]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
kvm: Create non-coherent DMA registeration
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~vcpu->arch.guest_supported_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         vcpu->arch.cr3 = cr3;
686         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
687         kvm_mmu_new_cr3(vcpu);
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr3);
691
692 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
693 {
694         if (cr8 & CR8_RESERVED_BITS)
695                 return 1;
696         if (irqchip_in_kernel(vcpu->kvm))
697                 kvm_lapic_set_tpr(vcpu, cr8);
698         else
699                 vcpu->arch.cr8 = cr8;
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr8);
703
704 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
705 {
706         if (irqchip_in_kernel(vcpu->kvm))
707                 return kvm_lapic_get_cr8(vcpu);
708         else
709                 return vcpu->arch.cr8;
710 }
711 EXPORT_SYMBOL_GPL(kvm_get_cr8);
712
713 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
714 {
715         unsigned long dr7;
716
717         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
718                 dr7 = vcpu->arch.guest_debug_dr7;
719         else
720                 dr7 = vcpu->arch.dr7;
721         kvm_x86_ops->set_dr7(vcpu, dr7);
722         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
723 }
724
725 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
726 {
727         switch (dr) {
728         case 0 ... 3:
729                 vcpu->arch.db[dr] = val;
730                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
731                         vcpu->arch.eff_db[dr] = val;
732                 break;
733         case 4:
734                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
735                         return 1; /* #UD */
736                 /* fall through */
737         case 6:
738                 if (val & 0xffffffff00000000ULL)
739                         return -1; /* #GP */
740                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
741                 break;
742         case 5:
743                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744                         return 1; /* #UD */
745                 /* fall through */
746         default: /* 7 */
747                 if (val & 0xffffffff00000000ULL)
748                         return -1; /* #GP */
749                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
750                 kvm_update_dr7(vcpu);
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
758 {
759         int res;
760
761         res = __kvm_set_dr(vcpu, dr, val);
762         if (res > 0)
763                 kvm_queue_exception(vcpu, UD_VECTOR);
764         else if (res < 0)
765                 kvm_inject_gp(vcpu, 0);
766
767         return res;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_dr);
770
771 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773         switch (dr) {
774         case 0 ... 3:
775                 *val = vcpu->arch.db[dr];
776                 break;
777         case 4:
778                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779                         return 1;
780                 /* fall through */
781         case 6:
782                 *val = vcpu->arch.dr6;
783                 break;
784         case 5:
785                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786                         return 1;
787                 /* fall through */
788         default: /* 7 */
789                 *val = vcpu->arch.dr7;
790                 break;
791         }
792
793         return 0;
794 }
795
796 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
797 {
798         if (_kvm_get_dr(vcpu, dr, val)) {
799                 kvm_queue_exception(vcpu, UD_VECTOR);
800                 return 1;
801         }
802         return 0;
803 }
804 EXPORT_SYMBOL_GPL(kvm_get_dr);
805
806 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
807 {
808         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
809         u64 data;
810         int err;
811
812         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
813         if (err)
814                 return err;
815         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
816         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
817         return err;
818 }
819 EXPORT_SYMBOL_GPL(kvm_rdpmc);
820
821 /*
822  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
823  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
824  *
825  * This list is modified at module load time to reflect the
826  * capabilities of the host cpu. This capabilities test skips MSRs that are
827  * kvm-specific. Those are put in the beginning of the list.
828  */
829
830 #define KVM_SAVE_MSRS_BEGIN     10
831 static u32 msrs_to_save[] = {
832         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
833         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
834         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
835         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
836         MSR_KVM_PV_EOI_EN,
837         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
838         MSR_STAR,
839 #ifdef CONFIG_X86_64
840         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
841 #endif
842         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
843         MSR_IA32_FEATURE_CONTROL
844 };
845
846 static unsigned num_msrs_to_save;
847
848 static const u32 emulated_msrs[] = {
849         MSR_IA32_TSC_ADJUST,
850         MSR_IA32_TSCDEADLINE,
851         MSR_IA32_MISC_ENABLE,
852         MSR_IA32_MCG_STATUS,
853         MSR_IA32_MCG_CTL,
854 };
855
856 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
857 {
858         if (efer & efer_reserved_bits)
859                 return false;
860
861         if (efer & EFER_FFXSR) {
862                 struct kvm_cpuid_entry2 *feat;
863
864                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
865                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
866                         return false;
867         }
868
869         if (efer & EFER_SVME) {
870                 struct kvm_cpuid_entry2 *feat;
871
872                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
873                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
874                         return false;
875         }
876
877         return true;
878 }
879 EXPORT_SYMBOL_GPL(kvm_valid_efer);
880
881 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
882 {
883         u64 old_efer = vcpu->arch.efer;
884
885         if (!kvm_valid_efer(vcpu, efer))
886                 return 1;
887
888         if (is_paging(vcpu)
889             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
890                 return 1;
891
892         efer &= ~EFER_LMA;
893         efer |= vcpu->arch.efer & EFER_LMA;
894
895         kvm_x86_ops->set_efer(vcpu, efer);
896
897         /* Update reserved bits */
898         if ((efer ^ old_efer) & EFER_NX)
899                 kvm_mmu_reset_context(vcpu);
900
901         return 0;
902 }
903
904 void kvm_enable_efer_bits(u64 mask)
905 {
906        efer_reserved_bits &= ~mask;
907 }
908 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
909
910
911 /*
912  * Writes msr value into into the appropriate "register".
913  * Returns 0 on success, non-0 otherwise.
914  * Assumes vcpu_load() was already called.
915  */
916 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
917 {
918         return kvm_x86_ops->set_msr(vcpu, msr);
919 }
920
921 /*
922  * Adapt set_msr() to msr_io()'s calling convention
923  */
924 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
925 {
926         struct msr_data msr;
927
928         msr.data = *data;
929         msr.index = index;
930         msr.host_initiated = true;
931         return kvm_set_msr(vcpu, &msr);
932 }
933
934 #ifdef CONFIG_X86_64
935 struct pvclock_gtod_data {
936         seqcount_t      seq;
937
938         struct { /* extract of a clocksource struct */
939                 int vclock_mode;
940                 cycle_t cycle_last;
941                 cycle_t mask;
942                 u32     mult;
943                 u32     shift;
944         } clock;
945
946         /* open coded 'struct timespec' */
947         u64             monotonic_time_snsec;
948         time_t          monotonic_time_sec;
949 };
950
951 static struct pvclock_gtod_data pvclock_gtod_data;
952
953 static void update_pvclock_gtod(struct timekeeper *tk)
954 {
955         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
956
957         write_seqcount_begin(&vdata->seq);
958
959         /* copy pvclock gtod data */
960         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
961         vdata->clock.cycle_last         = tk->clock->cycle_last;
962         vdata->clock.mask               = tk->clock->mask;
963         vdata->clock.mult               = tk->mult;
964         vdata->clock.shift              = tk->shift;
965
966         vdata->monotonic_time_sec       = tk->xtime_sec
967                                         + tk->wall_to_monotonic.tv_sec;
968         vdata->monotonic_time_snsec     = tk->xtime_nsec
969                                         + (tk->wall_to_monotonic.tv_nsec
970                                                 << tk->shift);
971         while (vdata->monotonic_time_snsec >=
972                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
973                 vdata->monotonic_time_snsec -=
974                                         ((u64)NSEC_PER_SEC) << tk->shift;
975                 vdata->monotonic_time_sec++;
976         }
977
978         write_seqcount_end(&vdata->seq);
979 }
980 #endif
981
982
983 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
984 {
985         int version;
986         int r;
987         struct pvclock_wall_clock wc;
988         struct timespec boot;
989
990         if (!wall_clock)
991                 return;
992
993         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
994         if (r)
995                 return;
996
997         if (version & 1)
998                 ++version;  /* first time write, random junk */
999
1000         ++version;
1001
1002         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1003
1004         /*
1005          * The guest calculates current wall clock time by adding
1006          * system time (updated by kvm_guest_time_update below) to the
1007          * wall clock specified here.  guest system time equals host
1008          * system time for us, thus we must fill in host boot time here.
1009          */
1010         getboottime(&boot);
1011
1012         if (kvm->arch.kvmclock_offset) {
1013                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1014                 boot = timespec_sub(boot, ts);
1015         }
1016         wc.sec = boot.tv_sec;
1017         wc.nsec = boot.tv_nsec;
1018         wc.version = version;
1019
1020         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1021
1022         version++;
1023         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1024 }
1025
1026 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1027 {
1028         uint32_t quotient, remainder;
1029
1030         /* Don't try to replace with do_div(), this one calculates
1031          * "(dividend << 32) / divisor" */
1032         __asm__ ( "divl %4"
1033                   : "=a" (quotient), "=d" (remainder)
1034                   : "0" (0), "1" (dividend), "r" (divisor) );
1035         return quotient;
1036 }
1037
1038 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1039                                s8 *pshift, u32 *pmultiplier)
1040 {
1041         uint64_t scaled64;
1042         int32_t  shift = 0;
1043         uint64_t tps64;
1044         uint32_t tps32;
1045
1046         tps64 = base_khz * 1000LL;
1047         scaled64 = scaled_khz * 1000LL;
1048         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1049                 tps64 >>= 1;
1050                 shift--;
1051         }
1052
1053         tps32 = (uint32_t)tps64;
1054         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1055                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1056                         scaled64 >>= 1;
1057                 else
1058                         tps32 <<= 1;
1059                 shift++;
1060         }
1061
1062         *pshift = shift;
1063         *pmultiplier = div_frac(scaled64, tps32);
1064
1065         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1066                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1067 }
1068
1069 static inline u64 get_kernel_ns(void)
1070 {
1071         struct timespec ts;
1072
1073         WARN_ON(preemptible());
1074         ktime_get_ts(&ts);
1075         monotonic_to_bootbased(&ts);
1076         return timespec_to_ns(&ts);
1077 }
1078
1079 #ifdef CONFIG_X86_64
1080 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1081 #endif
1082
1083 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1084 unsigned long max_tsc_khz;
1085
1086 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1087 {
1088         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1089                                    vcpu->arch.virtual_tsc_shift);
1090 }
1091
1092 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1093 {
1094         u64 v = (u64)khz * (1000000 + ppm);
1095         do_div(v, 1000000);
1096         return v;
1097 }
1098
1099 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1100 {
1101         u32 thresh_lo, thresh_hi;
1102         int use_scaling = 0;
1103
1104         /* tsc_khz can be zero if TSC calibration fails */
1105         if (this_tsc_khz == 0)
1106                 return;
1107
1108         /* Compute a scale to convert nanoseconds in TSC cycles */
1109         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1110                            &vcpu->arch.virtual_tsc_shift,
1111                            &vcpu->arch.virtual_tsc_mult);
1112         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1113
1114         /*
1115          * Compute the variation in TSC rate which is acceptable
1116          * within the range of tolerance and decide if the
1117          * rate being applied is within that bounds of the hardware
1118          * rate.  If so, no scaling or compensation need be done.
1119          */
1120         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1121         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1122         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1123                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1124                 use_scaling = 1;
1125         }
1126         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1127 }
1128
1129 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1130 {
1131         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1132                                       vcpu->arch.virtual_tsc_mult,
1133                                       vcpu->arch.virtual_tsc_shift);
1134         tsc += vcpu->arch.this_tsc_write;
1135         return tsc;
1136 }
1137
1138 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1139 {
1140 #ifdef CONFIG_X86_64
1141         bool vcpus_matched;
1142         bool do_request = false;
1143         struct kvm_arch *ka = &vcpu->kvm->arch;
1144         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1145
1146         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1147                          atomic_read(&vcpu->kvm->online_vcpus));
1148
1149         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1150                 if (!ka->use_master_clock)
1151                         do_request = 1;
1152
1153         if (!vcpus_matched && ka->use_master_clock)
1154                         do_request = 1;
1155
1156         if (do_request)
1157                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1158
1159         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1160                             atomic_read(&vcpu->kvm->online_vcpus),
1161                             ka->use_master_clock, gtod->clock.vclock_mode);
1162 #endif
1163 }
1164
1165 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1166 {
1167         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1168         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1169 }
1170
1171 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1172 {
1173         struct kvm *kvm = vcpu->kvm;
1174         u64 offset, ns, elapsed;
1175         unsigned long flags;
1176         s64 usdiff;
1177         bool matched;
1178         u64 data = msr->data;
1179
1180         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1181         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1182         ns = get_kernel_ns();
1183         elapsed = ns - kvm->arch.last_tsc_nsec;
1184
1185         if (vcpu->arch.virtual_tsc_khz) {
1186                 int faulted = 0;
1187
1188                 /* n.b - signed multiplication and division required */
1189                 usdiff = data - kvm->arch.last_tsc_write;
1190 #ifdef CONFIG_X86_64
1191                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1192 #else
1193                 /* do_div() only does unsigned */
1194                 asm("1: idivl %[divisor]\n"
1195                     "2: xor %%edx, %%edx\n"
1196                     "   movl $0, %[faulted]\n"
1197                     "3:\n"
1198                     ".section .fixup,\"ax\"\n"
1199                     "4: movl $1, %[faulted]\n"
1200                     "   jmp  3b\n"
1201                     ".previous\n"
1202
1203                 _ASM_EXTABLE(1b, 4b)
1204
1205                 : "=A"(usdiff), [faulted] "=r" (faulted)
1206                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1207
1208 #endif
1209                 do_div(elapsed, 1000);
1210                 usdiff -= elapsed;
1211                 if (usdiff < 0)
1212                         usdiff = -usdiff;
1213
1214                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1215                 if (faulted)
1216                         usdiff = USEC_PER_SEC;
1217         } else
1218                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1219
1220         /*
1221          * Special case: TSC write with a small delta (1 second) of virtual
1222          * cycle time against real time is interpreted as an attempt to
1223          * synchronize the CPU.
1224          *
1225          * For a reliable TSC, we can match TSC offsets, and for an unstable
1226          * TSC, we add elapsed time in this computation.  We could let the
1227          * compensation code attempt to catch up if we fall behind, but
1228          * it's better to try to match offsets from the beginning.
1229          */
1230         if (usdiff < USEC_PER_SEC &&
1231             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1232                 if (!check_tsc_unstable()) {
1233                         offset = kvm->arch.cur_tsc_offset;
1234                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1235                 } else {
1236                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1237                         data += delta;
1238                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1239                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1240                 }
1241                 matched = true;
1242         } else {
1243                 /*
1244                  * We split periods of matched TSC writes into generations.
1245                  * For each generation, we track the original measured
1246                  * nanosecond time, offset, and write, so if TSCs are in
1247                  * sync, we can match exact offset, and if not, we can match
1248                  * exact software computation in compute_guest_tsc()
1249                  *
1250                  * These values are tracked in kvm->arch.cur_xxx variables.
1251                  */
1252                 kvm->arch.cur_tsc_generation++;
1253                 kvm->arch.cur_tsc_nsec = ns;
1254                 kvm->arch.cur_tsc_write = data;
1255                 kvm->arch.cur_tsc_offset = offset;
1256                 matched = false;
1257                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1258                          kvm->arch.cur_tsc_generation, data);
1259         }
1260
1261         /*
1262          * We also track th most recent recorded KHZ, write and time to
1263          * allow the matching interval to be extended at each write.
1264          */
1265         kvm->arch.last_tsc_nsec = ns;
1266         kvm->arch.last_tsc_write = data;
1267         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1268
1269         /* Reset of TSC must disable overshoot protection below */
1270         vcpu->arch.hv_clock.tsc_timestamp = 0;
1271         vcpu->arch.last_guest_tsc = data;
1272
1273         /* Keep track of which generation this VCPU has synchronized to */
1274         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1275         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1276         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1277
1278         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1279                 update_ia32_tsc_adjust_msr(vcpu, offset);
1280         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1281         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1282
1283         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1284         if (matched)
1285                 kvm->arch.nr_vcpus_matched_tsc++;
1286         else
1287                 kvm->arch.nr_vcpus_matched_tsc = 0;
1288
1289         kvm_track_tsc_matching(vcpu);
1290         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1291 }
1292
1293 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1294
1295 #ifdef CONFIG_X86_64
1296
1297 static cycle_t read_tsc(void)
1298 {
1299         cycle_t ret;
1300         u64 last;
1301
1302         /*
1303          * Empirically, a fence (of type that depends on the CPU)
1304          * before rdtsc is enough to ensure that rdtsc is ordered
1305          * with respect to loads.  The various CPU manuals are unclear
1306          * as to whether rdtsc can be reordered with later loads,
1307          * but no one has ever seen it happen.
1308          */
1309         rdtsc_barrier();
1310         ret = (cycle_t)vget_cycles();
1311
1312         last = pvclock_gtod_data.clock.cycle_last;
1313
1314         if (likely(ret >= last))
1315                 return ret;
1316
1317         /*
1318          * GCC likes to generate cmov here, but this branch is extremely
1319          * predictable (it's just a funciton of time and the likely is
1320          * very likely) and there's a data dependence, so force GCC
1321          * to generate a branch instead.  I don't barrier() because
1322          * we don't actually need a barrier, and if this function
1323          * ever gets inlined it will generate worse code.
1324          */
1325         asm volatile ("");
1326         return last;
1327 }
1328
1329 static inline u64 vgettsc(cycle_t *cycle_now)
1330 {
1331         long v;
1332         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1333
1334         *cycle_now = read_tsc();
1335
1336         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1337         return v * gtod->clock.mult;
1338 }
1339
1340 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1341 {
1342         unsigned long seq;
1343         u64 ns;
1344         int mode;
1345         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347         ts->tv_nsec = 0;
1348         do {
1349                 seq = read_seqcount_begin(&gtod->seq);
1350                 mode = gtod->clock.vclock_mode;
1351                 ts->tv_sec = gtod->monotonic_time_sec;
1352                 ns = gtod->monotonic_time_snsec;
1353                 ns += vgettsc(cycle_now);
1354                 ns >>= gtod->clock.shift;
1355         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1356         timespec_add_ns(ts, ns);
1357
1358         return mode;
1359 }
1360
1361 /* returns true if host is using tsc clocksource */
1362 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1363 {
1364         struct timespec ts;
1365
1366         /* checked again under seqlock below */
1367         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1368                 return false;
1369
1370         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1371                 return false;
1372
1373         monotonic_to_bootbased(&ts);
1374         *kernel_ns = timespec_to_ns(&ts);
1375
1376         return true;
1377 }
1378 #endif
1379
1380 /*
1381  *
1382  * Assuming a stable TSC across physical CPUS, and a stable TSC
1383  * across virtual CPUs, the following condition is possible.
1384  * Each numbered line represents an event visible to both
1385  * CPUs at the next numbered event.
1386  *
1387  * "timespecX" represents host monotonic time. "tscX" represents
1388  * RDTSC value.
1389  *
1390  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1391  *
1392  * 1.  read timespec0,tsc0
1393  * 2.                                   | timespec1 = timespec0 + N
1394  *                                      | tsc1 = tsc0 + M
1395  * 3. transition to guest               | transition to guest
1396  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1397  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1398  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1399  *
1400  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1401  *
1402  *      - ret0 < ret1
1403  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1404  *              ...
1405  *      - 0 < N - M => M < N
1406  *
1407  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1408  * always the case (the difference between two distinct xtime instances
1409  * might be smaller then the difference between corresponding TSC reads,
1410  * when updating guest vcpus pvclock areas).
1411  *
1412  * To avoid that problem, do not allow visibility of distinct
1413  * system_timestamp/tsc_timestamp values simultaneously: use a master
1414  * copy of host monotonic time values. Update that master copy
1415  * in lockstep.
1416  *
1417  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1418  *
1419  */
1420
1421 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1422 {
1423 #ifdef CONFIG_X86_64
1424         struct kvm_arch *ka = &kvm->arch;
1425         int vclock_mode;
1426         bool host_tsc_clocksource, vcpus_matched;
1427
1428         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1429                         atomic_read(&kvm->online_vcpus));
1430
1431         /*
1432          * If the host uses TSC clock, then passthrough TSC as stable
1433          * to the guest.
1434          */
1435         host_tsc_clocksource = kvm_get_time_and_clockread(
1436                                         &ka->master_kernel_ns,
1437                                         &ka->master_cycle_now);
1438
1439         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1440
1441         if (ka->use_master_clock)
1442                 atomic_set(&kvm_guest_has_master_clock, 1);
1443
1444         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1445         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1446                                         vcpus_matched);
1447 #endif
1448 }
1449
1450 static void kvm_gen_update_masterclock(struct kvm *kvm)
1451 {
1452 #ifdef CONFIG_X86_64
1453         int i;
1454         struct kvm_vcpu *vcpu;
1455         struct kvm_arch *ka = &kvm->arch;
1456
1457         spin_lock(&ka->pvclock_gtod_sync_lock);
1458         kvm_make_mclock_inprogress_request(kvm);
1459         /* no guest entries from this point */
1460         pvclock_update_vm_gtod_copy(kvm);
1461
1462         kvm_for_each_vcpu(i, vcpu, kvm)
1463                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1464
1465         /* guest entries allowed */
1466         kvm_for_each_vcpu(i, vcpu, kvm)
1467                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1468
1469         spin_unlock(&ka->pvclock_gtod_sync_lock);
1470 #endif
1471 }
1472
1473 static int kvm_guest_time_update(struct kvm_vcpu *v)
1474 {
1475         unsigned long flags, this_tsc_khz;
1476         struct kvm_vcpu_arch *vcpu = &v->arch;
1477         struct kvm_arch *ka = &v->kvm->arch;
1478         s64 kernel_ns, max_kernel_ns;
1479         u64 tsc_timestamp, host_tsc;
1480         struct pvclock_vcpu_time_info guest_hv_clock;
1481         u8 pvclock_flags;
1482         bool use_master_clock;
1483
1484         kernel_ns = 0;
1485         host_tsc = 0;
1486
1487         /*
1488          * If the host uses TSC clock, then passthrough TSC as stable
1489          * to the guest.
1490          */
1491         spin_lock(&ka->pvclock_gtod_sync_lock);
1492         use_master_clock = ka->use_master_clock;
1493         if (use_master_clock) {
1494                 host_tsc = ka->master_cycle_now;
1495                 kernel_ns = ka->master_kernel_ns;
1496         }
1497         spin_unlock(&ka->pvclock_gtod_sync_lock);
1498
1499         /* Keep irq disabled to prevent changes to the clock */
1500         local_irq_save(flags);
1501         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1502         if (unlikely(this_tsc_khz == 0)) {
1503                 local_irq_restore(flags);
1504                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1505                 return 1;
1506         }
1507         if (!use_master_clock) {
1508                 host_tsc = native_read_tsc();
1509                 kernel_ns = get_kernel_ns();
1510         }
1511
1512         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1513
1514         /*
1515          * We may have to catch up the TSC to match elapsed wall clock
1516          * time for two reasons, even if kvmclock is used.
1517          *   1) CPU could have been running below the maximum TSC rate
1518          *   2) Broken TSC compensation resets the base at each VCPU
1519          *      entry to avoid unknown leaps of TSC even when running
1520          *      again on the same CPU.  This may cause apparent elapsed
1521          *      time to disappear, and the guest to stand still or run
1522          *      very slowly.
1523          */
1524         if (vcpu->tsc_catchup) {
1525                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1526                 if (tsc > tsc_timestamp) {
1527                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1528                         tsc_timestamp = tsc;
1529                 }
1530         }
1531
1532         local_irq_restore(flags);
1533
1534         if (!vcpu->pv_time_enabled)
1535                 return 0;
1536
1537         /*
1538          * Time as measured by the TSC may go backwards when resetting the base
1539          * tsc_timestamp.  The reason for this is that the TSC resolution is
1540          * higher than the resolution of the other clock scales.  Thus, many
1541          * possible measurments of the TSC correspond to one measurement of any
1542          * other clock, and so a spread of values is possible.  This is not a
1543          * problem for the computation of the nanosecond clock; with TSC rates
1544          * around 1GHZ, there can only be a few cycles which correspond to one
1545          * nanosecond value, and any path through this code will inevitably
1546          * take longer than that.  However, with the kernel_ns value itself,
1547          * the precision may be much lower, down to HZ granularity.  If the
1548          * first sampling of TSC against kernel_ns ends in the low part of the
1549          * range, and the second in the high end of the range, we can get:
1550          *
1551          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1552          *
1553          * As the sampling errors potentially range in the thousands of cycles,
1554          * it is possible such a time value has already been observed by the
1555          * guest.  To protect against this, we must compute the system time as
1556          * observed by the guest and ensure the new system time is greater.
1557          */
1558         max_kernel_ns = 0;
1559         if (vcpu->hv_clock.tsc_timestamp) {
1560                 max_kernel_ns = vcpu->last_guest_tsc -
1561                                 vcpu->hv_clock.tsc_timestamp;
1562                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1563                                     vcpu->hv_clock.tsc_to_system_mul,
1564                                     vcpu->hv_clock.tsc_shift);
1565                 max_kernel_ns += vcpu->last_kernel_ns;
1566         }
1567
1568         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1569                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1570                                    &vcpu->hv_clock.tsc_shift,
1571                                    &vcpu->hv_clock.tsc_to_system_mul);
1572                 vcpu->hw_tsc_khz = this_tsc_khz;
1573         }
1574
1575         /* with a master <monotonic time, tsc value> tuple,
1576          * pvclock clock reads always increase at the (scaled) rate
1577          * of guest TSC - no need to deal with sampling errors.
1578          */
1579         if (!use_master_clock) {
1580                 if (max_kernel_ns > kernel_ns)
1581                         kernel_ns = max_kernel_ns;
1582         }
1583         /* With all the info we got, fill in the values */
1584         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1585         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1586         vcpu->last_kernel_ns = kernel_ns;
1587         vcpu->last_guest_tsc = tsc_timestamp;
1588
1589         /*
1590          * The interface expects us to write an even number signaling that the
1591          * update is finished. Since the guest won't see the intermediate
1592          * state, we just increase by 2 at the end.
1593          */
1594         vcpu->hv_clock.version += 2;
1595
1596         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1597                 &guest_hv_clock, sizeof(guest_hv_clock))))
1598                 return 0;
1599
1600         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1601         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1602
1603         if (vcpu->pvclock_set_guest_stopped_request) {
1604                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1605                 vcpu->pvclock_set_guest_stopped_request = false;
1606         }
1607
1608         /* If the host uses TSC clocksource, then it is stable */
1609         if (use_master_clock)
1610                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1611
1612         vcpu->hv_clock.flags = pvclock_flags;
1613
1614         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1615                                 &vcpu->hv_clock,
1616                                 sizeof(vcpu->hv_clock));
1617         return 0;
1618 }
1619
1620 /*
1621  * kvmclock updates which are isolated to a given vcpu, such as
1622  * vcpu->cpu migration, should not allow system_timestamp from
1623  * the rest of the vcpus to remain static. Otherwise ntp frequency
1624  * correction applies to one vcpu's system_timestamp but not
1625  * the others.
1626  *
1627  * So in those cases, request a kvmclock update for all vcpus.
1628  * The worst case for a remote vcpu to update its kvmclock
1629  * is then bounded by maximum nohz sleep latency.
1630  */
1631
1632 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1633 {
1634         int i;
1635         struct kvm *kvm = v->kvm;
1636         struct kvm_vcpu *vcpu;
1637
1638         kvm_for_each_vcpu(i, vcpu, kvm) {
1639                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1640                 kvm_vcpu_kick(vcpu);
1641         }
1642 }
1643
1644 static bool msr_mtrr_valid(unsigned msr)
1645 {
1646         switch (msr) {
1647         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1648         case MSR_MTRRfix64K_00000:
1649         case MSR_MTRRfix16K_80000:
1650         case MSR_MTRRfix16K_A0000:
1651         case MSR_MTRRfix4K_C0000:
1652         case MSR_MTRRfix4K_C8000:
1653         case MSR_MTRRfix4K_D0000:
1654         case MSR_MTRRfix4K_D8000:
1655         case MSR_MTRRfix4K_E0000:
1656         case MSR_MTRRfix4K_E8000:
1657         case MSR_MTRRfix4K_F0000:
1658         case MSR_MTRRfix4K_F8000:
1659         case MSR_MTRRdefType:
1660         case MSR_IA32_CR_PAT:
1661                 return true;
1662         case 0x2f8:
1663                 return true;
1664         }
1665         return false;
1666 }
1667
1668 static bool valid_pat_type(unsigned t)
1669 {
1670         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1671 }
1672
1673 static bool valid_mtrr_type(unsigned t)
1674 {
1675         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1676 }
1677
1678 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1679 {
1680         int i;
1681
1682         if (!msr_mtrr_valid(msr))
1683                 return false;
1684
1685         if (msr == MSR_IA32_CR_PAT) {
1686                 for (i = 0; i < 8; i++)
1687                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1688                                 return false;
1689                 return true;
1690         } else if (msr == MSR_MTRRdefType) {
1691                 if (data & ~0xcff)
1692                         return false;
1693                 return valid_mtrr_type(data & 0xff);
1694         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1695                 for (i = 0; i < 8 ; i++)
1696                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1697                                 return false;
1698                 return true;
1699         }
1700
1701         /* variable MTRRs */
1702         return valid_mtrr_type(data & 0xff);
1703 }
1704
1705 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1706 {
1707         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1708
1709         if (!mtrr_valid(vcpu, msr, data))
1710                 return 1;
1711
1712         if (msr == MSR_MTRRdefType) {
1713                 vcpu->arch.mtrr_state.def_type = data;
1714                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1715         } else if (msr == MSR_MTRRfix64K_00000)
1716                 p[0] = data;
1717         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1718                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1719         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1720                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1721         else if (msr == MSR_IA32_CR_PAT)
1722                 vcpu->arch.pat = data;
1723         else {  /* Variable MTRRs */
1724                 int idx, is_mtrr_mask;
1725                 u64 *pt;
1726
1727                 idx = (msr - 0x200) / 2;
1728                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1729                 if (!is_mtrr_mask)
1730                         pt =
1731                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1732                 else
1733                         pt =
1734                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1735                 *pt = data;
1736         }
1737
1738         kvm_mmu_reset_context(vcpu);
1739         return 0;
1740 }
1741
1742 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1743 {
1744         u64 mcg_cap = vcpu->arch.mcg_cap;
1745         unsigned bank_num = mcg_cap & 0xff;
1746
1747         switch (msr) {
1748         case MSR_IA32_MCG_STATUS:
1749                 vcpu->arch.mcg_status = data;
1750                 break;
1751         case MSR_IA32_MCG_CTL:
1752                 if (!(mcg_cap & MCG_CTL_P))
1753                         return 1;
1754                 if (data != 0 && data != ~(u64)0)
1755                         return -1;
1756                 vcpu->arch.mcg_ctl = data;
1757                 break;
1758         default:
1759                 if (msr >= MSR_IA32_MC0_CTL &&
1760                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1761                         u32 offset = msr - MSR_IA32_MC0_CTL;
1762                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1763                          * some Linux kernels though clear bit 10 in bank 4 to
1764                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1765                          * this to avoid an uncatched #GP in the guest
1766                          */
1767                         if ((offset & 0x3) == 0 &&
1768                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1769                                 return -1;
1770                         vcpu->arch.mce_banks[offset] = data;
1771                         break;
1772                 }
1773                 return 1;
1774         }
1775         return 0;
1776 }
1777
1778 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1779 {
1780         struct kvm *kvm = vcpu->kvm;
1781         int lm = is_long_mode(vcpu);
1782         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1783                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1784         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1785                 : kvm->arch.xen_hvm_config.blob_size_32;
1786         u32 page_num = data & ~PAGE_MASK;
1787         u64 page_addr = data & PAGE_MASK;
1788         u8 *page;
1789         int r;
1790
1791         r = -E2BIG;
1792         if (page_num >= blob_size)
1793                 goto out;
1794         r = -ENOMEM;
1795         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1796         if (IS_ERR(page)) {
1797                 r = PTR_ERR(page);
1798                 goto out;
1799         }
1800         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1801                 goto out_free;
1802         r = 0;
1803 out_free:
1804         kfree(page);
1805 out:
1806         return r;
1807 }
1808
1809 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1810 {
1811         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1812 }
1813
1814 static bool kvm_hv_msr_partition_wide(u32 msr)
1815 {
1816         bool r = false;
1817         switch (msr) {
1818         case HV_X64_MSR_GUEST_OS_ID:
1819         case HV_X64_MSR_HYPERCALL:
1820                 r = true;
1821                 break;
1822         }
1823
1824         return r;
1825 }
1826
1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1828 {
1829         struct kvm *kvm = vcpu->kvm;
1830
1831         switch (msr) {
1832         case HV_X64_MSR_GUEST_OS_ID:
1833                 kvm->arch.hv_guest_os_id = data;
1834                 /* setting guest os id to zero disables hypercall page */
1835                 if (!kvm->arch.hv_guest_os_id)
1836                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1837                 break;
1838         case HV_X64_MSR_HYPERCALL: {
1839                 u64 gfn;
1840                 unsigned long addr;
1841                 u8 instructions[4];
1842
1843                 /* if guest os id is not set hypercall should remain disabled */
1844                 if (!kvm->arch.hv_guest_os_id)
1845                         break;
1846                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1847                         kvm->arch.hv_hypercall = data;
1848                         break;
1849                 }
1850                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1851                 addr = gfn_to_hva(kvm, gfn);
1852                 if (kvm_is_error_hva(addr))
1853                         return 1;
1854                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1855                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1856                 if (__copy_to_user((void __user *)addr, instructions, 4))
1857                         return 1;
1858                 kvm->arch.hv_hypercall = data;
1859                 break;
1860         }
1861         default:
1862                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1863                             "data 0x%llx\n", msr, data);
1864                 return 1;
1865         }
1866         return 0;
1867 }
1868
1869 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1870 {
1871         switch (msr) {
1872         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1873                 unsigned long addr;
1874
1875                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1876                         vcpu->arch.hv_vapic = data;
1877                         break;
1878                 }
1879                 addr = gfn_to_hva(vcpu->kvm, data >>
1880                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1881                 if (kvm_is_error_hva(addr))
1882                         return 1;
1883                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1884                         return 1;
1885                 vcpu->arch.hv_vapic = data;
1886                 break;
1887         }
1888         case HV_X64_MSR_EOI:
1889                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1890         case HV_X64_MSR_ICR:
1891                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1892         case HV_X64_MSR_TPR:
1893                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1894         default:
1895                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1896                             "data 0x%llx\n", msr, data);
1897                 return 1;
1898         }
1899
1900         return 0;
1901 }
1902
1903 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1904 {
1905         gpa_t gpa = data & ~0x3f;
1906
1907         /* Bits 2:5 are reserved, Should be zero */
1908         if (data & 0x3c)
1909                 return 1;
1910
1911         vcpu->arch.apf.msr_val = data;
1912
1913         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1914                 kvm_clear_async_pf_completion_queue(vcpu);
1915                 kvm_async_pf_hash_reset(vcpu);
1916                 return 0;
1917         }
1918
1919         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1920                                         sizeof(u32)))
1921                 return 1;
1922
1923         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1924         kvm_async_pf_wakeup_all(vcpu);
1925         return 0;
1926 }
1927
1928 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1929 {
1930         vcpu->arch.pv_time_enabled = false;
1931 }
1932
1933 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1934 {
1935         u64 delta;
1936
1937         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1938                 return;
1939
1940         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1941         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1942         vcpu->arch.st.accum_steal = delta;
1943 }
1944
1945 static void record_steal_time(struct kvm_vcpu *vcpu)
1946 {
1947         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1948                 return;
1949
1950         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1951                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1952                 return;
1953
1954         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1955         vcpu->arch.st.steal.version += 2;
1956         vcpu->arch.st.accum_steal = 0;
1957
1958         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1959                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1960 }
1961
1962 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1963 {
1964         bool pr = false;
1965         u32 msr = msr_info->index;
1966         u64 data = msr_info->data;
1967
1968         switch (msr) {
1969         case MSR_AMD64_NB_CFG:
1970         case MSR_IA32_UCODE_REV:
1971         case MSR_IA32_UCODE_WRITE:
1972         case MSR_VM_HSAVE_PA:
1973         case MSR_AMD64_PATCH_LOADER:
1974         case MSR_AMD64_BU_CFG2:
1975                 break;
1976
1977         case MSR_EFER:
1978                 return set_efer(vcpu, data);
1979         case MSR_K7_HWCR:
1980                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1981                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1982                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1983                 if (data != 0) {
1984                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1985                                     data);
1986                         return 1;
1987                 }
1988                 break;
1989         case MSR_FAM10H_MMIO_CONF_BASE:
1990                 if (data != 0) {
1991                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1992                                     "0x%llx\n", data);
1993                         return 1;
1994                 }
1995                 break;
1996         case MSR_IA32_DEBUGCTLMSR:
1997                 if (!data) {
1998                         /* We support the non-activated case already */
1999                         break;
2000                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2001                         /* Values other than LBR and BTF are vendor-specific,
2002                            thus reserved and should throw a #GP */
2003                         return 1;
2004                 }
2005                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2006                             __func__, data);
2007                 break;
2008         case 0x200 ... 0x2ff:
2009                 return set_msr_mtrr(vcpu, msr, data);
2010         case MSR_IA32_APICBASE:
2011                 kvm_set_apic_base(vcpu, data);
2012                 break;
2013         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2014                 return kvm_x2apic_msr_write(vcpu, msr, data);
2015         case MSR_IA32_TSCDEADLINE:
2016                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2017                 break;
2018         case MSR_IA32_TSC_ADJUST:
2019                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2020                         if (!msr_info->host_initiated) {
2021                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2022                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2023                         }
2024                         vcpu->arch.ia32_tsc_adjust_msr = data;
2025                 }
2026                 break;
2027         case MSR_IA32_MISC_ENABLE:
2028                 vcpu->arch.ia32_misc_enable_msr = data;
2029                 break;
2030         case MSR_KVM_WALL_CLOCK_NEW:
2031         case MSR_KVM_WALL_CLOCK:
2032                 vcpu->kvm->arch.wall_clock = data;
2033                 kvm_write_wall_clock(vcpu->kvm, data);
2034                 break;
2035         case MSR_KVM_SYSTEM_TIME_NEW:
2036         case MSR_KVM_SYSTEM_TIME: {
2037                 u64 gpa_offset;
2038                 kvmclock_reset(vcpu);
2039
2040                 vcpu->arch.time = data;
2041                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2042
2043                 /* we verify if the enable bit is set... */
2044                 if (!(data & 1))
2045                         break;
2046
2047                 gpa_offset = data & ~(PAGE_MASK | 1);
2048
2049                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2050                      &vcpu->arch.pv_time, data & ~1ULL,
2051                      sizeof(struct pvclock_vcpu_time_info)))
2052                         vcpu->arch.pv_time_enabled = false;
2053                 else
2054                         vcpu->arch.pv_time_enabled = true;
2055
2056                 break;
2057         }
2058         case MSR_KVM_ASYNC_PF_EN:
2059                 if (kvm_pv_enable_async_pf(vcpu, data))
2060                         return 1;
2061                 break;
2062         case MSR_KVM_STEAL_TIME:
2063
2064                 if (unlikely(!sched_info_on()))
2065                         return 1;
2066
2067                 if (data & KVM_STEAL_RESERVED_MASK)
2068                         return 1;
2069
2070                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2071                                                 data & KVM_STEAL_VALID_BITS,
2072                                                 sizeof(struct kvm_steal_time)))
2073                         return 1;
2074
2075                 vcpu->arch.st.msr_val = data;
2076
2077                 if (!(data & KVM_MSR_ENABLED))
2078                         break;
2079
2080                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2081
2082                 preempt_disable();
2083                 accumulate_steal_time(vcpu);
2084                 preempt_enable();
2085
2086                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2087
2088                 break;
2089         case MSR_KVM_PV_EOI_EN:
2090                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2091                         return 1;
2092                 break;
2093
2094         case MSR_IA32_MCG_CTL:
2095         case MSR_IA32_MCG_STATUS:
2096         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2097                 return set_msr_mce(vcpu, msr, data);
2098
2099         /* Performance counters are not protected by a CPUID bit,
2100          * so we should check all of them in the generic path for the sake of
2101          * cross vendor migration.
2102          * Writing a zero into the event select MSRs disables them,
2103          * which we perfectly emulate ;-). Any other value should be at least
2104          * reported, some guests depend on them.
2105          */
2106         case MSR_K7_EVNTSEL0:
2107         case MSR_K7_EVNTSEL1:
2108         case MSR_K7_EVNTSEL2:
2109         case MSR_K7_EVNTSEL3:
2110                 if (data != 0)
2111                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2112                                     "0x%x data 0x%llx\n", msr, data);
2113                 break;
2114         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2115          * so we ignore writes to make it happy.
2116          */
2117         case MSR_K7_PERFCTR0:
2118         case MSR_K7_PERFCTR1:
2119         case MSR_K7_PERFCTR2:
2120         case MSR_K7_PERFCTR3:
2121                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2122                             "0x%x data 0x%llx\n", msr, data);
2123                 break;
2124         case MSR_P6_PERFCTR0:
2125         case MSR_P6_PERFCTR1:
2126                 pr = true;
2127         case MSR_P6_EVNTSEL0:
2128         case MSR_P6_EVNTSEL1:
2129                 if (kvm_pmu_msr(vcpu, msr))
2130                         return kvm_pmu_set_msr(vcpu, msr_info);
2131
2132                 if (pr || data != 0)
2133                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2134                                     "0x%x data 0x%llx\n", msr, data);
2135                 break;
2136         case MSR_K7_CLK_CTL:
2137                 /*
2138                  * Ignore all writes to this no longer documented MSR.
2139                  * Writes are only relevant for old K7 processors,
2140                  * all pre-dating SVM, but a recommended workaround from
2141                  * AMD for these chips. It is possible to specify the
2142                  * affected processor models on the command line, hence
2143                  * the need to ignore the workaround.
2144                  */
2145                 break;
2146         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2147                 if (kvm_hv_msr_partition_wide(msr)) {
2148                         int r;
2149                         mutex_lock(&vcpu->kvm->lock);
2150                         r = set_msr_hyperv_pw(vcpu, msr, data);
2151                         mutex_unlock(&vcpu->kvm->lock);
2152                         return r;
2153                 } else
2154                         return set_msr_hyperv(vcpu, msr, data);
2155                 break;
2156         case MSR_IA32_BBL_CR_CTL3:
2157                 /* Drop writes to this legacy MSR -- see rdmsr
2158                  * counterpart for further detail.
2159                  */
2160                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2161                 break;
2162         case MSR_AMD64_OSVW_ID_LENGTH:
2163                 if (!guest_cpuid_has_osvw(vcpu))
2164                         return 1;
2165                 vcpu->arch.osvw.length = data;
2166                 break;
2167         case MSR_AMD64_OSVW_STATUS:
2168                 if (!guest_cpuid_has_osvw(vcpu))
2169                         return 1;
2170                 vcpu->arch.osvw.status = data;
2171                 break;
2172         default:
2173                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2174                         return xen_hvm_config(vcpu, data);
2175                 if (kvm_pmu_msr(vcpu, msr))
2176                         return kvm_pmu_set_msr(vcpu, msr_info);
2177                 if (!ignore_msrs) {
2178                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2179                                     msr, data);
2180                         return 1;
2181                 } else {
2182                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2183                                     msr, data);
2184                         break;
2185                 }
2186         }
2187         return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2190
2191
2192 /*
2193  * Reads an msr value (of 'msr_index') into 'pdata'.
2194  * Returns 0 on success, non-0 otherwise.
2195  * Assumes vcpu_load() was already called.
2196  */
2197 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2198 {
2199         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2200 }
2201
2202 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203 {
2204         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2205
2206         if (!msr_mtrr_valid(msr))
2207                 return 1;
2208
2209         if (msr == MSR_MTRRdefType)
2210                 *pdata = vcpu->arch.mtrr_state.def_type +
2211                          (vcpu->arch.mtrr_state.enabled << 10);
2212         else if (msr == MSR_MTRRfix64K_00000)
2213                 *pdata = p[0];
2214         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2215                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2216         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2217                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2218         else if (msr == MSR_IA32_CR_PAT)
2219                 *pdata = vcpu->arch.pat;
2220         else {  /* Variable MTRRs */
2221                 int idx, is_mtrr_mask;
2222                 u64 *pt;
2223
2224                 idx = (msr - 0x200) / 2;
2225                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2226                 if (!is_mtrr_mask)
2227                         pt =
2228                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2229                 else
2230                         pt =
2231                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2232                 *pdata = *pt;
2233         }
2234
2235         return 0;
2236 }
2237
2238 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2239 {
2240         u64 data;
2241         u64 mcg_cap = vcpu->arch.mcg_cap;
2242         unsigned bank_num = mcg_cap & 0xff;
2243
2244         switch (msr) {
2245         case MSR_IA32_P5_MC_ADDR:
2246         case MSR_IA32_P5_MC_TYPE:
2247                 data = 0;
2248                 break;
2249         case MSR_IA32_MCG_CAP:
2250                 data = vcpu->arch.mcg_cap;
2251                 break;
2252         case MSR_IA32_MCG_CTL:
2253                 if (!(mcg_cap & MCG_CTL_P))
2254                         return 1;
2255                 data = vcpu->arch.mcg_ctl;
2256                 break;
2257         case MSR_IA32_MCG_STATUS:
2258                 data = vcpu->arch.mcg_status;
2259                 break;
2260         default:
2261                 if (msr >= MSR_IA32_MC0_CTL &&
2262                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2263                         u32 offset = msr - MSR_IA32_MC0_CTL;
2264                         data = vcpu->arch.mce_banks[offset];
2265                         break;
2266                 }
2267                 return 1;
2268         }
2269         *pdata = data;
2270         return 0;
2271 }
2272
2273 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2274 {
2275         u64 data = 0;
2276         struct kvm *kvm = vcpu->kvm;
2277
2278         switch (msr) {
2279         case HV_X64_MSR_GUEST_OS_ID:
2280                 data = kvm->arch.hv_guest_os_id;
2281                 break;
2282         case HV_X64_MSR_HYPERCALL:
2283                 data = kvm->arch.hv_hypercall;
2284                 break;
2285         default:
2286                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2287                 return 1;
2288         }
2289
2290         *pdata = data;
2291         return 0;
2292 }
2293
2294 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2295 {
2296         u64 data = 0;
2297
2298         switch (msr) {
2299         case HV_X64_MSR_VP_INDEX: {
2300                 int r;
2301                 struct kvm_vcpu *v;
2302                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2303                         if (v == vcpu)
2304                                 data = r;
2305                 break;
2306         }
2307         case HV_X64_MSR_EOI:
2308                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2309         case HV_X64_MSR_ICR:
2310                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2311         case HV_X64_MSR_TPR:
2312                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2313         case HV_X64_MSR_APIC_ASSIST_PAGE:
2314                 data = vcpu->arch.hv_vapic;
2315                 break;
2316         default:
2317                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2318                 return 1;
2319         }
2320         *pdata = data;
2321         return 0;
2322 }
2323
2324 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327
2328         switch (msr) {
2329         case MSR_IA32_PLATFORM_ID:
2330         case MSR_IA32_EBL_CR_POWERON:
2331         case MSR_IA32_DEBUGCTLMSR:
2332         case MSR_IA32_LASTBRANCHFROMIP:
2333         case MSR_IA32_LASTBRANCHTOIP:
2334         case MSR_IA32_LASTINTFROMIP:
2335         case MSR_IA32_LASTINTTOIP:
2336         case MSR_K8_SYSCFG:
2337         case MSR_K7_HWCR:
2338         case MSR_VM_HSAVE_PA:
2339         case MSR_K7_EVNTSEL0:
2340         case MSR_K7_PERFCTR0:
2341         case MSR_K8_INT_PENDING_MSG:
2342         case MSR_AMD64_NB_CFG:
2343         case MSR_FAM10H_MMIO_CONF_BASE:
2344         case MSR_AMD64_BU_CFG2:
2345                 data = 0;
2346                 break;
2347         case MSR_P6_PERFCTR0:
2348         case MSR_P6_PERFCTR1:
2349         case MSR_P6_EVNTSEL0:
2350         case MSR_P6_EVNTSEL1:
2351                 if (kvm_pmu_msr(vcpu, msr))
2352                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2353                 data = 0;
2354                 break;
2355         case MSR_IA32_UCODE_REV:
2356                 data = 0x100000000ULL;
2357                 break;
2358         case MSR_MTRRcap:
2359                 data = 0x500 | KVM_NR_VAR_MTRR;
2360                 break;
2361         case 0x200 ... 0x2ff:
2362                 return get_msr_mtrr(vcpu, msr, pdata);
2363         case 0xcd: /* fsb frequency */
2364                 data = 3;
2365                 break;
2366                 /*
2367                  * MSR_EBC_FREQUENCY_ID
2368                  * Conservative value valid for even the basic CPU models.
2369                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2370                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2371                  * and 266MHz for model 3, or 4. Set Core Clock
2372                  * Frequency to System Bus Frequency Ratio to 1 (bits
2373                  * 31:24) even though these are only valid for CPU
2374                  * models > 2, however guests may end up dividing or
2375                  * multiplying by zero otherwise.
2376                  */
2377         case MSR_EBC_FREQUENCY_ID:
2378                 data = 1 << 24;
2379                 break;
2380         case MSR_IA32_APICBASE:
2381                 data = kvm_get_apic_base(vcpu);
2382                 break;
2383         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2384                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2385                 break;
2386         case MSR_IA32_TSCDEADLINE:
2387                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2388                 break;
2389         case MSR_IA32_TSC_ADJUST:
2390                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2391                 break;
2392         case MSR_IA32_MISC_ENABLE:
2393                 data = vcpu->arch.ia32_misc_enable_msr;
2394                 break;
2395         case MSR_IA32_PERF_STATUS:
2396                 /* TSC increment by tick */
2397                 data = 1000ULL;
2398                 /* CPU multiplier */
2399                 data |= (((uint64_t)4ULL) << 40);
2400                 break;
2401         case MSR_EFER:
2402                 data = vcpu->arch.efer;
2403                 break;
2404         case MSR_KVM_WALL_CLOCK:
2405         case MSR_KVM_WALL_CLOCK_NEW:
2406                 data = vcpu->kvm->arch.wall_clock;
2407                 break;
2408         case MSR_KVM_SYSTEM_TIME:
2409         case MSR_KVM_SYSTEM_TIME_NEW:
2410                 data = vcpu->arch.time;
2411                 break;
2412         case MSR_KVM_ASYNC_PF_EN:
2413                 data = vcpu->arch.apf.msr_val;
2414                 break;
2415         case MSR_KVM_STEAL_TIME:
2416                 data = vcpu->arch.st.msr_val;
2417                 break;
2418         case MSR_KVM_PV_EOI_EN:
2419                 data = vcpu->arch.pv_eoi.msr_val;
2420                 break;
2421         case MSR_IA32_P5_MC_ADDR:
2422         case MSR_IA32_P5_MC_TYPE:
2423         case MSR_IA32_MCG_CAP:
2424         case MSR_IA32_MCG_CTL:
2425         case MSR_IA32_MCG_STATUS:
2426         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2427                 return get_msr_mce(vcpu, msr, pdata);
2428         case MSR_K7_CLK_CTL:
2429                 /*
2430                  * Provide expected ramp-up count for K7. All other
2431                  * are set to zero, indicating minimum divisors for
2432                  * every field.
2433                  *
2434                  * This prevents guest kernels on AMD host with CPU
2435                  * type 6, model 8 and higher from exploding due to
2436                  * the rdmsr failing.
2437                  */
2438                 data = 0x20000000;
2439                 break;
2440         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2441                 if (kvm_hv_msr_partition_wide(msr)) {
2442                         int r;
2443                         mutex_lock(&vcpu->kvm->lock);
2444                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2445                         mutex_unlock(&vcpu->kvm->lock);
2446                         return r;
2447                 } else
2448                         return get_msr_hyperv(vcpu, msr, pdata);
2449                 break;
2450         case MSR_IA32_BBL_CR_CTL3:
2451                 /* This legacy MSR exists but isn't fully documented in current
2452                  * silicon.  It is however accessed by winxp in very narrow
2453                  * scenarios where it sets bit #19, itself documented as
2454                  * a "reserved" bit.  Best effort attempt to source coherent
2455                  * read data here should the balance of the register be
2456                  * interpreted by the guest:
2457                  *
2458                  * L2 cache control register 3: 64GB range, 256KB size,
2459                  * enabled, latency 0x1, configured
2460                  */
2461                 data = 0xbe702111;
2462                 break;
2463         case MSR_AMD64_OSVW_ID_LENGTH:
2464                 if (!guest_cpuid_has_osvw(vcpu))
2465                         return 1;
2466                 data = vcpu->arch.osvw.length;
2467                 break;
2468         case MSR_AMD64_OSVW_STATUS:
2469                 if (!guest_cpuid_has_osvw(vcpu))
2470                         return 1;
2471                 data = vcpu->arch.osvw.status;
2472                 break;
2473         default:
2474                 if (kvm_pmu_msr(vcpu, msr))
2475                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2476                 if (!ignore_msrs) {
2477                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2478                         return 1;
2479                 } else {
2480                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2481                         data = 0;
2482                 }
2483                 break;
2484         }
2485         *pdata = data;
2486         return 0;
2487 }
2488 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2489
2490 /*
2491  * Read or write a bunch of msrs. All parameters are kernel addresses.
2492  *
2493  * @return number of msrs set successfully.
2494  */
2495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2496                     struct kvm_msr_entry *entries,
2497                     int (*do_msr)(struct kvm_vcpu *vcpu,
2498                                   unsigned index, u64 *data))
2499 {
2500         int i, idx;
2501
2502         idx = srcu_read_lock(&vcpu->kvm->srcu);
2503         for (i = 0; i < msrs->nmsrs; ++i)
2504                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2505                         break;
2506         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2507
2508         return i;
2509 }
2510
2511 /*
2512  * Read or write a bunch of msrs. Parameters are user addresses.
2513  *
2514  * @return number of msrs set successfully.
2515  */
2516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2517                   int (*do_msr)(struct kvm_vcpu *vcpu,
2518                                 unsigned index, u64 *data),
2519                   int writeback)
2520 {
2521         struct kvm_msrs msrs;
2522         struct kvm_msr_entry *entries;
2523         int r, n;
2524         unsigned size;
2525
2526         r = -EFAULT;
2527         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2528                 goto out;
2529
2530         r = -E2BIG;
2531         if (msrs.nmsrs >= MAX_IO_MSRS)
2532                 goto out;
2533
2534         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2535         entries = memdup_user(user_msrs->entries, size);
2536         if (IS_ERR(entries)) {
2537                 r = PTR_ERR(entries);
2538                 goto out;
2539         }
2540
2541         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2542         if (r < 0)
2543                 goto out_free;
2544
2545         r = -EFAULT;
2546         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2547                 goto out_free;
2548
2549         r = n;
2550
2551 out_free:
2552         kfree(entries);
2553 out:
2554         return r;
2555 }
2556
2557 int kvm_dev_ioctl_check_extension(long ext)
2558 {
2559         int r;
2560
2561         switch (ext) {
2562         case KVM_CAP_IRQCHIP:
2563         case KVM_CAP_HLT:
2564         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2565         case KVM_CAP_SET_TSS_ADDR:
2566         case KVM_CAP_EXT_CPUID:
2567         case KVM_CAP_EXT_EMUL_CPUID:
2568         case KVM_CAP_CLOCKSOURCE:
2569         case KVM_CAP_PIT:
2570         case KVM_CAP_NOP_IO_DELAY:
2571         case KVM_CAP_MP_STATE:
2572         case KVM_CAP_SYNC_MMU:
2573         case KVM_CAP_USER_NMI:
2574         case KVM_CAP_REINJECT_CONTROL:
2575         case KVM_CAP_IRQ_INJECT_STATUS:
2576         case KVM_CAP_IRQFD:
2577         case KVM_CAP_IOEVENTFD:
2578         case KVM_CAP_PIT2:
2579         case KVM_CAP_PIT_STATE2:
2580         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2581         case KVM_CAP_XEN_HVM:
2582         case KVM_CAP_ADJUST_CLOCK:
2583         case KVM_CAP_VCPU_EVENTS:
2584         case KVM_CAP_HYPERV:
2585         case KVM_CAP_HYPERV_VAPIC:
2586         case KVM_CAP_HYPERV_SPIN:
2587         case KVM_CAP_PCI_SEGMENT:
2588         case KVM_CAP_DEBUGREGS:
2589         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2590         case KVM_CAP_XSAVE:
2591         case KVM_CAP_ASYNC_PF:
2592         case KVM_CAP_GET_TSC_KHZ:
2593         case KVM_CAP_KVMCLOCK_CTRL:
2594         case KVM_CAP_READONLY_MEM:
2595 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2596         case KVM_CAP_ASSIGN_DEV_IRQ:
2597         case KVM_CAP_PCI_2_3:
2598 #endif
2599                 r = 1;
2600                 break;
2601         case KVM_CAP_COALESCED_MMIO:
2602                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2603                 break;
2604         case KVM_CAP_VAPIC:
2605                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2606                 break;
2607         case KVM_CAP_NR_VCPUS:
2608                 r = KVM_SOFT_MAX_VCPUS;
2609                 break;
2610         case KVM_CAP_MAX_VCPUS:
2611                 r = KVM_MAX_VCPUS;
2612                 break;
2613         case KVM_CAP_NR_MEMSLOTS:
2614                 r = KVM_USER_MEM_SLOTS;
2615                 break;
2616         case KVM_CAP_PV_MMU:    /* obsolete */
2617                 r = 0;
2618                 break;
2619 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2620         case KVM_CAP_IOMMU:
2621                 r = iommu_present(&pci_bus_type);
2622                 break;
2623 #endif
2624         case KVM_CAP_MCE:
2625                 r = KVM_MAX_MCE_BANKS;
2626                 break;
2627         case KVM_CAP_XCRS:
2628                 r = cpu_has_xsave;
2629                 break;
2630         case KVM_CAP_TSC_CONTROL:
2631                 r = kvm_has_tsc_control;
2632                 break;
2633         case KVM_CAP_TSC_DEADLINE_TIMER:
2634                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2635                 break;
2636         default:
2637                 r = 0;
2638                 break;
2639         }
2640         return r;
2641
2642 }
2643
2644 long kvm_arch_dev_ioctl(struct file *filp,
2645                         unsigned int ioctl, unsigned long arg)
2646 {
2647         void __user *argp = (void __user *)arg;
2648         long r;
2649
2650         switch (ioctl) {
2651         case KVM_GET_MSR_INDEX_LIST: {
2652                 struct kvm_msr_list __user *user_msr_list = argp;
2653                 struct kvm_msr_list msr_list;
2654                 unsigned n;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2658                         goto out;
2659                 n = msr_list.nmsrs;
2660                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2661                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2662                         goto out;
2663                 r = -E2BIG;
2664                 if (n < msr_list.nmsrs)
2665                         goto out;
2666                 r = -EFAULT;
2667                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2668                                  num_msrs_to_save * sizeof(u32)))
2669                         goto out;
2670                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2671                                  &emulated_msrs,
2672                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2673                         goto out;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_GET_SUPPORTED_CPUID:
2678         case KVM_GET_EMULATED_CPUID: {
2679                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2680                 struct kvm_cpuid2 cpuid;
2681
2682                 r = -EFAULT;
2683                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2684                         goto out;
2685
2686                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2687                                             ioctl);
2688                 if (r)
2689                         goto out;
2690
2691                 r = -EFAULT;
2692                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2693                         goto out;
2694                 r = 0;
2695                 break;
2696         }
2697         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2698                 u64 mce_cap;
2699
2700                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2701                 r = -EFAULT;
2702                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2703                         goto out;
2704                 r = 0;
2705                 break;
2706         }
2707         default:
2708                 r = -EINVAL;
2709         }
2710 out:
2711         return r;
2712 }
2713
2714 static void wbinvd_ipi(void *garbage)
2715 {
2716         wbinvd();
2717 }
2718
2719 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2720 {
2721         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2722 }
2723
2724 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2725 {
2726         /* Address WBINVD may be executed by guest */
2727         if (need_emulate_wbinvd(vcpu)) {
2728                 if (kvm_x86_ops->has_wbinvd_exit())
2729                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2730                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2731                         smp_call_function_single(vcpu->cpu,
2732                                         wbinvd_ipi, NULL, 1);
2733         }
2734
2735         kvm_x86_ops->vcpu_load(vcpu, cpu);
2736
2737         /* Apply any externally detected TSC adjustments (due to suspend) */
2738         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2739                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2740                 vcpu->arch.tsc_offset_adjustment = 0;
2741                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2742         }
2743
2744         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2745                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2746                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2747                 if (tsc_delta < 0)
2748                         mark_tsc_unstable("KVM discovered backwards TSC");
2749                 if (check_tsc_unstable()) {
2750                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2751                                                 vcpu->arch.last_guest_tsc);
2752                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2753                         vcpu->arch.tsc_catchup = 1;
2754                 }
2755                 /*
2756                  * On a host with synchronized TSC, there is no need to update
2757                  * kvmclock on vcpu->cpu migration
2758                  */
2759                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2760                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2761                 if (vcpu->cpu != cpu)
2762                         kvm_migrate_timers(vcpu);
2763                 vcpu->cpu = cpu;
2764         }
2765
2766         accumulate_steal_time(vcpu);
2767         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2768 }
2769
2770 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2771 {
2772         kvm_x86_ops->vcpu_put(vcpu);
2773         kvm_put_guest_fpu(vcpu);
2774         vcpu->arch.last_host_tsc = native_read_tsc();
2775 }
2776
2777 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2778                                     struct kvm_lapic_state *s)
2779 {
2780         kvm_x86_ops->sync_pir_to_irr(vcpu);
2781         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2782
2783         return 0;
2784 }
2785
2786 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2787                                     struct kvm_lapic_state *s)
2788 {
2789         kvm_apic_post_state_restore(vcpu, s);
2790         update_cr8_intercept(vcpu);
2791
2792         return 0;
2793 }
2794
2795 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2796                                     struct kvm_interrupt *irq)
2797 {
2798         if (irq->irq >= KVM_NR_INTERRUPTS)
2799                 return -EINVAL;
2800         if (irqchip_in_kernel(vcpu->kvm))
2801                 return -ENXIO;
2802
2803         kvm_queue_interrupt(vcpu, irq->irq, false);
2804         kvm_make_request(KVM_REQ_EVENT, vcpu);
2805
2806         return 0;
2807 }
2808
2809 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2810 {
2811         kvm_inject_nmi(vcpu);
2812
2813         return 0;
2814 }
2815
2816 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2817                                            struct kvm_tpr_access_ctl *tac)
2818 {
2819         if (tac->flags)
2820                 return -EINVAL;
2821         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2822         return 0;
2823 }
2824
2825 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2826                                         u64 mcg_cap)
2827 {
2828         int r;
2829         unsigned bank_num = mcg_cap & 0xff, bank;
2830
2831         r = -EINVAL;
2832         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2833                 goto out;
2834         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2835                 goto out;
2836         r = 0;
2837         vcpu->arch.mcg_cap = mcg_cap;
2838         /* Init IA32_MCG_CTL to all 1s */
2839         if (mcg_cap & MCG_CTL_P)
2840                 vcpu->arch.mcg_ctl = ~(u64)0;
2841         /* Init IA32_MCi_CTL to all 1s */
2842         for (bank = 0; bank < bank_num; bank++)
2843                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2844 out:
2845         return r;
2846 }
2847
2848 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2849                                       struct kvm_x86_mce *mce)
2850 {
2851         u64 mcg_cap = vcpu->arch.mcg_cap;
2852         unsigned bank_num = mcg_cap & 0xff;
2853         u64 *banks = vcpu->arch.mce_banks;
2854
2855         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2856                 return -EINVAL;
2857         /*
2858          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2859          * reporting is disabled
2860          */
2861         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2862             vcpu->arch.mcg_ctl != ~(u64)0)
2863                 return 0;
2864         banks += 4 * mce->bank;
2865         /*
2866          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2867          * reporting is disabled for the bank
2868          */
2869         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2870                 return 0;
2871         if (mce->status & MCI_STATUS_UC) {
2872                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2873                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2874                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2875                         return 0;
2876                 }
2877                 if (banks[1] & MCI_STATUS_VAL)
2878                         mce->status |= MCI_STATUS_OVER;
2879                 banks[2] = mce->addr;
2880                 banks[3] = mce->misc;
2881                 vcpu->arch.mcg_status = mce->mcg_status;
2882                 banks[1] = mce->status;
2883                 kvm_queue_exception(vcpu, MC_VECTOR);
2884         } else if (!(banks[1] & MCI_STATUS_VAL)
2885                    || !(banks[1] & MCI_STATUS_UC)) {
2886                 if (banks[1] & MCI_STATUS_VAL)
2887                         mce->status |= MCI_STATUS_OVER;
2888                 banks[2] = mce->addr;
2889                 banks[3] = mce->misc;
2890                 banks[1] = mce->status;
2891         } else
2892                 banks[1] |= MCI_STATUS_OVER;
2893         return 0;
2894 }
2895
2896 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2897                                                struct kvm_vcpu_events *events)
2898 {
2899         process_nmi(vcpu);
2900         events->exception.injected =
2901                 vcpu->arch.exception.pending &&
2902                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2903         events->exception.nr = vcpu->arch.exception.nr;
2904         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2905         events->exception.pad = 0;
2906         events->exception.error_code = vcpu->arch.exception.error_code;
2907
2908         events->interrupt.injected =
2909                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2910         events->interrupt.nr = vcpu->arch.interrupt.nr;
2911         events->interrupt.soft = 0;
2912         events->interrupt.shadow =
2913                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2914                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2915
2916         events->nmi.injected = vcpu->arch.nmi_injected;
2917         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2918         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2919         events->nmi.pad = 0;
2920
2921         events->sipi_vector = 0; /* never valid when reporting to user space */
2922
2923         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2924                          | KVM_VCPUEVENT_VALID_SHADOW);
2925         memset(&events->reserved, 0, sizeof(events->reserved));
2926 }
2927
2928 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2929                                               struct kvm_vcpu_events *events)
2930 {
2931         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2932                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2933                               | KVM_VCPUEVENT_VALID_SHADOW))
2934                 return -EINVAL;
2935
2936         process_nmi(vcpu);
2937         vcpu->arch.exception.pending = events->exception.injected;
2938         vcpu->arch.exception.nr = events->exception.nr;
2939         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2940         vcpu->arch.exception.error_code = events->exception.error_code;
2941
2942         vcpu->arch.interrupt.pending = events->interrupt.injected;
2943         vcpu->arch.interrupt.nr = events->interrupt.nr;
2944         vcpu->arch.interrupt.soft = events->interrupt.soft;
2945         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2946                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2947                                                   events->interrupt.shadow);
2948
2949         vcpu->arch.nmi_injected = events->nmi.injected;
2950         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2951                 vcpu->arch.nmi_pending = events->nmi.pending;
2952         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2953
2954         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2955             kvm_vcpu_has_lapic(vcpu))
2956                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2957
2958         kvm_make_request(KVM_REQ_EVENT, vcpu);
2959
2960         return 0;
2961 }
2962
2963 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2964                                              struct kvm_debugregs *dbgregs)
2965 {
2966         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2967         dbgregs->dr6 = vcpu->arch.dr6;
2968         dbgregs->dr7 = vcpu->arch.dr7;
2969         dbgregs->flags = 0;
2970         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2971 }
2972
2973 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2974                                             struct kvm_debugregs *dbgregs)
2975 {
2976         if (dbgregs->flags)
2977                 return -EINVAL;
2978
2979         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2980         vcpu->arch.dr6 = dbgregs->dr6;
2981         vcpu->arch.dr7 = dbgregs->dr7;
2982
2983         return 0;
2984 }
2985
2986 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2987                                          struct kvm_xsave *guest_xsave)
2988 {
2989         if (cpu_has_xsave) {
2990                 memcpy(guest_xsave->region,
2991                         &vcpu->arch.guest_fpu.state->xsave,
2992                         vcpu->arch.guest_xstate_size);
2993                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
2994                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
2995         } else {
2996                 memcpy(guest_xsave->region,
2997                         &vcpu->arch.guest_fpu.state->fxsave,
2998                         sizeof(struct i387_fxsave_struct));
2999                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3000                         XSTATE_FPSSE;
3001         }
3002 }
3003
3004 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3005                                         struct kvm_xsave *guest_xsave)
3006 {
3007         u64 xstate_bv =
3008                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3009
3010         if (cpu_has_xsave) {
3011                 /*
3012                  * Here we allow setting states that are not present in
3013                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3014                  * with old userspace.
3015                  */
3016                 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3017                         return -EINVAL;
3018                 if (xstate_bv & ~host_xcr0)
3019                         return -EINVAL;
3020                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3021                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3022         } else {
3023                 if (xstate_bv & ~XSTATE_FPSSE)
3024                         return -EINVAL;
3025                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3026                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3027         }
3028         return 0;
3029 }
3030
3031 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3032                                         struct kvm_xcrs *guest_xcrs)
3033 {
3034         if (!cpu_has_xsave) {
3035                 guest_xcrs->nr_xcrs = 0;
3036                 return;
3037         }
3038
3039         guest_xcrs->nr_xcrs = 1;
3040         guest_xcrs->flags = 0;
3041         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3042         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3043 }
3044
3045 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3046                                        struct kvm_xcrs *guest_xcrs)
3047 {
3048         int i, r = 0;
3049
3050         if (!cpu_has_xsave)
3051                 return -EINVAL;
3052
3053         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3054                 return -EINVAL;
3055
3056         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3057                 /* Only support XCR0 currently */
3058                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3059                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3060                                 guest_xcrs->xcrs[0].value);
3061                         break;
3062                 }
3063         if (r)
3064                 r = -EINVAL;
3065         return r;
3066 }
3067
3068 /*
3069  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3070  * stopped by the hypervisor.  This function will be called from the host only.
3071  * EINVAL is returned when the host attempts to set the flag for a guest that
3072  * does not support pv clocks.
3073  */
3074 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3075 {
3076         if (!vcpu->arch.pv_time_enabled)
3077                 return -EINVAL;
3078         vcpu->arch.pvclock_set_guest_stopped_request = true;
3079         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3080         return 0;
3081 }
3082
3083 long kvm_arch_vcpu_ioctl(struct file *filp,
3084                          unsigned int ioctl, unsigned long arg)
3085 {
3086         struct kvm_vcpu *vcpu = filp->private_data;
3087         void __user *argp = (void __user *)arg;
3088         int r;
3089         union {
3090                 struct kvm_lapic_state *lapic;
3091                 struct kvm_xsave *xsave;
3092                 struct kvm_xcrs *xcrs;
3093                 void *buffer;
3094         } u;
3095
3096         u.buffer = NULL;
3097         switch (ioctl) {
3098         case KVM_GET_LAPIC: {
3099                 r = -EINVAL;
3100                 if (!vcpu->arch.apic)
3101                         goto out;
3102                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3103
3104                 r = -ENOMEM;
3105                 if (!u.lapic)
3106                         goto out;
3107                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3108                 if (r)
3109                         goto out;
3110                 r = -EFAULT;
3111                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3112                         goto out;
3113                 r = 0;
3114                 break;
3115         }
3116         case KVM_SET_LAPIC: {
3117                 r = -EINVAL;
3118                 if (!vcpu->arch.apic)
3119                         goto out;
3120                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3121                 if (IS_ERR(u.lapic))
3122                         return PTR_ERR(u.lapic);
3123
3124                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3125                 break;
3126         }
3127         case KVM_INTERRUPT: {
3128                 struct kvm_interrupt irq;
3129
3130                 r = -EFAULT;
3131                 if (copy_from_user(&irq, argp, sizeof irq))
3132                         goto out;
3133                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3134                 break;
3135         }
3136         case KVM_NMI: {
3137                 r = kvm_vcpu_ioctl_nmi(vcpu);
3138                 break;
3139         }
3140         case KVM_SET_CPUID: {
3141                 struct kvm_cpuid __user *cpuid_arg = argp;
3142                 struct kvm_cpuid cpuid;
3143
3144                 r = -EFAULT;
3145                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3146                         goto out;
3147                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3148                 break;
3149         }
3150         case KVM_SET_CPUID2: {
3151                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3152                 struct kvm_cpuid2 cpuid;
3153
3154                 r = -EFAULT;
3155                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3156                         goto out;
3157                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3158                                               cpuid_arg->entries);
3159                 break;
3160         }
3161         case KVM_GET_CPUID2: {
3162                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3163                 struct kvm_cpuid2 cpuid;
3164
3165                 r = -EFAULT;
3166                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3167                         goto out;
3168                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3169                                               cpuid_arg->entries);
3170                 if (r)
3171                         goto out;
3172                 r = -EFAULT;
3173                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3174                         goto out;
3175                 r = 0;
3176                 break;
3177         }
3178         case KVM_GET_MSRS:
3179                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3180                 break;
3181         case KVM_SET_MSRS:
3182                 r = msr_io(vcpu, argp, do_set_msr, 0);
3183                 break;
3184         case KVM_TPR_ACCESS_REPORTING: {
3185                 struct kvm_tpr_access_ctl tac;
3186
3187                 r = -EFAULT;
3188                 if (copy_from_user(&tac, argp, sizeof tac))
3189                         goto out;
3190                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3191                 if (r)
3192                         goto out;
3193                 r = -EFAULT;
3194                 if (copy_to_user(argp, &tac, sizeof tac))
3195                         goto out;
3196                 r = 0;
3197                 break;
3198         };
3199         case KVM_SET_VAPIC_ADDR: {
3200                 struct kvm_vapic_addr va;
3201
3202                 r = -EINVAL;
3203                 if (!irqchip_in_kernel(vcpu->kvm))
3204                         goto out;
3205                 r = -EFAULT;
3206                 if (copy_from_user(&va, argp, sizeof va))
3207                         goto out;
3208                 r = 0;
3209                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3210                 break;
3211         }
3212         case KVM_X86_SETUP_MCE: {
3213                 u64 mcg_cap;
3214
3215                 r = -EFAULT;
3216                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3217                         goto out;
3218                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3219                 break;
3220         }
3221         case KVM_X86_SET_MCE: {
3222                 struct kvm_x86_mce mce;
3223
3224                 r = -EFAULT;
3225                 if (copy_from_user(&mce, argp, sizeof mce))
3226                         goto out;
3227                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3228                 break;
3229         }
3230         case KVM_GET_VCPU_EVENTS: {
3231                 struct kvm_vcpu_events events;
3232
3233                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3234
3235                 r = -EFAULT;
3236                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3237                         break;
3238                 r = 0;
3239                 break;
3240         }
3241         case KVM_SET_VCPU_EVENTS: {
3242                 struct kvm_vcpu_events events;
3243
3244                 r = -EFAULT;
3245                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3246                         break;
3247
3248                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3249                 break;
3250         }
3251         case KVM_GET_DEBUGREGS: {
3252                 struct kvm_debugregs dbgregs;
3253
3254                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3255
3256                 r = -EFAULT;
3257                 if (copy_to_user(argp, &dbgregs,
3258                                  sizeof(struct kvm_debugregs)))
3259                         break;
3260                 r = 0;
3261                 break;
3262         }
3263         case KVM_SET_DEBUGREGS: {
3264                 struct kvm_debugregs dbgregs;
3265
3266                 r = -EFAULT;
3267                 if (copy_from_user(&dbgregs, argp,
3268                                    sizeof(struct kvm_debugregs)))
3269                         break;
3270
3271                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3272                 break;
3273         }
3274         case KVM_GET_XSAVE: {
3275                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3276                 r = -ENOMEM;
3277                 if (!u.xsave)
3278                         break;
3279
3280                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3281
3282                 r = -EFAULT;
3283                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3284                         break;
3285                 r = 0;
3286                 break;
3287         }
3288         case KVM_SET_XSAVE: {
3289                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3290                 if (IS_ERR(u.xsave))
3291                         return PTR_ERR(u.xsave);
3292
3293                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3294                 break;
3295         }
3296         case KVM_GET_XCRS: {
3297                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3298                 r = -ENOMEM;
3299                 if (!u.xcrs)
3300                         break;
3301
3302                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3303
3304                 r = -EFAULT;
3305                 if (copy_to_user(argp, u.xcrs,
3306                                  sizeof(struct kvm_xcrs)))
3307                         break;
3308                 r = 0;
3309                 break;
3310         }
3311         case KVM_SET_XCRS: {
3312                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3313                 if (IS_ERR(u.xcrs))
3314                         return PTR_ERR(u.xcrs);
3315
3316                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3317                 break;
3318         }
3319         case KVM_SET_TSC_KHZ: {
3320                 u32 user_tsc_khz;
3321
3322                 r = -EINVAL;
3323                 user_tsc_khz = (u32)arg;
3324
3325                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3326                         goto out;
3327
3328                 if (user_tsc_khz == 0)
3329                         user_tsc_khz = tsc_khz;
3330
3331                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3332
3333                 r = 0;
3334                 goto out;
3335         }
3336         case KVM_GET_TSC_KHZ: {
3337                 r = vcpu->arch.virtual_tsc_khz;
3338                 goto out;
3339         }
3340         case KVM_KVMCLOCK_CTRL: {
3341                 r = kvm_set_guest_paused(vcpu);
3342                 goto out;
3343         }
3344         default:
3345                 r = -EINVAL;
3346         }
3347 out:
3348         kfree(u.buffer);
3349         return r;
3350 }
3351
3352 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3353 {
3354         return VM_FAULT_SIGBUS;
3355 }
3356
3357 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3358 {
3359         int ret;
3360
3361         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3362                 return -EINVAL;
3363         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3364         return ret;
3365 }
3366
3367 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3368                                               u64 ident_addr)
3369 {
3370         kvm->arch.ept_identity_map_addr = ident_addr;
3371         return 0;
3372 }
3373
3374 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3375                                           u32 kvm_nr_mmu_pages)
3376 {
3377         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3378                 return -EINVAL;
3379
3380         mutex_lock(&kvm->slots_lock);
3381
3382         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3383         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3384
3385         mutex_unlock(&kvm->slots_lock);
3386         return 0;
3387 }
3388
3389 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3390 {
3391         return kvm->arch.n_max_mmu_pages;
3392 }
3393
3394 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3395 {
3396         int r;
3397
3398         r = 0;
3399         switch (chip->chip_id) {
3400         case KVM_IRQCHIP_PIC_MASTER:
3401                 memcpy(&chip->chip.pic,
3402                         &pic_irqchip(kvm)->pics[0],
3403                         sizeof(struct kvm_pic_state));
3404                 break;
3405         case KVM_IRQCHIP_PIC_SLAVE:
3406                 memcpy(&chip->chip.pic,
3407                         &pic_irqchip(kvm)->pics[1],
3408                         sizeof(struct kvm_pic_state));
3409                 break;
3410         case KVM_IRQCHIP_IOAPIC:
3411                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3412                 break;
3413         default:
3414                 r = -EINVAL;
3415                 break;
3416         }
3417         return r;
3418 }
3419
3420 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3421 {
3422         int r;
3423
3424         r = 0;
3425         switch (chip->chip_id) {
3426         case KVM_IRQCHIP_PIC_MASTER:
3427                 spin_lock(&pic_irqchip(kvm)->lock);
3428                 memcpy(&pic_irqchip(kvm)->pics[0],
3429                         &chip->chip.pic,
3430                         sizeof(struct kvm_pic_state));
3431                 spin_unlock(&pic_irqchip(kvm)->lock);
3432                 break;
3433         case KVM_IRQCHIP_PIC_SLAVE:
3434                 spin_lock(&pic_irqchip(kvm)->lock);
3435                 memcpy(&pic_irqchip(kvm)->pics[1],
3436                         &chip->chip.pic,
3437                         sizeof(struct kvm_pic_state));
3438                 spin_unlock(&pic_irqchip(kvm)->lock);
3439                 break;
3440         case KVM_IRQCHIP_IOAPIC:
3441                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3442                 break;
3443         default:
3444                 r = -EINVAL;
3445                 break;
3446         }
3447         kvm_pic_update_irq(pic_irqchip(kvm));
3448         return r;
3449 }
3450
3451 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3452 {
3453         int r = 0;
3454
3455         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3456         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3457         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3458         return r;
3459 }
3460
3461 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3462 {
3463         int r = 0;
3464
3465         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3466         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3467         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3468         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3469         return r;
3470 }
3471
3472 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3473 {
3474         int r = 0;
3475
3476         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3478                 sizeof(ps->channels));
3479         ps->flags = kvm->arch.vpit->pit_state.flags;
3480         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3481         memset(&ps->reserved, 0, sizeof(ps->reserved));
3482         return r;
3483 }
3484
3485 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3486 {
3487         int r = 0, start = 0;
3488         u32 prev_legacy, cur_legacy;
3489         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3490         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3491         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3492         if (!prev_legacy && cur_legacy)
3493                 start = 1;
3494         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3495                sizeof(kvm->arch.vpit->pit_state.channels));
3496         kvm->arch.vpit->pit_state.flags = ps->flags;
3497         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3498         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3499         return r;
3500 }
3501
3502 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3503                                  struct kvm_reinject_control *control)
3504 {
3505         if (!kvm->arch.vpit)
3506                 return -ENXIO;
3507         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3508         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3509         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3510         return 0;
3511 }
3512
3513 /**
3514  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3515  * @kvm: kvm instance
3516  * @log: slot id and address to which we copy the log
3517  *
3518  * We need to keep it in mind that VCPU threads can write to the bitmap
3519  * concurrently.  So, to avoid losing data, we keep the following order for
3520  * each bit:
3521  *
3522  *   1. Take a snapshot of the bit and clear it if needed.
3523  *   2. Write protect the corresponding page.
3524  *   3. Flush TLB's if needed.
3525  *   4. Copy the snapshot to the userspace.
3526  *
3527  * Between 2 and 3, the guest may write to the page using the remaining TLB
3528  * entry.  This is not a problem because the page will be reported dirty at
3529  * step 4 using the snapshot taken before and step 3 ensures that successive
3530  * writes will be logged for the next call.
3531  */
3532 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3533 {
3534         int r;
3535         struct kvm_memory_slot *memslot;
3536         unsigned long n, i;
3537         unsigned long *dirty_bitmap;
3538         unsigned long *dirty_bitmap_buffer;
3539         bool is_dirty = false;
3540
3541         mutex_lock(&kvm->slots_lock);
3542
3543         r = -EINVAL;
3544         if (log->slot >= KVM_USER_MEM_SLOTS)
3545                 goto out;
3546
3547         memslot = id_to_memslot(kvm->memslots, log->slot);
3548
3549         dirty_bitmap = memslot->dirty_bitmap;
3550         r = -ENOENT;
3551         if (!dirty_bitmap)
3552                 goto out;
3553
3554         n = kvm_dirty_bitmap_bytes(memslot);
3555
3556         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3557         memset(dirty_bitmap_buffer, 0, n);
3558
3559         spin_lock(&kvm->mmu_lock);
3560
3561         for (i = 0; i < n / sizeof(long); i++) {
3562                 unsigned long mask;
3563                 gfn_t offset;
3564
3565                 if (!dirty_bitmap[i])
3566                         continue;
3567
3568                 is_dirty = true;
3569
3570                 mask = xchg(&dirty_bitmap[i], 0);
3571                 dirty_bitmap_buffer[i] = mask;
3572
3573                 offset = i * BITS_PER_LONG;
3574                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3575         }
3576         if (is_dirty)
3577                 kvm_flush_remote_tlbs(kvm);
3578
3579         spin_unlock(&kvm->mmu_lock);
3580
3581         r = -EFAULT;
3582         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3583                 goto out;
3584
3585         r = 0;
3586 out:
3587         mutex_unlock(&kvm->slots_lock);
3588         return r;
3589 }
3590
3591 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3592                         bool line_status)
3593 {
3594         if (!irqchip_in_kernel(kvm))
3595                 return -ENXIO;
3596
3597         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3598                                         irq_event->irq, irq_event->level,
3599                                         line_status);
3600         return 0;
3601 }
3602
3603 long kvm_arch_vm_ioctl(struct file *filp,
3604                        unsigned int ioctl, unsigned long arg)
3605 {
3606         struct kvm *kvm = filp->private_data;
3607         void __user *argp = (void __user *)arg;
3608         int r = -ENOTTY;
3609         /*
3610          * This union makes it completely explicit to gcc-3.x
3611          * that these two variables' stack usage should be
3612          * combined, not added together.
3613          */
3614         union {
3615                 struct kvm_pit_state ps;
3616                 struct kvm_pit_state2 ps2;
3617                 struct kvm_pit_config pit_config;
3618         } u;
3619
3620         switch (ioctl) {
3621         case KVM_SET_TSS_ADDR:
3622                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3623                 break;
3624         case KVM_SET_IDENTITY_MAP_ADDR: {
3625                 u64 ident_addr;
3626
3627                 r = -EFAULT;
3628                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3629                         goto out;
3630                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3631                 break;
3632         }
3633         case KVM_SET_NR_MMU_PAGES:
3634                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3635                 break;
3636         case KVM_GET_NR_MMU_PAGES:
3637                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3638                 break;
3639         case KVM_CREATE_IRQCHIP: {
3640                 struct kvm_pic *vpic;
3641
3642                 mutex_lock(&kvm->lock);
3643                 r = -EEXIST;
3644                 if (kvm->arch.vpic)
3645                         goto create_irqchip_unlock;
3646                 r = -EINVAL;
3647                 if (atomic_read(&kvm->online_vcpus))
3648                         goto create_irqchip_unlock;
3649                 r = -ENOMEM;
3650                 vpic = kvm_create_pic(kvm);
3651                 if (vpic) {
3652                         r = kvm_ioapic_init(kvm);
3653                         if (r) {
3654                                 mutex_lock(&kvm->slots_lock);
3655                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3656                                                           &vpic->dev_master);
3657                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3658                                                           &vpic->dev_slave);
3659                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3660                                                           &vpic->dev_eclr);
3661                                 mutex_unlock(&kvm->slots_lock);
3662                                 kfree(vpic);
3663                                 goto create_irqchip_unlock;
3664                         }
3665                 } else
3666                         goto create_irqchip_unlock;
3667                 smp_wmb();
3668                 kvm->arch.vpic = vpic;
3669                 smp_wmb();
3670                 r = kvm_setup_default_irq_routing(kvm);
3671                 if (r) {
3672                         mutex_lock(&kvm->slots_lock);
3673                         mutex_lock(&kvm->irq_lock);
3674                         kvm_ioapic_destroy(kvm);
3675                         kvm_destroy_pic(kvm);
3676                         mutex_unlock(&kvm->irq_lock);
3677                         mutex_unlock(&kvm->slots_lock);
3678                 }
3679         create_irqchip_unlock:
3680                 mutex_unlock(&kvm->lock);
3681                 break;
3682         }
3683         case KVM_CREATE_PIT:
3684                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3685                 goto create_pit;
3686         case KVM_CREATE_PIT2:
3687                 r = -EFAULT;
3688                 if (copy_from_user(&u.pit_config, argp,
3689                                    sizeof(struct kvm_pit_config)))
3690                         goto out;
3691         create_pit:
3692                 mutex_lock(&kvm->slots_lock);
3693                 r = -EEXIST;
3694                 if (kvm->arch.vpit)
3695                         goto create_pit_unlock;
3696                 r = -ENOMEM;
3697                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3698                 if (kvm->arch.vpit)
3699                         r = 0;
3700         create_pit_unlock:
3701                 mutex_unlock(&kvm->slots_lock);
3702                 break;
3703         case KVM_GET_IRQCHIP: {
3704                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3705                 struct kvm_irqchip *chip;
3706
3707                 chip = memdup_user(argp, sizeof(*chip));
3708                 if (IS_ERR(chip)) {
3709                         r = PTR_ERR(chip);
3710                         goto out;
3711                 }
3712
3713                 r = -ENXIO;
3714                 if (!irqchip_in_kernel(kvm))
3715                         goto get_irqchip_out;
3716                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3717                 if (r)
3718                         goto get_irqchip_out;
3719                 r = -EFAULT;
3720                 if (copy_to_user(argp, chip, sizeof *chip))
3721                         goto get_irqchip_out;
3722                 r = 0;
3723         get_irqchip_out:
3724                 kfree(chip);
3725                 break;
3726         }
3727         case KVM_SET_IRQCHIP: {
3728                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3729                 struct kvm_irqchip *chip;
3730
3731                 chip = memdup_user(argp, sizeof(*chip));
3732                 if (IS_ERR(chip)) {
3733                         r = PTR_ERR(chip);
3734                         goto out;
3735                 }
3736
3737                 r = -ENXIO;
3738                 if (!irqchip_in_kernel(kvm))
3739                         goto set_irqchip_out;
3740                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3741                 if (r)
3742                         goto set_irqchip_out;
3743                 r = 0;
3744         set_irqchip_out:
3745                 kfree(chip);
3746                 break;
3747         }
3748         case KVM_GET_PIT: {
3749                 r = -EFAULT;
3750                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3751                         goto out;
3752                 r = -ENXIO;
3753                 if (!kvm->arch.vpit)
3754                         goto out;
3755                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3756                 if (r)
3757                         goto out;
3758                 r = -EFAULT;
3759                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3760                         goto out;
3761                 r = 0;
3762                 break;
3763         }
3764         case KVM_SET_PIT: {
3765                 r = -EFAULT;
3766                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3767                         goto out;
3768                 r = -ENXIO;
3769                 if (!kvm->arch.vpit)
3770                         goto out;
3771                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3772                 break;
3773         }
3774         case KVM_GET_PIT2: {
3775                 r = -ENXIO;
3776                 if (!kvm->arch.vpit)
3777                         goto out;
3778                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3779                 if (r)
3780                         goto out;
3781                 r = -EFAULT;
3782                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3783                         goto out;
3784                 r = 0;
3785                 break;
3786         }
3787         case KVM_SET_PIT2: {
3788                 r = -EFAULT;
3789                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3790                         goto out;
3791                 r = -ENXIO;
3792                 if (!kvm->arch.vpit)
3793                         goto out;
3794                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3795                 break;
3796         }
3797         case KVM_REINJECT_CONTROL: {
3798                 struct kvm_reinject_control control;
3799                 r =  -EFAULT;
3800                 if (copy_from_user(&control, argp, sizeof(control)))
3801                         goto out;
3802                 r = kvm_vm_ioctl_reinject(kvm, &control);
3803                 break;
3804         }
3805         case KVM_XEN_HVM_CONFIG: {
3806                 r = -EFAULT;
3807                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3808                                    sizeof(struct kvm_xen_hvm_config)))
3809                         goto out;
3810                 r = -EINVAL;
3811                 if (kvm->arch.xen_hvm_config.flags)
3812                         goto out;
3813                 r = 0;
3814                 break;
3815         }
3816         case KVM_SET_CLOCK: {
3817                 struct kvm_clock_data user_ns;
3818                 u64 now_ns;
3819                 s64 delta;
3820
3821                 r = -EFAULT;
3822                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3823                         goto out;
3824
3825                 r = -EINVAL;
3826                 if (user_ns.flags)
3827                         goto out;
3828
3829                 r = 0;
3830                 local_irq_disable();
3831                 now_ns = get_kernel_ns();
3832                 delta = user_ns.clock - now_ns;
3833                 local_irq_enable();
3834                 kvm->arch.kvmclock_offset = delta;
3835                 kvm_gen_update_masterclock(kvm);
3836                 break;
3837         }
3838         case KVM_GET_CLOCK: {
3839                 struct kvm_clock_data user_ns;
3840                 u64 now_ns;
3841
3842                 local_irq_disable();
3843                 now_ns = get_kernel_ns();
3844                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3845                 local_irq_enable();
3846                 user_ns.flags = 0;
3847                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3848
3849                 r = -EFAULT;
3850                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3851                         goto out;
3852                 r = 0;
3853                 break;
3854         }
3855
3856         default:
3857                 ;
3858         }
3859 out:
3860         return r;
3861 }
3862
3863 static void kvm_init_msr_list(void)
3864 {
3865         u32 dummy[2];
3866         unsigned i, j;
3867
3868         /* skip the first msrs in the list. KVM-specific */
3869         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3870                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3871                         continue;
3872                 if (j < i)
3873                         msrs_to_save[j] = msrs_to_save[i];
3874                 j++;
3875         }
3876         num_msrs_to_save = j;
3877 }
3878
3879 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3880                            const void *v)
3881 {
3882         int handled = 0;
3883         int n;
3884
3885         do {
3886                 n = min(len, 8);
3887                 if (!(vcpu->arch.apic &&
3888                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3889                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3890                         break;
3891                 handled += n;
3892                 addr += n;
3893                 len -= n;
3894                 v += n;
3895         } while (len);
3896
3897         return handled;
3898 }
3899
3900 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3901 {
3902         int handled = 0;
3903         int n;
3904
3905         do {
3906                 n = min(len, 8);
3907                 if (!(vcpu->arch.apic &&
3908                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3909                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3910                         break;
3911                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3912                 handled += n;
3913                 addr += n;
3914                 len -= n;
3915                 v += n;
3916         } while (len);
3917
3918         return handled;
3919 }
3920
3921 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3922                         struct kvm_segment *var, int seg)
3923 {
3924         kvm_x86_ops->set_segment(vcpu, var, seg);
3925 }
3926
3927 void kvm_get_segment(struct kvm_vcpu *vcpu,
3928                      struct kvm_segment *var, int seg)
3929 {
3930         kvm_x86_ops->get_segment(vcpu, var, seg);
3931 }
3932
3933 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3934 {
3935         gpa_t t_gpa;
3936         struct x86_exception exception;
3937
3938         BUG_ON(!mmu_is_nested(vcpu));
3939
3940         /* NPT walks are always user-walks */
3941         access |= PFERR_USER_MASK;
3942         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3943
3944         return t_gpa;
3945 }
3946
3947 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3948                               struct x86_exception *exception)
3949 {
3950         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3951         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3952 }
3953
3954  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3955                                 struct x86_exception *exception)
3956 {
3957         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958         access |= PFERR_FETCH_MASK;
3959         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3960 }
3961
3962 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3963                                struct x86_exception *exception)
3964 {
3965         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966         access |= PFERR_WRITE_MASK;
3967         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3968 }
3969
3970 /* uses this to access any guest's mapped memory without checking CPL */
3971 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3972                                 struct x86_exception *exception)
3973 {
3974         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3975 }
3976
3977 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3978                                       struct kvm_vcpu *vcpu, u32 access,
3979                                       struct x86_exception *exception)
3980 {
3981         void *data = val;
3982         int r = X86EMUL_CONTINUE;
3983
3984         while (bytes) {
3985                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3986                                                             exception);
3987                 unsigned offset = addr & (PAGE_SIZE-1);
3988                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3989                 int ret;
3990
3991                 if (gpa == UNMAPPED_GVA)
3992                         return X86EMUL_PROPAGATE_FAULT;
3993                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3994                 if (ret < 0) {
3995                         r = X86EMUL_IO_NEEDED;
3996                         goto out;
3997                 }
3998
3999                 bytes -= toread;
4000                 data += toread;
4001                 addr += toread;
4002         }
4003 out:
4004         return r;
4005 }
4006
4007 /* used for instruction fetching */
4008 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4009                                 gva_t addr, void *val, unsigned int bytes,
4010                                 struct x86_exception *exception)
4011 {
4012         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4013         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4014
4015         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4016                                           access | PFERR_FETCH_MASK,
4017                                           exception);
4018 }
4019
4020 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4021                                gva_t addr, void *val, unsigned int bytes,
4022                                struct x86_exception *exception)
4023 {
4024         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4025         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4026
4027         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4028                                           exception);
4029 }
4030 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4031
4032 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4033                                       gva_t addr, void *val, unsigned int bytes,
4034                                       struct x86_exception *exception)
4035 {
4036         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4037         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4038 }
4039
4040 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4041                                        gva_t addr, void *val,
4042                                        unsigned int bytes,
4043                                        struct x86_exception *exception)
4044 {
4045         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4046         void *data = val;
4047         int r = X86EMUL_CONTINUE;
4048
4049         while (bytes) {
4050                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4051                                                              PFERR_WRITE_MASK,
4052                                                              exception);
4053                 unsigned offset = addr & (PAGE_SIZE-1);
4054                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4055                 int ret;
4056
4057                 if (gpa == UNMAPPED_GVA)
4058                         return X86EMUL_PROPAGATE_FAULT;
4059                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4060                 if (ret < 0) {
4061                         r = X86EMUL_IO_NEEDED;
4062                         goto out;
4063                 }
4064
4065                 bytes -= towrite;
4066                 data += towrite;
4067                 addr += towrite;
4068         }
4069 out:
4070         return r;
4071 }
4072 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4073
4074 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4075                                 gpa_t *gpa, struct x86_exception *exception,
4076                                 bool write)
4077 {
4078         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4079                 | (write ? PFERR_WRITE_MASK : 0);
4080
4081         if (vcpu_match_mmio_gva(vcpu, gva)
4082             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4083                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4084                                         (gva & (PAGE_SIZE - 1));
4085                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4086                 return 1;
4087         }
4088
4089         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4090
4091         if (*gpa == UNMAPPED_GVA)
4092                 return -1;
4093
4094         /* For APIC access vmexit */
4095         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4096                 return 1;
4097
4098         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4099                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4100                 return 1;
4101         }
4102
4103         return 0;
4104 }
4105
4106 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4107                         const void *val, int bytes)
4108 {
4109         int ret;
4110
4111         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4112         if (ret < 0)
4113                 return 0;
4114         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4115         return 1;
4116 }
4117
4118 struct read_write_emulator_ops {
4119         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4120                                   int bytes);
4121         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4122                                   void *val, int bytes);
4123         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4124                                int bytes, void *val);
4125         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4126                                     void *val, int bytes);
4127         bool write;
4128 };
4129
4130 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4131 {
4132         if (vcpu->mmio_read_completed) {
4133                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4134                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4135                 vcpu->mmio_read_completed = 0;
4136                 return 1;
4137         }
4138
4139         return 0;
4140 }
4141
4142 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4143                         void *val, int bytes)
4144 {
4145         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4146 }
4147
4148 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4149                          void *val, int bytes)
4150 {
4151         return emulator_write_phys(vcpu, gpa, val, bytes);
4152 }
4153
4154 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4155 {
4156         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4157         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4158 }
4159
4160 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4161                           void *val, int bytes)
4162 {
4163         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4164         return X86EMUL_IO_NEEDED;
4165 }
4166
4167 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4168                            void *val, int bytes)
4169 {
4170         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4171
4172         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4173         return X86EMUL_CONTINUE;
4174 }
4175
4176 static const struct read_write_emulator_ops read_emultor = {
4177         .read_write_prepare = read_prepare,
4178         .read_write_emulate = read_emulate,
4179         .read_write_mmio = vcpu_mmio_read,
4180         .read_write_exit_mmio = read_exit_mmio,
4181 };
4182
4183 static const struct read_write_emulator_ops write_emultor = {
4184         .read_write_emulate = write_emulate,
4185         .read_write_mmio = write_mmio,
4186         .read_write_exit_mmio = write_exit_mmio,
4187         .write = true,
4188 };
4189
4190 static int emulator_read_write_onepage(unsigned long addr, void *val,
4191                                        unsigned int bytes,
4192                                        struct x86_exception *exception,
4193                                        struct kvm_vcpu *vcpu,
4194                                        const struct read_write_emulator_ops *ops)
4195 {
4196         gpa_t gpa;
4197         int handled, ret;
4198         bool write = ops->write;
4199         struct kvm_mmio_fragment *frag;
4200
4201         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4202
4203         if (ret < 0)
4204                 return X86EMUL_PROPAGATE_FAULT;
4205
4206         /* For APIC access vmexit */
4207         if (ret)
4208                 goto mmio;
4209
4210         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4211                 return X86EMUL_CONTINUE;
4212
4213 mmio:
4214         /*
4215          * Is this MMIO handled locally?
4216          */
4217         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4218         if (handled == bytes)
4219                 return X86EMUL_CONTINUE;
4220
4221         gpa += handled;
4222         bytes -= handled;
4223         val += handled;
4224
4225         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4226         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4227         frag->gpa = gpa;
4228         frag->data = val;
4229         frag->len = bytes;
4230         return X86EMUL_CONTINUE;
4231 }
4232
4233 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4234                         void *val, unsigned int bytes,
4235                         struct x86_exception *exception,
4236                         const struct read_write_emulator_ops *ops)
4237 {
4238         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4239         gpa_t gpa;
4240         int rc;
4241
4242         if (ops->read_write_prepare &&
4243                   ops->read_write_prepare(vcpu, val, bytes))
4244                 return X86EMUL_CONTINUE;
4245
4246         vcpu->mmio_nr_fragments = 0;
4247
4248         /* Crossing a page boundary? */
4249         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4250                 int now;
4251
4252                 now = -addr & ~PAGE_MASK;
4253                 rc = emulator_read_write_onepage(addr, val, now, exception,
4254                                                  vcpu, ops);
4255
4256                 if (rc != X86EMUL_CONTINUE)
4257                         return rc;
4258                 addr += now;
4259                 val += now;
4260                 bytes -= now;
4261         }
4262
4263         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4264                                          vcpu, ops);
4265         if (rc != X86EMUL_CONTINUE)
4266                 return rc;
4267
4268         if (!vcpu->mmio_nr_fragments)
4269                 return rc;
4270
4271         gpa = vcpu->mmio_fragments[0].gpa;
4272
4273         vcpu->mmio_needed = 1;
4274         vcpu->mmio_cur_fragment = 0;
4275
4276         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4277         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4278         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4279         vcpu->run->mmio.phys_addr = gpa;
4280
4281         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4282 }
4283
4284 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4285                                   unsigned long addr,
4286                                   void *val,
4287                                   unsigned int bytes,
4288                                   struct x86_exception *exception)
4289 {
4290         return emulator_read_write(ctxt, addr, val, bytes,
4291                                    exception, &read_emultor);
4292 }
4293
4294 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4295                             unsigned long addr,
4296                             const void *val,
4297                             unsigned int bytes,
4298                             struct x86_exception *exception)
4299 {
4300         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4301                                    exception, &write_emultor);
4302 }
4303
4304 #define CMPXCHG_TYPE(t, ptr, old, new) \
4305         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4306
4307 #ifdef CONFIG_X86_64
4308 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4309 #else
4310 #  define CMPXCHG64(ptr, old, new) \
4311         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4312 #endif
4313
4314 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4315                                      unsigned long addr,
4316                                      const void *old,
4317                                      const void *new,
4318                                      unsigned int bytes,
4319                                      struct x86_exception *exception)
4320 {
4321         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4322         gpa_t gpa;
4323         struct page *page;
4324         char *kaddr;
4325         bool exchanged;
4326
4327         /* guests cmpxchg8b have to be emulated atomically */
4328         if (bytes > 8 || (bytes & (bytes - 1)))
4329                 goto emul_write;
4330
4331         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4332
4333         if (gpa == UNMAPPED_GVA ||
4334             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4335                 goto emul_write;
4336
4337         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4338                 goto emul_write;
4339
4340         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4341         if (is_error_page(page))
4342                 goto emul_write;
4343
4344         kaddr = kmap_atomic(page);
4345         kaddr += offset_in_page(gpa);
4346         switch (bytes) {
4347         case 1:
4348                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4349                 break;
4350         case 2:
4351                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4352                 break;
4353         case 4:
4354                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4355                 break;
4356         case 8:
4357                 exchanged = CMPXCHG64(kaddr, old, new);
4358                 break;
4359         default:
4360                 BUG();
4361         }
4362         kunmap_atomic(kaddr);
4363         kvm_release_page_dirty(page);
4364
4365         if (!exchanged)
4366                 return X86EMUL_CMPXCHG_FAILED;
4367
4368         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4369
4370         return X86EMUL_CONTINUE;
4371
4372 emul_write:
4373         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4374
4375         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4376 }
4377
4378 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4379 {
4380         /* TODO: String I/O for in kernel device */
4381         int r;
4382
4383         if (vcpu->arch.pio.in)
4384                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4385                                     vcpu->arch.pio.size, pd);
4386         else
4387                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4388                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4389                                      pd);
4390         return r;
4391 }
4392
4393 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4394                                unsigned short port, void *val,
4395                                unsigned int count, bool in)
4396 {
4397         trace_kvm_pio(!in, port, size, count);
4398
4399         vcpu->arch.pio.port = port;
4400         vcpu->arch.pio.in = in;
4401         vcpu->arch.pio.count  = count;
4402         vcpu->arch.pio.size = size;
4403
4404         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4405                 vcpu->arch.pio.count = 0;
4406                 return 1;
4407         }
4408
4409         vcpu->run->exit_reason = KVM_EXIT_IO;
4410         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4411         vcpu->run->io.size = size;
4412         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4413         vcpu->run->io.count = count;
4414         vcpu->run->io.port = port;
4415
4416         return 0;
4417 }
4418
4419 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4420                                     int size, unsigned short port, void *val,
4421                                     unsigned int count)
4422 {
4423         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4424         int ret;
4425
4426         if (vcpu->arch.pio.count)
4427                 goto data_avail;
4428
4429         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4430         if (ret) {
4431 data_avail:
4432                 memcpy(val, vcpu->arch.pio_data, size * count);
4433                 vcpu->arch.pio.count = 0;
4434                 return 1;
4435         }
4436
4437         return 0;
4438 }
4439
4440 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4441                                      int size, unsigned short port,
4442                                      const void *val, unsigned int count)
4443 {
4444         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4445
4446         memcpy(vcpu->arch.pio_data, val, size * count);
4447         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4448 }
4449
4450 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4451 {
4452         return kvm_x86_ops->get_segment_base(vcpu, seg);
4453 }
4454
4455 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4456 {
4457         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4458 }
4459
4460 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4461 {
4462         if (!need_emulate_wbinvd(vcpu))
4463                 return X86EMUL_CONTINUE;
4464
4465         if (kvm_x86_ops->has_wbinvd_exit()) {
4466                 int cpu = get_cpu();
4467
4468                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4469                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4470                                 wbinvd_ipi, NULL, 1);
4471                 put_cpu();
4472                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4473         } else
4474                 wbinvd();
4475         return X86EMUL_CONTINUE;
4476 }
4477 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4478
4479 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4480 {
4481         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4482 }
4483
4484 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4485 {
4486         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4487 }
4488
4489 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4490 {
4491
4492         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4493 }
4494
4495 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4496 {
4497         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4498 }
4499
4500 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4501 {
4502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4503         unsigned long value;
4504
4505         switch (cr) {
4506         case 0:
4507                 value = kvm_read_cr0(vcpu);
4508                 break;
4509         case 2:
4510                 value = vcpu->arch.cr2;
4511                 break;
4512         case 3:
4513                 value = kvm_read_cr3(vcpu);
4514                 break;
4515         case 4:
4516                 value = kvm_read_cr4(vcpu);
4517                 break;
4518         case 8:
4519                 value = kvm_get_cr8(vcpu);
4520                 break;
4521         default:
4522                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4523                 return 0;
4524         }
4525
4526         return value;
4527 }
4528
4529 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4530 {
4531         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4532         int res = 0;
4533
4534         switch (cr) {
4535         case 0:
4536                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4537                 break;
4538         case 2:
4539                 vcpu->arch.cr2 = val;
4540                 break;
4541         case 3:
4542                 res = kvm_set_cr3(vcpu, val);
4543                 break;
4544         case 4:
4545                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4546                 break;
4547         case 8:
4548                 res = kvm_set_cr8(vcpu, val);
4549                 break;
4550         default:
4551                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4552                 res = -1;
4553         }
4554
4555         return res;
4556 }
4557
4558 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4559 {
4560         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4561 }
4562
4563 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4564 {
4565         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4566 }
4567
4568 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4569 {
4570         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4571 }
4572
4573 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4574 {
4575         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4576 }
4577
4578 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4579 {
4580         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4581 }
4582
4583 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4584 {
4585         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4586 }
4587
4588 static unsigned long emulator_get_cached_segment_base(
4589         struct x86_emulate_ctxt *ctxt, int seg)
4590 {
4591         return get_segment_base(emul_to_vcpu(ctxt), seg);
4592 }
4593
4594 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4595                                  struct desc_struct *desc, u32 *base3,
4596                                  int seg)
4597 {
4598         struct kvm_segment var;
4599
4600         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4601         *selector = var.selector;
4602
4603         if (var.unusable) {
4604                 memset(desc, 0, sizeof(*desc));
4605                 return false;
4606         }
4607
4608         if (var.g)
4609                 var.limit >>= 12;
4610         set_desc_limit(desc, var.limit);
4611         set_desc_base(desc, (unsigned long)var.base);
4612 #ifdef CONFIG_X86_64
4613         if (base3)
4614                 *base3 = var.base >> 32;
4615 #endif
4616         desc->type = var.type;
4617         desc->s = var.s;
4618         desc->dpl = var.dpl;
4619         desc->p = var.present;
4620         desc->avl = var.avl;
4621         desc->l = var.l;
4622         desc->d = var.db;
4623         desc->g = var.g;
4624
4625         return true;
4626 }
4627
4628 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4629                                  struct desc_struct *desc, u32 base3,
4630                                  int seg)
4631 {
4632         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4633         struct kvm_segment var;
4634
4635         var.selector = selector;
4636         var.base = get_desc_base(desc);
4637 #ifdef CONFIG_X86_64
4638         var.base |= ((u64)base3) << 32;
4639 #endif
4640         var.limit = get_desc_limit(desc);
4641         if (desc->g)
4642                 var.limit = (var.limit << 12) | 0xfff;
4643         var.type = desc->type;
4644         var.present = desc->p;
4645         var.dpl = desc->dpl;
4646         var.db = desc->d;
4647         var.s = desc->s;
4648         var.l = desc->l;
4649         var.g = desc->g;
4650         var.avl = desc->avl;
4651         var.present = desc->p;
4652         var.unusable = !var.present;
4653         var.padding = 0;
4654
4655         kvm_set_segment(vcpu, &var, seg);
4656         return;
4657 }
4658
4659 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4660                             u32 msr_index, u64 *pdata)
4661 {
4662         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4663 }
4664
4665 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4666                             u32 msr_index, u64 data)
4667 {
4668         struct msr_data msr;
4669
4670         msr.data = data;
4671         msr.index = msr_index;
4672         msr.host_initiated = false;
4673         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4674 }
4675
4676 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4677                              u32 pmc, u64 *pdata)
4678 {
4679         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4680 }
4681
4682 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4683 {
4684         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4685 }
4686
4687 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4688 {
4689         preempt_disable();
4690         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4691         /*
4692          * CR0.TS may reference the host fpu state, not the guest fpu state,
4693          * so it may be clear at this point.
4694          */
4695         clts();
4696 }
4697
4698 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4699 {
4700         preempt_enable();
4701 }
4702
4703 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4704                               struct x86_instruction_info *info,
4705                               enum x86_intercept_stage stage)
4706 {
4707         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4708 }
4709
4710 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4711                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4712 {
4713         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4714 }
4715
4716 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4717 {
4718         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4719 }
4720
4721 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4722 {
4723         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4724 }
4725
4726 static const struct x86_emulate_ops emulate_ops = {
4727         .read_gpr            = emulator_read_gpr,
4728         .write_gpr           = emulator_write_gpr,
4729         .read_std            = kvm_read_guest_virt_system,
4730         .write_std           = kvm_write_guest_virt_system,
4731         .fetch               = kvm_fetch_guest_virt,
4732         .read_emulated       = emulator_read_emulated,
4733         .write_emulated      = emulator_write_emulated,
4734         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4735         .invlpg              = emulator_invlpg,
4736         .pio_in_emulated     = emulator_pio_in_emulated,
4737         .pio_out_emulated    = emulator_pio_out_emulated,
4738         .get_segment         = emulator_get_segment,
4739         .set_segment         = emulator_set_segment,
4740         .get_cached_segment_base = emulator_get_cached_segment_base,
4741         .get_gdt             = emulator_get_gdt,
4742         .get_idt             = emulator_get_idt,
4743         .set_gdt             = emulator_set_gdt,
4744         .set_idt             = emulator_set_idt,
4745         .get_cr              = emulator_get_cr,
4746         .set_cr              = emulator_set_cr,
4747         .set_rflags          = emulator_set_rflags,
4748         .cpl                 = emulator_get_cpl,
4749         .get_dr              = emulator_get_dr,
4750         .set_dr              = emulator_set_dr,
4751         .set_msr             = emulator_set_msr,
4752         .get_msr             = emulator_get_msr,
4753         .read_pmc            = emulator_read_pmc,
4754         .halt                = emulator_halt,
4755         .wbinvd              = emulator_wbinvd,
4756         .fix_hypercall       = emulator_fix_hypercall,
4757         .get_fpu             = emulator_get_fpu,
4758         .put_fpu             = emulator_put_fpu,
4759         .intercept           = emulator_intercept,
4760         .get_cpuid           = emulator_get_cpuid,
4761 };
4762
4763 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4764 {
4765         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4766         /*
4767          * an sti; sti; sequence only disable interrupts for the first
4768          * instruction. So, if the last instruction, be it emulated or
4769          * not, left the system with the INT_STI flag enabled, it
4770          * means that the last instruction is an sti. We should not
4771          * leave the flag on in this case. The same goes for mov ss
4772          */
4773         if (!(int_shadow & mask))
4774                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4775 }
4776
4777 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4778 {
4779         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4780         if (ctxt->exception.vector == PF_VECTOR)
4781                 kvm_propagate_fault(vcpu, &ctxt->exception);
4782         else if (ctxt->exception.error_code_valid)
4783                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4784                                       ctxt->exception.error_code);
4785         else
4786                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4787 }
4788
4789 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4790 {
4791         memset(&ctxt->opcode_len, 0,
4792                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4793
4794         ctxt->fetch.start = 0;
4795         ctxt->fetch.end = 0;
4796         ctxt->io_read.pos = 0;
4797         ctxt->io_read.end = 0;
4798         ctxt->mem_read.pos = 0;
4799         ctxt->mem_read.end = 0;
4800 }
4801
4802 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4803 {
4804         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4805         int cs_db, cs_l;
4806
4807         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4808
4809         ctxt->eflags = kvm_get_rflags(vcpu);
4810         ctxt->eip = kvm_rip_read(vcpu);
4811         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4812                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4813                      cs_l                               ? X86EMUL_MODE_PROT64 :
4814                      cs_db                              ? X86EMUL_MODE_PROT32 :
4815                                                           X86EMUL_MODE_PROT16;
4816         ctxt->guest_mode = is_guest_mode(vcpu);
4817
4818         init_decode_cache(ctxt);
4819         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4820 }
4821
4822 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4823 {
4824         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4825         int ret;
4826
4827         init_emulate_ctxt(vcpu);
4828
4829         ctxt->op_bytes = 2;
4830         ctxt->ad_bytes = 2;
4831         ctxt->_eip = ctxt->eip + inc_eip;
4832         ret = emulate_int_real(ctxt, irq);
4833
4834         if (ret != X86EMUL_CONTINUE)
4835                 return EMULATE_FAIL;
4836
4837         ctxt->eip = ctxt->_eip;
4838         kvm_rip_write(vcpu, ctxt->eip);
4839         kvm_set_rflags(vcpu, ctxt->eflags);
4840
4841         if (irq == NMI_VECTOR)
4842                 vcpu->arch.nmi_pending = 0;
4843         else
4844                 vcpu->arch.interrupt.pending = false;
4845
4846         return EMULATE_DONE;
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4849
4850 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4851 {
4852         int r = EMULATE_DONE;
4853
4854         ++vcpu->stat.insn_emulation_fail;
4855         trace_kvm_emulate_insn_failed(vcpu);
4856         if (!is_guest_mode(vcpu)) {
4857                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4858                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4859                 vcpu->run->internal.ndata = 0;
4860                 r = EMULATE_FAIL;
4861         }
4862         kvm_queue_exception(vcpu, UD_VECTOR);
4863
4864         return r;
4865 }
4866
4867 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4868                                   bool write_fault_to_shadow_pgtable,
4869                                   int emulation_type)
4870 {
4871         gpa_t gpa = cr2;
4872         pfn_t pfn;
4873
4874         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4875                 return false;
4876
4877         if (!vcpu->arch.mmu.direct_map) {
4878                 /*
4879                  * Write permission should be allowed since only
4880                  * write access need to be emulated.
4881                  */
4882                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4883
4884                 /*
4885                  * If the mapping is invalid in guest, let cpu retry
4886                  * it to generate fault.
4887                  */
4888                 if (gpa == UNMAPPED_GVA)
4889                         return true;
4890         }
4891
4892         /*
4893          * Do not retry the unhandleable instruction if it faults on the
4894          * readonly host memory, otherwise it will goto a infinite loop:
4895          * retry instruction -> write #PF -> emulation fail -> retry
4896          * instruction -> ...
4897          */
4898         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4899
4900         /*
4901          * If the instruction failed on the error pfn, it can not be fixed,
4902          * report the error to userspace.
4903          */
4904         if (is_error_noslot_pfn(pfn))
4905                 return false;
4906
4907         kvm_release_pfn_clean(pfn);
4908
4909         /* The instructions are well-emulated on direct mmu. */
4910         if (vcpu->arch.mmu.direct_map) {
4911                 unsigned int indirect_shadow_pages;
4912
4913                 spin_lock(&vcpu->kvm->mmu_lock);
4914                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4915                 spin_unlock(&vcpu->kvm->mmu_lock);
4916
4917                 if (indirect_shadow_pages)
4918                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4919
4920                 return true;
4921         }
4922
4923         /*
4924          * if emulation was due to access to shadowed page table
4925          * and it failed try to unshadow page and re-enter the
4926          * guest to let CPU execute the instruction.
4927          */
4928         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4929
4930         /*
4931          * If the access faults on its page table, it can not
4932          * be fixed by unprotecting shadow page and it should
4933          * be reported to userspace.
4934          */
4935         return !write_fault_to_shadow_pgtable;
4936 }
4937
4938 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4939                               unsigned long cr2,  int emulation_type)
4940 {
4941         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4942         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4943
4944         last_retry_eip = vcpu->arch.last_retry_eip;
4945         last_retry_addr = vcpu->arch.last_retry_addr;
4946
4947         /*
4948          * If the emulation is caused by #PF and it is non-page_table
4949          * writing instruction, it means the VM-EXIT is caused by shadow
4950          * page protected, we can zap the shadow page and retry this
4951          * instruction directly.
4952          *
4953          * Note: if the guest uses a non-page-table modifying instruction
4954          * on the PDE that points to the instruction, then we will unmap
4955          * the instruction and go to an infinite loop. So, we cache the
4956          * last retried eip and the last fault address, if we meet the eip
4957          * and the address again, we can break out of the potential infinite
4958          * loop.
4959          */
4960         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4961
4962         if (!(emulation_type & EMULTYPE_RETRY))
4963                 return false;
4964
4965         if (x86_page_table_writing_insn(ctxt))
4966                 return false;
4967
4968         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4969                 return false;
4970
4971         vcpu->arch.last_retry_eip = ctxt->eip;
4972         vcpu->arch.last_retry_addr = cr2;
4973
4974         if (!vcpu->arch.mmu.direct_map)
4975                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4976
4977         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4978
4979         return true;
4980 }
4981
4982 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4983 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4984
4985 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4986                                 unsigned long *db)
4987 {
4988         u32 dr6 = 0;
4989         int i;
4990         u32 enable, rwlen;
4991
4992         enable = dr7;
4993         rwlen = dr7 >> 16;
4994         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4995                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4996                         dr6 |= (1 << i);
4997         return dr6;
4998 }
4999
5000 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5001 {
5002         struct kvm_run *kvm_run = vcpu->run;
5003
5004         /*
5005          * Use the "raw" value to see if TF was passed to the processor.
5006          * Note that the new value of the flags has not been saved yet.
5007          *
5008          * This is correct even for TF set by the guest, because "the
5009          * processor will not generate this exception after the instruction
5010          * that sets the TF flag".
5011          */
5012         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5013
5014         if (unlikely(rflags & X86_EFLAGS_TF)) {
5015                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5016                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5017                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5018                         kvm_run->debug.arch.exception = DB_VECTOR;
5019                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5020                         *r = EMULATE_USER_EXIT;
5021                 } else {
5022                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5023                         /*
5024                          * "Certain debug exceptions may clear bit 0-3.  The
5025                          * remaining contents of the DR6 register are never
5026                          * cleared by the processor".
5027                          */
5028                         vcpu->arch.dr6 &= ~15;
5029                         vcpu->arch.dr6 |= DR6_BS;
5030                         kvm_queue_exception(vcpu, DB_VECTOR);
5031                 }
5032         }
5033 }
5034
5035 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5036 {
5037         struct kvm_run *kvm_run = vcpu->run;
5038         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5039         u32 dr6 = 0;
5040
5041         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5042             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5043                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5044                                            vcpu->arch.guest_debug_dr7,
5045                                            vcpu->arch.eff_db);
5046
5047                 if (dr6 != 0) {
5048                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5049                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5050                                 get_segment_base(vcpu, VCPU_SREG_CS);
5051
5052                         kvm_run->debug.arch.exception = DB_VECTOR;
5053                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5054                         *r = EMULATE_USER_EXIT;
5055                         return true;
5056                 }
5057         }
5058
5059         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5060                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5061                                            vcpu->arch.dr7,
5062                                            vcpu->arch.db);
5063
5064                 if (dr6 != 0) {
5065                         vcpu->arch.dr6 &= ~15;
5066                         vcpu->arch.dr6 |= dr6;
5067                         kvm_queue_exception(vcpu, DB_VECTOR);
5068                         *r = EMULATE_DONE;
5069                         return true;
5070                 }
5071         }
5072
5073         return false;
5074 }
5075
5076 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5077                             unsigned long cr2,
5078                             int emulation_type,
5079                             void *insn,
5080                             int insn_len)
5081 {
5082         int r;
5083         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5084         bool writeback = true;
5085         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5086
5087         /*
5088          * Clear write_fault_to_shadow_pgtable here to ensure it is
5089          * never reused.
5090          */
5091         vcpu->arch.write_fault_to_shadow_pgtable = false;
5092         kvm_clear_exception_queue(vcpu);
5093
5094         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5095                 init_emulate_ctxt(vcpu);
5096
5097                 /*
5098                  * We will reenter on the same instruction since
5099                  * we do not set complete_userspace_io.  This does not
5100                  * handle watchpoints yet, those would be handled in
5101                  * the emulate_ops.
5102                  */
5103                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5104                         return r;
5105
5106                 ctxt->interruptibility = 0;
5107                 ctxt->have_exception = false;
5108                 ctxt->perm_ok = false;
5109
5110                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5111
5112                 r = x86_decode_insn(ctxt, insn, insn_len);
5113
5114                 trace_kvm_emulate_insn_start(vcpu);
5115                 ++vcpu->stat.insn_emulation;
5116                 if (r != EMULATION_OK)  {
5117                         if (emulation_type & EMULTYPE_TRAP_UD)
5118                                 return EMULATE_FAIL;
5119                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5120                                                 emulation_type))
5121                                 return EMULATE_DONE;
5122                         if (emulation_type & EMULTYPE_SKIP)
5123                                 return EMULATE_FAIL;
5124                         return handle_emulation_failure(vcpu);
5125                 }
5126         }
5127
5128         if (emulation_type & EMULTYPE_SKIP) {
5129                 kvm_rip_write(vcpu, ctxt->_eip);
5130                 return EMULATE_DONE;
5131         }
5132
5133         if (retry_instruction(ctxt, cr2, emulation_type))
5134                 return EMULATE_DONE;
5135
5136         /* this is needed for vmware backdoor interface to work since it
5137            changes registers values  during IO operation */
5138         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5139                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5140                 emulator_invalidate_register_cache(ctxt);
5141         }
5142
5143 restart:
5144         r = x86_emulate_insn(ctxt);
5145
5146         if (r == EMULATION_INTERCEPTED)
5147                 return EMULATE_DONE;
5148
5149         if (r == EMULATION_FAILED) {
5150                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5151                                         emulation_type))
5152                         return EMULATE_DONE;
5153
5154                 return handle_emulation_failure(vcpu);
5155         }
5156
5157         if (ctxt->have_exception) {
5158                 inject_emulated_exception(vcpu);
5159                 r = EMULATE_DONE;
5160         } else if (vcpu->arch.pio.count) {
5161                 if (!vcpu->arch.pio.in) {
5162                         /* FIXME: return into emulator if single-stepping.  */
5163                         vcpu->arch.pio.count = 0;
5164                 } else {
5165                         writeback = false;
5166                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5167                 }
5168                 r = EMULATE_USER_EXIT;
5169         } else if (vcpu->mmio_needed) {
5170                 if (!vcpu->mmio_is_write)
5171                         writeback = false;
5172                 r = EMULATE_USER_EXIT;
5173                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5174         } else if (r == EMULATION_RESTART)
5175                 goto restart;
5176         else
5177                 r = EMULATE_DONE;
5178
5179         if (writeback) {
5180                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5181                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5182                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5183                 kvm_rip_write(vcpu, ctxt->eip);
5184                 if (r == EMULATE_DONE)
5185                         kvm_vcpu_check_singlestep(vcpu, &r);
5186                 kvm_set_rflags(vcpu, ctxt->eflags);
5187         } else
5188                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5189
5190         return r;
5191 }
5192 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5193
5194 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5195 {
5196         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5197         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5198                                             size, port, &val, 1);
5199         /* do not return to emulator after return from userspace */
5200         vcpu->arch.pio.count = 0;
5201         return ret;
5202 }
5203 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5204
5205 static void tsc_bad(void *info)
5206 {
5207         __this_cpu_write(cpu_tsc_khz, 0);
5208 }
5209
5210 static void tsc_khz_changed(void *data)
5211 {
5212         struct cpufreq_freqs *freq = data;
5213         unsigned long khz = 0;
5214
5215         if (data)
5216                 khz = freq->new;
5217         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5218                 khz = cpufreq_quick_get(raw_smp_processor_id());
5219         if (!khz)
5220                 khz = tsc_khz;
5221         __this_cpu_write(cpu_tsc_khz, khz);
5222 }
5223
5224 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5225                                      void *data)
5226 {
5227         struct cpufreq_freqs *freq = data;
5228         struct kvm *kvm;
5229         struct kvm_vcpu *vcpu;
5230         int i, send_ipi = 0;
5231
5232         /*
5233          * We allow guests to temporarily run on slowing clocks,
5234          * provided we notify them after, or to run on accelerating
5235          * clocks, provided we notify them before.  Thus time never
5236          * goes backwards.
5237          *
5238          * However, we have a problem.  We can't atomically update
5239          * the frequency of a given CPU from this function; it is
5240          * merely a notifier, which can be called from any CPU.
5241          * Changing the TSC frequency at arbitrary points in time
5242          * requires a recomputation of local variables related to
5243          * the TSC for each VCPU.  We must flag these local variables
5244          * to be updated and be sure the update takes place with the
5245          * new frequency before any guests proceed.
5246          *
5247          * Unfortunately, the combination of hotplug CPU and frequency
5248          * change creates an intractable locking scenario; the order
5249          * of when these callouts happen is undefined with respect to
5250          * CPU hotplug, and they can race with each other.  As such,
5251          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5252          * undefined; you can actually have a CPU frequency change take
5253          * place in between the computation of X and the setting of the
5254          * variable.  To protect against this problem, all updates of
5255          * the per_cpu tsc_khz variable are done in an interrupt
5256          * protected IPI, and all callers wishing to update the value
5257          * must wait for a synchronous IPI to complete (which is trivial
5258          * if the caller is on the CPU already).  This establishes the
5259          * necessary total order on variable updates.
5260          *
5261          * Note that because a guest time update may take place
5262          * anytime after the setting of the VCPU's request bit, the
5263          * correct TSC value must be set before the request.  However,
5264          * to ensure the update actually makes it to any guest which
5265          * starts running in hardware virtualization between the set
5266          * and the acquisition of the spinlock, we must also ping the
5267          * CPU after setting the request bit.
5268          *
5269          */
5270
5271         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5272                 return 0;
5273         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5274                 return 0;
5275
5276         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5277
5278         spin_lock(&kvm_lock);
5279         list_for_each_entry(kvm, &vm_list, vm_list) {
5280                 kvm_for_each_vcpu(i, vcpu, kvm) {
5281                         if (vcpu->cpu != freq->cpu)
5282                                 continue;
5283                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5284                         if (vcpu->cpu != smp_processor_id())
5285                                 send_ipi = 1;
5286                 }
5287         }
5288         spin_unlock(&kvm_lock);
5289
5290         if (freq->old < freq->new && send_ipi) {
5291                 /*
5292                  * We upscale the frequency.  Must make the guest
5293                  * doesn't see old kvmclock values while running with
5294                  * the new frequency, otherwise we risk the guest sees
5295                  * time go backwards.
5296                  *
5297                  * In case we update the frequency for another cpu
5298                  * (which might be in guest context) send an interrupt
5299                  * to kick the cpu out of guest context.  Next time
5300                  * guest context is entered kvmclock will be updated,
5301                  * so the guest will not see stale values.
5302                  */
5303                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5304         }
5305         return 0;
5306 }
5307
5308 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5309         .notifier_call  = kvmclock_cpufreq_notifier
5310 };
5311
5312 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5313                                         unsigned long action, void *hcpu)
5314 {
5315         unsigned int cpu = (unsigned long)hcpu;
5316
5317         switch (action) {
5318                 case CPU_ONLINE:
5319                 case CPU_DOWN_FAILED:
5320                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5321                         break;
5322                 case CPU_DOWN_PREPARE:
5323                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5324                         break;
5325         }
5326         return NOTIFY_OK;
5327 }
5328
5329 static struct notifier_block kvmclock_cpu_notifier_block = {
5330         .notifier_call  = kvmclock_cpu_notifier,
5331         .priority = -INT_MAX
5332 };
5333
5334 static void kvm_timer_init(void)
5335 {
5336         int cpu;
5337
5338         max_tsc_khz = tsc_khz;
5339         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5340         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5341 #ifdef CONFIG_CPU_FREQ
5342                 struct cpufreq_policy policy;
5343                 memset(&policy, 0, sizeof(policy));
5344                 cpu = get_cpu();
5345                 cpufreq_get_policy(&policy, cpu);
5346                 if (policy.cpuinfo.max_freq)
5347                         max_tsc_khz = policy.cpuinfo.max_freq;
5348                 put_cpu();
5349 #endif
5350                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5351                                           CPUFREQ_TRANSITION_NOTIFIER);
5352         }
5353         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5354         for_each_online_cpu(cpu)
5355                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5356 }
5357
5358 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5359
5360 int kvm_is_in_guest(void)
5361 {
5362         return __this_cpu_read(current_vcpu) != NULL;
5363 }
5364
5365 static int kvm_is_user_mode(void)
5366 {
5367         int user_mode = 3;
5368
5369         if (__this_cpu_read(current_vcpu))
5370                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5371
5372         return user_mode != 0;
5373 }
5374
5375 static unsigned long kvm_get_guest_ip(void)
5376 {
5377         unsigned long ip = 0;
5378
5379         if (__this_cpu_read(current_vcpu))
5380                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5381
5382         return ip;
5383 }
5384
5385 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5386         .is_in_guest            = kvm_is_in_guest,
5387         .is_user_mode           = kvm_is_user_mode,
5388         .get_guest_ip           = kvm_get_guest_ip,
5389 };
5390
5391 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5392 {
5393         __this_cpu_write(current_vcpu, vcpu);
5394 }
5395 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5396
5397 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5398 {
5399         __this_cpu_write(current_vcpu, NULL);
5400 }
5401 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5402
5403 static void kvm_set_mmio_spte_mask(void)
5404 {
5405         u64 mask;
5406         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5407
5408         /*
5409          * Set the reserved bits and the present bit of an paging-structure
5410          * entry to generate page fault with PFER.RSV = 1.
5411          */
5412          /* Mask the reserved physical address bits. */
5413         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5414
5415         /* Bit 62 is always reserved for 32bit host. */
5416         mask |= 0x3ull << 62;
5417
5418         /* Set the present bit. */
5419         mask |= 1ull;
5420
5421 #ifdef CONFIG_X86_64
5422         /*
5423          * If reserved bit is not supported, clear the present bit to disable
5424          * mmio page fault.
5425          */
5426         if (maxphyaddr == 52)
5427                 mask &= ~1ull;
5428 #endif
5429
5430         kvm_mmu_set_mmio_spte_mask(mask);
5431 }
5432
5433 #ifdef CONFIG_X86_64
5434 static void pvclock_gtod_update_fn(struct work_struct *work)
5435 {
5436         struct kvm *kvm;
5437
5438         struct kvm_vcpu *vcpu;
5439         int i;
5440
5441         spin_lock(&kvm_lock);
5442         list_for_each_entry(kvm, &vm_list, vm_list)
5443                 kvm_for_each_vcpu(i, vcpu, kvm)
5444                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5445         atomic_set(&kvm_guest_has_master_clock, 0);
5446         spin_unlock(&kvm_lock);
5447 }
5448
5449 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5450
5451 /*
5452  * Notification about pvclock gtod data update.
5453  */
5454 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5455                                void *priv)
5456 {
5457         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5458         struct timekeeper *tk = priv;
5459
5460         update_pvclock_gtod(tk);
5461
5462         /* disable master clock if host does not trust, or does not
5463          * use, TSC clocksource
5464          */
5465         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5466             atomic_read(&kvm_guest_has_master_clock) != 0)
5467                 queue_work(system_long_wq, &pvclock_gtod_work);
5468
5469         return 0;
5470 }
5471
5472 static struct notifier_block pvclock_gtod_notifier = {
5473         .notifier_call = pvclock_gtod_notify,
5474 };
5475 #endif
5476
5477 int kvm_arch_init(void *opaque)
5478 {
5479         int r;
5480         struct kvm_x86_ops *ops = opaque;
5481
5482         if (kvm_x86_ops) {
5483                 printk(KERN_ERR "kvm: already loaded the other module\n");
5484                 r = -EEXIST;
5485                 goto out;
5486         }
5487
5488         if (!ops->cpu_has_kvm_support()) {
5489                 printk(KERN_ERR "kvm: no hardware support\n");
5490                 r = -EOPNOTSUPP;
5491                 goto out;
5492         }
5493         if (ops->disabled_by_bios()) {
5494                 printk(KERN_ERR "kvm: disabled by bios\n");
5495                 r = -EOPNOTSUPP;
5496                 goto out;
5497         }
5498
5499         r = -ENOMEM;
5500         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5501         if (!shared_msrs) {
5502                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5503                 goto out;
5504         }
5505
5506         r = kvm_mmu_module_init();
5507         if (r)
5508                 goto out_free_percpu;
5509
5510         kvm_set_mmio_spte_mask();
5511         kvm_init_msr_list();
5512
5513         kvm_x86_ops = ops;
5514         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5515                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5516
5517         kvm_timer_init();
5518
5519         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5520
5521         if (cpu_has_xsave)
5522                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5523
5524         kvm_lapic_init();
5525 #ifdef CONFIG_X86_64
5526         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5527 #endif
5528
5529         return 0;
5530
5531 out_free_percpu:
5532         free_percpu(shared_msrs);
5533 out:
5534         return r;
5535 }
5536
5537 void kvm_arch_exit(void)
5538 {
5539         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5540
5541         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5542                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5543                                             CPUFREQ_TRANSITION_NOTIFIER);
5544         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5545 #ifdef CONFIG_X86_64
5546         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5547 #endif
5548         kvm_x86_ops = NULL;
5549         kvm_mmu_module_exit();
5550         free_percpu(shared_msrs);
5551 }
5552
5553 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5554 {
5555         ++vcpu->stat.halt_exits;
5556         if (irqchip_in_kernel(vcpu->kvm)) {
5557                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5558                 return 1;
5559         } else {
5560                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5561                 return 0;
5562         }
5563 }
5564 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5565
5566 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5567 {
5568         u64 param, ingpa, outgpa, ret;
5569         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5570         bool fast, longmode;
5571         int cs_db, cs_l;
5572
5573         /*
5574          * hypercall generates UD from non zero cpl and real mode
5575          * per HYPER-V spec
5576          */
5577         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5578                 kvm_queue_exception(vcpu, UD_VECTOR);
5579                 return 0;
5580         }
5581
5582         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5583         longmode = is_long_mode(vcpu) && cs_l == 1;
5584
5585         if (!longmode) {
5586                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5587                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5588                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5589                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5590                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5591                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5592         }
5593 #ifdef CONFIG_X86_64
5594         else {
5595                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5596                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5597                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5598         }
5599 #endif
5600
5601         code = param & 0xffff;
5602         fast = (param >> 16) & 0x1;
5603         rep_cnt = (param >> 32) & 0xfff;
5604         rep_idx = (param >> 48) & 0xfff;
5605
5606         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5607
5608         switch (code) {
5609         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5610                 kvm_vcpu_on_spin(vcpu);
5611                 break;
5612         default:
5613                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5614                 break;
5615         }
5616
5617         ret = res | (((u64)rep_done & 0xfff) << 32);
5618         if (longmode) {
5619                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5620         } else {
5621                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5622                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5623         }
5624
5625         return 1;
5626 }
5627
5628 /*
5629  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5630  *
5631  * @apicid - apicid of vcpu to be kicked.
5632  */
5633 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5634 {
5635         struct kvm_lapic_irq lapic_irq;
5636
5637         lapic_irq.shorthand = 0;
5638         lapic_irq.dest_mode = 0;
5639         lapic_irq.dest_id = apicid;
5640
5641         lapic_irq.delivery_mode = APIC_DM_REMRD;
5642         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5643 }
5644
5645 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5646 {
5647         unsigned long nr, a0, a1, a2, a3, ret;
5648         int r = 1;
5649
5650         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5651                 return kvm_hv_hypercall(vcpu);
5652
5653         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5654         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5655         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5656         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5657         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5658
5659         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5660
5661         if (!is_long_mode(vcpu)) {
5662                 nr &= 0xFFFFFFFF;
5663                 a0 &= 0xFFFFFFFF;
5664                 a1 &= 0xFFFFFFFF;
5665                 a2 &= 0xFFFFFFFF;
5666                 a3 &= 0xFFFFFFFF;
5667         }
5668
5669         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5670                 ret = -KVM_EPERM;
5671                 goto out;
5672         }
5673
5674         switch (nr) {
5675         case KVM_HC_VAPIC_POLL_IRQ:
5676                 ret = 0;
5677                 break;
5678         case KVM_HC_KICK_CPU:
5679                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5680                 ret = 0;
5681                 break;
5682         default:
5683                 ret = -KVM_ENOSYS;
5684                 break;
5685         }
5686 out:
5687         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5688         ++vcpu->stat.hypercalls;
5689         return r;
5690 }
5691 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5692
5693 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5694 {
5695         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5696         char instruction[3];
5697         unsigned long rip = kvm_rip_read(vcpu);
5698
5699         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5700
5701         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5702 }
5703
5704 /*
5705  * Check if userspace requested an interrupt window, and that the
5706  * interrupt window is open.
5707  *
5708  * No need to exit to userspace if we already have an interrupt queued.
5709  */
5710 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5711 {
5712         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5713                 vcpu->run->request_interrupt_window &&
5714                 kvm_arch_interrupt_allowed(vcpu));
5715 }
5716
5717 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5718 {
5719         struct kvm_run *kvm_run = vcpu->run;
5720
5721         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5722         kvm_run->cr8 = kvm_get_cr8(vcpu);
5723         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5724         if (irqchip_in_kernel(vcpu->kvm))
5725                 kvm_run->ready_for_interrupt_injection = 1;
5726         else
5727                 kvm_run->ready_for_interrupt_injection =
5728                         kvm_arch_interrupt_allowed(vcpu) &&
5729                         !kvm_cpu_has_interrupt(vcpu) &&
5730                         !kvm_event_needs_reinjection(vcpu);
5731 }
5732
5733 static int vapic_enter(struct kvm_vcpu *vcpu)
5734 {
5735         struct kvm_lapic *apic = vcpu->arch.apic;
5736         struct page *page;
5737
5738         if (!apic || !apic->vapic_addr)
5739                 return 0;
5740
5741         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5742         if (is_error_page(page))
5743                 return -EFAULT;
5744
5745         vcpu->arch.apic->vapic_page = page;
5746         return 0;
5747 }
5748
5749 static void vapic_exit(struct kvm_vcpu *vcpu)
5750 {
5751         struct kvm_lapic *apic = vcpu->arch.apic;
5752         int idx;
5753
5754         if (!apic || !apic->vapic_addr)
5755                 return;
5756
5757         idx = srcu_read_lock(&vcpu->kvm->srcu);
5758         kvm_release_page_dirty(apic->vapic_page);
5759         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5760         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5761 }
5762
5763 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5764 {
5765         int max_irr, tpr;
5766
5767         if (!kvm_x86_ops->update_cr8_intercept)
5768                 return;
5769
5770         if (!vcpu->arch.apic)
5771                 return;
5772
5773         if (!vcpu->arch.apic->vapic_addr)
5774                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5775         else
5776                 max_irr = -1;
5777
5778         if (max_irr != -1)
5779                 max_irr >>= 4;
5780
5781         tpr = kvm_lapic_get_cr8(vcpu);
5782
5783         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5784 }
5785
5786 static void inject_pending_event(struct kvm_vcpu *vcpu)
5787 {
5788         /* try to reinject previous events if any */
5789         if (vcpu->arch.exception.pending) {
5790                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5791                                         vcpu->arch.exception.has_error_code,
5792                                         vcpu->arch.exception.error_code);
5793                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5794                                           vcpu->arch.exception.has_error_code,
5795                                           vcpu->arch.exception.error_code,
5796                                           vcpu->arch.exception.reinject);
5797                 return;
5798         }
5799
5800         if (vcpu->arch.nmi_injected) {
5801                 kvm_x86_ops->set_nmi(vcpu);
5802                 return;
5803         }
5804
5805         if (vcpu->arch.interrupt.pending) {
5806                 kvm_x86_ops->set_irq(vcpu);
5807                 return;
5808         }
5809
5810         /* try to inject new event if pending */
5811         if (vcpu->arch.nmi_pending) {
5812                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5813                         --vcpu->arch.nmi_pending;
5814                         vcpu->arch.nmi_injected = true;
5815                         kvm_x86_ops->set_nmi(vcpu);
5816                 }
5817         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5818                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5819                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5820                                             false);
5821                         kvm_x86_ops->set_irq(vcpu);
5822                 }
5823         }
5824 }
5825
5826 static void process_nmi(struct kvm_vcpu *vcpu)
5827 {
5828         unsigned limit = 2;
5829
5830         /*
5831          * x86 is limited to one NMI running, and one NMI pending after it.
5832          * If an NMI is already in progress, limit further NMIs to just one.
5833          * Otherwise, allow two (and we'll inject the first one immediately).
5834          */
5835         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5836                 limit = 1;
5837
5838         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5839         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5840         kvm_make_request(KVM_REQ_EVENT, vcpu);
5841 }
5842
5843 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5844 {
5845         u64 eoi_exit_bitmap[4];
5846         u32 tmr[8];
5847
5848         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5849                 return;
5850
5851         memset(eoi_exit_bitmap, 0, 32);
5852         memset(tmr, 0, 32);
5853
5854         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5855         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5856         kvm_apic_update_tmr(vcpu, tmr);
5857 }
5858
5859 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5860 {
5861         int r;
5862         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5863                 vcpu->run->request_interrupt_window;
5864         bool req_immediate_exit = false;
5865
5866         if (vcpu->requests) {
5867                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5868                         kvm_mmu_unload(vcpu);
5869                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5870                         __kvm_migrate_timers(vcpu);
5871                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5872                         kvm_gen_update_masterclock(vcpu->kvm);
5873                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5874                         kvm_gen_kvmclock_update(vcpu);
5875                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5876                         r = kvm_guest_time_update(vcpu);
5877                         if (unlikely(r))
5878                                 goto out;
5879                 }
5880                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5881                         kvm_mmu_sync_roots(vcpu);
5882                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5883                         kvm_x86_ops->tlb_flush(vcpu);
5884                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5885                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5886                         r = 0;
5887                         goto out;
5888                 }
5889                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5890                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5891                         r = 0;
5892                         goto out;
5893                 }
5894                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5895                         vcpu->fpu_active = 0;
5896                         kvm_x86_ops->fpu_deactivate(vcpu);
5897                 }
5898                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5899                         /* Page is swapped out. Do synthetic halt */
5900                         vcpu->arch.apf.halted = true;
5901                         r = 1;
5902                         goto out;
5903                 }
5904                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5905                         record_steal_time(vcpu);
5906                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5907                         process_nmi(vcpu);
5908                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5909                         kvm_handle_pmu_event(vcpu);
5910                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5911                         kvm_deliver_pmi(vcpu);
5912                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5913                         vcpu_scan_ioapic(vcpu);
5914         }
5915
5916         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5917                 kvm_apic_accept_events(vcpu);
5918                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5919                         r = 1;
5920                         goto out;
5921                 }
5922
5923                 inject_pending_event(vcpu);
5924
5925                 /* enable NMI/IRQ window open exits if needed */
5926                 if (vcpu->arch.nmi_pending)
5927                         req_immediate_exit =
5928                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5929                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5930                         req_immediate_exit =
5931                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5932
5933                 if (kvm_lapic_enabled(vcpu)) {
5934                         /*
5935                          * Update architecture specific hints for APIC
5936                          * virtual interrupt delivery.
5937                          */
5938                         if (kvm_x86_ops->hwapic_irr_update)
5939                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5940                                         kvm_lapic_find_highest_irr(vcpu));
5941                         update_cr8_intercept(vcpu);
5942                         kvm_lapic_sync_to_vapic(vcpu);
5943                 }
5944         }
5945
5946         r = kvm_mmu_reload(vcpu);
5947         if (unlikely(r)) {
5948                 goto cancel_injection;
5949         }
5950
5951         preempt_disable();
5952
5953         kvm_x86_ops->prepare_guest_switch(vcpu);
5954         if (vcpu->fpu_active)
5955                 kvm_load_guest_fpu(vcpu);
5956         kvm_load_guest_xcr0(vcpu);
5957
5958         vcpu->mode = IN_GUEST_MODE;
5959
5960         /* We should set ->mode before check ->requests,
5961          * see the comment in make_all_cpus_request.
5962          */
5963         smp_mb();
5964
5965         local_irq_disable();
5966
5967         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5968             || need_resched() || signal_pending(current)) {
5969                 vcpu->mode = OUTSIDE_GUEST_MODE;
5970                 smp_wmb();
5971                 local_irq_enable();
5972                 preempt_enable();
5973                 r = 1;
5974                 goto cancel_injection;
5975         }
5976
5977         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5978
5979         if (req_immediate_exit)
5980                 smp_send_reschedule(vcpu->cpu);
5981
5982         kvm_guest_enter();
5983
5984         if (unlikely(vcpu->arch.switch_db_regs)) {
5985                 set_debugreg(0, 7);
5986                 set_debugreg(vcpu->arch.eff_db[0], 0);
5987                 set_debugreg(vcpu->arch.eff_db[1], 1);
5988                 set_debugreg(vcpu->arch.eff_db[2], 2);
5989                 set_debugreg(vcpu->arch.eff_db[3], 3);
5990         }
5991
5992         trace_kvm_entry(vcpu->vcpu_id);
5993         kvm_x86_ops->run(vcpu);
5994
5995         /*
5996          * If the guest has used debug registers, at least dr7
5997          * will be disabled while returning to the host.
5998          * If we don't have active breakpoints in the host, we don't
5999          * care about the messed up debug address registers. But if
6000          * we have some of them active, restore the old state.
6001          */
6002         if (hw_breakpoint_active())
6003                 hw_breakpoint_restore();
6004
6005         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6006                                                            native_read_tsc());
6007
6008         vcpu->mode = OUTSIDE_GUEST_MODE;
6009         smp_wmb();
6010
6011         /* Interrupt is enabled by handle_external_intr() */
6012         kvm_x86_ops->handle_external_intr(vcpu);
6013
6014         ++vcpu->stat.exits;
6015
6016         /*
6017          * We must have an instruction between local_irq_enable() and
6018          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6019          * the interrupt shadow.  The stat.exits increment will do nicely.
6020          * But we need to prevent reordering, hence this barrier():
6021          */
6022         barrier();
6023
6024         kvm_guest_exit();
6025
6026         preempt_enable();
6027
6028         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6029
6030         /*
6031          * Profile KVM exit RIPs:
6032          */
6033         if (unlikely(prof_on == KVM_PROFILING)) {
6034                 unsigned long rip = kvm_rip_read(vcpu);
6035                 profile_hit(KVM_PROFILING, (void *)rip);
6036         }
6037
6038         if (unlikely(vcpu->arch.tsc_always_catchup))
6039                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6040
6041         if (vcpu->arch.apic_attention)
6042                 kvm_lapic_sync_from_vapic(vcpu);
6043
6044         r = kvm_x86_ops->handle_exit(vcpu);
6045         return r;
6046
6047 cancel_injection:
6048         kvm_x86_ops->cancel_injection(vcpu);
6049         if (unlikely(vcpu->arch.apic_attention))
6050                 kvm_lapic_sync_from_vapic(vcpu);
6051 out:
6052         return r;
6053 }
6054
6055
6056 static int __vcpu_run(struct kvm_vcpu *vcpu)
6057 {
6058         int r;
6059         struct kvm *kvm = vcpu->kvm;
6060
6061         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6062         r = vapic_enter(vcpu);
6063         if (r) {
6064                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6065                 return r;
6066         }
6067
6068         r = 1;
6069         while (r > 0) {
6070                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6071                     !vcpu->arch.apf.halted)
6072                         r = vcpu_enter_guest(vcpu);
6073                 else {
6074                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6075                         kvm_vcpu_block(vcpu);
6076                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6077                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6078                                 kvm_apic_accept_events(vcpu);
6079                                 switch(vcpu->arch.mp_state) {
6080                                 case KVM_MP_STATE_HALTED:
6081                                         vcpu->arch.pv.pv_unhalted = false;
6082                                         vcpu->arch.mp_state =
6083                                                 KVM_MP_STATE_RUNNABLE;
6084                                 case KVM_MP_STATE_RUNNABLE:
6085                                         vcpu->arch.apf.halted = false;
6086                                         break;
6087                                 case KVM_MP_STATE_INIT_RECEIVED:
6088                                         break;
6089                                 default:
6090                                         r = -EINTR;
6091                                         break;
6092                                 }
6093                         }
6094                 }
6095
6096                 if (r <= 0)
6097                         break;
6098
6099                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6100                 if (kvm_cpu_has_pending_timer(vcpu))
6101                         kvm_inject_pending_timer_irqs(vcpu);
6102
6103                 if (dm_request_for_irq_injection(vcpu)) {
6104                         r = -EINTR;
6105                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6106                         ++vcpu->stat.request_irq_exits;
6107                 }
6108
6109                 kvm_check_async_pf_completion(vcpu);
6110
6111                 if (signal_pending(current)) {
6112                         r = -EINTR;
6113                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6114                         ++vcpu->stat.signal_exits;
6115                 }
6116                 if (need_resched()) {
6117                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6118                         kvm_resched(vcpu);
6119                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6120                 }
6121         }
6122
6123         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6124
6125         vapic_exit(vcpu);
6126
6127         return r;
6128 }
6129
6130 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6131 {
6132         int r;
6133         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6134         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6135         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6136         if (r != EMULATE_DONE)
6137                 return 0;
6138         return 1;
6139 }
6140
6141 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6142 {
6143         BUG_ON(!vcpu->arch.pio.count);
6144
6145         return complete_emulated_io(vcpu);
6146 }
6147
6148 /*
6149  * Implements the following, as a state machine:
6150  *
6151  * read:
6152  *   for each fragment
6153  *     for each mmio piece in the fragment
6154  *       write gpa, len
6155  *       exit
6156  *       copy data
6157  *   execute insn
6158  *
6159  * write:
6160  *   for each fragment
6161  *     for each mmio piece in the fragment
6162  *       write gpa, len
6163  *       copy data
6164  *       exit
6165  */
6166 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6167 {
6168         struct kvm_run *run = vcpu->run;
6169         struct kvm_mmio_fragment *frag;
6170         unsigned len;
6171
6172         BUG_ON(!vcpu->mmio_needed);
6173
6174         /* Complete previous fragment */
6175         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6176         len = min(8u, frag->len);
6177         if (!vcpu->mmio_is_write)
6178                 memcpy(frag->data, run->mmio.data, len);
6179
6180         if (frag->len <= 8) {
6181                 /* Switch to the next fragment. */
6182                 frag++;
6183                 vcpu->mmio_cur_fragment++;
6184         } else {
6185                 /* Go forward to the next mmio piece. */
6186                 frag->data += len;
6187                 frag->gpa += len;
6188                 frag->len -= len;
6189         }
6190
6191         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6192                 vcpu->mmio_needed = 0;
6193
6194                 /* FIXME: return into emulator if single-stepping.  */
6195                 if (vcpu->mmio_is_write)
6196                         return 1;
6197                 vcpu->mmio_read_completed = 1;
6198                 return complete_emulated_io(vcpu);
6199         }
6200
6201         run->exit_reason = KVM_EXIT_MMIO;
6202         run->mmio.phys_addr = frag->gpa;
6203         if (vcpu->mmio_is_write)
6204                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6205         run->mmio.len = min(8u, frag->len);
6206         run->mmio.is_write = vcpu->mmio_is_write;
6207         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6208         return 0;
6209 }
6210
6211
6212 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6213 {
6214         int r;
6215         sigset_t sigsaved;
6216
6217         if (!tsk_used_math(current) && init_fpu(current))
6218                 return -ENOMEM;
6219
6220         if (vcpu->sigset_active)
6221                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6222
6223         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6224                 kvm_vcpu_block(vcpu);
6225                 kvm_apic_accept_events(vcpu);
6226                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6227                 r = -EAGAIN;
6228                 goto out;
6229         }
6230
6231         /* re-sync apic's tpr */
6232         if (!irqchip_in_kernel(vcpu->kvm)) {
6233                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6234                         r = -EINVAL;
6235                         goto out;
6236                 }
6237         }
6238
6239         if (unlikely(vcpu->arch.complete_userspace_io)) {
6240                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6241                 vcpu->arch.complete_userspace_io = NULL;
6242                 r = cui(vcpu);
6243                 if (r <= 0)
6244                         goto out;
6245         } else
6246                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6247
6248         r = __vcpu_run(vcpu);
6249
6250 out:
6251         post_kvm_run_save(vcpu);
6252         if (vcpu->sigset_active)
6253                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6254
6255         return r;
6256 }
6257
6258 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6259 {
6260         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6261                 /*
6262                  * We are here if userspace calls get_regs() in the middle of
6263                  * instruction emulation. Registers state needs to be copied
6264                  * back from emulation context to vcpu. Userspace shouldn't do
6265                  * that usually, but some bad designed PV devices (vmware
6266                  * backdoor interface) need this to work
6267                  */
6268                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6269                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6270         }
6271         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6272         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6273         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6274         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6275         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6276         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6277         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6278         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6279 #ifdef CONFIG_X86_64
6280         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6281         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6282         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6283         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6284         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6285         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6286         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6287         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6288 #endif
6289
6290         regs->rip = kvm_rip_read(vcpu);
6291         regs->rflags = kvm_get_rflags(vcpu);
6292
6293         return 0;
6294 }
6295
6296 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6297 {
6298         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6299         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6300
6301         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6302         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6303         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6304         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6305         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6306         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6307         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6308         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6309 #ifdef CONFIG_X86_64
6310         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6311         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6312         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6313         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6314         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6315         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6316         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6317         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6318 #endif
6319
6320         kvm_rip_write(vcpu, regs->rip);
6321         kvm_set_rflags(vcpu, regs->rflags);
6322
6323         vcpu->arch.exception.pending = false;
6324
6325         kvm_make_request(KVM_REQ_EVENT, vcpu);
6326
6327         return 0;
6328 }
6329
6330 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6331 {
6332         struct kvm_segment cs;
6333
6334         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6335         *db = cs.db;
6336         *l = cs.l;
6337 }
6338 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6339
6340 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6341                                   struct kvm_sregs *sregs)
6342 {
6343         struct desc_ptr dt;
6344
6345         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6346         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6347         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6348         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6349         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6350         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6351
6352         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6353         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6354
6355         kvm_x86_ops->get_idt(vcpu, &dt);
6356         sregs->idt.limit = dt.size;
6357         sregs->idt.base = dt.address;
6358         kvm_x86_ops->get_gdt(vcpu, &dt);
6359         sregs->gdt.limit = dt.size;
6360         sregs->gdt.base = dt.address;
6361
6362         sregs->cr0 = kvm_read_cr0(vcpu);
6363         sregs->cr2 = vcpu->arch.cr2;
6364         sregs->cr3 = kvm_read_cr3(vcpu);
6365         sregs->cr4 = kvm_read_cr4(vcpu);
6366         sregs->cr8 = kvm_get_cr8(vcpu);
6367         sregs->efer = vcpu->arch.efer;
6368         sregs->apic_base = kvm_get_apic_base(vcpu);
6369
6370         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6371
6372         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6373                 set_bit(vcpu->arch.interrupt.nr,
6374                         (unsigned long *)sregs->interrupt_bitmap);
6375
6376         return 0;
6377 }
6378
6379 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6380                                     struct kvm_mp_state *mp_state)
6381 {
6382         kvm_apic_accept_events(vcpu);
6383         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6384                                         vcpu->arch.pv.pv_unhalted)
6385                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6386         else
6387                 mp_state->mp_state = vcpu->arch.mp_state;
6388
6389         return 0;
6390 }
6391
6392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6393                                     struct kvm_mp_state *mp_state)
6394 {
6395         if (!kvm_vcpu_has_lapic(vcpu) &&
6396             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6397                 return -EINVAL;
6398
6399         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6400                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6401                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6402         } else
6403                 vcpu->arch.mp_state = mp_state->mp_state;
6404         kvm_make_request(KVM_REQ_EVENT, vcpu);
6405         return 0;
6406 }
6407
6408 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6409                     int reason, bool has_error_code, u32 error_code)
6410 {
6411         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6412         int ret;
6413
6414         init_emulate_ctxt(vcpu);
6415
6416         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6417                                    has_error_code, error_code);
6418
6419         if (ret)
6420                 return EMULATE_FAIL;
6421
6422         kvm_rip_write(vcpu, ctxt->eip);
6423         kvm_set_rflags(vcpu, ctxt->eflags);
6424         kvm_make_request(KVM_REQ_EVENT, vcpu);
6425         return EMULATE_DONE;
6426 }
6427 EXPORT_SYMBOL_GPL(kvm_task_switch);
6428
6429 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6430                                   struct kvm_sregs *sregs)
6431 {
6432         int mmu_reset_needed = 0;
6433         int pending_vec, max_bits, idx;
6434         struct desc_ptr dt;
6435
6436         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6437                 return -EINVAL;
6438
6439         dt.size = sregs->idt.limit;
6440         dt.address = sregs->idt.base;
6441         kvm_x86_ops->set_idt(vcpu, &dt);
6442         dt.size = sregs->gdt.limit;
6443         dt.address = sregs->gdt.base;
6444         kvm_x86_ops->set_gdt(vcpu, &dt);
6445
6446         vcpu->arch.cr2 = sregs->cr2;
6447         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6448         vcpu->arch.cr3 = sregs->cr3;
6449         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6450
6451         kvm_set_cr8(vcpu, sregs->cr8);
6452
6453         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6454         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6455         kvm_set_apic_base(vcpu, sregs->apic_base);
6456
6457         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6458         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6459         vcpu->arch.cr0 = sregs->cr0;
6460
6461         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6462         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6463         if (sregs->cr4 & X86_CR4_OSXSAVE)
6464                 kvm_update_cpuid(vcpu);
6465
6466         idx = srcu_read_lock(&vcpu->kvm->srcu);
6467         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6468                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6469                 mmu_reset_needed = 1;
6470         }
6471         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6472
6473         if (mmu_reset_needed)
6474                 kvm_mmu_reset_context(vcpu);
6475
6476         max_bits = KVM_NR_INTERRUPTS;
6477         pending_vec = find_first_bit(
6478                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6479         if (pending_vec < max_bits) {
6480                 kvm_queue_interrupt(vcpu, pending_vec, false);
6481                 pr_debug("Set back pending irq %d\n", pending_vec);
6482         }
6483
6484         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6485         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6486         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6487         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6488         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6489         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6490
6491         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6492         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6493
6494         update_cr8_intercept(vcpu);
6495
6496         /* Older userspace won't unhalt the vcpu on reset. */
6497         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6498             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6499             !is_protmode(vcpu))
6500                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6501
6502         kvm_make_request(KVM_REQ_EVENT, vcpu);
6503
6504         return 0;
6505 }
6506
6507 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6508                                         struct kvm_guest_debug *dbg)
6509 {
6510         unsigned long rflags;
6511         int i, r;
6512
6513         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6514                 r = -EBUSY;
6515                 if (vcpu->arch.exception.pending)
6516                         goto out;
6517                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6518                         kvm_queue_exception(vcpu, DB_VECTOR);
6519                 else
6520                         kvm_queue_exception(vcpu, BP_VECTOR);
6521         }
6522
6523         /*
6524          * Read rflags as long as potentially injected trace flags are still
6525          * filtered out.
6526          */
6527         rflags = kvm_get_rflags(vcpu);
6528
6529         vcpu->guest_debug = dbg->control;
6530         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6531                 vcpu->guest_debug = 0;
6532
6533         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6534                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6535                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6536                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6537         } else {
6538                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6539                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6540         }
6541         kvm_update_dr7(vcpu);
6542
6543         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6544                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6545                         get_segment_base(vcpu, VCPU_SREG_CS);
6546
6547         /*
6548          * Trigger an rflags update that will inject or remove the trace
6549          * flags.
6550          */
6551         kvm_set_rflags(vcpu, rflags);
6552
6553         kvm_x86_ops->update_db_bp_intercept(vcpu);
6554
6555         r = 0;
6556
6557 out:
6558
6559         return r;
6560 }
6561
6562 /*
6563  * Translate a guest virtual address to a guest physical address.
6564  */
6565 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6566                                     struct kvm_translation *tr)
6567 {
6568         unsigned long vaddr = tr->linear_address;
6569         gpa_t gpa;
6570         int idx;
6571
6572         idx = srcu_read_lock(&vcpu->kvm->srcu);
6573         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6574         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6575         tr->physical_address = gpa;
6576         tr->valid = gpa != UNMAPPED_GVA;
6577         tr->writeable = 1;
6578         tr->usermode = 0;
6579
6580         return 0;
6581 }
6582
6583 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6584 {
6585         struct i387_fxsave_struct *fxsave =
6586                         &vcpu->arch.guest_fpu.state->fxsave;
6587
6588         memcpy(fpu->fpr, fxsave->st_space, 128);
6589         fpu->fcw = fxsave->cwd;
6590         fpu->fsw = fxsave->swd;
6591         fpu->ftwx = fxsave->twd;
6592         fpu->last_opcode = fxsave->fop;
6593         fpu->last_ip = fxsave->rip;
6594         fpu->last_dp = fxsave->rdp;
6595         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6596
6597         return 0;
6598 }
6599
6600 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6601 {
6602         struct i387_fxsave_struct *fxsave =
6603                         &vcpu->arch.guest_fpu.state->fxsave;
6604
6605         memcpy(fxsave->st_space, fpu->fpr, 128);
6606         fxsave->cwd = fpu->fcw;
6607         fxsave->swd = fpu->fsw;
6608         fxsave->twd = fpu->ftwx;
6609         fxsave->fop = fpu->last_opcode;
6610         fxsave->rip = fpu->last_ip;
6611         fxsave->rdp = fpu->last_dp;
6612         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6613
6614         return 0;
6615 }
6616
6617 int fx_init(struct kvm_vcpu *vcpu)
6618 {
6619         int err;
6620
6621         err = fpu_alloc(&vcpu->arch.guest_fpu);
6622         if (err)
6623                 return err;
6624
6625         fpu_finit(&vcpu->arch.guest_fpu);
6626
6627         /*
6628          * Ensure guest xcr0 is valid for loading
6629          */
6630         vcpu->arch.xcr0 = XSTATE_FP;
6631
6632         vcpu->arch.cr0 |= X86_CR0_ET;
6633
6634         return 0;
6635 }
6636 EXPORT_SYMBOL_GPL(fx_init);
6637
6638 static void fx_free(struct kvm_vcpu *vcpu)
6639 {
6640         fpu_free(&vcpu->arch.guest_fpu);
6641 }
6642
6643 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6644 {
6645         if (vcpu->guest_fpu_loaded)
6646                 return;
6647
6648         /*
6649          * Restore all possible states in the guest,
6650          * and assume host would use all available bits.
6651          * Guest xcr0 would be loaded later.
6652          */
6653         kvm_put_guest_xcr0(vcpu);
6654         vcpu->guest_fpu_loaded = 1;
6655         __kernel_fpu_begin();
6656         fpu_restore_checking(&vcpu->arch.guest_fpu);
6657         trace_kvm_fpu(1);
6658 }
6659
6660 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6661 {
6662         kvm_put_guest_xcr0(vcpu);
6663
6664         if (!vcpu->guest_fpu_loaded)
6665                 return;
6666
6667         vcpu->guest_fpu_loaded = 0;
6668         fpu_save_init(&vcpu->arch.guest_fpu);
6669         __kernel_fpu_end();
6670         ++vcpu->stat.fpu_reload;
6671         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6672         trace_kvm_fpu(0);
6673 }
6674
6675 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6676 {
6677         kvmclock_reset(vcpu);
6678
6679         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6680         fx_free(vcpu);
6681         kvm_x86_ops->vcpu_free(vcpu);
6682 }
6683
6684 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6685                                                 unsigned int id)
6686 {
6687         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6688                 printk_once(KERN_WARNING
6689                 "kvm: SMP vm created on host with unstable TSC; "
6690                 "guest TSC will not be reliable\n");
6691         return kvm_x86_ops->vcpu_create(kvm, id);
6692 }
6693
6694 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6695 {
6696         int r;
6697
6698         vcpu->arch.mtrr_state.have_fixed = 1;
6699         r = vcpu_load(vcpu);
6700         if (r)
6701                 return r;
6702         kvm_vcpu_reset(vcpu);
6703         kvm_mmu_setup(vcpu);
6704         vcpu_put(vcpu);
6705
6706         return r;
6707 }
6708
6709 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6710 {
6711         int r;
6712         struct msr_data msr;
6713
6714         r = vcpu_load(vcpu);
6715         if (r)
6716                 return r;
6717         msr.data = 0x0;
6718         msr.index = MSR_IA32_TSC;
6719         msr.host_initiated = true;
6720         kvm_write_tsc(vcpu, &msr);
6721         vcpu_put(vcpu);
6722
6723         return r;
6724 }
6725
6726 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6727 {
6728         int r;
6729         vcpu->arch.apf.msr_val = 0;
6730
6731         r = vcpu_load(vcpu);
6732         BUG_ON(r);
6733         kvm_mmu_unload(vcpu);
6734         vcpu_put(vcpu);
6735
6736         fx_free(vcpu);
6737         kvm_x86_ops->vcpu_free(vcpu);
6738 }
6739
6740 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6741 {
6742         atomic_set(&vcpu->arch.nmi_queued, 0);
6743         vcpu->arch.nmi_pending = 0;
6744         vcpu->arch.nmi_injected = false;
6745
6746         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6747         vcpu->arch.dr6 = DR6_FIXED_1;
6748         vcpu->arch.dr7 = DR7_FIXED_1;
6749         kvm_update_dr7(vcpu);
6750
6751         kvm_make_request(KVM_REQ_EVENT, vcpu);
6752         vcpu->arch.apf.msr_val = 0;
6753         vcpu->arch.st.msr_val = 0;
6754
6755         kvmclock_reset(vcpu);
6756
6757         kvm_clear_async_pf_completion_queue(vcpu);
6758         kvm_async_pf_hash_reset(vcpu);
6759         vcpu->arch.apf.halted = false;
6760
6761         kvm_pmu_reset(vcpu);
6762
6763         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6764         vcpu->arch.regs_avail = ~0;
6765         vcpu->arch.regs_dirty = ~0;
6766
6767         kvm_x86_ops->vcpu_reset(vcpu);
6768 }
6769
6770 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6771 {
6772         struct kvm_segment cs;
6773
6774         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6775         cs.selector = vector << 8;
6776         cs.base = vector << 12;
6777         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6778         kvm_rip_write(vcpu, 0);
6779 }
6780
6781 int kvm_arch_hardware_enable(void *garbage)
6782 {
6783         struct kvm *kvm;
6784         struct kvm_vcpu *vcpu;
6785         int i;
6786         int ret;
6787         u64 local_tsc;
6788         u64 max_tsc = 0;
6789         bool stable, backwards_tsc = false;
6790
6791         kvm_shared_msr_cpu_online();
6792         ret = kvm_x86_ops->hardware_enable(garbage);
6793         if (ret != 0)
6794                 return ret;
6795
6796         local_tsc = native_read_tsc();
6797         stable = !check_tsc_unstable();
6798         list_for_each_entry(kvm, &vm_list, vm_list) {
6799                 kvm_for_each_vcpu(i, vcpu, kvm) {
6800                         if (!stable && vcpu->cpu == smp_processor_id())
6801                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6802                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6803                                 backwards_tsc = true;
6804                                 if (vcpu->arch.last_host_tsc > max_tsc)
6805                                         max_tsc = vcpu->arch.last_host_tsc;
6806                         }
6807                 }
6808         }
6809
6810         /*
6811          * Sometimes, even reliable TSCs go backwards.  This happens on
6812          * platforms that reset TSC during suspend or hibernate actions, but
6813          * maintain synchronization.  We must compensate.  Fortunately, we can
6814          * detect that condition here, which happens early in CPU bringup,
6815          * before any KVM threads can be running.  Unfortunately, we can't
6816          * bring the TSCs fully up to date with real time, as we aren't yet far
6817          * enough into CPU bringup that we know how much real time has actually
6818          * elapsed; our helper function, get_kernel_ns() will be using boot
6819          * variables that haven't been updated yet.
6820          *
6821          * So we simply find the maximum observed TSC above, then record the
6822          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6823          * the adjustment will be applied.  Note that we accumulate
6824          * adjustments, in case multiple suspend cycles happen before some VCPU
6825          * gets a chance to run again.  In the event that no KVM threads get a
6826          * chance to run, we will miss the entire elapsed period, as we'll have
6827          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6828          * loose cycle time.  This isn't too big a deal, since the loss will be
6829          * uniform across all VCPUs (not to mention the scenario is extremely
6830          * unlikely). It is possible that a second hibernate recovery happens
6831          * much faster than a first, causing the observed TSC here to be
6832          * smaller; this would require additional padding adjustment, which is
6833          * why we set last_host_tsc to the local tsc observed here.
6834          *
6835          * N.B. - this code below runs only on platforms with reliable TSC,
6836          * as that is the only way backwards_tsc is set above.  Also note
6837          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6838          * have the same delta_cyc adjustment applied if backwards_tsc
6839          * is detected.  Note further, this adjustment is only done once,
6840          * as we reset last_host_tsc on all VCPUs to stop this from being
6841          * called multiple times (one for each physical CPU bringup).
6842          *
6843          * Platforms with unreliable TSCs don't have to deal with this, they
6844          * will be compensated by the logic in vcpu_load, which sets the TSC to
6845          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6846          * guarantee that they stay in perfect synchronization.
6847          */
6848         if (backwards_tsc) {
6849                 u64 delta_cyc = max_tsc - local_tsc;
6850                 list_for_each_entry(kvm, &vm_list, vm_list) {
6851                         kvm_for_each_vcpu(i, vcpu, kvm) {
6852                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6853                                 vcpu->arch.last_host_tsc = local_tsc;
6854                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6855                                         &vcpu->requests);
6856                         }
6857
6858                         /*
6859                          * We have to disable TSC offset matching.. if you were
6860                          * booting a VM while issuing an S4 host suspend....
6861                          * you may have some problem.  Solving this issue is
6862                          * left as an exercise to the reader.
6863                          */
6864                         kvm->arch.last_tsc_nsec = 0;
6865                         kvm->arch.last_tsc_write = 0;
6866                 }
6867
6868         }
6869         return 0;
6870 }
6871
6872 void kvm_arch_hardware_disable(void *garbage)
6873 {
6874         kvm_x86_ops->hardware_disable(garbage);
6875         drop_user_return_notifiers(garbage);
6876 }
6877
6878 int kvm_arch_hardware_setup(void)
6879 {
6880         return kvm_x86_ops->hardware_setup();
6881 }
6882
6883 void kvm_arch_hardware_unsetup(void)
6884 {
6885         kvm_x86_ops->hardware_unsetup();
6886 }
6887
6888 void kvm_arch_check_processor_compat(void *rtn)
6889 {
6890         kvm_x86_ops->check_processor_compatibility(rtn);
6891 }
6892
6893 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6894 {
6895         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6896 }
6897
6898 struct static_key kvm_no_apic_vcpu __read_mostly;
6899
6900 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6901 {
6902         struct page *page;
6903         struct kvm *kvm;
6904         int r;
6905
6906         BUG_ON(vcpu->kvm == NULL);
6907         kvm = vcpu->kvm;
6908
6909         vcpu->arch.pv.pv_unhalted = false;
6910         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6911         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6912                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6913         else
6914                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6915
6916         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6917         if (!page) {
6918                 r = -ENOMEM;
6919                 goto fail;
6920         }
6921         vcpu->arch.pio_data = page_address(page);
6922
6923         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6924
6925         r = kvm_mmu_create(vcpu);
6926         if (r < 0)
6927                 goto fail_free_pio_data;
6928
6929         if (irqchip_in_kernel(kvm)) {
6930                 r = kvm_create_lapic(vcpu);
6931                 if (r < 0)
6932                         goto fail_mmu_destroy;
6933         } else
6934                 static_key_slow_inc(&kvm_no_apic_vcpu);
6935
6936         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6937                                        GFP_KERNEL);
6938         if (!vcpu->arch.mce_banks) {
6939                 r = -ENOMEM;
6940                 goto fail_free_lapic;
6941         }
6942         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6943
6944         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6945                 r = -ENOMEM;
6946                 goto fail_free_mce_banks;
6947         }
6948
6949         r = fx_init(vcpu);
6950         if (r)
6951                 goto fail_free_wbinvd_dirty_mask;
6952
6953         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6954         vcpu->arch.pv_time_enabled = false;
6955
6956         vcpu->arch.guest_supported_xcr0 = 0;
6957         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6958
6959         kvm_async_pf_hash_reset(vcpu);
6960         kvm_pmu_init(vcpu);
6961
6962         return 0;
6963 fail_free_wbinvd_dirty_mask:
6964         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6965 fail_free_mce_banks:
6966         kfree(vcpu->arch.mce_banks);
6967 fail_free_lapic:
6968         kvm_free_lapic(vcpu);
6969 fail_mmu_destroy:
6970         kvm_mmu_destroy(vcpu);
6971 fail_free_pio_data:
6972         free_page((unsigned long)vcpu->arch.pio_data);
6973 fail:
6974         return r;
6975 }
6976
6977 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6978 {
6979         int idx;
6980
6981         kvm_pmu_destroy(vcpu);
6982         kfree(vcpu->arch.mce_banks);
6983         kvm_free_lapic(vcpu);
6984         idx = srcu_read_lock(&vcpu->kvm->srcu);
6985         kvm_mmu_destroy(vcpu);
6986         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6987         free_page((unsigned long)vcpu->arch.pio_data);
6988         if (!irqchip_in_kernel(vcpu->kvm))
6989                 static_key_slow_dec(&kvm_no_apic_vcpu);
6990 }
6991
6992 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6993 {
6994         if (type)
6995                 return -EINVAL;
6996
6997         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6998         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6999         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7000         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7001
7002         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7003         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7004         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7005         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7006                 &kvm->arch.irq_sources_bitmap);
7007
7008         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7009         mutex_init(&kvm->arch.apic_map_lock);
7010         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7011
7012         pvclock_update_vm_gtod_copy(kvm);
7013
7014         return 0;
7015 }
7016
7017 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7018 {
7019         int r;
7020         r = vcpu_load(vcpu);
7021         BUG_ON(r);
7022         kvm_mmu_unload(vcpu);
7023         vcpu_put(vcpu);
7024 }
7025
7026 static void kvm_free_vcpus(struct kvm *kvm)
7027 {
7028         unsigned int i;
7029         struct kvm_vcpu *vcpu;
7030
7031         /*
7032          * Unpin any mmu pages first.
7033          */
7034         kvm_for_each_vcpu(i, vcpu, kvm) {
7035                 kvm_clear_async_pf_completion_queue(vcpu);
7036                 kvm_unload_vcpu_mmu(vcpu);
7037         }
7038         kvm_for_each_vcpu(i, vcpu, kvm)
7039                 kvm_arch_vcpu_free(vcpu);
7040
7041         mutex_lock(&kvm->lock);
7042         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7043                 kvm->vcpus[i] = NULL;
7044
7045         atomic_set(&kvm->online_vcpus, 0);
7046         mutex_unlock(&kvm->lock);
7047 }
7048
7049 void kvm_arch_sync_events(struct kvm *kvm)
7050 {
7051         kvm_free_all_assigned_devices(kvm);
7052         kvm_free_pit(kvm);
7053 }
7054
7055 void kvm_arch_destroy_vm(struct kvm *kvm)
7056 {
7057         if (current->mm == kvm->mm) {
7058                 /*
7059                  * Free memory regions allocated on behalf of userspace,
7060                  * unless the the memory map has changed due to process exit
7061                  * or fd copying.
7062                  */
7063                 struct kvm_userspace_memory_region mem;
7064                 memset(&mem, 0, sizeof(mem));
7065                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7066                 kvm_set_memory_region(kvm, &mem);
7067
7068                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7069                 kvm_set_memory_region(kvm, &mem);
7070
7071                 mem.slot = TSS_PRIVATE_MEMSLOT;
7072                 kvm_set_memory_region(kvm, &mem);
7073         }
7074         kvm_iommu_unmap_guest(kvm);
7075         kfree(kvm->arch.vpic);
7076         kfree(kvm->arch.vioapic);
7077         kvm_free_vcpus(kvm);
7078         if (kvm->arch.apic_access_page)
7079                 put_page(kvm->arch.apic_access_page);
7080         if (kvm->arch.ept_identity_pagetable)
7081                 put_page(kvm->arch.ept_identity_pagetable);
7082         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7083 }
7084
7085 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
7086                            struct kvm_memory_slot *dont)
7087 {
7088         int i;
7089
7090         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7091                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7092                         kvm_kvfree(free->arch.rmap[i]);
7093                         free->arch.rmap[i] = NULL;
7094                 }
7095                 if (i == 0)
7096                         continue;
7097
7098                 if (!dont || free->arch.lpage_info[i - 1] !=
7099                              dont->arch.lpage_info[i - 1]) {
7100                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7101                         free->arch.lpage_info[i - 1] = NULL;
7102                 }
7103         }
7104 }
7105
7106 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
7107 {
7108         int i;
7109
7110         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7111                 unsigned long ugfn;
7112                 int lpages;
7113                 int level = i + 1;
7114
7115                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7116                                       slot->base_gfn, level) + 1;
7117
7118                 slot->arch.rmap[i] =
7119                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7120                 if (!slot->arch.rmap[i])
7121                         goto out_free;
7122                 if (i == 0)
7123                         continue;
7124
7125                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7126                                         sizeof(*slot->arch.lpage_info[i - 1]));
7127                 if (!slot->arch.lpage_info[i - 1])
7128                         goto out_free;
7129
7130                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7131                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7132                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7133                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7134                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7135                 /*
7136                  * If the gfn and userspace address are not aligned wrt each
7137                  * other, or if explicitly asked to, disable large page
7138                  * support for this slot
7139                  */
7140                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7141                     !kvm_largepages_enabled()) {
7142                         unsigned long j;
7143
7144                         for (j = 0; j < lpages; ++j)
7145                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7146                 }
7147         }
7148
7149         return 0;
7150
7151 out_free:
7152         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7153                 kvm_kvfree(slot->arch.rmap[i]);
7154                 slot->arch.rmap[i] = NULL;
7155                 if (i == 0)
7156                         continue;
7157
7158                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7159                 slot->arch.lpage_info[i - 1] = NULL;
7160         }
7161         return -ENOMEM;
7162 }
7163
7164 void kvm_arch_memslots_updated(struct kvm *kvm)
7165 {
7166         /*
7167          * memslots->generation has been incremented.
7168          * mmio generation may have reached its maximum value.
7169          */
7170         kvm_mmu_invalidate_mmio_sptes(kvm);
7171 }
7172
7173 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7174                                 struct kvm_memory_slot *memslot,
7175                                 struct kvm_userspace_memory_region *mem,
7176                                 enum kvm_mr_change change)
7177 {
7178         /*
7179          * Only private memory slots need to be mapped here since
7180          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7181          */
7182         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7183                 unsigned long userspace_addr;
7184
7185                 /*
7186                  * MAP_SHARED to prevent internal slot pages from being moved
7187                  * by fork()/COW.
7188                  */
7189                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7190                                          PROT_READ | PROT_WRITE,
7191                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7192
7193                 if (IS_ERR((void *)userspace_addr))
7194                         return PTR_ERR((void *)userspace_addr);
7195
7196                 memslot->userspace_addr = userspace_addr;
7197         }
7198
7199         return 0;
7200 }
7201
7202 void kvm_arch_commit_memory_region(struct kvm *kvm,
7203                                 struct kvm_userspace_memory_region *mem,
7204                                 const struct kvm_memory_slot *old,
7205                                 enum kvm_mr_change change)
7206 {
7207
7208         int nr_mmu_pages = 0;
7209
7210         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7211                 int ret;
7212
7213                 ret = vm_munmap(old->userspace_addr,
7214                                 old->npages * PAGE_SIZE);
7215                 if (ret < 0)
7216                         printk(KERN_WARNING
7217                                "kvm_vm_ioctl_set_memory_region: "
7218                                "failed to munmap memory\n");
7219         }
7220
7221         if (!kvm->arch.n_requested_mmu_pages)
7222                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7223
7224         if (nr_mmu_pages)
7225                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7226         /*
7227          * Write protect all pages for dirty logging.
7228          * Existing largepage mappings are destroyed here and new ones will
7229          * not be created until the end of the logging.
7230          */
7231         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7232                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7233 }
7234
7235 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7236 {
7237         kvm_mmu_invalidate_zap_all_pages(kvm);
7238 }
7239
7240 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7241                                    struct kvm_memory_slot *slot)
7242 {
7243         kvm_mmu_invalidate_zap_all_pages(kvm);
7244 }
7245
7246 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7247 {
7248         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7249                 !vcpu->arch.apf.halted)
7250                 || !list_empty_careful(&vcpu->async_pf.done)
7251                 || kvm_apic_has_events(vcpu)
7252                 || vcpu->arch.pv.pv_unhalted
7253                 || atomic_read(&vcpu->arch.nmi_queued) ||
7254                 (kvm_arch_interrupt_allowed(vcpu) &&
7255                  kvm_cpu_has_interrupt(vcpu));
7256 }
7257
7258 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7259 {
7260         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7261 }
7262
7263 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7264 {
7265         return kvm_x86_ops->interrupt_allowed(vcpu);
7266 }
7267
7268 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7269 {
7270         unsigned long current_rip = kvm_rip_read(vcpu) +
7271                 get_segment_base(vcpu, VCPU_SREG_CS);
7272
7273         return current_rip == linear_rip;
7274 }
7275 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7276
7277 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7278 {
7279         unsigned long rflags;
7280
7281         rflags = kvm_x86_ops->get_rflags(vcpu);
7282         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7283                 rflags &= ~X86_EFLAGS_TF;
7284         return rflags;
7285 }
7286 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7287
7288 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7289 {
7290         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7291             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7292                 rflags |= X86_EFLAGS_TF;
7293         kvm_x86_ops->set_rflags(vcpu, rflags);
7294         kvm_make_request(KVM_REQ_EVENT, vcpu);
7295 }
7296 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7297
7298 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7299 {
7300         int r;
7301
7302         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7303               work->wakeup_all)
7304                 return;
7305
7306         r = kvm_mmu_reload(vcpu);
7307         if (unlikely(r))
7308                 return;
7309
7310         if (!vcpu->arch.mmu.direct_map &&
7311               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7312                 return;
7313
7314         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7315 }
7316
7317 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7318 {
7319         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7320 }
7321
7322 static inline u32 kvm_async_pf_next_probe(u32 key)
7323 {
7324         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7325 }
7326
7327 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7328 {
7329         u32 key = kvm_async_pf_hash_fn(gfn);
7330
7331         while (vcpu->arch.apf.gfns[key] != ~0)
7332                 key = kvm_async_pf_next_probe(key);
7333
7334         vcpu->arch.apf.gfns[key] = gfn;
7335 }
7336
7337 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7338 {
7339         int i;
7340         u32 key = kvm_async_pf_hash_fn(gfn);
7341
7342         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7343                      (vcpu->arch.apf.gfns[key] != gfn &&
7344                       vcpu->arch.apf.gfns[key] != ~0); i++)
7345                 key = kvm_async_pf_next_probe(key);
7346
7347         return key;
7348 }
7349
7350 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7351 {
7352         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7353 }
7354
7355 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7356 {
7357         u32 i, j, k;
7358
7359         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7360         while (true) {
7361                 vcpu->arch.apf.gfns[i] = ~0;
7362                 do {
7363                         j = kvm_async_pf_next_probe(j);
7364                         if (vcpu->arch.apf.gfns[j] == ~0)
7365                                 return;
7366                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7367                         /*
7368                          * k lies cyclically in ]i,j]
7369                          * |    i.k.j |
7370                          * |....j i.k.| or  |.k..j i...|
7371                          */
7372                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7373                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7374                 i = j;
7375         }
7376 }
7377
7378 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7379 {
7380
7381         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7382                                       sizeof(val));
7383 }
7384
7385 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7386                                      struct kvm_async_pf *work)
7387 {
7388         struct x86_exception fault;
7389
7390         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7391         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7392
7393         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7394             (vcpu->arch.apf.send_user_only &&
7395              kvm_x86_ops->get_cpl(vcpu) == 0))
7396                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7397         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7398                 fault.vector = PF_VECTOR;
7399                 fault.error_code_valid = true;
7400                 fault.error_code = 0;
7401                 fault.nested_page_fault = false;
7402                 fault.address = work->arch.token;
7403                 kvm_inject_page_fault(vcpu, &fault);
7404         }
7405 }
7406
7407 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7408                                  struct kvm_async_pf *work)
7409 {
7410         struct x86_exception fault;
7411
7412         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7413         if (work->wakeup_all)
7414                 work->arch.token = ~0; /* broadcast wakeup */
7415         else
7416                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7417
7418         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7419             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7420                 fault.vector = PF_VECTOR;
7421                 fault.error_code_valid = true;
7422                 fault.error_code = 0;
7423                 fault.nested_page_fault = false;
7424                 fault.address = work->arch.token;
7425                 kvm_inject_page_fault(vcpu, &fault);
7426         }
7427         vcpu->arch.apf.halted = false;
7428         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7429 }
7430
7431 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7432 {
7433         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7434                 return true;
7435         else
7436                 return !kvm_event_needs_reinjection(vcpu) &&
7437                         kvm_x86_ops->interrupt_allowed(vcpu);
7438 }
7439
7440 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7441 {
7442         atomic_inc(&kvm->arch.noncoherent_dma_count);
7443 }
7444 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7445
7446 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7447 {
7448         atomic_dec(&kvm->arch.noncoherent_dma_count);
7449 }
7450 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7451
7452 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7453 {
7454         return atomic_read(&kvm->arch.noncoherent_dma_count);
7455 }
7456 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7457
7458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);