]> Pileus Git - ~andy/linux/blob - arch/x86/platform/efi/efi.c
Linux 3.14
[~andy/linux] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *      Skip non-WB memory and ignore empty memory ranges.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 #define EFI_MIN_RESERVE 5120
60
61 #define EFI_DUMMY_GUID \
62         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
63
64 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
65
66 struct efi_memory_map memmap;
67
68 static struct efi efi_phys __initdata;
69 static efi_system_table_t efi_systab __initdata;
70
71 unsigned long x86_efi_facility;
72
73 static __initdata efi_config_table_type_t arch_tables[] = {
74 #ifdef CONFIG_X86_UV
75         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
76 #endif
77         {NULL_GUID, NULL, NULL},
78 };
79
80 u64 efi_setup;          /* efi setup_data physical address */
81
82 /*
83  * Returns 1 if 'facility' is enabled, 0 otherwise.
84  */
85 int efi_enabled(int facility)
86 {
87         return test_bit(facility, &x86_efi_facility) != 0;
88 }
89 EXPORT_SYMBOL(efi_enabled);
90
91 static bool __initdata disable_runtime = false;
92 static int __init setup_noefi(char *arg)
93 {
94         disable_runtime = true;
95         return 0;
96 }
97 early_param("noefi", setup_noefi);
98
99 int add_efi_memmap;
100 EXPORT_SYMBOL(add_efi_memmap);
101
102 static int __init setup_add_efi_memmap(char *arg)
103 {
104         add_efi_memmap = 1;
105         return 0;
106 }
107 early_param("add_efi_memmap", setup_add_efi_memmap);
108
109 static bool efi_no_storage_paranoia;
110
111 static int __init setup_storage_paranoia(char *arg)
112 {
113         efi_no_storage_paranoia = true;
114         return 0;
115 }
116 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
117
118 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
119 {
120         unsigned long flags;
121         efi_status_t status;
122
123         spin_lock_irqsave(&rtc_lock, flags);
124         status = efi_call_virt2(get_time, tm, tc);
125         spin_unlock_irqrestore(&rtc_lock, flags);
126         return status;
127 }
128
129 static efi_status_t virt_efi_set_time(efi_time_t *tm)
130 {
131         unsigned long flags;
132         efi_status_t status;
133
134         spin_lock_irqsave(&rtc_lock, flags);
135         status = efi_call_virt1(set_time, tm);
136         spin_unlock_irqrestore(&rtc_lock, flags);
137         return status;
138 }
139
140 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
141                                              efi_bool_t *pending,
142                                              efi_time_t *tm)
143 {
144         unsigned long flags;
145         efi_status_t status;
146
147         spin_lock_irqsave(&rtc_lock, flags);
148         status = efi_call_virt3(get_wakeup_time,
149                                 enabled, pending, tm);
150         spin_unlock_irqrestore(&rtc_lock, flags);
151         return status;
152 }
153
154 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
155 {
156         unsigned long flags;
157         efi_status_t status;
158
159         spin_lock_irqsave(&rtc_lock, flags);
160         status = efi_call_virt2(set_wakeup_time,
161                                 enabled, tm);
162         spin_unlock_irqrestore(&rtc_lock, flags);
163         return status;
164 }
165
166 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
167                                           efi_guid_t *vendor,
168                                           u32 *attr,
169                                           unsigned long *data_size,
170                                           void *data)
171 {
172         return efi_call_virt5(get_variable,
173                               name, vendor, attr,
174                               data_size, data);
175 }
176
177 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
178                                                efi_char16_t *name,
179                                                efi_guid_t *vendor)
180 {
181         return efi_call_virt3(get_next_variable,
182                               name_size, name, vendor);
183 }
184
185 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
186                                           efi_guid_t *vendor,
187                                           u32 attr,
188                                           unsigned long data_size,
189                                           void *data)
190 {
191         return efi_call_virt5(set_variable,
192                               name, vendor, attr,
193                               data_size, data);
194 }
195
196 static efi_status_t virt_efi_query_variable_info(u32 attr,
197                                                  u64 *storage_space,
198                                                  u64 *remaining_space,
199                                                  u64 *max_variable_size)
200 {
201         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
202                 return EFI_UNSUPPORTED;
203
204         return efi_call_virt4(query_variable_info, attr, storage_space,
205                               remaining_space, max_variable_size);
206 }
207
208 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
209 {
210         return efi_call_virt1(get_next_high_mono_count, count);
211 }
212
213 static void virt_efi_reset_system(int reset_type,
214                                   efi_status_t status,
215                                   unsigned long data_size,
216                                   efi_char16_t *data)
217 {
218         efi_call_virt4(reset_system, reset_type, status,
219                        data_size, data);
220 }
221
222 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
223                                             unsigned long count,
224                                             unsigned long sg_list)
225 {
226         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
227                 return EFI_UNSUPPORTED;
228
229         return efi_call_virt3(update_capsule, capsules, count, sg_list);
230 }
231
232 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
233                                                 unsigned long count,
234                                                 u64 *max_size,
235                                                 int *reset_type)
236 {
237         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
238                 return EFI_UNSUPPORTED;
239
240         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
241                               reset_type);
242 }
243
244 static efi_status_t __init phys_efi_set_virtual_address_map(
245         unsigned long memory_map_size,
246         unsigned long descriptor_size,
247         u32 descriptor_version,
248         efi_memory_desc_t *virtual_map)
249 {
250         efi_status_t status;
251
252         efi_call_phys_prelog();
253         status = efi_call_phys4(efi_phys.set_virtual_address_map,
254                                 memory_map_size, descriptor_size,
255                                 descriptor_version, virtual_map);
256         efi_call_phys_epilog();
257         return status;
258 }
259
260 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
261                                              efi_time_cap_t *tc)
262 {
263         unsigned long flags;
264         efi_status_t status;
265
266         spin_lock_irqsave(&rtc_lock, flags);
267         efi_call_phys_prelog();
268         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
269                                 virt_to_phys(tc));
270         efi_call_phys_epilog();
271         spin_unlock_irqrestore(&rtc_lock, flags);
272         return status;
273 }
274
275 int efi_set_rtc_mmss(const struct timespec *now)
276 {
277         unsigned long nowtime = now->tv_sec;
278         efi_status_t    status;
279         efi_time_t      eft;
280         efi_time_cap_t  cap;
281         struct rtc_time tm;
282
283         status = efi.get_time(&eft, &cap);
284         if (status != EFI_SUCCESS) {
285                 pr_err("Oops: efitime: can't read time!\n");
286                 return -1;
287         }
288
289         rtc_time_to_tm(nowtime, &tm);
290         if (!rtc_valid_tm(&tm)) {
291                 eft.year = tm.tm_year + 1900;
292                 eft.month = tm.tm_mon + 1;
293                 eft.day = tm.tm_mday;
294                 eft.minute = tm.tm_min;
295                 eft.second = tm.tm_sec;
296                 eft.nanosecond = 0;
297         } else {
298                 printk(KERN_ERR
299                        "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
300                        __FUNCTION__, nowtime);
301                 return -1;
302         }
303
304         status = efi.set_time(&eft);
305         if (status != EFI_SUCCESS) {
306                 pr_err("Oops: efitime: can't write time!\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 void efi_get_time(struct timespec *now)
313 {
314         efi_status_t status;
315         efi_time_t eft;
316         efi_time_cap_t cap;
317
318         status = efi.get_time(&eft, &cap);
319         if (status != EFI_SUCCESS)
320                 pr_err("Oops: efitime: can't read time!\n");
321
322         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
323                              eft.minute, eft.second);
324         now->tv_nsec = 0;
325 }
326
327 /*
328  * Tell the kernel about the EFI memory map.  This might include
329  * more than the max 128 entries that can fit in the e820 legacy
330  * (zeropage) memory map.
331  */
332
333 static void __init do_add_efi_memmap(void)
334 {
335         void *p;
336
337         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
338                 efi_memory_desc_t *md = p;
339                 unsigned long long start = md->phys_addr;
340                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
341                 int e820_type;
342
343                 switch (md->type) {
344                 case EFI_LOADER_CODE:
345                 case EFI_LOADER_DATA:
346                 case EFI_BOOT_SERVICES_CODE:
347                 case EFI_BOOT_SERVICES_DATA:
348                 case EFI_CONVENTIONAL_MEMORY:
349                         if (md->attribute & EFI_MEMORY_WB)
350                                 e820_type = E820_RAM;
351                         else
352                                 e820_type = E820_RESERVED;
353                         break;
354                 case EFI_ACPI_RECLAIM_MEMORY:
355                         e820_type = E820_ACPI;
356                         break;
357                 case EFI_ACPI_MEMORY_NVS:
358                         e820_type = E820_NVS;
359                         break;
360                 case EFI_UNUSABLE_MEMORY:
361                         e820_type = E820_UNUSABLE;
362                         break;
363                 default:
364                         /*
365                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
366                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
367                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368                          */
369                         e820_type = E820_RESERVED;
370                         break;
371                 }
372                 e820_add_region(start, size, e820_type);
373         }
374         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
375 }
376
377 int __init efi_memblock_x86_reserve_range(void)
378 {
379         struct efi_info *e = &boot_params.efi_info;
380         unsigned long pmap;
381
382 #ifdef CONFIG_X86_32
383         /* Can't handle data above 4GB at this time */
384         if (e->efi_memmap_hi) {
385                 pr_err("Memory map is above 4GB, disabling EFI.\n");
386                 return -EINVAL;
387         }
388         pmap =  e->efi_memmap;
389 #else
390         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
391 #endif
392         memmap.phys_map         = (void *)pmap;
393         memmap.nr_map           = e->efi_memmap_size /
394                                   e->efi_memdesc_size;
395         memmap.desc_size        = e->efi_memdesc_size;
396         memmap.desc_version     = e->efi_memdesc_version;
397
398         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
399
400         efi.memmap = &memmap;
401
402         return 0;
403 }
404
405 static void __init print_efi_memmap(void)
406 {
407 #ifdef EFI_DEBUG
408         efi_memory_desc_t *md;
409         void *p;
410         int i;
411
412         for (p = memmap.map, i = 0;
413              p < memmap.map_end;
414              p += memmap.desc_size, i++) {
415                 md = p;
416                 pr_info("mem%02u: type=%u, attr=0x%llx, "
417                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
418                         i, md->type, md->attribute, md->phys_addr,
419                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
420                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
421         }
422 #endif  /*  EFI_DEBUG  */
423 }
424
425 void __init efi_reserve_boot_services(void)
426 {
427         void *p;
428
429         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
430                 efi_memory_desc_t *md = p;
431                 u64 start = md->phys_addr;
432                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
433
434                 if (md->type != EFI_BOOT_SERVICES_CODE &&
435                     md->type != EFI_BOOT_SERVICES_DATA)
436                         continue;
437                 /* Only reserve where possible:
438                  * - Not within any already allocated areas
439                  * - Not over any memory area (really needed, if above?)
440                  * - Not within any part of the kernel
441                  * - Not the bios reserved area
442                 */
443                 if ((start + size > __pa_symbol(_text)
444                                 && start <= __pa_symbol(_end)) ||
445                         !e820_all_mapped(start, start+size, E820_RAM) ||
446                         memblock_is_region_reserved(start, size)) {
447                         /* Could not reserve, skip it */
448                         md->num_pages = 0;
449                         memblock_dbg("Could not reserve boot range "
450                                         "[0x%010llx-0x%010llx]\n",
451                                                 start, start+size-1);
452                 } else
453                         memblock_reserve(start, size);
454         }
455 }
456
457 void __init efi_unmap_memmap(void)
458 {
459         clear_bit(EFI_MEMMAP, &x86_efi_facility);
460         if (memmap.map) {
461                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
462                 memmap.map = NULL;
463         }
464 }
465
466 void __init efi_free_boot_services(void)
467 {
468         void *p;
469
470         if (!efi_is_native())
471                 return;
472
473         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
474                 efi_memory_desc_t *md = p;
475                 unsigned long long start = md->phys_addr;
476                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
477
478                 if (md->type != EFI_BOOT_SERVICES_CODE &&
479                     md->type != EFI_BOOT_SERVICES_DATA)
480                         continue;
481
482                 /* Could not reserve boot area */
483                 if (!size)
484                         continue;
485
486                 free_bootmem_late(start, size);
487         }
488
489         efi_unmap_memmap();
490 }
491
492 static int __init efi_systab_init(void *phys)
493 {
494         if (efi_enabled(EFI_64BIT)) {
495                 efi_system_table_64_t *systab64;
496                 struct efi_setup_data *data = NULL;
497                 u64 tmp = 0;
498
499                 if (efi_setup) {
500                         data = early_memremap(efi_setup, sizeof(*data));
501                         if (!data)
502                                 return -ENOMEM;
503                 }
504                 systab64 = early_ioremap((unsigned long)phys,
505                                          sizeof(*systab64));
506                 if (systab64 == NULL) {
507                         pr_err("Couldn't map the system table!\n");
508                         if (data)
509                                 early_iounmap(data, sizeof(*data));
510                         return -ENOMEM;
511                 }
512
513                 efi_systab.hdr = systab64->hdr;
514                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
515                                               systab64->fw_vendor;
516                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
517                 efi_systab.fw_revision = systab64->fw_revision;
518                 efi_systab.con_in_handle = systab64->con_in_handle;
519                 tmp |= systab64->con_in_handle;
520                 efi_systab.con_in = systab64->con_in;
521                 tmp |= systab64->con_in;
522                 efi_systab.con_out_handle = systab64->con_out_handle;
523                 tmp |= systab64->con_out_handle;
524                 efi_systab.con_out = systab64->con_out;
525                 tmp |= systab64->con_out;
526                 efi_systab.stderr_handle = systab64->stderr_handle;
527                 tmp |= systab64->stderr_handle;
528                 efi_systab.stderr = systab64->stderr;
529                 tmp |= systab64->stderr;
530                 efi_systab.runtime = data ?
531                                      (void *)(unsigned long)data->runtime :
532                                      (void *)(unsigned long)systab64->runtime;
533                 tmp |= data ? data->runtime : systab64->runtime;
534                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
535                 tmp |= systab64->boottime;
536                 efi_systab.nr_tables = systab64->nr_tables;
537                 efi_systab.tables = data ? (unsigned long)data->tables :
538                                            systab64->tables;
539                 tmp |= data ? data->tables : systab64->tables;
540
541                 early_iounmap(systab64, sizeof(*systab64));
542                 if (data)
543                         early_iounmap(data, sizeof(*data));
544 #ifdef CONFIG_X86_32
545                 if (tmp >> 32) {
546                         pr_err("EFI data located above 4GB, disabling EFI.\n");
547                         return -EINVAL;
548                 }
549 #endif
550         } else {
551                 efi_system_table_32_t *systab32;
552
553                 systab32 = early_ioremap((unsigned long)phys,
554                                          sizeof(*systab32));
555                 if (systab32 == NULL) {
556                         pr_err("Couldn't map the system table!\n");
557                         return -ENOMEM;
558                 }
559
560                 efi_systab.hdr = systab32->hdr;
561                 efi_systab.fw_vendor = systab32->fw_vendor;
562                 efi_systab.fw_revision = systab32->fw_revision;
563                 efi_systab.con_in_handle = systab32->con_in_handle;
564                 efi_systab.con_in = systab32->con_in;
565                 efi_systab.con_out_handle = systab32->con_out_handle;
566                 efi_systab.con_out = systab32->con_out;
567                 efi_systab.stderr_handle = systab32->stderr_handle;
568                 efi_systab.stderr = systab32->stderr;
569                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
570                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
571                 efi_systab.nr_tables = systab32->nr_tables;
572                 efi_systab.tables = systab32->tables;
573
574                 early_iounmap(systab32, sizeof(*systab32));
575         }
576
577         efi.systab = &efi_systab;
578
579         /*
580          * Verify the EFI Table
581          */
582         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
583                 pr_err("System table signature incorrect!\n");
584                 return -EINVAL;
585         }
586         if ((efi.systab->hdr.revision >> 16) == 0)
587                 pr_err("Warning: System table version "
588                        "%d.%02d, expected 1.00 or greater!\n",
589                        efi.systab->hdr.revision >> 16,
590                        efi.systab->hdr.revision & 0xffff);
591
592         return 0;
593 }
594
595 static int __init efi_runtime_init(void)
596 {
597         efi_runtime_services_t *runtime;
598
599         /*
600          * Check out the runtime services table. We need to map
601          * the runtime services table so that we can grab the physical
602          * address of several of the EFI runtime functions, needed to
603          * set the firmware into virtual mode.
604          */
605         runtime = early_ioremap((unsigned long)efi.systab->runtime,
606                                 sizeof(efi_runtime_services_t));
607         if (!runtime) {
608                 pr_err("Could not map the runtime service table!\n");
609                 return -ENOMEM;
610         }
611         /*
612          * We will only need *early* access to the following
613          * two EFI runtime services before set_virtual_address_map
614          * is invoked.
615          */
616         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
617         efi_phys.set_virtual_address_map =
618                 (efi_set_virtual_address_map_t *)
619                 runtime->set_virtual_address_map;
620         /*
621          * Make efi_get_time can be called before entering
622          * virtual mode.
623          */
624         efi.get_time = phys_efi_get_time;
625         early_iounmap(runtime, sizeof(efi_runtime_services_t));
626
627         return 0;
628 }
629
630 static int __init efi_memmap_init(void)
631 {
632         /* Map the EFI memory map */
633         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
634                                    memmap.nr_map * memmap.desc_size);
635         if (memmap.map == NULL) {
636                 pr_err("Could not map the memory map!\n");
637                 return -ENOMEM;
638         }
639         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
640
641         if (add_efi_memmap)
642                 do_add_efi_memmap();
643
644         return 0;
645 }
646
647 /*
648  * A number of config table entries get remapped to virtual addresses
649  * after entering EFI virtual mode. However, the kexec kernel requires
650  * their physical addresses therefore we pass them via setup_data and
651  * correct those entries to their respective physical addresses here.
652  *
653  * Currently only handles smbios which is necessary for some firmware
654  * implementation.
655  */
656 static int __init efi_reuse_config(u64 tables, int nr_tables)
657 {
658         int i, sz, ret = 0;
659         void *p, *tablep;
660         struct efi_setup_data *data;
661
662         if (!efi_setup)
663                 return 0;
664
665         if (!efi_enabled(EFI_64BIT))
666                 return 0;
667
668         data = early_memremap(efi_setup, sizeof(*data));
669         if (!data) {
670                 ret = -ENOMEM;
671                 goto out;
672         }
673
674         if (!data->smbios)
675                 goto out_memremap;
676
677         sz = sizeof(efi_config_table_64_t);
678
679         p = tablep = early_memremap(tables, nr_tables * sz);
680         if (!p) {
681                 pr_err("Could not map Configuration table!\n");
682                 ret = -ENOMEM;
683                 goto out_memremap;
684         }
685
686         for (i = 0; i < efi.systab->nr_tables; i++) {
687                 efi_guid_t guid;
688
689                 guid = ((efi_config_table_64_t *)p)->guid;
690
691                 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
692                         ((efi_config_table_64_t *)p)->table = data->smbios;
693                 p += sz;
694         }
695         early_iounmap(tablep, nr_tables * sz);
696
697 out_memremap:
698         early_iounmap(data, sizeof(*data));
699 out:
700         return ret;
701 }
702
703 void __init efi_init(void)
704 {
705         efi_char16_t *c16;
706         char vendor[100] = "unknown";
707         int i = 0;
708         void *tmp;
709
710 #ifdef CONFIG_X86_32
711         if (boot_params.efi_info.efi_systab_hi ||
712             boot_params.efi_info.efi_memmap_hi) {
713                 pr_info("Table located above 4GB, disabling EFI.\n");
714                 return;
715         }
716         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
717 #else
718         efi_phys.systab = (efi_system_table_t *)
719                           (boot_params.efi_info.efi_systab |
720                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
721 #endif
722
723         if (efi_systab_init(efi_phys.systab))
724                 return;
725
726         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
727
728         efi.config_table = (unsigned long)efi.systab->tables;
729         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
730         efi.runtime      = (unsigned long)efi.systab->runtime;
731
732         /*
733          * Show what we know for posterity
734          */
735         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
736         if (c16) {
737                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
738                         vendor[i] = *c16++;
739                 vendor[i] = '\0';
740         } else
741                 pr_err("Could not map the firmware vendor!\n");
742         early_iounmap(tmp, 2);
743
744         pr_info("EFI v%u.%.02u by %s\n",
745                 efi.systab->hdr.revision >> 16,
746                 efi.systab->hdr.revision & 0xffff, vendor);
747
748         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
749                 return;
750
751         if (efi_config_init(arch_tables))
752                 return;
753
754         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
755
756         /*
757          * Note: We currently don't support runtime services on an EFI
758          * that doesn't match the kernel 32/64-bit mode.
759          */
760
761         if (!efi_is_native())
762                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
763         else {
764                 if (disable_runtime || efi_runtime_init())
765                         return;
766                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
767         }
768         if (efi_memmap_init())
769                 return;
770
771         set_bit(EFI_MEMMAP, &x86_efi_facility);
772
773         print_efi_memmap();
774 }
775
776 void __init efi_late_init(void)
777 {
778         efi_bgrt_init();
779 }
780
781 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
782 {
783         u64 addr, npages;
784
785         addr = md->virt_addr;
786         npages = md->num_pages;
787
788         memrange_efi_to_native(&addr, &npages);
789
790         if (executable)
791                 set_memory_x(addr, npages);
792         else
793                 set_memory_nx(addr, npages);
794 }
795
796 void __init runtime_code_page_mkexec(void)
797 {
798         efi_memory_desc_t *md;
799         void *p;
800
801         /* Make EFI runtime service code area executable */
802         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
803                 md = p;
804
805                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
806                         continue;
807
808                 efi_set_executable(md, true);
809         }
810 }
811
812 void efi_memory_uc(u64 addr, unsigned long size)
813 {
814         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
815         u64 npages;
816
817         npages = round_up(size, page_shift) / page_shift;
818         memrange_efi_to_native(&addr, &npages);
819         set_memory_uc(addr, npages);
820 }
821
822 void __init old_map_region(efi_memory_desc_t *md)
823 {
824         u64 start_pfn, end_pfn, end;
825         unsigned long size;
826         void *va;
827
828         start_pfn = PFN_DOWN(md->phys_addr);
829         size      = md->num_pages << PAGE_SHIFT;
830         end       = md->phys_addr + size;
831         end_pfn   = PFN_UP(end);
832
833         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
834                 va = __va(md->phys_addr);
835
836                 if (!(md->attribute & EFI_MEMORY_WB))
837                         efi_memory_uc((u64)(unsigned long)va, size);
838         } else
839                 va = efi_ioremap(md->phys_addr, size,
840                                  md->type, md->attribute);
841
842         md->virt_addr = (u64) (unsigned long) va;
843         if (!va)
844                 pr_err("ioremap of 0x%llX failed!\n",
845                        (unsigned long long)md->phys_addr);
846 }
847
848 /* Merge contiguous regions of the same type and attribute */
849 static void __init efi_merge_regions(void)
850 {
851         void *p;
852         efi_memory_desc_t *md, *prev_md = NULL;
853
854         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
855                 u64 prev_size;
856                 md = p;
857
858                 if (!prev_md) {
859                         prev_md = md;
860                         continue;
861                 }
862
863                 if (prev_md->type != md->type ||
864                     prev_md->attribute != md->attribute) {
865                         prev_md = md;
866                         continue;
867                 }
868
869                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
870
871                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
872                         prev_md->num_pages += md->num_pages;
873                         md->type = EFI_RESERVED_TYPE;
874                         md->attribute = 0;
875                         continue;
876                 }
877                 prev_md = md;
878         }
879 }
880
881 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
882 {
883         unsigned long size;
884         u64 end, systab;
885
886         size = md->num_pages << EFI_PAGE_SHIFT;
887         end = md->phys_addr + size;
888         systab = (u64)(unsigned long)efi_phys.systab;
889         if (md->phys_addr <= systab && systab < end) {
890                 systab += md->virt_addr - md->phys_addr;
891                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
892         }
893 }
894
895 static int __init save_runtime_map(void)
896 {
897         efi_memory_desc_t *md;
898         void *tmp, *p, *q = NULL;
899         int count = 0;
900
901         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
902                 md = p;
903
904                 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
905                     (md->type == EFI_BOOT_SERVICES_CODE) ||
906                     (md->type == EFI_BOOT_SERVICES_DATA))
907                         continue;
908                 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
909                 if (!tmp)
910                         goto out;
911                 q = tmp;
912
913                 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
914                 count++;
915         }
916
917         efi_runtime_map_setup(q, count, memmap.desc_size);
918
919         return 0;
920 out:
921         kfree(q);
922         return -ENOMEM;
923 }
924
925 /*
926  * Map efi regions which were passed via setup_data. The virt_addr is a fixed
927  * addr which was used in first kernel of a kexec boot.
928  */
929 static void __init efi_map_regions_fixed(void)
930 {
931         void *p;
932         efi_memory_desc_t *md;
933
934         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
935                 md = p;
936                 efi_map_region_fixed(md); /* FIXME: add error handling */
937                 get_systab_virt_addr(md);
938         }
939
940 }
941
942 /*
943  * Map efi memory ranges for runtime serivce and update new_memmap with virtual
944  * addresses.
945  */
946 static void * __init efi_map_regions(int *count)
947 {
948         efi_memory_desc_t *md;
949         void *p, *tmp, *new_memmap = NULL;
950
951         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
952                 md = p;
953                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
954 #ifdef CONFIG_X86_64
955                         if (md->type != EFI_BOOT_SERVICES_CODE &&
956                             md->type != EFI_BOOT_SERVICES_DATA)
957 #endif
958                                 continue;
959                 }
960
961                 efi_map_region(md);
962                 get_systab_virt_addr(md);
963
964                 tmp = krealloc(new_memmap, (*count + 1) * memmap.desc_size,
965                                GFP_KERNEL);
966                 if (!tmp)
967                         goto out;
968                 new_memmap = tmp;
969                 memcpy(new_memmap + (*count * memmap.desc_size), md,
970                        memmap.desc_size);
971                 (*count)++;
972         }
973
974         return new_memmap;
975 out:
976         kfree(new_memmap);
977         return NULL;
978 }
979
980 /*
981  * This function will switch the EFI runtime services to virtual mode.
982  * Essentially, we look through the EFI memmap and map every region that
983  * has the runtime attribute bit set in its memory descriptor into the
984  * ->trampoline_pgd page table using a top-down VA allocation scheme.
985  *
986  * The old method which used to update that memory descriptor with the
987  * virtual address obtained from ioremap() is still supported when the
988  * kernel is booted with efi=old_map on its command line. Same old
989  * method enabled the runtime services to be called without having to
990  * thunk back into physical mode for every invocation.
991  *
992  * The new method does a pagetable switch in a preemption-safe manner
993  * so that we're in a different address space when calling a runtime
994  * function. For function arguments passing we do copy the PGDs of the
995  * kernel page table into ->trampoline_pgd prior to each call.
996  *
997  * Specially for kexec boot, efi runtime maps in previous kernel should
998  * be passed in via setup_data. In that case runtime ranges will be mapped
999  * to the same virtual addresses as the first kernel.
1000  */
1001 void __init efi_enter_virtual_mode(void)
1002 {
1003         efi_status_t status;
1004         void *new_memmap = NULL;
1005         int err, count = 0;
1006
1007         efi.systab = NULL;
1008
1009         /*
1010          * We don't do virtual mode, since we don't do runtime services, on
1011          * non-native EFI
1012          */
1013         if (!efi_is_native()) {
1014                 efi_unmap_memmap();
1015                 return;
1016         }
1017
1018         if (efi_setup) {
1019                 efi_map_regions_fixed();
1020         } else {
1021                 efi_merge_regions();
1022                 new_memmap = efi_map_regions(&count);
1023                 if (!new_memmap) {
1024                         pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1025                         return;
1026                 }
1027         }
1028
1029         err = save_runtime_map();
1030         if (err)
1031                 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
1032
1033         BUG_ON(!efi.systab);
1034
1035         efi_setup_page_tables();
1036         efi_sync_low_kernel_mappings();
1037
1038         if (!efi_setup) {
1039                 status = phys_efi_set_virtual_address_map(
1040                         memmap.desc_size * count,
1041                         memmap.desc_size,
1042                         memmap.desc_version,
1043                         (efi_memory_desc_t *)__pa(new_memmap));
1044
1045                 if (status != EFI_SUCCESS) {
1046                         pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1047                                  status);
1048                         panic("EFI call to SetVirtualAddressMap() failed!");
1049                 }
1050         }
1051
1052         /*
1053          * Now that EFI is in virtual mode, update the function
1054          * pointers in the runtime service table to the new virtual addresses.
1055          *
1056          * Call EFI services through wrapper functions.
1057          */
1058         efi.runtime_version = efi_systab.hdr.revision;
1059         efi.get_time = virt_efi_get_time;
1060         efi.set_time = virt_efi_set_time;
1061         efi.get_wakeup_time = virt_efi_get_wakeup_time;
1062         efi.set_wakeup_time = virt_efi_set_wakeup_time;
1063         efi.get_variable = virt_efi_get_variable;
1064         efi.get_next_variable = virt_efi_get_next_variable;
1065         efi.set_variable = virt_efi_set_variable;
1066         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
1067         efi.reset_system = virt_efi_reset_system;
1068         efi.set_virtual_address_map = NULL;
1069         efi.query_variable_info = virt_efi_query_variable_info;
1070         efi.update_capsule = virt_efi_update_capsule;
1071         efi.query_capsule_caps = virt_efi_query_capsule_caps;
1072
1073         efi_runtime_mkexec();
1074
1075         kfree(new_memmap);
1076
1077         /* clean DUMMY object */
1078         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1079                          EFI_VARIABLE_NON_VOLATILE |
1080                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1081                          EFI_VARIABLE_RUNTIME_ACCESS,
1082                          0, NULL);
1083 }
1084
1085 /*
1086  * Convenience functions to obtain memory types and attributes
1087  */
1088 u32 efi_mem_type(unsigned long phys_addr)
1089 {
1090         efi_memory_desc_t *md;
1091         void *p;
1092
1093         if (!efi_enabled(EFI_MEMMAP))
1094                 return 0;
1095
1096         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1097                 md = p;
1098                 if ((md->phys_addr <= phys_addr) &&
1099                     (phys_addr < (md->phys_addr +
1100                                   (md->num_pages << EFI_PAGE_SHIFT))))
1101                         return md->type;
1102         }
1103         return 0;
1104 }
1105
1106 u64 efi_mem_attributes(unsigned long phys_addr)
1107 {
1108         efi_memory_desc_t *md;
1109         void *p;
1110
1111         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1112                 md = p;
1113                 if ((md->phys_addr <= phys_addr) &&
1114                     (phys_addr < (md->phys_addr +
1115                                   (md->num_pages << EFI_PAGE_SHIFT))))
1116                         return md->attribute;
1117         }
1118         return 0;
1119 }
1120
1121 /*
1122  * Some firmware has serious problems when using more than 50% of the EFI
1123  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1124  * we never use more than this safe limit.
1125  *
1126  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1127  * store.
1128  */
1129 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1130 {
1131         efi_status_t status;
1132         u64 storage_size, remaining_size, max_size;
1133
1134         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1135                 return 0;
1136
1137         status = efi.query_variable_info(attributes, &storage_size,
1138                                          &remaining_size, &max_size);
1139         if (status != EFI_SUCCESS)
1140                 return status;
1141
1142         /*
1143          * Some firmware implementations refuse to boot if there's insufficient
1144          * space in the variable store. We account for that by refusing the
1145          * write if permitting it would reduce the available space to under
1146          * 5KB. This figure was provided by Samsung, so should be safe.
1147          */
1148         if ((remaining_size - size < EFI_MIN_RESERVE) &&
1149                 !efi_no_storage_paranoia) {
1150
1151                 /*
1152                  * Triggering garbage collection may require that the firmware
1153                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
1154                  * that by attempting to use more space than is available.
1155                  */
1156                 unsigned long dummy_size = remaining_size + 1024;
1157                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1158
1159                 if (!dummy)
1160                         return EFI_OUT_OF_RESOURCES;
1161
1162                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1163                                           EFI_VARIABLE_NON_VOLATILE |
1164                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
1165                                           EFI_VARIABLE_RUNTIME_ACCESS,
1166                                           dummy_size, dummy);
1167
1168                 if (status == EFI_SUCCESS) {
1169                         /*
1170                          * This should have failed, so if it didn't make sure
1171                          * that we delete it...
1172                          */
1173                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1174                                          EFI_VARIABLE_NON_VOLATILE |
1175                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1176                                          EFI_VARIABLE_RUNTIME_ACCESS,
1177                                          0, dummy);
1178                 }
1179
1180                 kfree(dummy);
1181
1182                 /*
1183                  * The runtime code may now have triggered a garbage collection
1184                  * run, so check the variable info again
1185                  */
1186                 status = efi.query_variable_info(attributes, &storage_size,
1187                                                  &remaining_size, &max_size);
1188
1189                 if (status != EFI_SUCCESS)
1190                         return status;
1191
1192                 /*
1193                  * There still isn't enough room, so return an error
1194                  */
1195                 if (remaining_size - size < EFI_MIN_RESERVE)
1196                         return EFI_OUT_OF_RESOURCES;
1197         }
1198
1199         return EFI_SUCCESS;
1200 }
1201 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1202
1203 static int __init parse_efi_cmdline(char *str)
1204 {
1205         if (*str == '=')
1206                 str++;
1207
1208         if (!strncmp(str, "old_map", 7))
1209                 set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1210
1211         return 0;
1212 }
1213 early_param("efi", parse_efi_cmdline);
1214
1215 void __init efi_apply_memmap_quirks(void)
1216 {
1217         /*
1218          * Once setup is done earlier, unmap the EFI memory map on mismatched
1219          * firmware/kernel architectures since there is no support for runtime
1220          * services.
1221          */
1222         if (!efi_is_native()) {
1223                 pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n");
1224                 efi_unmap_memmap();
1225         }
1226
1227         /*
1228          * UV doesn't support the new EFI pagetable mapping yet.
1229          */
1230         if (is_uv_system())
1231                 set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1232 }