]> Pileus Git - ~andy/linux/blob - drivers/acpi/processor_idle.c
5551bfbc47aa565daccc5df43e42af5ee80c9c21
[~andy/linux] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER       "power"
54 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void) __read_mostly;
58 module_param(max_cstate, uint, 0644);
59
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
62
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history __read_mostly =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86                 return 0;
87
88         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89                " Override with \"processor.max_cstate=%d\"\n", id->ident,
90                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92         max_cstate = (long)id->driver_data;
93
94         return 0;
95 }
96
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98    callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100         { set_max_cstate, "IBM ThinkPad R40e", {
101           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
103         { set_max_cstate, "IBM ThinkPad R40e", {
104           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
105           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
106         { set_max_cstate, "IBM ThinkPad R40e", {
107           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
108           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
109         { set_max_cstate, "IBM ThinkPad R40e", {
110           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
111           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
112         { set_max_cstate, "IBM ThinkPad R40e", {
113           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
115         { set_max_cstate, "IBM ThinkPad R40e", {
116           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
118         { set_max_cstate, "IBM ThinkPad R40e", {
119           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
121         { set_max_cstate, "IBM ThinkPad R40e", {
122           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
124         { set_max_cstate, "IBM ThinkPad R40e", {
125           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
127         { set_max_cstate, "IBM ThinkPad R40e", {
128           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
130         { set_max_cstate, "IBM ThinkPad R40e", {
131           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
133         { set_max_cstate, "IBM ThinkPad R40e", {
134           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
136         { set_max_cstate, "IBM ThinkPad R40e", {
137           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
139         { set_max_cstate, "IBM ThinkPad R40e", {
140           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
142         { set_max_cstate, "IBM ThinkPad R40e", {
143           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
145         { set_max_cstate, "Medion 41700", {
146           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
147           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
148         { set_max_cstate, "Clevo 5600D", {
149           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
150           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
151          (void *)2},
152         {},
153 };
154
155 static inline u32 ticks_elapsed(u32 t1, u32 t2)
156 {
157         if (t2 >= t1)
158                 return (t2 - t1);
159         else if (!acpi_fadt.tmr_val_ext)
160                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
161         else
162                 return ((0xFFFFFFFF - t1) + t2);
163 }
164
165 static void
166 acpi_processor_power_activate(struct acpi_processor *pr,
167                               struct acpi_processor_cx *new)
168 {
169         struct acpi_processor_cx *old;
170
171         if (!pr || !new)
172                 return;
173
174         old = pr->power.state;
175
176         if (old)
177                 old->promotion.count = 0;
178         new->demotion.count = 0;
179
180         /* Cleanup from old state. */
181         if (old) {
182                 switch (old->type) {
183                 case ACPI_STATE_C3:
184                         /* Disable bus master reload */
185                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
186                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
187                                                   ACPI_MTX_DO_NOT_LOCK);
188                         break;
189                 }
190         }
191
192         /* Prepare to use new state. */
193         switch (new->type) {
194         case ACPI_STATE_C3:
195                 /* Enable bus master reload */
196                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
197                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
198                                           ACPI_MTX_DO_NOT_LOCK);
199                 break;
200         }
201
202         pr->power.state = new;
203
204         return;
205 }
206
207 static void acpi_safe_halt(void)
208 {
209         current_thread_info()->status &= ~TS_POLLING;
210         smp_mb__after_clear_bit();
211         if (!need_resched())
212                 safe_halt();
213         current_thread_info()->status |= TS_POLLING;
214 }
215
216 static atomic_t c3_cpu_count;
217
218 static void acpi_processor_idle(void)
219 {
220         struct acpi_processor *pr = NULL;
221         struct acpi_processor_cx *cx = NULL;
222         struct acpi_processor_cx *next_state = NULL;
223         int sleep_ticks = 0;
224         u32 t1, t2 = 0;
225
226         pr = processors[smp_processor_id()];
227         if (!pr)
228                 return;
229
230         /*
231          * Interrupts must be disabled during bus mastering calculations and
232          * for C2/C3 transitions.
233          */
234         local_irq_disable();
235
236         /*
237          * Check whether we truly need to go idle, or should
238          * reschedule:
239          */
240         if (unlikely(need_resched())) {
241                 local_irq_enable();
242                 return;
243         }
244
245         cx = pr->power.state;
246         if (!cx) {
247                 if (pm_idle_save)
248                         pm_idle_save();
249                 else
250                         acpi_safe_halt();
251                 return;
252         }
253
254         /*
255          * Check BM Activity
256          * -----------------
257          * Check for bus mastering activity (if required), record, and check
258          * for demotion.
259          */
260         if (pr->flags.bm_check) {
261                 u32 bm_status = 0;
262                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
263
264                 if (diff > 32)
265                         diff = 32;
266
267                 while (diff) {
268                         /* if we didn't get called, assume there was busmaster activity */
269                         diff--;
270                         if (diff)
271                                 pr->power.bm_activity |= 0x1;
272                         pr->power.bm_activity <<= 1;
273                 }
274
275                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
276                                   &bm_status, ACPI_MTX_DO_NOT_LOCK);
277                 if (bm_status) {
278                         pr->power.bm_activity++;
279                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
280                                           1, ACPI_MTX_DO_NOT_LOCK);
281                 }
282                 /*
283                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
284                  * the true state of bus mastering activity; forcing us to
285                  * manually check the BMIDEA bit of each IDE channel.
286                  */
287                 else if (errata.piix4.bmisx) {
288                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
289                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
290                                 pr->power.bm_activity++;
291                 }
292
293                 pr->power.bm_check_timestamp = jiffies;
294
295                 /*
296                  * Apply bus mastering demotion policy.  Automatically demote
297                  * to avoid a faulty transition.  Note that the processor
298                  * won't enter a low-power state during this call (to this
299                  * funciton) but should upon the next.
300                  *
301                  * TBD: A better policy might be to fallback to the demotion
302                  *      state (use it for this quantum only) istead of
303                  *      demoting -- and rely on duration as our sole demotion
304                  *      qualification.  This may, however, introduce DMA
305                  *      issues (e.g. floppy DMA transfer overrun/underrun).
306                  */
307                 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
308                         local_irq_enable();
309                         next_state = cx->demotion.state;
310                         goto end;
311                 }
312         }
313
314 #ifdef CONFIG_HOTPLUG_CPU
315         /*
316          * Check for P_LVL2_UP flag before entering C2 and above on
317          * an SMP system. We do it here instead of doing it at _CST/P_LVL
318          * detection phase, to work cleanly with logical CPU hotplug.
319          */
320         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
321             !pr->flags.has_cst && !acpi_fadt.plvl2_up)
322                 cx = &pr->power.states[ACPI_STATE_C1];
323 #endif
324
325         cx->usage++;
326
327         /*
328          * Sleep:
329          * ------
330          * Invoke the current Cx state to put the processor to sleep.
331          */
332         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
333                 current_thread_info()->status &= ~TS_POLLING;
334                 smp_mb__after_clear_bit();
335                 if (need_resched()) {
336                         current_thread_info()->status |= TS_POLLING;
337                         local_irq_enable();
338                         return;
339                 }
340         }
341
342         switch (cx->type) {
343
344         case ACPI_STATE_C1:
345                 /*
346                  * Invoke C1.
347                  * Use the appropriate idle routine, the one that would
348                  * be used without acpi C-states.
349                  */
350                 if (pm_idle_save)
351                         pm_idle_save();
352                 else
353                         acpi_safe_halt();
354
355                 /*
356                  * TBD: Can't get time duration while in C1, as resumes
357                  *      go to an ISR rather than here.  Need to instrument
358                  *      base interrupt handler.
359                  */
360                 sleep_ticks = 0xFFFFFFFF;
361                 break;
362
363         case ACPI_STATE_C2:
364                 /* Get start time (ticks) */
365                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
366                 /* Invoke C2 */
367                 inb(cx->address);
368                 /* Dummy wait op - must do something useless after P_LVL2 read
369                    because chipsets cannot guarantee that STPCLK# signal
370                    gets asserted in time to freeze execution properly. */
371                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
372                 /* Get end time (ticks) */
373                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
374
375 #ifdef CONFIG_GENERIC_TIME
376                 /* TSC halts in C2, so notify users */
377                 mark_tsc_unstable();
378 #endif
379                 /* Re-enable interrupts */
380                 local_irq_enable();
381                 current_thread_info()->status |= TS_POLLING;
382                 /* Compute time (ticks) that we were actually asleep */
383                 sleep_ticks =
384                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
385                 break;
386
387         case ACPI_STATE_C3:
388
389                 if (pr->flags.bm_check) {
390                         if (atomic_inc_return(&c3_cpu_count) ==
391                             num_online_cpus()) {
392                                 /*
393                                  * All CPUs are trying to go to C3
394                                  * Disable bus master arbitration
395                                  */
396                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
397                                                   ACPI_MTX_DO_NOT_LOCK);
398                         }
399                 } else {
400                         /* SMP with no shared cache... Invalidate cache  */
401                         ACPI_FLUSH_CPU_CACHE();
402                 }
403
404                 /* Get start time (ticks) */
405                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
406                 /* Invoke C3 */
407                 inb(cx->address);
408                 /* Dummy wait op (see above) */
409                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
410                 /* Get end time (ticks) */
411                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
412                 if (pr->flags.bm_check) {
413                         /* Enable bus master arbitration */
414                         atomic_dec(&c3_cpu_count);
415                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
416                                           ACPI_MTX_DO_NOT_LOCK);
417                 }
418
419 #ifdef CONFIG_GENERIC_TIME
420                 /* TSC halts in C3, so notify users */
421                 mark_tsc_unstable();
422 #endif
423                 /* Re-enable interrupts */
424                 local_irq_enable();
425                 current_thread_info()->status |= TS_POLLING;
426                 /* Compute time (ticks) that we were actually asleep */
427                 sleep_ticks =
428                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
429                 break;
430
431         default:
432                 local_irq_enable();
433                 return;
434         }
435
436         next_state = pr->power.state;
437
438 #ifdef CONFIG_HOTPLUG_CPU
439         /* Don't do promotion/demotion */
440         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
441             !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
442                 next_state = cx;
443                 goto end;
444         }
445 #endif
446
447         /*
448          * Promotion?
449          * ----------
450          * Track the number of longs (time asleep is greater than threshold)
451          * and promote when the count threshold is reached.  Note that bus
452          * mastering activity may prevent promotions.
453          * Do not promote above max_cstate.
454          */
455         if (cx->promotion.state &&
456             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
457                 if (sleep_ticks > cx->promotion.threshold.ticks) {
458                         cx->promotion.count++;
459                         cx->demotion.count = 0;
460                         if (cx->promotion.count >=
461                             cx->promotion.threshold.count) {
462                                 if (pr->flags.bm_check) {
463                                         if (!
464                                             (pr->power.bm_activity & cx->
465                                              promotion.threshold.bm)) {
466                                                 next_state =
467                                                     cx->promotion.state;
468                                                 goto end;
469                                         }
470                                 } else {
471                                         next_state = cx->promotion.state;
472                                         goto end;
473                                 }
474                         }
475                 }
476         }
477
478         /*
479          * Demotion?
480          * ---------
481          * Track the number of shorts (time asleep is less than time threshold)
482          * and demote when the usage threshold is reached.
483          */
484         if (cx->demotion.state) {
485                 if (sleep_ticks < cx->demotion.threshold.ticks) {
486                         cx->demotion.count++;
487                         cx->promotion.count = 0;
488                         if (cx->demotion.count >= cx->demotion.threshold.count) {
489                                 next_state = cx->demotion.state;
490                                 goto end;
491                         }
492                 }
493         }
494
495       end:
496         /*
497          * Demote if current state exceeds max_cstate
498          */
499         if ((pr->power.state - pr->power.states) > max_cstate) {
500                 if (cx->demotion.state)
501                         next_state = cx->demotion.state;
502         }
503
504         /*
505          * New Cx State?
506          * -------------
507          * If we're going to start using a new Cx state we must clean up
508          * from the previous and prepare to use the new.
509          */
510         if (next_state != pr->power.state)
511                 acpi_processor_power_activate(pr, next_state);
512 }
513
514 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
515 {
516         unsigned int i;
517         unsigned int state_is_set = 0;
518         struct acpi_processor_cx *lower = NULL;
519         struct acpi_processor_cx *higher = NULL;
520         struct acpi_processor_cx *cx;
521
522
523         if (!pr)
524                 return -EINVAL;
525
526         /*
527          * This function sets the default Cx state policy (OS idle handler).
528          * Our scheme is to promote quickly to C2 but more conservatively
529          * to C3.  We're favoring C2  for its characteristics of low latency
530          * (quick response), good power savings, and ability to allow bus
531          * mastering activity.  Note that the Cx state policy is completely
532          * customizable and can be altered dynamically.
533          */
534
535         /* startup state */
536         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
537                 cx = &pr->power.states[i];
538                 if (!cx->valid)
539                         continue;
540
541                 if (!state_is_set)
542                         pr->power.state = cx;
543                 state_is_set++;
544                 break;
545         }
546
547         if (!state_is_set)
548                 return -ENODEV;
549
550         /* demotion */
551         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
552                 cx = &pr->power.states[i];
553                 if (!cx->valid)
554                         continue;
555
556                 if (lower) {
557                         cx->demotion.state = lower;
558                         cx->demotion.threshold.ticks = cx->latency_ticks;
559                         cx->demotion.threshold.count = 1;
560                         if (cx->type == ACPI_STATE_C3)
561                                 cx->demotion.threshold.bm = bm_history;
562                 }
563
564                 lower = cx;
565         }
566
567         /* promotion */
568         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
569                 cx = &pr->power.states[i];
570                 if (!cx->valid)
571                         continue;
572
573                 if (higher) {
574                         cx->promotion.state = higher;
575                         cx->promotion.threshold.ticks = cx->latency_ticks;
576                         if (cx->type >= ACPI_STATE_C2)
577                                 cx->promotion.threshold.count = 4;
578                         else
579                                 cx->promotion.threshold.count = 10;
580                         if (higher->type == ACPI_STATE_C3)
581                                 cx->promotion.threshold.bm = bm_history;
582                 }
583
584                 higher = cx;
585         }
586
587         return 0;
588 }
589
590 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
591 {
592
593         if (!pr)
594                 return -EINVAL;
595
596         if (!pr->pblk)
597                 return -ENODEV;
598
599         /* if info is obtained from pblk/fadt, type equals state */
600         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
601         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
602
603 #ifndef CONFIG_HOTPLUG_CPU
604         /*
605          * Check for P_LVL2_UP flag before entering C2 and above on
606          * an SMP system. 
607          */
608         if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
609                 return -ENODEV;
610 #endif
611
612         /* determine C2 and C3 address from pblk */
613         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
614         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
615
616         /* determine latencies from FADT */
617         pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
618         pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
619
620         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
621                           "lvl2[0x%08x] lvl3[0x%08x]\n",
622                           pr->power.states[ACPI_STATE_C2].address,
623                           pr->power.states[ACPI_STATE_C3].address));
624
625         return 0;
626 }
627
628 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
629 {
630
631         /* Zero initialize all the C-states info. */
632         memset(pr->power.states, 0, sizeof(pr->power.states));
633
634         /* set the first C-State to C1 */
635         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
636
637         /* the C0 state only exists as a filler in our array,
638          * and all processors need to support C1 */
639         pr->power.states[ACPI_STATE_C0].valid = 1;
640         pr->power.states[ACPI_STATE_C1].valid = 1;
641
642         return 0;
643 }
644
645 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
646 {
647         acpi_status status = 0;
648         acpi_integer count;
649         int current_count;
650         int i;
651         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
652         union acpi_object *cst;
653
654
655         if (nocst)
656                 return -ENODEV;
657
658         current_count = 1;
659
660         /* Zero initialize C2 onwards and prepare for fresh CST lookup */
661         for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
662                 memset(&(pr->power.states[i]), 0, 
663                                 sizeof(struct acpi_processor_cx));
664
665         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
666         if (ACPI_FAILURE(status)) {
667                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
668                 return -ENODEV;
669         }
670
671         cst = (union acpi_object *)buffer.pointer;
672
673         /* There must be at least 2 elements */
674         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
675                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
676                 status = -EFAULT;
677                 goto end;
678         }
679
680         count = cst->package.elements[0].integer.value;
681
682         /* Validate number of power states. */
683         if (count < 1 || count != cst->package.count - 1) {
684                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
685                 status = -EFAULT;
686                 goto end;
687         }
688
689         /* Tell driver that at least _CST is supported. */
690         pr->flags.has_cst = 1;
691
692         for (i = 1; i <= count; i++) {
693                 union acpi_object *element;
694                 union acpi_object *obj;
695                 struct acpi_power_register *reg;
696                 struct acpi_processor_cx cx;
697
698                 memset(&cx, 0, sizeof(cx));
699
700                 element = (union acpi_object *)&(cst->package.elements[i]);
701                 if (element->type != ACPI_TYPE_PACKAGE)
702                         continue;
703
704                 if (element->package.count != 4)
705                         continue;
706
707                 obj = (union acpi_object *)&(element->package.elements[0]);
708
709                 if (obj->type != ACPI_TYPE_BUFFER)
710                         continue;
711
712                 reg = (struct acpi_power_register *)obj->buffer.pointer;
713
714                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
715                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
716                         continue;
717
718                 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
719                     0 : reg->address;
720
721                 /* There should be an easy way to extract an integer... */
722                 obj = (union acpi_object *)&(element->package.elements[1]);
723                 if (obj->type != ACPI_TYPE_INTEGER)
724                         continue;
725
726                 cx.type = obj->integer.value;
727
728                 if ((cx.type != ACPI_STATE_C1) &&
729                     (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
730                         continue;
731
732                 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
733                         continue;
734
735                 obj = (union acpi_object *)&(element->package.elements[2]);
736                 if (obj->type != ACPI_TYPE_INTEGER)
737                         continue;
738
739                 cx.latency = obj->integer.value;
740
741                 obj = (union acpi_object *)&(element->package.elements[3]);
742                 if (obj->type != ACPI_TYPE_INTEGER)
743                         continue;
744
745                 cx.power = obj->integer.value;
746
747                 current_count++;
748                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
749
750                 /*
751                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
752                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
753                  */
754                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
755                         printk(KERN_WARNING
756                                "Limiting number of power states to max (%d)\n",
757                                ACPI_PROCESSOR_MAX_POWER);
758                         printk(KERN_WARNING
759                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
760                         break;
761                 }
762         }
763
764         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
765                           current_count));
766
767         /* Validate number of power states discovered */
768         if (current_count < 2)
769                 status = -EFAULT;
770
771       end:
772         acpi_os_free(buffer.pointer);
773
774         return status;
775 }
776
777 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
778 {
779
780         if (!cx->address)
781                 return;
782
783         /*
784          * C2 latency must be less than or equal to 100
785          * microseconds.
786          */
787         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
788                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
789                                   "latency too large [%d]\n", cx->latency));
790                 return;
791         }
792
793         /*
794          * Otherwise we've met all of our C2 requirements.
795          * Normalize the C2 latency to expidite policy
796          */
797         cx->valid = 1;
798         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
799
800         return;
801 }
802
803 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
804                                            struct acpi_processor_cx *cx)
805 {
806         static int bm_check_flag;
807
808
809         if (!cx->address)
810                 return;
811
812         /*
813          * C3 latency must be less than or equal to 1000
814          * microseconds.
815          */
816         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
817                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
818                                   "latency too large [%d]\n", cx->latency));
819                 return;
820         }
821
822         /*
823          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
824          * DMA transfers are used by any ISA device to avoid livelock.
825          * Note that we could disable Type-F DMA (as recommended by
826          * the erratum), but this is known to disrupt certain ISA
827          * devices thus we take the conservative approach.
828          */
829         else if (errata.piix4.fdma) {
830                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
831                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
832                 return;
833         }
834
835         /* All the logic here assumes flags.bm_check is same across all CPUs */
836         if (!bm_check_flag) {
837                 /* Determine whether bm_check is needed based on CPU  */
838                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
839                 bm_check_flag = pr->flags.bm_check;
840         } else {
841                 pr->flags.bm_check = bm_check_flag;
842         }
843
844         if (pr->flags.bm_check) {
845                 /* bus mastering control is necessary */
846                 if (!pr->flags.bm_control) {
847                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
848                                           "C3 support requires bus mastering control\n"));
849                         return;
850                 }
851         } else {
852                 /*
853                  * WBINVD should be set in fadt, for C3 state to be
854                  * supported on when bm_check is not required.
855                  */
856                 if (acpi_fadt.wb_invd != 1) {
857                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
858                                           "Cache invalidation should work properly"
859                                           " for C3 to be enabled on SMP systems\n"));
860                         return;
861                 }
862                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
863                                   0, ACPI_MTX_DO_NOT_LOCK);
864         }
865
866         /*
867          * Otherwise we've met all of our C3 requirements.
868          * Normalize the C3 latency to expidite policy.  Enable
869          * checking of bus mastering status (bm_check) so we can
870          * use this in our C3 policy
871          */
872         cx->valid = 1;
873         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
874
875         return;
876 }
877
878 static int acpi_processor_power_verify(struct acpi_processor *pr)
879 {
880         unsigned int i;
881         unsigned int working = 0;
882
883 #ifdef ARCH_APICTIMER_STOPS_ON_C3
884         int timer_broadcast = 0;
885         cpumask_t mask = cpumask_of_cpu(pr->id);
886         on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
887 #endif
888
889         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
890                 struct acpi_processor_cx *cx = &pr->power.states[i];
891
892                 switch (cx->type) {
893                 case ACPI_STATE_C1:
894                         cx->valid = 1;
895                         break;
896
897                 case ACPI_STATE_C2:
898                         acpi_processor_power_verify_c2(cx);
899 #ifdef ARCH_APICTIMER_STOPS_ON_C3
900                         /* Some AMD systems fake C3 as C2, but still
901                            have timer troubles */
902                         if (cx->valid && 
903                                 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
904                                 timer_broadcast++;
905 #endif
906                         break;
907
908                 case ACPI_STATE_C3:
909                         acpi_processor_power_verify_c3(pr, cx);
910 #ifdef ARCH_APICTIMER_STOPS_ON_C3
911                         if (cx->valid)
912                                 timer_broadcast++;
913 #endif
914                         break;
915                 }
916
917                 if (cx->valid)
918                         working++;
919         }
920
921 #ifdef ARCH_APICTIMER_STOPS_ON_C3
922         if (timer_broadcast)
923                 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
924 #endif
925
926         return (working);
927 }
928
929 static int acpi_processor_get_power_info(struct acpi_processor *pr)
930 {
931         unsigned int i;
932         int result;
933
934
935         /* NOTE: the idle thread may not be running while calling
936          * this function */
937
938         /* Adding C1 state */
939         acpi_processor_get_power_info_default_c1(pr);
940         result = acpi_processor_get_power_info_cst(pr);
941         if (result == -ENODEV)
942                 acpi_processor_get_power_info_fadt(pr);
943
944         pr->power.count = acpi_processor_power_verify(pr);
945
946         /*
947          * Set Default Policy
948          * ------------------
949          * Now that we know which states are supported, set the default
950          * policy.  Note that this policy can be changed dynamically
951          * (e.g. encourage deeper sleeps to conserve battery life when
952          * not on AC).
953          */
954         result = acpi_processor_set_power_policy(pr);
955         if (result)
956                 return result;
957
958         /*
959          * if one state of type C2 or C3 is available, mark this
960          * CPU as being "idle manageable"
961          */
962         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
963                 if (pr->power.states[i].valid) {
964                         pr->power.count = i;
965                         if (pr->power.states[i].type >= ACPI_STATE_C2)
966                                 pr->flags.power = 1;
967                 }
968         }
969
970         return 0;
971 }
972
973 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
974 {
975         int result = 0;
976
977
978         if (!pr)
979                 return -EINVAL;
980
981         if (nocst) {
982                 return -ENODEV;
983         }
984
985         if (!pr->flags.power_setup_done)
986                 return -ENODEV;
987
988         /* Fall back to the default idle loop */
989         pm_idle = pm_idle_save;
990         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
991
992         pr->flags.power = 0;
993         result = acpi_processor_get_power_info(pr);
994         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
995                 pm_idle = acpi_processor_idle;
996
997         return result;
998 }
999
1000 /* proc interface */
1001
1002 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1003 {
1004         struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1005         unsigned int i;
1006
1007
1008         if (!pr)
1009                 goto end;
1010
1011         seq_printf(seq, "active state:            C%zd\n"
1012                    "max_cstate:              C%d\n"
1013                    "bus master activity:     %08x\n",
1014                    pr->power.state ? pr->power.state - pr->power.states : 0,
1015                    max_cstate, (unsigned)pr->power.bm_activity);
1016
1017         seq_puts(seq, "states:\n");
1018
1019         for (i = 1; i <= pr->power.count; i++) {
1020                 seq_printf(seq, "   %cC%d:                  ",
1021                            (&pr->power.states[i] ==
1022                             pr->power.state ? '*' : ' '), i);
1023
1024                 if (!pr->power.states[i].valid) {
1025                         seq_puts(seq, "<not supported>\n");
1026                         continue;
1027                 }
1028
1029                 switch (pr->power.states[i].type) {
1030                 case ACPI_STATE_C1:
1031                         seq_printf(seq, "type[C1] ");
1032                         break;
1033                 case ACPI_STATE_C2:
1034                         seq_printf(seq, "type[C2] ");
1035                         break;
1036                 case ACPI_STATE_C3:
1037                         seq_printf(seq, "type[C3] ");
1038                         break;
1039                 default:
1040                         seq_printf(seq, "type[--] ");
1041                         break;
1042                 }
1043
1044                 if (pr->power.states[i].promotion.state)
1045                         seq_printf(seq, "promotion[C%zd] ",
1046                                    (pr->power.states[i].promotion.state -
1047                                     pr->power.states));
1048                 else
1049                         seq_puts(seq, "promotion[--] ");
1050
1051                 if (pr->power.states[i].demotion.state)
1052                         seq_printf(seq, "demotion[C%zd] ",
1053                                    (pr->power.states[i].demotion.state -
1054                                     pr->power.states));
1055                 else
1056                         seq_puts(seq, "demotion[--] ");
1057
1058                 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1059                            pr->power.states[i].latency,
1060                            pr->power.states[i].usage);
1061         }
1062
1063       end:
1064         return 0;
1065 }
1066
1067 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1068 {
1069         return single_open(file, acpi_processor_power_seq_show,
1070                            PDE(inode)->data);
1071 }
1072
1073 static struct file_operations acpi_processor_power_fops = {
1074         .open = acpi_processor_power_open_fs,
1075         .read = seq_read,
1076         .llseek = seq_lseek,
1077         .release = single_release,
1078 };
1079
1080 int acpi_processor_power_init(struct acpi_processor *pr,
1081                               struct acpi_device *device)
1082 {
1083         acpi_status status = 0;
1084         static int first_run;
1085         struct proc_dir_entry *entry = NULL;
1086         unsigned int i;
1087
1088
1089         if (!first_run) {
1090                 dmi_check_system(processor_power_dmi_table);
1091                 if (max_cstate < ACPI_C_STATES_MAX)
1092                         printk(KERN_NOTICE
1093                                "ACPI: processor limited to max C-state %d\n",
1094                                max_cstate);
1095                 first_run++;
1096         }
1097
1098         if (!pr)
1099                 return -EINVAL;
1100
1101         if (acpi_fadt.cst_cnt && !nocst) {
1102                 status =
1103                     acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1104                 if (ACPI_FAILURE(status)) {
1105                         ACPI_EXCEPTION((AE_INFO, status,
1106                                         "Notifying BIOS of _CST ability failed"));
1107                 }
1108         }
1109
1110         acpi_processor_get_power_info(pr);
1111
1112         /*
1113          * Install the idle handler if processor power management is supported.
1114          * Note that we use previously set idle handler will be used on
1115          * platforms that only support C1.
1116          */
1117         if ((pr->flags.power) && (!boot_option_idle_override)) {
1118                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1119                 for (i = 1; i <= pr->power.count; i++)
1120                         if (pr->power.states[i].valid)
1121                                 printk(" C%d[C%d]", i,
1122                                        pr->power.states[i].type);
1123                 printk(")\n");
1124
1125                 if (pr->id == 0) {
1126                         pm_idle_save = pm_idle;
1127                         pm_idle = acpi_processor_idle;
1128                 }
1129         }
1130
1131         /* 'power' [R] */
1132         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1133                                   S_IRUGO, acpi_device_dir(device));
1134         if (!entry)
1135                 return -EIO;
1136         else {
1137                 entry->proc_fops = &acpi_processor_power_fops;
1138                 entry->data = acpi_driver_data(device);
1139                 entry->owner = THIS_MODULE;
1140         }
1141
1142         pr->flags.power_setup_done = 1;
1143
1144         return 0;
1145 }
1146
1147 int acpi_processor_power_exit(struct acpi_processor *pr,
1148                               struct acpi_device *device)
1149 {
1150
1151         pr->flags.power_setup_done = 0;
1152
1153         if (acpi_device_dir(device))
1154                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1155                                   acpi_device_dir(device));
1156
1157         /* Unregister the idle handler when processor #0 is removed. */
1158         if (pr->id == 0) {
1159                 pm_idle = pm_idle_save;
1160
1161                 /*
1162                  * We are about to unload the current idle thread pm callback
1163                  * (pm_idle), Wait for all processors to update cached/local
1164                  * copies of pm_idle before proceeding.
1165                  */
1166                 cpu_idle_wait();
1167         }
1168
1169         return 0;
1170 }