]> Pileus Git - ~andy/linux/blob - arch/x86/platform/uv/tlb_uv.c
Merge branches 'acpi_pad', 'acpica', 'apei-bugzilla-43282', 'battery', 'cpuidle-coupl...
[~andy/linux] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29                 20,
30                 160,
31                 1280,
32                 10240,
33                 81920,
34                 655360,
35                 5242880,
36                 167772160
37 };
38
39 static int timeout_us;
40 static int nobau;
41 static int baudisabled;
42 static spinlock_t disable_lock;
43 static cycles_t congested_cycles;
44
45 /* tunables: */
46 static int max_concurr          = MAX_BAU_CONCURRENT;
47 static int max_concurr_const    = MAX_BAU_CONCURRENT;
48 static int plugged_delay        = PLUGGED_DELAY;
49 static int plugsb4reset         = PLUGSB4RESET;
50 static int timeoutsb4reset      = TIMEOUTSB4RESET;
51 static int ipi_reset_limit      = IPI_RESET_LIMIT;
52 static int complete_threshold   = COMPLETE_THRESHOLD;
53 static int congested_respns_us  = CONGESTED_RESPONSE_US;
54 static int congested_reps       = CONGESTED_REPS;
55 static int congested_period     = CONGESTED_PERIOD;
56
57 static struct tunables tunables[] = {
58         {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59         {&plugged_delay, PLUGGED_DELAY},
60         {&plugsb4reset, PLUGSB4RESET},
61         {&timeoutsb4reset, TIMEOUTSB4RESET},
62         {&ipi_reset_limit, IPI_RESET_LIMIT},
63         {&complete_threshold, COMPLETE_THRESHOLD},
64         {&congested_respns_us, CONGESTED_RESPONSE_US},
65         {&congested_reps, CONGESTED_REPS},
66         {&congested_period, CONGESTED_PERIOD}
67 };
68
69 static struct dentry *tunables_dir;
70 static struct dentry *tunables_file;
71
72 /* these correspond to the statistics printed by ptc_seq_show() */
73 static char *stat_description[] = {
74         "sent:     number of shootdown messages sent",
75         "stime:    time spent sending messages",
76         "numuvhubs: number of hubs targeted with shootdown",
77         "numuvhubs16: number times 16 or more hubs targeted",
78         "numuvhubs8: number times 8 or more hubs targeted",
79         "numuvhubs4: number times 4 or more hubs targeted",
80         "numuvhubs2: number times 2 or more hubs targeted",
81         "numuvhubs1: number times 1 hub targeted",
82         "numcpus:  number of cpus targeted with shootdown",
83         "dto:      number of destination timeouts",
84         "retries:  destination timeout retries sent",
85         "rok:   :  destination timeouts successfully retried",
86         "resetp:   ipi-style resource resets for plugs",
87         "resett:   ipi-style resource resets for timeouts",
88         "giveup:   fall-backs to ipi-style shootdowns",
89         "sto:      number of source timeouts",
90         "bz:       number of stay-busy's",
91         "throt:    number times spun in throttle",
92         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
93         "recv:     shootdown messages received",
94         "rtime:    time spent processing messages",
95         "all:      shootdown all-tlb messages",
96         "one:      shootdown one-tlb messages",
97         "mult:     interrupts that found multiple messages",
98         "none:     interrupts that found no messages",
99         "retry:    number of retry messages processed",
100         "canc:     number messages canceled by retries",
101         "nocan:    number retries that found nothing to cancel",
102         "reset:    number of ipi-style reset requests processed",
103         "rcan:     number messages canceled by reset requests",
104         "disable:  number times use of the BAU was disabled",
105         "enable:   number times use of the BAU was re-enabled"
106 };
107
108 static int __init
109 setup_nobau(char *arg)
110 {
111         nobau = 1;
112         return 0;
113 }
114 early_param("nobau", setup_nobau);
115
116 /* base pnode in this partition */
117 static int uv_base_pnode __read_mostly;
118
119 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
120 static DEFINE_PER_CPU(struct bau_control, bau_control);
121 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
122
123 /*
124  * Determine the first node on a uvhub. 'Nodes' are used for kernel
125  * memory allocation.
126  */
127 static int __init uvhub_to_first_node(int uvhub)
128 {
129         int node, b;
130
131         for_each_online_node(node) {
132                 b = uv_node_to_blade_id(node);
133                 if (uvhub == b)
134                         return node;
135         }
136         return -1;
137 }
138
139 /*
140  * Determine the apicid of the first cpu on a uvhub.
141  */
142 static int __init uvhub_to_first_apicid(int uvhub)
143 {
144         int cpu;
145
146         for_each_present_cpu(cpu)
147                 if (uvhub == uv_cpu_to_blade_id(cpu))
148                         return per_cpu(x86_cpu_to_apicid, cpu);
149         return -1;
150 }
151
152 /*
153  * Free a software acknowledge hardware resource by clearing its Pending
154  * bit. This will return a reply to the sender.
155  * If the message has timed out, a reply has already been sent by the
156  * hardware but the resource has not been released. In that case our
157  * clear of the Timeout bit (as well) will free the resource. No reply will
158  * be sent (the hardware will only do one reply per message).
159  */
160 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
161                                                 int do_acknowledge)
162 {
163         unsigned long dw;
164         struct bau_pq_entry *msg;
165
166         msg = mdp->msg;
167         if (!msg->canceled && do_acknowledge) {
168                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
169                 write_mmr_sw_ack(dw);
170         }
171         msg->replied_to = 1;
172         msg->swack_vec = 0;
173 }
174
175 /*
176  * Process the receipt of a RETRY message
177  */
178 static void bau_process_retry_msg(struct msg_desc *mdp,
179                                         struct bau_control *bcp)
180 {
181         int i;
182         int cancel_count = 0;
183         unsigned long msg_res;
184         unsigned long mmr = 0;
185         struct bau_pq_entry *msg = mdp->msg;
186         struct bau_pq_entry *msg2;
187         struct ptc_stats *stat = bcp->statp;
188
189         stat->d_retries++;
190         /*
191          * cancel any message from msg+1 to the retry itself
192          */
193         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
194                 if (msg2 > mdp->queue_last)
195                         msg2 = mdp->queue_first;
196                 if (msg2 == msg)
197                         break;
198
199                 /* same conditions for cancellation as do_reset */
200                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
201                     (msg2->swack_vec) && ((msg2->swack_vec &
202                         msg->swack_vec) == 0) &&
203                     (msg2->sending_cpu == msg->sending_cpu) &&
204                     (msg2->msg_type != MSG_NOOP)) {
205                         mmr = read_mmr_sw_ack();
206                         msg_res = msg2->swack_vec;
207                         /*
208                          * This is a message retry; clear the resources held
209                          * by the previous message only if they timed out.
210                          * If it has not timed out we have an unexpected
211                          * situation to report.
212                          */
213                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
214                                 unsigned long mr;
215                                 /*
216                                  * Is the resource timed out?
217                                  * Make everyone ignore the cancelled message.
218                                  */
219                                 msg2->canceled = 1;
220                                 stat->d_canceled++;
221                                 cancel_count++;
222                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
223                                 write_mmr_sw_ack(mr);
224                         }
225                 }
226         }
227         if (!cancel_count)
228                 stat->d_nocanceled++;
229 }
230
231 /*
232  * Do all the things a cpu should do for a TLB shootdown message.
233  * Other cpu's may come here at the same time for this message.
234  */
235 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
236                                                 int do_acknowledge)
237 {
238         short socket_ack_count = 0;
239         short *sp;
240         struct atomic_short *asp;
241         struct ptc_stats *stat = bcp->statp;
242         struct bau_pq_entry *msg = mdp->msg;
243         struct bau_control *smaster = bcp->socket_master;
244
245         /*
246          * This must be a normal message, or retry of a normal message
247          */
248         if (msg->address == TLB_FLUSH_ALL) {
249                 local_flush_tlb();
250                 stat->d_alltlb++;
251         } else {
252                 __flush_tlb_one(msg->address);
253                 stat->d_onetlb++;
254         }
255         stat->d_requestee++;
256
257         /*
258          * One cpu on each uvhub has the additional job on a RETRY
259          * of releasing the resource held by the message that is
260          * being retried.  That message is identified by sending
261          * cpu number.
262          */
263         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
264                 bau_process_retry_msg(mdp, bcp);
265
266         /*
267          * This is a swack message, so we have to reply to it.
268          * Count each responding cpu on the socket. This avoids
269          * pinging the count's cache line back and forth between
270          * the sockets.
271          */
272         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
273         asp = (struct atomic_short *)sp;
274         socket_ack_count = atom_asr(1, asp);
275         if (socket_ack_count == bcp->cpus_in_socket) {
276                 int msg_ack_count;
277                 /*
278                  * Both sockets dump their completed count total into
279                  * the message's count.
280                  */
281                 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
282                 asp = (struct atomic_short *)&msg->acknowledge_count;
283                 msg_ack_count = atom_asr(socket_ack_count, asp);
284
285                 if (msg_ack_count == bcp->cpus_in_uvhub) {
286                         /*
287                          * All cpus in uvhub saw it; reply
288                          * (unless we are in the UV2 workaround)
289                          */
290                         reply_to_message(mdp, bcp, do_acknowledge);
291                 }
292         }
293
294         return;
295 }
296
297 /*
298  * Determine the first cpu on a pnode.
299  */
300 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
301 {
302         int cpu;
303         struct hub_and_pnode *hpp;
304
305         for_each_present_cpu(cpu) {
306                 hpp = &smaster->thp[cpu];
307                 if (pnode == hpp->pnode)
308                         return cpu;
309         }
310         return -1;
311 }
312
313 /*
314  * Last resort when we get a large number of destination timeouts is
315  * to clear resources held by a given cpu.
316  * Do this with IPI so that all messages in the BAU message queue
317  * can be identified by their nonzero swack_vec field.
318  *
319  * This is entered for a single cpu on the uvhub.
320  * The sender want's this uvhub to free a specific message's
321  * swack resources.
322  */
323 static void do_reset(void *ptr)
324 {
325         int i;
326         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
327         struct reset_args *rap = (struct reset_args *)ptr;
328         struct bau_pq_entry *msg;
329         struct ptc_stats *stat = bcp->statp;
330
331         stat->d_resets++;
332         /*
333          * We're looking for the given sender, and
334          * will free its swack resource.
335          * If all cpu's finally responded after the timeout, its
336          * message 'replied_to' was set.
337          */
338         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
339                 unsigned long msg_res;
340                 /* do_reset: same conditions for cancellation as
341                    bau_process_retry_msg() */
342                 if ((msg->replied_to == 0) &&
343                     (msg->canceled == 0) &&
344                     (msg->sending_cpu == rap->sender) &&
345                     (msg->swack_vec) &&
346                     (msg->msg_type != MSG_NOOP)) {
347                         unsigned long mmr;
348                         unsigned long mr;
349                         /*
350                          * make everyone else ignore this message
351                          */
352                         msg->canceled = 1;
353                         /*
354                          * only reset the resource if it is still pending
355                          */
356                         mmr = read_mmr_sw_ack();
357                         msg_res = msg->swack_vec;
358                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
359                         if (mmr & msg_res) {
360                                 stat->d_rcanceled++;
361                                 write_mmr_sw_ack(mr);
362                         }
363                 }
364         }
365         return;
366 }
367
368 /*
369  * Use IPI to get all target uvhubs to release resources held by
370  * a given sending cpu number.
371  */
372 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
373 {
374         int pnode;
375         int apnode;
376         int maskbits;
377         int sender = bcp->cpu;
378         cpumask_t *mask = bcp->uvhub_master->cpumask;
379         struct bau_control *smaster = bcp->socket_master;
380         struct reset_args reset_args;
381
382         reset_args.sender = sender;
383         cpus_clear(*mask);
384         /* find a single cpu for each uvhub in this distribution mask */
385         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
386         /* each bit is a pnode relative to the partition base pnode */
387         for (pnode = 0; pnode < maskbits; pnode++) {
388                 int cpu;
389                 if (!bau_uvhub_isset(pnode, distribution))
390                         continue;
391                 apnode = pnode + bcp->partition_base_pnode;
392                 cpu = pnode_to_first_cpu(apnode, smaster);
393                 cpu_set(cpu, *mask);
394         }
395
396         /* IPI all cpus; preemption is already disabled */
397         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
398         return;
399 }
400
401 static inline unsigned long cycles_2_us(unsigned long long cyc)
402 {
403         unsigned long long ns;
404         unsigned long us;
405         int cpu = smp_processor_id();
406
407         ns =  (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
408         us = ns / 1000;
409         return us;
410 }
411
412 /*
413  * wait for all cpus on this hub to finish their sends and go quiet
414  * leaves uvhub_quiesce set so that no new broadcasts are started by
415  * bau_flush_send_and_wait()
416  */
417 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
418 {
419         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
420 }
421
422 /*
423  * mark this quiet-requestor as done
424  */
425 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
426 {
427         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
428 }
429
430 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
431 {
432         unsigned long descriptor_status;
433
434         descriptor_status = uv_read_local_mmr(mmr_offset);
435         descriptor_status >>= right_shift;
436         descriptor_status &= UV_ACT_STATUS_MASK;
437         return descriptor_status;
438 }
439
440 /*
441  * Wait for completion of a broadcast software ack message
442  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
443  */
444 static int uv1_wait_completion(struct bau_desc *bau_desc,
445                                 unsigned long mmr_offset, int right_shift,
446                                 struct bau_control *bcp, long try)
447 {
448         unsigned long descriptor_status;
449         cycles_t ttm;
450         struct ptc_stats *stat = bcp->statp;
451
452         descriptor_status = uv1_read_status(mmr_offset, right_shift);
453         /* spin on the status MMR, waiting for it to go idle */
454         while ((descriptor_status != DS_IDLE)) {
455                 /*
456                  * Our software ack messages may be blocked because
457                  * there are no swack resources available.  As long
458                  * as none of them has timed out hardware will NACK
459                  * our message and its state will stay IDLE.
460                  */
461                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
462                         stat->s_stimeout++;
463                         return FLUSH_GIVEUP;
464                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
465                         stat->s_dtimeout++;
466                         ttm = get_cycles();
467
468                         /*
469                          * Our retries may be blocked by all destination
470                          * swack resources being consumed, and a timeout
471                          * pending.  In that case hardware returns the
472                          * ERROR that looks like a destination timeout.
473                          */
474                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
475                                 bcp->conseccompletes = 0;
476                                 return FLUSH_RETRY_PLUGGED;
477                         }
478
479                         bcp->conseccompletes = 0;
480                         return FLUSH_RETRY_TIMEOUT;
481                 } else {
482                         /*
483                          * descriptor_status is still BUSY
484                          */
485                         cpu_relax();
486                 }
487                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
488         }
489         bcp->conseccompletes++;
490         return FLUSH_COMPLETE;
491 }
492
493 /*
494  * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
495  */
496 static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc)
497 {
498         unsigned long descriptor_status;
499         unsigned long descriptor_status2;
500
501         descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
502         descriptor_status2 = (read_mmr_uv2_status() >> desc) & 0x1UL;
503         descriptor_status = (descriptor_status << 1) | descriptor_status2;
504         return descriptor_status;
505 }
506
507 /*
508  * Return whether the status of the descriptor that is normally used for this
509  * cpu (the one indexed by its hub-relative cpu number) is busy.
510  * The status of the original 32 descriptors is always reflected in the 64
511  * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
512  * The bit provided by the activation_status_2 register is irrelevant to
513  * the status if it is only being tested for busy or not busy.
514  */
515 int normal_busy(struct bau_control *bcp)
516 {
517         int cpu = bcp->uvhub_cpu;
518         int mmr_offset;
519         int right_shift;
520
521         mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
522         right_shift = cpu * UV_ACT_STATUS_SIZE;
523         return (((((read_lmmr(mmr_offset) >> right_shift) &
524                                 UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
525 }
526
527 /*
528  * Entered when a bau descriptor has gone into a permanent busy wait because
529  * of a hardware bug.
530  * Workaround the bug.
531  */
532 int handle_uv2_busy(struct bau_control *bcp)
533 {
534         int busy_one = bcp->using_desc;
535         int normal = bcp->uvhub_cpu;
536         int selected = -1;
537         int i;
538         unsigned long descriptor_status;
539         unsigned long status;
540         int mmr_offset;
541         struct bau_desc *bau_desc_old;
542         struct bau_desc *bau_desc_new;
543         struct bau_control *hmaster = bcp->uvhub_master;
544         struct ptc_stats *stat = bcp->statp;
545         cycles_t ttm;
546
547         stat->s_uv2_wars++;
548         spin_lock(&hmaster->uvhub_lock);
549         /* try for the original first */
550         if (busy_one != normal) {
551                 if (!normal_busy(bcp))
552                         selected = normal;
553         }
554         if (selected < 0) {
555                 /* can't use the normal, select an alternate */
556                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
557                 descriptor_status = read_lmmr(mmr_offset);
558
559                 /* scan available descriptors 32-63 */
560                 for (i = 0; i < UV_CPUS_PER_AS; i++) {
561                         if ((hmaster->inuse_map & (1 << i)) == 0) {
562                                 status = ((descriptor_status >>
563                                                 (i * UV_ACT_STATUS_SIZE)) &
564                                                 UV_ACT_STATUS_MASK) << 1;
565                                 if (status != UV2H_DESC_BUSY) {
566                                         selected = i + UV_CPUS_PER_AS;
567                                         break;
568                                 }
569                         }
570                 }
571         }
572
573         if (busy_one != normal)
574                 /* mark the busy alternate as not in-use */
575                 hmaster->inuse_map &= ~(1 << (busy_one - UV_CPUS_PER_AS));
576
577         if (selected >= 0) {
578                 /* switch to the selected descriptor */
579                 if (selected != normal) {
580                         /* set the selected alternate as in-use */
581                         hmaster->inuse_map |=
582                                         (1 << (selected - UV_CPUS_PER_AS));
583                         if (selected > stat->s_uv2_wars_hw)
584                                 stat->s_uv2_wars_hw = selected;
585                 }
586                 bau_desc_old = bcp->descriptor_base;
587                 bau_desc_old += (ITEMS_PER_DESC * busy_one);
588                 bcp->using_desc = selected;
589                 bau_desc_new = bcp->descriptor_base;
590                 bau_desc_new += (ITEMS_PER_DESC * selected);
591                 *bau_desc_new = *bau_desc_old;
592         } else {
593                 /*
594                  * All are busy. Wait for the normal one for this cpu to
595                  * free up.
596                  */
597                 stat->s_uv2_war_waits++;
598                 spin_unlock(&hmaster->uvhub_lock);
599                 ttm = get_cycles();
600                 do {
601                         cpu_relax();
602                 } while (normal_busy(bcp));
603                 spin_lock(&hmaster->uvhub_lock);
604                 /* switch to the original descriptor */
605                 bcp->using_desc = normal;
606                 bau_desc_old = bcp->descriptor_base;
607                 bau_desc_old += (ITEMS_PER_DESC * bcp->using_desc);
608                 bcp->using_desc = (ITEMS_PER_DESC * normal);
609                 bau_desc_new = bcp->descriptor_base;
610                 bau_desc_new += (ITEMS_PER_DESC * normal);
611                 *bau_desc_new = *bau_desc_old; /* copy the entire descriptor */
612         }
613         spin_unlock(&hmaster->uvhub_lock);
614         return FLUSH_RETRY_BUSYBUG;
615 }
616
617 static int uv2_wait_completion(struct bau_desc *bau_desc,
618                                 unsigned long mmr_offset, int right_shift,
619                                 struct bau_control *bcp, long try)
620 {
621         unsigned long descriptor_stat;
622         cycles_t ttm;
623         int desc = bcp->using_desc;
624         long busy_reps = 0;
625         struct ptc_stats *stat = bcp->statp;
626
627         descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc);
628
629         /* spin on the status MMR, waiting for it to go idle */
630         while (descriptor_stat != UV2H_DESC_IDLE) {
631                 /*
632                  * Our software ack messages may be blocked because
633                  * there are no swack resources available.  As long
634                  * as none of them has timed out hardware will NACK
635                  * our message and its state will stay IDLE.
636                  */
637                 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
638                     (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
639                         stat->s_stimeout++;
640                         return FLUSH_GIVEUP;
641                 } else if (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) {
642                         stat->s_strongnacks++;
643                         bcp->conseccompletes = 0;
644                         return FLUSH_GIVEUP;
645                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
646                         stat->s_dtimeout++;
647                         bcp->conseccompletes = 0;
648                         return FLUSH_RETRY_TIMEOUT;
649                 } else {
650                         busy_reps++;
651                         if (busy_reps > 1000000) {
652                                 /* not to hammer on the clock */
653                                 busy_reps = 0;
654                                 ttm = get_cycles();
655                                 if ((ttm - bcp->send_message) >
656                                         (bcp->clocks_per_100_usec)) {
657                                         return handle_uv2_busy(bcp);
658                                 }
659                         }
660                         /*
661                          * descriptor_stat is still BUSY
662                          */
663                         cpu_relax();
664                 }
665                 descriptor_stat = uv2_read_status(mmr_offset, right_shift,
666                                                                         desc);
667         }
668         bcp->conseccompletes++;
669         return FLUSH_COMPLETE;
670 }
671
672 /*
673  * There are 2 status registers; each and array[32] of 2 bits. Set up for
674  * which register to read and position in that register based on cpu in
675  * current hub.
676  */
677 static int wait_completion(struct bau_desc *bau_desc,
678                                 struct bau_control *bcp, long try)
679 {
680         int right_shift;
681         unsigned long mmr_offset;
682         int desc = bcp->using_desc;
683
684         if (desc < UV_CPUS_PER_AS) {
685                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
686                 right_shift = desc * UV_ACT_STATUS_SIZE;
687         } else {
688                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
689                 right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
690         }
691
692         if (bcp->uvhub_version == 1)
693                 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
694                                                                 bcp, try);
695         else
696                 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
697                                                                 bcp, try);
698 }
699
700 static inline cycles_t sec_2_cycles(unsigned long sec)
701 {
702         unsigned long ns;
703         cycles_t cyc;
704
705         ns = sec * 1000000000;
706         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
707         return cyc;
708 }
709
710 /*
711  * Our retries are blocked by all destination sw ack resources being
712  * in use, and a timeout is pending. In that case hardware immediately
713  * returns the ERROR that looks like a destination timeout.
714  */
715 static void destination_plugged(struct bau_desc *bau_desc,
716                         struct bau_control *bcp,
717                         struct bau_control *hmaster, struct ptc_stats *stat)
718 {
719         udelay(bcp->plugged_delay);
720         bcp->plugged_tries++;
721
722         if (bcp->plugged_tries >= bcp->plugsb4reset) {
723                 bcp->plugged_tries = 0;
724
725                 quiesce_local_uvhub(hmaster);
726
727                 spin_lock(&hmaster->queue_lock);
728                 reset_with_ipi(&bau_desc->distribution, bcp);
729                 spin_unlock(&hmaster->queue_lock);
730
731                 end_uvhub_quiesce(hmaster);
732
733                 bcp->ipi_attempts++;
734                 stat->s_resets_plug++;
735         }
736 }
737
738 static void destination_timeout(struct bau_desc *bau_desc,
739                         struct bau_control *bcp, struct bau_control *hmaster,
740                         struct ptc_stats *stat)
741 {
742         hmaster->max_concurr = 1;
743         bcp->timeout_tries++;
744         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
745                 bcp->timeout_tries = 0;
746
747                 quiesce_local_uvhub(hmaster);
748
749                 spin_lock(&hmaster->queue_lock);
750                 reset_with_ipi(&bau_desc->distribution, bcp);
751                 spin_unlock(&hmaster->queue_lock);
752
753                 end_uvhub_quiesce(hmaster);
754
755                 bcp->ipi_attempts++;
756                 stat->s_resets_timeout++;
757         }
758 }
759
760 /*
761  * Completions are taking a very long time due to a congested numalink
762  * network.
763  */
764 static void disable_for_congestion(struct bau_control *bcp,
765                                         struct ptc_stats *stat)
766 {
767         /* let only one cpu do this disabling */
768         spin_lock(&disable_lock);
769
770         if (!baudisabled && bcp->period_requests &&
771             ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
772                 int tcpu;
773                 struct bau_control *tbcp;
774                 /* it becomes this cpu's job to turn on the use of the
775                    BAU again */
776                 baudisabled = 1;
777                 bcp->set_bau_off = 1;
778                 bcp->set_bau_on_time = get_cycles();
779                 bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
780                 stat->s_bau_disabled++;
781                 for_each_present_cpu(tcpu) {
782                         tbcp = &per_cpu(bau_control, tcpu);
783                         tbcp->baudisabled = 1;
784                 }
785         }
786
787         spin_unlock(&disable_lock);
788 }
789
790 static void count_max_concurr(int stat, struct bau_control *bcp,
791                                 struct bau_control *hmaster)
792 {
793         bcp->plugged_tries = 0;
794         bcp->timeout_tries = 0;
795         if (stat != FLUSH_COMPLETE)
796                 return;
797         if (bcp->conseccompletes <= bcp->complete_threshold)
798                 return;
799         if (hmaster->max_concurr >= hmaster->max_concurr_const)
800                 return;
801         hmaster->max_concurr++;
802 }
803
804 static void record_send_stats(cycles_t time1, cycles_t time2,
805                 struct bau_control *bcp, struct ptc_stats *stat,
806                 int completion_status, int try)
807 {
808         cycles_t elapsed;
809
810         if (time2 > time1) {
811                 elapsed = time2 - time1;
812                 stat->s_time += elapsed;
813
814                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
815                         bcp->period_requests++;
816                         bcp->period_time += elapsed;
817                         if ((elapsed > congested_cycles) &&
818                             (bcp->period_requests > bcp->cong_reps))
819                                 disable_for_congestion(bcp, stat);
820                 }
821         } else
822                 stat->s_requestor--;
823
824         if (completion_status == FLUSH_COMPLETE && try > 1)
825                 stat->s_retriesok++;
826         else if (completion_status == FLUSH_GIVEUP)
827                 stat->s_giveup++;
828 }
829
830 /*
831  * Because of a uv1 hardware bug only a limited number of concurrent
832  * requests can be made.
833  */
834 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
835 {
836         spinlock_t *lock = &hmaster->uvhub_lock;
837         atomic_t *v;
838
839         v = &hmaster->active_descriptor_count;
840         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
841                 stat->s_throttles++;
842                 do {
843                         cpu_relax();
844                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
845         }
846 }
847
848 /*
849  * Handle the completion status of a message send.
850  */
851 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
852                         struct bau_control *bcp, struct bau_control *hmaster,
853                         struct ptc_stats *stat)
854 {
855         if (completion_status == FLUSH_RETRY_PLUGGED)
856                 destination_plugged(bau_desc, bcp, hmaster, stat);
857         else if (completion_status == FLUSH_RETRY_TIMEOUT)
858                 destination_timeout(bau_desc, bcp, hmaster, stat);
859 }
860
861 /*
862  * Send a broadcast and wait for it to complete.
863  *
864  * The flush_mask contains the cpus the broadcast is to be sent to including
865  * cpus that are on the local uvhub.
866  *
867  * Returns 0 if all flushing represented in the mask was done.
868  * Returns 1 if it gives up entirely and the original cpu mask is to be
869  * returned to the kernel.
870  */
871 int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp)
872 {
873         int seq_number = 0;
874         int completion_stat = 0;
875         int uv1 = 0;
876         long try = 0;
877         unsigned long index;
878         cycles_t time1;
879         cycles_t time2;
880         struct ptc_stats *stat = bcp->statp;
881         struct bau_control *hmaster = bcp->uvhub_master;
882         struct uv1_bau_msg_header *uv1_hdr = NULL;
883         struct uv2_bau_msg_header *uv2_hdr = NULL;
884         struct bau_desc *bau_desc;
885
886         if (bcp->uvhub_version == 1)
887                 uv1_throttle(hmaster, stat);
888
889         while (hmaster->uvhub_quiesce)
890                 cpu_relax();
891
892         time1 = get_cycles();
893         do {
894                 bau_desc = bcp->descriptor_base;
895                 bau_desc += (ITEMS_PER_DESC * bcp->using_desc);
896                 if (bcp->uvhub_version == 1) {
897                         uv1 = 1;
898                         uv1_hdr = &bau_desc->header.uv1_hdr;
899                 } else
900                         uv2_hdr = &bau_desc->header.uv2_hdr;
901                 if ((try == 0) || (completion_stat == FLUSH_RETRY_BUSYBUG)) {
902                         if (uv1)
903                                 uv1_hdr->msg_type = MSG_REGULAR;
904                         else
905                                 uv2_hdr->msg_type = MSG_REGULAR;
906                         seq_number = bcp->message_number++;
907                 } else {
908                         if (uv1)
909                                 uv1_hdr->msg_type = MSG_RETRY;
910                         else
911                                 uv2_hdr->msg_type = MSG_RETRY;
912                         stat->s_retry_messages++;
913                 }
914
915                 if (uv1)
916                         uv1_hdr->sequence = seq_number;
917                 else
918                         uv2_hdr->sequence = seq_number;
919                 index = (1UL << AS_PUSH_SHIFT) | bcp->using_desc;
920                 bcp->send_message = get_cycles();
921
922                 write_mmr_activation(index);
923
924                 try++;
925                 completion_stat = wait_completion(bau_desc, bcp, try);
926                 /* UV2: wait_completion() may change the bcp->using_desc */
927
928                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
929
930                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
931                         bcp->ipi_attempts = 0;
932                         completion_stat = FLUSH_GIVEUP;
933                         break;
934                 }
935                 cpu_relax();
936         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
937                  (completion_stat == FLUSH_RETRY_BUSYBUG) ||
938                  (completion_stat == FLUSH_RETRY_TIMEOUT));
939
940         time2 = get_cycles();
941
942         count_max_concurr(completion_stat, bcp, hmaster);
943
944         while (hmaster->uvhub_quiesce)
945                 cpu_relax();
946
947         atomic_dec(&hmaster->active_descriptor_count);
948
949         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
950
951         if (completion_stat == FLUSH_GIVEUP)
952                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
953                 return 1;
954         return 0;
955 }
956
957 /*
958  * The BAU is disabled. When the disabled time period has expired, the cpu
959  * that disabled it must re-enable it.
960  * Return 0 if it is re-enabled for all cpus.
961  */
962 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
963 {
964         int tcpu;
965         struct bau_control *tbcp;
966
967         if (bcp->set_bau_off) {
968                 if (get_cycles() >= bcp->set_bau_on_time) {
969                         stat->s_bau_reenabled++;
970                         baudisabled = 0;
971                         for_each_present_cpu(tcpu) {
972                                 tbcp = &per_cpu(bau_control, tcpu);
973                                 tbcp->baudisabled = 0;
974                                 tbcp->period_requests = 0;
975                                 tbcp->period_time = 0;
976                         }
977                         return 0;
978                 }
979         }
980         return -1;
981 }
982
983 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
984                                 int remotes, struct bau_desc *bau_desc)
985 {
986         stat->s_requestor++;
987         stat->s_ntargcpu += remotes + locals;
988         stat->s_ntargremotes += remotes;
989         stat->s_ntarglocals += locals;
990
991         /* uvhub statistics */
992         hubs = bau_uvhub_weight(&bau_desc->distribution);
993         if (locals) {
994                 stat->s_ntarglocaluvhub++;
995                 stat->s_ntargremoteuvhub += (hubs - 1);
996         } else
997                 stat->s_ntargremoteuvhub += hubs;
998
999         stat->s_ntarguvhub += hubs;
1000
1001         if (hubs >= 16)
1002                 stat->s_ntarguvhub16++;
1003         else if (hubs >= 8)
1004                 stat->s_ntarguvhub8++;
1005         else if (hubs >= 4)
1006                 stat->s_ntarguvhub4++;
1007         else if (hubs >= 2)
1008                 stat->s_ntarguvhub2++;
1009         else
1010                 stat->s_ntarguvhub1++;
1011 }
1012
1013 /*
1014  * Translate a cpu mask to the uvhub distribution mask in the BAU
1015  * activation descriptor.
1016  */
1017 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1018                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1019 {
1020         int cpu;
1021         int pnode;
1022         int cnt = 0;
1023         struct hub_and_pnode *hpp;
1024
1025         for_each_cpu(cpu, flush_mask) {
1026                 /*
1027                  * The distribution vector is a bit map of pnodes, relative
1028                  * to the partition base pnode (and the partition base nasid
1029                  * in the header).
1030                  * Translate cpu to pnode and hub using a local memory array.
1031                  */
1032                 hpp = &bcp->socket_master->thp[cpu];
1033                 pnode = hpp->pnode - bcp->partition_base_pnode;
1034                 bau_uvhub_set(pnode, &bau_desc->distribution);
1035                 cnt++;
1036                 if (hpp->uvhub == bcp->uvhub)
1037                         (*localsp)++;
1038                 else
1039                         (*remotesp)++;
1040         }
1041         if (!cnt)
1042                 return 1;
1043         return 0;
1044 }
1045
1046 /*
1047  * globally purge translation cache of a virtual address or all TLB's
1048  * @cpumask: mask of all cpu's in which the address is to be removed
1049  * @mm: mm_struct containing virtual address range
1050  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
1051  * @cpu: the current cpu
1052  *
1053  * This is the entry point for initiating any UV global TLB shootdown.
1054  *
1055  * Purges the translation caches of all specified processors of the given
1056  * virtual address, or purges all TLB's on specified processors.
1057  *
1058  * The caller has derived the cpumask from the mm_struct.  This function
1059  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1060  *
1061  * The cpumask is converted into a uvhubmask of the uvhubs containing
1062  * those cpus.
1063  *
1064  * Note that this function should be called with preemption disabled.
1065  *
1066  * Returns NULL if all remote flushing was done.
1067  * Returns pointer to cpumask if some remote flushing remains to be
1068  * done.  The returned pointer is valid till preemption is re-enabled.
1069  */
1070 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1071                                 struct mm_struct *mm, unsigned long va,
1072                                 unsigned int cpu)
1073 {
1074         int locals = 0;
1075         int remotes = 0;
1076         int hubs = 0;
1077         struct bau_desc *bau_desc;
1078         struct cpumask *flush_mask;
1079         struct ptc_stats *stat;
1080         struct bau_control *bcp;
1081
1082         /* kernel was booted 'nobau' */
1083         if (nobau)
1084                 return cpumask;
1085
1086         bcp = &per_cpu(bau_control, cpu);
1087         stat = bcp->statp;
1088
1089         /* bau was disabled due to slow response */
1090         if (bcp->baudisabled) {
1091                 if (check_enable(bcp, stat))
1092                         return cpumask;
1093         }
1094
1095         /*
1096          * Each sending cpu has a per-cpu mask which it fills from the caller's
1097          * cpu mask.  All cpus are converted to uvhubs and copied to the
1098          * activation descriptor.
1099          */
1100         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1101         /* don't actually do a shootdown of the local cpu */
1102         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1103
1104         if (cpu_isset(cpu, *cpumask))
1105                 stat->s_ntargself++;
1106
1107         bau_desc = bcp->descriptor_base;
1108         bau_desc += (ITEMS_PER_DESC * bcp->using_desc);
1109         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1110         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1111                 return NULL;
1112
1113         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1114
1115         bau_desc->payload.address = va;
1116         bau_desc->payload.sending_cpu = cpu;
1117         /*
1118          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1119          * or 1 if it gave up and the original cpumask should be returned.
1120          */
1121         if (!uv_flush_send_and_wait(flush_mask, bcp))
1122                 return NULL;
1123         else
1124                 return cpumask;
1125 }
1126
1127 /*
1128  * Search the message queue for any 'other' message with the same software
1129  * acknowledge resource bit vector.
1130  */
1131 struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1132                         struct bau_control *bcp, unsigned char swack_vec)
1133 {
1134         struct bau_pq_entry *msg_next = msg + 1;
1135
1136         if (msg_next > bcp->queue_last)
1137                 msg_next = bcp->queue_first;
1138         while ((msg_next->swack_vec != 0) && (msg_next != msg)) {
1139                 if (msg_next->swack_vec == swack_vec)
1140                         return msg_next;
1141                 msg_next++;
1142                 if (msg_next > bcp->queue_last)
1143                         msg_next = bcp->queue_first;
1144         }
1145         return NULL;
1146 }
1147
1148 /*
1149  * UV2 needs to work around a bug in which an arriving message has not
1150  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1151  * Such a message must be ignored.
1152  */
1153 void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1154 {
1155         unsigned long mmr_image;
1156         unsigned char swack_vec;
1157         struct bau_pq_entry *msg = mdp->msg;
1158         struct bau_pq_entry *other_msg;
1159
1160         mmr_image = read_mmr_sw_ack();
1161         swack_vec = msg->swack_vec;
1162
1163         if ((swack_vec & mmr_image) == 0) {
1164                 /*
1165                  * This message was assigned a swack resource, but no
1166                  * reserved acknowlegment is pending.
1167                  * The bug has prevented this message from setting the MMR.
1168                  * And no other message has used the same sw_ack resource.
1169                  * Do the requested shootdown but do not reply to the msg.
1170                  * (the 0 means make no acknowledge)
1171                  */
1172                 bau_process_message(mdp, bcp, 0);
1173                 return;
1174         }
1175
1176         /*
1177          * Some message has set the MMR 'pending' bit; it might have been
1178          * another message.  Look for that message.
1179          */
1180         other_msg = find_another_by_swack(msg, bcp, msg->swack_vec);
1181         if (other_msg) {
1182                 /* There is another.  Do not ack the current one. */
1183                 bau_process_message(mdp, bcp, 0);
1184                 /*
1185                  * Let the natural processing of that message acknowledge
1186                  * it. Don't get the processing of sw_ack's out of order.
1187                  */
1188                 return;
1189         }
1190
1191         /*
1192          * There is no other message using this sw_ack, so it is safe to
1193          * acknowledge it.
1194          */
1195         bau_process_message(mdp, bcp, 1);
1196
1197         return;
1198 }
1199
1200 /*
1201  * The BAU message interrupt comes here. (registered by set_intr_gate)
1202  * See entry_64.S
1203  *
1204  * We received a broadcast assist message.
1205  *
1206  * Interrupts are disabled; this interrupt could represent
1207  * the receipt of several messages.
1208  *
1209  * All cores/threads on this hub get this interrupt.
1210  * The last one to see it does the software ack.
1211  * (the resource will not be freed until noninterruptable cpus see this
1212  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1213  */
1214 void uv_bau_message_interrupt(struct pt_regs *regs)
1215 {
1216         int count = 0;
1217         cycles_t time_start;
1218         struct bau_pq_entry *msg;
1219         struct bau_control *bcp;
1220         struct ptc_stats *stat;
1221         struct msg_desc msgdesc;
1222
1223         ack_APIC_irq();
1224         time_start = get_cycles();
1225
1226         bcp = &per_cpu(bau_control, smp_processor_id());
1227         stat = bcp->statp;
1228
1229         msgdesc.queue_first = bcp->queue_first;
1230         msgdesc.queue_last = bcp->queue_last;
1231
1232         msg = bcp->bau_msg_head;
1233         while (msg->swack_vec) {
1234                 count++;
1235
1236                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1237                 msgdesc.msg = msg;
1238                 if (bcp->uvhub_version == 2)
1239                         process_uv2_message(&msgdesc, bcp);
1240                 else
1241                         bau_process_message(&msgdesc, bcp, 1);
1242
1243                 msg++;
1244                 if (msg > msgdesc.queue_last)
1245                         msg = msgdesc.queue_first;
1246                 bcp->bau_msg_head = msg;
1247         }
1248         stat->d_time += (get_cycles() - time_start);
1249         if (!count)
1250                 stat->d_nomsg++;
1251         else if (count > 1)
1252                 stat->d_multmsg++;
1253 }
1254
1255 /*
1256  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1257  * shootdown message timeouts enabled.  The timeout does not cause
1258  * an interrupt, but causes an error message to be returned to
1259  * the sender.
1260  */
1261 static void __init enable_timeouts(void)
1262 {
1263         int uvhub;
1264         int nuvhubs;
1265         int pnode;
1266         unsigned long mmr_image;
1267
1268         nuvhubs = uv_num_possible_blades();
1269
1270         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1271                 if (!uv_blade_nr_possible_cpus(uvhub))
1272                         continue;
1273
1274                 pnode = uv_blade_to_pnode(uvhub);
1275                 mmr_image = read_mmr_misc_control(pnode);
1276                 /*
1277                  * Set the timeout period and then lock it in, in three
1278                  * steps; captures and locks in the period.
1279                  *
1280                  * To program the period, the SOFT_ACK_MODE must be off.
1281                  */
1282                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1283                 write_mmr_misc_control(pnode, mmr_image);
1284                 /*
1285                  * Set the 4-bit period.
1286                  */
1287                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1288                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1289                 write_mmr_misc_control(pnode, mmr_image);
1290                 /*
1291                  * UV1:
1292                  * Subsequent reversals of the timebase bit (3) cause an
1293                  * immediate timeout of one or all INTD resources as
1294                  * indicated in bits 2:0 (7 causes all of them to timeout).
1295                  */
1296                 mmr_image |= (1L << SOFTACK_MSHIFT);
1297                 if (is_uv2_hub()) {
1298                         mmr_image |= (1L << UV2_EXT_SHFT);
1299                 }
1300                 write_mmr_misc_control(pnode, mmr_image);
1301         }
1302 }
1303
1304 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1305 {
1306         if (*offset < num_possible_cpus())
1307                 return offset;
1308         return NULL;
1309 }
1310
1311 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1312 {
1313         (*offset)++;
1314         if (*offset < num_possible_cpus())
1315                 return offset;
1316         return NULL;
1317 }
1318
1319 static void ptc_seq_stop(struct seq_file *file, void *data)
1320 {
1321 }
1322
1323 static inline unsigned long long usec_2_cycles(unsigned long microsec)
1324 {
1325         unsigned long ns;
1326         unsigned long long cyc;
1327
1328         ns = microsec * 1000;
1329         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1330         return cyc;
1331 }
1332
1333 /*
1334  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1335  * 'data' points to the cpu number
1336  * Note: see the descriptions in stat_description[].
1337  */
1338 static int ptc_seq_show(struct seq_file *file, void *data)
1339 {
1340         struct ptc_stats *stat;
1341         int cpu;
1342
1343         cpu = *(loff_t *)data;
1344         if (!cpu) {
1345                 seq_printf(file,
1346                         "# cpu sent stime self locals remotes ncpus localhub ");
1347                 seq_printf(file,
1348                         "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1349                 seq_printf(file,
1350                     "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries rok ");
1351                 seq_printf(file,
1352                         "resetp resett giveup sto bz throt swack recv rtime ");
1353                 seq_printf(file,
1354                         "all one mult none retry canc nocan reset rcan ");
1355                 seq_printf(file,
1356                         "disable enable wars warshw warwaits\n");
1357         }
1358         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1359                 stat = &per_cpu(ptcstats, cpu);
1360                 /* source side statistics */
1361                 seq_printf(file,
1362                         "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1363                            cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1364                            stat->s_ntargself, stat->s_ntarglocals,
1365                            stat->s_ntargremotes, stat->s_ntargcpu,
1366                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1367                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1368                 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1369                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1370                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1371                            stat->s_dtimeout, stat->s_strongnacks);
1372                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1373                            stat->s_retry_messages, stat->s_retriesok,
1374                            stat->s_resets_plug, stat->s_resets_timeout,
1375                            stat->s_giveup, stat->s_stimeout,
1376                            stat->s_busy, stat->s_throttles);
1377
1378                 /* destination side statistics */
1379                 seq_printf(file,
1380                            "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1381                            read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1382                            stat->d_requestee, cycles_2_us(stat->d_time),
1383                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1384                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1385                            stat->d_nocanceled, stat->d_resets,
1386                            stat->d_rcanceled);
1387                 seq_printf(file, "%ld %ld %ld %ld %ld\n",
1388                         stat->s_bau_disabled, stat->s_bau_reenabled,
1389                         stat->s_uv2_wars, stat->s_uv2_wars_hw,
1390                         stat->s_uv2_war_waits);
1391         }
1392         return 0;
1393 }
1394
1395 /*
1396  * Display the tunables thru debugfs
1397  */
1398 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1399                                 size_t count, loff_t *ppos)
1400 {
1401         char *buf;
1402         int ret;
1403
1404         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1405                 "max_concur plugged_delay plugsb4reset",
1406                 "timeoutsb4reset ipi_reset_limit complete_threshold",
1407                 "congested_response_us congested_reps congested_period",
1408                 max_concurr, plugged_delay, plugsb4reset,
1409                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1410                 congested_respns_us, congested_reps, congested_period);
1411
1412         if (!buf)
1413                 return -ENOMEM;
1414
1415         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1416         kfree(buf);
1417         return ret;
1418 }
1419
1420 /*
1421  * handle a write to /proc/sgi_uv/ptc_statistics
1422  * -1: reset the statistics
1423  *  0: display meaning of the statistics
1424  */
1425 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1426                                 size_t count, loff_t *data)
1427 {
1428         int cpu;
1429         int i;
1430         int elements;
1431         long input_arg;
1432         char optstr[64];
1433         struct ptc_stats *stat;
1434
1435         if (count == 0 || count > sizeof(optstr))
1436                 return -EINVAL;
1437         if (copy_from_user(optstr, user, count))
1438                 return -EFAULT;
1439         optstr[count - 1] = '\0';
1440
1441         if (strict_strtol(optstr, 10, &input_arg) < 0) {
1442                 printk(KERN_DEBUG "%s is invalid\n", optstr);
1443                 return -EINVAL;
1444         }
1445
1446         if (input_arg == 0) {
1447                 elements = sizeof(stat_description)/sizeof(*stat_description);
1448                 printk(KERN_DEBUG "# cpu:      cpu number\n");
1449                 printk(KERN_DEBUG "Sender statistics:\n");
1450                 for (i = 0; i < elements; i++)
1451                         printk(KERN_DEBUG "%s\n", stat_description[i]);
1452         } else if (input_arg == -1) {
1453                 for_each_present_cpu(cpu) {
1454                         stat = &per_cpu(ptcstats, cpu);
1455                         memset(stat, 0, sizeof(struct ptc_stats));
1456                 }
1457         }
1458
1459         return count;
1460 }
1461
1462 static int local_atoi(const char *name)
1463 {
1464         int val = 0;
1465
1466         for (;; name++) {
1467                 switch (*name) {
1468                 case '0' ... '9':
1469                         val = 10*val+(*name-'0');
1470                         break;
1471                 default:
1472                         return val;
1473                 }
1474         }
1475 }
1476
1477 /*
1478  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1479  * Zero values reset them to defaults.
1480  */
1481 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1482                                 int count)
1483 {
1484         char *p;
1485         char *q;
1486         int cnt = 0;
1487         int val;
1488         int e = sizeof(tunables) / sizeof(*tunables);
1489
1490         p = instr + strspn(instr, WHITESPACE);
1491         q = p;
1492         for (; *p; p = q + strspn(q, WHITESPACE)) {
1493                 q = p + strcspn(p, WHITESPACE);
1494                 cnt++;
1495                 if (q == p)
1496                         break;
1497         }
1498         if (cnt != e) {
1499                 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1500                 return -EINVAL;
1501         }
1502
1503         p = instr + strspn(instr, WHITESPACE);
1504         q = p;
1505         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1506                 q = p + strcspn(p, WHITESPACE);
1507                 val = local_atoi(p);
1508                 switch (cnt) {
1509                 case 0:
1510                         if (val == 0) {
1511                                 max_concurr = MAX_BAU_CONCURRENT;
1512                                 max_concurr_const = MAX_BAU_CONCURRENT;
1513                                 continue;
1514                         }
1515                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1516                                 printk(KERN_DEBUG
1517                                 "Error: BAU max concurrent %d is invalid\n",
1518                                 val);
1519                                 return -EINVAL;
1520                         }
1521                         max_concurr = val;
1522                         max_concurr_const = val;
1523                         continue;
1524                 default:
1525                         if (val == 0)
1526                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1527                         else
1528                                 *tunables[cnt].tunp = val;
1529                         continue;
1530                 }
1531                 if (q == p)
1532                         break;
1533         }
1534         return 0;
1535 }
1536
1537 /*
1538  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1539  */
1540 static ssize_t tunables_write(struct file *file, const char __user *user,
1541                                 size_t count, loff_t *data)
1542 {
1543         int cpu;
1544         int ret;
1545         char instr[100];
1546         struct bau_control *bcp;
1547
1548         if (count == 0 || count > sizeof(instr)-1)
1549                 return -EINVAL;
1550         if (copy_from_user(instr, user, count))
1551                 return -EFAULT;
1552
1553         instr[count] = '\0';
1554
1555         cpu = get_cpu();
1556         bcp = &per_cpu(bau_control, cpu);
1557         ret = parse_tunables_write(bcp, instr, count);
1558         put_cpu();
1559         if (ret)
1560                 return ret;
1561
1562         for_each_present_cpu(cpu) {
1563                 bcp = &per_cpu(bau_control, cpu);
1564                 bcp->max_concurr =              max_concurr;
1565                 bcp->max_concurr_const =        max_concurr;
1566                 bcp->plugged_delay =            plugged_delay;
1567                 bcp->plugsb4reset =             plugsb4reset;
1568                 bcp->timeoutsb4reset =          timeoutsb4reset;
1569                 bcp->ipi_reset_limit =          ipi_reset_limit;
1570                 bcp->complete_threshold =       complete_threshold;
1571                 bcp->cong_response_us =         congested_respns_us;
1572                 bcp->cong_reps =                congested_reps;
1573                 bcp->cong_period =              congested_period;
1574         }
1575         return count;
1576 }
1577
1578 static const struct seq_operations uv_ptc_seq_ops = {
1579         .start          = ptc_seq_start,
1580         .next           = ptc_seq_next,
1581         .stop           = ptc_seq_stop,
1582         .show           = ptc_seq_show
1583 };
1584
1585 static int ptc_proc_open(struct inode *inode, struct file *file)
1586 {
1587         return seq_open(file, &uv_ptc_seq_ops);
1588 }
1589
1590 static int tunables_open(struct inode *inode, struct file *file)
1591 {
1592         return 0;
1593 }
1594
1595 static const struct file_operations proc_uv_ptc_operations = {
1596         .open           = ptc_proc_open,
1597         .read           = seq_read,
1598         .write          = ptc_proc_write,
1599         .llseek         = seq_lseek,
1600         .release        = seq_release,
1601 };
1602
1603 static const struct file_operations tunables_fops = {
1604         .open           = tunables_open,
1605         .read           = tunables_read,
1606         .write          = tunables_write,
1607         .llseek         = default_llseek,
1608 };
1609
1610 static int __init uv_ptc_init(void)
1611 {
1612         struct proc_dir_entry *proc_uv_ptc;
1613
1614         if (!is_uv_system())
1615                 return 0;
1616
1617         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1618                                   &proc_uv_ptc_operations);
1619         if (!proc_uv_ptc) {
1620                 printk(KERN_ERR "unable to create %s proc entry\n",
1621                        UV_PTC_BASENAME);
1622                 return -EINVAL;
1623         }
1624
1625         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1626         if (!tunables_dir) {
1627                 printk(KERN_ERR "unable to create debugfs directory %s\n",
1628                        UV_BAU_TUNABLES_DIR);
1629                 return -EINVAL;
1630         }
1631         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1632                                         tunables_dir, NULL, &tunables_fops);
1633         if (!tunables_file) {
1634                 printk(KERN_ERR "unable to create debugfs file %s\n",
1635                        UV_BAU_TUNABLES_FILE);
1636                 return -EINVAL;
1637         }
1638         return 0;
1639 }
1640
1641 /*
1642  * Initialize the sending side's sending buffers.
1643  */
1644 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1645 {
1646         int i;
1647         int cpu;
1648         int uv1 = 0;
1649         unsigned long gpa;
1650         unsigned long m;
1651         unsigned long n;
1652         size_t dsize;
1653         struct bau_desc *bau_desc;
1654         struct bau_desc *bd2;
1655         struct uv1_bau_msg_header *uv1_hdr;
1656         struct uv2_bau_msg_header *uv2_hdr;
1657         struct bau_control *bcp;
1658
1659         /*
1660          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1661          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1662          */
1663         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1664         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1665         BUG_ON(!bau_desc);
1666
1667         gpa = uv_gpa(bau_desc);
1668         n = uv_gpa_to_gnode(gpa);
1669         m = uv_gpa_to_offset(gpa);
1670         if (is_uv1_hub())
1671                 uv1 = 1;
1672
1673         /* the 14-bit pnode */
1674         write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1675         /*
1676          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1677          * cpu even though we only use the first one; one descriptor can
1678          * describe a broadcast to 256 uv hubs.
1679          */
1680         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1681                 memset(bd2, 0, sizeof(struct bau_desc));
1682                 if (uv1) {
1683                         uv1_hdr = &bd2->header.uv1_hdr;
1684                         uv1_hdr->swack_flag =   1;
1685                         /*
1686                          * The base_dest_nasid set in the message header
1687                          * is the nasid of the first uvhub in the partition.
1688                          * The bit map will indicate destination pnode numbers
1689                          * relative to that base. They may not be consecutive
1690                          * if nasid striding is being used.
1691                          */
1692                         uv1_hdr->base_dest_nasid =
1693                                                 UV_PNODE_TO_NASID(base_pnode);
1694                         uv1_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1695                         uv1_hdr->command =              UV_NET_ENDPOINT_INTD;
1696                         uv1_hdr->int_both =             1;
1697                         /*
1698                          * all others need to be set to zero:
1699                          *   fairness chaining multilevel count replied_to
1700                          */
1701                 } else {
1702                         uv2_hdr = &bd2->header.uv2_hdr;
1703                         uv2_hdr->swack_flag =   1;
1704                         uv2_hdr->base_dest_nasid =
1705                                                 UV_PNODE_TO_NASID(base_pnode);
1706                         uv2_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1707                         uv2_hdr->command =              UV_NET_ENDPOINT_INTD;
1708                 }
1709         }
1710         for_each_present_cpu(cpu) {
1711                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1712                         continue;
1713                 bcp = &per_cpu(bau_control, cpu);
1714                 bcp->descriptor_base = bau_desc;
1715         }
1716 }
1717
1718 /*
1719  * initialize the destination side's receiving buffers
1720  * entered for each uvhub in the partition
1721  * - node is first node (kernel memory notion) on the uvhub
1722  * - pnode is the uvhub's physical identifier
1723  */
1724 static void pq_init(int node, int pnode)
1725 {
1726         int cpu;
1727         size_t plsize;
1728         char *cp;
1729         void *vp;
1730         unsigned long pn;
1731         unsigned long first;
1732         unsigned long pn_first;
1733         unsigned long last;
1734         struct bau_pq_entry *pqp;
1735         struct bau_control *bcp;
1736
1737         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1738         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1739         pqp = (struct bau_pq_entry *)vp;
1740         BUG_ON(!pqp);
1741
1742         cp = (char *)pqp + 31;
1743         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1744
1745         for_each_present_cpu(cpu) {
1746                 if (pnode != uv_cpu_to_pnode(cpu))
1747                         continue;
1748                 /* for every cpu on this pnode: */
1749                 bcp = &per_cpu(bau_control, cpu);
1750                 bcp->queue_first        = pqp;
1751                 bcp->bau_msg_head       = pqp;
1752                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1753         }
1754         /*
1755          * need the gnode of where the memory was really allocated
1756          */
1757         pn = uv_gpa_to_gnode(uv_gpa(pqp));
1758         first = uv_physnodeaddr(pqp);
1759         pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1760         last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1761         write_mmr_payload_first(pnode, pn_first);
1762         write_mmr_payload_tail(pnode, first);
1763         write_mmr_payload_last(pnode, last);
1764         write_gmmr_sw_ack(pnode, 0xffffUL);
1765
1766         /* in effect, all msg_type's are set to MSG_NOOP */
1767         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1768 }
1769
1770 /*
1771  * Initialization of each UV hub's structures
1772  */
1773 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1774 {
1775         int node;
1776         int pnode;
1777         unsigned long apicid;
1778
1779         node = uvhub_to_first_node(uvhub);
1780         pnode = uv_blade_to_pnode(uvhub);
1781
1782         activation_descriptor_init(node, pnode, base_pnode);
1783
1784         pq_init(node, pnode);
1785         /*
1786          * The below initialization can't be in firmware because the
1787          * messaging IRQ will be determined by the OS.
1788          */
1789         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1790         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1791 }
1792
1793 /*
1794  * We will set BAU_MISC_CONTROL with a timeout period.
1795  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1796  * So the destination timeout period has to be calculated from them.
1797  */
1798 static int calculate_destination_timeout(void)
1799 {
1800         unsigned long mmr_image;
1801         int mult1;
1802         int mult2;
1803         int index;
1804         int base;
1805         int ret;
1806         unsigned long ts_ns;
1807
1808         if (is_uv1_hub()) {
1809                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1810                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1811                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1812                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1813                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1814                 base = timeout_base_ns[index];
1815                 ts_ns = base * mult1 * mult2;
1816                 ret = ts_ns / 1000;
1817         } else {
1818                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1819                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1820                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1821                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1822                         base = 80;
1823                 else
1824                         base = 10;
1825                 mult1 = mmr_image & UV2_ACK_MASK;
1826                 ret = mult1 * base;
1827         }
1828         return ret;
1829 }
1830
1831 static void __init init_per_cpu_tunables(void)
1832 {
1833         int cpu;
1834         struct bau_control *bcp;
1835
1836         for_each_present_cpu(cpu) {
1837                 bcp = &per_cpu(bau_control, cpu);
1838                 bcp->baudisabled                = 0;
1839                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1840                 /* time interval to catch a hardware stay-busy bug */
1841                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1842                 bcp->max_concurr                = max_concurr;
1843                 bcp->max_concurr_const          = max_concurr;
1844                 bcp->plugged_delay              = plugged_delay;
1845                 bcp->plugsb4reset               = plugsb4reset;
1846                 bcp->timeoutsb4reset            = timeoutsb4reset;
1847                 bcp->ipi_reset_limit            = ipi_reset_limit;
1848                 bcp->complete_threshold         = complete_threshold;
1849                 bcp->cong_response_us           = congested_respns_us;
1850                 bcp->cong_reps                  = congested_reps;
1851                 bcp->cong_period                = congested_period;
1852                 bcp->clocks_per_100_usec =      usec_2_cycles(100);
1853                 spin_lock_init(&bcp->queue_lock);
1854                 spin_lock_init(&bcp->uvhub_lock);
1855         }
1856 }
1857
1858 /*
1859  * Scan all cpus to collect blade and socket summaries.
1860  */
1861 static int __init get_cpu_topology(int base_pnode,
1862                                         struct uvhub_desc *uvhub_descs,
1863                                         unsigned char *uvhub_mask)
1864 {
1865         int cpu;
1866         int pnode;
1867         int uvhub;
1868         int socket;
1869         struct bau_control *bcp;
1870         struct uvhub_desc *bdp;
1871         struct socket_desc *sdp;
1872
1873         for_each_present_cpu(cpu) {
1874                 bcp = &per_cpu(bau_control, cpu);
1875
1876                 memset(bcp, 0, sizeof(struct bau_control));
1877
1878                 pnode = uv_cpu_hub_info(cpu)->pnode;
1879                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1880                         printk(KERN_EMERG
1881                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1882                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1883                         return 1;
1884                 }
1885
1886                 bcp->osnode = cpu_to_node(cpu);
1887                 bcp->partition_base_pnode = base_pnode;
1888
1889                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1890                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1891                 bdp = &uvhub_descs[uvhub];
1892
1893                 bdp->num_cpus++;
1894                 bdp->uvhub = uvhub;
1895                 bdp->pnode = pnode;
1896
1897                 /* kludge: 'assuming' one node per socket, and assuming that
1898                    disabling a socket just leaves a gap in node numbers */
1899                 socket = bcp->osnode & 1;
1900                 bdp->socket_mask |= (1 << socket);
1901                 sdp = &bdp->socket[socket];
1902                 sdp->cpu_number[sdp->num_cpus] = cpu;
1903                 sdp->num_cpus++;
1904                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1905                         printk(KERN_EMERG "%d cpus per socket invalid\n",
1906                                 sdp->num_cpus);
1907                         return 1;
1908                 }
1909         }
1910         return 0;
1911 }
1912
1913 /*
1914  * Each socket is to get a local array of pnodes/hubs.
1915  */
1916 static void make_per_cpu_thp(struct bau_control *smaster)
1917 {
1918         int cpu;
1919         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1920
1921         smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1922         memset(smaster->thp, 0, hpsz);
1923         for_each_present_cpu(cpu) {
1924                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1925                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1926         }
1927 }
1928
1929 /*
1930  * Each uvhub is to get a local cpumask.
1931  */
1932 static void make_per_hub_cpumask(struct bau_control *hmaster)
1933 {
1934         int sz = sizeof(cpumask_t);
1935
1936         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
1937 }
1938
1939 /*
1940  * Initialize all the per_cpu information for the cpu's on a given socket,
1941  * given what has been gathered into the socket_desc struct.
1942  * And reports the chosen hub and socket masters back to the caller.
1943  */
1944 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1945                         struct bau_control **smasterp,
1946                         struct bau_control **hmasterp)
1947 {
1948         int i;
1949         int cpu;
1950         struct bau_control *bcp;
1951
1952         for (i = 0; i < sdp->num_cpus; i++) {
1953                 cpu = sdp->cpu_number[i];
1954                 bcp = &per_cpu(bau_control, cpu);
1955                 bcp->cpu = cpu;
1956                 if (i == 0) {
1957                         *smasterp = bcp;
1958                         if (!(*hmasterp))
1959                                 *hmasterp = bcp;
1960                 }
1961                 bcp->cpus_in_uvhub = bdp->num_cpus;
1962                 bcp->cpus_in_socket = sdp->num_cpus;
1963                 bcp->socket_master = *smasterp;
1964                 bcp->uvhub = bdp->uvhub;
1965                 if (is_uv1_hub())
1966                         bcp->uvhub_version = 1;
1967                 else if (is_uv2_hub())
1968                         bcp->uvhub_version = 2;
1969                 else {
1970                         printk(KERN_EMERG "uvhub version not 1 or 2\n");
1971                         return 1;
1972                 }
1973                 bcp->uvhub_master = *hmasterp;
1974                 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
1975                 bcp->using_desc = bcp->uvhub_cpu;
1976                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1977                         printk(KERN_EMERG "%d cpus per uvhub invalid\n",
1978                                 bcp->uvhub_cpu);
1979                         return 1;
1980                 }
1981         }
1982         return 0;
1983 }
1984
1985 /*
1986  * Summarize the blade and socket topology into the per_cpu structures.
1987  */
1988 static int __init summarize_uvhub_sockets(int nuvhubs,
1989                         struct uvhub_desc *uvhub_descs,
1990                         unsigned char *uvhub_mask)
1991 {
1992         int socket;
1993         int uvhub;
1994         unsigned short socket_mask;
1995
1996         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1997                 struct uvhub_desc *bdp;
1998                 struct bau_control *smaster = NULL;
1999                 struct bau_control *hmaster = NULL;
2000
2001                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2002                         continue;
2003
2004                 bdp = &uvhub_descs[uvhub];
2005                 socket_mask = bdp->socket_mask;
2006                 socket = 0;
2007                 while (socket_mask) {
2008                         struct socket_desc *sdp;
2009                         if ((socket_mask & 1)) {
2010                                 sdp = &bdp->socket[socket];
2011                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2012                                         return 1;
2013                                 make_per_cpu_thp(smaster);
2014                         }
2015                         socket++;
2016                         socket_mask = (socket_mask >> 1);
2017                 }
2018                 make_per_hub_cpumask(hmaster);
2019         }
2020         return 0;
2021 }
2022
2023 /*
2024  * initialize the bau_control structure for each cpu
2025  */
2026 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2027 {
2028         unsigned char *uvhub_mask;
2029         void *vp;
2030         struct uvhub_desc *uvhub_descs;
2031
2032         timeout_us = calculate_destination_timeout();
2033
2034         vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2035         uvhub_descs = (struct uvhub_desc *)vp;
2036         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2037         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2038
2039         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2040                 goto fail;
2041
2042         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2043                 goto fail;
2044
2045         kfree(uvhub_descs);
2046         kfree(uvhub_mask);
2047         init_per_cpu_tunables();
2048         return 0;
2049
2050 fail:
2051         kfree(uvhub_descs);
2052         kfree(uvhub_mask);
2053         return 1;
2054 }
2055
2056 /*
2057  * Initialization of BAU-related structures
2058  */
2059 static int __init uv_bau_init(void)
2060 {
2061         int uvhub;
2062         int pnode;
2063         int nuvhubs;
2064         int cur_cpu;
2065         int cpus;
2066         int vector;
2067         cpumask_var_t *mask;
2068
2069         if (!is_uv_system())
2070                 return 0;
2071
2072         if (nobau)
2073                 return 0;
2074
2075         for_each_possible_cpu(cur_cpu) {
2076                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2077                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2078         }
2079
2080         nuvhubs = uv_num_possible_blades();
2081         spin_lock_init(&disable_lock);
2082         congested_cycles = usec_2_cycles(congested_respns_us);
2083
2084         uv_base_pnode = 0x7fffffff;
2085         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2086                 cpus = uv_blade_nr_possible_cpus(uvhub);
2087                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2088                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2089         }
2090
2091         enable_timeouts();
2092
2093         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2094                 nobau = 1;
2095                 return 0;
2096         }
2097
2098         vector = UV_BAU_MESSAGE;
2099         for_each_possible_blade(uvhub)
2100                 if (uv_blade_nr_possible_cpus(uvhub))
2101                         init_uvhub(uvhub, vector, uv_base_pnode);
2102
2103         alloc_intr_gate(vector, uv_bau_message_intr1);
2104
2105         for_each_possible_blade(uvhub) {
2106                 if (uv_blade_nr_possible_cpus(uvhub)) {
2107                         unsigned long val;
2108                         unsigned long mmr;
2109                         pnode = uv_blade_to_pnode(uvhub);
2110                         /* INIT the bau */
2111                         val = 1L << 63;
2112                         write_gmmr_activation(pnode, val);
2113                         mmr = 1; /* should be 1 to broadcast to both sockets */
2114                         if (!is_uv1_hub())
2115                                 write_mmr_data_broadcast(pnode, mmr);
2116                 }
2117         }
2118
2119         return 0;
2120 }
2121 core_initcall(uv_bau_init);
2122 fs_initcall(uv_ptc_init);