                 dev->bar = NULL;
2116                 pci_release_regions(dev->pci_dev);
2117         }
2118
2119         if (pci_is_enabled(dev->pci_dev))
2120                 pci_disable_device(dev->pci_dev);
2121 }
2122
2123 struct nvme_delq_ctx {
2124         struct task_struct *waiter;
2125         struct kthread_worker *worker;
2126         atomic_t refcount;
2127 };
2128
2129 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2130 {
2131         dq->waiter = current;
2132         mb();
2133
2134         for (;;) {
2135                 set_current_state(TASK_KILLABLE);
2136                 if (!atomic_read(&dq->refcount))
2137                         break;
2138                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2139                                         fatal_signal_pending(current)) {
2140                         set_current_state(TASK_RUNNING);
2141
2142                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2143                         nvme_disable_queue(dev, 0);
2144
2145                         send_sig(SIGKILL, dq->worker->task, 1);
2146                         flush_kthread_worker(dq->worker);
2147                         return;
2148                 }
2149         }
2150         set_current_state(TASK_RUNNING);
2151 }
2152
2153 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2154 {
2155         atomic_dec(&dq->refcount);
2156         if (dq->waiter)
2157                 wake_up_process(dq->waiter);
2158 }
2159
2160 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2161 {
2162         atomic_inc(&dq->refcount);
2163         return dq;
2164 }
2165
2166 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2167 {
2168         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2169
2170         nvme_clear_queue(nvmeq);
2171         nvme_put_dq(dq);
2172 }
2173
2174 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2175                                                 kthread_work_func_t fn)
2176 {
2177         struct nvme_command c;
2178
2179         memset(&c, 0, sizeof(c));
2180         c.delete_queue.opcode = opcode;
2181         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2182
2183         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2184         return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2185 }
2186
2187 static void nvme_del_cq_work_handler(struct kthread_work *work)
2188 {
2189         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2190                                                         cmdinfo.work);
2191         nvme_del_queue_end(nvmeq);
2192 }
2193
2194 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2195 {
2196         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2197                                                 nvme_del_cq_work_handler);
2198 }
2199
2200 static void nvme_del_sq_work_handler(struct kthread_work *work)
2201 {
2202         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2203                                                         cmdinfo.work);
2204         int status = nvmeq->cmdinfo.status;
2205
2206         if (!status)
2207                 status = nvme_delete_cq(nvmeq);
2208         if (status)
2209                 nvme_del_queue_end(nvmeq);
2210 }
2211
2212 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2213 {
2214         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2215                                                 nvme_del_sq_work_handler);
2216 }
2217
2218 static void nvme_del_queue_start(struct kthread_work *work)
2219 {
2220         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2221                                                         cmdinfo.work);
2222         allow_signal(SIGKILL);
2223         if (nvme_delete_sq(nvmeq))
2224                 nvme_del_queue_end(nvmeq);
2225 }
2226
2227 static void nvme_disable_io_queues(struct nvme_dev *dev)
2228 {
2229         int i;
2230         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2231         struct nvme_delq_ctx dq;
2232         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2233                                         &worker, "nvme%d", dev->instance);
2234
2235         if (IS_ERR(kworker_task)) {
2236                 dev_err(&dev->pci_dev->dev,
2237                         "Failed to create queue del task\n");
2238                 for (i = dev->queue_count - 1; i > 0; i--)
2239                         nvme_disable_queue(dev, i);
2240                 return;
2241         }
2242
2243         dq.waiter = NULL;
2244         atomic_set(&dq.refcount, 0);
2245         dq.worker = &worker;
2246         for (i = dev->queue_count - 1; i > 0; i--) {
2247                 struct nvme_queue *nvmeq = dev->queues[i];
2248
2249                 if (nvme_suspend_queue(nvmeq))
2250                         continue;
2251                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2252                 nvmeq->cmdinfo.worker = dq.worker;
2253                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2254                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2255         }
2256         nvme_wait_dq(&dq, dev);
2257         kthread_stop(kworker_task);
2258 }
2259
2260 static void nvme_dev_shutdown(struct nvme_dev *dev)
2261 {
2262         int i;
2263
2264         dev->initialized = 0;
2265
2266         spin_lock(&dev_list_lock);
2267         list_del_init(&dev->node);
2268         spin_unlock(&dev_list_lock);
2269
2270         if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2271                 for (i = dev->queue_count - 1; i >= 0; i--) {
2272                         struct nvme_queue *nvmeq = dev->queues[i];
2273                         nvme_suspend_queue(nvmeq);
2274                         nvme_clear_queue(nvmeq);
2275                 }
2276         } else {
2277                 nvme_disable_io_queues(dev);
2278                 nvme_shutdown_ctrl(dev);
2279                 nvme_disable_queue(dev, 0);
2280         }
2281         nvme_dev_unmap(dev);
2282 }
2283
2284 static void nvme_dev_remove(struct nvme_dev *dev)
2285 {
2286         struct nvme_ns *ns, *next;
2287
2288         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2289                 list_del(&ns->list);
2290                 del_gendisk(ns->disk);
2291                 nvme_ns_free(ns);
2292         }
2293 }
2294
2295 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2296 {
2297         struct device *dmadev = &dev->pci_dev->dev;
2298         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2299                                                 PAGE_SIZE, PAGE_SIZE, 0);
2300         if (!dev->prp_page_pool)
2301                 return -ENOMEM;
2302
2303         /* Optimisation for I/Os between 4k and 128k */
2304         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2305                                                 256, 256, 0);
2306         if (!dev->prp_small_pool) {
2307                 dma_pool_destroy(dev->prp_page_pool);
2308                 return -ENOMEM;
2309         }
2310         return 0;
2311 }
2312
2313 static void nvme_release_prp_pools(struct nvme_dev *dev)
2314 {
2315         dma_pool_destroy(dev->prp_page_pool);
2316         dma_pool_destroy(dev->prp_small_pool);
2317 }
2318
2319 static DEFINE_IDA(nvme_instance_ida);
2320
2321 static int nvme_set_instance(struct nvme_dev *dev)
2322 {
2323         int instance, error;
2324
2325         do {
2326                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2327                         return -ENODEV;
2328
2329                 spin_lock(&dev_list_lock);
2330                 error = ida_get_new(&nvme_instance_ida, &instance);
2331                 spin_unlock(&dev_list_lock);
2332         } while (error == -EAGAIN);
2333
2334         if (error)
2335                 return -ENODEV;
2336
2337         dev->instance = instance;
2338         return 0;
2339 }
2340
2341 static void nvme_release_instance(struct nvme_dev *dev)
2342 {
2343         spin_lock(&dev_list_lock);
2344         ida_remove(&nvme_instance_ida, dev->instance);
2345         spin_unlock(&dev_list_lock);
2346 }
2347
2348 static void nvme_free_dev(struct kref *kref)
2349 {
2350         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2351         kfree(dev->queues);
2352         kfree(dev->entry);
2353         kfree(dev);
2354 }
2355
2356 static int nvme_dev_open(struct inode *inode, struct file *f)
2357 {
2358         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2359                                                                 miscdev);
2360         kref_get(&dev->kref);
2361         f->private_data = dev;
2362         return 0;
2363 }
2364
2365 static int nvme_dev_release(struct inode *inode, struct file *f)
2366 {
2367         struct nvme_dev *dev = f->private_data;
2368         kref_put(&dev->kref, nvme_free_dev);
2369         return 0;
2370 }
2371
2372 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2373 {
2374         struct nvme_dev *dev = f->private_data;
2375         switch (cmd) {
2376         case NVME_IOCTL_ADMIN_CMD:
2377                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2378         default:
2379                 return -ENOTTY;
2380         }
2381 }
2382
2383 static const struct file_operations nvme_dev_fops = {
2384         .owner          = THIS_MODULE,
2385         .open           = nvme_dev_open,
2386         .release        = nvme_dev_release,
2387         .unlocked_ioctl = nvme_dev_ioctl,
2388         .compat_ioctl   = nvme_dev_ioctl,
2389 };
2390
2391 static int nvme_dev_start(struct nvme_dev *dev)
2392 {
2393         int result;
2394
2395         result = nvme_dev_map(dev);
2396         if (result)
2397                 return result;
2398
2399         result = nvme_configure_admin_queue(dev);
2400         if (result)
2401                 goto unmap;
2402
2403         spin_lock(&dev_list_lock);
2404         list_add(&dev->node, &dev_list);
2405         spin_unlock(&dev_list_lock);
2406
2407         result = nvme_setup_io_queues(dev);
2408         if (result && result != -EBUSY)
2409                 goto disable;
2410
2411         return result;
2412
2413  disable:
2414         spin_lock(&dev_list_lock);
2415         list_del_init(&dev->node);
2416         spin_unlock(&dev_list_lock);
2417  unmap:
2418         nvme_dev_unmap(dev);
2419         return result;
2420 }
2421
2422 static int nvme_remove_dead_ctrl(void *arg)
2423 {
2424         struct nvme_dev *dev = (struct nvme_dev *)arg;
2425         struct pci_dev *pdev = dev->pci_dev;
2426
2427         if (pci_get_drvdata(pdev))
2428                 pci_stop_and_remove_bus_device(pdev);
2429         kref_put(&dev->kref, nvme_free_dev);
2430         return 0;
2431 }
2432
2433 static void nvme_remove_disks(struct work_struct *ws)
2434 {
2435         int i;
2436         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2437
2438         nvme_dev_remove(dev);
2439         spin_lock(&dev_list_lock);
2440         for (i = dev->queue_count - 1; i > 0; i--) {
2441                 BUG_ON(!dev->queues[i] || !dev->queues[i]->q_suspended);
2442                 nvme_free_queue(dev->queues[i]);
2443                 dev->queue_count--;
2444                 dev->queues[i] = NULL;
2445         }
2446         spin_unlock(&dev_list_lock);
2447 }
2448
2449 static int nvme_dev_resume(struct nvme_dev *dev)
2450 {
2451         int ret;
2452
2453         ret = nvme_dev_start(dev);
2454         if (ret && ret != -EBUSY)
2455                 return ret;
2456         if (ret == -EBUSY) {
2457                 spin_lock(&dev_list_lock);
2458                 INIT_WORK(&dev->reset_work, nvme_remove_disks);
2459                 queue_work(nvme_workq, &dev->reset_work);
2460                 spin_unlock(&dev_list_lock);
2461         }
2462         dev->initialized = 1;
2463         return 0;
2464 }
2465
2466 static void nvme_dev_reset(struct nvme_dev *dev)
2467 {
2468         nvme_dev_shutdown(dev);
2469         if (nvme_dev_resume(dev)) {
2470                 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2471                 kref_get(&dev->kref);
2472                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2473                                                         dev->instance))) {
2474                         dev_err(&dev->pci_dev->dev,
2475                                 "Failed to start controller remove task\n");
2476                         kref_put(&dev->kref, nvme_free_dev);
2477                 }
2478         }
2479 }
2480
2481 static void nvme_reset_failed_dev(struct work_struct *ws)
2482 {
2483         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2484         nvme_dev_reset(dev);
2485 }
2486
2487 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2488 {
2489         int result = -ENOMEM;
2490         struct nvme_dev *dev;
2491
2492         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2493         if (!dev)
2494                 return -ENOMEM;
2495         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2496                                                                 GFP_KERNEL);
2497         if (!dev->entry)
2498                 goto free;
2499         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2500                                                                 GFP_KERNEL);
2501         if (!dev->queues)
2502                 goto free;
2503
2504         INIT_LIST_HEAD(&dev->namespaces);
2505         dev->pci_dev = pdev;
2506         pci_set_drvdata(pdev, dev);
2507         result = nvme_set_instance(dev);
2508         if (result)
2509                 goto free;
2510
2511         result = nvme_setup_prp_pools(dev);
2512         if (result)
2513                 goto release;
2514
2515         result = nvme_dev_start(dev);
2516         if (result) {
2517                 if (result == -EBUSY)
2518                         goto create_cdev;
2519                 goto release_pools;
2520         }
2521
2522         result = nvme_dev_add(dev);
2523         if (result)
2524                 goto shutdown;
2525
2526  create_cdev:
2527         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2528         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2529         dev->miscdev.parent = &pdev->dev;
2530         dev->miscdev.name = dev->name;
2531         dev->miscdev.fops = &nvme_dev_fops;
2532         result = misc_register(&dev->miscdev);
2533         if (result)
2534                 goto remove;
2535
2536         dev->initialized = 1;
2537         kref_init(&dev->kref);
2538         return 0;
2539
2540  remove:
2541         nvme_dev_remove(dev);
2542  shutdown:
2543         nvme_dev_shutdown(dev);
2544  release_pools:
2545         nvme_free_queues(dev);
2546         nvme_release_prp_pools(dev);
2547  release:
2548         nvme_release_instance(dev);
2549  free:
2550         kfree(dev->queues);
2551         kfree(dev->entry);
2552         kfree(dev);
2553         return result;
2554 }
2555
2556 static void nvme_remove(struct pci_dev *pdev)
2557 {
2558         struct nvme_dev *dev = pci_get_drvdata(pdev);
2559
2560         spin_lock(&dev_list_lock);
2561         list_del_init(&dev->node);
2562         spin_unlock(&dev_list_lock);
2563
2564         pci_set_drvdata(pdev, NULL);
2565         flush_work(&dev->reset_work);
2566         misc_deregister(&dev->miscdev);
2567         nvme_dev_remove(dev);
2568         nvme_dev_shutdown(dev);
2569         nvme_free_queues(dev);
2570         nvme_release_instance(dev);
2571         nvme_release_prp_pools(dev);
2572         kref_put(&dev->kref, nvme_free_dev);
2573 }
2574
2575 /* These functions are yet to be implemented */
2576 #define nvme_error_detected NULL
2577 #define nvme_dump_registers NULL
2578 #define nvme_link_reset NULL
2579 #define nvme_slot_reset NULL
2580 #define nvme_error_resume NULL
2581
2582 static int nvme_suspend(struct device *dev)
2583 {
2584         struct pci_dev *pdev = to_pci_dev(dev);
2585         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2586
2587         nvme_dev_shutdown(ndev);
2588         return 0;
2589 }
2590
2591 static int nvme_resume(struct device *dev)
2592 {
2593         struct pci_dev *pdev = to_pci_dev(dev);
2594         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2595
2596         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2597                 INIT_WORK(&ndev->reset_work, nvme_reset_failed_dev);
2598                 queue_work(nvme_workq, &ndev->reset_work);
2599         }
2600         return 0;
2601 }
2602
2603 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2604
2605 static const struct pci_error_handlers nvme_err_handler = {
2606         .error_detected = nvme_error_detected,
2607         .mmio_enabled   = nvme_dump_registers,
2608         .link_reset     = nvme_link_reset,
2609         .slot_reset     = nvme_slot_reset,
2610         .resume         = nvme_error_resume,
2611 };
2612
2613 /* Move to pci_ids.h later */
2614 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2615
2616 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2617         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2618         { 0, }
2619 };
2620 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2621
2622 static struct pci_driver nvme_driver = {
2623         .name           = "nvme",
2624         .id_table       = nvme_id_table,
2625         .probe          = nvme_probe,
2626         .remove         = nvme_remove,
2627         .driver         = {
2628                 .pm     = &nvme_dev_pm_ops,
2629         },
2630         .err_handler    = &nvme_err_handler,
2631 };
2632
2633 static int __init nvme_init(void)
2634 {
2635         int result;
2636
2637         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2638         if (IS_ERR(nvme_thread))
2639                 return PTR_ERR(nvme_thread);
2640
2641         result = -ENOMEM;
2642         nvme_workq = create_singlethread_workqueue("nvme");
2643         if (!nvme_workq)
2644                 goto kill_kthread;
2645
2646         result = register_blkdev(nvme_major, "nvme");
2647         if (result < 0)
2648                 goto kill_workq;
2649         else if (result > 0)
2650                 nvme_major = result;
2651
2652         result = pci_register_driver(&nvme_driver);
2653         if (result)
2654                 goto unregister_blkdev;
2655         return 0;
2656
2657  unregister_blkdev:
2658         unregister_blkdev(nvme_major, "nvme");
2659  kill_workq:
2660         destroy_workqueue(nvme_workq);
2661  kill_kthread:
2662         kthread_stop(nvme_thread);
2663         return result;
2664 }
2665
2666 static void __exit nvme_exit(void)
2667 {
2668         pci_unregister_driver(&nvme_driver);
2669         unregister_blkdev(nvme_major, "nvme");
2670         destroy_workqueue(nvme_workq);
2671         kthread_stop(nvme_thread);
2672 }
2673
2674 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2675 MODULE_LICENSE("GPL");
2676 MODULE_VERSION("0.8");
2677 module_init(nvme_init);
2678 module_exit(nvme_exit);