]> Pileus Git - ~andy/linux/blob - drivers/acpi/processor_idle.c
Merge branch 'bjorn-initcall-cleanup' into release
[~andy/linux] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
68 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
69 #define C2_OVERHEAD                     1       /* 1us */
70 #define C3_OVERHEAD                     1       /* 1us */
71 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
72
73 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
74 module_param(max_cstate, uint, 0000);
75 static unsigned int nocst __read_mostly;
76 module_param(nocst, uint, 0000);
77
78 static unsigned int latency_factor __read_mostly = 2;
79 module_param(latency_factor, uint, 0644);
80
81 /*
82  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
83  * For now disable this. Probably a bug somewhere else.
84  *
85  * To skip this limit, boot/load with a large max_cstate limit.
86  */
87 static int set_max_cstate(const struct dmi_system_id *id)
88 {
89         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
90                 return 0;
91
92         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
93                " Override with \"processor.max_cstate=%d\"\n", id->ident,
94                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
95
96         max_cstate = (long)id->driver_data;
97
98         return 0;
99 }
100
101 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
102    callers to only run once -AK */
103 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
104         { set_max_cstate, "Clevo 5600D", {
105           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
106           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
107          (void *)2},
108         {},
109 };
110
111 static inline u32 ticks_elapsed(u32 t1, u32 t2)
112 {
113         if (t2 >= t1)
114                 return (t2 - t1);
115         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
116                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
117         else
118                 return ((0xFFFFFFFF - t1) + t2);
119 }
120
121 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
122 {
123         if (t2 >= t1)
124                 return PM_TIMER_TICKS_TO_US(t2 - t1);
125         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
126                 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
127         else
128                 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
129 }
130
131 /*
132  * Callers should disable interrupts before the call and enable
133  * interrupts after return.
134  */
135 static void acpi_safe_halt(void)
136 {
137         current_thread_info()->status &= ~TS_POLLING;
138         /*
139          * TS_POLLING-cleared state must be visible before we
140          * test NEED_RESCHED:
141          */
142         smp_mb();
143         if (!need_resched()) {
144                 safe_halt();
145                 local_irq_disable();
146         }
147         current_thread_info()->status |= TS_POLLING;
148 }
149
150 #ifdef ARCH_APICTIMER_STOPS_ON_C3
151
152 /*
153  * Some BIOS implementations switch to C3 in the published C2 state.
154  * This seems to be a common problem on AMD boxen, but other vendors
155  * are affected too. We pick the most conservative approach: we assume
156  * that the local APIC stops in both C2 and C3.
157  */
158 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
159                                    struct acpi_processor_cx *cx)
160 {
161         struct acpi_processor_power *pwr = &pr->power;
162         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
163
164         /*
165          * Check, if one of the previous states already marked the lapic
166          * unstable
167          */
168         if (pwr->timer_broadcast_on_state < state)
169                 return;
170
171         if (cx->type >= type)
172                 pr->power.timer_broadcast_on_state = state;
173 }
174
175 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
176 {
177         unsigned long reason;
178
179         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
180                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
181
182         clockevents_notify(reason, &pr->id);
183 }
184
185 /* Power(C) State timer broadcast control */
186 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
187                                        struct acpi_processor_cx *cx,
188                                        int broadcast)
189 {
190         int state = cx - pr->power.states;
191
192         if (state >= pr->power.timer_broadcast_on_state) {
193                 unsigned long reason;
194
195                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
196                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
197                 clockevents_notify(reason, &pr->id);
198         }
199 }
200
201 #else
202
203 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
204                                    struct acpi_processor_cx *cstate) { }
205 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
206 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
207                                        struct acpi_processor_cx *cx,
208                                        int broadcast)
209 {
210 }
211
212 #endif
213
214 /*
215  * Suspend / resume control
216  */
217 static int acpi_idle_suspend;
218
219 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
220 {
221         acpi_idle_suspend = 1;
222         return 0;
223 }
224
225 int acpi_processor_resume(struct acpi_device * device)
226 {
227         acpi_idle_suspend = 0;
228         return 0;
229 }
230
231 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
232 static int tsc_halts_in_c(int state)
233 {
234         switch (boot_cpu_data.x86_vendor) {
235         case X86_VENDOR_AMD:
236         case X86_VENDOR_INTEL:
237                 /*
238                  * AMD Fam10h TSC will tick in all
239                  * C/P/S0/S1 states when this bit is set.
240                  */
241                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
242                         return 0;
243
244                 /*FALL THROUGH*/
245         default:
246                 return state > ACPI_STATE_C1;
247         }
248 }
249 #endif
250
251 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
252 {
253
254         if (!pr)
255                 return -EINVAL;
256
257         if (!pr->pblk)
258                 return -ENODEV;
259
260         /* if info is obtained from pblk/fadt, type equals state */
261         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
262         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
263
264 #ifndef CONFIG_HOTPLUG_CPU
265         /*
266          * Check for P_LVL2_UP flag before entering C2 and above on
267          * an SMP system.
268          */
269         if ((num_online_cpus() > 1) &&
270             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
271                 return -ENODEV;
272 #endif
273
274         /* determine C2 and C3 address from pblk */
275         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
276         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
277
278         /* determine latencies from FADT */
279         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
280         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
281
282         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
283                           "lvl2[0x%08x] lvl3[0x%08x]\n",
284                           pr->power.states[ACPI_STATE_C2].address,
285                           pr->power.states[ACPI_STATE_C3].address));
286
287         return 0;
288 }
289
290 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
291 {
292         if (!pr->power.states[ACPI_STATE_C1].valid) {
293                 /* set the first C-State to C1 */
294                 /* all processors need to support C1 */
295                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
296                 pr->power.states[ACPI_STATE_C1].valid = 1;
297                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
298         }
299         /* the C0 state only exists as a filler in our array */
300         pr->power.states[ACPI_STATE_C0].valid = 1;
301         return 0;
302 }
303
304 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
305 {
306         acpi_status status = 0;
307         acpi_integer count;
308         int current_count;
309         int i;
310         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
311         union acpi_object *cst;
312
313
314         if (nocst)
315                 return -ENODEV;
316
317         current_count = 0;
318
319         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
320         if (ACPI_FAILURE(status)) {
321                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
322                 return -ENODEV;
323         }
324
325         cst = buffer.pointer;
326
327         /* There must be at least 2 elements */
328         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
329                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
330                 status = -EFAULT;
331                 goto end;
332         }
333
334         count = cst->package.elements[0].integer.value;
335
336         /* Validate number of power states. */
337         if (count < 1 || count != cst->package.count - 1) {
338                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
339                 status = -EFAULT;
340                 goto end;
341         }
342
343         /* Tell driver that at least _CST is supported. */
344         pr->flags.has_cst = 1;
345
346         for (i = 1; i <= count; i++) {
347                 union acpi_object *element;
348                 union acpi_object *obj;
349                 struct acpi_power_register *reg;
350                 struct acpi_processor_cx cx;
351
352                 memset(&cx, 0, sizeof(cx));
353
354                 element = &(cst->package.elements[i]);
355                 if (element->type != ACPI_TYPE_PACKAGE)
356                         continue;
357
358                 if (element->package.count != 4)
359                         continue;
360
361                 obj = &(element->package.elements[0]);
362
363                 if (obj->type != ACPI_TYPE_BUFFER)
364                         continue;
365
366                 reg = (struct acpi_power_register *)obj->buffer.pointer;
367
368                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
369                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
370                         continue;
371
372                 /* There should be an easy way to extract an integer... */
373                 obj = &(element->package.elements[1]);
374                 if (obj->type != ACPI_TYPE_INTEGER)
375                         continue;
376
377                 cx.type = obj->integer.value;
378                 /*
379                  * Some buggy BIOSes won't list C1 in _CST -
380                  * Let acpi_processor_get_power_info_default() handle them later
381                  */
382                 if (i == 1 && cx.type != ACPI_STATE_C1)
383                         current_count++;
384
385                 cx.address = reg->address;
386                 cx.index = current_count + 1;
387
388                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
389                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
390                         if (acpi_processor_ffh_cstate_probe
391                                         (pr->id, &cx, reg) == 0) {
392                                 cx.entry_method = ACPI_CSTATE_FFH;
393                         } else if (cx.type == ACPI_STATE_C1) {
394                                 /*
395                                  * C1 is a special case where FIXED_HARDWARE
396                                  * can be handled in non-MWAIT way as well.
397                                  * In that case, save this _CST entry info.
398                                  * Otherwise, ignore this info and continue.
399                                  */
400                                 cx.entry_method = ACPI_CSTATE_HALT;
401                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
402                         } else {
403                                 continue;
404                         }
405                         if (cx.type == ACPI_STATE_C1 &&
406                                         (idle_halt || idle_nomwait)) {
407                                 /*
408                                  * In most cases the C1 space_id obtained from
409                                  * _CST object is FIXED_HARDWARE access mode.
410                                  * But when the option of idle=halt is added,
411                                  * the entry_method type should be changed from
412                                  * CSTATE_FFH to CSTATE_HALT.
413                                  * When the option of idle=nomwait is added,
414                                  * the C1 entry_method type should be
415                                  * CSTATE_HALT.
416                                  */
417                                 cx.entry_method = ACPI_CSTATE_HALT;
418                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
419                         }
420                 } else {
421                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
422                                  cx.address);
423                 }
424
425                 if (cx.type == ACPI_STATE_C1) {
426                         cx.valid = 1;
427                 }
428
429                 obj = &(element->package.elements[2]);
430                 if (obj->type != ACPI_TYPE_INTEGER)
431                         continue;
432
433                 cx.latency = obj->integer.value;
434
435                 obj = &(element->package.elements[3]);
436                 if (obj->type != ACPI_TYPE_INTEGER)
437                         continue;
438
439                 cx.power = obj->integer.value;
440
441                 current_count++;
442                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
443
444                 /*
445                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
446                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
447                  */
448                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
449                         printk(KERN_WARNING
450                                "Limiting number of power states to max (%d)\n",
451                                ACPI_PROCESSOR_MAX_POWER);
452                         printk(KERN_WARNING
453                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
454                         break;
455                 }
456         }
457
458         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
459                           current_count));
460
461         /* Validate number of power states discovered */
462         if (current_count < 2)
463                 status = -EFAULT;
464
465       end:
466         kfree(buffer.pointer);
467
468         return status;
469 }
470
471 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
472 {
473
474         if (!cx->address)
475                 return;
476
477         /*
478          * C2 latency must be less than or equal to 100
479          * microseconds.
480          */
481         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
482                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
483                                   "latency too large [%d]\n", cx->latency));
484                 return;
485         }
486
487         /*
488          * Otherwise we've met all of our C2 requirements.
489          * Normalize the C2 latency to expidite policy
490          */
491         cx->valid = 1;
492
493         cx->latency_ticks = cx->latency;
494
495         return;
496 }
497
498 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
499                                            struct acpi_processor_cx *cx)
500 {
501         static int bm_check_flag;
502
503
504         if (!cx->address)
505                 return;
506
507         /*
508          * C3 latency must be less than or equal to 1000
509          * microseconds.
510          */
511         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
512                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513                                   "latency too large [%d]\n", cx->latency));
514                 return;
515         }
516
517         /*
518          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
519          * DMA transfers are used by any ISA device to avoid livelock.
520          * Note that we could disable Type-F DMA (as recommended by
521          * the erratum), but this is known to disrupt certain ISA
522          * devices thus we take the conservative approach.
523          */
524         else if (errata.piix4.fdma) {
525                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
526                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
527                 return;
528         }
529
530         /* All the logic here assumes flags.bm_check is same across all CPUs */
531         if (!bm_check_flag) {
532                 /* Determine whether bm_check is needed based on CPU  */
533                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
534                 bm_check_flag = pr->flags.bm_check;
535         } else {
536                 pr->flags.bm_check = bm_check_flag;
537         }
538
539         if (pr->flags.bm_check) {
540                 if (!pr->flags.bm_control) {
541                         if (pr->flags.has_cst != 1) {
542                                 /* bus mastering control is necessary */
543                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
544                                         "C3 support requires BM control\n"));
545                                 return;
546                         } else {
547                                 /* Here we enter C3 without bus mastering */
548                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
549                                         "C3 support without BM control\n"));
550                         }
551                 }
552         } else {
553                 /*
554                  * WBINVD should be set in fadt, for C3 state to be
555                  * supported on when bm_check is not required.
556                  */
557                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
558                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
559                                           "Cache invalidation should work properly"
560                                           " for C3 to be enabled on SMP systems\n"));
561                         return;
562                 }
563         }
564
565         /*
566          * Otherwise we've met all of our C3 requirements.
567          * Normalize the C3 latency to expidite policy.  Enable
568          * checking of bus mastering status (bm_check) so we can
569          * use this in our C3 policy
570          */
571         cx->valid = 1;
572
573         cx->latency_ticks = cx->latency;
574         /*
575          * On older chipsets, BM_RLD needs to be set
576          * in order for Bus Master activity to wake the
577          * system from C3.  Newer chipsets handle DMA
578          * during C3 automatically and BM_RLD is a NOP.
579          * In either case, the proper way to
580          * handle BM_RLD is to set it and leave it set.
581          */
582         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
583
584         return;
585 }
586
587 static int acpi_processor_power_verify(struct acpi_processor *pr)
588 {
589         unsigned int i;
590         unsigned int working = 0;
591
592         pr->power.timer_broadcast_on_state = INT_MAX;
593
594         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
595                 struct acpi_processor_cx *cx = &pr->power.states[i];
596
597                 switch (cx->type) {
598                 case ACPI_STATE_C1:
599                         cx->valid = 1;
600                         break;
601
602                 case ACPI_STATE_C2:
603                         acpi_processor_power_verify_c2(cx);
604                         if (cx->valid)
605                                 acpi_timer_check_state(i, pr, cx);
606                         break;
607
608                 case ACPI_STATE_C3:
609                         acpi_processor_power_verify_c3(pr, cx);
610                         if (cx->valid)
611                                 acpi_timer_check_state(i, pr, cx);
612                         break;
613                 }
614
615                 if (cx->valid)
616                         working++;
617         }
618
619         acpi_propagate_timer_broadcast(pr);
620
621         return (working);
622 }
623
624 static int acpi_processor_get_power_info(struct acpi_processor *pr)
625 {
626         unsigned int i;
627         int result;
628
629
630         /* NOTE: the idle thread may not be running while calling
631          * this function */
632
633         /* Zero initialize all the C-states info. */
634         memset(pr->power.states, 0, sizeof(pr->power.states));
635
636         result = acpi_processor_get_power_info_cst(pr);
637         if (result == -ENODEV)
638                 result = acpi_processor_get_power_info_fadt(pr);
639
640         if (result)
641                 return result;
642
643         acpi_processor_get_power_info_default(pr);
644
645         pr->power.count = acpi_processor_power_verify(pr);
646
647         /*
648          * if one state of type C2 or C3 is available, mark this
649          * CPU as being "idle manageable"
650          */
651         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
652                 if (pr->power.states[i].valid) {
653                         pr->power.count = i;
654                         if (pr->power.states[i].type >= ACPI_STATE_C2)
655                                 pr->flags.power = 1;
656                 }
657         }
658
659         return 0;
660 }
661
662 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
663 {
664         struct acpi_processor *pr = seq->private;
665         unsigned int i;
666
667
668         if (!pr)
669                 goto end;
670
671         seq_printf(seq, "active state:            C%zd\n"
672                    "max_cstate:              C%d\n"
673                    "bus master activity:     %08x\n"
674                    "maximum allowed latency: %d usec\n",
675                    pr->power.state ? pr->power.state - pr->power.states : 0,
676                    max_cstate, (unsigned)pr->power.bm_activity,
677                    pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
678
679         seq_puts(seq, "states:\n");
680
681         for (i = 1; i <= pr->power.count; i++) {
682                 seq_printf(seq, "   %cC%d:                  ",
683                            (&pr->power.states[i] ==
684                             pr->power.state ? '*' : ' '), i);
685
686                 if (!pr->power.states[i].valid) {
687                         seq_puts(seq, "<not supported>\n");
688                         continue;
689                 }
690
691                 switch (pr->power.states[i].type) {
692                 case ACPI_STATE_C1:
693                         seq_printf(seq, "type[C1] ");
694                         break;
695                 case ACPI_STATE_C2:
696                         seq_printf(seq, "type[C2] ");
697                         break;
698                 case ACPI_STATE_C3:
699                         seq_printf(seq, "type[C3] ");
700                         break;
701                 default:
702                         seq_printf(seq, "type[--] ");
703                         break;
704                 }
705
706                 if (pr->power.states[i].promotion.state)
707                         seq_printf(seq, "promotion[C%zd] ",
708                                    (pr->power.states[i].promotion.state -
709                                     pr->power.states));
710                 else
711                         seq_puts(seq, "promotion[--] ");
712
713                 if (pr->power.states[i].demotion.state)
714                         seq_printf(seq, "demotion[C%zd] ",
715                                    (pr->power.states[i].demotion.state -
716                                     pr->power.states));
717                 else
718                         seq_puts(seq, "demotion[--] ");
719
720                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
721                            pr->power.states[i].latency,
722                            pr->power.states[i].usage,
723                            (unsigned long long)pr->power.states[i].time);
724         }
725
726       end:
727         return 0;
728 }
729
730 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
731 {
732         return single_open(file, acpi_processor_power_seq_show,
733                            PDE(inode)->data);
734 }
735
736 static const struct file_operations acpi_processor_power_fops = {
737         .owner = THIS_MODULE,
738         .open = acpi_processor_power_open_fs,
739         .read = seq_read,
740         .llseek = seq_lseek,
741         .release = single_release,
742 };
743
744
745 /**
746  * acpi_idle_bm_check - checks if bus master activity was detected
747  */
748 static int acpi_idle_bm_check(void)
749 {
750         u32 bm_status = 0;
751
752         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
753         if (bm_status)
754                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
755         /*
756          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
757          * the true state of bus mastering activity; forcing us to
758          * manually check the BMIDEA bit of each IDE channel.
759          */
760         else if (errata.piix4.bmisx) {
761                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
762                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
763                         bm_status = 1;
764         }
765         return bm_status;
766 }
767
768 /**
769  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
770  * @cx: cstate data
771  *
772  * Caller disables interrupt before call and enables interrupt after return.
773  */
774 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
775 {
776         /* Don't trace irqs off for idle */
777         stop_critical_timings();
778         if (cx->entry_method == ACPI_CSTATE_FFH) {
779                 /* Call into architectural FFH based C-state */
780                 acpi_processor_ffh_cstate_enter(cx);
781         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
782                 acpi_safe_halt();
783         } else {
784                 int unused;
785                 /* IO port based C-state */
786                 inb(cx->address);
787                 /* Dummy wait op - must do something useless after P_LVL2 read
788                    because chipsets cannot guarantee that STPCLK# signal
789                    gets asserted in time to freeze execution properly. */
790                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
791         }
792         start_critical_timings();
793 }
794
795 /**
796  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
797  * @dev: the target CPU
798  * @state: the state data
799  *
800  * This is equivalent to the HALT instruction.
801  */
802 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
803                               struct cpuidle_state *state)
804 {
805         u32 t1, t2;
806         struct acpi_processor *pr;
807         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
808
809         pr = __get_cpu_var(processors);
810
811         if (unlikely(!pr))
812                 return 0;
813
814         local_irq_disable();
815
816         /* Do not access any ACPI IO ports in suspend path */
817         if (acpi_idle_suspend) {
818                 acpi_safe_halt();
819                 local_irq_enable();
820                 return 0;
821         }
822
823         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
824         acpi_idle_do_entry(cx);
825         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
826
827         local_irq_enable();
828         cx->usage++;
829
830         return ticks_elapsed_in_us(t1, t2);
831 }
832
833 /**
834  * acpi_idle_enter_simple - enters an ACPI state without BM handling
835  * @dev: the target CPU
836  * @state: the state data
837  */
838 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
839                                   struct cpuidle_state *state)
840 {
841         struct acpi_processor *pr;
842         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
843         u32 t1, t2;
844         int sleep_ticks = 0;
845
846         pr = __get_cpu_var(processors);
847
848         if (unlikely(!pr))
849                 return 0;
850
851         if (acpi_idle_suspend)
852                 return(acpi_idle_enter_c1(dev, state));
853
854         local_irq_disable();
855         current_thread_info()->status &= ~TS_POLLING;
856         /*
857          * TS_POLLING-cleared state must be visible before we test
858          * NEED_RESCHED:
859          */
860         smp_mb();
861
862         if (unlikely(need_resched())) {
863                 current_thread_info()->status |= TS_POLLING;
864                 local_irq_enable();
865                 return 0;
866         }
867
868         /*
869          * Must be done before busmaster disable as we might need to
870          * access HPET !
871          */
872         acpi_state_timer_broadcast(pr, cx, 1);
873
874         if (cx->type == ACPI_STATE_C3)
875                 ACPI_FLUSH_CPU_CACHE();
876
877         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
878         /* Tell the scheduler that we are going deep-idle: */
879         sched_clock_idle_sleep_event();
880         acpi_idle_do_entry(cx);
881         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
882
883 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
884         /* TSC could halt in idle, so notify users */
885         if (tsc_halts_in_c(cx->type))
886                 mark_tsc_unstable("TSC halts in idle");;
887 #endif
888         sleep_ticks = ticks_elapsed(t1, t2);
889
890         /* Tell the scheduler how much we idled: */
891         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
892
893         local_irq_enable();
894         current_thread_info()->status |= TS_POLLING;
895
896         cx->usage++;
897
898         acpi_state_timer_broadcast(pr, cx, 0);
899         cx->time += sleep_ticks;
900         return ticks_elapsed_in_us(t1, t2);
901 }
902
903 static int c3_cpu_count;
904 static DEFINE_SPINLOCK(c3_lock);
905
906 /**
907  * acpi_idle_enter_bm - enters C3 with proper BM handling
908  * @dev: the target CPU
909  * @state: the state data
910  *
911  * If BM is detected, the deepest non-C3 idle state is entered instead.
912  */
913 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
914                               struct cpuidle_state *state)
915 {
916         struct acpi_processor *pr;
917         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
918         u32 t1, t2;
919         int sleep_ticks = 0;
920
921         pr = __get_cpu_var(processors);
922
923         if (unlikely(!pr))
924                 return 0;
925
926         if (acpi_idle_suspend)
927                 return(acpi_idle_enter_c1(dev, state));
928
929         if (acpi_idle_bm_check()) {
930                 if (dev->safe_state) {
931                         dev->last_state = dev->safe_state;
932                         return dev->safe_state->enter(dev, dev->safe_state);
933                 } else {
934                         local_irq_disable();
935                         acpi_safe_halt();
936                         local_irq_enable();
937                         return 0;
938                 }
939         }
940
941         local_irq_disable();
942         current_thread_info()->status &= ~TS_POLLING;
943         /*
944          * TS_POLLING-cleared state must be visible before we test
945          * NEED_RESCHED:
946          */
947         smp_mb();
948
949         if (unlikely(need_resched())) {
950                 current_thread_info()->status |= TS_POLLING;
951                 local_irq_enable();
952                 return 0;
953         }
954
955         acpi_unlazy_tlb(smp_processor_id());
956
957         /* Tell the scheduler that we are going deep-idle: */
958         sched_clock_idle_sleep_event();
959         /*
960          * Must be done before busmaster disable as we might need to
961          * access HPET !
962          */
963         acpi_state_timer_broadcast(pr, cx, 1);
964
965         /*
966          * disable bus master
967          * bm_check implies we need ARB_DIS
968          * !bm_check implies we need cache flush
969          * bm_control implies whether we can do ARB_DIS
970          *
971          * That leaves a case where bm_check is set and bm_control is
972          * not set. In that case we cannot do much, we enter C3
973          * without doing anything.
974          */
975         if (pr->flags.bm_check && pr->flags.bm_control) {
976                 spin_lock(&c3_lock);
977                 c3_cpu_count++;
978                 /* Disable bus master arbitration when all CPUs are in C3 */
979                 if (c3_cpu_count == num_online_cpus())
980                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
981                 spin_unlock(&c3_lock);
982         } else if (!pr->flags.bm_check) {
983                 ACPI_FLUSH_CPU_CACHE();
984         }
985
986         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
987         acpi_idle_do_entry(cx);
988         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
989
990         /* Re-enable bus master arbitration */
991         if (pr->flags.bm_check && pr->flags.bm_control) {
992                 spin_lock(&c3_lock);
993                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
994                 c3_cpu_count--;
995                 spin_unlock(&c3_lock);
996         }
997
998 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
999         /* TSC could halt in idle, so notify users */
1000         if (tsc_halts_in_c(ACPI_STATE_C3))
1001                 mark_tsc_unstable("TSC halts in idle");
1002 #endif
1003         sleep_ticks = ticks_elapsed(t1, t2);
1004         /* Tell the scheduler how much we idled: */
1005         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1006
1007         local_irq_enable();
1008         current_thread_info()->status |= TS_POLLING;
1009
1010         cx->usage++;
1011
1012         acpi_state_timer_broadcast(pr, cx, 0);
1013         cx->time += sleep_ticks;
1014         return ticks_elapsed_in_us(t1, t2);
1015 }
1016
1017 struct cpuidle_driver acpi_idle_driver = {
1018         .name =         "acpi_idle",
1019         .owner =        THIS_MODULE,
1020 };
1021
1022 /**
1023  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1024  * @pr: the ACPI processor
1025  */
1026 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1027 {
1028         int i, count = CPUIDLE_DRIVER_STATE_START;
1029         struct acpi_processor_cx *cx;
1030         struct cpuidle_state *state;
1031         struct cpuidle_device *dev = &pr->power.dev;
1032
1033         if (!pr->flags.power_setup_done)
1034                 return -EINVAL;
1035
1036         if (pr->flags.power == 0) {
1037                 return -EINVAL;
1038         }
1039
1040         dev->cpu = pr->id;
1041         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1042                 dev->states[i].name[0] = '\0';
1043                 dev->states[i].desc[0] = '\0';
1044         }
1045
1046         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1047                 cx = &pr->power.states[i];
1048                 state = &dev->states[count];
1049
1050                 if (!cx->valid)
1051                         continue;
1052
1053 #ifdef CONFIG_HOTPLUG_CPU
1054                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1055                     !pr->flags.has_cst &&
1056                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1057                         continue;
1058 #endif
1059                 cpuidle_set_statedata(state, cx);
1060
1061                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1062                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1063                 state->exit_latency = cx->latency;
1064                 state->target_residency = cx->latency * latency_factor;
1065                 state->power_usage = cx->power;
1066
1067                 state->flags = 0;
1068                 switch (cx->type) {
1069                         case ACPI_STATE_C1:
1070                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1071                         if (cx->entry_method == ACPI_CSTATE_FFH)
1072                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1073
1074                         state->enter = acpi_idle_enter_c1;
1075                         dev->safe_state = state;
1076                         break;
1077
1078                         case ACPI_STATE_C2:
1079                         state->flags |= CPUIDLE_FLAG_BALANCED;
1080                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1081                         state->enter = acpi_idle_enter_simple;
1082                         dev->safe_state = state;
1083                         break;
1084
1085                         case ACPI_STATE_C3:
1086                         state->flags |= CPUIDLE_FLAG_DEEP;
1087                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1088                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1089                         state->enter = pr->flags.bm_check ?
1090                                         acpi_idle_enter_bm :
1091                                         acpi_idle_enter_simple;
1092                         break;
1093                 }
1094
1095                 count++;
1096                 if (count == CPUIDLE_STATE_MAX)
1097                         break;
1098         }
1099
1100         dev->state_count = count;
1101
1102         if (!count)
1103                 return -EINVAL;
1104
1105         return 0;
1106 }
1107
1108 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1109 {
1110         int ret = 0;
1111
1112         if (boot_option_idle_override)
1113                 return 0;
1114
1115         if (!pr)
1116                 return -EINVAL;
1117
1118         if (nocst) {
1119                 return -ENODEV;
1120         }
1121
1122         if (!pr->flags.power_setup_done)
1123                 return -ENODEV;
1124
1125         cpuidle_pause_and_lock();
1126         cpuidle_disable_device(&pr->power.dev);
1127         acpi_processor_get_power_info(pr);
1128         if (pr->flags.power) {
1129                 acpi_processor_setup_cpuidle(pr);
1130                 ret = cpuidle_enable_device(&pr->power.dev);
1131         }
1132         cpuidle_resume_and_unlock();
1133
1134         return ret;
1135 }
1136
1137 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1138                               struct acpi_device *device)
1139 {
1140         acpi_status status = 0;
1141         static int first_run;
1142         struct proc_dir_entry *entry = NULL;
1143         unsigned int i;
1144
1145         if (boot_option_idle_override)
1146                 return 0;
1147
1148         if (!first_run) {
1149                 if (idle_halt) {
1150                         /*
1151                          * When the boot option of "idle=halt" is added, halt
1152                          * is used for CPU IDLE.
1153                          * In such case C2/C3 is meaningless. So the max_cstate
1154                          * is set to one.
1155                          */
1156                         max_cstate = 1;
1157                 }
1158                 dmi_check_system(processor_power_dmi_table);
1159                 max_cstate = acpi_processor_cstate_check(max_cstate);
1160                 if (max_cstate < ACPI_C_STATES_MAX)
1161                         printk(KERN_NOTICE
1162                                "ACPI: processor limited to max C-state %d\n",
1163                                max_cstate);
1164                 first_run++;
1165         }
1166
1167         if (!pr)
1168                 return -EINVAL;
1169
1170         if (acpi_gbl_FADT.cst_control && !nocst) {
1171                 status =
1172                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1173                 if (ACPI_FAILURE(status)) {
1174                         ACPI_EXCEPTION((AE_INFO, status,
1175                                         "Notifying BIOS of _CST ability failed"));
1176                 }
1177         }
1178
1179         acpi_processor_get_power_info(pr);
1180         pr->flags.power_setup_done = 1;
1181
1182         /*
1183          * Install the idle handler if processor power management is supported.
1184          * Note that we use previously set idle handler will be used on
1185          * platforms that only support C1.
1186          */
1187         if (pr->flags.power) {
1188                 acpi_processor_setup_cpuidle(pr);
1189                 if (cpuidle_register_device(&pr->power.dev))
1190                         return -EIO;
1191
1192                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1193                 for (i = 1; i <= pr->power.count; i++)
1194                         if (pr->power.states[i].valid)
1195                                 printk(" C%d[C%d]", i,
1196                                        pr->power.states[i].type);
1197                 printk(")\n");
1198         }
1199
1200         /* 'power' [R] */
1201         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1202                                  S_IRUGO, acpi_device_dir(device),
1203                                  &acpi_processor_power_fops,
1204                                  acpi_driver_data(device));
1205         if (!entry)
1206                 return -EIO;
1207         return 0;
1208 }
1209
1210 int acpi_processor_power_exit(struct acpi_processor *pr,
1211                               struct acpi_device *device)
1212 {
1213         if (boot_option_idle_override)
1214                 return 0;
1215
1216         cpuidle_unregister_device(&pr->power.dev);
1217         pr->flags.power_setup_done = 0;
1218
1219         if (acpi_device_dir(device))
1220                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1221                                   acpi_device_dir(device));
1222
1223         return 0;
1224 }