]> Pileus Git - ~andy/linux/blob - arch/x86/mm/pageattr.c
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi...
[~andy/linux] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         int             numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa_symbol(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @vaddr:      virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263 #ifdef CONFIG_PCI_BIOS
264         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265                 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
267
268         /*
269          * The kernel text needs to be executable for obvious reasons
270          * Does not cover __inittext since that is gone later on. On
271          * 64bit we do not enforce !NX on the low mapping
272          */
273         if (within(address, (unsigned long)_text, (unsigned long)_etext))
274                 pgprot_val(forbidden) |= _PAGE_NX;
275
276         /*
277          * The .rodata section needs to be read-only. Using the pfn
278          * catches all aliases.
279          */
280         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282                 pgprot_val(forbidden) |= _PAGE_RW;
283
284 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285         /*
286          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287          * kernel text mappings for the large page aligned text, rodata sections
288          * will be always read-only. For the kernel identity mappings covering
289          * the holes caused by this alignment can be anything that user asks.
290          *
291          * This will preserve the large page mappings for kernel text/data
292          * at no extra cost.
293          */
294         if (kernel_set_to_readonly &&
295             within(address, (unsigned long)_text,
296                    (unsigned long)__end_rodata_hpage_align)) {
297                 unsigned int level;
298
299                 /*
300                  * Don't enforce the !RW mapping for the kernel text mapping,
301                  * if the current mapping is already using small page mapping.
302                  * No need to work hard to preserve large page mappings in this
303                  * case.
304                  *
305                  * This also fixes the Linux Xen paravirt guest boot failure
306                  * (because of unexpected read-only mappings for kernel identity
307                  * mappings). In this paravirt guest case, the kernel text
308                  * mapping and the kernel identity mapping share the same
309                  * page-table pages. Thus we can't really use different
310                  * protections for the kernel text and identity mappings. Also,
311                  * these shared mappings are made of small page mappings.
312                  * Thus this don't enforce !RW mapping for small page kernel
313                  * text mapping logic will help Linux Xen parvirt guest boot
314                  * as well.
315                  */
316                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317                         pgprot_val(forbidden) |= _PAGE_RW;
318         }
319 #endif
320
321         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323         return prot;
324 }
325
326 static pte_t *__lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                                       unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return __lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return __lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * This is necessary because __pa() does not work on some
384  * kinds of memory, like vmalloc() or the alloc_remap()
385  * areas on 32-bit NUMA systems.  The percpu areas can
386  * end up in this kind of memory, for instance.
387  *
388  * This could be optimized, but it is only intended to be
389  * used at inititalization time, and keeping it
390  * unoptimized should increase the testing coverage for
391  * the more obscure platforms.
392  */
393 phys_addr_t slow_virt_to_phys(void *__virt_addr)
394 {
395         unsigned long virt_addr = (unsigned long)__virt_addr;
396         phys_addr_t phys_addr;
397         unsigned long offset;
398         enum pg_level level;
399         unsigned long psize;
400         unsigned long pmask;
401         pte_t *pte;
402
403         pte = lookup_address(virt_addr, &level);
404         BUG_ON(!pte);
405         psize = page_level_size(level);
406         pmask = page_level_mask(level);
407         offset = virt_addr & ~pmask;
408         phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
409         return (phys_addr | offset);
410 }
411 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
412
413 /*
414  * Set the new pmd in all the pgds we know about:
415  */
416 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
417 {
418         /* change init_mm */
419         set_pte_atomic(kpte, pte);
420 #ifdef CONFIG_X86_32
421         if (!SHARED_KERNEL_PMD) {
422                 struct page *page;
423
424                 list_for_each_entry(page, &pgd_list, lru) {
425                         pgd_t *pgd;
426                         pud_t *pud;
427                         pmd_t *pmd;
428
429                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
430                         pud = pud_offset(pgd, address);
431                         pmd = pmd_offset(pud, address);
432                         set_pte_atomic((pte_t *)pmd, pte);
433                 }
434         }
435 #endif
436 }
437
438 static int
439 try_preserve_large_page(pte_t *kpte, unsigned long address,
440                         struct cpa_data *cpa)
441 {
442         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
443         pte_t new_pte, old_pte, *tmp;
444         pgprot_t old_prot, new_prot, req_prot;
445         int i, do_split = 1;
446         enum pg_level level;
447
448         if (cpa->force_split)
449                 return 1;
450
451         spin_lock(&pgd_lock);
452         /*
453          * Check for races, another CPU might have split this page
454          * up already:
455          */
456         tmp = _lookup_address_cpa(cpa, address, &level);
457         if (tmp != kpte)
458                 goto out_unlock;
459
460         switch (level) {
461         case PG_LEVEL_2M:
462 #ifdef CONFIG_X86_64
463         case PG_LEVEL_1G:
464 #endif
465                 psize = page_level_size(level);
466                 pmask = page_level_mask(level);
467                 break;
468         default:
469                 do_split = -EINVAL;
470                 goto out_unlock;
471         }
472
473         /*
474          * Calculate the number of pages, which fit into this large
475          * page starting at address:
476          */
477         nextpage_addr = (address + psize) & pmask;
478         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
479         if (numpages < cpa->numpages)
480                 cpa->numpages = numpages;
481
482         /*
483          * We are safe now. Check whether the new pgprot is the same:
484          */
485         old_pte = *kpte;
486         old_prot = req_prot = pte_pgprot(old_pte);
487
488         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
489         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
490
491         /*
492          * Set the PSE and GLOBAL flags only if the PRESENT flag is
493          * set otherwise pmd_present/pmd_huge will return true even on
494          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
495          * for the ancient hardware that doesn't support it.
496          */
497         if (pgprot_val(req_prot) & _PAGE_PRESENT)
498                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
499         else
500                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
501
502         req_prot = canon_pgprot(req_prot);
503
504         /*
505          * old_pte points to the large page base address. So we need
506          * to add the offset of the virtual address:
507          */
508         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
509         cpa->pfn = pfn;
510
511         new_prot = static_protections(req_prot, address, pfn);
512
513         /*
514          * We need to check the full range, whether
515          * static_protection() requires a different pgprot for one of
516          * the pages in the range we try to preserve:
517          */
518         addr = address & pmask;
519         pfn = pte_pfn(old_pte);
520         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
521                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
522
523                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
524                         goto out_unlock;
525         }
526
527         /*
528          * If there are no changes, return. maxpages has been updated
529          * above:
530          */
531         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
532                 do_split = 0;
533                 goto out_unlock;
534         }
535
536         /*
537          * We need to change the attributes. Check, whether we can
538          * change the large page in one go. We request a split, when
539          * the address is not aligned and the number of pages is
540          * smaller than the number of pages in the large page. Note
541          * that we limited the number of possible pages already to
542          * the number of pages in the large page.
543          */
544         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
545                 /*
546                  * The address is aligned and the number of pages
547                  * covers the full page.
548                  */
549                 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
550                 __set_pmd_pte(kpte, address, new_pte);
551                 cpa->flags |= CPA_FLUSHTLB;
552                 do_split = 0;
553         }
554
555 out_unlock:
556         spin_unlock(&pgd_lock);
557
558         return do_split;
559 }
560
561 static int
562 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
563                    struct page *base)
564 {
565         pte_t *pbase = (pte_t *)page_address(base);
566         unsigned long pfn, pfninc = 1;
567         unsigned int i, level;
568         pte_t *tmp;
569         pgprot_t ref_prot;
570
571         spin_lock(&pgd_lock);
572         /*
573          * Check for races, another CPU might have split this page
574          * up for us already:
575          */
576         tmp = _lookup_address_cpa(cpa, address, &level);
577         if (tmp != kpte) {
578                 spin_unlock(&pgd_lock);
579                 return 1;
580         }
581
582         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
583         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
584         /*
585          * If we ever want to utilize the PAT bit, we need to
586          * update this function to make sure it's converted from
587          * bit 12 to bit 7 when we cross from the 2MB level to
588          * the 4K level:
589          */
590         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
591
592 #ifdef CONFIG_X86_64
593         if (level == PG_LEVEL_1G) {
594                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
595                 /*
596                  * Set the PSE flags only if the PRESENT flag is set
597                  * otherwise pmd_present/pmd_huge will return true
598                  * even on a non present pmd.
599                  */
600                 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
601                         pgprot_val(ref_prot) |= _PAGE_PSE;
602                 else
603                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
604         }
605 #endif
606
607         /*
608          * Set the GLOBAL flags only if the PRESENT flag is set
609          * otherwise pmd/pte_present will return true even on a non
610          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
611          * for the ancient hardware that doesn't support it.
612          */
613         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
614                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
615         else
616                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
617
618         /*
619          * Get the target pfn from the original entry:
620          */
621         pfn = pte_pfn(*kpte);
622         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
623                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
624
625         if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
626                                 PFN_DOWN(__pa(address)) + 1))
627                 split_page_count(level);
628
629         /*
630          * Install the new, split up pagetable.
631          *
632          * We use the standard kernel pagetable protections for the new
633          * pagetable protections, the actual ptes set above control the
634          * primary protection behavior:
635          */
636         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
637
638         /*
639          * Intel Atom errata AAH41 workaround.
640          *
641          * The real fix should be in hw or in a microcode update, but
642          * we also probabilistically try to reduce the window of having
643          * a large TLB mixed with 4K TLBs while instruction fetches are
644          * going on.
645          */
646         __flush_tlb_all();
647         spin_unlock(&pgd_lock);
648
649         return 0;
650 }
651
652 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
653                             unsigned long address)
654 {
655         struct page *base;
656
657         if (!debug_pagealloc)
658                 spin_unlock(&cpa_lock);
659         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
660         if (!debug_pagealloc)
661                 spin_lock(&cpa_lock);
662         if (!base)
663                 return -ENOMEM;
664
665         if (__split_large_page(cpa, kpte, address, base))
666                 __free_page(base);
667
668         return 0;
669 }
670
671 static bool try_to_free_pte_page(pte_t *pte)
672 {
673         int i;
674
675         for (i = 0; i < PTRS_PER_PTE; i++)
676                 if (!pte_none(pte[i]))
677                         return false;
678
679         free_page((unsigned long)pte);
680         return true;
681 }
682
683 static bool try_to_free_pmd_page(pmd_t *pmd)
684 {
685         int i;
686
687         for (i = 0; i < PTRS_PER_PMD; i++)
688                 if (!pmd_none(pmd[i]))
689                         return false;
690
691         free_page((unsigned long)pmd);
692         return true;
693 }
694
695 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
696 {
697         pte_t *pte = pte_offset_kernel(pmd, start);
698
699         while (start < end) {
700                 set_pte(pte, __pte(0));
701
702                 start += PAGE_SIZE;
703                 pte++;
704         }
705
706         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
707                 pmd_clear(pmd);
708                 return true;
709         }
710         return false;
711 }
712
713 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
714                               unsigned long start, unsigned long end)
715 {
716         if (unmap_pte_range(pmd, start, end))
717                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
718                         pud_clear(pud);
719 }
720
721 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
722 {
723         pmd_t *pmd = pmd_offset(pud, start);
724
725         /*
726          * Not on a 2MB page boundary?
727          */
728         if (start & (PMD_SIZE - 1)) {
729                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
730                 unsigned long pre_end = min_t(unsigned long, end, next_page);
731
732                 __unmap_pmd_range(pud, pmd, start, pre_end);
733
734                 start = pre_end;
735                 pmd++;
736         }
737
738         /*
739          * Try to unmap in 2M chunks.
740          */
741         while (end - start >= PMD_SIZE) {
742                 if (pmd_large(*pmd))
743                         pmd_clear(pmd);
744                 else
745                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
746
747                 start += PMD_SIZE;
748                 pmd++;
749         }
750
751         /*
752          * 4K leftovers?
753          */
754         if (start < end)
755                 return __unmap_pmd_range(pud, pmd, start, end);
756
757         /*
758          * Try again to free the PMD page if haven't succeeded above.
759          */
760         if (!pud_none(*pud))
761                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
762                         pud_clear(pud);
763 }
764
765 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
766 {
767         pud_t *pud = pud_offset(pgd, start);
768
769         /*
770          * Not on a GB page boundary?
771          */
772         if (start & (PUD_SIZE - 1)) {
773                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
774                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
775
776                 unmap_pmd_range(pud, start, pre_end);
777
778                 start = pre_end;
779                 pud++;
780         }
781
782         /*
783          * Try to unmap in 1G chunks?
784          */
785         while (end - start >= PUD_SIZE) {
786
787                 if (pud_large(*pud))
788                         pud_clear(pud);
789                 else
790                         unmap_pmd_range(pud, start, start + PUD_SIZE);
791
792                 start += PUD_SIZE;
793                 pud++;
794         }
795
796         /*
797          * 2M leftovers?
798          */
799         if (start < end)
800                 unmap_pmd_range(pud, start, end);
801
802         /*
803          * No need to try to free the PUD page because we'll free it in
804          * populate_pgd's error path
805          */
806 }
807
808 static int alloc_pte_page(pmd_t *pmd)
809 {
810         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
811         if (!pte)
812                 return -1;
813
814         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
815         return 0;
816 }
817
818 static int alloc_pmd_page(pud_t *pud)
819 {
820         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
821         if (!pmd)
822                 return -1;
823
824         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
825         return 0;
826 }
827
828 static void populate_pte(struct cpa_data *cpa,
829                          unsigned long start, unsigned long end,
830                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
831 {
832         pte_t *pte;
833
834         pte = pte_offset_kernel(pmd, start);
835
836         while (num_pages-- && start < end) {
837
838                 /* deal with the NX bit */
839                 if (!(pgprot_val(pgprot) & _PAGE_NX))
840                         cpa->pfn &= ~_PAGE_NX;
841
842                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
843
844                 start    += PAGE_SIZE;
845                 cpa->pfn += PAGE_SIZE;
846                 pte++;
847         }
848 }
849
850 static int populate_pmd(struct cpa_data *cpa,
851                         unsigned long start, unsigned long end,
852                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
853 {
854         unsigned int cur_pages = 0;
855         pmd_t *pmd;
856
857         /*
858          * Not on a 2M boundary?
859          */
860         if (start & (PMD_SIZE - 1)) {
861                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
862                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
863
864                 pre_end   = min_t(unsigned long, pre_end, next_page);
865                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
866                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
867
868                 /*
869                  * Need a PTE page?
870                  */
871                 pmd = pmd_offset(pud, start);
872                 if (pmd_none(*pmd))
873                         if (alloc_pte_page(pmd))
874                                 return -1;
875
876                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
877
878                 start = pre_end;
879         }
880
881         /*
882          * We mapped them all?
883          */
884         if (num_pages == cur_pages)
885                 return cur_pages;
886
887         while (end - start >= PMD_SIZE) {
888
889                 /*
890                  * We cannot use a 1G page so allocate a PMD page if needed.
891                  */
892                 if (pud_none(*pud))
893                         if (alloc_pmd_page(pud))
894                                 return -1;
895
896                 pmd = pmd_offset(pud, start);
897
898                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
899
900                 start     += PMD_SIZE;
901                 cpa->pfn  += PMD_SIZE;
902                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
903         }
904
905         /*
906          * Map trailing 4K pages.
907          */
908         if (start < end) {
909                 pmd = pmd_offset(pud, start);
910                 if (pmd_none(*pmd))
911                         if (alloc_pte_page(pmd))
912                                 return -1;
913
914                 populate_pte(cpa, start, end, num_pages - cur_pages,
915                              pmd, pgprot);
916         }
917         return num_pages;
918 }
919
920 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
921                         pgprot_t pgprot)
922 {
923         pud_t *pud;
924         unsigned long end;
925         int cur_pages = 0;
926
927         end = start + (cpa->numpages << PAGE_SHIFT);
928
929         /*
930          * Not on a Gb page boundary? => map everything up to it with
931          * smaller pages.
932          */
933         if (start & (PUD_SIZE - 1)) {
934                 unsigned long pre_end;
935                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
936
937                 pre_end   = min_t(unsigned long, end, next_page);
938                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
939                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
940
941                 pud = pud_offset(pgd, start);
942
943                 /*
944                  * Need a PMD page?
945                  */
946                 if (pud_none(*pud))
947                         if (alloc_pmd_page(pud))
948                                 return -1;
949
950                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
951                                          pud, pgprot);
952                 if (cur_pages < 0)
953                         return cur_pages;
954
955                 start = pre_end;
956         }
957
958         /* We mapped them all? */
959         if (cpa->numpages == cur_pages)
960                 return cur_pages;
961
962         pud = pud_offset(pgd, start);
963
964         /*
965          * Map everything starting from the Gb boundary, possibly with 1G pages
966          */
967         while (end - start >= PUD_SIZE) {
968                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
969
970                 start     += PUD_SIZE;
971                 cpa->pfn  += PUD_SIZE;
972                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
973                 pud++;
974         }
975
976         /* Map trailing leftover */
977         if (start < end) {
978                 int tmp;
979
980                 pud = pud_offset(pgd, start);
981                 if (pud_none(*pud))
982                         if (alloc_pmd_page(pud))
983                                 return -1;
984
985                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
986                                    pud, pgprot);
987                 if (tmp < 0)
988                         return cur_pages;
989
990                 cur_pages += tmp;
991         }
992         return cur_pages;
993 }
994
995 /*
996  * Restrictions for kernel page table do not necessarily apply when mapping in
997  * an alternate PGD.
998  */
999 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1000 {
1001         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1002         bool allocd_pgd = false;
1003         pgd_t *pgd_entry;
1004         pud_t *pud = NULL;      /* shut up gcc */
1005         int ret;
1006
1007         pgd_entry = cpa->pgd + pgd_index(addr);
1008
1009         /*
1010          * Allocate a PUD page and hand it down for mapping.
1011          */
1012         if (pgd_none(*pgd_entry)) {
1013                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1014                 if (!pud)
1015                         return -1;
1016
1017                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1018                 allocd_pgd = true;
1019         }
1020
1021         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1022         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1023
1024         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1025         if (ret < 0) {
1026                 unmap_pud_range(pgd_entry, addr,
1027                                 addr + (cpa->numpages << PAGE_SHIFT));
1028
1029                 if (allocd_pgd) {
1030                         /*
1031                          * If I allocated this PUD page, I can just as well
1032                          * free it in this error path.
1033                          */
1034                         pgd_clear(pgd_entry);
1035                         free_page((unsigned long)pud);
1036                 }
1037                 return ret;
1038         }
1039         cpa->numpages = ret;
1040         return 0;
1041 }
1042
1043 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1044                                int primary)
1045 {
1046         if (cpa->pgd)
1047                 return populate_pgd(cpa, vaddr);
1048
1049         /*
1050          * Ignore all non primary paths.
1051          */
1052         if (!primary)
1053                 return 0;
1054
1055         /*
1056          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1057          * to have holes.
1058          * Also set numpages to '1' indicating that we processed cpa req for
1059          * one virtual address page and its pfn. TBD: numpages can be set based
1060          * on the initial value and the level returned by lookup_address().
1061          */
1062         if (within(vaddr, PAGE_OFFSET,
1063                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1064                 cpa->numpages = 1;
1065                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1066                 return 0;
1067         } else {
1068                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1069                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1070                         *cpa->vaddr);
1071
1072                 return -EFAULT;
1073         }
1074 }
1075
1076 static int __change_page_attr(struct cpa_data *cpa, int primary)
1077 {
1078         unsigned long address;
1079         int do_split, err;
1080         unsigned int level;
1081         pte_t *kpte, old_pte;
1082
1083         if (cpa->flags & CPA_PAGES_ARRAY) {
1084                 struct page *page = cpa->pages[cpa->curpage];
1085                 if (unlikely(PageHighMem(page)))
1086                         return 0;
1087                 address = (unsigned long)page_address(page);
1088         } else if (cpa->flags & CPA_ARRAY)
1089                 address = cpa->vaddr[cpa->curpage];
1090         else
1091                 address = *cpa->vaddr;
1092 repeat:
1093         kpte = _lookup_address_cpa(cpa, address, &level);
1094         if (!kpte)
1095                 return __cpa_process_fault(cpa, address, primary);
1096
1097         old_pte = *kpte;
1098         if (!pte_val(old_pte))
1099                 return __cpa_process_fault(cpa, address, primary);
1100
1101         if (level == PG_LEVEL_4K) {
1102                 pte_t new_pte;
1103                 pgprot_t new_prot = pte_pgprot(old_pte);
1104                 unsigned long pfn = pte_pfn(old_pte);
1105
1106                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1107                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1108
1109                 new_prot = static_protections(new_prot, address, pfn);
1110
1111                 /*
1112                  * Set the GLOBAL flags only if the PRESENT flag is
1113                  * set otherwise pte_present will return true even on
1114                  * a non present pte. The canon_pgprot will clear
1115                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1116                  * support it.
1117                  */
1118                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1119                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1120                 else
1121                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1122
1123                 /*
1124                  * We need to keep the pfn from the existing PTE,
1125                  * after all we're only going to change it's attributes
1126                  * not the memory it points to
1127                  */
1128                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1129                 cpa->pfn = pfn;
1130                 /*
1131                  * Do we really change anything ?
1132                  */
1133                 if (pte_val(old_pte) != pte_val(new_pte)) {
1134                         set_pte_atomic(kpte, new_pte);
1135                         cpa->flags |= CPA_FLUSHTLB;
1136                 }
1137                 cpa->numpages = 1;
1138                 return 0;
1139         }
1140
1141         /*
1142          * Check, whether we can keep the large page intact
1143          * and just change the pte:
1144          */
1145         do_split = try_preserve_large_page(kpte, address, cpa);
1146         /*
1147          * When the range fits into the existing large page,
1148          * return. cp->numpages and cpa->tlbflush have been updated in
1149          * try_large_page:
1150          */
1151         if (do_split <= 0)
1152                 return do_split;
1153
1154         /*
1155          * We have to split the large page:
1156          */
1157         err = split_large_page(cpa, kpte, address);
1158         if (!err) {
1159                 /*
1160                  * Do a global flush tlb after splitting the large page
1161                  * and before we do the actual change page attribute in the PTE.
1162                  *
1163                  * With out this, we violate the TLB application note, that says
1164                  * "The TLBs may contain both ordinary and large-page
1165                  *  translations for a 4-KByte range of linear addresses. This
1166                  *  may occur if software modifies the paging structures so that
1167                  *  the page size used for the address range changes. If the two
1168                  *  translations differ with respect to page frame or attributes
1169                  *  (e.g., permissions), processor behavior is undefined and may
1170                  *  be implementation-specific."
1171                  *
1172                  * We do this global tlb flush inside the cpa_lock, so that we
1173                  * don't allow any other cpu, with stale tlb entries change the
1174                  * page attribute in parallel, that also falls into the
1175                  * just split large page entry.
1176                  */
1177                 flush_tlb_all();
1178                 goto repeat;
1179         }
1180
1181         return err;
1182 }
1183
1184 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1185
1186 static int cpa_process_alias(struct cpa_data *cpa)
1187 {
1188         struct cpa_data alias_cpa;
1189         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1190         unsigned long vaddr;
1191         int ret;
1192
1193         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1194                 return 0;
1195
1196         /*
1197          * No need to redo, when the primary call touched the direct
1198          * mapping already:
1199          */
1200         if (cpa->flags & CPA_PAGES_ARRAY) {
1201                 struct page *page = cpa->pages[cpa->curpage];
1202                 if (unlikely(PageHighMem(page)))
1203                         return 0;
1204                 vaddr = (unsigned long)page_address(page);
1205         } else if (cpa->flags & CPA_ARRAY)
1206                 vaddr = cpa->vaddr[cpa->curpage];
1207         else
1208                 vaddr = *cpa->vaddr;
1209
1210         if (!(within(vaddr, PAGE_OFFSET,
1211                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1212
1213                 alias_cpa = *cpa;
1214                 alias_cpa.vaddr = &laddr;
1215                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1216
1217                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1218                 if (ret)
1219                         return ret;
1220         }
1221
1222 #ifdef CONFIG_X86_64
1223         /*
1224          * If the primary call didn't touch the high mapping already
1225          * and the physical address is inside the kernel map, we need
1226          * to touch the high mapped kernel as well:
1227          */
1228         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1229             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1230                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1231                                                __START_KERNEL_map - phys_base;
1232                 alias_cpa = *cpa;
1233                 alias_cpa.vaddr = &temp_cpa_vaddr;
1234                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1235
1236                 /*
1237                  * The high mapping range is imprecise, so ignore the
1238                  * return value.
1239                  */
1240                 __change_page_attr_set_clr(&alias_cpa, 0);
1241         }
1242 #endif
1243
1244         return 0;
1245 }
1246
1247 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1248 {
1249         int ret, numpages = cpa->numpages;
1250
1251         while (numpages) {
1252                 /*
1253                  * Store the remaining nr of pages for the large page
1254                  * preservation check.
1255                  */
1256                 cpa->numpages = numpages;
1257                 /* for array changes, we can't use large page */
1258                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1259                         cpa->numpages = 1;
1260
1261                 if (!debug_pagealloc)
1262                         spin_lock(&cpa_lock);
1263                 ret = __change_page_attr(cpa, checkalias);
1264                 if (!debug_pagealloc)
1265                         spin_unlock(&cpa_lock);
1266                 if (ret)
1267                         return ret;
1268
1269                 if (checkalias) {
1270                         ret = cpa_process_alias(cpa);
1271                         if (ret)
1272                                 return ret;
1273                 }
1274
1275                 /*
1276                  * Adjust the number of pages with the result of the
1277                  * CPA operation. Either a large page has been
1278                  * preserved or a single page update happened.
1279                  */
1280                 BUG_ON(cpa->numpages > numpages);
1281                 numpages -= cpa->numpages;
1282                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1283                         cpa->curpage++;
1284                 else
1285                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1286
1287         }
1288         return 0;
1289 }
1290
1291 static inline int cache_attr(pgprot_t attr)
1292 {
1293         return pgprot_val(attr) &
1294                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
1295 }
1296
1297 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1298                                     pgprot_t mask_set, pgprot_t mask_clr,
1299                                     int force_split, int in_flag,
1300                                     struct page **pages)
1301 {
1302         struct cpa_data cpa;
1303         int ret, cache, checkalias;
1304         unsigned long baddr = 0;
1305
1306         memset(&cpa, 0, sizeof(cpa));
1307
1308         /*
1309          * Check, if we are requested to change a not supported
1310          * feature:
1311          */
1312         mask_set = canon_pgprot(mask_set);
1313         mask_clr = canon_pgprot(mask_clr);
1314         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1315                 return 0;
1316
1317         /* Ensure we are PAGE_SIZE aligned */
1318         if (in_flag & CPA_ARRAY) {
1319                 int i;
1320                 for (i = 0; i < numpages; i++) {
1321                         if (addr[i] & ~PAGE_MASK) {
1322                                 addr[i] &= PAGE_MASK;
1323                                 WARN_ON_ONCE(1);
1324                         }
1325                 }
1326         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1327                 /*
1328                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1329                  * No need to cehck in that case
1330                  */
1331                 if (*addr & ~PAGE_MASK) {
1332                         *addr &= PAGE_MASK;
1333                         /*
1334                          * People should not be passing in unaligned addresses:
1335                          */
1336                         WARN_ON_ONCE(1);
1337                 }
1338                 /*
1339                  * Save address for cache flush. *addr is modified in the call
1340                  * to __change_page_attr_set_clr() below.
1341                  */
1342                 baddr = *addr;
1343         }
1344
1345         /* Must avoid aliasing mappings in the highmem code */
1346         kmap_flush_unused();
1347
1348         vm_unmap_aliases();
1349
1350         cpa.vaddr = addr;
1351         cpa.pages = pages;
1352         cpa.numpages = numpages;
1353         cpa.mask_set = mask_set;
1354         cpa.mask_clr = mask_clr;
1355         cpa.flags = 0;
1356         cpa.curpage = 0;
1357         cpa.force_split = force_split;
1358
1359         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1360                 cpa.flags |= in_flag;
1361
1362         /* No alias checking for _NX bit modifications */
1363         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1364
1365         ret = __change_page_attr_set_clr(&cpa, checkalias);
1366
1367         /*
1368          * Check whether we really changed something:
1369          */
1370         if (!(cpa.flags & CPA_FLUSHTLB))
1371                 goto out;
1372
1373         /*
1374          * No need to flush, when we did not set any of the caching
1375          * attributes:
1376          */
1377         cache = cache_attr(mask_set);
1378
1379         /*
1380          * On success we use clflush, when the CPU supports it to
1381          * avoid the wbindv. If the CPU does not support it and in the
1382          * error case we fall back to cpa_flush_all (which uses
1383          * wbindv):
1384          */
1385         if (!ret && cpu_has_clflush) {
1386                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1387                         cpa_flush_array(addr, numpages, cache,
1388                                         cpa.flags, pages);
1389                 } else
1390                         cpa_flush_range(baddr, numpages, cache);
1391         } else
1392                 cpa_flush_all(cache);
1393
1394 out:
1395         return ret;
1396 }
1397
1398 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1399                                        pgprot_t mask, int array)
1400 {
1401         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1402                 (array ? CPA_ARRAY : 0), NULL);
1403 }
1404
1405 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1406                                          pgprot_t mask, int array)
1407 {
1408         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1409                 (array ? CPA_ARRAY : 0), NULL);
1410 }
1411
1412 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1413                                        pgprot_t mask)
1414 {
1415         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1416                 CPA_PAGES_ARRAY, pages);
1417 }
1418
1419 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1420                                          pgprot_t mask)
1421 {
1422         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1423                 CPA_PAGES_ARRAY, pages);
1424 }
1425
1426 int _set_memory_uc(unsigned long addr, int numpages)
1427 {
1428         /*
1429          * for now UC MINUS. see comments in ioremap_nocache()
1430          */
1431         return change_page_attr_set(&addr, numpages,
1432                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1433 }
1434
1435 int set_memory_uc(unsigned long addr, int numpages)
1436 {
1437         int ret;
1438
1439         /*
1440          * for now UC MINUS. see comments in ioremap_nocache()
1441          */
1442         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1443                             _PAGE_CACHE_UC_MINUS, NULL);
1444         if (ret)
1445                 goto out_err;
1446
1447         ret = _set_memory_uc(addr, numpages);
1448         if (ret)
1449                 goto out_free;
1450
1451         return 0;
1452
1453 out_free:
1454         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1455 out_err:
1456         return ret;
1457 }
1458 EXPORT_SYMBOL(set_memory_uc);
1459
1460 static int _set_memory_array(unsigned long *addr, int addrinarray,
1461                 unsigned long new_type)
1462 {
1463         int i, j;
1464         int ret;
1465
1466         /*
1467          * for now UC MINUS. see comments in ioremap_nocache()
1468          */
1469         for (i = 0; i < addrinarray; i++) {
1470                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1471                                         new_type, NULL);
1472                 if (ret)
1473                         goto out_free;
1474         }
1475
1476         ret = change_page_attr_set(addr, addrinarray,
1477                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1478
1479         if (!ret && new_type == _PAGE_CACHE_WC)
1480                 ret = change_page_attr_set_clr(addr, addrinarray,
1481                                                __pgprot(_PAGE_CACHE_WC),
1482                                                __pgprot(_PAGE_CACHE_MASK),
1483                                                0, CPA_ARRAY, NULL);
1484         if (ret)
1485                 goto out_free;
1486
1487         return 0;
1488
1489 out_free:
1490         for (j = 0; j < i; j++)
1491                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1492
1493         return ret;
1494 }
1495
1496 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1497 {
1498         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1499 }
1500 EXPORT_SYMBOL(set_memory_array_uc);
1501
1502 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1503 {
1504         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1505 }
1506 EXPORT_SYMBOL(set_memory_array_wc);
1507
1508 int _set_memory_wc(unsigned long addr, int numpages)
1509 {
1510         int ret;
1511         unsigned long addr_copy = addr;
1512
1513         ret = change_page_attr_set(&addr, numpages,
1514                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1515         if (!ret) {
1516                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1517                                                __pgprot(_PAGE_CACHE_WC),
1518                                                __pgprot(_PAGE_CACHE_MASK),
1519                                                0, 0, NULL);
1520         }
1521         return ret;
1522 }
1523
1524 int set_memory_wc(unsigned long addr, int numpages)
1525 {
1526         int ret;
1527
1528         if (!pat_enabled)
1529                 return set_memory_uc(addr, numpages);
1530
1531         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1532                 _PAGE_CACHE_WC, NULL);
1533         if (ret)
1534                 goto out_err;
1535
1536         ret = _set_memory_wc(addr, numpages);
1537         if (ret)
1538                 goto out_free;
1539
1540         return 0;
1541
1542 out_free:
1543         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1544 out_err:
1545         return ret;
1546 }
1547 EXPORT_SYMBOL(set_memory_wc);
1548
1549 int _set_memory_wb(unsigned long addr, int numpages)
1550 {
1551         return change_page_attr_clear(&addr, numpages,
1552                                       __pgprot(_PAGE_CACHE_MASK), 0);
1553 }
1554
1555 int set_memory_wb(unsigned long addr, int numpages)
1556 {
1557         int ret;
1558
1559         ret = _set_memory_wb(addr, numpages);
1560         if (ret)
1561                 return ret;
1562
1563         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1564         return 0;
1565 }
1566 EXPORT_SYMBOL(set_memory_wb);
1567
1568 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1569 {
1570         int i;
1571         int ret;
1572
1573         ret = change_page_attr_clear(addr, addrinarray,
1574                                       __pgprot(_PAGE_CACHE_MASK), 1);
1575         if (ret)
1576                 return ret;
1577
1578         for (i = 0; i < addrinarray; i++)
1579                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1580
1581         return 0;
1582 }
1583 EXPORT_SYMBOL(set_memory_array_wb);
1584
1585 int set_memory_x(unsigned long addr, int numpages)
1586 {
1587         if (!(__supported_pte_mask & _PAGE_NX))
1588                 return 0;
1589
1590         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1591 }
1592 EXPORT_SYMBOL(set_memory_x);
1593
1594 int set_memory_nx(unsigned long addr, int numpages)
1595 {
1596         if (!(__supported_pte_mask & _PAGE_NX))
1597                 return 0;
1598
1599         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1600 }
1601 EXPORT_SYMBOL(set_memory_nx);
1602
1603 int set_memory_ro(unsigned long addr, int numpages)
1604 {
1605         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1606 }
1607 EXPORT_SYMBOL_GPL(set_memory_ro);
1608
1609 int set_memory_rw(unsigned long addr, int numpages)
1610 {
1611         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1612 }
1613 EXPORT_SYMBOL_GPL(set_memory_rw);
1614
1615 int set_memory_np(unsigned long addr, int numpages)
1616 {
1617         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1618 }
1619
1620 int set_memory_4k(unsigned long addr, int numpages)
1621 {
1622         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1623                                         __pgprot(0), 1, 0, NULL);
1624 }
1625
1626 int set_pages_uc(struct page *page, int numpages)
1627 {
1628         unsigned long addr = (unsigned long)page_address(page);
1629
1630         return set_memory_uc(addr, numpages);
1631 }
1632 EXPORT_SYMBOL(set_pages_uc);
1633
1634 static int _set_pages_array(struct page **pages, int addrinarray,
1635                 unsigned long new_type)
1636 {
1637         unsigned long start;
1638         unsigned long end;
1639         int i;
1640         int free_idx;
1641         int ret;
1642
1643         for (i = 0; i < addrinarray; i++) {
1644                 if (PageHighMem(pages[i]))
1645                         continue;
1646                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1647                 end = start + PAGE_SIZE;
1648                 if (reserve_memtype(start, end, new_type, NULL))
1649                         goto err_out;
1650         }
1651
1652         ret = cpa_set_pages_array(pages, addrinarray,
1653                         __pgprot(_PAGE_CACHE_UC_MINUS));
1654         if (!ret && new_type == _PAGE_CACHE_WC)
1655                 ret = change_page_attr_set_clr(NULL, addrinarray,
1656                                                __pgprot(_PAGE_CACHE_WC),
1657                                                __pgprot(_PAGE_CACHE_MASK),
1658                                                0, CPA_PAGES_ARRAY, pages);
1659         if (ret)
1660                 goto err_out;
1661         return 0; /* Success */
1662 err_out:
1663         free_idx = i;
1664         for (i = 0; i < free_idx; i++) {
1665                 if (PageHighMem(pages[i]))
1666                         continue;
1667                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1668                 end = start + PAGE_SIZE;
1669                 free_memtype(start, end);
1670         }
1671         return -EINVAL;
1672 }
1673
1674 int set_pages_array_uc(struct page **pages, int addrinarray)
1675 {
1676         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1677 }
1678 EXPORT_SYMBOL(set_pages_array_uc);
1679
1680 int set_pages_array_wc(struct page **pages, int addrinarray)
1681 {
1682         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1683 }
1684 EXPORT_SYMBOL(set_pages_array_wc);
1685
1686 int set_pages_wb(struct page *page, int numpages)
1687 {
1688         unsigned long addr = (unsigned long)page_address(page);
1689
1690         return set_memory_wb(addr, numpages);
1691 }
1692 EXPORT_SYMBOL(set_pages_wb);
1693
1694 int set_pages_array_wb(struct page **pages, int addrinarray)
1695 {
1696         int retval;
1697         unsigned long start;
1698         unsigned long end;
1699         int i;
1700
1701         retval = cpa_clear_pages_array(pages, addrinarray,
1702                         __pgprot(_PAGE_CACHE_MASK));
1703         if (retval)
1704                 return retval;
1705
1706         for (i = 0; i < addrinarray; i++) {
1707                 if (PageHighMem(pages[i]))
1708                         continue;
1709                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1710                 end = start + PAGE_SIZE;
1711                 free_memtype(start, end);
1712         }
1713
1714         return 0;
1715 }
1716 EXPORT_SYMBOL(set_pages_array_wb);
1717
1718 int set_pages_x(struct page *page, int numpages)
1719 {
1720         unsigned long addr = (unsigned long)page_address(page);
1721
1722         return set_memory_x(addr, numpages);
1723 }
1724 EXPORT_SYMBOL(set_pages_x);
1725
1726 int set_pages_nx(struct page *page, int numpages)
1727 {
1728         unsigned long addr = (unsigned long)page_address(page);
1729
1730         return set_memory_nx(addr, numpages);
1731 }
1732 EXPORT_SYMBOL(set_pages_nx);
1733
1734 int set_pages_ro(struct page *page, int numpages)
1735 {
1736         unsigned long addr = (unsigned long)page_address(page);
1737
1738         return set_memory_ro(addr, numpages);
1739 }
1740
1741 int set_pages_rw(struct page *page, int numpages)
1742 {
1743         unsigned long addr = (unsigned long)page_address(page);
1744
1745         return set_memory_rw(addr, numpages);
1746 }
1747
1748 #ifdef CONFIG_DEBUG_PAGEALLOC
1749
1750 static int __set_pages_p(struct page *page, int numpages)
1751 {
1752         unsigned long tempaddr = (unsigned long) page_address(page);
1753         struct cpa_data cpa = { .vaddr = &tempaddr,
1754                                 .pgd = NULL,
1755                                 .numpages = numpages,
1756                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1757                                 .mask_clr = __pgprot(0),
1758                                 .flags = 0};
1759
1760         /*
1761          * No alias checking needed for setting present flag. otherwise,
1762          * we may need to break large pages for 64-bit kernel text
1763          * mappings (this adds to complexity if we want to do this from
1764          * atomic context especially). Let's keep it simple!
1765          */
1766         return __change_page_attr_set_clr(&cpa, 0);
1767 }
1768
1769 static int __set_pages_np(struct page *page, int numpages)
1770 {
1771         unsigned long tempaddr = (unsigned long) page_address(page);
1772         struct cpa_data cpa = { .vaddr = &tempaddr,
1773                                 .pgd = NULL,
1774                                 .numpages = numpages,
1775                                 .mask_set = __pgprot(0),
1776                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1777                                 .flags = 0};
1778
1779         /*
1780          * No alias checking needed for setting not present flag. otherwise,
1781          * we may need to break large pages for 64-bit kernel text
1782          * mappings (this adds to complexity if we want to do this from
1783          * atomic context especially). Let's keep it simple!
1784          */
1785         return __change_page_attr_set_clr(&cpa, 0);
1786 }
1787
1788 void kernel_map_pages(struct page *page, int numpages, int enable)
1789 {
1790         if (PageHighMem(page))
1791                 return;
1792         if (!enable) {
1793                 debug_check_no_locks_freed(page_address(page),
1794                                            numpages * PAGE_SIZE);
1795         }
1796
1797         /*
1798          * The return value is ignored as the calls cannot fail.
1799          * Large pages for identity mappings are not used at boot time
1800          * and hence no memory allocations during large page split.
1801          */
1802         if (enable)
1803                 __set_pages_p(page, numpages);
1804         else
1805                 __set_pages_np(page, numpages);
1806
1807         /*
1808          * We should perform an IPI and flush all tlbs,
1809          * but that can deadlock->flush only current cpu:
1810          */
1811         __flush_tlb_all();
1812
1813         arch_flush_lazy_mmu_mode();
1814 }
1815
1816 #ifdef CONFIG_HIBERNATION
1817
1818 bool kernel_page_present(struct page *page)
1819 {
1820         unsigned int level;
1821         pte_t *pte;
1822
1823         if (PageHighMem(page))
1824                 return false;
1825
1826         pte = lookup_address((unsigned long)page_address(page), &level);
1827         return (pte_val(*pte) & _PAGE_PRESENT);
1828 }
1829
1830 #endif /* CONFIG_HIBERNATION */
1831
1832 #endif /* CONFIG_DEBUG_PAGEALLOC */
1833
1834 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1835                             unsigned numpages, unsigned long page_flags)
1836 {
1837         int retval = -EINVAL;
1838
1839         struct cpa_data cpa = {
1840                 .vaddr = &address,
1841                 .pfn = pfn,
1842                 .pgd = pgd,
1843                 .numpages = numpages,
1844                 .mask_set = __pgprot(0),
1845                 .mask_clr = __pgprot(0),
1846                 .flags = 0,
1847         };
1848
1849         if (!(__supported_pte_mask & _PAGE_NX))
1850                 goto out;
1851
1852         if (!(page_flags & _PAGE_NX))
1853                 cpa.mask_clr = __pgprot(_PAGE_NX);
1854
1855         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1856
1857         retval = __change_page_attr_set_clr(&cpa, 0);
1858         __flush_tlb_all();
1859
1860 out:
1861         return retval;
1862 }
1863
1864 /*
1865  * The testcases use internal knowledge of the implementation that shouldn't
1866  * be exposed to the rest of the kernel. Include these directly here.
1867  */
1868 #ifdef CONFIG_CPA_DEBUG
1869 #include "pageattr-test.c"
1870 #endif