]> Pileus Git - ~andy/linux/blob - arch/x86/xen/enlighten.c
Merge tag 'stable/for-linus-3.12-rc0-tag-two' of git://git.kernel.org/pub/scm/linux...
[~andy/linux] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/xen-mca.h>
44 #include <xen/features.h>
45 #include <xen/page.h>
46 #include <xen/hvm.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49
50 #include <asm/paravirt.h>
51 #include <asm/apic.h>
52 #include <asm/page.h>
53 #include <asm/xen/pci.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/fixmap.h>
57 #include <asm/processor.h>
58 #include <asm/proto.h>
59 #include <asm/msr-index.h>
60 #include <asm/traps.h>
61 #include <asm/setup.h>
62 #include <asm/desc.h>
63 #include <asm/pgalloc.h>
64 #include <asm/pgtable.h>
65 #include <asm/tlbflush.h>
66 #include <asm/reboot.h>
67 #include <asm/stackprotector.h>
68 #include <asm/hypervisor.h>
69 #include <asm/mwait.h>
70 #include <asm/pci_x86.h>
71 #include <asm/pat.h>
72
73 #ifdef CONFIG_ACPI
74 #include <linux/acpi.h>
75 #include <asm/acpi.h>
76 #include <acpi/pdc_intel.h>
77 #include <acpi/processor.h>
78 #include <xen/interface/platform.h>
79 #endif
80
81 #include "xen-ops.h"
82 #include "mmu.h"
83 #include "smp.h"
84 #include "multicalls.h"
85
86 EXPORT_SYMBOL_GPL(hypercall_page);
87
88 /*
89  * Pointer to the xen_vcpu_info structure or
90  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
91  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
92  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
93  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
94  * acknowledge pending events.
95  * Also more subtly it is used by the patched version of irq enable/disable
96  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
97  *
98  * The desire to be able to do those mask/unmask operations as a single
99  * instruction by using the per-cpu offset held in %gs is the real reason
100  * vcpu info is in a per-cpu pointer and the original reason for this
101  * hypercall.
102  *
103  */
104 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
105
106 /*
107  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
108  * hypercall. This can be used both in PV and PVHVM mode. The structure
109  * overrides the default per_cpu(xen_vcpu, cpu) value.
110  */
111 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
112
113 enum xen_domain_type xen_domain_type = XEN_NATIVE;
114 EXPORT_SYMBOL_GPL(xen_domain_type);
115
116 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
117 EXPORT_SYMBOL(machine_to_phys_mapping);
118 unsigned long  machine_to_phys_nr;
119 EXPORT_SYMBOL(machine_to_phys_nr);
120
121 struct start_info *xen_start_info;
122 EXPORT_SYMBOL_GPL(xen_start_info);
123
124 struct shared_info xen_dummy_shared_info;
125
126 void *xen_initial_gdt;
127
128 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
129 __read_mostly int xen_have_vector_callback;
130 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
131
132 /*
133  * Point at some empty memory to start with. We map the real shared_info
134  * page as soon as fixmap is up and running.
135  */
136 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
137
138 /*
139  * Flag to determine whether vcpu info placement is available on all
140  * VCPUs.  We assume it is to start with, and then set it to zero on
141  * the first failure.  This is because it can succeed on some VCPUs
142  * and not others, since it can involve hypervisor memory allocation,
143  * or because the guest failed to guarantee all the appropriate
144  * constraints on all VCPUs (ie buffer can't cross a page boundary).
145  *
146  * Note that any particular CPU may be using a placed vcpu structure,
147  * but we can only optimise if the all are.
148  *
149  * 0: not available, 1: available
150  */
151 static int have_vcpu_info_placement = 1;
152
153 struct tls_descs {
154         struct desc_struct desc[3];
155 };
156
157 /*
158  * Updating the 3 TLS descriptors in the GDT on every task switch is
159  * surprisingly expensive so we avoid updating them if they haven't
160  * changed.  Since Xen writes different descriptors than the one
161  * passed in the update_descriptor hypercall we keep shadow copies to
162  * compare against.
163  */
164 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
165
166 static void clamp_max_cpus(void)
167 {
168 #ifdef CONFIG_SMP
169         if (setup_max_cpus > MAX_VIRT_CPUS)
170                 setup_max_cpus = MAX_VIRT_CPUS;
171 #endif
172 }
173
174 static void xen_vcpu_setup(int cpu)
175 {
176         struct vcpu_register_vcpu_info info;
177         int err;
178         struct vcpu_info *vcpup;
179
180         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
181
182         /*
183          * This path is called twice on PVHVM - first during bootup via
184          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
185          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
186          * As we can only do the VCPUOP_register_vcpu_info once lets
187          * not over-write its result.
188          *
189          * For PV it is called during restore (xen_vcpu_restore) and bootup
190          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
191          * use this function.
192          */
193         if (xen_hvm_domain()) {
194                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
195                         return;
196         }
197         if (cpu < MAX_VIRT_CPUS)
198                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
199
200         if (!have_vcpu_info_placement) {
201                 if (cpu >= MAX_VIRT_CPUS)
202                         clamp_max_cpus();
203                 return;
204         }
205
206         vcpup = &per_cpu(xen_vcpu_info, cpu);
207         info.mfn = arbitrary_virt_to_mfn(vcpup);
208         info.offset = offset_in_page(vcpup);
209
210         /* Check to see if the hypervisor will put the vcpu_info
211            structure where we want it, which allows direct access via
212            a percpu-variable.
213            N.B. This hypercall can _only_ be called once per CPU. Subsequent
214            calls will error out with -EINVAL. This is due to the fact that
215            hypervisor has no unregister variant and this hypercall does not
216            allow to over-write info.mfn and info.offset.
217          */
218         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
219
220         if (err) {
221                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
222                 have_vcpu_info_placement = 0;
223                 clamp_max_cpus();
224         } else {
225                 /* This cpu is using the registered vcpu info, even if
226                    later ones fail to. */
227                 per_cpu(xen_vcpu, cpu) = vcpup;
228         }
229 }
230
231 /*
232  * On restore, set the vcpu placement up again.
233  * If it fails, then we're in a bad state, since
234  * we can't back out from using it...
235  */
236 void xen_vcpu_restore(void)
237 {
238         int cpu;
239
240         for_each_possible_cpu(cpu) {
241                 bool other_cpu = (cpu != smp_processor_id());
242                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
243
244                 if (other_cpu && is_up &&
245                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
246                         BUG();
247
248                 xen_setup_runstate_info(cpu);
249
250                 if (have_vcpu_info_placement)
251                         xen_vcpu_setup(cpu);
252
253                 if (other_cpu && is_up &&
254                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
255                         BUG();
256         }
257 }
258
259 static void __init xen_banner(void)
260 {
261         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
262         struct xen_extraversion extra;
263         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
264
265         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
266                pv_info.name);
267         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
268                version >> 16, version & 0xffff, extra.extraversion,
269                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
270 }
271 /* Check if running on Xen version (major, minor) or later */
272 bool
273 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
274 {
275         unsigned int version;
276
277         if (!xen_domain())
278                 return false;
279
280         version = HYPERVISOR_xen_version(XENVER_version, NULL);
281         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
282                 ((version >> 16) > major))
283                 return true;
284         return false;
285 }
286
287 #define CPUID_THERM_POWER_LEAF 6
288 #define APERFMPERF_PRESENT 0
289
290 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
291 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
292
293 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
294 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
295 static __read_mostly unsigned int cpuid_leaf5_edx_val;
296
297 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
298                       unsigned int *cx, unsigned int *dx)
299 {
300         unsigned maskebx = ~0;
301         unsigned maskecx = ~0;
302         unsigned maskedx = ~0;
303         unsigned setecx = 0;
304         /*
305          * Mask out inconvenient features, to try and disable as many
306          * unsupported kernel subsystems as possible.
307          */
308         switch (*ax) {
309         case 1:
310                 maskecx = cpuid_leaf1_ecx_mask;
311                 setecx = cpuid_leaf1_ecx_set_mask;
312                 maskedx = cpuid_leaf1_edx_mask;
313                 break;
314
315         case CPUID_MWAIT_LEAF:
316                 /* Synthesize the values.. */
317                 *ax = 0;
318                 *bx = 0;
319                 *cx = cpuid_leaf5_ecx_val;
320                 *dx = cpuid_leaf5_edx_val;
321                 return;
322
323         case CPUID_THERM_POWER_LEAF:
324                 /* Disabling APERFMPERF for kernel usage */
325                 maskecx = ~(1 << APERFMPERF_PRESENT);
326                 break;
327
328         case 0xb:
329                 /* Suppress extended topology stuff */
330                 maskebx = 0;
331                 break;
332         }
333
334         asm(XEN_EMULATE_PREFIX "cpuid"
335                 : "=a" (*ax),
336                   "=b" (*bx),
337                   "=c" (*cx),
338                   "=d" (*dx)
339                 : "0" (*ax), "2" (*cx));
340
341         *bx &= maskebx;
342         *cx &= maskecx;
343         *cx |= setecx;
344         *dx &= maskedx;
345
346 }
347
348 static bool __init xen_check_mwait(void)
349 {
350 #ifdef CONFIG_ACPI
351         struct xen_platform_op op = {
352                 .cmd                    = XENPF_set_processor_pminfo,
353                 .u.set_pminfo.id        = -1,
354                 .u.set_pminfo.type      = XEN_PM_PDC,
355         };
356         uint32_t buf[3];
357         unsigned int ax, bx, cx, dx;
358         unsigned int mwait_mask;
359
360         /* We need to determine whether it is OK to expose the MWAIT
361          * capability to the kernel to harvest deeper than C3 states from ACPI
362          * _CST using the processor_harvest_xen.c module. For this to work, we
363          * need to gather the MWAIT_LEAF values (which the cstate.c code
364          * checks against). The hypervisor won't expose the MWAIT flag because
365          * it would break backwards compatibility; so we will find out directly
366          * from the hardware and hypercall.
367          */
368         if (!xen_initial_domain())
369                 return false;
370
371         /*
372          * When running under platform earlier than Xen4.2, do not expose
373          * mwait, to avoid the risk of loading native acpi pad driver
374          */
375         if (!xen_running_on_version_or_later(4, 2))
376                 return false;
377
378         ax = 1;
379         cx = 0;
380
381         native_cpuid(&ax, &bx, &cx, &dx);
382
383         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
384                      (1 << (X86_FEATURE_MWAIT % 32));
385
386         if ((cx & mwait_mask) != mwait_mask)
387                 return false;
388
389         /* We need to emulate the MWAIT_LEAF and for that we need both
390          * ecx and edx. The hypercall provides only partial information.
391          */
392
393         ax = CPUID_MWAIT_LEAF;
394         bx = 0;
395         cx = 0;
396         dx = 0;
397
398         native_cpuid(&ax, &bx, &cx, &dx);
399
400         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
401          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
402          */
403         buf[0] = ACPI_PDC_REVISION_ID;
404         buf[1] = 1;
405         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
406
407         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
408
409         if ((HYPERVISOR_dom0_op(&op) == 0) &&
410             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
411                 cpuid_leaf5_ecx_val = cx;
412                 cpuid_leaf5_edx_val = dx;
413         }
414         return true;
415 #else
416         return false;
417 #endif
418 }
419 static void __init xen_init_cpuid_mask(void)
420 {
421         unsigned int ax, bx, cx, dx;
422         unsigned int xsave_mask;
423
424         cpuid_leaf1_edx_mask =
425                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
426                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
427
428         if (!xen_initial_domain())
429                 cpuid_leaf1_edx_mask &=
430                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
431
432         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
433
434         ax = 1;
435         cx = 0;
436         xen_cpuid(&ax, &bx, &cx, &dx);
437
438         xsave_mask =
439                 (1 << (X86_FEATURE_XSAVE % 32)) |
440                 (1 << (X86_FEATURE_OSXSAVE % 32));
441
442         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
443         if ((cx & xsave_mask) != xsave_mask)
444                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
445         if (xen_check_mwait())
446                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
447 }
448
449 static void xen_set_debugreg(int reg, unsigned long val)
450 {
451         HYPERVISOR_set_debugreg(reg, val);
452 }
453
454 static unsigned long xen_get_debugreg(int reg)
455 {
456         return HYPERVISOR_get_debugreg(reg);
457 }
458
459 static void xen_end_context_switch(struct task_struct *next)
460 {
461         xen_mc_flush();
462         paravirt_end_context_switch(next);
463 }
464
465 static unsigned long xen_store_tr(void)
466 {
467         return 0;
468 }
469
470 /*
471  * Set the page permissions for a particular virtual address.  If the
472  * address is a vmalloc mapping (or other non-linear mapping), then
473  * find the linear mapping of the page and also set its protections to
474  * match.
475  */
476 static void set_aliased_prot(void *v, pgprot_t prot)
477 {
478         int level;
479         pte_t *ptep;
480         pte_t pte;
481         unsigned long pfn;
482         struct page *page;
483
484         ptep = lookup_address((unsigned long)v, &level);
485         BUG_ON(ptep == NULL);
486
487         pfn = pte_pfn(*ptep);
488         page = pfn_to_page(pfn);
489
490         pte = pfn_pte(pfn, prot);
491
492         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
493                 BUG();
494
495         if (!PageHighMem(page)) {
496                 void *av = __va(PFN_PHYS(pfn));
497
498                 if (av != v)
499                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
500                                 BUG();
501         } else
502                 kmap_flush_unused();
503 }
504
505 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
506 {
507         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
508         int i;
509
510         for(i = 0; i < entries; i += entries_per_page)
511                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
512 }
513
514 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
515 {
516         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
517         int i;
518
519         for(i = 0; i < entries; i += entries_per_page)
520                 set_aliased_prot(ldt + i, PAGE_KERNEL);
521 }
522
523 static void xen_set_ldt(const void *addr, unsigned entries)
524 {
525         struct mmuext_op *op;
526         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
527
528         trace_xen_cpu_set_ldt(addr, entries);
529
530         op = mcs.args;
531         op->cmd = MMUEXT_SET_LDT;
532         op->arg1.linear_addr = (unsigned long)addr;
533         op->arg2.nr_ents = entries;
534
535         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
536
537         xen_mc_issue(PARAVIRT_LAZY_CPU);
538 }
539
540 static void xen_load_gdt(const struct desc_ptr *dtr)
541 {
542         unsigned long va = dtr->address;
543         unsigned int size = dtr->size + 1;
544         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
545         unsigned long frames[pages];
546         int f;
547
548         /*
549          * A GDT can be up to 64k in size, which corresponds to 8192
550          * 8-byte entries, or 16 4k pages..
551          */
552
553         BUG_ON(size > 65536);
554         BUG_ON(va & ~PAGE_MASK);
555
556         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
557                 int level;
558                 pte_t *ptep;
559                 unsigned long pfn, mfn;
560                 void *virt;
561
562                 /*
563                  * The GDT is per-cpu and is in the percpu data area.
564                  * That can be virtually mapped, so we need to do a
565                  * page-walk to get the underlying MFN for the
566                  * hypercall.  The page can also be in the kernel's
567                  * linear range, so we need to RO that mapping too.
568                  */
569                 ptep = lookup_address(va, &level);
570                 BUG_ON(ptep == NULL);
571
572                 pfn = pte_pfn(*ptep);
573                 mfn = pfn_to_mfn(pfn);
574                 virt = __va(PFN_PHYS(pfn));
575
576                 frames[f] = mfn;
577
578                 make_lowmem_page_readonly((void *)va);
579                 make_lowmem_page_readonly(virt);
580         }
581
582         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
583                 BUG();
584 }
585
586 /*
587  * load_gdt for early boot, when the gdt is only mapped once
588  */
589 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
590 {
591         unsigned long va = dtr->address;
592         unsigned int size = dtr->size + 1;
593         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
594         unsigned long frames[pages];
595         int f;
596
597         /*
598          * A GDT can be up to 64k in size, which corresponds to 8192
599          * 8-byte entries, or 16 4k pages..
600          */
601
602         BUG_ON(size > 65536);
603         BUG_ON(va & ~PAGE_MASK);
604
605         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
606                 pte_t pte;
607                 unsigned long pfn, mfn;
608
609                 pfn = virt_to_pfn(va);
610                 mfn = pfn_to_mfn(pfn);
611
612                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
613
614                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
615                         BUG();
616
617                 frames[f] = mfn;
618         }
619
620         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
621                 BUG();
622 }
623
624 static inline bool desc_equal(const struct desc_struct *d1,
625                               const struct desc_struct *d2)
626 {
627         return d1->a == d2->a && d1->b == d2->b;
628 }
629
630 static void load_TLS_descriptor(struct thread_struct *t,
631                                 unsigned int cpu, unsigned int i)
632 {
633         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
634         struct desc_struct *gdt;
635         xmaddr_t maddr;
636         struct multicall_space mc;
637
638         if (desc_equal(shadow, &t->tls_array[i]))
639                 return;
640
641         *shadow = t->tls_array[i];
642
643         gdt = get_cpu_gdt_table(cpu);
644         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
645         mc = __xen_mc_entry(0);
646
647         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
648 }
649
650 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
651 {
652         /*
653          * XXX sleazy hack: If we're being called in a lazy-cpu zone
654          * and lazy gs handling is enabled, it means we're in a
655          * context switch, and %gs has just been saved.  This means we
656          * can zero it out to prevent faults on exit from the
657          * hypervisor if the next process has no %gs.  Either way, it
658          * has been saved, and the new value will get loaded properly.
659          * This will go away as soon as Xen has been modified to not
660          * save/restore %gs for normal hypercalls.
661          *
662          * On x86_64, this hack is not used for %gs, because gs points
663          * to KERNEL_GS_BASE (and uses it for PDA references), so we
664          * must not zero %gs on x86_64
665          *
666          * For x86_64, we need to zero %fs, otherwise we may get an
667          * exception between the new %fs descriptor being loaded and
668          * %fs being effectively cleared at __switch_to().
669          */
670         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
671 #ifdef CONFIG_X86_32
672                 lazy_load_gs(0);
673 #else
674                 loadsegment(fs, 0);
675 #endif
676         }
677
678         xen_mc_batch();
679
680         load_TLS_descriptor(t, cpu, 0);
681         load_TLS_descriptor(t, cpu, 1);
682         load_TLS_descriptor(t, cpu, 2);
683
684         xen_mc_issue(PARAVIRT_LAZY_CPU);
685 }
686
687 #ifdef CONFIG_X86_64
688 static void xen_load_gs_index(unsigned int idx)
689 {
690         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
691                 BUG();
692 }
693 #endif
694
695 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
696                                 const void *ptr)
697 {
698         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
699         u64 entry = *(u64 *)ptr;
700
701         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
702
703         preempt_disable();
704
705         xen_mc_flush();
706         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
707                 BUG();
708
709         preempt_enable();
710 }
711
712 static int cvt_gate_to_trap(int vector, const gate_desc *val,
713                             struct trap_info *info)
714 {
715         unsigned long addr;
716
717         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
718                 return 0;
719
720         info->vector = vector;
721
722         addr = gate_offset(*val);
723 #ifdef CONFIG_X86_64
724         /*
725          * Look for known traps using IST, and substitute them
726          * appropriately.  The debugger ones are the only ones we care
727          * about.  Xen will handle faults like double_fault,
728          * so we should never see them.  Warn if
729          * there's an unexpected IST-using fault handler.
730          */
731         if (addr == (unsigned long)debug)
732                 addr = (unsigned long)xen_debug;
733         else if (addr == (unsigned long)int3)
734                 addr = (unsigned long)xen_int3;
735         else if (addr == (unsigned long)stack_segment)
736                 addr = (unsigned long)xen_stack_segment;
737         else if (addr == (unsigned long)double_fault) {
738                 /* Don't need to handle these */
739                 return 0;
740 #ifdef CONFIG_X86_MCE
741         } else if (addr == (unsigned long)machine_check) {
742                 /*
743                  * when xen hypervisor inject vMCE to guest,
744                  * use native mce handler to handle it
745                  */
746                 ;
747 #endif
748         } else if (addr == (unsigned long)nmi)
749                 /*
750                  * Use the native version as well.
751                  */
752                 ;
753         else {
754                 /* Some other trap using IST? */
755                 if (WARN_ON(val->ist != 0))
756                         return 0;
757         }
758 #endif  /* CONFIG_X86_64 */
759         info->address = addr;
760
761         info->cs = gate_segment(*val);
762         info->flags = val->dpl;
763         /* interrupt gates clear IF */
764         if (val->type == GATE_INTERRUPT)
765                 info->flags |= 1 << 2;
766
767         return 1;
768 }
769
770 /* Locations of each CPU's IDT */
771 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
772
773 /* Set an IDT entry.  If the entry is part of the current IDT, then
774    also update Xen. */
775 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
776 {
777         unsigned long p = (unsigned long)&dt[entrynum];
778         unsigned long start, end;
779
780         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
781
782         preempt_disable();
783
784         start = __this_cpu_read(idt_desc.address);
785         end = start + __this_cpu_read(idt_desc.size) + 1;
786
787         xen_mc_flush();
788
789         native_write_idt_entry(dt, entrynum, g);
790
791         if (p >= start && (p + 8) <= end) {
792                 struct trap_info info[2];
793
794                 info[1].address = 0;
795
796                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
797                         if (HYPERVISOR_set_trap_table(info))
798                                 BUG();
799         }
800
801         preempt_enable();
802 }
803
804 static void xen_convert_trap_info(const struct desc_ptr *desc,
805                                   struct trap_info *traps)
806 {
807         unsigned in, out, count;
808
809         count = (desc->size+1) / sizeof(gate_desc);
810         BUG_ON(count > 256);
811
812         for (in = out = 0; in < count; in++) {
813                 gate_desc *entry = (gate_desc*)(desc->address) + in;
814
815                 if (cvt_gate_to_trap(in, entry, &traps[out]))
816                         out++;
817         }
818         traps[out].address = 0;
819 }
820
821 void xen_copy_trap_info(struct trap_info *traps)
822 {
823         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
824
825         xen_convert_trap_info(desc, traps);
826 }
827
828 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
829    hold a spinlock to protect the static traps[] array (static because
830    it avoids allocation, and saves stack space). */
831 static void xen_load_idt(const struct desc_ptr *desc)
832 {
833         static DEFINE_SPINLOCK(lock);
834         static struct trap_info traps[257];
835
836         trace_xen_cpu_load_idt(desc);
837
838         spin_lock(&lock);
839
840         __get_cpu_var(idt_desc) = *desc;
841
842         xen_convert_trap_info(desc, traps);
843
844         xen_mc_flush();
845         if (HYPERVISOR_set_trap_table(traps))
846                 BUG();
847
848         spin_unlock(&lock);
849 }
850
851 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
852    they're handled differently. */
853 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
854                                 const void *desc, int type)
855 {
856         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
857
858         preempt_disable();
859
860         switch (type) {
861         case DESC_LDT:
862         case DESC_TSS:
863                 /* ignore */
864                 break;
865
866         default: {
867                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
868
869                 xen_mc_flush();
870                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
871                         BUG();
872         }
873
874         }
875
876         preempt_enable();
877 }
878
879 /*
880  * Version of write_gdt_entry for use at early boot-time needed to
881  * update an entry as simply as possible.
882  */
883 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
884                                             const void *desc, int type)
885 {
886         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
887
888         switch (type) {
889         case DESC_LDT:
890         case DESC_TSS:
891                 /* ignore */
892                 break;
893
894         default: {
895                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
896
897                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
898                         dt[entry] = *(struct desc_struct *)desc;
899         }
900
901         }
902 }
903
904 static void xen_load_sp0(struct tss_struct *tss,
905                          struct thread_struct *thread)
906 {
907         struct multicall_space mcs;
908
909         mcs = xen_mc_entry(0);
910         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
911         xen_mc_issue(PARAVIRT_LAZY_CPU);
912 }
913
914 static void xen_set_iopl_mask(unsigned mask)
915 {
916         struct physdev_set_iopl set_iopl;
917
918         /* Force the change at ring 0. */
919         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
920         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
921 }
922
923 static void xen_io_delay(void)
924 {
925 }
926
927 #ifdef CONFIG_X86_LOCAL_APIC
928 static unsigned long xen_set_apic_id(unsigned int x)
929 {
930         WARN_ON(1);
931         return x;
932 }
933 static unsigned int xen_get_apic_id(unsigned long x)
934 {
935         return ((x)>>24) & 0xFFu;
936 }
937 static u32 xen_apic_read(u32 reg)
938 {
939         struct xen_platform_op op = {
940                 .cmd = XENPF_get_cpuinfo,
941                 .interface_version = XENPF_INTERFACE_VERSION,
942                 .u.pcpu_info.xen_cpuid = 0,
943         };
944         int ret = 0;
945
946         /* Shouldn't need this as APIC is turned off for PV, and we only
947          * get called on the bootup processor. But just in case. */
948         if (!xen_initial_domain() || smp_processor_id())
949                 return 0;
950
951         if (reg == APIC_LVR)
952                 return 0x10;
953
954         if (reg != APIC_ID)
955                 return 0;
956
957         ret = HYPERVISOR_dom0_op(&op);
958         if (ret)
959                 return 0;
960
961         return op.u.pcpu_info.apic_id << 24;
962 }
963
964 static void xen_apic_write(u32 reg, u32 val)
965 {
966         /* Warn to see if there's any stray references */
967         WARN_ON(1);
968 }
969
970 static u64 xen_apic_icr_read(void)
971 {
972         return 0;
973 }
974
975 static void xen_apic_icr_write(u32 low, u32 id)
976 {
977         /* Warn to see if there's any stray references */
978         WARN_ON(1);
979 }
980
981 static void xen_apic_wait_icr_idle(void)
982 {
983         return;
984 }
985
986 static u32 xen_safe_apic_wait_icr_idle(void)
987 {
988         return 0;
989 }
990
991 static void set_xen_basic_apic_ops(void)
992 {
993         apic->read = xen_apic_read;
994         apic->write = xen_apic_write;
995         apic->icr_read = xen_apic_icr_read;
996         apic->icr_write = xen_apic_icr_write;
997         apic->wait_icr_idle = xen_apic_wait_icr_idle;
998         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
999         apic->set_apic_id = xen_set_apic_id;
1000         apic->get_apic_id = xen_get_apic_id;
1001
1002 #ifdef CONFIG_SMP
1003         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1004         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1005         apic->send_IPI_mask = xen_send_IPI_mask;
1006         apic->send_IPI_all = xen_send_IPI_all;
1007         apic->send_IPI_self = xen_send_IPI_self;
1008 #endif
1009 }
1010
1011 #endif
1012
1013 static void xen_clts(void)
1014 {
1015         struct multicall_space mcs;
1016
1017         mcs = xen_mc_entry(0);
1018
1019         MULTI_fpu_taskswitch(mcs.mc, 0);
1020
1021         xen_mc_issue(PARAVIRT_LAZY_CPU);
1022 }
1023
1024 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1025
1026 static unsigned long xen_read_cr0(void)
1027 {
1028         unsigned long cr0 = this_cpu_read(xen_cr0_value);
1029
1030         if (unlikely(cr0 == 0)) {
1031                 cr0 = native_read_cr0();
1032                 this_cpu_write(xen_cr0_value, cr0);
1033         }
1034
1035         return cr0;
1036 }
1037
1038 static void xen_write_cr0(unsigned long cr0)
1039 {
1040         struct multicall_space mcs;
1041
1042         this_cpu_write(xen_cr0_value, cr0);
1043
1044         /* Only pay attention to cr0.TS; everything else is
1045            ignored. */
1046         mcs = xen_mc_entry(0);
1047
1048         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1049
1050         xen_mc_issue(PARAVIRT_LAZY_CPU);
1051 }
1052
1053 static void xen_write_cr4(unsigned long cr4)
1054 {
1055         cr4 &= ~X86_CR4_PGE;
1056         cr4 &= ~X86_CR4_PSE;
1057
1058         native_write_cr4(cr4);
1059 }
1060 #ifdef CONFIG_X86_64
1061 static inline unsigned long xen_read_cr8(void)
1062 {
1063         return 0;
1064 }
1065 static inline void xen_write_cr8(unsigned long val)
1066 {
1067         BUG_ON(val);
1068 }
1069 #endif
1070 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1071 {
1072         int ret;
1073
1074         ret = 0;
1075
1076         switch (msr) {
1077 #ifdef CONFIG_X86_64
1078                 unsigned which;
1079                 u64 base;
1080
1081         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1082         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1083         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1084
1085         set:
1086                 base = ((u64)high << 32) | low;
1087                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1088                         ret = -EIO;
1089                 break;
1090 #endif
1091
1092         case MSR_STAR:
1093         case MSR_CSTAR:
1094         case MSR_LSTAR:
1095         case MSR_SYSCALL_MASK:
1096         case MSR_IA32_SYSENTER_CS:
1097         case MSR_IA32_SYSENTER_ESP:
1098         case MSR_IA32_SYSENTER_EIP:
1099                 /* Fast syscall setup is all done in hypercalls, so
1100                    these are all ignored.  Stub them out here to stop
1101                    Xen console noise. */
1102                 break;
1103
1104         case MSR_IA32_CR_PAT:
1105                 if (smp_processor_id() == 0)
1106                         xen_set_pat(((u64)high << 32) | low);
1107                 break;
1108
1109         default:
1110                 ret = native_write_msr_safe(msr, low, high);
1111         }
1112
1113         return ret;
1114 }
1115
1116 void xen_setup_shared_info(void)
1117 {
1118         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1119                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1120                            xen_start_info->shared_info);
1121
1122                 HYPERVISOR_shared_info =
1123                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1124         } else
1125                 HYPERVISOR_shared_info =
1126                         (struct shared_info *)__va(xen_start_info->shared_info);
1127
1128 #ifndef CONFIG_SMP
1129         /* In UP this is as good a place as any to set up shared info */
1130         xen_setup_vcpu_info_placement();
1131 #endif
1132
1133         xen_setup_mfn_list_list();
1134 }
1135
1136 /* This is called once we have the cpu_possible_mask */
1137 void xen_setup_vcpu_info_placement(void)
1138 {
1139         int cpu;
1140
1141         for_each_possible_cpu(cpu)
1142                 xen_vcpu_setup(cpu);
1143
1144         /* xen_vcpu_setup managed to place the vcpu_info within the
1145            percpu area for all cpus, so make use of it */
1146         if (have_vcpu_info_placement) {
1147                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1148                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1149                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1150                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1151                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1152         }
1153 }
1154
1155 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1156                           unsigned long addr, unsigned len)
1157 {
1158         char *start, *end, *reloc;
1159         unsigned ret;
1160
1161         start = end = reloc = NULL;
1162
1163 #define SITE(op, x)                                                     \
1164         case PARAVIRT_PATCH(op.x):                                      \
1165         if (have_vcpu_info_placement) {                                 \
1166                 start = (char *)xen_##x##_direct;                       \
1167                 end = xen_##x##_direct_end;                             \
1168                 reloc = xen_##x##_direct_reloc;                         \
1169         }                                                               \
1170         goto patch_site
1171
1172         switch (type) {
1173                 SITE(pv_irq_ops, irq_enable);
1174                 SITE(pv_irq_ops, irq_disable);
1175                 SITE(pv_irq_ops, save_fl);
1176                 SITE(pv_irq_ops, restore_fl);
1177 #undef SITE
1178
1179         patch_site:
1180                 if (start == NULL || (end-start) > len)
1181                         goto default_patch;
1182
1183                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1184
1185                 /* Note: because reloc is assigned from something that
1186                    appears to be an array, gcc assumes it's non-null,
1187                    but doesn't know its relationship with start and
1188                    end. */
1189                 if (reloc > start && reloc < end) {
1190                         int reloc_off = reloc - start;
1191                         long *relocp = (long *)(insnbuf + reloc_off);
1192                         long delta = start - (char *)addr;
1193
1194                         *relocp += delta;
1195                 }
1196                 break;
1197
1198         default_patch:
1199         default:
1200                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1201                                              addr, len);
1202                 break;
1203         }
1204
1205         return ret;
1206 }
1207
1208 static const struct pv_info xen_info __initconst = {
1209         .paravirt_enabled = 1,
1210         .shared_kernel_pmd = 0,
1211
1212 #ifdef CONFIG_X86_64
1213         .extra_user_64bit_cs = FLAT_USER_CS64,
1214 #endif
1215
1216         .name = "Xen",
1217 };
1218
1219 static const struct pv_init_ops xen_init_ops __initconst = {
1220         .patch = xen_patch,
1221 };
1222
1223 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1224         .cpuid = xen_cpuid,
1225
1226         .set_debugreg = xen_set_debugreg,
1227         .get_debugreg = xen_get_debugreg,
1228
1229         .clts = xen_clts,
1230
1231         .read_cr0 = xen_read_cr0,
1232         .write_cr0 = xen_write_cr0,
1233
1234         .read_cr4 = native_read_cr4,
1235         .read_cr4_safe = native_read_cr4_safe,
1236         .write_cr4 = xen_write_cr4,
1237
1238 #ifdef CONFIG_X86_64
1239         .read_cr8 = xen_read_cr8,
1240         .write_cr8 = xen_write_cr8,
1241 #endif
1242
1243         .wbinvd = native_wbinvd,
1244
1245         .read_msr = native_read_msr_safe,
1246         .write_msr = xen_write_msr_safe,
1247
1248         .read_tsc = native_read_tsc,
1249         .read_pmc = native_read_pmc,
1250
1251         .read_tscp = native_read_tscp,
1252
1253         .iret = xen_iret,
1254         .irq_enable_sysexit = xen_sysexit,
1255 #ifdef CONFIG_X86_64
1256         .usergs_sysret32 = xen_sysret32,
1257         .usergs_sysret64 = xen_sysret64,
1258 #endif
1259
1260         .load_tr_desc = paravirt_nop,
1261         .set_ldt = xen_set_ldt,
1262         .load_gdt = xen_load_gdt,
1263         .load_idt = xen_load_idt,
1264         .load_tls = xen_load_tls,
1265 #ifdef CONFIG_X86_64
1266         .load_gs_index = xen_load_gs_index,
1267 #endif
1268
1269         .alloc_ldt = xen_alloc_ldt,
1270         .free_ldt = xen_free_ldt,
1271
1272         .store_idt = native_store_idt,
1273         .store_tr = xen_store_tr,
1274
1275         .write_ldt_entry = xen_write_ldt_entry,
1276         .write_gdt_entry = xen_write_gdt_entry,
1277         .write_idt_entry = xen_write_idt_entry,
1278         .load_sp0 = xen_load_sp0,
1279
1280         .set_iopl_mask = xen_set_iopl_mask,
1281         .io_delay = xen_io_delay,
1282
1283         /* Xen takes care of %gs when switching to usermode for us */
1284         .swapgs = paravirt_nop,
1285
1286         .start_context_switch = paravirt_start_context_switch,
1287         .end_context_switch = xen_end_context_switch,
1288 };
1289
1290 static const struct pv_apic_ops xen_apic_ops __initconst = {
1291 #ifdef CONFIG_X86_LOCAL_APIC
1292         .startup_ipi_hook = paravirt_nop,
1293 #endif
1294 };
1295
1296 static void xen_reboot(int reason)
1297 {
1298         struct sched_shutdown r = { .reason = reason };
1299
1300         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1301                 BUG();
1302 }
1303
1304 static void xen_restart(char *msg)
1305 {
1306         xen_reboot(SHUTDOWN_reboot);
1307 }
1308
1309 static void xen_emergency_restart(void)
1310 {
1311         xen_reboot(SHUTDOWN_reboot);
1312 }
1313
1314 static void xen_machine_halt(void)
1315 {
1316         xen_reboot(SHUTDOWN_poweroff);
1317 }
1318
1319 static void xen_machine_power_off(void)
1320 {
1321         if (pm_power_off)
1322                 pm_power_off();
1323         xen_reboot(SHUTDOWN_poweroff);
1324 }
1325
1326 static void xen_crash_shutdown(struct pt_regs *regs)
1327 {
1328         xen_reboot(SHUTDOWN_crash);
1329 }
1330
1331 static int
1332 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1333 {
1334         xen_reboot(SHUTDOWN_crash);
1335         return NOTIFY_DONE;
1336 }
1337
1338 static struct notifier_block xen_panic_block = {
1339         .notifier_call= xen_panic_event,
1340 };
1341
1342 int xen_panic_handler_init(void)
1343 {
1344         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1345         return 0;
1346 }
1347
1348 static const struct machine_ops xen_machine_ops __initconst = {
1349         .restart = xen_restart,
1350         .halt = xen_machine_halt,
1351         .power_off = xen_machine_power_off,
1352         .shutdown = xen_machine_halt,
1353         .crash_shutdown = xen_crash_shutdown,
1354         .emergency_restart = xen_emergency_restart,
1355 };
1356
1357 static void __init xen_boot_params_init_edd(void)
1358 {
1359 #if IS_ENABLED(CONFIG_EDD)
1360         struct xen_platform_op op;
1361         struct edd_info *edd_info;
1362         u32 *mbr_signature;
1363         unsigned nr;
1364         int ret;
1365
1366         edd_info = boot_params.eddbuf;
1367         mbr_signature = boot_params.edd_mbr_sig_buffer;
1368
1369         op.cmd = XENPF_firmware_info;
1370
1371         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1372         for (nr = 0; nr < EDDMAXNR; nr++) {
1373                 struct edd_info *info = edd_info + nr;
1374
1375                 op.u.firmware_info.index = nr;
1376                 info->params.length = sizeof(info->params);
1377                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1378                                      &info->params);
1379                 ret = HYPERVISOR_dom0_op(&op);
1380                 if (ret)
1381                         break;
1382
1383 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1384                 C(device);
1385                 C(version);
1386                 C(interface_support);
1387                 C(legacy_max_cylinder);
1388                 C(legacy_max_head);
1389                 C(legacy_sectors_per_track);
1390 #undef C
1391         }
1392         boot_params.eddbuf_entries = nr;
1393
1394         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1395         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1396                 op.u.firmware_info.index = nr;
1397                 ret = HYPERVISOR_dom0_op(&op);
1398                 if (ret)
1399                         break;
1400                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1401         }
1402         boot_params.edd_mbr_sig_buf_entries = nr;
1403 #endif
1404 }
1405
1406 /*
1407  * Set up the GDT and segment registers for -fstack-protector.  Until
1408  * we do this, we have to be careful not to call any stack-protected
1409  * function, which is most of the kernel.
1410  */
1411 static void __init xen_setup_stackprotector(void)
1412 {
1413         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1414         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1415
1416         setup_stack_canary_segment(0);
1417         switch_to_new_gdt(0);
1418
1419         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1420         pv_cpu_ops.load_gdt = xen_load_gdt;
1421 }
1422
1423 /* First C function to be called on Xen boot */
1424 asmlinkage void __init xen_start_kernel(void)
1425 {
1426         struct physdev_set_iopl set_iopl;
1427         int rc;
1428
1429         if (!xen_start_info)
1430                 return;
1431
1432         xen_domain_type = XEN_PV_DOMAIN;
1433
1434         xen_setup_machphys_mapping();
1435
1436         /* Install Xen paravirt ops */
1437         pv_info = xen_info;
1438         pv_init_ops = xen_init_ops;
1439         pv_cpu_ops = xen_cpu_ops;
1440         pv_apic_ops = xen_apic_ops;
1441
1442         x86_init.resources.memory_setup = xen_memory_setup;
1443         x86_init.oem.arch_setup = xen_arch_setup;
1444         x86_init.oem.banner = xen_banner;
1445
1446         xen_init_time_ops();
1447
1448         /*
1449          * Set up some pagetable state before starting to set any ptes.
1450          */
1451
1452         xen_init_mmu_ops();
1453
1454         /* Prevent unwanted bits from being set in PTEs. */
1455         __supported_pte_mask &= ~_PAGE_GLOBAL;
1456 #if 0
1457         if (!xen_initial_domain())
1458 #endif
1459                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1460
1461         __supported_pte_mask |= _PAGE_IOMAP;
1462
1463         /*
1464          * Prevent page tables from being allocated in highmem, even
1465          * if CONFIG_HIGHPTE is enabled.
1466          */
1467         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1468
1469         /* Work out if we support NX */
1470         x86_configure_nx();
1471
1472         xen_setup_features();
1473
1474         /* Get mfn list */
1475         if (!xen_feature(XENFEAT_auto_translated_physmap))
1476                 xen_build_dynamic_phys_to_machine();
1477
1478         /*
1479          * Set up kernel GDT and segment registers, mainly so that
1480          * -fstack-protector code can be executed.
1481          */
1482         xen_setup_stackprotector();
1483
1484         xen_init_irq_ops();
1485         xen_init_cpuid_mask();
1486
1487 #ifdef CONFIG_X86_LOCAL_APIC
1488         /*
1489          * set up the basic apic ops.
1490          */
1491         set_xen_basic_apic_ops();
1492 #endif
1493
1494         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1495                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1496                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1497         }
1498
1499         machine_ops = xen_machine_ops;
1500
1501         /*
1502          * The only reliable way to retain the initial address of the
1503          * percpu gdt_page is to remember it here, so we can go and
1504          * mark it RW later, when the initial percpu area is freed.
1505          */
1506         xen_initial_gdt = &per_cpu(gdt_page, 0);
1507
1508         xen_smp_init();
1509
1510 #ifdef CONFIG_ACPI_NUMA
1511         /*
1512          * The pages we from Xen are not related to machine pages, so
1513          * any NUMA information the kernel tries to get from ACPI will
1514          * be meaningless.  Prevent it from trying.
1515          */
1516         acpi_numa = -1;
1517 #endif
1518 #ifdef CONFIG_X86_PAT
1519         /*
1520          * For right now disable the PAT. We should remove this once
1521          * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1522          * (xen/pat: Disable PAT support for now) is reverted.
1523          */
1524         pat_enabled = 0;
1525 #endif
1526         /* Don't do the full vcpu_info placement stuff until we have a
1527            possible map and a non-dummy shared_info. */
1528         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1529
1530         local_irq_disable();
1531         early_boot_irqs_disabled = true;
1532
1533         xen_raw_console_write("mapping kernel into physical memory\n");
1534         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1535
1536         /* Allocate and initialize top and mid mfn levels for p2m structure */
1537         xen_build_mfn_list_list();
1538
1539         /* keep using Xen gdt for now; no urgent need to change it */
1540
1541 #ifdef CONFIG_X86_32
1542         pv_info.kernel_rpl = 1;
1543         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1544                 pv_info.kernel_rpl = 0;
1545 #else
1546         pv_info.kernel_rpl = 0;
1547 #endif
1548         /* set the limit of our address space */
1549         xen_reserve_top();
1550
1551         /* We used to do this in xen_arch_setup, but that is too late on AMD
1552          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1553          * which pokes 0xcf8 port.
1554          */
1555         set_iopl.iopl = 1;
1556         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1557         if (rc != 0)
1558                 xen_raw_printk("physdev_op failed %d\n", rc);
1559
1560 #ifdef CONFIG_X86_32
1561         /* set up basic CPUID stuff */
1562         cpu_detect(&new_cpu_data);
1563         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1564         new_cpu_data.wp_works_ok = 1;
1565         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1566 #endif
1567
1568         /* Poke various useful things into boot_params */
1569         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1570         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1571                 ? __pa(xen_start_info->mod_start) : 0;
1572         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1573         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1574
1575         if (!xen_initial_domain()) {
1576                 add_preferred_console("xenboot", 0, NULL);
1577                 add_preferred_console("tty", 0, NULL);
1578                 add_preferred_console("hvc", 0, NULL);
1579                 if (pci_xen)
1580                         x86_init.pci.arch_init = pci_xen_init;
1581         } else {
1582                 const struct dom0_vga_console_info *info =
1583                         (void *)((char *)xen_start_info +
1584                                  xen_start_info->console.dom0.info_off);
1585                 struct xen_platform_op op = {
1586                         .cmd = XENPF_firmware_info,
1587                         .interface_version = XENPF_INTERFACE_VERSION,
1588                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1589                 };
1590
1591                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1592                 xen_start_info->console.domU.mfn = 0;
1593                 xen_start_info->console.domU.evtchn = 0;
1594
1595                 if (HYPERVISOR_dom0_op(&op) == 0)
1596                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1597
1598                 xen_init_apic();
1599
1600                 /* Make sure ACS will be enabled */
1601                 pci_request_acs();
1602
1603                 xen_acpi_sleep_register();
1604
1605                 /* Avoid searching for BIOS MP tables */
1606                 x86_init.mpparse.find_smp_config = x86_init_noop;
1607                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1608
1609                 xen_boot_params_init_edd();
1610         }
1611 #ifdef CONFIG_PCI
1612         /* PCI BIOS service won't work from a PV guest. */
1613         pci_probe &= ~PCI_PROBE_BIOS;
1614 #endif
1615         xen_raw_console_write("about to get started...\n");
1616
1617         xen_setup_runstate_info(0);
1618
1619         /* Start the world */
1620 #ifdef CONFIG_X86_32
1621         i386_start_kernel();
1622 #else
1623         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1624 #endif
1625 }
1626
1627 void __ref xen_hvm_init_shared_info(void)
1628 {
1629         int cpu;
1630         struct xen_add_to_physmap xatp;
1631         static struct shared_info *shared_info_page = 0;
1632
1633         if (!shared_info_page)
1634                 shared_info_page = (struct shared_info *)
1635                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1636         xatp.domid = DOMID_SELF;
1637         xatp.idx = 0;
1638         xatp.space = XENMAPSPACE_shared_info;
1639         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1640         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1641                 BUG();
1642
1643         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1644
1645         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1646          * page, we use it in the event channel upcall and in some pvclock
1647          * related functions. We don't need the vcpu_info placement
1648          * optimizations because we don't use any pv_mmu or pv_irq op on
1649          * HVM.
1650          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1651          * online but xen_hvm_init_shared_info is run at resume time too and
1652          * in that case multiple vcpus might be online. */
1653         for_each_online_cpu(cpu) {
1654                 /* Leave it to be NULL. */
1655                 if (cpu >= MAX_VIRT_CPUS)
1656                         continue;
1657                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1658         }
1659 }
1660
1661 #ifdef CONFIG_XEN_PVHVM
1662 static void __init init_hvm_pv_info(void)
1663 {
1664         int major, minor;
1665         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1666         u64 pfn;
1667
1668         base = xen_cpuid_base();
1669         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1670
1671         major = eax >> 16;
1672         minor = eax & 0xffff;
1673         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1674
1675         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1676
1677         pfn = __pa(hypercall_page);
1678         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1679
1680         xen_setup_features();
1681
1682         pv_info.name = "Xen HVM";
1683
1684         xen_domain_type = XEN_HVM_DOMAIN;
1685 }
1686
1687 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1688                               void *hcpu)
1689 {
1690         int cpu = (long)hcpu;
1691         switch (action) {
1692         case CPU_UP_PREPARE:
1693                 xen_vcpu_setup(cpu);
1694                 if (xen_have_vector_callback) {
1695                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1696                                 xen_setup_timer(cpu);
1697                 }
1698                 break;
1699         default:
1700                 break;
1701         }
1702         return NOTIFY_OK;
1703 }
1704
1705 static struct notifier_block xen_hvm_cpu_notifier = {
1706         .notifier_call  = xen_hvm_cpu_notify,
1707 };
1708
1709 static void __init xen_hvm_guest_init(void)
1710 {
1711         init_hvm_pv_info();
1712
1713         xen_hvm_init_shared_info();
1714
1715         xen_panic_handler_init();
1716
1717         if (xen_feature(XENFEAT_hvm_callback_vector))
1718                 xen_have_vector_callback = 1;
1719         xen_hvm_smp_init();
1720         register_cpu_notifier(&xen_hvm_cpu_notifier);
1721         xen_unplug_emulated_devices();
1722         x86_init.irqs.intr_init = xen_init_IRQ;
1723         xen_hvm_init_time_ops();
1724         xen_hvm_init_mmu_ops();
1725 }
1726
1727 static uint32_t __init xen_hvm_platform(void)
1728 {
1729         if (xen_pv_domain())
1730                 return 0;
1731
1732         return xen_cpuid_base();
1733 }
1734
1735 bool xen_hvm_need_lapic(void)
1736 {
1737         if (xen_pv_domain())
1738                 return false;
1739         if (!xen_hvm_domain())
1740                 return false;
1741         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1742                 return false;
1743         return true;
1744 }
1745 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1746
1747 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1748         .name                   = "Xen HVM",
1749         .detect                 = xen_hvm_platform,
1750         .init_platform          = xen_hvm_guest_init,
1751         .x2apic_available       = xen_x2apic_para_available,
1752 };
1753 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1754 #endif