]> Pileus Git - ~andy/linux/blob - arch/x86/mm/pageattr.c
Merge branch 'for-next' into for-linus
[~andy/linux] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28  * The current flushing context - we pass it instead of 5 arguments:
29  */
30 struct cpa_data {
31         unsigned long   *vaddr;
32         pgprot_t        mask_set;
33         pgprot_t        mask_clr;
34         int             numpages;
35         int             flags;
36         unsigned long   pfn;
37         unsigned        force_split : 1;
38         int             curpage;
39         struct page     **pages;
40 };
41
42 /*
43  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45  * entries change the page attribute in parallel to some other cpu
46  * splitting a large page entry along with changing the attribute.
47  */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59         unsigned long flags;
60
61         /* Protect against CPA */
62         spin_lock_irqsave(&pgd_lock, flags);
63         direct_pages_count[level] += pages;
64         spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @addr:       virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147
148 static void __cpa_flush_all(void *arg)
149 {
150         unsigned long cache = (unsigned long)arg;
151
152         /*
153          * Flush all to work around Errata in early athlons regarding
154          * large page flushing.
155          */
156         __flush_tlb_all();
157
158         if (cache && boot_cpu_data.x86 >= 4)
159                 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164         BUG_ON(irqs_disabled());
165
166         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171         /*
172          * We could optimize that further and do individual per page
173          * tlb invalidates for a low number of pages. Caveat: we must
174          * flush the high aliases on 64bit as well.
175          */
176         __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181         unsigned int i, level;
182         unsigned long addr;
183
184         BUG_ON(irqs_disabled());
185         WARN_ON(PAGE_ALIGN(start) != start);
186
187         on_each_cpu(__cpa_flush_range, NULL, 1);
188
189         if (!cache)
190                 return;
191
192         /*
193          * We only need to flush on one CPU,
194          * clflush is a MESI-coherent instruction that
195          * will cause all other CPUs to flush the same
196          * cachelines:
197          */
198         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199                 pte_t *pte = lookup_address(addr, &level);
200
201                 /*
202                  * Only flush present addresses:
203                  */
204                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205                         clflush_cache_range((void *) addr, PAGE_SIZE);
206         }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210                             int in_flags, struct page **pages)
211 {
212         unsigned int i, level;
213         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215         BUG_ON(irqs_disabled());
216
217         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219         if (!cache || do_wbinvd)
220                 return;
221
222         /*
223          * We only need to flush on one CPU,
224          * clflush is a MESI-coherent instruction that
225          * will cause all other CPUs to flush the same
226          * cachelines:
227          */
228         for (i = 0; i < numpages; i++) {
229                 unsigned long addr;
230                 pte_t *pte;
231
232                 if (in_flags & CPA_PAGES_ARRAY)
233                         addr = (unsigned long)page_address(pages[i]);
234                 else
235                         addr = start[i];
236
237                 pte = lookup_address(addr, &level);
238
239                 /*
240                  * Only flush present addresses:
241                  */
242                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243                         clflush_cache_range((void *)addr, PAGE_SIZE);
244         }
245 }
246
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254                                    unsigned long pfn)
255 {
256         pgprot_t forbidden = __pgprot(0);
257
258         /*
259          * The BIOS area between 640k and 1Mb needs to be executable for
260          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261          */
262         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263                 pgprot_val(forbidden) |= _PAGE_NX;
264
265         /*
266          * The kernel text needs to be executable for obvious reasons
267          * Does not cover __inittext since that is gone later on. On
268          * 64bit we do not enforce !NX on the low mapping
269          */
270         if (within(address, (unsigned long)_text, (unsigned long)_etext))
271                 pgprot_val(forbidden) |= _PAGE_NX;
272
273         /*
274          * The .rodata section needs to be read-only. Using the pfn
275          * catches all aliases.
276          */
277         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
278                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
279                 pgprot_val(forbidden) |= _PAGE_RW;
280
281         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
282
283         return prot;
284 }
285
286 /*
287  * Lookup the page table entry for a virtual address. Return a pointer
288  * to the entry and the level of the mapping.
289  *
290  * Note: We return pud and pmd either when the entry is marked large
291  * or when the present bit is not set. Otherwise we would return a
292  * pointer to a nonexisting mapping.
293  */
294 pte_t *lookup_address(unsigned long address, unsigned int *level)
295 {
296         pgd_t *pgd = pgd_offset_k(address);
297         pud_t *pud;
298         pmd_t *pmd;
299
300         *level = PG_LEVEL_NONE;
301
302         if (pgd_none(*pgd))
303                 return NULL;
304
305         pud = pud_offset(pgd, address);
306         if (pud_none(*pud))
307                 return NULL;
308
309         *level = PG_LEVEL_1G;
310         if (pud_large(*pud) || !pud_present(*pud))
311                 return (pte_t *)pud;
312
313         pmd = pmd_offset(pud, address);
314         if (pmd_none(*pmd))
315                 return NULL;
316
317         *level = PG_LEVEL_2M;
318         if (pmd_large(*pmd) || !pmd_present(*pmd))
319                 return (pte_t *)pmd;
320
321         *level = PG_LEVEL_4K;
322
323         return pte_offset_kernel(pmd, address);
324 }
325 EXPORT_SYMBOL_GPL(lookup_address);
326
327 /*
328  * Set the new pmd in all the pgds we know about:
329  */
330 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
331 {
332         /* change init_mm */
333         set_pte_atomic(kpte, pte);
334 #ifdef CONFIG_X86_32
335         if (!SHARED_KERNEL_PMD) {
336                 struct page *page;
337
338                 list_for_each_entry(page, &pgd_list, lru) {
339                         pgd_t *pgd;
340                         pud_t *pud;
341                         pmd_t *pmd;
342
343                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
344                         pud = pud_offset(pgd, address);
345                         pmd = pmd_offset(pud, address);
346                         set_pte_atomic((pte_t *)pmd, pte);
347                 }
348         }
349 #endif
350 }
351
352 static int
353 try_preserve_large_page(pte_t *kpte, unsigned long address,
354                         struct cpa_data *cpa)
355 {
356         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
357         pte_t new_pte, old_pte, *tmp;
358         pgprot_t old_prot, new_prot;
359         int i, do_split = 1;
360         unsigned int level;
361
362         if (cpa->force_split)
363                 return 1;
364
365         spin_lock_irqsave(&pgd_lock, flags);
366         /*
367          * Check for races, another CPU might have split this page
368          * up already:
369          */
370         tmp = lookup_address(address, &level);
371         if (tmp != kpte)
372                 goto out_unlock;
373
374         switch (level) {
375         case PG_LEVEL_2M:
376                 psize = PMD_PAGE_SIZE;
377                 pmask = PMD_PAGE_MASK;
378                 break;
379 #ifdef CONFIG_X86_64
380         case PG_LEVEL_1G:
381                 psize = PUD_PAGE_SIZE;
382                 pmask = PUD_PAGE_MASK;
383                 break;
384 #endif
385         default:
386                 do_split = -EINVAL;
387                 goto out_unlock;
388         }
389
390         /*
391          * Calculate the number of pages, which fit into this large
392          * page starting at address:
393          */
394         nextpage_addr = (address + psize) & pmask;
395         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
396         if (numpages < cpa->numpages)
397                 cpa->numpages = numpages;
398
399         /*
400          * We are safe now. Check whether the new pgprot is the same:
401          */
402         old_pte = *kpte;
403         old_prot = new_prot = pte_pgprot(old_pte);
404
405         pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
406         pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
407
408         /*
409          * old_pte points to the large page base address. So we need
410          * to add the offset of the virtual address:
411          */
412         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
413         cpa->pfn = pfn;
414
415         new_prot = static_protections(new_prot, address, pfn);
416
417         /*
418          * We need to check the full range, whether
419          * static_protection() requires a different pgprot for one of
420          * the pages in the range we try to preserve:
421          */
422         addr = address + PAGE_SIZE;
423         pfn++;
424         for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
425                 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
426
427                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
428                         goto out_unlock;
429         }
430
431         /*
432          * If there are no changes, return. maxpages has been updated
433          * above:
434          */
435         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
436                 do_split = 0;
437                 goto out_unlock;
438         }
439
440         /*
441          * We need to change the attributes. Check, whether we can
442          * change the large page in one go. We request a split, when
443          * the address is not aligned and the number of pages is
444          * smaller than the number of pages in the large page. Note
445          * that we limited the number of possible pages already to
446          * the number of pages in the large page.
447          */
448         if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
449                 /*
450                  * The address is aligned and the number of pages
451                  * covers the full page.
452                  */
453                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
454                 __set_pmd_pte(kpte, address, new_pte);
455                 cpa->flags |= CPA_FLUSHTLB;
456                 do_split = 0;
457         }
458
459 out_unlock:
460         spin_unlock_irqrestore(&pgd_lock, flags);
461
462         return do_split;
463 }
464
465 static int split_large_page(pte_t *kpte, unsigned long address)
466 {
467         unsigned long flags, pfn, pfninc = 1;
468         unsigned int i, level;
469         pte_t *pbase, *tmp;
470         pgprot_t ref_prot;
471         struct page *base;
472
473         if (!debug_pagealloc)
474                 spin_unlock(&cpa_lock);
475         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
476         if (!debug_pagealloc)
477                 spin_lock(&cpa_lock);
478         if (!base)
479                 return -ENOMEM;
480
481         spin_lock_irqsave(&pgd_lock, flags);
482         /*
483          * Check for races, another CPU might have split this page
484          * up for us already:
485          */
486         tmp = lookup_address(address, &level);
487         if (tmp != kpte)
488                 goto out_unlock;
489
490         pbase = (pte_t *)page_address(base);
491         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
492         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
493         /*
494          * If we ever want to utilize the PAT bit, we need to
495          * update this function to make sure it's converted from
496          * bit 12 to bit 7 when we cross from the 2MB level to
497          * the 4K level:
498          */
499         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
500
501 #ifdef CONFIG_X86_64
502         if (level == PG_LEVEL_1G) {
503                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
504                 pgprot_val(ref_prot) |= _PAGE_PSE;
505         }
506 #endif
507
508         /*
509          * Get the target pfn from the original entry:
510          */
511         pfn = pte_pfn(*kpte);
512         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
513                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
514
515         if (address >= (unsigned long)__va(0) &&
516                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
517                 split_page_count(level);
518
519 #ifdef CONFIG_X86_64
520         if (address >= (unsigned long)__va(1UL<<32) &&
521                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
522                 split_page_count(level);
523 #endif
524
525         /*
526          * Install the new, split up pagetable.
527          *
528          * We use the standard kernel pagetable protections for the new
529          * pagetable protections, the actual ptes set above control the
530          * primary protection behavior:
531          */
532         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
533
534         /*
535          * Intel Atom errata AAH41 workaround.
536          *
537          * The real fix should be in hw or in a microcode update, but
538          * we also probabilistically try to reduce the window of having
539          * a large TLB mixed with 4K TLBs while instruction fetches are
540          * going on.
541          */
542         __flush_tlb_all();
543
544         base = NULL;
545
546 out_unlock:
547         /*
548          * If we dropped out via the lookup_address check under
549          * pgd_lock then stick the page back into the pool:
550          */
551         if (base)
552                 __free_page(base);
553         spin_unlock_irqrestore(&pgd_lock, flags);
554
555         return 0;
556 }
557
558 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
559                                int primary)
560 {
561         /*
562          * Ignore all non primary paths.
563          */
564         if (!primary)
565                 return 0;
566
567         /*
568          * Ignore the NULL PTE for kernel identity mapping, as it is expected
569          * to have holes.
570          * Also set numpages to '1' indicating that we processed cpa req for
571          * one virtual address page and its pfn. TBD: numpages can be set based
572          * on the initial value and the level returned by lookup_address().
573          */
574         if (within(vaddr, PAGE_OFFSET,
575                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
576                 cpa->numpages = 1;
577                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
578                 return 0;
579         } else {
580                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
581                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
582                         *cpa->vaddr);
583
584                 return -EFAULT;
585         }
586 }
587
588 static int __change_page_attr(struct cpa_data *cpa, int primary)
589 {
590         unsigned long address;
591         int do_split, err;
592         unsigned int level;
593         pte_t *kpte, old_pte;
594
595         if (cpa->flags & CPA_PAGES_ARRAY) {
596                 struct page *page = cpa->pages[cpa->curpage];
597                 if (unlikely(PageHighMem(page)))
598                         return 0;
599                 address = (unsigned long)page_address(page);
600         } else if (cpa->flags & CPA_ARRAY)
601                 address = cpa->vaddr[cpa->curpage];
602         else
603                 address = *cpa->vaddr;
604 repeat:
605         kpte = lookup_address(address, &level);
606         if (!kpte)
607                 return __cpa_process_fault(cpa, address, primary);
608
609         old_pte = *kpte;
610         if (!pte_val(old_pte))
611                 return __cpa_process_fault(cpa, address, primary);
612
613         if (level == PG_LEVEL_4K) {
614                 pte_t new_pte;
615                 pgprot_t new_prot = pte_pgprot(old_pte);
616                 unsigned long pfn = pte_pfn(old_pte);
617
618                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
619                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
620
621                 new_prot = static_protections(new_prot, address, pfn);
622
623                 /*
624                  * We need to keep the pfn from the existing PTE,
625                  * after all we're only going to change it's attributes
626                  * not the memory it points to
627                  */
628                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
629                 cpa->pfn = pfn;
630                 /*
631                  * Do we really change anything ?
632                  */
633                 if (pte_val(old_pte) != pte_val(new_pte)) {
634                         set_pte_atomic(kpte, new_pte);
635                         cpa->flags |= CPA_FLUSHTLB;
636                 }
637                 cpa->numpages = 1;
638                 return 0;
639         }
640
641         /*
642          * Check, whether we can keep the large page intact
643          * and just change the pte:
644          */
645         do_split = try_preserve_large_page(kpte, address, cpa);
646         /*
647          * When the range fits into the existing large page,
648          * return. cp->numpages and cpa->tlbflush have been updated in
649          * try_large_page:
650          */
651         if (do_split <= 0)
652                 return do_split;
653
654         /*
655          * We have to split the large page:
656          */
657         err = split_large_page(kpte, address);
658         if (!err) {
659                 /*
660                  * Do a global flush tlb after splitting the large page
661                  * and before we do the actual change page attribute in the PTE.
662                  *
663                  * With out this, we violate the TLB application note, that says
664                  * "The TLBs may contain both ordinary and large-page
665                  *  translations for a 4-KByte range of linear addresses. This
666                  *  may occur if software modifies the paging structures so that
667                  *  the page size used for the address range changes. If the two
668                  *  translations differ with respect to page frame or attributes
669                  *  (e.g., permissions), processor behavior is undefined and may
670                  *  be implementation-specific."
671                  *
672                  * We do this global tlb flush inside the cpa_lock, so that we
673                  * don't allow any other cpu, with stale tlb entries change the
674                  * page attribute in parallel, that also falls into the
675                  * just split large page entry.
676                  */
677                 flush_tlb_all();
678                 goto repeat;
679         }
680
681         return err;
682 }
683
684 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
685
686 static int cpa_process_alias(struct cpa_data *cpa)
687 {
688         struct cpa_data alias_cpa;
689         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
690         unsigned long vaddr;
691         int ret;
692
693         if (cpa->pfn >= max_pfn_mapped)
694                 return 0;
695
696 #ifdef CONFIG_X86_64
697         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
698                 return 0;
699 #endif
700         /*
701          * No need to redo, when the primary call touched the direct
702          * mapping already:
703          */
704         if (cpa->flags & CPA_PAGES_ARRAY) {
705                 struct page *page = cpa->pages[cpa->curpage];
706                 if (unlikely(PageHighMem(page)))
707                         return 0;
708                 vaddr = (unsigned long)page_address(page);
709         } else if (cpa->flags & CPA_ARRAY)
710                 vaddr = cpa->vaddr[cpa->curpage];
711         else
712                 vaddr = *cpa->vaddr;
713
714         if (!(within(vaddr, PAGE_OFFSET,
715                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
716
717                 alias_cpa = *cpa;
718                 alias_cpa.vaddr = &laddr;
719                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
720
721                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
722                 if (ret)
723                         return ret;
724         }
725
726 #ifdef CONFIG_X86_64
727         /*
728          * If the primary call didn't touch the high mapping already
729          * and the physical address is inside the kernel map, we need
730          * to touch the high mapped kernel as well:
731          */
732         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
733             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
734                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
735                                                __START_KERNEL_map - phys_base;
736                 alias_cpa = *cpa;
737                 alias_cpa.vaddr = &temp_cpa_vaddr;
738                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
739
740                 /*
741                  * The high mapping range is imprecise, so ignore the
742                  * return value.
743                  */
744                 __change_page_attr_set_clr(&alias_cpa, 0);
745         }
746 #endif
747
748         return 0;
749 }
750
751 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
752 {
753         int ret, numpages = cpa->numpages;
754
755         while (numpages) {
756                 /*
757                  * Store the remaining nr of pages for the large page
758                  * preservation check.
759                  */
760                 cpa->numpages = numpages;
761                 /* for array changes, we can't use large page */
762                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
763                         cpa->numpages = 1;
764
765                 if (!debug_pagealloc)
766                         spin_lock(&cpa_lock);
767                 ret = __change_page_attr(cpa, checkalias);
768                 if (!debug_pagealloc)
769                         spin_unlock(&cpa_lock);
770                 if (ret)
771                         return ret;
772
773                 if (checkalias) {
774                         ret = cpa_process_alias(cpa);
775                         if (ret)
776                                 return ret;
777                 }
778
779                 /*
780                  * Adjust the number of pages with the result of the
781                  * CPA operation. Either a large page has been
782                  * preserved or a single page update happened.
783                  */
784                 BUG_ON(cpa->numpages > numpages);
785                 numpages -= cpa->numpages;
786                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
787                         cpa->curpage++;
788                 else
789                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
790
791         }
792         return 0;
793 }
794
795 static inline int cache_attr(pgprot_t attr)
796 {
797         return pgprot_val(attr) &
798                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
799 }
800
801 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
802                                     pgprot_t mask_set, pgprot_t mask_clr,
803                                     int force_split, int in_flag,
804                                     struct page **pages)
805 {
806         struct cpa_data cpa;
807         int ret, cache, checkalias;
808
809         /*
810          * Check, if we are requested to change a not supported
811          * feature:
812          */
813         mask_set = canon_pgprot(mask_set);
814         mask_clr = canon_pgprot(mask_clr);
815         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
816                 return 0;
817
818         /* Ensure we are PAGE_SIZE aligned */
819         if (in_flag & CPA_ARRAY) {
820                 int i;
821                 for (i = 0; i < numpages; i++) {
822                         if (addr[i] & ~PAGE_MASK) {
823                                 addr[i] &= PAGE_MASK;
824                                 WARN_ON_ONCE(1);
825                         }
826                 }
827         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
828                 /*
829                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
830                  * No need to cehck in that case
831                  */
832                 if (*addr & ~PAGE_MASK) {
833                         *addr &= PAGE_MASK;
834                         /*
835                          * People should not be passing in unaligned addresses:
836                          */
837                         WARN_ON_ONCE(1);
838                 }
839         }
840
841         /* Must avoid aliasing mappings in the highmem code */
842         kmap_flush_unused();
843
844         vm_unmap_aliases();
845
846         cpa.vaddr = addr;
847         cpa.pages = pages;
848         cpa.numpages = numpages;
849         cpa.mask_set = mask_set;
850         cpa.mask_clr = mask_clr;
851         cpa.flags = 0;
852         cpa.curpage = 0;
853         cpa.force_split = force_split;
854
855         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
856                 cpa.flags |= in_flag;
857
858         /* No alias checking for _NX bit modifications */
859         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
860
861         ret = __change_page_attr_set_clr(&cpa, checkalias);
862
863         /*
864          * Check whether we really changed something:
865          */
866         if (!(cpa.flags & CPA_FLUSHTLB))
867                 goto out;
868
869         /*
870          * No need to flush, when we did not set any of the caching
871          * attributes:
872          */
873         cache = cache_attr(mask_set);
874
875         /*
876          * On success we use clflush, when the CPU supports it to
877          * avoid the wbindv. If the CPU does not support it and in the
878          * error case we fall back to cpa_flush_all (which uses
879          * wbindv):
880          */
881         if (!ret && cpu_has_clflush) {
882                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
883                         cpa_flush_array(addr, numpages, cache,
884                                         cpa.flags, pages);
885                 } else
886                         cpa_flush_range(*addr, numpages, cache);
887         } else
888                 cpa_flush_all(cache);
889
890 out:
891         return ret;
892 }
893
894 static inline int change_page_attr_set(unsigned long *addr, int numpages,
895                                        pgprot_t mask, int array)
896 {
897         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
898                 (array ? CPA_ARRAY : 0), NULL);
899 }
900
901 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
902                                          pgprot_t mask, int array)
903 {
904         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
905                 (array ? CPA_ARRAY : 0), NULL);
906 }
907
908 static inline int cpa_set_pages_array(struct page **pages, int numpages,
909                                        pgprot_t mask)
910 {
911         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
912                 CPA_PAGES_ARRAY, pages);
913 }
914
915 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
916                                          pgprot_t mask)
917 {
918         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
919                 CPA_PAGES_ARRAY, pages);
920 }
921
922 int _set_memory_uc(unsigned long addr, int numpages)
923 {
924         /*
925          * for now UC MINUS. see comments in ioremap_nocache()
926          */
927         return change_page_attr_set(&addr, numpages,
928                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
929 }
930
931 int set_memory_uc(unsigned long addr, int numpages)
932 {
933         int ret;
934
935         /*
936          * for now UC MINUS. see comments in ioremap_nocache()
937          */
938         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
939                             _PAGE_CACHE_UC_MINUS, NULL);
940         if (ret)
941                 goto out_err;
942
943         ret = _set_memory_uc(addr, numpages);
944         if (ret)
945                 goto out_free;
946
947         return 0;
948
949 out_free:
950         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
951 out_err:
952         return ret;
953 }
954 EXPORT_SYMBOL(set_memory_uc);
955
956 int set_memory_array_uc(unsigned long *addr, int addrinarray)
957 {
958         int i, j;
959         int ret;
960
961         /*
962          * for now UC MINUS. see comments in ioremap_nocache()
963          */
964         for (i = 0; i < addrinarray; i++) {
965                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
966                                         _PAGE_CACHE_UC_MINUS, NULL);
967                 if (ret)
968                         goto out_free;
969         }
970
971         ret = change_page_attr_set(addr, addrinarray,
972                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
973         if (ret)
974                 goto out_free;
975
976         return 0;
977
978 out_free:
979         for (j = 0; j < i; j++)
980                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
981
982         return ret;
983 }
984 EXPORT_SYMBOL(set_memory_array_uc);
985
986 int _set_memory_wc(unsigned long addr, int numpages)
987 {
988         int ret;
989         unsigned long addr_copy = addr;
990
991         ret = change_page_attr_set(&addr, numpages,
992                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
993         if (!ret) {
994                 ret = change_page_attr_set_clr(&addr_copy, numpages,
995                                                __pgprot(_PAGE_CACHE_WC),
996                                                __pgprot(_PAGE_CACHE_MASK),
997                                                0, 0, NULL);
998         }
999         return ret;
1000 }
1001
1002 int set_memory_wc(unsigned long addr, int numpages)
1003 {
1004         int ret;
1005
1006         if (!pat_enabled)
1007                 return set_memory_uc(addr, numpages);
1008
1009         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1010                 _PAGE_CACHE_WC, NULL);
1011         if (ret)
1012                 goto out_err;
1013
1014         ret = _set_memory_wc(addr, numpages);
1015         if (ret)
1016                 goto out_free;
1017
1018         return 0;
1019
1020 out_free:
1021         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1022 out_err:
1023         return ret;
1024 }
1025 EXPORT_SYMBOL(set_memory_wc);
1026
1027 int _set_memory_wb(unsigned long addr, int numpages)
1028 {
1029         return change_page_attr_clear(&addr, numpages,
1030                                       __pgprot(_PAGE_CACHE_MASK), 0);
1031 }
1032
1033 int set_memory_wb(unsigned long addr, int numpages)
1034 {
1035         int ret;
1036
1037         ret = _set_memory_wb(addr, numpages);
1038         if (ret)
1039                 return ret;
1040
1041         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1042         return 0;
1043 }
1044 EXPORT_SYMBOL(set_memory_wb);
1045
1046 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1047 {
1048         int i;
1049         int ret;
1050
1051         ret = change_page_attr_clear(addr, addrinarray,
1052                                       __pgprot(_PAGE_CACHE_MASK), 1);
1053         if (ret)
1054                 return ret;
1055
1056         for (i = 0; i < addrinarray; i++)
1057                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1058
1059         return 0;
1060 }
1061 EXPORT_SYMBOL(set_memory_array_wb);
1062
1063 int set_memory_x(unsigned long addr, int numpages)
1064 {
1065         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1066 }
1067 EXPORT_SYMBOL(set_memory_x);
1068
1069 int set_memory_nx(unsigned long addr, int numpages)
1070 {
1071         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1072 }
1073 EXPORT_SYMBOL(set_memory_nx);
1074
1075 int set_memory_ro(unsigned long addr, int numpages)
1076 {
1077         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1078 }
1079 EXPORT_SYMBOL_GPL(set_memory_ro);
1080
1081 int set_memory_rw(unsigned long addr, int numpages)
1082 {
1083         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1084 }
1085 EXPORT_SYMBOL_GPL(set_memory_rw);
1086
1087 int set_memory_np(unsigned long addr, int numpages)
1088 {
1089         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1090 }
1091
1092 int set_memory_4k(unsigned long addr, int numpages)
1093 {
1094         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1095                                         __pgprot(0), 1, 0, NULL);
1096 }
1097
1098 int set_pages_uc(struct page *page, int numpages)
1099 {
1100         unsigned long addr = (unsigned long)page_address(page);
1101
1102         return set_memory_uc(addr, numpages);
1103 }
1104 EXPORT_SYMBOL(set_pages_uc);
1105
1106 int set_pages_array_uc(struct page **pages, int addrinarray)
1107 {
1108         unsigned long start;
1109         unsigned long end;
1110         int i;
1111         int free_idx;
1112
1113         for (i = 0; i < addrinarray; i++) {
1114                 if (PageHighMem(pages[i]))
1115                         continue;
1116                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1117                 end = start + PAGE_SIZE;
1118                 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1119                         goto err_out;
1120         }
1121
1122         if (cpa_set_pages_array(pages, addrinarray,
1123                         __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1124                 return 0; /* Success */
1125         }
1126 err_out:
1127         free_idx = i;
1128         for (i = 0; i < free_idx; i++) {
1129                 if (PageHighMem(pages[i]))
1130                         continue;
1131                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1132                 end = start + PAGE_SIZE;
1133                 free_memtype(start, end);
1134         }
1135         return -EINVAL;
1136 }
1137 EXPORT_SYMBOL(set_pages_array_uc);
1138
1139 int set_pages_wb(struct page *page, int numpages)
1140 {
1141         unsigned long addr = (unsigned long)page_address(page);
1142
1143         return set_memory_wb(addr, numpages);
1144 }
1145 EXPORT_SYMBOL(set_pages_wb);
1146
1147 int set_pages_array_wb(struct page **pages, int addrinarray)
1148 {
1149         int retval;
1150         unsigned long start;
1151         unsigned long end;
1152         int i;
1153
1154         retval = cpa_clear_pages_array(pages, addrinarray,
1155                         __pgprot(_PAGE_CACHE_MASK));
1156         if (retval)
1157                 return retval;
1158
1159         for (i = 0; i < addrinarray; i++) {
1160                 if (PageHighMem(pages[i]))
1161                         continue;
1162                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1163                 end = start + PAGE_SIZE;
1164                 free_memtype(start, end);
1165         }
1166
1167         return 0;
1168 }
1169 EXPORT_SYMBOL(set_pages_array_wb);
1170
1171 int set_pages_x(struct page *page, int numpages)
1172 {
1173         unsigned long addr = (unsigned long)page_address(page);
1174
1175         return set_memory_x(addr, numpages);
1176 }
1177 EXPORT_SYMBOL(set_pages_x);
1178
1179 int set_pages_nx(struct page *page, int numpages)
1180 {
1181         unsigned long addr = (unsigned long)page_address(page);
1182
1183         return set_memory_nx(addr, numpages);
1184 }
1185 EXPORT_SYMBOL(set_pages_nx);
1186
1187 int set_pages_ro(struct page *page, int numpages)
1188 {
1189         unsigned long addr = (unsigned long)page_address(page);
1190
1191         return set_memory_ro(addr, numpages);
1192 }
1193
1194 int set_pages_rw(struct page *page, int numpages)
1195 {
1196         unsigned long addr = (unsigned long)page_address(page);
1197
1198         return set_memory_rw(addr, numpages);
1199 }
1200
1201 #ifdef CONFIG_DEBUG_PAGEALLOC
1202
1203 static int __set_pages_p(struct page *page, int numpages)
1204 {
1205         unsigned long tempaddr = (unsigned long) page_address(page);
1206         struct cpa_data cpa = { .vaddr = &tempaddr,
1207                                 .numpages = numpages,
1208                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1209                                 .mask_clr = __pgprot(0),
1210                                 .flags = 0};
1211
1212         /*
1213          * No alias checking needed for setting present flag. otherwise,
1214          * we may need to break large pages for 64-bit kernel text
1215          * mappings (this adds to complexity if we want to do this from
1216          * atomic context especially). Let's keep it simple!
1217          */
1218         return __change_page_attr_set_clr(&cpa, 0);
1219 }
1220
1221 static int __set_pages_np(struct page *page, int numpages)
1222 {
1223         unsigned long tempaddr = (unsigned long) page_address(page);
1224         struct cpa_data cpa = { .vaddr = &tempaddr,
1225                                 .numpages = numpages,
1226                                 .mask_set = __pgprot(0),
1227                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1228                                 .flags = 0};
1229
1230         /*
1231          * No alias checking needed for setting not present flag. otherwise,
1232          * we may need to break large pages for 64-bit kernel text
1233          * mappings (this adds to complexity if we want to do this from
1234          * atomic context especially). Let's keep it simple!
1235          */
1236         return __change_page_attr_set_clr(&cpa, 0);
1237 }
1238
1239 void kernel_map_pages(struct page *page, int numpages, int enable)
1240 {
1241         if (PageHighMem(page))
1242                 return;
1243         if (!enable) {
1244                 debug_check_no_locks_freed(page_address(page),
1245                                            numpages * PAGE_SIZE);
1246         }
1247
1248         /*
1249          * If page allocator is not up yet then do not call c_p_a():
1250          */
1251         if (!debug_pagealloc_enabled)
1252                 return;
1253
1254         /*
1255          * The return value is ignored as the calls cannot fail.
1256          * Large pages for identity mappings are not used at boot time
1257          * and hence no memory allocations during large page split.
1258          */
1259         if (enable)
1260                 __set_pages_p(page, numpages);
1261         else
1262                 __set_pages_np(page, numpages);
1263
1264         /*
1265          * We should perform an IPI and flush all tlbs,
1266          * but that can deadlock->flush only current cpu:
1267          */
1268         __flush_tlb_all();
1269 }
1270
1271 #ifdef CONFIG_HIBERNATION
1272
1273 bool kernel_page_present(struct page *page)
1274 {
1275         unsigned int level;
1276         pte_t *pte;
1277
1278         if (PageHighMem(page))
1279                 return false;
1280
1281         pte = lookup_address((unsigned long)page_address(page), &level);
1282         return (pte_val(*pte) & _PAGE_PRESENT);
1283 }
1284
1285 #endif /* CONFIG_HIBERNATION */
1286
1287 #endif /* CONFIG_DEBUG_PAGEALLOC */
1288
1289 /*
1290  * The testcases use internal knowledge of the implementation that shouldn't
1291  * be exposed to the rest of the kernel. Include these directly here.
1292  */
1293 #ifdef CONFIG_CPA_DEBUG
1294 #include "pageattr-test.c"
1295 #endif