]> Pileus Git - ~andy/linux/blob - drivers/block/nvme-core.c
NVMe: Call nvme_process_cq from submission path
[~andy/linux] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * An NVM Express queue.  Each device has at least two (one for admin
63  * commands and one for I/O commands).
64  */
65 struct nvme_queue {
66         struct device *q_dmadev;
67         struct nvme_dev *dev;
68         spinlock_t q_lock;
69         struct nvme_command *sq_cmds;
70         volatile struct nvme_completion *cqes;
71         dma_addr_t sq_dma_addr;
72         dma_addr_t cq_dma_addr;
73         wait_queue_head_t sq_full;
74         wait_queue_t sq_cong_wait;
75         struct bio_list sq_cong;
76         u32 __iomem *q_db;
77         u16 q_depth;
78         u16 cq_vector;
79         u16 sq_head;
80         u16 sq_tail;
81         u16 cq_head;
82         u8 cq_phase;
83         u8 cqe_seen;
84         unsigned long cmdid_data[];
85 };
86
87 /*
88  * Check we didin't inadvertently grow the command struct
89  */
90 static inline void _nvme_check_size(void)
91 {
92         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
93         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
94         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
95         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
96         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
97         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
98         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
99         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
100         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
101         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
102         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
103 }
104
105 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
106                                                 struct nvme_completion *);
107
108 struct nvme_cmd_info {
109         nvme_completion_fn fn;
110         void *ctx;
111         unsigned long timeout;
112 };
113
114 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
115 {
116         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
117 }
118
119 /**
120  * alloc_cmdid() - Allocate a Command ID
121  * @nvmeq: The queue that will be used for this command
122  * @ctx: A pointer that will be passed to the handler
123  * @handler: The function to call on completion
124  *
125  * Allocate a Command ID for a queue.  The data passed in will
126  * be passed to the completion handler.  This is implemented by using
127  * the bottom two bits of the ctx pointer to store the handler ID.
128  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
129  * We can change this if it becomes a problem.
130  *
131  * May be called with local interrupts disabled and the q_lock held,
132  * or with interrupts enabled and no locks held.
133  */
134 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
135                                 nvme_completion_fn handler, unsigned timeout)
136 {
137         int depth = nvmeq->q_depth - 1;
138         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
139         int cmdid;
140
141         do {
142                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
143                 if (cmdid >= depth)
144                         return -EBUSY;
145         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
146
147         info[cmdid].fn = handler;
148         info[cmdid].ctx = ctx;
149         info[cmdid].timeout = jiffies + timeout;
150         return cmdid;
151 }
152
153 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
154                                 nvme_completion_fn handler, unsigned timeout)
155 {
156         int cmdid;
157         wait_event_killable(nvmeq->sq_full,
158                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
159         return (cmdid < 0) ? -EINTR : cmdid;
160 }
161
162 /* Special values must be less than 0x1000 */
163 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
164 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
165 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
166 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
167 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
168
169 static void special_completion(struct nvme_dev *dev, void *ctx,
170                                                 struct nvme_completion *cqe)
171 {
172         if (ctx == CMD_CTX_CANCELLED)
173                 return;
174         if (ctx == CMD_CTX_FLUSH)
175                 return;
176         if (ctx == CMD_CTX_COMPLETED) {
177                 dev_warn(&dev->pci_dev->dev,
178                                 "completed id %d twice on queue %d\n",
179                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
180                 return;
181         }
182         if (ctx == CMD_CTX_INVALID) {
183                 dev_warn(&dev->pci_dev->dev,
184                                 "invalid id %d completed on queue %d\n",
185                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
186                 return;
187         }
188
189         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
190 }
191
192 /*
193  * Called with local interrupts disabled and the q_lock held.  May not sleep.
194  */
195 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
196                                                 nvme_completion_fn *fn)
197 {
198         void *ctx;
199         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
200
201         if (cmdid >= nvmeq->q_depth) {
202                 *fn = special_completion;
203                 return CMD_CTX_INVALID;
204         }
205         if (fn)
206                 *fn = info[cmdid].fn;
207         ctx = info[cmdid].ctx;
208         info[cmdid].fn = special_completion;
209         info[cmdid].ctx = CMD_CTX_COMPLETED;
210         clear_bit(cmdid, nvmeq->cmdid_data);
211         wake_up(&nvmeq->sq_full);
212         return ctx;
213 }
214
215 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
216                                                 nvme_completion_fn *fn)
217 {
218         void *ctx;
219         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
220         if (fn)
221                 *fn = info[cmdid].fn;
222         ctx = info[cmdid].ctx;
223         info[cmdid].fn = special_completion;
224         info[cmdid].ctx = CMD_CTX_CANCELLED;
225         return ctx;
226 }
227
228 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
229 {
230         return dev->queues[get_cpu() + 1];
231 }
232
233 void put_nvmeq(struct nvme_queue *nvmeq)
234 {
235         put_cpu();
236 }
237
238 /**
239  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
240  * @nvmeq: The queue to use
241  * @cmd: The command to send
242  *
243  * Safe to use from interrupt context
244  */
245 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
246 {
247         unsigned long flags;
248         u16 tail;
249         spin_lock_irqsave(&nvmeq->q_lock, flags);
250         tail = nvmeq->sq_tail;
251         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
252         if (++tail == nvmeq->q_depth)
253                 tail = 0;
254         writel(tail, nvmeq->q_db);
255         nvmeq->sq_tail = tail;
256         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
257
258         return 0;
259 }
260
261 static __le64 **iod_list(struct nvme_iod *iod)
262 {
263         return ((void *)iod) + iod->offset;
264 }
265
266 /*
267  * Will slightly overestimate the number of pages needed.  This is OK
268  * as it only leads to a small amount of wasted memory for the lifetime of
269  * the I/O.
270  */
271 static int nvme_npages(unsigned size)
272 {
273         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
274         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
275 }
276
277 static struct nvme_iod *
278 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
279 {
280         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
281                                 sizeof(__le64 *) * nvme_npages(nbytes) +
282                                 sizeof(struct scatterlist) * nseg, gfp);
283
284         if (iod) {
285                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
286                 iod->npages = -1;
287                 iod->length = nbytes;
288                 iod->nents = 0;
289                 iod->start_time = jiffies;
290         }
291
292         return iod;
293 }
294
295 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
296 {
297         const int last_prp = PAGE_SIZE / 8 - 1;
298         int i;
299         __le64 **list = iod_list(iod);
300         dma_addr_t prp_dma = iod->first_dma;
301
302         if (iod->npages == 0)
303                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
304         for (i = 0; i < iod->npages; i++) {
305                 __le64 *prp_list = list[i];
306                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
307                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
308                 prp_dma = next_prp_dma;
309         }
310         kfree(iod);
311 }
312
313 static void nvme_start_io_acct(struct bio *bio)
314 {
315         struct gendisk *disk = bio->bi_bdev->bd_disk;
316         const int rw = bio_data_dir(bio);
317         int cpu = part_stat_lock();
318         part_round_stats(cpu, &disk->part0);
319         part_stat_inc(cpu, &disk->part0, ios[rw]);
320         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
321         part_inc_in_flight(&disk->part0, rw);
322         part_stat_unlock();
323 }
324
325 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
326 {
327         struct gendisk *disk = bio->bi_bdev->bd_disk;
328         const int rw = bio_data_dir(bio);
329         unsigned long duration = jiffies - start_time;
330         int cpu = part_stat_lock();
331         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
332         part_round_stats(cpu, &disk->part0);
333         part_dec_in_flight(&disk->part0, rw);
334         part_stat_unlock();
335 }
336
337 static void bio_completion(struct nvme_dev *dev, void *ctx,
338                                                 struct nvme_completion *cqe)
339 {
340         struct nvme_iod *iod = ctx;
341         struct bio *bio = iod->private;
342         u16 status = le16_to_cpup(&cqe->status) >> 1;
343
344         if (iod->nents)
345                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
346                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
347
348         nvme_end_io_acct(bio, iod->start_time);
349         nvme_free_iod(dev, iod);
350         if (status)
351                 bio_endio(bio, -EIO);
352         else
353                 bio_endio(bio, 0);
354 }
355
356 /* length is in bytes.  gfp flags indicates whether we may sleep. */
357 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
358                         struct nvme_iod *iod, int total_len, gfp_t gfp)
359 {
360         struct dma_pool *pool;
361         int length = total_len;
362         struct scatterlist *sg = iod->sg;
363         int dma_len = sg_dma_len(sg);
364         u64 dma_addr = sg_dma_address(sg);
365         int offset = offset_in_page(dma_addr);
366         __le64 *prp_list;
367         __le64 **list = iod_list(iod);
368         dma_addr_t prp_dma;
369         int nprps, i;
370
371         cmd->prp1 = cpu_to_le64(dma_addr);
372         length -= (PAGE_SIZE - offset);
373         if (length <= 0)
374                 return total_len;
375
376         dma_len -= (PAGE_SIZE - offset);
377         if (dma_len) {
378                 dma_addr += (PAGE_SIZE - offset);
379         } else {
380                 sg = sg_next(sg);
381                 dma_addr = sg_dma_address(sg);
382                 dma_len = sg_dma_len(sg);
383         }
384
385         if (length <= PAGE_SIZE) {
386                 cmd->prp2 = cpu_to_le64(dma_addr);
387                 return total_len;
388         }
389
390         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
391         if (nprps <= (256 / 8)) {
392                 pool = dev->prp_small_pool;
393                 iod->npages = 0;
394         } else {
395                 pool = dev->prp_page_pool;
396                 iod->npages = 1;
397         }
398
399         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
400         if (!prp_list) {
401                 cmd->prp2 = cpu_to_le64(dma_addr);
402                 iod->npages = -1;
403                 return (total_len - length) + PAGE_SIZE;
404         }
405         list[0] = prp_list;
406         iod->first_dma = prp_dma;
407         cmd->prp2 = cpu_to_le64(prp_dma);
408         i = 0;
409         for (;;) {
410                 if (i == PAGE_SIZE / 8) {
411                         __le64 *old_prp_list = prp_list;
412                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
413                         if (!prp_list)
414                                 return total_len - length;
415                         list[iod->npages++] = prp_list;
416                         prp_list[0] = old_prp_list[i - 1];
417                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
418                         i = 1;
419                 }
420                 prp_list[i++] = cpu_to_le64(dma_addr);
421                 dma_len -= PAGE_SIZE;
422                 dma_addr += PAGE_SIZE;
423                 length -= PAGE_SIZE;
424                 if (length <= 0)
425                         break;
426                 if (dma_len > 0)
427                         continue;
428                 BUG_ON(dma_len < 0);
429                 sg = sg_next(sg);
430                 dma_addr = sg_dma_address(sg);
431                 dma_len = sg_dma_len(sg);
432         }
433
434         return total_len;
435 }
436
437 struct nvme_bio_pair {
438         struct bio b1, b2, *parent;
439         struct bio_vec *bv1, *bv2;
440         int err;
441         atomic_t cnt;
442 };
443
444 static void nvme_bio_pair_endio(struct bio *bio, int err)
445 {
446         struct nvme_bio_pair *bp = bio->bi_private;
447
448         if (err)
449                 bp->err = err;
450
451         if (atomic_dec_and_test(&bp->cnt)) {
452                 bio_endio(bp->parent, bp->err);
453                 if (bp->bv1)
454                         kfree(bp->bv1);
455                 if (bp->bv2)
456                         kfree(bp->bv2);
457                 kfree(bp);
458         }
459 }
460
461 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
462                                                         int len, int offset)
463 {
464         struct nvme_bio_pair *bp;
465
466         BUG_ON(len > bio->bi_size);
467         BUG_ON(idx > bio->bi_vcnt);
468
469         bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
470         if (!bp)
471                 return NULL;
472         bp->err = 0;
473
474         bp->b1 = *bio;
475         bp->b2 = *bio;
476
477         bp->b1.bi_size = len;
478         bp->b2.bi_size -= len;
479         bp->b1.bi_vcnt = idx;
480         bp->b2.bi_idx = idx;
481         bp->b2.bi_sector += len >> 9;
482
483         if (offset) {
484                 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
485                                                                 GFP_ATOMIC);
486                 if (!bp->bv1)
487                         goto split_fail_1;
488
489                 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
490                                                                 GFP_ATOMIC);
491                 if (!bp->bv2)
492                         goto split_fail_2;
493
494                 memcpy(bp->bv1, bio->bi_io_vec,
495                         bio->bi_max_vecs * sizeof(struct bio_vec));
496                 memcpy(bp->bv2, bio->bi_io_vec,
497                         bio->bi_max_vecs * sizeof(struct bio_vec));
498
499                 bp->b1.bi_io_vec = bp->bv1;
500                 bp->b2.bi_io_vec = bp->bv2;
501                 bp->b2.bi_io_vec[idx].bv_offset += offset;
502                 bp->b2.bi_io_vec[idx].bv_len -= offset;
503                 bp->b1.bi_io_vec[idx].bv_len = offset;
504                 bp->b1.bi_vcnt++;
505         } else
506                 bp->bv1 = bp->bv2 = NULL;
507
508         bp->b1.bi_private = bp;
509         bp->b2.bi_private = bp;
510
511         bp->b1.bi_end_io = nvme_bio_pair_endio;
512         bp->b2.bi_end_io = nvme_bio_pair_endio;
513
514         bp->parent = bio;
515         atomic_set(&bp->cnt, 2);
516
517         return bp;
518
519  split_fail_2:
520         kfree(bp->bv1);
521  split_fail_1:
522         kfree(bp);
523         return NULL;
524 }
525
526 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
527                                                 int idx, int len, int offset)
528 {
529         struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
530         if (!bp)
531                 return -ENOMEM;
532
533         if (bio_list_empty(&nvmeq->sq_cong))
534                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
535         bio_list_add(&nvmeq->sq_cong, &bp->b1);
536         bio_list_add(&nvmeq->sq_cong, &bp->b2);
537
538         return 0;
539 }
540
541 /* NVMe scatterlists require no holes in the virtual address */
542 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
543                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
544
545 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
546                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
547 {
548         struct bio_vec *bvec, *bvprv = NULL;
549         struct scatterlist *sg = NULL;
550         int i, length = 0, nsegs = 0, split_len = bio->bi_size;
551
552         if (nvmeq->dev->stripe_size)
553                 split_len = nvmeq->dev->stripe_size -
554                         ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
555
556         sg_init_table(iod->sg, psegs);
557         bio_for_each_segment(bvec, bio, i) {
558                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
559                         sg->length += bvec->bv_len;
560                 } else {
561                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
562                                 return nvme_split_and_submit(bio, nvmeq, i,
563                                                                 length, 0);
564
565                         sg = sg ? sg + 1 : iod->sg;
566                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
567                                                         bvec->bv_offset);
568                         nsegs++;
569                 }
570
571                 if (split_len - length < bvec->bv_len)
572                         return nvme_split_and_submit(bio, nvmeq, i, split_len,
573                                                         split_len - length);
574                 length += bvec->bv_len;
575                 bvprv = bvec;
576         }
577         iod->nents = nsegs;
578         sg_mark_end(sg);
579         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
580                 return -ENOMEM;
581
582         BUG_ON(length != bio->bi_size);
583         return length;
584 }
585
586 /*
587  * We reuse the small pool to allocate the 16-byte range here as it is not
588  * worth having a special pool for these or additional cases to handle freeing
589  * the iod.
590  */
591 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
592                 struct bio *bio, struct nvme_iod *iod, int cmdid)
593 {
594         struct nvme_dsm_range *range;
595         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
596
597         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
598                                                         &iod->first_dma);
599         if (!range)
600                 return -ENOMEM;
601
602         iod_list(iod)[0] = (__le64 *)range;
603         iod->npages = 0;
604
605         range->cattr = cpu_to_le32(0);
606         range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
607         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
608
609         memset(cmnd, 0, sizeof(*cmnd));
610         cmnd->dsm.opcode = nvme_cmd_dsm;
611         cmnd->dsm.command_id = cmdid;
612         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
613         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
614         cmnd->dsm.nr = 0;
615         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
616
617         if (++nvmeq->sq_tail == nvmeq->q_depth)
618                 nvmeq->sq_tail = 0;
619         writel(nvmeq->sq_tail, nvmeq->q_db);
620
621         return 0;
622 }
623
624 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
625                                                                 int cmdid)
626 {
627         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
628
629         memset(cmnd, 0, sizeof(*cmnd));
630         cmnd->common.opcode = nvme_cmd_flush;
631         cmnd->common.command_id = cmdid;
632         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
633
634         if (++nvmeq->sq_tail == nvmeq->q_depth)
635                 nvmeq->sq_tail = 0;
636         writel(nvmeq->sq_tail, nvmeq->q_db);
637
638         return 0;
639 }
640
641 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
642 {
643         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
644                                         special_completion, NVME_IO_TIMEOUT);
645         if (unlikely(cmdid < 0))
646                 return cmdid;
647
648         return nvme_submit_flush(nvmeq, ns, cmdid);
649 }
650
651 /*
652  * Called with local interrupts disabled and the q_lock held.  May not sleep.
653  */
654 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
655                                                                 struct bio *bio)
656 {
657         struct nvme_command *cmnd;
658         struct nvme_iod *iod;
659         enum dma_data_direction dma_dir;
660         int cmdid, length, result;
661         u16 control;
662         u32 dsmgmt;
663         int psegs = bio_phys_segments(ns->queue, bio);
664
665         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
666                 result = nvme_submit_flush_data(nvmeq, ns);
667                 if (result)
668                         return result;
669         }
670
671         result = -ENOMEM;
672         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
673         if (!iod)
674                 goto nomem;
675         iod->private = bio;
676
677         result = -EBUSY;
678         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
679         if (unlikely(cmdid < 0))
680                 goto free_iod;
681
682         if (bio->bi_rw & REQ_DISCARD) {
683                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
684                 if (result)
685                         goto free_cmdid;
686                 return result;
687         }
688         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
689                 return nvme_submit_flush(nvmeq, ns, cmdid);
690
691         control = 0;
692         if (bio->bi_rw & REQ_FUA)
693                 control |= NVME_RW_FUA;
694         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695                 control |= NVME_RW_LR;
696
697         dsmgmt = 0;
698         if (bio->bi_rw & REQ_RAHEAD)
699                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
700
701         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
702
703         memset(cmnd, 0, sizeof(*cmnd));
704         if (bio_data_dir(bio)) {
705                 cmnd->rw.opcode = nvme_cmd_write;
706                 dma_dir = DMA_TO_DEVICE;
707         } else {
708                 cmnd->rw.opcode = nvme_cmd_read;
709                 dma_dir = DMA_FROM_DEVICE;
710         }
711
712         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
713         if (result <= 0)
714                 goto free_cmdid;
715         length = result;
716
717         cmnd->rw.command_id = cmdid;
718         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
719         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
720                                                                 GFP_ATOMIC);
721         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
722         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
723         cmnd->rw.control = cpu_to_le16(control);
724         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
725
726         nvme_start_io_acct(bio);
727         if (++nvmeq->sq_tail == nvmeq->q_depth)
728                 nvmeq->sq_tail = 0;
729         writel(nvmeq->sq_tail, nvmeq->q_db);
730
731         return 0;
732
733  free_cmdid:
734         free_cmdid(nvmeq, cmdid, NULL);
735  free_iod:
736         nvme_free_iod(nvmeq->dev, iod);
737  nomem:
738         return result;
739 }
740
741 static int nvme_process_cq(struct nvme_queue *nvmeq)
742 {
743         u16 head, phase;
744
745         head = nvmeq->cq_head;
746         phase = nvmeq->cq_phase;
747
748         for (;;) {
749                 void *ctx;
750                 nvme_completion_fn fn;
751                 struct nvme_completion cqe = nvmeq->cqes[head];
752                 if ((le16_to_cpu(cqe.status) & 1) != phase)
753                         break;
754                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
755                 if (++head == nvmeq->q_depth) {
756                         head = 0;
757                         phase = !phase;
758                 }
759
760                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
761                 fn(nvmeq->dev, ctx, &cqe);
762         }
763
764         /* If the controller ignores the cq head doorbell and continuously
765          * writes to the queue, it is theoretically possible to wrap around
766          * the queue twice and mistakenly return IRQ_NONE.  Linux only
767          * requires that 0.1% of your interrupts are handled, so this isn't
768          * a big problem.
769          */
770         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
771                 return 0;
772
773         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
774         nvmeq->cq_head = head;
775         nvmeq->cq_phase = phase;
776
777         nvmeq->cqe_seen = 1;
778         return 1;
779 }
780
781 static void nvme_make_request(struct request_queue *q, struct bio *bio)
782 {
783         struct nvme_ns *ns = q->queuedata;
784         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
785         int result = -EBUSY;
786
787         spin_lock_irq(&nvmeq->q_lock);
788         if (bio_list_empty(&nvmeq->sq_cong))
789                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
790         if (unlikely(result)) {
791                 if (bio_list_empty(&nvmeq->sq_cong))
792                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
793                 bio_list_add(&nvmeq->sq_cong, bio);
794         }
795
796         nvme_process_cq(nvmeq);
797         spin_unlock_irq(&nvmeq->q_lock);
798         put_nvmeq(nvmeq);
799 }
800
801 static irqreturn_t nvme_irq(int irq, void *data)
802 {
803         irqreturn_t result;
804         struct nvme_queue *nvmeq = data;
805         spin_lock(&nvmeq->q_lock);
806         nvme_process_cq(nvmeq);
807         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
808         nvmeq->cqe_seen = 0;
809         spin_unlock(&nvmeq->q_lock);
810         return result;
811 }
812
813 static irqreturn_t nvme_irq_check(int irq, void *data)
814 {
815         struct nvme_queue *nvmeq = data;
816         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
817         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
818                 return IRQ_NONE;
819         return IRQ_WAKE_THREAD;
820 }
821
822 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
823 {
824         spin_lock_irq(&nvmeq->q_lock);
825         cancel_cmdid(nvmeq, cmdid, NULL);
826         spin_unlock_irq(&nvmeq->q_lock);
827 }
828
829 struct sync_cmd_info {
830         struct task_struct *task;
831         u32 result;
832         int status;
833 };
834
835 static void sync_completion(struct nvme_dev *dev, void *ctx,
836                                                 struct nvme_completion *cqe)
837 {
838         struct sync_cmd_info *cmdinfo = ctx;
839         cmdinfo->result = le32_to_cpup(&cqe->result);
840         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
841         wake_up_process(cmdinfo->task);
842 }
843
844 /*
845  * Returns 0 on success.  If the result is negative, it's a Linux error code;
846  * if the result is positive, it's an NVM Express status code
847  */
848 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
849                                                 u32 *result, unsigned timeout)
850 {
851         int cmdid;
852         struct sync_cmd_info cmdinfo;
853
854         cmdinfo.task = current;
855         cmdinfo.status = -EINTR;
856
857         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
858                                                                 timeout);
859         if (cmdid < 0)
860                 return cmdid;
861         cmd->common.command_id = cmdid;
862
863         set_current_state(TASK_KILLABLE);
864         nvme_submit_cmd(nvmeq, cmd);
865         schedule_timeout(timeout);
866
867         if (cmdinfo.status == -EINTR) {
868                 nvme_abort_command(nvmeq, cmdid);
869                 return -EINTR;
870         }
871
872         if (result)
873                 *result = cmdinfo.result;
874
875         return cmdinfo.status;
876 }
877
878 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
879                                                                 u32 *result)
880 {
881         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
882 }
883
884 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
885 {
886         int status;
887         struct nvme_command c;
888
889         memset(&c, 0, sizeof(c));
890         c.delete_queue.opcode = opcode;
891         c.delete_queue.qid = cpu_to_le16(id);
892
893         status = nvme_submit_admin_cmd(dev, &c, NULL);
894         if (status)
895                 return -EIO;
896         return 0;
897 }
898
899 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
900                                                 struct nvme_queue *nvmeq)
901 {
902         int status;
903         struct nvme_command c;
904         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
905
906         memset(&c, 0, sizeof(c));
907         c.create_cq.opcode = nvme_admin_create_cq;
908         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
909         c.create_cq.cqid = cpu_to_le16(qid);
910         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
911         c.create_cq.cq_flags = cpu_to_le16(flags);
912         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
913
914         status = nvme_submit_admin_cmd(dev, &c, NULL);
915         if (status)
916                 return -EIO;
917         return 0;
918 }
919
920 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
921                                                 struct nvme_queue *nvmeq)
922 {
923         int status;
924         struct nvme_command c;
925         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
926
927         memset(&c, 0, sizeof(c));
928         c.create_sq.opcode = nvme_admin_create_sq;
929         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
930         c.create_sq.sqid = cpu_to_le16(qid);
931         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
932         c.create_sq.sq_flags = cpu_to_le16(flags);
933         c.create_sq.cqid = cpu_to_le16(qid);
934
935         status = nvme_submit_admin_cmd(dev, &c, NULL);
936         if (status)
937                 return -EIO;
938         return 0;
939 }
940
941 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
942 {
943         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
944 }
945
946 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
947 {
948         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
949 }
950
951 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
952                                                         dma_addr_t dma_addr)
953 {
954         struct nvme_command c;
955
956         memset(&c, 0, sizeof(c));
957         c.identify.opcode = nvme_admin_identify;
958         c.identify.nsid = cpu_to_le32(nsid);
959         c.identify.prp1 = cpu_to_le64(dma_addr);
960         c.identify.cns = cpu_to_le32(cns);
961
962         return nvme_submit_admin_cmd(dev, &c, NULL);
963 }
964
965 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
966                                         dma_addr_t dma_addr, u32 *result)
967 {
968         struct nvme_command c;
969
970         memset(&c, 0, sizeof(c));
971         c.features.opcode = nvme_admin_get_features;
972         c.features.nsid = cpu_to_le32(nsid);
973         c.features.prp1 = cpu_to_le64(dma_addr);
974         c.features.fid = cpu_to_le32(fid);
975
976         return nvme_submit_admin_cmd(dev, &c, result);
977 }
978
979 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
980                                         dma_addr_t dma_addr, u32 *result)
981 {
982         struct nvme_command c;
983
984         memset(&c, 0, sizeof(c));
985         c.features.opcode = nvme_admin_set_features;
986         c.features.prp1 = cpu_to_le64(dma_addr);
987         c.features.fid = cpu_to_le32(fid);
988         c.features.dword11 = cpu_to_le32(dword11);
989
990         return nvme_submit_admin_cmd(dev, &c, result);
991 }
992
993 /**
994  * nvme_cancel_ios - Cancel outstanding I/Os
995  * @queue: The queue to cancel I/Os on
996  * @timeout: True to only cancel I/Os which have timed out
997  */
998 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
999 {
1000         int depth = nvmeq->q_depth - 1;
1001         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1002         unsigned long now = jiffies;
1003         int cmdid;
1004
1005         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1006                 void *ctx;
1007                 nvme_completion_fn fn;
1008                 static struct nvme_completion cqe = {
1009                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1010                 };
1011
1012                 if (timeout && !time_after(now, info[cmdid].timeout))
1013                         continue;
1014                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1015                         continue;
1016                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1017                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1018                 fn(nvmeq->dev, ctx, &cqe);
1019         }
1020 }
1021
1022 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1023 {
1024         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1025                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1026         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1027                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1028         kfree(nvmeq);
1029 }
1030
1031 static void nvme_free_queue(struct nvme_dev *dev, int qid)
1032 {
1033         struct nvme_queue *nvmeq = dev->queues[qid];
1034         int vector = dev->entry[nvmeq->cq_vector].vector;
1035
1036         spin_lock_irq(&nvmeq->q_lock);
1037         nvme_cancel_ios(nvmeq, false);
1038         while (bio_list_peek(&nvmeq->sq_cong)) {
1039                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1040                 bio_endio(bio, -EIO);
1041         }
1042         spin_unlock_irq(&nvmeq->q_lock);
1043
1044         irq_set_affinity_hint(vector, NULL);
1045         free_irq(vector, nvmeq);
1046
1047         /* Don't tell the adapter to delete the admin queue */
1048         if (qid) {
1049                 adapter_delete_sq(dev, qid);
1050                 adapter_delete_cq(dev, qid);
1051         }
1052
1053         nvme_free_queue_mem(nvmeq);
1054 }
1055
1056 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1057                                                         int depth, int vector)
1058 {
1059         struct device *dmadev = &dev->pci_dev->dev;
1060         unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1061                                                 sizeof(struct nvme_cmd_info));
1062         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1063         if (!nvmeq)
1064                 return NULL;
1065
1066         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1067                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1068         if (!nvmeq->cqes)
1069                 goto free_nvmeq;
1070         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1071
1072         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1073                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1074         if (!nvmeq->sq_cmds)
1075                 goto free_cqdma;
1076
1077         nvmeq->q_dmadev = dmadev;
1078         nvmeq->dev = dev;
1079         spin_lock_init(&nvmeq->q_lock);
1080         nvmeq->cq_head = 0;
1081         nvmeq->cq_phase = 1;
1082         init_waitqueue_head(&nvmeq->sq_full);
1083         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1084         bio_list_init(&nvmeq->sq_cong);
1085         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1086         nvmeq->q_depth = depth;
1087         nvmeq->cq_vector = vector;
1088
1089         return nvmeq;
1090
1091  free_cqdma:
1092         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1093                                                         nvmeq->cq_dma_addr);
1094  free_nvmeq:
1095         kfree(nvmeq);
1096         return NULL;
1097 }
1098
1099 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1100                                                         const char *name)
1101 {
1102         if (use_threaded_interrupts)
1103                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1104                                         nvme_irq_check, nvme_irq,
1105                                         IRQF_DISABLED | IRQF_SHARED,
1106                                         name, nvmeq);
1107         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1108                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1109 }
1110
1111 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1112                                             int cq_size, int vector)
1113 {
1114         int result;
1115         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1116
1117         if (!nvmeq)
1118                 return ERR_PTR(-ENOMEM);
1119
1120         result = adapter_alloc_cq(dev, qid, nvmeq);
1121         if (result < 0)
1122                 goto free_nvmeq;
1123
1124         result = adapter_alloc_sq(dev, qid, nvmeq);
1125         if (result < 0)
1126                 goto release_cq;
1127
1128         result = queue_request_irq(dev, nvmeq, "nvme");
1129         if (result < 0)
1130                 goto release_sq;
1131
1132         return nvmeq;
1133
1134  release_sq:
1135         adapter_delete_sq(dev, qid);
1136  release_cq:
1137         adapter_delete_cq(dev, qid);
1138  free_nvmeq:
1139         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1140                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1141         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1142                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1143         kfree(nvmeq);
1144         return ERR_PTR(result);
1145 }
1146
1147 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1148 {
1149         unsigned long timeout;
1150         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1151
1152         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1153
1154         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1155                 msleep(100);
1156                 if (fatal_signal_pending(current))
1157                         return -EINTR;
1158                 if (time_after(jiffies, timeout)) {
1159                         dev_err(&dev->pci_dev->dev,
1160                                 "Device not ready; aborting initialisation\n");
1161                         return -ENODEV;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 /*
1169  * If the device has been passed off to us in an enabled state, just clear
1170  * the enabled bit.  The spec says we should set the 'shutdown notification
1171  * bits', but doing so may cause the device to complete commands to the
1172  * admin queue ... and we don't know what memory that might be pointing at!
1173  */
1174 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1175 {
1176         u32 cc = readl(&dev->bar->cc);
1177
1178         if (cc & NVME_CC_ENABLE)
1179                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1180         return nvme_wait_ready(dev, cap, false);
1181 }
1182
1183 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1184 {
1185         return nvme_wait_ready(dev, cap, true);
1186 }
1187
1188 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1189 {
1190         int result;
1191         u32 aqa;
1192         u64 cap = readq(&dev->bar->cap);
1193         struct nvme_queue *nvmeq;
1194
1195         dev->dbs = ((void __iomem *)dev->bar) + 4096;
1196         dev->db_stride = NVME_CAP_STRIDE(cap);
1197
1198         result = nvme_disable_ctrl(dev, cap);
1199         if (result < 0)
1200                 return result;
1201
1202         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1203         if (!nvmeq)
1204                 return -ENOMEM;
1205
1206         aqa = nvmeq->q_depth - 1;
1207         aqa |= aqa << 16;
1208
1209         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1210         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1211         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1212         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1213
1214         writel(aqa, &dev->bar->aqa);
1215         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1216         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1217         writel(dev->ctrl_config, &dev->bar->cc);
1218
1219         result = nvme_enable_ctrl(dev, cap);
1220         if (result)
1221                 goto free_q;
1222
1223         result = queue_request_irq(dev, nvmeq, "nvme admin");
1224         if (result)
1225                 goto free_q;
1226
1227         dev->queues[0] = nvmeq;
1228         return result;
1229
1230  free_q:
1231         nvme_free_queue_mem(nvmeq);
1232         return result;
1233 }
1234
1235 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1236                                 unsigned long addr, unsigned length)
1237 {
1238         int i, err, count, nents, offset;
1239         struct scatterlist *sg;
1240         struct page **pages;
1241         struct nvme_iod *iod;
1242
1243         if (addr & 3)
1244                 return ERR_PTR(-EINVAL);
1245         if (!length || length > INT_MAX - PAGE_SIZE)
1246                 return ERR_PTR(-EINVAL);
1247
1248         offset = offset_in_page(addr);
1249         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1250         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1251         if (!pages)
1252                 return ERR_PTR(-ENOMEM);
1253
1254         err = get_user_pages_fast(addr, count, 1, pages);
1255         if (err < count) {
1256                 count = err;
1257                 err = -EFAULT;
1258                 goto put_pages;
1259         }
1260
1261         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1262         sg = iod->sg;
1263         sg_init_table(sg, count);
1264         for (i = 0; i < count; i++) {
1265                 sg_set_page(&sg[i], pages[i],
1266                             min_t(unsigned, length, PAGE_SIZE - offset),
1267                             offset);
1268                 length -= (PAGE_SIZE - offset);
1269                 offset = 0;
1270         }
1271         sg_mark_end(&sg[i - 1]);
1272         iod->nents = count;
1273
1274         err = -ENOMEM;
1275         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1276                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1277         if (!nents)
1278                 goto free_iod;
1279
1280         kfree(pages);
1281         return iod;
1282
1283  free_iod:
1284         kfree(iod);
1285  put_pages:
1286         for (i = 0; i < count; i++)
1287                 put_page(pages[i]);
1288         kfree(pages);
1289         return ERR_PTR(err);
1290 }
1291
1292 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1293                         struct nvme_iod *iod)
1294 {
1295         int i;
1296
1297         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1298                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1299
1300         for (i = 0; i < iod->nents; i++)
1301                 put_page(sg_page(&iod->sg[i]));
1302 }
1303
1304 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1305 {
1306         struct nvme_dev *dev = ns->dev;
1307         struct nvme_queue *nvmeq;
1308         struct nvme_user_io io;
1309         struct nvme_command c;
1310         unsigned length, meta_len;
1311         int status, i;
1312         struct nvme_iod *iod, *meta_iod = NULL;
1313         dma_addr_t meta_dma_addr;
1314         void *meta, *uninitialized_var(meta_mem);
1315
1316         if (copy_from_user(&io, uio, sizeof(io)))
1317                 return -EFAULT;
1318         length = (io.nblocks + 1) << ns->lba_shift;
1319         meta_len = (io.nblocks + 1) * ns->ms;
1320
1321         if (meta_len && ((io.metadata & 3) || !io.metadata))
1322                 return -EINVAL;
1323
1324         switch (io.opcode) {
1325         case nvme_cmd_write:
1326         case nvme_cmd_read:
1327         case nvme_cmd_compare:
1328                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1329                 break;
1330         default:
1331                 return -EINVAL;
1332         }
1333
1334         if (IS_ERR(iod))
1335                 return PTR_ERR(iod);
1336
1337         memset(&c, 0, sizeof(c));
1338         c.rw.opcode = io.opcode;
1339         c.rw.flags = io.flags;
1340         c.rw.nsid = cpu_to_le32(ns->ns_id);
1341         c.rw.slba = cpu_to_le64(io.slba);
1342         c.rw.length = cpu_to_le16(io.nblocks);
1343         c.rw.control = cpu_to_le16(io.control);
1344         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1345         c.rw.reftag = cpu_to_le32(io.reftag);
1346         c.rw.apptag = cpu_to_le16(io.apptag);
1347         c.rw.appmask = cpu_to_le16(io.appmask);
1348
1349         if (meta_len) {
1350                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1351                 if (IS_ERR(meta_iod)) {
1352                         status = PTR_ERR(meta_iod);
1353                         meta_iod = NULL;
1354                         goto unmap;
1355                 }
1356
1357                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1358                                                 &meta_dma_addr, GFP_KERNEL);
1359                 if (!meta_mem) {
1360                         status = -ENOMEM;
1361                         goto unmap;
1362                 }
1363
1364                 if (io.opcode & 1) {
1365                         int meta_offset = 0;
1366
1367                         for (i = 0; i < meta_iod->nents; i++) {
1368                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1369                                                 meta_iod->sg[i].offset;
1370                                 memcpy(meta_mem + meta_offset, meta,
1371                                                 meta_iod->sg[i].length);
1372                                 kunmap_atomic(meta);
1373                                 meta_offset += meta_iod->sg[i].length;
1374                         }
1375                 }
1376
1377                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1378         }
1379
1380         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1381
1382         nvmeq = get_nvmeq(dev);
1383         /*
1384          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1385          * disabled.  We may be preempted at any point, and be rescheduled
1386          * to a different CPU.  That will cause cacheline bouncing, but no
1387          * additional races since q_lock already protects against other CPUs.
1388          */
1389         put_nvmeq(nvmeq);
1390         if (length != (io.nblocks + 1) << ns->lba_shift)
1391                 status = -ENOMEM;
1392         else
1393                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1394
1395         if (meta_len) {
1396                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1397                         int meta_offset = 0;
1398
1399                         for (i = 0; i < meta_iod->nents; i++) {
1400                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1401                                                 meta_iod->sg[i].offset;
1402                                 memcpy(meta, meta_mem + meta_offset,
1403                                                 meta_iod->sg[i].length);
1404                                 kunmap_atomic(meta);
1405                                 meta_offset += meta_iod->sg[i].length;
1406                         }
1407                 }
1408
1409                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1410                                                                 meta_dma_addr);
1411         }
1412
1413  unmap:
1414         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1415         nvme_free_iod(dev, iod);
1416
1417         if (meta_iod) {
1418                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1419                 nvme_free_iod(dev, meta_iod);
1420         }
1421
1422         return status;
1423 }
1424
1425 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1426                                         struct nvme_admin_cmd __user *ucmd)
1427 {
1428         struct nvme_admin_cmd cmd;
1429         struct nvme_command c;
1430         int status, length;
1431         struct nvme_iod *uninitialized_var(iod);
1432         unsigned timeout;
1433
1434         if (!capable(CAP_SYS_ADMIN))
1435                 return -EACCES;
1436         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1437                 return -EFAULT;
1438
1439         memset(&c, 0, sizeof(c));
1440         c.common.opcode = cmd.opcode;
1441         c.common.flags = cmd.flags;
1442         c.common.nsid = cpu_to_le32(cmd.nsid);
1443         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1444         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1445         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1446         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1447         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1448         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1449         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1450         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1451
1452         length = cmd.data_len;
1453         if (cmd.data_len) {
1454                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1455                                                                 length);
1456                 if (IS_ERR(iod))
1457                         return PTR_ERR(iod);
1458                 length = nvme_setup_prps(dev, &c.common, iod, length,
1459                                                                 GFP_KERNEL);
1460         }
1461
1462         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1463                                                                 ADMIN_TIMEOUT;
1464         if (length != cmd.data_len)
1465                 status = -ENOMEM;
1466         else
1467                 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1468                                                                 timeout);
1469
1470         if (cmd.data_len) {
1471                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1472                 nvme_free_iod(dev, iod);
1473         }
1474
1475         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1476                                                         sizeof(cmd.result)))
1477                 status = -EFAULT;
1478
1479         return status;
1480 }
1481
1482 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1483                                                         unsigned long arg)
1484 {
1485         struct nvme_ns *ns = bdev->bd_disk->private_data;
1486
1487         switch (cmd) {
1488         case NVME_IOCTL_ID:
1489                 return ns->ns_id;
1490         case NVME_IOCTL_ADMIN_CMD:
1491                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1492         case NVME_IOCTL_SUBMIT_IO:
1493                 return nvme_submit_io(ns, (void __user *)arg);
1494         case SG_GET_VERSION_NUM:
1495                 return nvme_sg_get_version_num((void __user *)arg);
1496         case SG_IO:
1497                 return nvme_sg_io(ns, (void __user *)arg);
1498         default:
1499                 return -ENOTTY;
1500         }
1501 }
1502
1503 static const struct block_device_operations nvme_fops = {
1504         .owner          = THIS_MODULE,
1505         .ioctl          = nvme_ioctl,
1506         .compat_ioctl   = nvme_ioctl,
1507 };
1508
1509 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1510 {
1511         while (bio_list_peek(&nvmeq->sq_cong)) {
1512                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1513                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1514
1515                 if (bio_list_empty(&nvmeq->sq_cong))
1516                         remove_wait_queue(&nvmeq->sq_full,
1517                                                         &nvmeq->sq_cong_wait);
1518                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1519                         if (bio_list_empty(&nvmeq->sq_cong))
1520                                 add_wait_queue(&nvmeq->sq_full,
1521                                                         &nvmeq->sq_cong_wait);
1522                         bio_list_add_head(&nvmeq->sq_cong, bio);
1523                         break;
1524                 }
1525         }
1526 }
1527
1528 static int nvme_kthread(void *data)
1529 {
1530         struct nvme_dev *dev;
1531
1532         while (!kthread_should_stop()) {
1533                 set_current_state(TASK_INTERRUPTIBLE);
1534                 spin_lock(&dev_list_lock);
1535                 list_for_each_entry(dev, &dev_list, node) {
1536                         int i;
1537                         for (i = 0; i < dev->queue_count; i++) {
1538                                 struct nvme_queue *nvmeq = dev->queues[i];
1539                                 if (!nvmeq)
1540                                         continue;
1541                                 spin_lock_irq(&nvmeq->q_lock);
1542                                 nvme_process_cq(nvmeq);
1543                                 nvme_cancel_ios(nvmeq, true);
1544                                 nvme_resubmit_bios(nvmeq);
1545                                 spin_unlock_irq(&nvmeq->q_lock);
1546                         }
1547                 }
1548                 spin_unlock(&dev_list_lock);
1549                 schedule_timeout(round_jiffies_relative(HZ));
1550         }
1551         return 0;
1552 }
1553
1554 static DEFINE_IDA(nvme_index_ida);
1555
1556 static int nvme_get_ns_idx(void)
1557 {
1558         int index, error;
1559
1560         do {
1561                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1562                         return -1;
1563
1564                 spin_lock(&dev_list_lock);
1565                 error = ida_get_new(&nvme_index_ida, &index);
1566                 spin_unlock(&dev_list_lock);
1567         } while (error == -EAGAIN);
1568
1569         if (error)
1570                 index = -1;
1571         return index;
1572 }
1573
1574 static void nvme_put_ns_idx(int index)
1575 {
1576         spin_lock(&dev_list_lock);
1577         ida_remove(&nvme_index_ida, index);
1578         spin_unlock(&dev_list_lock);
1579 }
1580
1581 static void nvme_config_discard(struct nvme_ns *ns)
1582 {
1583         u32 logical_block_size = queue_logical_block_size(ns->queue);
1584         ns->queue->limits.discard_zeroes_data = 0;
1585         ns->queue->limits.discard_alignment = logical_block_size;
1586         ns->queue->limits.discard_granularity = logical_block_size;
1587         ns->queue->limits.max_discard_sectors = 0xffffffff;
1588         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1589 }
1590
1591 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1592                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1593 {
1594         struct nvme_ns *ns;
1595         struct gendisk *disk;
1596         int lbaf;
1597
1598         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1599                 return NULL;
1600
1601         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1602         if (!ns)
1603                 return NULL;
1604         ns->queue = blk_alloc_queue(GFP_KERNEL);
1605         if (!ns->queue)
1606                 goto out_free_ns;
1607         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1608         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1609         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1610         blk_queue_make_request(ns->queue, nvme_make_request);
1611         ns->dev = dev;
1612         ns->queue->queuedata = ns;
1613
1614         disk = alloc_disk(NVME_MINORS);
1615         if (!disk)
1616                 goto out_free_queue;
1617         ns->ns_id = nsid;
1618         ns->disk = disk;
1619         lbaf = id->flbas & 0xf;
1620         ns->lba_shift = id->lbaf[lbaf].ds;
1621         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1622         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1623         if (dev->max_hw_sectors)
1624                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1625
1626         disk->major = nvme_major;
1627         disk->minors = NVME_MINORS;
1628         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1629         disk->fops = &nvme_fops;
1630         disk->private_data = ns;
1631         disk->queue = ns->queue;
1632         disk->driverfs_dev = &dev->pci_dev->dev;
1633         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1634         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1635
1636         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1637                 nvme_config_discard(ns);
1638
1639         return ns;
1640
1641  out_free_queue:
1642         blk_cleanup_queue(ns->queue);
1643  out_free_ns:
1644         kfree(ns);
1645         return NULL;
1646 }
1647
1648 static void nvme_ns_free(struct nvme_ns *ns)
1649 {
1650         int index = ns->disk->first_minor / NVME_MINORS;
1651         put_disk(ns->disk);
1652         nvme_put_ns_idx(index);
1653         blk_cleanup_queue(ns->queue);
1654         kfree(ns);
1655 }
1656
1657 static int set_queue_count(struct nvme_dev *dev, int count)
1658 {
1659         int status;
1660         u32 result;
1661         u32 q_count = (count - 1) | ((count - 1) << 16);
1662
1663         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1664                                                                 &result);
1665         if (status)
1666                 return -EIO;
1667         return min(result & 0xffff, result >> 16) + 1;
1668 }
1669
1670 static int nvme_setup_io_queues(struct nvme_dev *dev)
1671 {
1672         struct pci_dev *pdev = dev->pci_dev;
1673         int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1674
1675         nr_io_queues = num_online_cpus();
1676         result = set_queue_count(dev, nr_io_queues);
1677         if (result < 0)
1678                 return result;
1679         if (result < nr_io_queues)
1680                 nr_io_queues = result;
1681
1682         /* Deregister the admin queue's interrupt */
1683         free_irq(dev->entry[0].vector, dev->queues[0]);
1684
1685         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1686         if (db_bar_size > 8192) {
1687                 iounmap(dev->bar);
1688                 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1689                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1690                 dev->queues[0]->q_db = dev->dbs;
1691         }
1692
1693         vecs = nr_io_queues;
1694         for (i = 0; i < vecs; i++)
1695                 dev->entry[i].entry = i;
1696         for (;;) {
1697                 result = pci_enable_msix(pdev, dev->entry, vecs);
1698                 if (result <= 0)
1699                         break;
1700                 vecs = result;
1701         }
1702
1703         if (result < 0) {
1704                 vecs = nr_io_queues;
1705                 if (vecs > 32)
1706                         vecs = 32;
1707                 for (;;) {
1708                         result = pci_enable_msi_block(pdev, vecs);
1709                         if (result == 0) {
1710                                 for (i = 0; i < vecs; i++)
1711                                         dev->entry[i].vector = i + pdev->irq;
1712                                 break;
1713                         } else if (result < 0) {
1714                                 vecs = 1;
1715                                 break;
1716                         }
1717                         vecs = result;
1718                 }
1719         }
1720
1721         /*
1722          * Should investigate if there's a performance win from allocating
1723          * more queues than interrupt vectors; it might allow the submission
1724          * path to scale better, even if the receive path is limited by the
1725          * number of interrupts.
1726          */
1727         nr_io_queues = vecs;
1728
1729         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1730         /* XXX: handle failure here */
1731
1732         cpu = cpumask_first(cpu_online_mask);
1733         for (i = 0; i < nr_io_queues; i++) {
1734                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1735                 cpu = cpumask_next(cpu, cpu_online_mask);
1736         }
1737
1738         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1739                                                                 NVME_Q_DEPTH);
1740         for (i = 0; i < nr_io_queues; i++) {
1741                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1742                 if (IS_ERR(dev->queues[i + 1]))
1743                         return PTR_ERR(dev->queues[i + 1]);
1744                 dev->queue_count++;
1745         }
1746
1747         for (; i < num_possible_cpus(); i++) {
1748                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1749                 dev->queues[i + 1] = dev->queues[target + 1];
1750         }
1751
1752         return 0;
1753 }
1754
1755 static void nvme_free_queues(struct nvme_dev *dev)
1756 {
1757         int i;
1758
1759         for (i = dev->queue_count - 1; i >= 0; i--)
1760                 nvme_free_queue(dev, i);
1761 }
1762
1763 /*
1764  * Return: error value if an error occurred setting up the queues or calling
1765  * Identify Device.  0 if these succeeded, even if adding some of the
1766  * namespaces failed.  At the moment, these failures are silent.  TBD which
1767  * failures should be reported.
1768  */
1769 static int nvme_dev_add(struct nvme_dev *dev)
1770 {
1771         int res, nn, i;
1772         struct nvme_ns *ns;
1773         struct nvme_id_ctrl *ctrl;
1774         struct nvme_id_ns *id_ns;
1775         void *mem;
1776         dma_addr_t dma_addr;
1777         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1778
1779         res = nvme_setup_io_queues(dev);
1780         if (res)
1781                 return res;
1782
1783         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1784                                                                 GFP_KERNEL);
1785         if (!mem)
1786                 return -ENOMEM;
1787
1788         res = nvme_identify(dev, 0, 1, dma_addr);
1789         if (res) {
1790                 res = -EIO;
1791                 goto out;
1792         }
1793
1794         ctrl = mem;
1795         nn = le32_to_cpup(&ctrl->nn);
1796         dev->oncs = le16_to_cpup(&ctrl->oncs);
1797         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1798         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1799         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1800         if (ctrl->mdts)
1801                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1802         if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1803                         (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1804                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1805
1806         id_ns = mem;
1807         for (i = 1; i <= nn; i++) {
1808                 res = nvme_identify(dev, i, 0, dma_addr);
1809                 if (res)
1810                         continue;
1811
1812                 if (id_ns->ncap == 0)
1813                         continue;
1814
1815                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1816                                                         dma_addr + 4096, NULL);
1817                 if (res)
1818                         memset(mem + 4096, 0, 4096);
1819
1820                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1821                 if (ns)
1822                         list_add_tail(&ns->list, &dev->namespaces);
1823         }
1824         list_for_each_entry(ns, &dev->namespaces, list)
1825                 add_disk(ns->disk);
1826         res = 0;
1827
1828  out:
1829         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1830         return res;
1831 }
1832
1833 static int nvme_dev_remove(struct nvme_dev *dev)
1834 {
1835         struct nvme_ns *ns, *next;
1836
1837         spin_lock(&dev_list_lock);
1838         list_del(&dev->node);
1839         spin_unlock(&dev_list_lock);
1840
1841         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1842                 list_del(&ns->list);
1843                 del_gendisk(ns->disk);
1844                 nvme_ns_free(ns);
1845         }
1846
1847         nvme_free_queues(dev);
1848
1849         return 0;
1850 }
1851
1852 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1853 {
1854         struct device *dmadev = &dev->pci_dev->dev;
1855         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1856                                                 PAGE_SIZE, PAGE_SIZE, 0);
1857         if (!dev->prp_page_pool)
1858                 return -ENOMEM;
1859
1860         /* Optimisation for I/Os between 4k and 128k */
1861         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1862                                                 256, 256, 0);
1863         if (!dev->prp_small_pool) {
1864                 dma_pool_destroy(dev->prp_page_pool);
1865                 return -ENOMEM;
1866         }
1867         return 0;
1868 }
1869
1870 static void nvme_release_prp_pools(struct nvme_dev *dev)
1871 {
1872         dma_pool_destroy(dev->prp_page_pool);
1873         dma_pool_destroy(dev->prp_small_pool);
1874 }
1875
1876 static DEFINE_IDA(nvme_instance_ida);
1877
1878 static int nvme_set_instance(struct nvme_dev *dev)
1879 {
1880         int instance, error;
1881
1882         do {
1883                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1884                         return -ENODEV;
1885
1886                 spin_lock(&dev_list_lock);
1887                 error = ida_get_new(&nvme_instance_ida, &instance);
1888                 spin_unlock(&dev_list_lock);
1889         } while (error == -EAGAIN);
1890
1891         if (error)
1892                 return -ENODEV;
1893
1894         dev->instance = instance;
1895         return 0;
1896 }
1897
1898 static void nvme_release_instance(struct nvme_dev *dev)
1899 {
1900         spin_lock(&dev_list_lock);
1901         ida_remove(&nvme_instance_ida, dev->instance);
1902         spin_unlock(&dev_list_lock);
1903 }
1904
1905 static void nvme_free_dev(struct kref *kref)
1906 {
1907         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1908         nvme_dev_remove(dev);
1909         if (dev->pci_dev->msi_enabled)
1910                 pci_disable_msi(dev->pci_dev);
1911         else if (dev->pci_dev->msix_enabled)
1912                 pci_disable_msix(dev->pci_dev);
1913         iounmap(dev->bar);
1914         nvme_release_instance(dev);
1915         nvme_release_prp_pools(dev);
1916         pci_disable_device(dev->pci_dev);
1917         pci_release_regions(dev->pci_dev);
1918         kfree(dev->queues);
1919         kfree(dev->entry);
1920         kfree(dev);
1921 }
1922
1923 static int nvme_dev_open(struct inode *inode, struct file *f)
1924 {
1925         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1926                                                                 miscdev);
1927         kref_get(&dev->kref);
1928         f->private_data = dev;
1929         return 0;
1930 }
1931
1932 static int nvme_dev_release(struct inode *inode, struct file *f)
1933 {
1934         struct nvme_dev *dev = f->private_data;
1935         kref_put(&dev->kref, nvme_free_dev);
1936         return 0;
1937 }
1938
1939 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1940 {
1941         struct nvme_dev *dev = f->private_data;
1942         switch (cmd) {
1943         case NVME_IOCTL_ADMIN_CMD:
1944                 return nvme_user_admin_cmd(dev, (void __user *)arg);
1945         default:
1946                 return -ENOTTY;
1947         }
1948 }
1949
1950 static const struct file_operations nvme_dev_fops = {
1951         .owner          = THIS_MODULE,
1952         .open           = nvme_dev_open,
1953         .release        = nvme_dev_release,
1954         .unlocked_ioctl = nvme_dev_ioctl,
1955         .compat_ioctl   = nvme_dev_ioctl,
1956 };
1957
1958 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1959 {
1960         int bars, result = -ENOMEM;
1961         struct nvme_dev *dev;
1962
1963         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1964         if (!dev)
1965                 return -ENOMEM;
1966         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1967                                                                 GFP_KERNEL);
1968         if (!dev->entry)
1969                 goto free;
1970         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1971                                                                 GFP_KERNEL);
1972         if (!dev->queues)
1973                 goto free;
1974
1975         if (pci_enable_device_mem(pdev))
1976                 goto free;
1977         pci_set_master(pdev);
1978         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1979         if (pci_request_selected_regions(pdev, bars, "nvme"))
1980                 goto disable;
1981
1982         INIT_LIST_HEAD(&dev->namespaces);
1983         dev->pci_dev = pdev;
1984         pci_set_drvdata(pdev, dev);
1985
1986         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1987                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1988         else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1989                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1990         else
1991                 goto disable;
1992
1993         result = nvme_set_instance(dev);
1994         if (result)
1995                 goto disable;
1996
1997         dev->entry[0].vector = pdev->irq;
1998
1999         result = nvme_setup_prp_pools(dev);
2000         if (result)
2001                 goto disable_msix;
2002
2003         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2004         if (!dev->bar) {
2005                 result = -ENOMEM;
2006                 goto disable_msix;
2007         }
2008
2009         result = nvme_configure_admin_queue(dev);
2010         if (result)
2011                 goto unmap;
2012         dev->queue_count++;
2013
2014         spin_lock(&dev_list_lock);
2015         list_add(&dev->node, &dev_list);
2016         spin_unlock(&dev_list_lock);
2017
2018         result = nvme_dev_add(dev);
2019         if (result)
2020                 goto delete;
2021
2022         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2023         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2024         dev->miscdev.parent = &pdev->dev;
2025         dev->miscdev.name = dev->name;
2026         dev->miscdev.fops = &nvme_dev_fops;
2027         result = misc_register(&dev->miscdev);
2028         if (result)
2029                 goto remove;
2030
2031         kref_init(&dev->kref);
2032         return 0;
2033
2034  remove:
2035         nvme_dev_remove(dev);
2036  delete:
2037         spin_lock(&dev_list_lock);
2038         list_del(&dev->node);
2039         spin_unlock(&dev_list_lock);
2040
2041         nvme_free_queues(dev);
2042  unmap:
2043         iounmap(dev->bar);
2044  disable_msix:
2045         if (dev->pci_dev->msi_enabled)
2046                 pci_disable_msi(dev->pci_dev);
2047         else if (dev->pci_dev->msix_enabled)
2048                 pci_disable_msix(dev->pci_dev);
2049         nvme_release_instance(dev);
2050         nvme_release_prp_pools(dev);
2051  disable:
2052         pci_disable_device(pdev);
2053         pci_release_regions(pdev);
2054  free:
2055         kfree(dev->queues);
2056         kfree(dev->entry);
2057         kfree(dev);
2058         return result;
2059 }
2060
2061 static void nvme_remove(struct pci_dev *pdev)
2062 {
2063         struct nvme_dev *dev = pci_get_drvdata(pdev);
2064         misc_deregister(&dev->miscdev);
2065         kref_put(&dev->kref, nvme_free_dev);
2066 }
2067
2068 /* These functions are yet to be implemented */
2069 #define nvme_error_detected NULL
2070 #define nvme_dump_registers NULL
2071 #define nvme_link_reset NULL
2072 #define nvme_slot_reset NULL
2073 #define nvme_error_resume NULL
2074 #define nvme_suspend NULL
2075 #define nvme_resume NULL
2076
2077 static const struct pci_error_handlers nvme_err_handler = {
2078         .error_detected = nvme_error_detected,
2079         .mmio_enabled   = nvme_dump_registers,
2080         .link_reset     = nvme_link_reset,
2081         .slot_reset     = nvme_slot_reset,
2082         .resume         = nvme_error_resume,
2083 };
2084
2085 /* Move to pci_ids.h later */
2086 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2087
2088 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2089         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2090         { 0, }
2091 };
2092 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2093
2094 static struct pci_driver nvme_driver = {
2095         .name           = "nvme",
2096         .id_table       = nvme_id_table,
2097         .probe          = nvme_probe,
2098         .remove         = nvme_remove,
2099         .suspend        = nvme_suspend,
2100         .resume         = nvme_resume,
2101         .err_handler    = &nvme_err_handler,
2102 };
2103
2104 static int __init nvme_init(void)
2105 {
2106         int result;
2107
2108         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2109         if (IS_ERR(nvme_thread))
2110                 return PTR_ERR(nvme_thread);
2111
2112         result = register_blkdev(nvme_major, "nvme");
2113         if (result < 0)
2114                 goto kill_kthread;
2115         else if (result > 0)
2116                 nvme_major = result;
2117
2118         result = pci_register_driver(&nvme_driver);
2119         if (result)
2120                 goto unregister_blkdev;
2121         return 0;
2122
2123  unregister_blkdev:
2124         unregister_blkdev(nvme_major, "nvme");
2125  kill_kthread:
2126         kthread_stop(nvme_thread);
2127         return result;
2128 }
2129
2130 static void __exit nvme_exit(void)
2131 {
2132         pci_unregister_driver(&nvme_driver);
2133         unregister_blkdev(nvme_major, "nvme");
2134         kthread_stop(nvme_thread);
2135 }
2136
2137 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2138 MODULE_LICENSE("GPL");
2139 MODULE_VERSION("0.8");
2140 module_init(nvme_init);
2141 module_exit(nvme_exit);