]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
Merge tag 'upstream-3.12-rc1' of git://git.infradead.org/linux-ubi
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~host_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         vcpu->arch.cr3 = cr3;
686         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
687         vcpu->arch.mmu.new_cr3(vcpu);
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr3);
691
692 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
693 {
694         if (cr8 & CR8_RESERVED_BITS)
695                 return 1;
696         if (irqchip_in_kernel(vcpu->kvm))
697                 kvm_lapic_set_tpr(vcpu, cr8);
698         else
699                 vcpu->arch.cr8 = cr8;
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr8);
703
704 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
705 {
706         if (irqchip_in_kernel(vcpu->kvm))
707                 return kvm_lapic_get_cr8(vcpu);
708         else
709                 return vcpu->arch.cr8;
710 }
711 EXPORT_SYMBOL_GPL(kvm_get_cr8);
712
713 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
714 {
715         unsigned long dr7;
716
717         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
718                 dr7 = vcpu->arch.guest_debug_dr7;
719         else
720                 dr7 = vcpu->arch.dr7;
721         kvm_x86_ops->set_dr7(vcpu, dr7);
722         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
723 }
724
725 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
726 {
727         switch (dr) {
728         case 0 ... 3:
729                 vcpu->arch.db[dr] = val;
730                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
731                         vcpu->arch.eff_db[dr] = val;
732                 break;
733         case 4:
734                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
735                         return 1; /* #UD */
736                 /* fall through */
737         case 6:
738                 if (val & 0xffffffff00000000ULL)
739                         return -1; /* #GP */
740                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
741                 break;
742         case 5:
743                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744                         return 1; /* #UD */
745                 /* fall through */
746         default: /* 7 */
747                 if (val & 0xffffffff00000000ULL)
748                         return -1; /* #GP */
749                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
750                 kvm_update_dr7(vcpu);
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
758 {
759         int res;
760
761         res = __kvm_set_dr(vcpu, dr, val);
762         if (res > 0)
763                 kvm_queue_exception(vcpu, UD_VECTOR);
764         else if (res < 0)
765                 kvm_inject_gp(vcpu, 0);
766
767         return res;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_dr);
770
771 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773         switch (dr) {
774         case 0 ... 3:
775                 *val = vcpu->arch.db[dr];
776                 break;
777         case 4:
778                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779                         return 1;
780                 /* fall through */
781         case 6:
782                 *val = vcpu->arch.dr6;
783                 break;
784         case 5:
785                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786                         return 1;
787                 /* fall through */
788         default: /* 7 */
789                 *val = vcpu->arch.dr7;
790                 break;
791         }
792
793         return 0;
794 }
795
796 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
797 {
798         if (_kvm_get_dr(vcpu, dr, val)) {
799                 kvm_queue_exception(vcpu, UD_VECTOR);
800                 return 1;
801         }
802         return 0;
803 }
804 EXPORT_SYMBOL_GPL(kvm_get_dr);
805
806 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
807 {
808         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
809         u64 data;
810         int err;
811
812         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
813         if (err)
814                 return err;
815         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
816         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
817         return err;
818 }
819 EXPORT_SYMBOL_GPL(kvm_rdpmc);
820
821 /*
822  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
823  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
824  *
825  * This list is modified at module load time to reflect the
826  * capabilities of the host cpu. This capabilities test skips MSRs that are
827  * kvm-specific. Those are put in the beginning of the list.
828  */
829
830 #define KVM_SAVE_MSRS_BEGIN     10
831 static u32 msrs_to_save[] = {
832         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
833         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
834         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
835         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
836         MSR_KVM_PV_EOI_EN,
837         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
838         MSR_STAR,
839 #ifdef CONFIG_X86_64
840         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
841 #endif
842         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
843         MSR_IA32_FEATURE_CONTROL
844 };
845
846 static unsigned num_msrs_to_save;
847
848 static const u32 emulated_msrs[] = {
849         MSR_IA32_TSC_ADJUST,
850         MSR_IA32_TSCDEADLINE,
851         MSR_IA32_MISC_ENABLE,
852         MSR_IA32_MCG_STATUS,
853         MSR_IA32_MCG_CTL,
854 };
855
856 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
857 {
858         if (efer & efer_reserved_bits)
859                 return false;
860
861         if (efer & EFER_FFXSR) {
862                 struct kvm_cpuid_entry2 *feat;
863
864                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
865                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
866                         return false;
867         }
868
869         if (efer & EFER_SVME) {
870                 struct kvm_cpuid_entry2 *feat;
871
872                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
873                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
874                         return false;
875         }
876
877         return true;
878 }
879 EXPORT_SYMBOL_GPL(kvm_valid_efer);
880
881 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
882 {
883         u64 old_efer = vcpu->arch.efer;
884
885         if (!kvm_valid_efer(vcpu, efer))
886                 return 1;
887
888         if (is_paging(vcpu)
889             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
890                 return 1;
891
892         efer &= ~EFER_LMA;
893         efer |= vcpu->arch.efer & EFER_LMA;
894
895         kvm_x86_ops->set_efer(vcpu, efer);
896
897         /* Update reserved bits */
898         if ((efer ^ old_efer) & EFER_NX)
899                 kvm_mmu_reset_context(vcpu);
900
901         return 0;
902 }
903
904 void kvm_enable_efer_bits(u64 mask)
905 {
906        efer_reserved_bits &= ~mask;
907 }
908 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
909
910
911 /*
912  * Writes msr value into into the appropriate "register".
913  * Returns 0 on success, non-0 otherwise.
914  * Assumes vcpu_load() was already called.
915  */
916 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
917 {
918         return kvm_x86_ops->set_msr(vcpu, msr);
919 }
920
921 /*
922  * Adapt set_msr() to msr_io()'s calling convention
923  */
924 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
925 {
926         struct msr_data msr;
927
928         msr.data = *data;
929         msr.index = index;
930         msr.host_initiated = true;
931         return kvm_set_msr(vcpu, &msr);
932 }
933
934 #ifdef CONFIG_X86_64
935 struct pvclock_gtod_data {
936         seqcount_t      seq;
937
938         struct { /* extract of a clocksource struct */
939                 int vclock_mode;
940                 cycle_t cycle_last;
941                 cycle_t mask;
942                 u32     mult;
943                 u32     shift;
944         } clock;
945
946         /* open coded 'struct timespec' */
947         u64             monotonic_time_snsec;
948         time_t          monotonic_time_sec;
949 };
950
951 static struct pvclock_gtod_data pvclock_gtod_data;
952
953 static void update_pvclock_gtod(struct timekeeper *tk)
954 {
955         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
956
957         write_seqcount_begin(&vdata->seq);
958
959         /* copy pvclock gtod data */
960         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
961         vdata->clock.cycle_last         = tk->clock->cycle_last;
962         vdata->clock.mask               = tk->clock->mask;
963         vdata->clock.mult               = tk->mult;
964         vdata->clock.shift              = tk->shift;
965
966         vdata->monotonic_time_sec       = tk->xtime_sec
967                                         + tk->wall_to_monotonic.tv_sec;
968         vdata->monotonic_time_snsec     = tk->xtime_nsec
969                                         + (tk->wall_to_monotonic.tv_nsec
970                                                 << tk->shift);
971         while (vdata->monotonic_time_snsec >=
972                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
973                 vdata->monotonic_time_snsec -=
974                                         ((u64)NSEC_PER_SEC) << tk->shift;
975                 vdata->monotonic_time_sec++;
976         }
977
978         write_seqcount_end(&vdata->seq);
979 }
980 #endif
981
982
983 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
984 {
985         int version;
986         int r;
987         struct pvclock_wall_clock wc;
988         struct timespec boot;
989
990         if (!wall_clock)
991                 return;
992
993         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
994         if (r)
995                 return;
996
997         if (version & 1)
998                 ++version;  /* first time write, random junk */
999
1000         ++version;
1001
1002         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1003
1004         /*
1005          * The guest calculates current wall clock time by adding
1006          * system time (updated by kvm_guest_time_update below) to the
1007          * wall clock specified here.  guest system time equals host
1008          * system time for us, thus we must fill in host boot time here.
1009          */
1010         getboottime(&boot);
1011
1012         if (kvm->arch.kvmclock_offset) {
1013                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1014                 boot = timespec_sub(boot, ts);
1015         }
1016         wc.sec = boot.tv_sec;
1017         wc.nsec = boot.tv_nsec;
1018         wc.version = version;
1019
1020         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1021
1022         version++;
1023         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1024 }
1025
1026 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1027 {
1028         uint32_t quotient, remainder;
1029
1030         /* Don't try to replace with do_div(), this one calculates
1031          * "(dividend << 32) / divisor" */
1032         __asm__ ( "divl %4"
1033                   : "=a" (quotient), "=d" (remainder)
1034                   : "0" (0), "1" (dividend), "r" (divisor) );
1035         return quotient;
1036 }
1037
1038 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1039                                s8 *pshift, u32 *pmultiplier)
1040 {
1041         uint64_t scaled64;
1042         int32_t  shift = 0;
1043         uint64_t tps64;
1044         uint32_t tps32;
1045
1046         tps64 = base_khz * 1000LL;
1047         scaled64 = scaled_khz * 1000LL;
1048         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1049                 tps64 >>= 1;
1050                 shift--;
1051         }
1052
1053         tps32 = (uint32_t)tps64;
1054         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1055                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1056                         scaled64 >>= 1;
1057                 else
1058                         tps32 <<= 1;
1059                 shift++;
1060         }
1061
1062         *pshift = shift;
1063         *pmultiplier = div_frac(scaled64, tps32);
1064
1065         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1066                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1067 }
1068
1069 static inline u64 get_kernel_ns(void)
1070 {
1071         struct timespec ts;
1072
1073         WARN_ON(preemptible());
1074         ktime_get_ts(&ts);
1075         monotonic_to_bootbased(&ts);
1076         return timespec_to_ns(&ts);
1077 }
1078
1079 #ifdef CONFIG_X86_64
1080 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1081 #endif
1082
1083 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1084 unsigned long max_tsc_khz;
1085
1086 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1087 {
1088         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1089                                    vcpu->arch.virtual_tsc_shift);
1090 }
1091
1092 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1093 {
1094         u64 v = (u64)khz * (1000000 + ppm);
1095         do_div(v, 1000000);
1096         return v;
1097 }
1098
1099 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1100 {
1101         u32 thresh_lo, thresh_hi;
1102         int use_scaling = 0;
1103
1104         /* tsc_khz can be zero if TSC calibration fails */
1105         if (this_tsc_khz == 0)
1106                 return;
1107
1108         /* Compute a scale to convert nanoseconds in TSC cycles */
1109         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1110                            &vcpu->arch.virtual_tsc_shift,
1111                            &vcpu->arch.virtual_tsc_mult);
1112         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1113
1114         /*
1115          * Compute the variation in TSC rate which is acceptable
1116          * within the range of tolerance and decide if the
1117          * rate being applied is within that bounds of the hardware
1118          * rate.  If so, no scaling or compensation need be done.
1119          */
1120         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1121         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1122         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1123                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1124                 use_scaling = 1;
1125         }
1126         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1127 }
1128
1129 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1130 {
1131         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1132                                       vcpu->arch.virtual_tsc_mult,
1133                                       vcpu->arch.virtual_tsc_shift);
1134         tsc += vcpu->arch.this_tsc_write;
1135         return tsc;
1136 }
1137
1138 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1139 {
1140 #ifdef CONFIG_X86_64
1141         bool vcpus_matched;
1142         bool do_request = false;
1143         struct kvm_arch *ka = &vcpu->kvm->arch;
1144         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1145
1146         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1147                          atomic_read(&vcpu->kvm->online_vcpus));
1148
1149         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1150                 if (!ka->use_master_clock)
1151                         do_request = 1;
1152
1153         if (!vcpus_matched && ka->use_master_clock)
1154                         do_request = 1;
1155
1156         if (do_request)
1157                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1158
1159         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1160                             atomic_read(&vcpu->kvm->online_vcpus),
1161                             ka->use_master_clock, gtod->clock.vclock_mode);
1162 #endif
1163 }
1164
1165 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1166 {
1167         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1168         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1169 }
1170
1171 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1172 {
1173         struct kvm *kvm = vcpu->kvm;
1174         u64 offset, ns, elapsed;
1175         unsigned long flags;
1176         s64 usdiff;
1177         bool matched;
1178         u64 data = msr->data;
1179
1180         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1181         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1182         ns = get_kernel_ns();
1183         elapsed = ns - kvm->arch.last_tsc_nsec;
1184
1185         if (vcpu->arch.virtual_tsc_khz) {
1186                 int faulted = 0;
1187
1188                 /* n.b - signed multiplication and division required */
1189                 usdiff = data - kvm->arch.last_tsc_write;
1190 #ifdef CONFIG_X86_64
1191                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1192 #else
1193                 /* do_div() only does unsigned */
1194                 asm("1: idivl %[divisor]\n"
1195                     "2: xor %%edx, %%edx\n"
1196                     "   movl $0, %[faulted]\n"
1197                     "3:\n"
1198                     ".section .fixup,\"ax\"\n"
1199                     "4: movl $1, %[faulted]\n"
1200                     "   jmp  3b\n"
1201                     ".previous\n"
1202
1203                 _ASM_EXTABLE(1b, 4b)
1204
1205                 : "=A"(usdiff), [faulted] "=r" (faulted)
1206                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1207
1208 #endif
1209                 do_div(elapsed, 1000);
1210                 usdiff -= elapsed;
1211                 if (usdiff < 0)
1212                         usdiff = -usdiff;
1213
1214                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1215                 if (faulted)
1216                         usdiff = USEC_PER_SEC;
1217         } else
1218                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1219
1220         /*
1221          * Special case: TSC write with a small delta (1 second) of virtual
1222          * cycle time against real time is interpreted as an attempt to
1223          * synchronize the CPU.
1224          *
1225          * For a reliable TSC, we can match TSC offsets, and for an unstable
1226          * TSC, we add elapsed time in this computation.  We could let the
1227          * compensation code attempt to catch up if we fall behind, but
1228          * it's better to try to match offsets from the beginning.
1229          */
1230         if (usdiff < USEC_PER_SEC &&
1231             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1232                 if (!check_tsc_unstable()) {
1233                         offset = kvm->arch.cur_tsc_offset;
1234                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1235                 } else {
1236                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1237                         data += delta;
1238                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1239                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1240                 }
1241                 matched = true;
1242         } else {
1243                 /*
1244                  * We split periods of matched TSC writes into generations.
1245                  * For each generation, we track the original measured
1246                  * nanosecond time, offset, and write, so if TSCs are in
1247                  * sync, we can match exact offset, and if not, we can match
1248                  * exact software computation in compute_guest_tsc()
1249                  *
1250                  * These values are tracked in kvm->arch.cur_xxx variables.
1251                  */
1252                 kvm->arch.cur_tsc_generation++;
1253                 kvm->arch.cur_tsc_nsec = ns;
1254                 kvm->arch.cur_tsc_write = data;
1255                 kvm->arch.cur_tsc_offset = offset;
1256                 matched = false;
1257                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1258                          kvm->arch.cur_tsc_generation, data);
1259         }
1260
1261         /*
1262          * We also track th most recent recorded KHZ, write and time to
1263          * allow the matching interval to be extended at each write.
1264          */
1265         kvm->arch.last_tsc_nsec = ns;
1266         kvm->arch.last_tsc_write = data;
1267         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1268
1269         /* Reset of TSC must disable overshoot protection below */
1270         vcpu->arch.hv_clock.tsc_timestamp = 0;
1271         vcpu->arch.last_guest_tsc = data;
1272
1273         /* Keep track of which generation this VCPU has synchronized to */
1274         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1275         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1276         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1277
1278         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1279                 update_ia32_tsc_adjust_msr(vcpu, offset);
1280         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1281         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1282
1283         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1284         if (matched)
1285                 kvm->arch.nr_vcpus_matched_tsc++;
1286         else
1287                 kvm->arch.nr_vcpus_matched_tsc = 0;
1288
1289         kvm_track_tsc_matching(vcpu);
1290         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1291 }
1292
1293 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1294
1295 #ifdef CONFIG_X86_64
1296
1297 static cycle_t read_tsc(void)
1298 {
1299         cycle_t ret;
1300         u64 last;
1301
1302         /*
1303          * Empirically, a fence (of type that depends on the CPU)
1304          * before rdtsc is enough to ensure that rdtsc is ordered
1305          * with respect to loads.  The various CPU manuals are unclear
1306          * as to whether rdtsc can be reordered with later loads,
1307          * but no one has ever seen it happen.
1308          */
1309         rdtsc_barrier();
1310         ret = (cycle_t)vget_cycles();
1311
1312         last = pvclock_gtod_data.clock.cycle_last;
1313
1314         if (likely(ret >= last))
1315                 return ret;
1316
1317         /*
1318          * GCC likes to generate cmov here, but this branch is extremely
1319          * predictable (it's just a funciton of time and the likely is
1320          * very likely) and there's a data dependence, so force GCC
1321          * to generate a branch instead.  I don't barrier() because
1322          * we don't actually need a barrier, and if this function
1323          * ever gets inlined it will generate worse code.
1324          */
1325         asm volatile ("");
1326         return last;
1327 }
1328
1329 static inline u64 vgettsc(cycle_t *cycle_now)
1330 {
1331         long v;
1332         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1333
1334         *cycle_now = read_tsc();
1335
1336         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1337         return v * gtod->clock.mult;
1338 }
1339
1340 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1341 {
1342         unsigned long seq;
1343         u64 ns;
1344         int mode;
1345         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347         ts->tv_nsec = 0;
1348         do {
1349                 seq = read_seqcount_begin(&gtod->seq);
1350                 mode = gtod->clock.vclock_mode;
1351                 ts->tv_sec = gtod->monotonic_time_sec;
1352                 ns = gtod->monotonic_time_snsec;
1353                 ns += vgettsc(cycle_now);
1354                 ns >>= gtod->clock.shift;
1355         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1356         timespec_add_ns(ts, ns);
1357
1358         return mode;
1359 }
1360
1361 /* returns true if host is using tsc clocksource */
1362 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1363 {
1364         struct timespec ts;
1365
1366         /* checked again under seqlock below */
1367         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1368                 return false;
1369
1370         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1371                 return false;
1372
1373         monotonic_to_bootbased(&ts);
1374         *kernel_ns = timespec_to_ns(&ts);
1375
1376         return true;
1377 }
1378 #endif
1379
1380 /*
1381  *
1382  * Assuming a stable TSC across physical CPUS, and a stable TSC
1383  * across virtual CPUs, the following condition is possible.
1384  * Each numbered line represents an event visible to both
1385  * CPUs at the next numbered event.
1386  *
1387  * "timespecX" represents host monotonic time. "tscX" represents
1388  * RDTSC value.
1389  *
1390  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1391  *
1392  * 1.  read timespec0,tsc0
1393  * 2.                                   | timespec1 = timespec0 + N
1394  *                                      | tsc1 = tsc0 + M
1395  * 3. transition to guest               | transition to guest
1396  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1397  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1398  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1399  *
1400  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1401  *
1402  *      - ret0 < ret1
1403  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1404  *              ...
1405  *      - 0 < N - M => M < N
1406  *
1407  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1408  * always the case (the difference between two distinct xtime instances
1409  * might be smaller then the difference between corresponding TSC reads,
1410  * when updating guest vcpus pvclock areas).
1411  *
1412  * To avoid that problem, do not allow visibility of distinct
1413  * system_timestamp/tsc_timestamp values simultaneously: use a master
1414  * copy of host monotonic time values. Update that master copy
1415  * in lockstep.
1416  *
1417  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1418  *
1419  */
1420
1421 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1422 {
1423 #ifdef CONFIG_X86_64
1424         struct kvm_arch *ka = &kvm->arch;
1425         int vclock_mode;
1426         bool host_tsc_clocksource, vcpus_matched;
1427
1428         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1429                         atomic_read(&kvm->online_vcpus));
1430
1431         /*
1432          * If the host uses TSC clock, then passthrough TSC as stable
1433          * to the guest.
1434          */
1435         host_tsc_clocksource = kvm_get_time_and_clockread(
1436                                         &ka->master_kernel_ns,
1437                                         &ka->master_cycle_now);
1438
1439         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1440
1441         if (ka->use_master_clock)
1442                 atomic_set(&kvm_guest_has_master_clock, 1);
1443
1444         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1445         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1446                                         vcpus_matched);
1447 #endif
1448 }
1449
1450 static void kvm_gen_update_masterclock(struct kvm *kvm)
1451 {
1452 #ifdef CONFIG_X86_64
1453         int i;
1454         struct kvm_vcpu *vcpu;
1455         struct kvm_arch *ka = &kvm->arch;
1456
1457         spin_lock(&ka->pvclock_gtod_sync_lock);
1458         kvm_make_mclock_inprogress_request(kvm);
1459         /* no guest entries from this point */
1460         pvclock_update_vm_gtod_copy(kvm);
1461
1462         kvm_for_each_vcpu(i, vcpu, kvm)
1463                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1464
1465         /* guest entries allowed */
1466         kvm_for_each_vcpu(i, vcpu, kvm)
1467                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1468
1469         spin_unlock(&ka->pvclock_gtod_sync_lock);
1470 #endif
1471 }
1472
1473 static int kvm_guest_time_update(struct kvm_vcpu *v)
1474 {
1475         unsigned long flags, this_tsc_khz;
1476         struct kvm_vcpu_arch *vcpu = &v->arch;
1477         struct kvm_arch *ka = &v->kvm->arch;
1478         s64 kernel_ns, max_kernel_ns;
1479         u64 tsc_timestamp, host_tsc;
1480         struct pvclock_vcpu_time_info guest_hv_clock;
1481         u8 pvclock_flags;
1482         bool use_master_clock;
1483
1484         kernel_ns = 0;
1485         host_tsc = 0;
1486
1487         /*
1488          * If the host uses TSC clock, then passthrough TSC as stable
1489          * to the guest.
1490          */
1491         spin_lock(&ka->pvclock_gtod_sync_lock);
1492         use_master_clock = ka->use_master_clock;
1493         if (use_master_clock) {
1494                 host_tsc = ka->master_cycle_now;
1495                 kernel_ns = ka->master_kernel_ns;
1496         }
1497         spin_unlock(&ka->pvclock_gtod_sync_lock);
1498
1499         /* Keep irq disabled to prevent changes to the clock */
1500         local_irq_save(flags);
1501         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1502         if (unlikely(this_tsc_khz == 0)) {
1503                 local_irq_restore(flags);
1504                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1505                 return 1;
1506         }
1507         if (!use_master_clock) {
1508                 host_tsc = native_read_tsc();
1509                 kernel_ns = get_kernel_ns();
1510         }
1511
1512         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1513
1514         /*
1515          * We may have to catch up the TSC to match elapsed wall clock
1516          * time for two reasons, even if kvmclock is used.
1517          *   1) CPU could have been running below the maximum TSC rate
1518          *   2) Broken TSC compensation resets the base at each VCPU
1519          *      entry to avoid unknown leaps of TSC even when running
1520          *      again on the same CPU.  This may cause apparent elapsed
1521          *      time to disappear, and the guest to stand still or run
1522          *      very slowly.
1523          */
1524         if (vcpu->tsc_catchup) {
1525                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1526                 if (tsc > tsc_timestamp) {
1527                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1528                         tsc_timestamp = tsc;
1529                 }
1530         }
1531
1532         local_irq_restore(flags);
1533
1534         if (!vcpu->pv_time_enabled)
1535                 return 0;
1536
1537         /*
1538          * Time as measured by the TSC may go backwards when resetting the base
1539          * tsc_timestamp.  The reason for this is that the TSC resolution is
1540          * higher than the resolution of the other clock scales.  Thus, many
1541          * possible measurments of the TSC correspond to one measurement of any
1542          * other clock, and so a spread of values is possible.  This is not a
1543          * problem for the computation of the nanosecond clock; with TSC rates
1544          * around 1GHZ, there can only be a few cycles which correspond to one
1545          * nanosecond value, and any path through this code will inevitably
1546          * take longer than that.  However, with the kernel_ns value itself,
1547          * the precision may be much lower, down to HZ granularity.  If the
1548          * first sampling of TSC against kernel_ns ends in the low part of the
1549          * range, and the second in the high end of the range, we can get:
1550          *
1551          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1552          *
1553          * As the sampling errors potentially range in the thousands of cycles,
1554          * it is possible such a time value has already been observed by the
1555          * guest.  To protect against this, we must compute the system time as
1556          * observed by the guest and ensure the new system time is greater.
1557          */
1558         max_kernel_ns = 0;
1559         if (vcpu->hv_clock.tsc_timestamp) {
1560                 max_kernel_ns = vcpu->last_guest_tsc -
1561                                 vcpu->hv_clock.tsc_timestamp;
1562                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1563                                     vcpu->hv_clock.tsc_to_system_mul,
1564                                     vcpu->hv_clock.tsc_shift);
1565                 max_kernel_ns += vcpu->last_kernel_ns;
1566         }
1567
1568         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1569                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1570                                    &vcpu->hv_clock.tsc_shift,
1571                                    &vcpu->hv_clock.tsc_to_system_mul);
1572                 vcpu->hw_tsc_khz = this_tsc_khz;
1573         }
1574
1575         /* with a master <monotonic time, tsc value> tuple,
1576          * pvclock clock reads always increase at the (scaled) rate
1577          * of guest TSC - no need to deal with sampling errors.
1578          */
1579         if (!use_master_clock) {
1580                 if (max_kernel_ns > kernel_ns)
1581                         kernel_ns = max_kernel_ns;
1582         }
1583         /* With all the info we got, fill in the values */
1584         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1585         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1586         vcpu->last_kernel_ns = kernel_ns;
1587         vcpu->last_guest_tsc = tsc_timestamp;
1588
1589         /*
1590          * The interface expects us to write an even number signaling that the
1591          * update is finished. Since the guest won't see the intermediate
1592          * state, we just increase by 2 at the end.
1593          */
1594         vcpu->hv_clock.version += 2;
1595
1596         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1597                 &guest_hv_clock, sizeof(guest_hv_clock))))
1598                 return 0;
1599
1600         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1601         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1602
1603         if (vcpu->pvclock_set_guest_stopped_request) {
1604                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1605                 vcpu->pvclock_set_guest_stopped_request = false;
1606         }
1607
1608         /* If the host uses TSC clocksource, then it is stable */
1609         if (use_master_clock)
1610                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1611
1612         vcpu->hv_clock.flags = pvclock_flags;
1613
1614         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1615                                 &vcpu->hv_clock,
1616                                 sizeof(vcpu->hv_clock));
1617         return 0;
1618 }
1619
1620 /*
1621  * kvmclock updates which are isolated to a given vcpu, such as
1622  * vcpu->cpu migration, should not allow system_timestamp from
1623  * the rest of the vcpus to remain static. Otherwise ntp frequency
1624  * correction applies to one vcpu's system_timestamp but not
1625  * the others.
1626  *
1627  * So in those cases, request a kvmclock update for all vcpus.
1628  * The worst case for a remote vcpu to update its kvmclock
1629  * is then bounded by maximum nohz sleep latency.
1630  */
1631
1632 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1633 {
1634         int i;
1635         struct kvm *kvm = v->kvm;
1636         struct kvm_vcpu *vcpu;
1637
1638         kvm_for_each_vcpu(i, vcpu, kvm) {
1639                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1640                 kvm_vcpu_kick(vcpu);
1641         }
1642 }
1643
1644 static bool msr_mtrr_valid(unsigned msr)
1645 {
1646         switch (msr) {
1647         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1648         case MSR_MTRRfix64K_00000:
1649         case MSR_MTRRfix16K_80000:
1650         case MSR_MTRRfix16K_A0000:
1651         case MSR_MTRRfix4K_C0000:
1652         case MSR_MTRRfix4K_C8000:
1653         case MSR_MTRRfix4K_D0000:
1654         case MSR_MTRRfix4K_D8000:
1655         case MSR_MTRRfix4K_E0000:
1656         case MSR_MTRRfix4K_E8000:
1657         case MSR_MTRRfix4K_F0000:
1658         case MSR_MTRRfix4K_F8000:
1659         case MSR_MTRRdefType:
1660         case MSR_IA32_CR_PAT:
1661                 return true;
1662         case 0x2f8:
1663                 return true;
1664         }
1665         return false;
1666 }
1667
1668 static bool valid_pat_type(unsigned t)
1669 {
1670         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1671 }
1672
1673 static bool valid_mtrr_type(unsigned t)
1674 {
1675         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1676 }
1677
1678 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1679 {
1680         int i;
1681
1682         if (!msr_mtrr_valid(msr))
1683                 return false;
1684
1685         if (msr == MSR_IA32_CR_PAT) {
1686                 for (i = 0; i < 8; i++)
1687                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1688                                 return false;
1689                 return true;
1690         } else if (msr == MSR_MTRRdefType) {
1691                 if (data & ~0xcff)
1692                         return false;
1693                 return valid_mtrr_type(data & 0xff);
1694         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1695                 for (i = 0; i < 8 ; i++)
1696                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1697                                 return false;
1698                 return true;
1699         }
1700
1701         /* variable MTRRs */
1702         return valid_mtrr_type(data & 0xff);
1703 }
1704
1705 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1706 {
1707         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1708
1709         if (!mtrr_valid(vcpu, msr, data))
1710                 return 1;
1711
1712         if (msr == MSR_MTRRdefType) {
1713                 vcpu->arch.mtrr_state.def_type = data;
1714                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1715         } else if (msr == MSR_MTRRfix64K_00000)
1716                 p[0] = data;
1717         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1718                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1719         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1720                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1721         else if (msr == MSR_IA32_CR_PAT)
1722                 vcpu->arch.pat = data;
1723         else {  /* Variable MTRRs */
1724                 int idx, is_mtrr_mask;
1725                 u64 *pt;
1726
1727                 idx = (msr - 0x200) / 2;
1728                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1729                 if (!is_mtrr_mask)
1730                         pt =
1731                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1732                 else
1733                         pt =
1734                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1735                 *pt = data;
1736         }
1737
1738         kvm_mmu_reset_context(vcpu);
1739         return 0;
1740 }
1741
1742 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1743 {
1744         u64 mcg_cap = vcpu->arch.mcg_cap;
1745         unsigned bank_num = mcg_cap & 0xff;
1746
1747         switch (msr) {
1748         case MSR_IA32_MCG_STATUS:
1749                 vcpu->arch.mcg_status = data;
1750                 break;
1751         case MSR_IA32_MCG_CTL:
1752                 if (!(mcg_cap & MCG_CTL_P))
1753                         return 1;
1754                 if (data != 0 && data != ~(u64)0)
1755                         return -1;
1756                 vcpu->arch.mcg_ctl = data;
1757                 break;
1758         default:
1759                 if (msr >= MSR_IA32_MC0_CTL &&
1760                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1761                         u32 offset = msr - MSR_IA32_MC0_CTL;
1762                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1763                          * some Linux kernels though clear bit 10 in bank 4 to
1764                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1765                          * this to avoid an uncatched #GP in the guest
1766                          */
1767                         if ((offset & 0x3) == 0 &&
1768                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1769                                 return -1;
1770                         vcpu->arch.mce_banks[offset] = data;
1771                         break;
1772                 }
1773                 return 1;
1774         }
1775         return 0;
1776 }
1777
1778 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1779 {
1780         struct kvm *kvm = vcpu->kvm;
1781         int lm = is_long_mode(vcpu);
1782         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1783                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1784         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1785                 : kvm->arch.xen_hvm_config.blob_size_32;
1786         u32 page_num = data & ~PAGE_MASK;
1787         u64 page_addr = data & PAGE_MASK;
1788         u8 *page;
1789         int r;
1790
1791         r = -E2BIG;
1792         if (page_num >= blob_size)
1793                 goto out;
1794         r = -ENOMEM;
1795         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1796         if (IS_ERR(page)) {
1797                 r = PTR_ERR(page);
1798                 goto out;
1799         }
1800         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1801                 goto out_free;
1802         r = 0;
1803 out_free:
1804         kfree(page);
1805 out:
1806         return r;
1807 }
1808
1809 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1810 {
1811         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1812 }
1813
1814 static bool kvm_hv_msr_partition_wide(u32 msr)
1815 {
1816         bool r = false;
1817         switch (msr) {
1818         case HV_X64_MSR_GUEST_OS_ID:
1819         case HV_X64_MSR_HYPERCALL:
1820                 r = true;
1821                 break;
1822         }
1823
1824         return r;
1825 }
1826
1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1828 {
1829         struct kvm *kvm = vcpu->kvm;
1830
1831         switch (msr) {
1832         case HV_X64_MSR_GUEST_OS_ID:
1833                 kvm->arch.hv_guest_os_id = data;
1834                 /* setting guest os id to zero disables hypercall page */
1835                 if (!kvm->arch.hv_guest_os_id)
1836                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1837                 break;
1838         case HV_X64_MSR_HYPERCALL: {
1839                 u64 gfn;
1840                 unsigned long addr;
1841                 u8 instructions[4];
1842
1843                 /* if guest os id is not set hypercall should remain disabled */
1844                 if (!kvm->arch.hv_guest_os_id)
1845                         break;
1846                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1847                         kvm->arch.hv_hypercall = data;
1848                         break;
1849                 }
1850                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1851                 addr = gfn_to_hva(kvm, gfn);
1852                 if (kvm_is_error_hva(addr))
1853                         return 1;
1854                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1855                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1856                 if (__copy_to_user((void __user *)addr, instructions, 4))
1857                         return 1;
1858                 kvm->arch.hv_hypercall = data;
1859                 break;
1860         }
1861         default:
1862                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1863                             "data 0x%llx\n", msr, data);
1864                 return 1;
1865         }
1866         return 0;
1867 }
1868
1869 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1870 {
1871         switch (msr) {
1872         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1873                 unsigned long addr;
1874
1875                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1876                         vcpu->arch.hv_vapic = data;
1877                         break;
1878                 }
1879                 addr = gfn_to_hva(vcpu->kvm, data >>
1880                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1881                 if (kvm_is_error_hva(addr))
1882                         return 1;
1883                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1884                         return 1;
1885                 vcpu->arch.hv_vapic = data;
1886                 break;
1887         }
1888         case HV_X64_MSR_EOI:
1889                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1890         case HV_X64_MSR_ICR:
1891                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1892         case HV_X64_MSR_TPR:
1893                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1894         default:
1895                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1896                             "data 0x%llx\n", msr, data);
1897                 return 1;
1898         }
1899
1900         return 0;
1901 }
1902
1903 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1904 {
1905         gpa_t gpa = data & ~0x3f;
1906
1907         /* Bits 2:5 are reserved, Should be zero */
1908         if (data & 0x3c)
1909                 return 1;
1910
1911         vcpu->arch.apf.msr_val = data;
1912
1913         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1914                 kvm_clear_async_pf_completion_queue(vcpu);
1915                 kvm_async_pf_hash_reset(vcpu);
1916                 return 0;
1917         }
1918
1919         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1920                                         sizeof(u32)))
1921                 return 1;
1922
1923         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1924         kvm_async_pf_wakeup_all(vcpu);
1925         return 0;
1926 }
1927
1928 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1929 {
1930         vcpu->arch.pv_time_enabled = false;
1931 }
1932
1933 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1934 {
1935         u64 delta;
1936
1937         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1938                 return;
1939
1940         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1941         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1942         vcpu->arch.st.accum_steal = delta;
1943 }
1944
1945 static void record_steal_time(struct kvm_vcpu *vcpu)
1946 {
1947         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1948                 return;
1949
1950         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1951                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1952                 return;
1953
1954         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1955         vcpu->arch.st.steal.version += 2;
1956         vcpu->arch.st.accum_steal = 0;
1957
1958         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1959                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1960 }
1961
1962 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1963 {
1964         bool pr = false;
1965         u32 msr = msr_info->index;
1966         u64 data = msr_info->data;
1967
1968         switch (msr) {
1969         case MSR_AMD64_NB_CFG:
1970         case MSR_IA32_UCODE_REV:
1971         case MSR_IA32_UCODE_WRITE:
1972         case MSR_VM_HSAVE_PA:
1973         case MSR_AMD64_PATCH_LOADER:
1974         case MSR_AMD64_BU_CFG2:
1975                 break;
1976
1977         case MSR_EFER:
1978                 return set_efer(vcpu, data);
1979         case MSR_K7_HWCR:
1980                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1981                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1982                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1983                 if (data != 0) {
1984                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1985                                     data);
1986                         return 1;
1987                 }
1988                 break;
1989         case MSR_FAM10H_MMIO_CONF_BASE:
1990                 if (data != 0) {
1991                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1992                                     "0x%llx\n", data);
1993                         return 1;
1994                 }
1995                 break;
1996         case MSR_IA32_DEBUGCTLMSR:
1997                 if (!data) {
1998                         /* We support the non-activated case already */
1999                         break;
2000                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2001                         /* Values other than LBR and BTF are vendor-specific,
2002                            thus reserved and should throw a #GP */
2003                         return 1;
2004                 }
2005                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2006                             __func__, data);
2007                 break;
2008         case 0x200 ... 0x2ff:
2009                 return set_msr_mtrr(vcpu, msr, data);
2010         case MSR_IA32_APICBASE:
2011                 kvm_set_apic_base(vcpu, data);
2012                 break;
2013         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2014                 return kvm_x2apic_msr_write(vcpu, msr, data);
2015         case MSR_IA32_TSCDEADLINE:
2016                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2017                 break;
2018         case MSR_IA32_TSC_ADJUST:
2019                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2020                         if (!msr_info->host_initiated) {
2021                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2022                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2023                         }
2024                         vcpu->arch.ia32_tsc_adjust_msr = data;
2025                 }
2026                 break;
2027         case MSR_IA32_MISC_ENABLE:
2028                 vcpu->arch.ia32_misc_enable_msr = data;
2029                 break;
2030         case MSR_KVM_WALL_CLOCK_NEW:
2031         case MSR_KVM_WALL_CLOCK:
2032                 vcpu->kvm->arch.wall_clock = data;
2033                 kvm_write_wall_clock(vcpu->kvm, data);
2034                 break;
2035         case MSR_KVM_SYSTEM_TIME_NEW:
2036         case MSR_KVM_SYSTEM_TIME: {
2037                 u64 gpa_offset;
2038                 kvmclock_reset(vcpu);
2039
2040                 vcpu->arch.time = data;
2041                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2042
2043                 /* we verify if the enable bit is set... */
2044                 if (!(data & 1))
2045                         break;
2046
2047                 gpa_offset = data & ~(PAGE_MASK | 1);
2048
2049                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2050                      &vcpu->arch.pv_time, data & ~1ULL,
2051                      sizeof(struct pvclock_vcpu_time_info)))
2052                         vcpu->arch.pv_time_enabled = false;
2053                 else
2054                         vcpu->arch.pv_time_enabled = true;
2055
2056                 break;
2057         }
2058         case MSR_KVM_ASYNC_PF_EN:
2059                 if (kvm_pv_enable_async_pf(vcpu, data))
2060                         return 1;
2061                 break;
2062         case MSR_KVM_STEAL_TIME:
2063
2064                 if (unlikely(!sched_info_on()))
2065                         return 1;
2066
2067                 if (data & KVM_STEAL_RESERVED_MASK)
2068                         return 1;
2069
2070                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2071                                                 data & KVM_STEAL_VALID_BITS,
2072                                                 sizeof(struct kvm_steal_time)))
2073                         return 1;
2074
2075                 vcpu->arch.st.msr_val = data;
2076
2077                 if (!(data & KVM_MSR_ENABLED))
2078                         break;
2079
2080                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2081
2082                 preempt_disable();
2083                 accumulate_steal_time(vcpu);
2084                 preempt_enable();
2085
2086                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2087
2088                 break;
2089         case MSR_KVM_PV_EOI_EN:
2090                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2091                         return 1;
2092                 break;
2093
2094         case MSR_IA32_MCG_CTL:
2095         case MSR_IA32_MCG_STATUS:
2096         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2097                 return set_msr_mce(vcpu, msr, data);
2098
2099         /* Performance counters are not protected by a CPUID bit,
2100          * so we should check all of them in the generic path for the sake of
2101          * cross vendor migration.
2102          * Writing a zero into the event select MSRs disables them,
2103          * which we perfectly emulate ;-). Any other value should be at least
2104          * reported, some guests depend on them.
2105          */
2106         case MSR_K7_EVNTSEL0:
2107         case MSR_K7_EVNTSEL1:
2108         case MSR_K7_EVNTSEL2:
2109         case MSR_K7_EVNTSEL3:
2110                 if (data != 0)
2111                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2112                                     "0x%x data 0x%llx\n", msr, data);
2113                 break;
2114         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2115          * so we ignore writes to make it happy.
2116          */
2117         case MSR_K7_PERFCTR0:
2118         case MSR_K7_PERFCTR1:
2119         case MSR_K7_PERFCTR2:
2120         case MSR_K7_PERFCTR3:
2121                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2122                             "0x%x data 0x%llx\n", msr, data);
2123                 break;
2124         case MSR_P6_PERFCTR0:
2125         case MSR_P6_PERFCTR1:
2126                 pr = true;
2127         case MSR_P6_EVNTSEL0:
2128         case MSR_P6_EVNTSEL1:
2129                 if (kvm_pmu_msr(vcpu, msr))
2130                         return kvm_pmu_set_msr(vcpu, msr_info);
2131
2132                 if (pr || data != 0)
2133                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2134                                     "0x%x data 0x%llx\n", msr, data);
2135                 break;
2136         case MSR_K7_CLK_CTL:
2137                 /*
2138                  * Ignore all writes to this no longer documented MSR.
2139                  * Writes are only relevant for old K7 processors,
2140                  * all pre-dating SVM, but a recommended workaround from
2141                  * AMD for these chips. It is possible to specify the
2142                  * affected processor models on the command line, hence
2143                  * the need to ignore the workaround.
2144                  */
2145                 break;
2146         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2147                 if (kvm_hv_msr_partition_wide(msr)) {
2148                         int r;
2149                         mutex_lock(&vcpu->kvm->lock);
2150                         r = set_msr_hyperv_pw(vcpu, msr, data);
2151                         mutex_unlock(&vcpu->kvm->lock);
2152                         return r;
2153                 } else
2154                         return set_msr_hyperv(vcpu, msr, data);
2155                 break;
2156         case MSR_IA32_BBL_CR_CTL3:
2157                 /* Drop writes to this legacy MSR -- see rdmsr
2158                  * counterpart for further detail.
2159                  */
2160                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2161                 break;
2162         case MSR_AMD64_OSVW_ID_LENGTH:
2163                 if (!guest_cpuid_has_osvw(vcpu))
2164                         return 1;
2165                 vcpu->arch.osvw.length = data;
2166                 break;
2167         case MSR_AMD64_OSVW_STATUS:
2168                 if (!guest_cpuid_has_osvw(vcpu))
2169                         return 1;
2170                 vcpu->arch.osvw.status = data;
2171                 break;
2172         default:
2173                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2174                         return xen_hvm_config(vcpu, data);
2175                 if (kvm_pmu_msr(vcpu, msr))
2176                         return kvm_pmu_set_msr(vcpu, msr_info);
2177                 if (!ignore_msrs) {
2178                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2179                                     msr, data);
2180                         return 1;
2181                 } else {
2182                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2183                                     msr, data);
2184                         break;
2185                 }
2186         }
2187         return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2190
2191
2192 /*
2193  * Reads an msr value (of 'msr_index') into 'pdata'.
2194  * Returns 0 on success, non-0 otherwise.
2195  * Assumes vcpu_load() was already called.
2196  */
2197 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2198 {
2199         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2200 }
2201
2202 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203 {
2204         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2205
2206         if (!msr_mtrr_valid(msr))
2207                 return 1;
2208
2209         if (msr == MSR_MTRRdefType)
2210                 *pdata = vcpu->arch.mtrr_state.def_type +
2211                          (vcpu->arch.mtrr_state.enabled << 10);
2212         else if (msr == MSR_MTRRfix64K_00000)
2213                 *pdata = p[0];
2214         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2215                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2216         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2217                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2218         else if (msr == MSR_IA32_CR_PAT)
2219                 *pdata = vcpu->arch.pat;
2220         else {  /* Variable MTRRs */
2221                 int idx, is_mtrr_mask;
2222                 u64 *pt;
2223
2224                 idx = (msr - 0x200) / 2;
2225                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2226                 if (!is_mtrr_mask)
2227                         pt =
2228                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2229                 else
2230                         pt =
2231                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2232                 *pdata = *pt;
2233         }
2234
2235         return 0;
2236 }
2237
2238 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2239 {
2240         u64 data;
2241         u64 mcg_cap = vcpu->arch.mcg_cap;
2242         unsigned bank_num = mcg_cap & 0xff;
2243
2244         switch (msr) {
2245         case MSR_IA32_P5_MC_ADDR:
2246         case MSR_IA32_P5_MC_TYPE:
2247                 data = 0;
2248                 break;
2249         case MSR_IA32_MCG_CAP:
2250                 data = vcpu->arch.mcg_cap;
2251                 break;
2252         case MSR_IA32_MCG_CTL:
2253                 if (!(mcg_cap & MCG_CTL_P))
2254                         return 1;
2255                 data = vcpu->arch.mcg_ctl;
2256                 break;
2257         case MSR_IA32_MCG_STATUS:
2258                 data = vcpu->arch.mcg_status;
2259                 break;
2260         default:
2261                 if (msr >= MSR_IA32_MC0_CTL &&
2262                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2263                         u32 offset = msr - MSR_IA32_MC0_CTL;
2264                         data = vcpu->arch.mce_banks[offset];
2265                         break;
2266                 }
2267                 return 1;
2268         }
2269         *pdata = data;
2270         return 0;
2271 }
2272
2273 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2274 {
2275         u64 data = 0;
2276         struct kvm *kvm = vcpu->kvm;
2277
2278         switch (msr) {
2279         case HV_X64_MSR_GUEST_OS_ID:
2280                 data = kvm->arch.hv_guest_os_id;
2281                 break;
2282         case HV_X64_MSR_HYPERCALL:
2283                 data = kvm->arch.hv_hypercall;
2284                 break;
2285         default:
2286                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2287                 return 1;
2288         }
2289
2290         *pdata = data;
2291         return 0;
2292 }
2293
2294 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2295 {
2296         u64 data = 0;
2297
2298         switch (msr) {
2299         case HV_X64_MSR_VP_INDEX: {
2300                 int r;
2301                 struct kvm_vcpu *v;
2302                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2303                         if (v == vcpu)
2304                                 data = r;
2305                 break;
2306         }
2307         case HV_X64_MSR_EOI:
2308                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2309         case HV_X64_MSR_ICR:
2310                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2311         case HV_X64_MSR_TPR:
2312                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2313         case HV_X64_MSR_APIC_ASSIST_PAGE:
2314                 data = vcpu->arch.hv_vapic;
2315                 break;
2316         default:
2317                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2318                 return 1;
2319         }
2320         *pdata = data;
2321         return 0;
2322 }
2323
2324 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327
2328         switch (msr) {
2329         case MSR_IA32_PLATFORM_ID:
2330         case MSR_IA32_EBL_CR_POWERON:
2331         case MSR_IA32_DEBUGCTLMSR:
2332         case MSR_IA32_LASTBRANCHFROMIP:
2333         case MSR_IA32_LASTBRANCHTOIP:
2334         case MSR_IA32_LASTINTFROMIP:
2335         case MSR_IA32_LASTINTTOIP:
2336         case MSR_K8_SYSCFG:
2337         case MSR_K7_HWCR:
2338         case MSR_VM_HSAVE_PA:
2339         case MSR_K7_EVNTSEL0:
2340         case MSR_K7_PERFCTR0:
2341         case MSR_K8_INT_PENDING_MSG:
2342         case MSR_AMD64_NB_CFG:
2343         case MSR_FAM10H_MMIO_CONF_BASE:
2344         case MSR_AMD64_BU_CFG2:
2345                 data = 0;
2346                 break;
2347         case MSR_P6_PERFCTR0:
2348         case MSR_P6_PERFCTR1:
2349         case MSR_P6_EVNTSEL0:
2350         case MSR_P6_EVNTSEL1:
2351                 if (kvm_pmu_msr(vcpu, msr))
2352                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2353                 data = 0;
2354                 break;
2355         case MSR_IA32_UCODE_REV:
2356                 data = 0x100000000ULL;
2357                 break;
2358         case MSR_MTRRcap:
2359                 data = 0x500 | KVM_NR_VAR_MTRR;
2360                 break;
2361         case 0x200 ... 0x2ff:
2362                 return get_msr_mtrr(vcpu, msr, pdata);
2363         case 0xcd: /* fsb frequency */
2364                 data = 3;
2365                 break;
2366                 /*
2367                  * MSR_EBC_FREQUENCY_ID
2368                  * Conservative value valid for even the basic CPU models.
2369                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2370                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2371                  * and 266MHz for model 3, or 4. Set Core Clock
2372                  * Frequency to System Bus Frequency Ratio to 1 (bits
2373                  * 31:24) even though these are only valid for CPU
2374                  * models > 2, however guests may end up dividing or
2375                  * multiplying by zero otherwise.
2376                  */
2377         case MSR_EBC_FREQUENCY_ID:
2378                 data = 1 << 24;
2379                 break;
2380         case MSR_IA32_APICBASE:
2381                 data = kvm_get_apic_base(vcpu);
2382                 break;
2383         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2384                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2385                 break;
2386         case MSR_IA32_TSCDEADLINE:
2387                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2388                 break;
2389         case MSR_IA32_TSC_ADJUST:
2390                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2391                 break;
2392         case MSR_IA32_MISC_ENABLE:
2393                 data = vcpu->arch.ia32_misc_enable_msr;
2394                 break;
2395         case MSR_IA32_PERF_STATUS:
2396                 /* TSC increment by tick */
2397                 data = 1000ULL;
2398                 /* CPU multiplier */
2399                 data |= (((uint64_t)4ULL) << 40);
2400                 break;
2401         case MSR_EFER:
2402                 data = vcpu->arch.efer;
2403                 break;
2404         case MSR_KVM_WALL_CLOCK:
2405         case MSR_KVM_WALL_CLOCK_NEW:
2406                 data = vcpu->kvm->arch.wall_clock;
2407                 break;
2408         case MSR_KVM_SYSTEM_TIME:
2409         case MSR_KVM_SYSTEM_TIME_NEW:
2410                 data = vcpu->arch.time;
2411                 break;
2412         case MSR_KVM_ASYNC_PF_EN:
2413                 data = vcpu->arch.apf.msr_val;
2414                 break;
2415         case MSR_KVM_STEAL_TIME:
2416                 data = vcpu->arch.st.msr_val;
2417                 break;
2418         case MSR_KVM_PV_EOI_EN:
2419                 data = vcpu->arch.pv_eoi.msr_val;
2420                 break;
2421         case MSR_IA32_P5_MC_ADDR:
2422         case MSR_IA32_P5_MC_TYPE:
2423         case MSR_IA32_MCG_CAP:
2424         case MSR_IA32_MCG_CTL:
2425         case MSR_IA32_MCG_STATUS:
2426         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2427                 return get_msr_mce(vcpu, msr, pdata);
2428         case MSR_K7_CLK_CTL:
2429                 /*
2430                  * Provide expected ramp-up count for K7. All other
2431                  * are set to zero, indicating minimum divisors for
2432                  * every field.
2433                  *
2434                  * This prevents guest kernels on AMD host with CPU
2435                  * type 6, model 8 and higher from exploding due to
2436                  * the rdmsr failing.
2437                  */
2438                 data = 0x20000000;
2439                 break;
2440         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2441                 if (kvm_hv_msr_partition_wide(msr)) {
2442                         int r;
2443                         mutex_lock(&vcpu->kvm->lock);
2444                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2445                         mutex_unlock(&vcpu->kvm->lock);
2446                         return r;
2447                 } else
2448                         return get_msr_hyperv(vcpu, msr, pdata);
2449                 break;
2450         case MSR_IA32_BBL_CR_CTL3:
2451                 /* This legacy MSR exists but isn't fully documented in current
2452                  * silicon.  It is however accessed by winxp in very narrow
2453                  * scenarios where it sets bit #19, itself documented as
2454                  * a "reserved" bit.  Best effort attempt to source coherent
2455                  * read data here should the balance of the register be
2456                  * interpreted by the guest:
2457                  *
2458                  * L2 cache control register 3: 64GB range, 256KB size,
2459                  * enabled, latency 0x1, configured
2460                  */
2461                 data = 0xbe702111;
2462                 break;
2463         case MSR_AMD64_OSVW_ID_LENGTH:
2464                 if (!guest_cpuid_has_osvw(vcpu))
2465                         return 1;
2466                 data = vcpu->arch.osvw.length;
2467                 break;
2468         case MSR_AMD64_OSVW_STATUS:
2469                 if (!guest_cpuid_has_osvw(vcpu))
2470                         return 1;
2471                 data = vcpu->arch.osvw.status;
2472                 break;
2473         default:
2474                 if (kvm_pmu_msr(vcpu, msr))
2475                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2476                 if (!ignore_msrs) {
2477                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2478                         return 1;
2479                 } else {
2480                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2481                         data = 0;
2482                 }
2483                 break;
2484         }
2485         *pdata = data;
2486         return 0;
2487 }
2488 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2489
2490 /*
2491  * Read or write a bunch of msrs. All parameters are kernel addresses.
2492  *
2493  * @return number of msrs set successfully.
2494  */
2495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2496                     struct kvm_msr_entry *entries,
2497                     int (*do_msr)(struct kvm_vcpu *vcpu,
2498                                   unsigned index, u64 *data))
2499 {
2500         int i, idx;
2501
2502         idx = srcu_read_lock(&vcpu->kvm->srcu);
2503         for (i = 0; i < msrs->nmsrs; ++i)
2504                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2505                         break;
2506         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2507
2508         return i;
2509 }
2510
2511 /*
2512  * Read or write a bunch of msrs. Parameters are user addresses.
2513  *
2514  * @return number of msrs set successfully.
2515  */
2516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2517                   int (*do_msr)(struct kvm_vcpu *vcpu,
2518                                 unsigned index, u64 *data),
2519                   int writeback)
2520 {
2521         struct kvm_msrs msrs;
2522         struct kvm_msr_entry *entries;
2523         int r, n;
2524         unsigned size;
2525
2526         r = -EFAULT;
2527         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2528                 goto out;
2529
2530         r = -E2BIG;
2531         if (msrs.nmsrs >= MAX_IO_MSRS)
2532                 goto out;
2533
2534         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2535         entries = memdup_user(user_msrs->entries, size);
2536         if (IS_ERR(entries)) {
2537                 r = PTR_ERR(entries);
2538                 goto out;
2539         }
2540
2541         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2542         if (r < 0)
2543                 goto out_free;
2544
2545         r = -EFAULT;
2546         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2547                 goto out_free;
2548
2549         r = n;
2550
2551 out_free:
2552         kfree(entries);
2553 out:
2554         return r;
2555 }
2556
2557 int kvm_dev_ioctl_check_extension(long ext)
2558 {
2559         int r;
2560
2561         switch (ext) {
2562         case KVM_CAP_IRQCHIP:
2563         case KVM_CAP_HLT:
2564         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2565         case KVM_CAP_SET_TSS_ADDR:
2566         case KVM_CAP_EXT_CPUID:
2567         case KVM_CAP_CLOCKSOURCE:
2568         case KVM_CAP_PIT:
2569         case KVM_CAP_NOP_IO_DELAY:
2570         case KVM_CAP_MP_STATE:
2571         case KVM_CAP_SYNC_MMU:
2572         case KVM_CAP_USER_NMI:
2573         case KVM_CAP_REINJECT_CONTROL:
2574         case KVM_CAP_IRQ_INJECT_STATUS:
2575         case KVM_CAP_IRQFD:
2576         case KVM_CAP_IOEVENTFD:
2577         case KVM_CAP_PIT2:
2578         case KVM_CAP_PIT_STATE2:
2579         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2580         case KVM_CAP_XEN_HVM:
2581         case KVM_CAP_ADJUST_CLOCK:
2582         case KVM_CAP_VCPU_EVENTS:
2583         case KVM_CAP_HYPERV:
2584         case KVM_CAP_HYPERV_VAPIC:
2585         case KVM_CAP_HYPERV_SPIN:
2586         case KVM_CAP_PCI_SEGMENT:
2587         case KVM_CAP_DEBUGREGS:
2588         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2589         case KVM_CAP_XSAVE:
2590         case KVM_CAP_ASYNC_PF:
2591         case KVM_CAP_GET_TSC_KHZ:
2592         case KVM_CAP_KVMCLOCK_CTRL:
2593         case KVM_CAP_READONLY_MEM:
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595         case KVM_CAP_ASSIGN_DEV_IRQ:
2596         case KVM_CAP_PCI_2_3:
2597 #endif
2598                 r = 1;
2599                 break;
2600         case KVM_CAP_COALESCED_MMIO:
2601                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2602                 break;
2603         case KVM_CAP_VAPIC:
2604                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2605                 break;
2606         case KVM_CAP_NR_VCPUS:
2607                 r = KVM_SOFT_MAX_VCPUS;
2608                 break;
2609         case KVM_CAP_MAX_VCPUS:
2610                 r = KVM_MAX_VCPUS;
2611                 break;
2612         case KVM_CAP_NR_MEMSLOTS:
2613                 r = KVM_USER_MEM_SLOTS;
2614                 break;
2615         case KVM_CAP_PV_MMU:    /* obsolete */
2616                 r = 0;
2617                 break;
2618 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2619         case KVM_CAP_IOMMU:
2620                 r = iommu_present(&pci_bus_type);
2621                 break;
2622 #endif
2623         case KVM_CAP_MCE:
2624                 r = KVM_MAX_MCE_BANKS;
2625                 break;
2626         case KVM_CAP_XCRS:
2627                 r = cpu_has_xsave;
2628                 break;
2629         case KVM_CAP_TSC_CONTROL:
2630                 r = kvm_has_tsc_control;
2631                 break;
2632         case KVM_CAP_TSC_DEADLINE_TIMER:
2633                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2634                 break;
2635         default:
2636                 r = 0;
2637                 break;
2638         }
2639         return r;
2640
2641 }
2642
2643 long kvm_arch_dev_ioctl(struct file *filp,
2644                         unsigned int ioctl, unsigned long arg)
2645 {
2646         void __user *argp = (void __user *)arg;
2647         long r;
2648
2649         switch (ioctl) {
2650         case KVM_GET_MSR_INDEX_LIST: {
2651                 struct kvm_msr_list __user *user_msr_list = argp;
2652                 struct kvm_msr_list msr_list;
2653                 unsigned n;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2657                         goto out;
2658                 n = msr_list.nmsrs;
2659                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2660                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2661                         goto out;
2662                 r = -E2BIG;
2663                 if (n < msr_list.nmsrs)
2664                         goto out;
2665                 r = -EFAULT;
2666                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2667                                  num_msrs_to_save * sizeof(u32)))
2668                         goto out;
2669                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2670                                  &emulated_msrs,
2671                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_GET_SUPPORTED_CPUID: {
2677                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2678                 struct kvm_cpuid2 cpuid;
2679
2680                 r = -EFAULT;
2681                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2682                         goto out;
2683                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2684                                                       cpuid_arg->entries);
2685                 if (r)
2686                         goto out;
2687
2688                 r = -EFAULT;
2689                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2690                         goto out;
2691                 r = 0;
2692                 break;
2693         }
2694         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2695                 u64 mce_cap;
2696
2697                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2698                 r = -EFAULT;
2699                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2700                         goto out;
2701                 r = 0;
2702                 break;
2703         }
2704         default:
2705                 r = -EINVAL;
2706         }
2707 out:
2708         return r;
2709 }
2710
2711 static void wbinvd_ipi(void *garbage)
2712 {
2713         wbinvd();
2714 }
2715
2716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2717 {
2718         return vcpu->kvm->arch.iommu_domain &&
2719                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2720 }
2721
2722 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2723 {
2724         /* Address WBINVD may be executed by guest */
2725         if (need_emulate_wbinvd(vcpu)) {
2726                 if (kvm_x86_ops->has_wbinvd_exit())
2727                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2728                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2729                         smp_call_function_single(vcpu->cpu,
2730                                         wbinvd_ipi, NULL, 1);
2731         }
2732
2733         kvm_x86_ops->vcpu_load(vcpu, cpu);
2734
2735         /* Apply any externally detected TSC adjustments (due to suspend) */
2736         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2737                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2738                 vcpu->arch.tsc_offset_adjustment = 0;
2739                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2740         }
2741
2742         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2743                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2744                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2745                 if (tsc_delta < 0)
2746                         mark_tsc_unstable("KVM discovered backwards TSC");
2747                 if (check_tsc_unstable()) {
2748                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2749                                                 vcpu->arch.last_guest_tsc);
2750                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2751                         vcpu->arch.tsc_catchup = 1;
2752                 }
2753                 /*
2754                  * On a host with synchronized TSC, there is no need to update
2755                  * kvmclock on vcpu->cpu migration
2756                  */
2757                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2758                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2759                 if (vcpu->cpu != cpu)
2760                         kvm_migrate_timers(vcpu);
2761                 vcpu->cpu = cpu;
2762         }
2763
2764         accumulate_steal_time(vcpu);
2765         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2766 }
2767
2768 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2769 {
2770         kvm_x86_ops->vcpu_put(vcpu);
2771         kvm_put_guest_fpu(vcpu);
2772         vcpu->arch.last_host_tsc = native_read_tsc();
2773 }
2774
2775 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2776                                     struct kvm_lapic_state *s)
2777 {
2778         kvm_x86_ops->sync_pir_to_irr(vcpu);
2779         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2780
2781         return 0;
2782 }
2783
2784 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2785                                     struct kvm_lapic_state *s)
2786 {
2787         kvm_apic_post_state_restore(vcpu, s);
2788         update_cr8_intercept(vcpu);
2789
2790         return 0;
2791 }
2792
2793 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2794                                     struct kvm_interrupt *irq)
2795 {
2796         if (irq->irq >= KVM_NR_INTERRUPTS)
2797                 return -EINVAL;
2798         if (irqchip_in_kernel(vcpu->kvm))
2799                 return -ENXIO;
2800
2801         kvm_queue_interrupt(vcpu, irq->irq, false);
2802         kvm_make_request(KVM_REQ_EVENT, vcpu);
2803
2804         return 0;
2805 }
2806
2807 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2808 {
2809         kvm_inject_nmi(vcpu);
2810
2811         return 0;
2812 }
2813
2814 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2815                                            struct kvm_tpr_access_ctl *tac)
2816 {
2817         if (tac->flags)
2818                 return -EINVAL;
2819         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2820         return 0;
2821 }
2822
2823 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2824                                         u64 mcg_cap)
2825 {
2826         int r;
2827         unsigned bank_num = mcg_cap & 0xff, bank;
2828
2829         r = -EINVAL;
2830         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2831                 goto out;
2832         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2833                 goto out;
2834         r = 0;
2835         vcpu->arch.mcg_cap = mcg_cap;
2836         /* Init IA32_MCG_CTL to all 1s */
2837         if (mcg_cap & MCG_CTL_P)
2838                 vcpu->arch.mcg_ctl = ~(u64)0;
2839         /* Init IA32_MCi_CTL to all 1s */
2840         for (bank = 0; bank < bank_num; bank++)
2841                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2842 out:
2843         return r;
2844 }
2845
2846 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2847                                       struct kvm_x86_mce *mce)
2848 {
2849         u64 mcg_cap = vcpu->arch.mcg_cap;
2850         unsigned bank_num = mcg_cap & 0xff;
2851         u64 *banks = vcpu->arch.mce_banks;
2852
2853         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2854                 return -EINVAL;
2855         /*
2856          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2857          * reporting is disabled
2858          */
2859         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2860             vcpu->arch.mcg_ctl != ~(u64)0)
2861                 return 0;
2862         banks += 4 * mce->bank;
2863         /*
2864          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2865          * reporting is disabled for the bank
2866          */
2867         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2868                 return 0;
2869         if (mce->status & MCI_STATUS_UC) {
2870                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2871                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2872                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2873                         return 0;
2874                 }
2875                 if (banks[1] & MCI_STATUS_VAL)
2876                         mce->status |= MCI_STATUS_OVER;
2877                 banks[2] = mce->addr;
2878                 banks[3] = mce->misc;
2879                 vcpu->arch.mcg_status = mce->mcg_status;
2880                 banks[1] = mce->status;
2881                 kvm_queue_exception(vcpu, MC_VECTOR);
2882         } else if (!(banks[1] & MCI_STATUS_VAL)
2883                    || !(banks[1] & MCI_STATUS_UC)) {
2884                 if (banks[1] & MCI_STATUS_VAL)
2885                         mce->status |= MCI_STATUS_OVER;
2886                 banks[2] = mce->addr;
2887                 banks[3] = mce->misc;
2888                 banks[1] = mce->status;
2889         } else
2890                 banks[1] |= MCI_STATUS_OVER;
2891         return 0;
2892 }
2893
2894 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2895                                                struct kvm_vcpu_events *events)
2896 {
2897         process_nmi(vcpu);
2898         events->exception.injected =
2899                 vcpu->arch.exception.pending &&
2900                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2901         events->exception.nr = vcpu->arch.exception.nr;
2902         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2903         events->exception.pad = 0;
2904         events->exception.error_code = vcpu->arch.exception.error_code;
2905
2906         events->interrupt.injected =
2907                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2908         events->interrupt.nr = vcpu->arch.interrupt.nr;
2909         events->interrupt.soft = 0;
2910         events->interrupt.shadow =
2911                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2912                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2913
2914         events->nmi.injected = vcpu->arch.nmi_injected;
2915         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2916         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2917         events->nmi.pad = 0;
2918
2919         events->sipi_vector = 0; /* never valid when reporting to user space */
2920
2921         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2922                          | KVM_VCPUEVENT_VALID_SHADOW);
2923         memset(&events->reserved, 0, sizeof(events->reserved));
2924 }
2925
2926 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2927                                               struct kvm_vcpu_events *events)
2928 {
2929         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2930                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2931                               | KVM_VCPUEVENT_VALID_SHADOW))
2932                 return -EINVAL;
2933
2934         process_nmi(vcpu);
2935         vcpu->arch.exception.pending = events->exception.injected;
2936         vcpu->arch.exception.nr = events->exception.nr;
2937         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2938         vcpu->arch.exception.error_code = events->exception.error_code;
2939
2940         vcpu->arch.interrupt.pending = events->interrupt.injected;
2941         vcpu->arch.interrupt.nr = events->interrupt.nr;
2942         vcpu->arch.interrupt.soft = events->interrupt.soft;
2943         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2944                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2945                                                   events->interrupt.shadow);
2946
2947         vcpu->arch.nmi_injected = events->nmi.injected;
2948         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2949                 vcpu->arch.nmi_pending = events->nmi.pending;
2950         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2951
2952         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2953             kvm_vcpu_has_lapic(vcpu))
2954                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2955
2956         kvm_make_request(KVM_REQ_EVENT, vcpu);
2957
2958         return 0;
2959 }
2960
2961 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2962                                              struct kvm_debugregs *dbgregs)
2963 {
2964         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2965         dbgregs->dr6 = vcpu->arch.dr6;
2966         dbgregs->dr7 = vcpu->arch.dr7;
2967         dbgregs->flags = 0;
2968         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2969 }
2970
2971 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2972                                             struct kvm_debugregs *dbgregs)
2973 {
2974         if (dbgregs->flags)
2975                 return -EINVAL;
2976
2977         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2978         vcpu->arch.dr6 = dbgregs->dr6;
2979         vcpu->arch.dr7 = dbgregs->dr7;
2980
2981         return 0;
2982 }
2983
2984 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2985                                          struct kvm_xsave *guest_xsave)
2986 {
2987         if (cpu_has_xsave)
2988                 memcpy(guest_xsave->region,
2989                         &vcpu->arch.guest_fpu.state->xsave,
2990                         xstate_size);
2991         else {
2992                 memcpy(guest_xsave->region,
2993                         &vcpu->arch.guest_fpu.state->fxsave,
2994                         sizeof(struct i387_fxsave_struct));
2995                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2996                         XSTATE_FPSSE;
2997         }
2998 }
2999
3000 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3001                                         struct kvm_xsave *guest_xsave)
3002 {
3003         u64 xstate_bv =
3004                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3005
3006         if (cpu_has_xsave)
3007                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3008                         guest_xsave->region, xstate_size);
3009         else {
3010                 if (xstate_bv & ~XSTATE_FPSSE)
3011                         return -EINVAL;
3012                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3013                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3014         }
3015         return 0;
3016 }
3017
3018 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3019                                         struct kvm_xcrs *guest_xcrs)
3020 {
3021         if (!cpu_has_xsave) {
3022                 guest_xcrs->nr_xcrs = 0;
3023                 return;
3024         }
3025
3026         guest_xcrs->nr_xcrs = 1;
3027         guest_xcrs->flags = 0;
3028         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3029         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3030 }
3031
3032 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3033                                        struct kvm_xcrs *guest_xcrs)
3034 {
3035         int i, r = 0;
3036
3037         if (!cpu_has_xsave)
3038                 return -EINVAL;
3039
3040         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3041                 return -EINVAL;
3042
3043         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3044                 /* Only support XCR0 currently */
3045                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3046                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3047                                 guest_xcrs->xcrs[0].value);
3048                         break;
3049                 }
3050         if (r)
3051                 r = -EINVAL;
3052         return r;
3053 }
3054
3055 /*
3056  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3057  * stopped by the hypervisor.  This function will be called from the host only.
3058  * EINVAL is returned when the host attempts to set the flag for a guest that
3059  * does not support pv clocks.
3060  */
3061 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3062 {
3063         if (!vcpu->arch.pv_time_enabled)
3064                 return -EINVAL;
3065         vcpu->arch.pvclock_set_guest_stopped_request = true;
3066         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3067         return 0;
3068 }
3069
3070 long kvm_arch_vcpu_ioctl(struct file *filp,
3071                          unsigned int ioctl, unsigned long arg)
3072 {
3073         struct kvm_vcpu *vcpu = filp->private_data;
3074         void __user *argp = (void __user *)arg;
3075         int r;
3076         union {
3077                 struct kvm_lapic_state *lapic;
3078                 struct kvm_xsave *xsave;
3079                 struct kvm_xcrs *xcrs;
3080                 void *buffer;
3081         } u;
3082
3083         u.buffer = NULL;
3084         switch (ioctl) {
3085         case KVM_GET_LAPIC: {
3086                 r = -EINVAL;
3087                 if (!vcpu->arch.apic)
3088                         goto out;
3089                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3090
3091                 r = -ENOMEM;
3092                 if (!u.lapic)
3093                         goto out;
3094                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3095                 if (r)
3096                         goto out;
3097                 r = -EFAULT;
3098                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3099                         goto out;
3100                 r = 0;
3101                 break;
3102         }
3103         case KVM_SET_LAPIC: {
3104                 r = -EINVAL;
3105                 if (!vcpu->arch.apic)
3106                         goto out;
3107                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3108                 if (IS_ERR(u.lapic))
3109                         return PTR_ERR(u.lapic);
3110
3111                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3112                 break;
3113         }
3114         case KVM_INTERRUPT: {
3115                 struct kvm_interrupt irq;
3116
3117                 r = -EFAULT;
3118                 if (copy_from_user(&irq, argp, sizeof irq))
3119                         goto out;
3120                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3121                 break;
3122         }
3123         case KVM_NMI: {
3124                 r = kvm_vcpu_ioctl_nmi(vcpu);
3125                 break;
3126         }
3127         case KVM_SET_CPUID: {
3128                 struct kvm_cpuid __user *cpuid_arg = argp;
3129                 struct kvm_cpuid cpuid;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3133                         goto out;
3134                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3135                 break;
3136         }
3137         case KVM_SET_CPUID2: {
3138                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3139                 struct kvm_cpuid2 cpuid;
3140
3141                 r = -EFAULT;
3142                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143                         goto out;
3144                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3145                                               cpuid_arg->entries);
3146                 break;
3147         }
3148         case KVM_GET_CPUID2: {
3149                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3150                 struct kvm_cpuid2 cpuid;
3151
3152                 r = -EFAULT;
3153                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3154                         goto out;
3155                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3156                                               cpuid_arg->entries);
3157                 if (r)
3158                         goto out;
3159                 r = -EFAULT;
3160                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3161                         goto out;
3162                 r = 0;
3163                 break;
3164         }
3165         case KVM_GET_MSRS:
3166                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3167                 break;
3168         case KVM_SET_MSRS:
3169                 r = msr_io(vcpu, argp, do_set_msr, 0);
3170                 break;
3171         case KVM_TPR_ACCESS_REPORTING: {
3172                 struct kvm_tpr_access_ctl tac;
3173
3174                 r = -EFAULT;
3175                 if (copy_from_user(&tac, argp, sizeof tac))
3176                         goto out;
3177                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3178                 if (r)
3179                         goto out;
3180                 r = -EFAULT;
3181                 if (copy_to_user(argp, &tac, sizeof tac))
3182                         goto out;
3183                 r = 0;
3184                 break;
3185         };
3186         case KVM_SET_VAPIC_ADDR: {
3187                 struct kvm_vapic_addr va;
3188
3189                 r = -EINVAL;
3190                 if (!irqchip_in_kernel(vcpu->kvm))
3191                         goto out;
3192                 r = -EFAULT;
3193                 if (copy_from_user(&va, argp, sizeof va))
3194                         goto out;
3195                 r = 0;
3196                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3197                 break;
3198         }
3199         case KVM_X86_SETUP_MCE: {
3200                 u64 mcg_cap;
3201
3202                 r = -EFAULT;
3203                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3204                         goto out;
3205                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3206                 break;
3207         }
3208         case KVM_X86_SET_MCE: {
3209                 struct kvm_x86_mce mce;
3210
3211                 r = -EFAULT;
3212                 if (copy_from_user(&mce, argp, sizeof mce))
3213                         goto out;
3214                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3215                 break;
3216         }
3217         case KVM_GET_VCPU_EVENTS: {
3218                 struct kvm_vcpu_events events;
3219
3220                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3221
3222                 r = -EFAULT;
3223                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3224                         break;
3225                 r = 0;
3226                 break;
3227         }
3228         case KVM_SET_VCPU_EVENTS: {
3229                 struct kvm_vcpu_events events;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3233                         break;
3234
3235                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3236                 break;
3237         }
3238         case KVM_GET_DEBUGREGS: {
3239                 struct kvm_debugregs dbgregs;
3240
3241                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3242
3243                 r = -EFAULT;
3244                 if (copy_to_user(argp, &dbgregs,
3245                                  sizeof(struct kvm_debugregs)))
3246                         break;
3247                 r = 0;
3248                 break;
3249         }
3250         case KVM_SET_DEBUGREGS: {
3251                 struct kvm_debugregs dbgregs;
3252
3253                 r = -EFAULT;
3254                 if (copy_from_user(&dbgregs, argp,
3255                                    sizeof(struct kvm_debugregs)))
3256                         break;
3257
3258                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3259                 break;
3260         }
3261         case KVM_GET_XSAVE: {
3262                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3263                 r = -ENOMEM;
3264                 if (!u.xsave)
3265                         break;
3266
3267                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3268
3269                 r = -EFAULT;
3270                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3271                         break;
3272                 r = 0;
3273                 break;
3274         }
3275         case KVM_SET_XSAVE: {
3276                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3277                 if (IS_ERR(u.xsave))
3278                         return PTR_ERR(u.xsave);
3279
3280                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3281                 break;
3282         }
3283         case KVM_GET_XCRS: {
3284                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3285                 r = -ENOMEM;
3286                 if (!u.xcrs)
3287                         break;
3288
3289                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3290
3291                 r = -EFAULT;
3292                 if (copy_to_user(argp, u.xcrs,
3293                                  sizeof(struct kvm_xcrs)))
3294                         break;
3295                 r = 0;
3296                 break;
3297         }
3298         case KVM_SET_XCRS: {
3299                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3300                 if (IS_ERR(u.xcrs))
3301                         return PTR_ERR(u.xcrs);
3302
3303                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3304                 break;
3305         }
3306         case KVM_SET_TSC_KHZ: {
3307                 u32 user_tsc_khz;
3308
3309                 r = -EINVAL;
3310                 user_tsc_khz = (u32)arg;
3311
3312                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3313                         goto out;
3314
3315                 if (user_tsc_khz == 0)
3316                         user_tsc_khz = tsc_khz;
3317
3318                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3319
3320                 r = 0;
3321                 goto out;
3322         }
3323         case KVM_GET_TSC_KHZ: {
3324                 r = vcpu->arch.virtual_tsc_khz;
3325                 goto out;
3326         }
3327         case KVM_KVMCLOCK_CTRL: {
3328                 r = kvm_set_guest_paused(vcpu);
3329                 goto out;
3330         }
3331         default:
3332                 r = -EINVAL;
3333         }
3334 out:
3335         kfree(u.buffer);
3336         return r;
3337 }
3338
3339 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3340 {
3341         return VM_FAULT_SIGBUS;
3342 }
3343
3344 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3345 {
3346         int ret;
3347
3348         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3349                 return -EINVAL;
3350         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3351         return ret;
3352 }
3353
3354 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3355                                               u64 ident_addr)
3356 {
3357         kvm->arch.ept_identity_map_addr = ident_addr;
3358         return 0;
3359 }
3360
3361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3362                                           u32 kvm_nr_mmu_pages)
3363 {
3364         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3365                 return -EINVAL;
3366
3367         mutex_lock(&kvm->slots_lock);
3368
3369         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3370         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3371
3372         mutex_unlock(&kvm->slots_lock);
3373         return 0;
3374 }
3375
3376 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3377 {
3378         return kvm->arch.n_max_mmu_pages;
3379 }
3380
3381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3382 {
3383         int r;
3384
3385         r = 0;
3386         switch (chip->chip_id) {
3387         case KVM_IRQCHIP_PIC_MASTER:
3388                 memcpy(&chip->chip.pic,
3389                         &pic_irqchip(kvm)->pics[0],
3390                         sizeof(struct kvm_pic_state));
3391                 break;
3392         case KVM_IRQCHIP_PIC_SLAVE:
3393                 memcpy(&chip->chip.pic,
3394                         &pic_irqchip(kvm)->pics[1],
3395                         sizeof(struct kvm_pic_state));
3396                 break;
3397         case KVM_IRQCHIP_IOAPIC:
3398                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3399                 break;
3400         default:
3401                 r = -EINVAL;
3402                 break;
3403         }
3404         return r;
3405 }
3406
3407 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3408 {
3409         int r;
3410
3411         r = 0;
3412         switch (chip->chip_id) {
3413         case KVM_IRQCHIP_PIC_MASTER:
3414                 spin_lock(&pic_irqchip(kvm)->lock);
3415                 memcpy(&pic_irqchip(kvm)->pics[0],
3416                         &chip->chip.pic,
3417                         sizeof(struct kvm_pic_state));
3418                 spin_unlock(&pic_irqchip(kvm)->lock);
3419                 break;
3420         case KVM_IRQCHIP_PIC_SLAVE:
3421                 spin_lock(&pic_irqchip(kvm)->lock);
3422                 memcpy(&pic_irqchip(kvm)->pics[1],
3423                         &chip->chip.pic,
3424                         sizeof(struct kvm_pic_state));
3425                 spin_unlock(&pic_irqchip(kvm)->lock);
3426                 break;
3427         case KVM_IRQCHIP_IOAPIC:
3428                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3429                 break;
3430         default:
3431                 r = -EINVAL;
3432                 break;
3433         }
3434         kvm_pic_update_irq(pic_irqchip(kvm));
3435         return r;
3436 }
3437
3438 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3439 {
3440         int r = 0;
3441
3442         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3443         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3444         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3445         return r;
3446 }
3447
3448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3449 {
3450         int r = 0;
3451
3452         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3453         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3454         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3455         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456         return r;
3457 }
3458
3459 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460 {
3461         int r = 0;
3462
3463         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3465                 sizeof(ps->channels));
3466         ps->flags = kvm->arch.vpit->pit_state.flags;
3467         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3468         memset(&ps->reserved, 0, sizeof(ps->reserved));
3469         return r;
3470 }
3471
3472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3473 {
3474         int r = 0, start = 0;
3475         u32 prev_legacy, cur_legacy;
3476         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3478         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3479         if (!prev_legacy && cur_legacy)
3480                 start = 1;
3481         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3482                sizeof(kvm->arch.vpit->pit_state.channels));
3483         kvm->arch.vpit->pit_state.flags = ps->flags;
3484         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3485         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3486         return r;
3487 }
3488
3489 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3490                                  struct kvm_reinject_control *control)
3491 {
3492         if (!kvm->arch.vpit)
3493                 return -ENXIO;
3494         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3495         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3496         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3497         return 0;
3498 }
3499
3500 /**
3501  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3502  * @kvm: kvm instance
3503  * @log: slot id and address to which we copy the log
3504  *
3505  * We need to keep it in mind that VCPU threads can write to the bitmap
3506  * concurrently.  So, to avoid losing data, we keep the following order for
3507  * each bit:
3508  *
3509  *   1. Take a snapshot of the bit and clear it if needed.
3510  *   2. Write protect the corresponding page.
3511  *   3. Flush TLB's if needed.
3512  *   4. Copy the snapshot to the userspace.
3513  *
3514  * Between 2 and 3, the guest may write to the page using the remaining TLB
3515  * entry.  This is not a problem because the page will be reported dirty at
3516  * step 4 using the snapshot taken before and step 3 ensures that successive
3517  * writes will be logged for the next call.
3518  */
3519 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3520 {
3521         int r;
3522         struct kvm_memory_slot *memslot;
3523         unsigned long n, i;
3524         unsigned long *dirty_bitmap;
3525         unsigned long *dirty_bitmap_buffer;
3526         bool is_dirty = false;
3527
3528         mutex_lock(&kvm->slots_lock);
3529
3530         r = -EINVAL;
3531         if (log->slot >= KVM_USER_MEM_SLOTS)
3532                 goto out;
3533
3534         memslot = id_to_memslot(kvm->memslots, log->slot);
3535
3536         dirty_bitmap = memslot->dirty_bitmap;
3537         r = -ENOENT;
3538         if (!dirty_bitmap)
3539                 goto out;
3540
3541         n = kvm_dirty_bitmap_bytes(memslot);
3542
3543         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3544         memset(dirty_bitmap_buffer, 0, n);
3545
3546         spin_lock(&kvm->mmu_lock);
3547
3548         for (i = 0; i < n / sizeof(long); i++) {
3549                 unsigned long mask;
3550                 gfn_t offset;
3551
3552                 if (!dirty_bitmap[i])
3553                         continue;
3554
3555                 is_dirty = true;
3556
3557                 mask = xchg(&dirty_bitmap[i], 0);
3558                 dirty_bitmap_buffer[i] = mask;
3559
3560                 offset = i * BITS_PER_LONG;
3561                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3562         }
3563         if (is_dirty)
3564                 kvm_flush_remote_tlbs(kvm);
3565
3566         spin_unlock(&kvm->mmu_lock);
3567
3568         r = -EFAULT;
3569         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3570                 goto out;
3571
3572         r = 0;
3573 out:
3574         mutex_unlock(&kvm->slots_lock);
3575         return r;
3576 }
3577
3578 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3579                         bool line_status)
3580 {
3581         if (!irqchip_in_kernel(kvm))
3582                 return -ENXIO;
3583
3584         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3585                                         irq_event->irq, irq_event->level,
3586                                         line_status);
3587         return 0;
3588 }
3589
3590 long kvm_arch_vm_ioctl(struct file *filp,
3591                        unsigned int ioctl, unsigned long arg)
3592 {
3593         struct kvm *kvm = filp->private_data;
3594         void __user *argp = (void __user *)arg;
3595         int r = -ENOTTY;
3596         /*
3597          * This union makes it completely explicit to gcc-3.x
3598          * that these two variables' stack usage should be
3599          * combined, not added together.
3600          */
3601         union {
3602                 struct kvm_pit_state ps;
3603                 struct kvm_pit_state2 ps2;
3604                 struct kvm_pit_config pit_config;
3605         } u;
3606
3607         switch (ioctl) {
3608         case KVM_SET_TSS_ADDR:
3609                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3610                 break;
3611         case KVM_SET_IDENTITY_MAP_ADDR: {
3612                 u64 ident_addr;
3613
3614                 r = -EFAULT;
3615                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3616                         goto out;
3617                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3618                 break;
3619         }
3620         case KVM_SET_NR_MMU_PAGES:
3621                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3622                 break;
3623         case KVM_GET_NR_MMU_PAGES:
3624                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3625                 break;
3626         case KVM_CREATE_IRQCHIP: {
3627                 struct kvm_pic *vpic;
3628
3629                 mutex_lock(&kvm->lock);
3630                 r = -EEXIST;
3631                 if (kvm->arch.vpic)
3632                         goto create_irqchip_unlock;
3633                 r = -EINVAL;
3634                 if (atomic_read(&kvm->online_vcpus))
3635                         goto create_irqchip_unlock;
3636                 r = -ENOMEM;
3637                 vpic = kvm_create_pic(kvm);
3638                 if (vpic) {
3639                         r = kvm_ioapic_init(kvm);
3640                         if (r) {
3641                                 mutex_lock(&kvm->slots_lock);
3642                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3643                                                           &vpic->dev_master);
3644                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3645                                                           &vpic->dev_slave);
3646                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3647                                                           &vpic->dev_eclr);
3648                                 mutex_unlock(&kvm->slots_lock);
3649                                 kfree(vpic);
3650                                 goto create_irqchip_unlock;
3651                         }
3652                 } else
3653                         goto create_irqchip_unlock;
3654                 smp_wmb();
3655                 kvm->arch.vpic = vpic;
3656                 smp_wmb();
3657                 r = kvm_setup_default_irq_routing(kvm);
3658                 if (r) {
3659                         mutex_lock(&kvm->slots_lock);
3660                         mutex_lock(&kvm->irq_lock);
3661                         kvm_ioapic_destroy(kvm);
3662                         kvm_destroy_pic(kvm);
3663                         mutex_unlock(&kvm->irq_lock);
3664                         mutex_unlock(&kvm->slots_lock);
3665                 }
3666         create_irqchip_unlock:
3667                 mutex_unlock(&kvm->lock);
3668                 break;
3669         }
3670         case KVM_CREATE_PIT:
3671                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3672                 goto create_pit;
3673         case KVM_CREATE_PIT2:
3674                 r = -EFAULT;
3675                 if (copy_from_user(&u.pit_config, argp,
3676                                    sizeof(struct kvm_pit_config)))
3677                         goto out;
3678         create_pit:
3679                 mutex_lock(&kvm->slots_lock);
3680                 r = -EEXIST;
3681                 if (kvm->arch.vpit)
3682                         goto create_pit_unlock;
3683                 r = -ENOMEM;
3684                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3685                 if (kvm->arch.vpit)
3686                         r = 0;
3687         create_pit_unlock:
3688                 mutex_unlock(&kvm->slots_lock);
3689                 break;
3690         case KVM_GET_IRQCHIP: {
3691                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3692                 struct kvm_irqchip *chip;
3693
3694                 chip = memdup_user(argp, sizeof(*chip));
3695                 if (IS_ERR(chip)) {
3696                         r = PTR_ERR(chip);
3697                         goto out;
3698                 }
3699
3700                 r = -ENXIO;
3701                 if (!irqchip_in_kernel(kvm))
3702                         goto get_irqchip_out;
3703                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3704                 if (r)
3705                         goto get_irqchip_out;
3706                 r = -EFAULT;
3707                 if (copy_to_user(argp, chip, sizeof *chip))
3708                         goto get_irqchip_out;
3709                 r = 0;
3710         get_irqchip_out:
3711                 kfree(chip);
3712                 break;
3713         }
3714         case KVM_SET_IRQCHIP: {
3715                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3716                 struct kvm_irqchip *chip;
3717
3718                 chip = memdup_user(argp, sizeof(*chip));
3719                 if (IS_ERR(chip)) {
3720                         r = PTR_ERR(chip);
3721                         goto out;
3722                 }
3723
3724                 r = -ENXIO;
3725                 if (!irqchip_in_kernel(kvm))
3726                         goto set_irqchip_out;
3727                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3728                 if (r)
3729                         goto set_irqchip_out;
3730                 r = 0;
3731         set_irqchip_out:
3732                 kfree(chip);
3733                 break;
3734         }
3735         case KVM_GET_PIT: {
3736                 r = -EFAULT;
3737                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3738                         goto out;
3739                 r = -ENXIO;
3740                 if (!kvm->arch.vpit)
3741                         goto out;
3742                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3743                 if (r)
3744                         goto out;
3745                 r = -EFAULT;
3746                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3747                         goto out;
3748                 r = 0;
3749                 break;
3750         }
3751         case KVM_SET_PIT: {
3752                 r = -EFAULT;
3753                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3754                         goto out;
3755                 r = -ENXIO;
3756                 if (!kvm->arch.vpit)
3757                         goto out;
3758                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3759                 break;
3760         }
3761         case KVM_GET_PIT2: {
3762                 r = -ENXIO;
3763                 if (!kvm->arch.vpit)
3764                         goto out;
3765                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3766                 if (r)
3767                         goto out;
3768                 r = -EFAULT;
3769                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3770                         goto out;
3771                 r = 0;
3772                 break;
3773         }
3774         case KVM_SET_PIT2: {
3775                 r = -EFAULT;
3776                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3777                         goto out;
3778                 r = -ENXIO;
3779                 if (!kvm->arch.vpit)
3780                         goto out;
3781                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3782                 break;
3783         }
3784         case KVM_REINJECT_CONTROL: {
3785                 struct kvm_reinject_control control;
3786                 r =  -EFAULT;
3787                 if (copy_from_user(&control, argp, sizeof(control)))
3788                         goto out;
3789                 r = kvm_vm_ioctl_reinject(kvm, &control);
3790                 break;
3791         }
3792         case KVM_XEN_HVM_CONFIG: {
3793                 r = -EFAULT;
3794                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3795                                    sizeof(struct kvm_xen_hvm_config)))
3796                         goto out;
3797                 r = -EINVAL;
3798                 if (kvm->arch.xen_hvm_config.flags)
3799                         goto out;
3800                 r = 0;
3801                 break;
3802         }
3803         case KVM_SET_CLOCK: {
3804                 struct kvm_clock_data user_ns;
3805                 u64 now_ns;
3806                 s64 delta;
3807
3808                 r = -EFAULT;
3809                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3810                         goto out;
3811
3812                 r = -EINVAL;
3813                 if (user_ns.flags)
3814                         goto out;
3815
3816                 r = 0;
3817                 local_irq_disable();
3818                 now_ns = get_kernel_ns();
3819                 delta = user_ns.clock - now_ns;
3820                 local_irq_enable();
3821                 kvm->arch.kvmclock_offset = delta;
3822                 kvm_gen_update_masterclock(kvm);
3823                 break;
3824         }
3825         case KVM_GET_CLOCK: {
3826                 struct kvm_clock_data user_ns;
3827                 u64 now_ns;
3828
3829                 local_irq_disable();
3830                 now_ns = get_kernel_ns();
3831                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3832                 local_irq_enable();
3833                 user_ns.flags = 0;
3834                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3835
3836                 r = -EFAULT;
3837                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3838                         goto out;
3839                 r = 0;
3840                 break;
3841         }
3842
3843         default:
3844                 ;
3845         }
3846 out:
3847         return r;
3848 }
3849
3850 static void kvm_init_msr_list(void)
3851 {
3852         u32 dummy[2];
3853         unsigned i, j;
3854
3855         /* skip the first msrs in the list. KVM-specific */
3856         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3857                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3858                         continue;
3859                 if (j < i)
3860                         msrs_to_save[j] = msrs_to_save[i];
3861                 j++;
3862         }
3863         num_msrs_to_save = j;
3864 }
3865
3866 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3867                            const void *v)
3868 {
3869         int handled = 0;
3870         int n;
3871
3872         do {
3873                 n = min(len, 8);
3874                 if (!(vcpu->arch.apic &&
3875                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3876                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3877                         break;
3878                 handled += n;
3879                 addr += n;
3880                 len -= n;
3881                 v += n;
3882         } while (len);
3883
3884         return handled;
3885 }
3886
3887 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3888 {
3889         int handled = 0;
3890         int n;
3891
3892         do {
3893                 n = min(len, 8);
3894                 if (!(vcpu->arch.apic &&
3895                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3896                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3897                         break;
3898                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3899                 handled += n;
3900                 addr += n;
3901                 len -= n;
3902                 v += n;
3903         } while (len);
3904
3905         return handled;
3906 }
3907
3908 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3909                         struct kvm_segment *var, int seg)
3910 {
3911         kvm_x86_ops->set_segment(vcpu, var, seg);
3912 }
3913
3914 void kvm_get_segment(struct kvm_vcpu *vcpu,
3915                      struct kvm_segment *var, int seg)
3916 {
3917         kvm_x86_ops->get_segment(vcpu, var, seg);
3918 }
3919
3920 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3921 {
3922         gpa_t t_gpa;
3923         struct x86_exception exception;
3924
3925         BUG_ON(!mmu_is_nested(vcpu));
3926
3927         /* NPT walks are always user-walks */
3928         access |= PFERR_USER_MASK;
3929         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3930
3931         return t_gpa;
3932 }
3933
3934 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3935                               struct x86_exception *exception)
3936 {
3937         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3938         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3939 }
3940
3941  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3942                                 struct x86_exception *exception)
3943 {
3944         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3945         access |= PFERR_FETCH_MASK;
3946         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3947 }
3948
3949 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3950                                struct x86_exception *exception)
3951 {
3952         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3953         access |= PFERR_WRITE_MASK;
3954         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3955 }
3956
3957 /* uses this to access any guest's mapped memory without checking CPL */
3958 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3959                                 struct x86_exception *exception)
3960 {
3961         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3962 }
3963
3964 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3965                                       struct kvm_vcpu *vcpu, u32 access,
3966                                       struct x86_exception *exception)
3967 {
3968         void *data = val;
3969         int r = X86EMUL_CONTINUE;
3970
3971         while (bytes) {
3972                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3973                                                             exception);
3974                 unsigned offset = addr & (PAGE_SIZE-1);
3975                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3976                 int ret;
3977
3978                 if (gpa == UNMAPPED_GVA)
3979                         return X86EMUL_PROPAGATE_FAULT;
3980                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3981                 if (ret < 0) {
3982                         r = X86EMUL_IO_NEEDED;
3983                         goto out;
3984                 }
3985
3986                 bytes -= toread;
3987                 data += toread;
3988                 addr += toread;
3989         }
3990 out:
3991         return r;
3992 }
3993
3994 /* used for instruction fetching */
3995 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3996                                 gva_t addr, void *val, unsigned int bytes,
3997                                 struct x86_exception *exception)
3998 {
3999         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4000         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4001
4002         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4003                                           access | PFERR_FETCH_MASK,
4004                                           exception);
4005 }
4006
4007 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4008                                gva_t addr, void *val, unsigned int bytes,
4009                                struct x86_exception *exception)
4010 {
4011         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4012         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4013
4014         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4015                                           exception);
4016 }
4017 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4018
4019 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4020                                       gva_t addr, void *val, unsigned int bytes,
4021                                       struct x86_exception *exception)
4022 {
4023         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4024         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4025 }
4026
4027 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4028                                        gva_t addr, void *val,
4029                                        unsigned int bytes,
4030                                        struct x86_exception *exception)
4031 {
4032         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033         void *data = val;
4034         int r = X86EMUL_CONTINUE;
4035
4036         while (bytes) {
4037                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4038                                                              PFERR_WRITE_MASK,
4039                                                              exception);
4040                 unsigned offset = addr & (PAGE_SIZE-1);
4041                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4042                 int ret;
4043
4044                 if (gpa == UNMAPPED_GVA)
4045                         return X86EMUL_PROPAGATE_FAULT;
4046                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4047                 if (ret < 0) {
4048                         r = X86EMUL_IO_NEEDED;
4049                         goto out;
4050                 }
4051
4052                 bytes -= towrite;
4053                 data += towrite;
4054                 addr += towrite;
4055         }
4056 out:
4057         return r;
4058 }
4059 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4060
4061 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4062                                 gpa_t *gpa, struct x86_exception *exception,
4063                                 bool write)
4064 {
4065         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4066                 | (write ? PFERR_WRITE_MASK : 0);
4067
4068         if (vcpu_match_mmio_gva(vcpu, gva)
4069             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4070                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4071                                         (gva & (PAGE_SIZE - 1));
4072                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4073                 return 1;
4074         }
4075
4076         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4077
4078         if (*gpa == UNMAPPED_GVA)
4079                 return -1;
4080
4081         /* For APIC access vmexit */
4082         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4083                 return 1;
4084
4085         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4086                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4087                 return 1;
4088         }
4089
4090         return 0;
4091 }
4092
4093 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4094                         const void *val, int bytes)
4095 {
4096         int ret;
4097
4098         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4099         if (ret < 0)
4100                 return 0;
4101         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4102         return 1;
4103 }
4104
4105 struct read_write_emulator_ops {
4106         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4107                                   int bytes);
4108         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4109                                   void *val, int bytes);
4110         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4111                                int bytes, void *val);
4112         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4113                                     void *val, int bytes);
4114         bool write;
4115 };
4116
4117 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4118 {
4119         if (vcpu->mmio_read_completed) {
4120                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4121                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4122                 vcpu->mmio_read_completed = 0;
4123                 return 1;
4124         }
4125
4126         return 0;
4127 }
4128
4129 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4130                         void *val, int bytes)
4131 {
4132         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4133 }
4134
4135 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4136                          void *val, int bytes)
4137 {
4138         return emulator_write_phys(vcpu, gpa, val, bytes);
4139 }
4140
4141 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4142 {
4143         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4144         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4145 }
4146
4147 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4148                           void *val, int bytes)
4149 {
4150         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4151         return X86EMUL_IO_NEEDED;
4152 }
4153
4154 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4155                            void *val, int bytes)
4156 {
4157         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4158
4159         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4160         return X86EMUL_CONTINUE;
4161 }
4162
4163 static const struct read_write_emulator_ops read_emultor = {
4164         .read_write_prepare = read_prepare,
4165         .read_write_emulate = read_emulate,
4166         .read_write_mmio = vcpu_mmio_read,
4167         .read_write_exit_mmio = read_exit_mmio,
4168 };
4169
4170 static const struct read_write_emulator_ops write_emultor = {
4171         .read_write_emulate = write_emulate,
4172         .read_write_mmio = write_mmio,
4173         .read_write_exit_mmio = write_exit_mmio,
4174         .write = true,
4175 };
4176
4177 static int emulator_read_write_onepage(unsigned long addr, void *val,
4178                                        unsigned int bytes,
4179                                        struct x86_exception *exception,
4180                                        struct kvm_vcpu *vcpu,
4181                                        const struct read_write_emulator_ops *ops)
4182 {
4183         gpa_t gpa;
4184         int handled, ret;
4185         bool write = ops->write;
4186         struct kvm_mmio_fragment *frag;
4187
4188         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4189
4190         if (ret < 0)
4191                 return X86EMUL_PROPAGATE_FAULT;
4192
4193         /* For APIC access vmexit */
4194         if (ret)
4195                 goto mmio;
4196
4197         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4198                 return X86EMUL_CONTINUE;
4199
4200 mmio:
4201         /*
4202          * Is this MMIO handled locally?
4203          */
4204         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4205         if (handled == bytes)
4206                 return X86EMUL_CONTINUE;
4207
4208         gpa += handled;
4209         bytes -= handled;
4210         val += handled;
4211
4212         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4213         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4214         frag->gpa = gpa;
4215         frag->data = val;
4216         frag->len = bytes;
4217         return X86EMUL_CONTINUE;
4218 }
4219
4220 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4221                         void *val, unsigned int bytes,
4222                         struct x86_exception *exception,
4223                         const struct read_write_emulator_ops *ops)
4224 {
4225         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226         gpa_t gpa;
4227         int rc;
4228
4229         if (ops->read_write_prepare &&
4230                   ops->read_write_prepare(vcpu, val, bytes))
4231                 return X86EMUL_CONTINUE;
4232
4233         vcpu->mmio_nr_fragments = 0;
4234
4235         /* Crossing a page boundary? */
4236         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4237                 int now;
4238
4239                 now = -addr & ~PAGE_MASK;
4240                 rc = emulator_read_write_onepage(addr, val, now, exception,
4241                                                  vcpu, ops);
4242
4243                 if (rc != X86EMUL_CONTINUE)
4244                         return rc;
4245                 addr += now;
4246                 val += now;
4247                 bytes -= now;
4248         }
4249
4250         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4251                                          vcpu, ops);
4252         if (rc != X86EMUL_CONTINUE)
4253                 return rc;
4254
4255         if (!vcpu->mmio_nr_fragments)
4256                 return rc;
4257
4258         gpa = vcpu->mmio_fragments[0].gpa;
4259
4260         vcpu->mmio_needed = 1;
4261         vcpu->mmio_cur_fragment = 0;
4262
4263         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4264         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4265         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4266         vcpu->run->mmio.phys_addr = gpa;
4267
4268         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4269 }
4270
4271 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4272                                   unsigned long addr,
4273                                   void *val,
4274                                   unsigned int bytes,
4275                                   struct x86_exception *exception)
4276 {
4277         return emulator_read_write(ctxt, addr, val, bytes,
4278                                    exception, &read_emultor);
4279 }
4280
4281 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4282                             unsigned long addr,
4283                             const void *val,
4284                             unsigned int bytes,
4285                             struct x86_exception *exception)
4286 {
4287         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4288                                    exception, &write_emultor);
4289 }
4290
4291 #define CMPXCHG_TYPE(t, ptr, old, new) \
4292         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4293
4294 #ifdef CONFIG_X86_64
4295 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4296 #else
4297 #  define CMPXCHG64(ptr, old, new) \
4298         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4299 #endif
4300
4301 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4302                                      unsigned long addr,
4303                                      const void *old,
4304                                      const void *new,
4305                                      unsigned int bytes,
4306                                      struct x86_exception *exception)
4307 {
4308         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4309         gpa_t gpa;
4310         struct page *page;
4311         char *kaddr;
4312         bool exchanged;
4313
4314         /* guests cmpxchg8b have to be emulated atomically */
4315         if (bytes > 8 || (bytes & (bytes - 1)))
4316                 goto emul_write;
4317
4318         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4319
4320         if (gpa == UNMAPPED_GVA ||
4321             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4322                 goto emul_write;
4323
4324         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4325                 goto emul_write;
4326
4327         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4328         if (is_error_page(page))
4329                 goto emul_write;
4330
4331         kaddr = kmap_atomic(page);
4332         kaddr += offset_in_page(gpa);
4333         switch (bytes) {
4334         case 1:
4335                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4336                 break;
4337         case 2:
4338                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4339                 break;
4340         case 4:
4341                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4342                 break;
4343         case 8:
4344                 exchanged = CMPXCHG64(kaddr, old, new);
4345                 break;
4346         default:
4347                 BUG();
4348         }
4349         kunmap_atomic(kaddr);
4350         kvm_release_page_dirty(page);
4351
4352         if (!exchanged)
4353                 return X86EMUL_CMPXCHG_FAILED;
4354
4355         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4356
4357         return X86EMUL_CONTINUE;
4358
4359 emul_write:
4360         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4361
4362         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4363 }
4364
4365 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4366 {
4367         /* TODO: String I/O for in kernel device */
4368         int r;
4369
4370         if (vcpu->arch.pio.in)
4371                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4372                                     vcpu->arch.pio.size, pd);
4373         else
4374                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4375                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4376                                      pd);
4377         return r;
4378 }
4379
4380 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4381                                unsigned short port, void *val,
4382                                unsigned int count, bool in)
4383 {
4384         trace_kvm_pio(!in, port, size, count);
4385
4386         vcpu->arch.pio.port = port;
4387         vcpu->arch.pio.in = in;
4388         vcpu->arch.pio.count  = count;
4389         vcpu->arch.pio.size = size;
4390
4391         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4392                 vcpu->arch.pio.count = 0;
4393                 return 1;
4394         }
4395
4396         vcpu->run->exit_reason = KVM_EXIT_IO;
4397         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4398         vcpu->run->io.size = size;
4399         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4400         vcpu->run->io.count = count;
4401         vcpu->run->io.port = port;
4402
4403         return 0;
4404 }
4405
4406 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4407                                     int size, unsigned short port, void *val,
4408                                     unsigned int count)
4409 {
4410         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4411         int ret;
4412
4413         if (vcpu->arch.pio.count)
4414                 goto data_avail;
4415
4416         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4417         if (ret) {
4418 data_avail:
4419                 memcpy(val, vcpu->arch.pio_data, size * count);
4420                 vcpu->arch.pio.count = 0;
4421                 return 1;
4422         }
4423
4424         return 0;
4425 }
4426
4427 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4428                                      int size, unsigned short port,
4429                                      const void *val, unsigned int count)
4430 {
4431         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4432
4433         memcpy(vcpu->arch.pio_data, val, size * count);
4434         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4435 }
4436
4437 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4438 {
4439         return kvm_x86_ops->get_segment_base(vcpu, seg);
4440 }
4441
4442 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4443 {
4444         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4445 }
4446
4447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4448 {
4449         if (!need_emulate_wbinvd(vcpu))
4450                 return X86EMUL_CONTINUE;
4451
4452         if (kvm_x86_ops->has_wbinvd_exit()) {
4453                 int cpu = get_cpu();
4454
4455                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4456                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4457                                 wbinvd_ipi, NULL, 1);
4458                 put_cpu();
4459                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4460         } else
4461                 wbinvd();
4462         return X86EMUL_CONTINUE;
4463 }
4464 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4465
4466 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4467 {
4468         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4469 }
4470
4471 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4472 {
4473         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4474 }
4475
4476 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4477 {
4478
4479         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4480 }
4481
4482 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4483 {
4484         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4485 }
4486
4487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4488 {
4489         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490         unsigned long value;
4491
4492         switch (cr) {
4493         case 0:
4494                 value = kvm_read_cr0(vcpu);
4495                 break;
4496         case 2:
4497                 value = vcpu->arch.cr2;
4498                 break;
4499         case 3:
4500                 value = kvm_read_cr3(vcpu);
4501                 break;
4502         case 4:
4503                 value = kvm_read_cr4(vcpu);
4504                 break;
4505         case 8:
4506                 value = kvm_get_cr8(vcpu);
4507                 break;
4508         default:
4509                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4510                 return 0;
4511         }
4512
4513         return value;
4514 }
4515
4516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4517 {
4518         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519         int res = 0;
4520
4521         switch (cr) {
4522         case 0:
4523                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4524                 break;
4525         case 2:
4526                 vcpu->arch.cr2 = val;
4527                 break;
4528         case 3:
4529                 res = kvm_set_cr3(vcpu, val);
4530                 break;
4531         case 4:
4532                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4533                 break;
4534         case 8:
4535                 res = kvm_set_cr8(vcpu, val);
4536                 break;
4537         default:
4538                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4539                 res = -1;
4540         }
4541
4542         return res;
4543 }
4544
4545 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4546 {
4547         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4548 }
4549
4550 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4551 {
4552         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4553 }
4554
4555 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4556 {
4557         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4558 }
4559
4560 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4561 {
4562         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4563 }
4564
4565 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4566 {
4567         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4568 }
4569
4570 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4571 {
4572         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4573 }
4574
4575 static unsigned long emulator_get_cached_segment_base(
4576         struct x86_emulate_ctxt *ctxt, int seg)
4577 {
4578         return get_segment_base(emul_to_vcpu(ctxt), seg);
4579 }
4580
4581 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4582                                  struct desc_struct *desc, u32 *base3,
4583                                  int seg)
4584 {
4585         struct kvm_segment var;
4586
4587         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4588         *selector = var.selector;
4589
4590         if (var.unusable) {
4591                 memset(desc, 0, sizeof(*desc));
4592                 return false;
4593         }
4594
4595         if (var.g)
4596                 var.limit >>= 12;
4597         set_desc_limit(desc, var.limit);
4598         set_desc_base(desc, (unsigned long)var.base);
4599 #ifdef CONFIG_X86_64
4600         if (base3)
4601                 *base3 = var.base >> 32;
4602 #endif
4603         desc->type = var.type;
4604         desc->s = var.s;
4605         desc->dpl = var.dpl;
4606         desc->p = var.present;
4607         desc->avl = var.avl;
4608         desc->l = var.l;
4609         desc->d = var.db;
4610         desc->g = var.g;
4611
4612         return true;
4613 }
4614
4615 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4616                                  struct desc_struct *desc, u32 base3,
4617                                  int seg)
4618 {
4619         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4620         struct kvm_segment var;
4621
4622         var.selector = selector;
4623         var.base = get_desc_base(desc);
4624 #ifdef CONFIG_X86_64
4625         var.base |= ((u64)base3) << 32;
4626 #endif
4627         var.limit = get_desc_limit(desc);
4628         if (desc->g)
4629                 var.limit = (var.limit << 12) | 0xfff;
4630         var.type = desc->type;
4631         var.present = desc->p;
4632         var.dpl = desc->dpl;
4633         var.db = desc->d;
4634         var.s = desc->s;
4635         var.l = desc->l;
4636         var.g = desc->g;
4637         var.avl = desc->avl;
4638         var.present = desc->p;
4639         var.unusable = !var.present;
4640         var.padding = 0;
4641
4642         kvm_set_segment(vcpu, &var, seg);
4643         return;
4644 }
4645
4646 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4647                             u32 msr_index, u64 *pdata)
4648 {
4649         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4650 }
4651
4652 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4653                             u32 msr_index, u64 data)
4654 {
4655         struct msr_data msr;
4656
4657         msr.data = data;
4658         msr.index = msr_index;
4659         msr.host_initiated = false;
4660         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4661 }
4662
4663 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4664                              u32 pmc, u64 *pdata)
4665 {
4666         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4667 }
4668
4669 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4670 {
4671         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4672 }
4673
4674 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4675 {
4676         preempt_disable();
4677         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4678         /*
4679          * CR0.TS may reference the host fpu state, not the guest fpu state,
4680          * so it may be clear at this point.
4681          */
4682         clts();
4683 }
4684
4685 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4686 {
4687         preempt_enable();
4688 }
4689
4690 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4691                               struct x86_instruction_info *info,
4692                               enum x86_intercept_stage stage)
4693 {
4694         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4695 }
4696
4697 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4698                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4699 {
4700         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4701 }
4702
4703 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4704 {
4705         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4706 }
4707
4708 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4709 {
4710         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4711 }
4712
4713 static const struct x86_emulate_ops emulate_ops = {
4714         .read_gpr            = emulator_read_gpr,
4715         .write_gpr           = emulator_write_gpr,
4716         .read_std            = kvm_read_guest_virt_system,
4717         .write_std           = kvm_write_guest_virt_system,
4718         .fetch               = kvm_fetch_guest_virt,
4719         .read_emulated       = emulator_read_emulated,
4720         .write_emulated      = emulator_write_emulated,
4721         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4722         .invlpg              = emulator_invlpg,
4723         .pio_in_emulated     = emulator_pio_in_emulated,
4724         .pio_out_emulated    = emulator_pio_out_emulated,
4725         .get_segment         = emulator_get_segment,
4726         .set_segment         = emulator_set_segment,
4727         .get_cached_segment_base = emulator_get_cached_segment_base,
4728         .get_gdt             = emulator_get_gdt,
4729         .get_idt             = emulator_get_idt,
4730         .set_gdt             = emulator_set_gdt,
4731         .set_idt             = emulator_set_idt,
4732         .get_cr              = emulator_get_cr,
4733         .set_cr              = emulator_set_cr,
4734         .set_rflags          = emulator_set_rflags,
4735         .cpl                 = emulator_get_cpl,
4736         .get_dr              = emulator_get_dr,
4737         .set_dr              = emulator_set_dr,
4738         .set_msr             = emulator_set_msr,
4739         .get_msr             = emulator_get_msr,
4740         .read_pmc            = emulator_read_pmc,
4741         .halt                = emulator_halt,
4742         .wbinvd              = emulator_wbinvd,
4743         .fix_hypercall       = emulator_fix_hypercall,
4744         .get_fpu             = emulator_get_fpu,
4745         .put_fpu             = emulator_put_fpu,
4746         .intercept           = emulator_intercept,
4747         .get_cpuid           = emulator_get_cpuid,
4748 };
4749
4750 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4751 {
4752         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4753         /*
4754          * an sti; sti; sequence only disable interrupts for the first
4755          * instruction. So, if the last instruction, be it emulated or
4756          * not, left the system with the INT_STI flag enabled, it
4757          * means that the last instruction is an sti. We should not
4758          * leave the flag on in this case. The same goes for mov ss
4759          */
4760         if (!(int_shadow & mask))
4761                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4762 }
4763
4764 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4765 {
4766         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4767         if (ctxt->exception.vector == PF_VECTOR)
4768                 kvm_propagate_fault(vcpu, &ctxt->exception);
4769         else if (ctxt->exception.error_code_valid)
4770                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4771                                       ctxt->exception.error_code);
4772         else
4773                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4774 }
4775
4776 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4777 {
4778         memset(&ctxt->twobyte, 0,
4779                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4780
4781         ctxt->fetch.start = 0;
4782         ctxt->fetch.end = 0;
4783         ctxt->io_read.pos = 0;
4784         ctxt->io_read.end = 0;
4785         ctxt->mem_read.pos = 0;
4786         ctxt->mem_read.end = 0;
4787 }
4788
4789 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4790 {
4791         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4792         int cs_db, cs_l;
4793
4794         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4795
4796         ctxt->eflags = kvm_get_rflags(vcpu);
4797         ctxt->eip = kvm_rip_read(vcpu);
4798         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4799                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4800                      cs_l                               ? X86EMUL_MODE_PROT64 :
4801                      cs_db                              ? X86EMUL_MODE_PROT32 :
4802                                                           X86EMUL_MODE_PROT16;
4803         ctxt->guest_mode = is_guest_mode(vcpu);
4804
4805         init_decode_cache(ctxt);
4806         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4807 }
4808
4809 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4810 {
4811         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4812         int ret;
4813
4814         init_emulate_ctxt(vcpu);
4815
4816         ctxt->op_bytes = 2;
4817         ctxt->ad_bytes = 2;
4818         ctxt->_eip = ctxt->eip + inc_eip;
4819         ret = emulate_int_real(ctxt, irq);
4820
4821         if (ret != X86EMUL_CONTINUE)
4822                 return EMULATE_FAIL;
4823
4824         ctxt->eip = ctxt->_eip;
4825         kvm_rip_write(vcpu, ctxt->eip);
4826         kvm_set_rflags(vcpu, ctxt->eflags);
4827
4828         if (irq == NMI_VECTOR)
4829                 vcpu->arch.nmi_pending = 0;
4830         else
4831                 vcpu->arch.interrupt.pending = false;
4832
4833         return EMULATE_DONE;
4834 }
4835 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4836
4837 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4838 {
4839         int r = EMULATE_DONE;
4840
4841         ++vcpu->stat.insn_emulation_fail;
4842         trace_kvm_emulate_insn_failed(vcpu);
4843         if (!is_guest_mode(vcpu)) {
4844                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4845                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4846                 vcpu->run->internal.ndata = 0;
4847                 r = EMULATE_FAIL;
4848         }
4849         kvm_queue_exception(vcpu, UD_VECTOR);
4850
4851         return r;
4852 }
4853
4854 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4855                                   bool write_fault_to_shadow_pgtable,
4856                                   int emulation_type)
4857 {
4858         gpa_t gpa = cr2;
4859         pfn_t pfn;
4860
4861         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4862                 return false;
4863
4864         if (!vcpu->arch.mmu.direct_map) {
4865                 /*
4866                  * Write permission should be allowed since only
4867                  * write access need to be emulated.
4868                  */
4869                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4870
4871                 /*
4872                  * If the mapping is invalid in guest, let cpu retry
4873                  * it to generate fault.
4874                  */
4875                 if (gpa == UNMAPPED_GVA)
4876                         return true;
4877         }
4878
4879         /*
4880          * Do not retry the unhandleable instruction if it faults on the
4881          * readonly host memory, otherwise it will goto a infinite loop:
4882          * retry instruction -> write #PF -> emulation fail -> retry
4883          * instruction -> ...
4884          */
4885         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4886
4887         /*
4888          * If the instruction failed on the error pfn, it can not be fixed,
4889          * report the error to userspace.
4890          */
4891         if (is_error_noslot_pfn(pfn))
4892                 return false;
4893
4894         kvm_release_pfn_clean(pfn);
4895
4896         /* The instructions are well-emulated on direct mmu. */
4897         if (vcpu->arch.mmu.direct_map) {
4898                 unsigned int indirect_shadow_pages;
4899
4900                 spin_lock(&vcpu->kvm->mmu_lock);
4901                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4902                 spin_unlock(&vcpu->kvm->mmu_lock);
4903
4904                 if (indirect_shadow_pages)
4905                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4906
4907                 return true;
4908         }
4909
4910         /*
4911          * if emulation was due to access to shadowed page table
4912          * and it failed try to unshadow page and re-enter the
4913          * guest to let CPU execute the instruction.
4914          */
4915         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4916
4917         /*
4918          * If the access faults on its page table, it can not
4919          * be fixed by unprotecting shadow page and it should
4920          * be reported to userspace.
4921          */
4922         return !write_fault_to_shadow_pgtable;
4923 }
4924
4925 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4926                               unsigned long cr2,  int emulation_type)
4927 {
4928         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4930
4931         last_retry_eip = vcpu->arch.last_retry_eip;
4932         last_retry_addr = vcpu->arch.last_retry_addr;
4933
4934         /*
4935          * If the emulation is caused by #PF and it is non-page_table
4936          * writing instruction, it means the VM-EXIT is caused by shadow
4937          * page protected, we can zap the shadow page and retry this
4938          * instruction directly.
4939          *
4940          * Note: if the guest uses a non-page-table modifying instruction
4941          * on the PDE that points to the instruction, then we will unmap
4942          * the instruction and go to an infinite loop. So, we cache the
4943          * last retried eip and the last fault address, if we meet the eip
4944          * and the address again, we can break out of the potential infinite
4945          * loop.
4946          */
4947         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4948
4949         if (!(emulation_type & EMULTYPE_RETRY))
4950                 return false;
4951
4952         if (x86_page_table_writing_insn(ctxt))
4953                 return false;
4954
4955         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4956                 return false;
4957
4958         vcpu->arch.last_retry_eip = ctxt->eip;
4959         vcpu->arch.last_retry_addr = cr2;
4960
4961         if (!vcpu->arch.mmu.direct_map)
4962                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4963
4964         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4965
4966         return true;
4967 }
4968
4969 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4970 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4971
4972 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4973                                 unsigned long *db)
4974 {
4975         u32 dr6 = 0;
4976         int i;
4977         u32 enable, rwlen;
4978
4979         enable = dr7;
4980         rwlen = dr7 >> 16;
4981         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4982                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4983                         dr6 |= (1 << i);
4984         return dr6;
4985 }
4986
4987 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
4988 {
4989         struct kvm_run *kvm_run = vcpu->run;
4990
4991         /*
4992          * Use the "raw" value to see if TF was passed to the processor.
4993          * Note that the new value of the flags has not been saved yet.
4994          *
4995          * This is correct even for TF set by the guest, because "the
4996          * processor will not generate this exception after the instruction
4997          * that sets the TF flag".
4998          */
4999         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5000
5001         if (unlikely(rflags & X86_EFLAGS_TF)) {
5002                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5003                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5004                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5005                         kvm_run->debug.arch.exception = DB_VECTOR;
5006                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5007                         *r = EMULATE_USER_EXIT;
5008                 } else {
5009                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5010                         /*
5011                          * "Certain debug exceptions may clear bit 0-3.  The
5012                          * remaining contents of the DR6 register are never
5013                          * cleared by the processor".
5014                          */
5015                         vcpu->arch.dr6 &= ~15;
5016                         vcpu->arch.dr6 |= DR6_BS;
5017                         kvm_queue_exception(vcpu, DB_VECTOR);
5018                 }
5019         }
5020 }
5021
5022 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5023 {
5024         struct kvm_run *kvm_run = vcpu->run;
5025         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5026         u32 dr6 = 0;
5027
5028         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5029             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5030                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5031                                            vcpu->arch.guest_debug_dr7,
5032                                            vcpu->arch.eff_db);
5033
5034                 if (dr6 != 0) {
5035                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5036                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5037                                 get_segment_base(vcpu, VCPU_SREG_CS);
5038
5039                         kvm_run->debug.arch.exception = DB_VECTOR;
5040                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5041                         *r = EMULATE_USER_EXIT;
5042                         return true;
5043                 }
5044         }
5045
5046         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5047                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5048                                            vcpu->arch.dr7,
5049                                            vcpu->arch.db);
5050
5051                 if (dr6 != 0) {
5052                         vcpu->arch.dr6 &= ~15;
5053                         vcpu->arch.dr6 |= dr6;
5054                         kvm_queue_exception(vcpu, DB_VECTOR);
5055                         *r = EMULATE_DONE;
5056                         return true;
5057                 }
5058         }
5059
5060         return false;
5061 }
5062
5063 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5064                             unsigned long cr2,
5065                             int emulation_type,
5066                             void *insn,
5067                             int insn_len)
5068 {
5069         int r;
5070         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5071         bool writeback = true;
5072         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5073
5074         /*
5075          * Clear write_fault_to_shadow_pgtable here to ensure it is
5076          * never reused.
5077          */
5078         vcpu->arch.write_fault_to_shadow_pgtable = false;
5079         kvm_clear_exception_queue(vcpu);
5080
5081         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5082                 init_emulate_ctxt(vcpu);
5083
5084                 /*
5085                  * We will reenter on the same instruction since
5086                  * we do not set complete_userspace_io.  This does not
5087                  * handle watchpoints yet, those would be handled in
5088                  * the emulate_ops.
5089                  */
5090                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5091                         return r;
5092
5093                 ctxt->interruptibility = 0;
5094                 ctxt->have_exception = false;
5095                 ctxt->perm_ok = false;
5096
5097                 ctxt->only_vendor_specific_insn
5098                         = emulation_type & EMULTYPE_TRAP_UD;
5099
5100                 r = x86_decode_insn(ctxt, insn, insn_len);
5101
5102                 trace_kvm_emulate_insn_start(vcpu);
5103                 ++vcpu->stat.insn_emulation;
5104                 if (r != EMULATION_OK)  {
5105                         if (emulation_type & EMULTYPE_TRAP_UD)
5106                                 return EMULATE_FAIL;
5107                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5108                                                 emulation_type))
5109                                 return EMULATE_DONE;
5110                         if (emulation_type & EMULTYPE_SKIP)
5111                                 return EMULATE_FAIL;
5112                         return handle_emulation_failure(vcpu);
5113                 }
5114         }
5115
5116         if (emulation_type & EMULTYPE_SKIP) {
5117                 kvm_rip_write(vcpu, ctxt->_eip);
5118                 return EMULATE_DONE;
5119         }
5120
5121         if (retry_instruction(ctxt, cr2, emulation_type))
5122                 return EMULATE_DONE;
5123
5124         /* this is needed for vmware backdoor interface to work since it
5125            changes registers values  during IO operation */
5126         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5127                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5128                 emulator_invalidate_register_cache(ctxt);
5129         }
5130
5131 restart:
5132         r = x86_emulate_insn(ctxt);
5133
5134         if (r == EMULATION_INTERCEPTED)
5135                 return EMULATE_DONE;
5136
5137         if (r == EMULATION_FAILED) {
5138                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5139                                         emulation_type))
5140                         return EMULATE_DONE;
5141
5142                 return handle_emulation_failure(vcpu);
5143         }
5144
5145         if (ctxt->have_exception) {
5146                 inject_emulated_exception(vcpu);
5147                 r = EMULATE_DONE;
5148         } else if (vcpu->arch.pio.count) {
5149                 if (!vcpu->arch.pio.in) {
5150                         /* FIXME: return into emulator if single-stepping.  */
5151                         vcpu->arch.pio.count = 0;
5152                 } else {
5153                         writeback = false;
5154                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5155                 }
5156                 r = EMULATE_USER_EXIT;
5157         } else if (vcpu->mmio_needed) {
5158                 if (!vcpu->mmio_is_write)
5159                         writeback = false;
5160                 r = EMULATE_USER_EXIT;
5161                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5162         } else if (r == EMULATION_RESTART)
5163                 goto restart;
5164         else
5165                 r = EMULATE_DONE;
5166
5167         if (writeback) {
5168                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5169                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5170                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5171                 kvm_rip_write(vcpu, ctxt->eip);
5172                 if (r == EMULATE_DONE)
5173                         kvm_vcpu_check_singlestep(vcpu, &r);
5174                 kvm_set_rflags(vcpu, ctxt->eflags);
5175         } else
5176                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5177
5178         return r;
5179 }
5180 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5181
5182 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5183 {
5184         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5185         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5186                                             size, port, &val, 1);
5187         /* do not return to emulator after return from userspace */
5188         vcpu->arch.pio.count = 0;
5189         return ret;
5190 }
5191 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5192
5193 static void tsc_bad(void *info)
5194 {
5195         __this_cpu_write(cpu_tsc_khz, 0);
5196 }
5197
5198 static void tsc_khz_changed(void *data)
5199 {
5200         struct cpufreq_freqs *freq = data;
5201         unsigned long khz = 0;
5202
5203         if (data)
5204                 khz = freq->new;
5205         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5206                 khz = cpufreq_quick_get(raw_smp_processor_id());
5207         if (!khz)
5208                 khz = tsc_khz;
5209         __this_cpu_write(cpu_tsc_khz, khz);
5210 }
5211
5212 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5213                                      void *data)
5214 {
5215         struct cpufreq_freqs *freq = data;
5216         struct kvm *kvm;
5217         struct kvm_vcpu *vcpu;
5218         int i, send_ipi = 0;
5219
5220         /*
5221          * We allow guests to temporarily run on slowing clocks,
5222          * provided we notify them after, or to run on accelerating
5223          * clocks, provided we notify them before.  Thus time never
5224          * goes backwards.
5225          *
5226          * However, we have a problem.  We can't atomically update
5227          * the frequency of a given CPU from this function; it is
5228          * merely a notifier, which can be called from any CPU.
5229          * Changing the TSC frequency at arbitrary points in time
5230          * requires a recomputation of local variables related to
5231          * the TSC for each VCPU.  We must flag these local variables
5232          * to be updated and be sure the update takes place with the
5233          * new frequency before any guests proceed.
5234          *
5235          * Unfortunately, the combination of hotplug CPU and frequency
5236          * change creates an intractable locking scenario; the order
5237          * of when these callouts happen is undefined with respect to
5238          * CPU hotplug, and they can race with each other.  As such,
5239          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5240          * undefined; you can actually have a CPU frequency change take
5241          * place in between the computation of X and the setting of the
5242          * variable.  To protect against this problem, all updates of
5243          * the per_cpu tsc_khz variable are done in an interrupt
5244          * protected IPI, and all callers wishing to update the value
5245          * must wait for a synchronous IPI to complete (which is trivial
5246          * if the caller is on the CPU already).  This establishes the
5247          * necessary total order on variable updates.
5248          *
5249          * Note that because a guest time update may take place
5250          * anytime after the setting of the VCPU's request bit, the
5251          * correct TSC value must be set before the request.  However,
5252          * to ensure the update actually makes it to any guest which
5253          * starts running in hardware virtualization between the set
5254          * and the acquisition of the spinlock, we must also ping the
5255          * CPU after setting the request bit.
5256          *
5257          */
5258
5259         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5260                 return 0;
5261         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5262                 return 0;
5263
5264         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5265
5266         raw_spin_lock(&kvm_lock);
5267         list_for_each_entry(kvm, &vm_list, vm_list) {
5268                 kvm_for_each_vcpu(i, vcpu, kvm) {
5269                         if (vcpu->cpu != freq->cpu)
5270                                 continue;
5271                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5272                         if (vcpu->cpu != smp_processor_id())
5273                                 send_ipi = 1;
5274                 }
5275         }
5276         raw_spin_unlock(&kvm_lock);
5277
5278         if (freq->old < freq->new && send_ipi) {
5279                 /*
5280                  * We upscale the frequency.  Must make the guest
5281                  * doesn't see old kvmclock values while running with
5282                  * the new frequency, otherwise we risk the guest sees
5283                  * time go backwards.
5284                  *
5285                  * In case we update the frequency for another cpu
5286                  * (which might be in guest context) send an interrupt
5287                  * to kick the cpu out of guest context.  Next time
5288                  * guest context is entered kvmclock will be updated,
5289                  * so the guest will not see stale values.
5290                  */
5291                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5292         }
5293         return 0;
5294 }
5295
5296 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5297         .notifier_call  = kvmclock_cpufreq_notifier
5298 };
5299
5300 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5301                                         unsigned long action, void *hcpu)
5302 {
5303         unsigned int cpu = (unsigned long)hcpu;
5304
5305         switch (action) {
5306                 case CPU_ONLINE:
5307                 case CPU_DOWN_FAILED:
5308                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5309                         break;
5310                 case CPU_DOWN_PREPARE:
5311                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5312                         break;
5313         }
5314         return NOTIFY_OK;
5315 }
5316
5317 static struct notifier_block kvmclock_cpu_notifier_block = {
5318         .notifier_call  = kvmclock_cpu_notifier,
5319         .priority = -INT_MAX
5320 };
5321
5322 static void kvm_timer_init(void)
5323 {
5324         int cpu;
5325
5326         max_tsc_khz = tsc_khz;
5327         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5328         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5329 #ifdef CONFIG_CPU_FREQ
5330                 struct cpufreq_policy policy;
5331                 memset(&policy, 0, sizeof(policy));
5332                 cpu = get_cpu();
5333                 cpufreq_get_policy(&policy, cpu);
5334                 if (policy.cpuinfo.max_freq)
5335                         max_tsc_khz = policy.cpuinfo.max_freq;
5336                 put_cpu();
5337 #endif
5338                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5339                                           CPUFREQ_TRANSITION_NOTIFIER);
5340         }
5341         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5342         for_each_online_cpu(cpu)
5343                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5344 }
5345
5346 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5347
5348 int kvm_is_in_guest(void)
5349 {
5350         return __this_cpu_read(current_vcpu) != NULL;
5351 }
5352
5353 static int kvm_is_user_mode(void)
5354 {
5355         int user_mode = 3;
5356
5357         if (__this_cpu_read(current_vcpu))
5358                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5359
5360         return user_mode != 0;
5361 }
5362
5363 static unsigned long kvm_get_guest_ip(void)
5364 {
5365         unsigned long ip = 0;
5366
5367         if (__this_cpu_read(current_vcpu))
5368                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5369
5370         return ip;
5371 }
5372
5373 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5374         .is_in_guest            = kvm_is_in_guest,
5375         .is_user_mode           = kvm_is_user_mode,
5376         .get_guest_ip           = kvm_get_guest_ip,
5377 };
5378
5379 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5380 {
5381         __this_cpu_write(current_vcpu, vcpu);
5382 }
5383 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5384
5385 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5386 {
5387         __this_cpu_write(current_vcpu, NULL);
5388 }
5389 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5390
5391 static void kvm_set_mmio_spte_mask(void)
5392 {
5393         u64 mask;
5394         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5395
5396         /*
5397          * Set the reserved bits and the present bit of an paging-structure
5398          * entry to generate page fault with PFER.RSV = 1.
5399          */
5400          /* Mask the reserved physical address bits. */
5401         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5402
5403         /* Bit 62 is always reserved for 32bit host. */
5404         mask |= 0x3ull << 62;
5405
5406         /* Set the present bit. */
5407         mask |= 1ull;
5408
5409 #ifdef CONFIG_X86_64
5410         /*
5411          * If reserved bit is not supported, clear the present bit to disable
5412          * mmio page fault.
5413          */
5414         if (maxphyaddr == 52)
5415                 mask &= ~1ull;
5416 #endif
5417
5418         kvm_mmu_set_mmio_spte_mask(mask);
5419 }
5420
5421 #ifdef CONFIG_X86_64
5422 static void pvclock_gtod_update_fn(struct work_struct *work)
5423 {
5424         struct kvm *kvm;
5425
5426         struct kvm_vcpu *vcpu;
5427         int i;
5428
5429         raw_spin_lock(&kvm_lock);
5430         list_for_each_entry(kvm, &vm_list, vm_list)
5431                 kvm_for_each_vcpu(i, vcpu, kvm)
5432                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5433         atomic_set(&kvm_guest_has_master_clock, 0);
5434         raw_spin_unlock(&kvm_lock);
5435 }
5436
5437 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5438
5439 /*
5440  * Notification about pvclock gtod data update.
5441  */
5442 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5443                                void *priv)
5444 {
5445         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5446         struct timekeeper *tk = priv;
5447
5448         update_pvclock_gtod(tk);
5449
5450         /* disable master clock if host does not trust, or does not
5451          * use, TSC clocksource
5452          */
5453         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5454             atomic_read(&kvm_guest_has_master_clock) != 0)
5455                 queue_work(system_long_wq, &pvclock_gtod_work);
5456
5457         return 0;
5458 }
5459
5460 static struct notifier_block pvclock_gtod_notifier = {
5461         .notifier_call = pvclock_gtod_notify,
5462 };
5463 #endif
5464
5465 int kvm_arch_init(void *opaque)
5466 {
5467         int r;
5468         struct kvm_x86_ops *ops = opaque;
5469
5470         if (kvm_x86_ops) {
5471                 printk(KERN_ERR "kvm: already loaded the other module\n");
5472                 r = -EEXIST;
5473                 goto out;
5474         }
5475
5476         if (!ops->cpu_has_kvm_support()) {
5477                 printk(KERN_ERR "kvm: no hardware support\n");
5478                 r = -EOPNOTSUPP;
5479                 goto out;
5480         }
5481         if (ops->disabled_by_bios()) {
5482                 printk(KERN_ERR "kvm: disabled by bios\n");
5483                 r = -EOPNOTSUPP;
5484                 goto out;
5485         }
5486
5487         r = -ENOMEM;
5488         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5489         if (!shared_msrs) {
5490                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5491                 goto out;
5492         }
5493
5494         r = kvm_mmu_module_init();
5495         if (r)
5496                 goto out_free_percpu;
5497
5498         kvm_set_mmio_spte_mask();
5499         kvm_init_msr_list();
5500
5501         kvm_x86_ops = ops;
5502         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5503                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5504
5505         kvm_timer_init();
5506
5507         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5508
5509         if (cpu_has_xsave)
5510                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5511
5512         kvm_lapic_init();
5513 #ifdef CONFIG_X86_64
5514         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5515 #endif
5516
5517         return 0;
5518
5519 out_free_percpu:
5520         free_percpu(shared_msrs);
5521 out:
5522         return r;
5523 }
5524
5525 void kvm_arch_exit(void)
5526 {
5527         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5528
5529         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5530                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5531                                             CPUFREQ_TRANSITION_NOTIFIER);
5532         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5533 #ifdef CONFIG_X86_64
5534         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5535 #endif
5536         kvm_x86_ops = NULL;
5537         kvm_mmu_module_exit();
5538         free_percpu(shared_msrs);
5539 }
5540
5541 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5542 {
5543         ++vcpu->stat.halt_exits;
5544         if (irqchip_in_kernel(vcpu->kvm)) {
5545                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5546                 return 1;
5547         } else {
5548                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5549                 return 0;
5550         }
5551 }
5552 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5553
5554 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5555 {
5556         u64 param, ingpa, outgpa, ret;
5557         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5558         bool fast, longmode;
5559         int cs_db, cs_l;
5560
5561         /*
5562          * hypercall generates UD from non zero cpl and real mode
5563          * per HYPER-V spec
5564          */
5565         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5566                 kvm_queue_exception(vcpu, UD_VECTOR);
5567                 return 0;
5568         }
5569
5570         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5571         longmode = is_long_mode(vcpu) && cs_l == 1;
5572
5573         if (!longmode) {
5574                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5575                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5576                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5577                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5578                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5579                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5580         }
5581 #ifdef CONFIG_X86_64
5582         else {
5583                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5584                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5585                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5586         }
5587 #endif
5588
5589         code = param & 0xffff;
5590         fast = (param >> 16) & 0x1;
5591         rep_cnt = (param >> 32) & 0xfff;
5592         rep_idx = (param >> 48) & 0xfff;
5593
5594         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5595
5596         switch (code) {
5597         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5598                 kvm_vcpu_on_spin(vcpu);
5599                 break;
5600         default:
5601                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5602                 break;
5603         }
5604
5605         ret = res | (((u64)rep_done & 0xfff) << 32);
5606         if (longmode) {
5607                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5608         } else {
5609                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5610                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5611         }
5612
5613         return 1;
5614 }
5615
5616 /*
5617  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5618  *
5619  * @apicid - apicid of vcpu to be kicked.
5620  */
5621 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5622 {
5623         struct kvm_lapic_irq lapic_irq;
5624
5625         lapic_irq.shorthand = 0;
5626         lapic_irq.dest_mode = 0;
5627         lapic_irq.dest_id = apicid;
5628
5629         lapic_irq.delivery_mode = APIC_DM_REMRD;
5630         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5631 }
5632
5633 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5634 {
5635         unsigned long nr, a0, a1, a2, a3, ret;
5636         int r = 1;
5637
5638         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5639                 return kvm_hv_hypercall(vcpu);
5640
5641         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5642         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5643         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5644         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5645         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5646
5647         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5648
5649         if (!is_long_mode(vcpu)) {
5650                 nr &= 0xFFFFFFFF;
5651                 a0 &= 0xFFFFFFFF;
5652                 a1 &= 0xFFFFFFFF;
5653                 a2 &= 0xFFFFFFFF;
5654                 a3 &= 0xFFFFFFFF;
5655         }
5656
5657         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5658                 ret = -KVM_EPERM;
5659                 goto out;
5660         }
5661
5662         switch (nr) {
5663         case KVM_HC_VAPIC_POLL_IRQ:
5664                 ret = 0;
5665                 break;
5666         case KVM_HC_KICK_CPU:
5667                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5668                 ret = 0;
5669                 break;
5670         default:
5671                 ret = -KVM_ENOSYS;
5672                 break;
5673         }
5674 out:
5675         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5676         ++vcpu->stat.hypercalls;
5677         return r;
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5680
5681 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5682 {
5683         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5684         char instruction[3];
5685         unsigned long rip = kvm_rip_read(vcpu);
5686
5687         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5688
5689         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5690 }
5691
5692 /*
5693  * Check if userspace requested an interrupt window, and that the
5694  * interrupt window is open.
5695  *
5696  * No need to exit to userspace if we already have an interrupt queued.
5697  */
5698 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5699 {
5700         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5701                 vcpu->run->request_interrupt_window &&
5702                 kvm_arch_interrupt_allowed(vcpu));
5703 }
5704
5705 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5706 {
5707         struct kvm_run *kvm_run = vcpu->run;
5708
5709         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5710         kvm_run->cr8 = kvm_get_cr8(vcpu);
5711         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5712         if (irqchip_in_kernel(vcpu->kvm))
5713                 kvm_run->ready_for_interrupt_injection = 1;
5714         else
5715                 kvm_run->ready_for_interrupt_injection =
5716                         kvm_arch_interrupt_allowed(vcpu) &&
5717                         !kvm_cpu_has_interrupt(vcpu) &&
5718                         !kvm_event_needs_reinjection(vcpu);
5719 }
5720
5721 static int vapic_enter(struct kvm_vcpu *vcpu)
5722 {
5723         struct kvm_lapic *apic = vcpu->arch.apic;
5724         struct page *page;
5725
5726         if (!apic || !apic->vapic_addr)
5727                 return 0;
5728
5729         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5730         if (is_error_page(page))
5731                 return -EFAULT;
5732
5733         vcpu->arch.apic->vapic_page = page;
5734         return 0;
5735 }
5736
5737 static void vapic_exit(struct kvm_vcpu *vcpu)
5738 {
5739         struct kvm_lapic *apic = vcpu->arch.apic;
5740         int idx;
5741
5742         if (!apic || !apic->vapic_addr)
5743                 return;
5744
5745         idx = srcu_read_lock(&vcpu->kvm->srcu);
5746         kvm_release_page_dirty(apic->vapic_page);
5747         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5748         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5749 }
5750
5751 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5752 {
5753         int max_irr, tpr;
5754
5755         if (!kvm_x86_ops->update_cr8_intercept)
5756                 return;
5757
5758         if (!vcpu->arch.apic)
5759                 return;
5760
5761         if (!vcpu->arch.apic->vapic_addr)
5762                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5763         else
5764                 max_irr = -1;
5765
5766         if (max_irr != -1)
5767                 max_irr >>= 4;
5768
5769         tpr = kvm_lapic_get_cr8(vcpu);
5770
5771         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5772 }
5773
5774 static void inject_pending_event(struct kvm_vcpu *vcpu)
5775 {
5776         /* try to reinject previous events if any */
5777         if (vcpu->arch.exception.pending) {
5778                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5779                                         vcpu->arch.exception.has_error_code,
5780                                         vcpu->arch.exception.error_code);
5781                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5782                                           vcpu->arch.exception.has_error_code,
5783                                           vcpu->arch.exception.error_code,
5784                                           vcpu->arch.exception.reinject);
5785                 return;
5786         }
5787
5788         if (vcpu->arch.nmi_injected) {
5789                 kvm_x86_ops->set_nmi(vcpu);
5790                 return;
5791         }
5792
5793         if (vcpu->arch.interrupt.pending) {
5794                 kvm_x86_ops->set_irq(vcpu);
5795                 return;
5796         }
5797
5798         /* try to inject new event if pending */
5799         if (vcpu->arch.nmi_pending) {
5800                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5801                         --vcpu->arch.nmi_pending;
5802                         vcpu->arch.nmi_injected = true;
5803                         kvm_x86_ops->set_nmi(vcpu);
5804                 }
5805         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5806                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5807                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5808                                             false);
5809                         kvm_x86_ops->set_irq(vcpu);
5810                 }
5811         }
5812 }
5813
5814 static void process_nmi(struct kvm_vcpu *vcpu)
5815 {
5816         unsigned limit = 2;
5817
5818         /*
5819          * x86 is limited to one NMI running, and one NMI pending after it.
5820          * If an NMI is already in progress, limit further NMIs to just one.
5821          * Otherwise, allow two (and we'll inject the first one immediately).
5822          */
5823         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5824                 limit = 1;
5825
5826         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5827         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5828         kvm_make_request(KVM_REQ_EVENT, vcpu);
5829 }
5830
5831 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5832 {
5833         u64 eoi_exit_bitmap[4];
5834         u32 tmr[8];
5835
5836         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5837                 return;
5838
5839         memset(eoi_exit_bitmap, 0, 32);
5840         memset(tmr, 0, 32);
5841
5842         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5843         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5844         kvm_apic_update_tmr(vcpu, tmr);
5845 }
5846
5847 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5848 {
5849         int r;
5850         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5851                 vcpu->run->request_interrupt_window;
5852         bool req_immediate_exit = false;
5853
5854         if (vcpu->requests) {
5855                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5856                         kvm_mmu_unload(vcpu);
5857                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5858                         __kvm_migrate_timers(vcpu);
5859                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5860                         kvm_gen_update_masterclock(vcpu->kvm);
5861                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5862                         kvm_gen_kvmclock_update(vcpu);
5863                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5864                         r = kvm_guest_time_update(vcpu);
5865                         if (unlikely(r))
5866                                 goto out;
5867                 }
5868                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5869                         kvm_mmu_sync_roots(vcpu);
5870                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5871                         kvm_x86_ops->tlb_flush(vcpu);
5872                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5873                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5874                         r = 0;
5875                         goto out;
5876                 }
5877                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5878                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5879                         r = 0;
5880                         goto out;
5881                 }
5882                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5883                         vcpu->fpu_active = 0;
5884                         kvm_x86_ops->fpu_deactivate(vcpu);
5885                 }
5886                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5887                         /* Page is swapped out. Do synthetic halt */
5888                         vcpu->arch.apf.halted = true;
5889                         r = 1;
5890                         goto out;
5891                 }
5892                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5893                         record_steal_time(vcpu);
5894                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5895                         process_nmi(vcpu);
5896                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5897                         kvm_handle_pmu_event(vcpu);
5898                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5899                         kvm_deliver_pmi(vcpu);
5900                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5901                         vcpu_scan_ioapic(vcpu);
5902         }
5903
5904         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5905                 kvm_apic_accept_events(vcpu);
5906                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5907                         r = 1;
5908                         goto out;
5909                 }
5910
5911                 inject_pending_event(vcpu);
5912
5913                 /* enable NMI/IRQ window open exits if needed */
5914                 if (vcpu->arch.nmi_pending)
5915                         req_immediate_exit =
5916                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5917                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5918                         req_immediate_exit =
5919                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5920
5921                 if (kvm_lapic_enabled(vcpu)) {
5922                         /*
5923                          * Update architecture specific hints for APIC
5924                          * virtual interrupt delivery.
5925                          */
5926                         if (kvm_x86_ops->hwapic_irr_update)
5927                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5928                                         kvm_lapic_find_highest_irr(vcpu));
5929                         update_cr8_intercept(vcpu);
5930                         kvm_lapic_sync_to_vapic(vcpu);
5931                 }
5932         }
5933
5934         r = kvm_mmu_reload(vcpu);
5935         if (unlikely(r)) {
5936                 goto cancel_injection;
5937         }
5938
5939         preempt_disable();
5940
5941         kvm_x86_ops->prepare_guest_switch(vcpu);
5942         if (vcpu->fpu_active)
5943                 kvm_load_guest_fpu(vcpu);
5944         kvm_load_guest_xcr0(vcpu);
5945
5946         vcpu->mode = IN_GUEST_MODE;
5947
5948         /* We should set ->mode before check ->requests,
5949          * see the comment in make_all_cpus_request.
5950          */
5951         smp_mb();
5952
5953         local_irq_disable();
5954
5955         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5956             || need_resched() || signal_pending(current)) {
5957                 vcpu->mode = OUTSIDE_GUEST_MODE;
5958                 smp_wmb();
5959                 local_irq_enable();
5960                 preempt_enable();
5961                 r = 1;
5962                 goto cancel_injection;
5963         }
5964
5965         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5966
5967         if (req_immediate_exit)
5968                 smp_send_reschedule(vcpu->cpu);
5969
5970         kvm_guest_enter();
5971
5972         if (unlikely(vcpu->arch.switch_db_regs)) {
5973                 set_debugreg(0, 7);
5974                 set_debugreg(vcpu->arch.eff_db[0], 0);
5975                 set_debugreg(vcpu->arch.eff_db[1], 1);
5976                 set_debugreg(vcpu->arch.eff_db[2], 2);
5977                 set_debugreg(vcpu->arch.eff_db[3], 3);
5978         }
5979
5980         trace_kvm_entry(vcpu->vcpu_id);
5981         kvm_x86_ops->run(vcpu);
5982
5983         /*
5984          * If the guest has used debug registers, at least dr7
5985          * will be disabled while returning to the host.
5986          * If we don't have active breakpoints in the host, we don't
5987          * care about the messed up debug address registers. But if
5988          * we have some of them active, restore the old state.
5989          */
5990         if (hw_breakpoint_active())
5991                 hw_breakpoint_restore();
5992
5993         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5994                                                            native_read_tsc());
5995
5996         vcpu->mode = OUTSIDE_GUEST_MODE;
5997         smp_wmb();
5998
5999         /* Interrupt is enabled by handle_external_intr() */
6000         kvm_x86_ops->handle_external_intr(vcpu);
6001
6002         ++vcpu->stat.exits;
6003
6004         /*
6005          * We must have an instruction between local_irq_enable() and
6006          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6007          * the interrupt shadow.  The stat.exits increment will do nicely.
6008          * But we need to prevent reordering, hence this barrier():
6009          */
6010         barrier();
6011
6012         kvm_guest_exit();
6013
6014         preempt_enable();
6015
6016         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6017
6018         /*
6019          * Profile KVM exit RIPs:
6020          */
6021         if (unlikely(prof_on == KVM_PROFILING)) {
6022                 unsigned long rip = kvm_rip_read(vcpu);
6023                 profile_hit(KVM_PROFILING, (void *)rip);
6024         }
6025
6026         if (unlikely(vcpu->arch.tsc_always_catchup))
6027                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6028
6029         if (vcpu->arch.apic_attention)
6030                 kvm_lapic_sync_from_vapic(vcpu);
6031
6032         r = kvm_x86_ops->handle_exit(vcpu);
6033         return r;
6034
6035 cancel_injection:
6036         kvm_x86_ops->cancel_injection(vcpu);
6037         if (unlikely(vcpu->arch.apic_attention))
6038                 kvm_lapic_sync_from_vapic(vcpu);
6039 out:
6040         return r;
6041 }
6042
6043
6044 static int __vcpu_run(struct kvm_vcpu *vcpu)
6045 {
6046         int r;
6047         struct kvm *kvm = vcpu->kvm;
6048
6049         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6050         r = vapic_enter(vcpu);
6051         if (r) {
6052                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6053                 return r;
6054         }
6055
6056         r = 1;
6057         while (r > 0) {
6058                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6059                     !vcpu->arch.apf.halted)
6060                         r = vcpu_enter_guest(vcpu);
6061                 else {
6062                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6063                         kvm_vcpu_block(vcpu);
6064                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6065                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6066                                 kvm_apic_accept_events(vcpu);
6067                                 switch(vcpu->arch.mp_state) {
6068                                 case KVM_MP_STATE_HALTED:
6069                                         vcpu->arch.pv.pv_unhalted = false;
6070                                         vcpu->arch.mp_state =
6071                                                 KVM_MP_STATE_RUNNABLE;
6072                                 case KVM_MP_STATE_RUNNABLE:
6073                                         vcpu->arch.apf.halted = false;
6074                                         break;
6075                                 case KVM_MP_STATE_INIT_RECEIVED:
6076                                         break;
6077                                 default:
6078                                         r = -EINTR;
6079                                         break;
6080                                 }
6081                         }
6082                 }
6083
6084                 if (r <= 0)
6085                         break;
6086
6087                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6088                 if (kvm_cpu_has_pending_timer(vcpu))
6089                         kvm_inject_pending_timer_irqs(vcpu);
6090
6091                 if (dm_request_for_irq_injection(vcpu)) {
6092                         r = -EINTR;
6093                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6094                         ++vcpu->stat.request_irq_exits;
6095                 }
6096
6097                 kvm_check_async_pf_completion(vcpu);
6098
6099                 if (signal_pending(current)) {
6100                         r = -EINTR;
6101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6102                         ++vcpu->stat.signal_exits;
6103                 }
6104                 if (need_resched()) {
6105                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6106                         kvm_resched(vcpu);
6107                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6108                 }
6109         }
6110
6111         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6112
6113         vapic_exit(vcpu);
6114
6115         return r;
6116 }
6117
6118 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6119 {
6120         int r;
6121         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6122         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6123         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6124         if (r != EMULATE_DONE)
6125                 return 0;
6126         return 1;
6127 }
6128
6129 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6130 {
6131         BUG_ON(!vcpu->arch.pio.count);
6132
6133         return complete_emulated_io(vcpu);
6134 }
6135
6136 /*
6137  * Implements the following, as a state machine:
6138  *
6139  * read:
6140  *   for each fragment
6141  *     for each mmio piece in the fragment
6142  *       write gpa, len
6143  *       exit
6144  *       copy data
6145  *   execute insn
6146  *
6147  * write:
6148  *   for each fragment
6149  *     for each mmio piece in the fragment
6150  *       write gpa, len
6151  *       copy data
6152  *       exit
6153  */
6154 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6155 {
6156         struct kvm_run *run = vcpu->run;
6157         struct kvm_mmio_fragment *frag;
6158         unsigned len;
6159
6160         BUG_ON(!vcpu->mmio_needed);
6161
6162         /* Complete previous fragment */
6163         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6164         len = min(8u, frag->len);
6165         if (!vcpu->mmio_is_write)
6166                 memcpy(frag->data, run->mmio.data, len);
6167
6168         if (frag->len <= 8) {
6169                 /* Switch to the next fragment. */
6170                 frag++;
6171                 vcpu->mmio_cur_fragment++;
6172         } else {
6173                 /* Go forward to the next mmio piece. */
6174                 frag->data += len;
6175                 frag->gpa += len;
6176                 frag->len -= len;
6177         }
6178
6179         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6180                 vcpu->mmio_needed = 0;
6181
6182                 /* FIXME: return into emulator if single-stepping.  */
6183                 if (vcpu->mmio_is_write)
6184                         return 1;
6185                 vcpu->mmio_read_completed = 1;
6186                 return complete_emulated_io(vcpu);
6187         }
6188
6189         run->exit_reason = KVM_EXIT_MMIO;
6190         run->mmio.phys_addr = frag->gpa;
6191         if (vcpu->mmio_is_write)
6192                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6193         run->mmio.len = min(8u, frag->len);
6194         run->mmio.is_write = vcpu->mmio_is_write;
6195         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6196         return 0;
6197 }
6198
6199
6200 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6201 {
6202         int r;
6203         sigset_t sigsaved;
6204
6205         if (!tsk_used_math(current) && init_fpu(current))
6206                 return -ENOMEM;
6207
6208         if (vcpu->sigset_active)
6209                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6210
6211         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6212                 kvm_vcpu_block(vcpu);
6213                 kvm_apic_accept_events(vcpu);
6214                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6215                 r = -EAGAIN;
6216                 goto out;
6217         }
6218
6219         /* re-sync apic's tpr */
6220         if (!irqchip_in_kernel(vcpu->kvm)) {
6221                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6222                         r = -EINVAL;
6223                         goto out;
6224                 }
6225         }
6226
6227         if (unlikely(vcpu->arch.complete_userspace_io)) {
6228                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6229                 vcpu->arch.complete_userspace_io = NULL;
6230                 r = cui(vcpu);
6231                 if (r <= 0)
6232                         goto out;
6233         } else
6234                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6235
6236         r = __vcpu_run(vcpu);
6237
6238 out:
6239         post_kvm_run_save(vcpu);
6240         if (vcpu->sigset_active)
6241                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6242
6243         return r;
6244 }
6245
6246 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6247 {
6248         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6249                 /*
6250                  * We are here if userspace calls get_regs() in the middle of
6251                  * instruction emulation. Registers state needs to be copied
6252                  * back from emulation context to vcpu. Userspace shouldn't do
6253                  * that usually, but some bad designed PV devices (vmware
6254                  * backdoor interface) need this to work
6255                  */
6256                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6257                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6258         }
6259         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6260         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6261         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6262         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6263         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6264         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6265         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6266         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6267 #ifdef CONFIG_X86_64
6268         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6269         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6270         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6271         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6272         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6273         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6274         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6275         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6276 #endif
6277
6278         regs->rip = kvm_rip_read(vcpu);
6279         regs->rflags = kvm_get_rflags(vcpu);
6280
6281         return 0;
6282 }
6283
6284 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6285 {
6286         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6287         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6288
6289         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6290         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6291         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6292         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6293         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6294         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6295         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6296         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6297 #ifdef CONFIG_X86_64
6298         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6299         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6300         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6301         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6302         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6303         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6304         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6305         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6306 #endif
6307
6308         kvm_rip_write(vcpu, regs->rip);
6309         kvm_set_rflags(vcpu, regs->rflags);
6310
6311         vcpu->arch.exception.pending = false;
6312
6313         kvm_make_request(KVM_REQ_EVENT, vcpu);
6314
6315         return 0;
6316 }
6317
6318 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6319 {
6320         struct kvm_segment cs;
6321
6322         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6323         *db = cs.db;
6324         *l = cs.l;
6325 }
6326 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6327
6328 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6329                                   struct kvm_sregs *sregs)
6330 {
6331         struct desc_ptr dt;
6332
6333         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6334         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6335         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6336         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6337         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6338         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6339
6340         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6341         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6342
6343         kvm_x86_ops->get_idt(vcpu, &dt);
6344         sregs->idt.limit = dt.size;
6345         sregs->idt.base = dt.address;
6346         kvm_x86_ops->get_gdt(vcpu, &dt);
6347         sregs->gdt.limit = dt.size;
6348         sregs->gdt.base = dt.address;
6349
6350         sregs->cr0 = kvm_read_cr0(vcpu);
6351         sregs->cr2 = vcpu->arch.cr2;
6352         sregs->cr3 = kvm_read_cr3(vcpu);
6353         sregs->cr4 = kvm_read_cr4(vcpu);
6354         sregs->cr8 = kvm_get_cr8(vcpu);
6355         sregs->efer = vcpu->arch.efer;
6356         sregs->apic_base = kvm_get_apic_base(vcpu);
6357
6358         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6359
6360         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6361                 set_bit(vcpu->arch.interrupt.nr,
6362                         (unsigned long *)sregs->interrupt_bitmap);
6363
6364         return 0;
6365 }
6366
6367 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6368                                     struct kvm_mp_state *mp_state)
6369 {
6370         kvm_apic_accept_events(vcpu);
6371         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6372                                         vcpu->arch.pv.pv_unhalted)
6373                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6374         else
6375                 mp_state->mp_state = vcpu->arch.mp_state;
6376
6377         return 0;
6378 }
6379
6380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6381                                     struct kvm_mp_state *mp_state)
6382 {
6383         if (!kvm_vcpu_has_lapic(vcpu) &&
6384             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6385                 return -EINVAL;
6386
6387         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6388                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6389                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6390         } else
6391                 vcpu->arch.mp_state = mp_state->mp_state;
6392         kvm_make_request(KVM_REQ_EVENT, vcpu);
6393         return 0;
6394 }
6395
6396 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6397                     int reason, bool has_error_code, u32 error_code)
6398 {
6399         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6400         int ret;
6401
6402         init_emulate_ctxt(vcpu);
6403
6404         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6405                                    has_error_code, error_code);
6406
6407         if (ret)
6408                 return EMULATE_FAIL;
6409
6410         kvm_rip_write(vcpu, ctxt->eip);
6411         kvm_set_rflags(vcpu, ctxt->eflags);
6412         kvm_make_request(KVM_REQ_EVENT, vcpu);
6413         return EMULATE_DONE;
6414 }
6415 EXPORT_SYMBOL_GPL(kvm_task_switch);
6416
6417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6418                                   struct kvm_sregs *sregs)
6419 {
6420         int mmu_reset_needed = 0;
6421         int pending_vec, max_bits, idx;
6422         struct desc_ptr dt;
6423
6424         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6425                 return -EINVAL;
6426
6427         dt.size = sregs->idt.limit;
6428         dt.address = sregs->idt.base;
6429         kvm_x86_ops->set_idt(vcpu, &dt);
6430         dt.size = sregs->gdt.limit;
6431         dt.address = sregs->gdt.base;
6432         kvm_x86_ops->set_gdt(vcpu, &dt);
6433
6434         vcpu->arch.cr2 = sregs->cr2;
6435         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6436         vcpu->arch.cr3 = sregs->cr3;
6437         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6438
6439         kvm_set_cr8(vcpu, sregs->cr8);
6440
6441         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6442         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6443         kvm_set_apic_base(vcpu, sregs->apic_base);
6444
6445         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6446         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6447         vcpu->arch.cr0 = sregs->cr0;
6448
6449         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6450         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6451         if (sregs->cr4 & X86_CR4_OSXSAVE)
6452                 kvm_update_cpuid(vcpu);
6453
6454         idx = srcu_read_lock(&vcpu->kvm->srcu);
6455         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6456                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6457                 mmu_reset_needed = 1;
6458         }
6459         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6460
6461         if (mmu_reset_needed)
6462                 kvm_mmu_reset_context(vcpu);
6463
6464         max_bits = KVM_NR_INTERRUPTS;
6465         pending_vec = find_first_bit(
6466                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6467         if (pending_vec < max_bits) {
6468                 kvm_queue_interrupt(vcpu, pending_vec, false);
6469                 pr_debug("Set back pending irq %d\n", pending_vec);
6470         }
6471
6472         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6473         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6474         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6475         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6476         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6477         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6478
6479         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6480         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6481
6482         update_cr8_intercept(vcpu);
6483
6484         /* Older userspace won't unhalt the vcpu on reset. */
6485         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6486             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6487             !is_protmode(vcpu))
6488                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6489
6490         kvm_make_request(KVM_REQ_EVENT, vcpu);
6491
6492         return 0;
6493 }
6494
6495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6496                                         struct kvm_guest_debug *dbg)
6497 {
6498         unsigned long rflags;
6499         int i, r;
6500
6501         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6502                 r = -EBUSY;
6503                 if (vcpu->arch.exception.pending)
6504                         goto out;
6505                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6506                         kvm_queue_exception(vcpu, DB_VECTOR);
6507                 else
6508                         kvm_queue_exception(vcpu, BP_VECTOR);
6509         }
6510
6511         /*
6512          * Read rflags as long as potentially injected trace flags are still
6513          * filtered out.
6514          */
6515         rflags = kvm_get_rflags(vcpu);
6516
6517         vcpu->guest_debug = dbg->control;
6518         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6519                 vcpu->guest_debug = 0;
6520
6521         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6522                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6523                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6524                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6525         } else {
6526                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6527                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6528         }
6529         kvm_update_dr7(vcpu);
6530
6531         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6532                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6533                         get_segment_base(vcpu, VCPU_SREG_CS);
6534
6535         /*
6536          * Trigger an rflags update that will inject or remove the trace
6537          * flags.
6538          */
6539         kvm_set_rflags(vcpu, rflags);
6540
6541         kvm_x86_ops->update_db_bp_intercept(vcpu);
6542
6543         r = 0;
6544
6545 out:
6546
6547         return r;
6548 }
6549
6550 /*
6551  * Translate a guest virtual address to a guest physical address.
6552  */
6553 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6554                                     struct kvm_translation *tr)
6555 {
6556         unsigned long vaddr = tr->linear_address;
6557         gpa_t gpa;
6558         int idx;
6559
6560         idx = srcu_read_lock(&vcpu->kvm->srcu);
6561         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6562         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6563         tr->physical_address = gpa;
6564         tr->valid = gpa != UNMAPPED_GVA;
6565         tr->writeable = 1;
6566         tr->usermode = 0;
6567
6568         return 0;
6569 }
6570
6571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6572 {
6573         struct i387_fxsave_struct *fxsave =
6574                         &vcpu->arch.guest_fpu.state->fxsave;
6575
6576         memcpy(fpu->fpr, fxsave->st_space, 128);
6577         fpu->fcw = fxsave->cwd;
6578         fpu->fsw = fxsave->swd;
6579         fpu->ftwx = fxsave->twd;
6580         fpu->last_opcode = fxsave->fop;
6581         fpu->last_ip = fxsave->rip;
6582         fpu->last_dp = fxsave->rdp;
6583         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6584
6585         return 0;
6586 }
6587
6588 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6589 {
6590         struct i387_fxsave_struct *fxsave =
6591                         &vcpu->arch.guest_fpu.state->fxsave;
6592
6593         memcpy(fxsave->st_space, fpu->fpr, 128);
6594         fxsave->cwd = fpu->fcw;
6595         fxsave->swd = fpu->fsw;
6596         fxsave->twd = fpu->ftwx;
6597         fxsave->fop = fpu->last_opcode;
6598         fxsave->rip = fpu->last_ip;
6599         fxsave->rdp = fpu->last_dp;
6600         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6601
6602         return 0;
6603 }
6604
6605 int fx_init(struct kvm_vcpu *vcpu)
6606 {
6607         int err;
6608
6609         err = fpu_alloc(&vcpu->arch.guest_fpu);
6610         if (err)
6611                 return err;
6612
6613         fpu_finit(&vcpu->arch.guest_fpu);
6614
6615         /*
6616          * Ensure guest xcr0 is valid for loading
6617          */
6618         vcpu->arch.xcr0 = XSTATE_FP;
6619
6620         vcpu->arch.cr0 |= X86_CR0_ET;
6621
6622         return 0;
6623 }
6624 EXPORT_SYMBOL_GPL(fx_init);
6625
6626 static void fx_free(struct kvm_vcpu *vcpu)
6627 {
6628         fpu_free(&vcpu->arch.guest_fpu);
6629 }
6630
6631 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6632 {
6633         if (vcpu->guest_fpu_loaded)
6634                 return;
6635
6636         /*
6637          * Restore all possible states in the guest,
6638          * and assume host would use all available bits.
6639          * Guest xcr0 would be loaded later.
6640          */
6641         kvm_put_guest_xcr0(vcpu);
6642         vcpu->guest_fpu_loaded = 1;
6643         __kernel_fpu_begin();
6644         fpu_restore_checking(&vcpu->arch.guest_fpu);
6645         trace_kvm_fpu(1);
6646 }
6647
6648 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6649 {
6650         kvm_put_guest_xcr0(vcpu);
6651
6652         if (!vcpu->guest_fpu_loaded)
6653                 return;
6654
6655         vcpu->guest_fpu_loaded = 0;
6656         fpu_save_init(&vcpu->arch.guest_fpu);
6657         __kernel_fpu_end();
6658         ++vcpu->stat.fpu_reload;
6659         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6660         trace_kvm_fpu(0);
6661 }
6662
6663 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6664 {
6665         kvmclock_reset(vcpu);
6666
6667         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6668         fx_free(vcpu);
6669         kvm_x86_ops->vcpu_free(vcpu);
6670 }
6671
6672 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6673                                                 unsigned int id)
6674 {
6675         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6676                 printk_once(KERN_WARNING
6677                 "kvm: SMP vm created on host with unstable TSC; "
6678                 "guest TSC will not be reliable\n");
6679         return kvm_x86_ops->vcpu_create(kvm, id);
6680 }
6681
6682 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6683 {
6684         int r;
6685
6686         vcpu->arch.mtrr_state.have_fixed = 1;
6687         r = vcpu_load(vcpu);
6688         if (r)
6689                 return r;
6690         kvm_vcpu_reset(vcpu);
6691         r = kvm_mmu_setup(vcpu);
6692         vcpu_put(vcpu);
6693
6694         return r;
6695 }
6696
6697 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6698 {
6699         int r;
6700         struct msr_data msr;
6701
6702         r = vcpu_load(vcpu);
6703         if (r)
6704                 return r;
6705         msr.data = 0x0;
6706         msr.index = MSR_IA32_TSC;
6707         msr.host_initiated = true;
6708         kvm_write_tsc(vcpu, &msr);
6709         vcpu_put(vcpu);
6710
6711         return r;
6712 }
6713
6714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6715 {
6716         int r;
6717         vcpu->arch.apf.msr_val = 0;
6718
6719         r = vcpu_load(vcpu);
6720         BUG_ON(r);
6721         kvm_mmu_unload(vcpu);
6722         vcpu_put(vcpu);
6723
6724         fx_free(vcpu);
6725         kvm_x86_ops->vcpu_free(vcpu);
6726 }
6727
6728 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6729 {
6730         atomic_set(&vcpu->arch.nmi_queued, 0);
6731         vcpu->arch.nmi_pending = 0;
6732         vcpu->arch.nmi_injected = false;
6733
6734         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6735         vcpu->arch.dr6 = DR6_FIXED_1;
6736         vcpu->arch.dr7 = DR7_FIXED_1;
6737         kvm_update_dr7(vcpu);
6738
6739         kvm_make_request(KVM_REQ_EVENT, vcpu);
6740         vcpu->arch.apf.msr_val = 0;
6741         vcpu->arch.st.msr_val = 0;
6742
6743         kvmclock_reset(vcpu);
6744
6745         kvm_clear_async_pf_completion_queue(vcpu);
6746         kvm_async_pf_hash_reset(vcpu);
6747         vcpu->arch.apf.halted = false;
6748
6749         kvm_pmu_reset(vcpu);
6750
6751         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6752         vcpu->arch.regs_avail = ~0;
6753         vcpu->arch.regs_dirty = ~0;
6754
6755         kvm_x86_ops->vcpu_reset(vcpu);
6756 }
6757
6758 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6759 {
6760         struct kvm_segment cs;
6761
6762         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6763         cs.selector = vector << 8;
6764         cs.base = vector << 12;
6765         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6766         kvm_rip_write(vcpu, 0);
6767 }
6768
6769 int kvm_arch_hardware_enable(void *garbage)
6770 {
6771         struct kvm *kvm;
6772         struct kvm_vcpu *vcpu;
6773         int i;
6774         int ret;
6775         u64 local_tsc;
6776         u64 max_tsc = 0;
6777         bool stable, backwards_tsc = false;
6778
6779         kvm_shared_msr_cpu_online();
6780         ret = kvm_x86_ops->hardware_enable(garbage);
6781         if (ret != 0)
6782                 return ret;
6783
6784         local_tsc = native_read_tsc();
6785         stable = !check_tsc_unstable();
6786         list_for_each_entry(kvm, &vm_list, vm_list) {
6787                 kvm_for_each_vcpu(i, vcpu, kvm) {
6788                         if (!stable && vcpu->cpu == smp_processor_id())
6789                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6790                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6791                                 backwards_tsc = true;
6792                                 if (vcpu->arch.last_host_tsc > max_tsc)
6793                                         max_tsc = vcpu->arch.last_host_tsc;
6794                         }
6795                 }
6796         }
6797
6798         /*
6799          * Sometimes, even reliable TSCs go backwards.  This happens on
6800          * platforms that reset TSC during suspend or hibernate actions, but
6801          * maintain synchronization.  We must compensate.  Fortunately, we can
6802          * detect that condition here, which happens early in CPU bringup,
6803          * before any KVM threads can be running.  Unfortunately, we can't
6804          * bring the TSCs fully up to date with real time, as we aren't yet far
6805          * enough into CPU bringup that we know how much real time has actually
6806          * elapsed; our helper function, get_kernel_ns() will be using boot
6807          * variables that haven't been updated yet.
6808          *
6809          * So we simply find the maximum observed TSC above, then record the
6810          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6811          * the adjustment will be applied.  Note that we accumulate
6812          * adjustments, in case multiple suspend cycles happen before some VCPU
6813          * gets a chance to run again.  In the event that no KVM threads get a
6814          * chance to run, we will miss the entire elapsed period, as we'll have
6815          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6816          * loose cycle time.  This isn't too big a deal, since the loss will be
6817          * uniform across all VCPUs (not to mention the scenario is extremely
6818          * unlikely). It is possible that a second hibernate recovery happens
6819          * much faster than a first, causing the observed TSC here to be
6820          * smaller; this would require additional padding adjustment, which is
6821          * why we set last_host_tsc to the local tsc observed here.
6822          *
6823          * N.B. - this code below runs only on platforms with reliable TSC,
6824          * as that is the only way backwards_tsc is set above.  Also note
6825          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6826          * have the same delta_cyc adjustment applied if backwards_tsc
6827          * is detected.  Note further, this adjustment is only done once,
6828          * as we reset last_host_tsc on all VCPUs to stop this from being
6829          * called multiple times (one for each physical CPU bringup).
6830          *
6831          * Platforms with unreliable TSCs don't have to deal with this, they
6832          * will be compensated by the logic in vcpu_load, which sets the TSC to
6833          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6834          * guarantee that they stay in perfect synchronization.
6835          */
6836         if (backwards_tsc) {
6837                 u64 delta_cyc = max_tsc - local_tsc;
6838                 list_for_each_entry(kvm, &vm_list, vm_list) {
6839                         kvm_for_each_vcpu(i, vcpu, kvm) {
6840                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6841                                 vcpu->arch.last_host_tsc = local_tsc;
6842                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6843                                         &vcpu->requests);
6844                         }
6845
6846                         /*
6847                          * We have to disable TSC offset matching.. if you were
6848                          * booting a VM while issuing an S4 host suspend....
6849                          * you may have some problem.  Solving this issue is
6850                          * left as an exercise to the reader.
6851                          */
6852                         kvm->arch.last_tsc_nsec = 0;
6853                         kvm->arch.last_tsc_write = 0;
6854                 }
6855
6856         }
6857         return 0;
6858 }
6859
6860 void kvm_arch_hardware_disable(void *garbage)
6861 {
6862         kvm_x86_ops->hardware_disable(garbage);
6863         drop_user_return_notifiers(garbage);
6864 }
6865
6866 int kvm_arch_hardware_setup(void)
6867 {
6868         return kvm_x86_ops->hardware_setup();
6869 }
6870
6871 void kvm_arch_hardware_unsetup(void)
6872 {
6873         kvm_x86_ops->hardware_unsetup();
6874 }
6875
6876 void kvm_arch_check_processor_compat(void *rtn)
6877 {
6878         kvm_x86_ops->check_processor_compatibility(rtn);
6879 }
6880
6881 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6882 {
6883         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6884 }
6885
6886 struct static_key kvm_no_apic_vcpu __read_mostly;
6887
6888 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6889 {
6890         struct page *page;
6891         struct kvm *kvm;
6892         int r;
6893
6894         BUG_ON(vcpu->kvm == NULL);
6895         kvm = vcpu->kvm;
6896
6897         vcpu->arch.pv.pv_unhalted = false;
6898         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6899         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6900                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6901         else
6902                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6903
6904         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6905         if (!page) {
6906                 r = -ENOMEM;
6907                 goto fail;
6908         }
6909         vcpu->arch.pio_data = page_address(page);
6910
6911         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6912
6913         r = kvm_mmu_create(vcpu);
6914         if (r < 0)
6915                 goto fail_free_pio_data;
6916
6917         if (irqchip_in_kernel(kvm)) {
6918                 r = kvm_create_lapic(vcpu);
6919                 if (r < 0)
6920                         goto fail_mmu_destroy;
6921         } else
6922                 static_key_slow_inc(&kvm_no_apic_vcpu);
6923
6924         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6925                                        GFP_KERNEL);
6926         if (!vcpu->arch.mce_banks) {
6927                 r = -ENOMEM;
6928                 goto fail_free_lapic;
6929         }
6930         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6931
6932         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6933                 r = -ENOMEM;
6934                 goto fail_free_mce_banks;
6935         }
6936
6937         r = fx_init(vcpu);
6938         if (r)
6939                 goto fail_free_wbinvd_dirty_mask;
6940
6941         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6942         vcpu->arch.pv_time_enabled = false;
6943         kvm_async_pf_hash_reset(vcpu);
6944         kvm_pmu_init(vcpu);
6945
6946         return 0;
6947 fail_free_wbinvd_dirty_mask:
6948         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6949 fail_free_mce_banks:
6950         kfree(vcpu->arch.mce_banks);
6951 fail_free_lapic:
6952         kvm_free_lapic(vcpu);
6953 fail_mmu_destroy:
6954         kvm_mmu_destroy(vcpu);
6955 fail_free_pio_data:
6956         free_page((unsigned long)vcpu->arch.pio_data);
6957 fail:
6958         return r;
6959 }
6960
6961 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6962 {
6963         int idx;
6964
6965         kvm_pmu_destroy(vcpu);
6966         kfree(vcpu->arch.mce_banks);
6967         kvm_free_lapic(vcpu);
6968         idx = srcu_read_lock(&vcpu->kvm->srcu);
6969         kvm_mmu_destroy(vcpu);
6970         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6971         free_page((unsigned long)vcpu->arch.pio_data);
6972         if (!irqchip_in_kernel(vcpu->kvm))
6973                 static_key_slow_dec(&kvm_no_apic_vcpu);
6974 }
6975
6976 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6977 {
6978         if (type)
6979                 return -EINVAL;
6980
6981         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6982         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6983         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6984
6985         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6986         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6987         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6988         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6989                 &kvm->arch.irq_sources_bitmap);
6990
6991         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6992         mutex_init(&kvm->arch.apic_map_lock);
6993         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6994
6995         pvclock_update_vm_gtod_copy(kvm);
6996
6997         return 0;
6998 }
6999
7000 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7001 {
7002         int r;
7003         r = vcpu_load(vcpu);
7004         BUG_ON(r);
7005         kvm_mmu_unload(vcpu);
7006         vcpu_put(vcpu);
7007 }
7008
7009 static void kvm_free_vcpus(struct kvm *kvm)
7010 {
7011         unsigned int i;
7012         struct kvm_vcpu *vcpu;
7013
7014         /*
7015          * Unpin any mmu pages first.
7016          */
7017         kvm_for_each_vcpu(i, vcpu, kvm) {
7018                 kvm_clear_async_pf_completion_queue(vcpu);
7019                 kvm_unload_vcpu_mmu(vcpu);
7020         }
7021         kvm_for_each_vcpu(i, vcpu, kvm)
7022                 kvm_arch_vcpu_free(vcpu);
7023
7024         mutex_lock(&kvm->lock);
7025         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7026                 kvm->vcpus[i] = NULL;
7027
7028         atomic_set(&kvm->online_vcpus, 0);
7029         mutex_unlock(&kvm->lock);
7030 }
7031
7032 void kvm_arch_sync_events(struct kvm *kvm)
7033 {
7034         kvm_free_all_assigned_devices(kvm);
7035         kvm_free_pit(kvm);
7036 }
7037
7038 void kvm_arch_destroy_vm(struct kvm *kvm)
7039 {
7040         if (current->mm == kvm->mm) {
7041                 /*
7042                  * Free memory regions allocated on behalf of userspace,
7043                  * unless the the memory map has changed due to process exit
7044                  * or fd copying.
7045                  */
7046                 struct kvm_userspace_memory_region mem;
7047                 memset(&mem, 0, sizeof(mem));
7048                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7049                 kvm_set_memory_region(kvm, &mem);
7050
7051                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7052                 kvm_set_memory_region(kvm, &mem);
7053
7054                 mem.slot = TSS_PRIVATE_MEMSLOT;
7055                 kvm_set_memory_region(kvm, &mem);
7056         }
7057         kvm_iommu_unmap_guest(kvm);
7058         kfree(kvm->arch.vpic);
7059         kfree(kvm->arch.vioapic);
7060         kvm_free_vcpus(kvm);
7061         if (kvm->arch.apic_access_page)
7062                 put_page(kvm->arch.apic_access_page);
7063         if (kvm->arch.ept_identity_pagetable)
7064                 put_page(kvm->arch.ept_identity_pagetable);
7065         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7066 }
7067
7068 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
7069                            struct kvm_memory_slot *dont)
7070 {
7071         int i;
7072
7073         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7074                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7075                         kvm_kvfree(free->arch.rmap[i]);
7076                         free->arch.rmap[i] = NULL;
7077                 }
7078                 if (i == 0)
7079                         continue;
7080
7081                 if (!dont || free->arch.lpage_info[i - 1] !=
7082                              dont->arch.lpage_info[i - 1]) {
7083                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7084                         free->arch.lpage_info[i - 1] = NULL;
7085                 }
7086         }
7087 }
7088
7089 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
7090 {
7091         int i;
7092
7093         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7094                 unsigned long ugfn;
7095                 int lpages;
7096                 int level = i + 1;
7097
7098                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7099                                       slot->base_gfn, level) + 1;
7100
7101                 slot->arch.rmap[i] =
7102                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7103                 if (!slot->arch.rmap[i])
7104                         goto out_free;
7105                 if (i == 0)
7106                         continue;
7107
7108                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7109                                         sizeof(*slot->arch.lpage_info[i - 1]));
7110                 if (!slot->arch.lpage_info[i - 1])
7111                         goto out_free;
7112
7113                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7114                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7115                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7116                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7117                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7118                 /*
7119                  * If the gfn and userspace address are not aligned wrt each
7120                  * other, or if explicitly asked to, disable large page
7121                  * support for this slot
7122                  */
7123                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7124                     !kvm_largepages_enabled()) {
7125                         unsigned long j;
7126
7127                         for (j = 0; j < lpages; ++j)
7128                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7129                 }
7130         }
7131
7132         return 0;
7133
7134 out_free:
7135         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7136                 kvm_kvfree(slot->arch.rmap[i]);
7137                 slot->arch.rmap[i] = NULL;
7138                 if (i == 0)
7139                         continue;
7140
7141                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7142                 slot->arch.lpage_info[i - 1] = NULL;
7143         }
7144         return -ENOMEM;
7145 }
7146
7147 void kvm_arch_memslots_updated(struct kvm *kvm)
7148 {
7149         /*
7150          * memslots->generation has been incremented.
7151          * mmio generation may have reached its maximum value.
7152          */
7153         kvm_mmu_invalidate_mmio_sptes(kvm);
7154 }
7155
7156 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7157                                 struct kvm_memory_slot *memslot,
7158                                 struct kvm_userspace_memory_region *mem,
7159                                 enum kvm_mr_change change)
7160 {
7161         /*
7162          * Only private memory slots need to be mapped here since
7163          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7164          */
7165         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7166                 unsigned long userspace_addr;
7167
7168                 /*
7169                  * MAP_SHARED to prevent internal slot pages from being moved
7170                  * by fork()/COW.
7171                  */
7172                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7173                                          PROT_READ | PROT_WRITE,
7174                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7175
7176                 if (IS_ERR((void *)userspace_addr))
7177                         return PTR_ERR((void *)userspace_addr);
7178
7179                 memslot->userspace_addr = userspace_addr;
7180         }
7181
7182         return 0;
7183 }
7184
7185 void kvm_arch_commit_memory_region(struct kvm *kvm,
7186                                 struct kvm_userspace_memory_region *mem,
7187                                 const struct kvm_memory_slot *old,
7188                                 enum kvm_mr_change change)
7189 {
7190
7191         int nr_mmu_pages = 0;
7192
7193         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7194                 int ret;
7195
7196                 ret = vm_munmap(old->userspace_addr,
7197                                 old->npages * PAGE_SIZE);
7198                 if (ret < 0)
7199                         printk(KERN_WARNING
7200                                "kvm_vm_ioctl_set_memory_region: "
7201                                "failed to munmap memory\n");
7202         }
7203
7204         if (!kvm->arch.n_requested_mmu_pages)
7205                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7206
7207         if (nr_mmu_pages)
7208                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7209         /*
7210          * Write protect all pages for dirty logging.
7211          * Existing largepage mappings are destroyed here and new ones will
7212          * not be created until the end of the logging.
7213          */
7214         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7215                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7216 }
7217
7218 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7219 {
7220         kvm_mmu_invalidate_zap_all_pages(kvm);
7221 }
7222
7223 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7224                                    struct kvm_memory_slot *slot)
7225 {
7226         kvm_mmu_invalidate_zap_all_pages(kvm);
7227 }
7228
7229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7230 {
7231         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7232                 !vcpu->arch.apf.halted)
7233                 || !list_empty_careful(&vcpu->async_pf.done)
7234                 || kvm_apic_has_events(vcpu)
7235                 || vcpu->arch.pv.pv_unhalted
7236                 || atomic_read(&vcpu->arch.nmi_queued) ||
7237                 (kvm_arch_interrupt_allowed(vcpu) &&
7238                  kvm_cpu_has_interrupt(vcpu));
7239 }
7240
7241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7242 {
7243         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7244 }
7245
7246 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7247 {
7248         return kvm_x86_ops->interrupt_allowed(vcpu);
7249 }
7250
7251 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7252 {
7253         unsigned long current_rip = kvm_rip_read(vcpu) +
7254                 get_segment_base(vcpu, VCPU_SREG_CS);
7255
7256         return current_rip == linear_rip;
7257 }
7258 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7259
7260 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7261 {
7262         unsigned long rflags;
7263
7264         rflags = kvm_x86_ops->get_rflags(vcpu);
7265         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7266                 rflags &= ~X86_EFLAGS_TF;
7267         return rflags;
7268 }
7269 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7270
7271 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7272 {
7273         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7274             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7275                 rflags |= X86_EFLAGS_TF;
7276         kvm_x86_ops->set_rflags(vcpu, rflags);
7277         kvm_make_request(KVM_REQ_EVENT, vcpu);
7278 }
7279 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7280
7281 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7282 {
7283         int r;
7284
7285         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7286               is_error_page(work->page))
7287                 return;
7288
7289         r = kvm_mmu_reload(vcpu);
7290         if (unlikely(r))
7291                 return;
7292
7293         if (!vcpu->arch.mmu.direct_map &&
7294               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7295                 return;
7296
7297         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7298 }
7299
7300 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7301 {
7302         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7303 }
7304
7305 static inline u32 kvm_async_pf_next_probe(u32 key)
7306 {
7307         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7308 }
7309
7310 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7311 {
7312         u32 key = kvm_async_pf_hash_fn(gfn);
7313
7314         while (vcpu->arch.apf.gfns[key] != ~0)
7315                 key = kvm_async_pf_next_probe(key);
7316
7317         vcpu->arch.apf.gfns[key] = gfn;
7318 }
7319
7320 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7321 {
7322         int i;
7323         u32 key = kvm_async_pf_hash_fn(gfn);
7324
7325         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7326                      (vcpu->arch.apf.gfns[key] != gfn &&
7327                       vcpu->arch.apf.gfns[key] != ~0); i++)
7328                 key = kvm_async_pf_next_probe(key);
7329
7330         return key;
7331 }
7332
7333 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7334 {
7335         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7336 }
7337
7338 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7339 {
7340         u32 i, j, k;
7341
7342         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7343         while (true) {
7344                 vcpu->arch.apf.gfns[i] = ~0;
7345                 do {
7346                         j = kvm_async_pf_next_probe(j);
7347                         if (vcpu->arch.apf.gfns[j] == ~0)
7348                                 return;
7349                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7350                         /*
7351                          * k lies cyclically in ]i,j]
7352                          * |    i.k.j |
7353                          * |....j i.k.| or  |.k..j i...|
7354                          */
7355                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7356                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7357                 i = j;
7358         }
7359 }
7360
7361 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7362 {
7363
7364         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7365                                       sizeof(val));
7366 }
7367
7368 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7369                                      struct kvm_async_pf *work)
7370 {
7371         struct x86_exception fault;
7372
7373         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7374         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7375
7376         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7377             (vcpu->arch.apf.send_user_only &&
7378              kvm_x86_ops->get_cpl(vcpu) == 0))
7379                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7380         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7381                 fault.vector = PF_VECTOR;
7382                 fault.error_code_valid = true;
7383                 fault.error_code = 0;
7384                 fault.nested_page_fault = false;
7385                 fault.address = work->arch.token;
7386                 kvm_inject_page_fault(vcpu, &fault);
7387         }
7388 }
7389
7390 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7391                                  struct kvm_async_pf *work)
7392 {
7393         struct x86_exception fault;
7394
7395         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7396         if (is_error_page(work->page))
7397                 work->arch.token = ~0; /* broadcast wakeup */
7398         else
7399                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7400
7401         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7402             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7403                 fault.vector = PF_VECTOR;
7404                 fault.error_code_valid = true;
7405                 fault.error_code = 0;
7406                 fault.nested_page_fault = false;
7407                 fault.address = work->arch.token;
7408                 kvm_inject_page_fault(vcpu, &fault);
7409         }
7410         vcpu->arch.apf.halted = false;
7411         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7412 }
7413
7414 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7415 {
7416         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7417                 return true;
7418         else
7419                 return !kvm_event_needs_reinjection(vcpu) &&
7420                         kvm_x86_ops->interrupt_allowed(vcpu);
7421 }
7422
7423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);