]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112         int nr;
113         u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117         struct user_return_notifier urn;
118         bool registered;
119         struct kvm_shared_msr_values {
120                 u64 host;
121                 u64 curr;
122         } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129         { "pf_fixed", VCPU_STAT(pf_fixed) },
130         { "pf_guest", VCPU_STAT(pf_guest) },
131         { "tlb_flush", VCPU_STAT(tlb_flush) },
132         { "invlpg", VCPU_STAT(invlpg) },
133         { "exits", VCPU_STAT(exits) },
134         { "io_exits", VCPU_STAT(io_exits) },
135         { "mmio_exits", VCPU_STAT(mmio_exits) },
136         { "signal_exits", VCPU_STAT(signal_exits) },
137         { "irq_window", VCPU_STAT(irq_window_exits) },
138         { "nmi_window", VCPU_STAT(nmi_window_exits) },
139         { "halt_exits", VCPU_STAT(halt_exits) },
140         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141         { "hypercalls", VCPU_STAT(hypercalls) },
142         { "request_irq", VCPU_STAT(request_irq_exits) },
143         { "irq_exits", VCPU_STAT(irq_exits) },
144         { "host_state_reload", VCPU_STAT(host_state_reload) },
145         { "efer_reload", VCPU_STAT(efer_reload) },
146         { "fpu_reload", VCPU_STAT(fpu_reload) },
147         { "insn_emulation", VCPU_STAT(insn_emulation) },
148         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149         { "irq_injections", VCPU_STAT(irq_injections) },
150         { "nmi_injections", VCPU_STAT(nmi_injections) },
151         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155         { "mmu_flooded", VM_STAT(mmu_flooded) },
156         { "mmu_recycled", VM_STAT(mmu_recycled) },
157         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158         { "mmu_unsync", VM_STAT(mmu_unsync) },
159         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160         { "largepages", VM_STAT(lpages) },
161         { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170         int i;
171         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172                 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177         unsigned slot;
178         struct kvm_shared_msrs *locals
179                 = container_of(urn, struct kvm_shared_msrs, urn);
180         struct kvm_shared_msr_values *values;
181
182         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183                 values = &locals->values[slot];
184                 if (values->host != values->curr) {
185                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
186                         values->curr = values->host;
187                 }
188         }
189         locals->registered = false;
190         user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195         u64 value;
196         unsigned int cpu = smp_processor_id();
197         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199         /* only read, and nobody should modify it at this time,
200          * so don't need lock */
201         if (slot >= shared_msrs_global.nr) {
202                 printk(KERN_ERR "kvm: invalid MSR slot!");
203                 return;
204         }
205         rdmsrl_safe(msr, &value);
206         smsr->values[slot].host = value;
207         smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212         if (slot >= shared_msrs_global.nr)
213                 shared_msrs_global.nr = slot + 1;
214         shared_msrs_global.msrs[slot] = msr;
215         /* we need ensured the shared_msr_global have been updated */
216         smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222         unsigned i;
223
224         for (i = 0; i < shared_msrs_global.nr; ++i)
225                 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230         unsigned int cpu = smp_processor_id();
231         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233         if (((value ^ smsr->values[slot].curr) & mask) == 0)
234                 return;
235         smsr->values[slot].curr = value;
236         wrmsrl(shared_msrs_global.msrs[slot], value);
237         if (!smsr->registered) {
238                 smsr->urn.on_user_return = kvm_on_user_return;
239                 user_return_notifier_register(&smsr->urn);
240                 smsr->registered = true;
241         }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247         unsigned int cpu = smp_processor_id();
248         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250         if (smsr->registered)
251                 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
261 {
262         /* TODO: reserve bits check */
263         kvm_lapic_set_base(vcpu, data);
264 }
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266
267 asmlinkage void kvm_spurious_fault(void)
268 {
269         /* Fault while not rebooting.  We want the trace. */
270         BUG();
271 }
272 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
273
274 #define EXCPT_BENIGN            0
275 #define EXCPT_CONTRIBUTORY      1
276 #define EXCPT_PF                2
277
278 static int exception_class(int vector)
279 {
280         switch (vector) {
281         case PF_VECTOR:
282                 return EXCPT_PF;
283         case DE_VECTOR:
284         case TS_VECTOR:
285         case NP_VECTOR:
286         case SS_VECTOR:
287         case GP_VECTOR:
288                 return EXCPT_CONTRIBUTORY;
289         default:
290                 break;
291         }
292         return EXCPT_BENIGN;
293 }
294
295 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
296                 unsigned nr, bool has_error, u32 error_code,
297                 bool reinject)
298 {
299         u32 prev_nr;
300         int class1, class2;
301
302         kvm_make_request(KVM_REQ_EVENT, vcpu);
303
304         if (!vcpu->arch.exception.pending) {
305         queue:
306                 vcpu->arch.exception.pending = true;
307                 vcpu->arch.exception.has_error_code = has_error;
308                 vcpu->arch.exception.nr = nr;
309                 vcpu->arch.exception.error_code = error_code;
310                 vcpu->arch.exception.reinject = reinject;
311                 return;
312         }
313
314         /* to check exception */
315         prev_nr = vcpu->arch.exception.nr;
316         if (prev_nr == DF_VECTOR) {
317                 /* triple fault -> shutdown */
318                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
319                 return;
320         }
321         class1 = exception_class(prev_nr);
322         class2 = exception_class(nr);
323         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
324                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
325                 /* generate double fault per SDM Table 5-5 */
326                 vcpu->arch.exception.pending = true;
327                 vcpu->arch.exception.has_error_code = true;
328                 vcpu->arch.exception.nr = DF_VECTOR;
329                 vcpu->arch.exception.error_code = 0;
330         } else
331                 /* replace previous exception with a new one in a hope
332                    that instruction re-execution will regenerate lost
333                    exception */
334                 goto queue;
335 }
336
337 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
338 {
339         kvm_multiple_exception(vcpu, nr, false, 0, false);
340 }
341 EXPORT_SYMBOL_GPL(kvm_queue_exception);
342
343 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
344 {
345         kvm_multiple_exception(vcpu, nr, false, 0, true);
346 }
347 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
348
349 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
350 {
351         if (err)
352                 kvm_inject_gp(vcpu, 0);
353         else
354                 kvm_x86_ops->skip_emulated_instruction(vcpu);
355 }
356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
357
358 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360         ++vcpu->stat.pf_guest;
361         vcpu->arch.cr2 = fault->address;
362         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
363 }
364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
365
366 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
367 {
368         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
369                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
370         else
371                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
372 }
373
374 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
375 {
376         atomic_inc(&vcpu->arch.nmi_queued);
377         kvm_make_request(KVM_REQ_NMI, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
380
381 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
382 {
383         kvm_multiple_exception(vcpu, nr, true, error_code, false);
384 }
385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
386
387 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
388 {
389         kvm_multiple_exception(vcpu, nr, true, error_code, true);
390 }
391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
392
393 /*
394  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
395  * a #GP and return false.
396  */
397 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
398 {
399         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
400                 return true;
401         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
402         return false;
403 }
404 EXPORT_SYMBOL_GPL(kvm_require_cpl);
405
406 /*
407  * This function will be used to read from the physical memory of the currently
408  * running guest. The difference to kvm_read_guest_page is that this function
409  * can read from guest physical or from the guest's guest physical memory.
410  */
411 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
412                             gfn_t ngfn, void *data, int offset, int len,
413                             u32 access)
414 {
415         gfn_t real_gfn;
416         gpa_t ngpa;
417
418         ngpa     = gfn_to_gpa(ngfn);
419         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
420         if (real_gfn == UNMAPPED_GVA)
421                 return -EFAULT;
422
423         real_gfn = gpa_to_gfn(real_gfn);
424
425         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
426 }
427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
428
429 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
430                                void *data, int offset, int len, u32 access)
431 {
432         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
433                                        data, offset, len, access);
434 }
435
436 /*
437  * Load the pae pdptrs.  Return true is they are all valid.
438  */
439 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
440 {
441         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
442         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
443         int i;
444         int ret;
445         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
446
447         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
448                                       offset * sizeof(u64), sizeof(pdpte),
449                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
450         if (ret < 0) {
451                 ret = 0;
452                 goto out;
453         }
454         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
455                 if (is_present_gpte(pdpte[i]) &&
456                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
457                         ret = 0;
458                         goto out;
459                 }
460         }
461         ret = 1;
462
463         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
464         __set_bit(VCPU_EXREG_PDPTR,
465                   (unsigned long *)&vcpu->arch.regs_avail);
466         __set_bit(VCPU_EXREG_PDPTR,
467                   (unsigned long *)&vcpu->arch.regs_dirty);
468 out:
469
470         return ret;
471 }
472 EXPORT_SYMBOL_GPL(load_pdptrs);
473
474 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
475 {
476         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
477         bool changed = true;
478         int offset;
479         gfn_t gfn;
480         int r;
481
482         if (is_long_mode(vcpu) || !is_pae(vcpu))
483                 return false;
484
485         if (!test_bit(VCPU_EXREG_PDPTR,
486                       (unsigned long *)&vcpu->arch.regs_avail))
487                 return true;
488
489         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
490         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
491         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
492                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
493         if (r < 0)
494                 goto out;
495         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
496 out:
497
498         return changed;
499 }
500
501 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
502 {
503         unsigned long old_cr0 = kvm_read_cr0(vcpu);
504         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
505                                     X86_CR0_CD | X86_CR0_NW;
506
507         cr0 |= X86_CR0_ET;
508
509 #ifdef CONFIG_X86_64
510         if (cr0 & 0xffffffff00000000UL)
511                 return 1;
512 #endif
513
514         cr0 &= ~CR0_RESERVED_BITS;
515
516         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
517                 return 1;
518
519         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
520                 return 1;
521
522         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
523 #ifdef CONFIG_X86_64
524                 if ((vcpu->arch.efer & EFER_LME)) {
525                         int cs_db, cs_l;
526
527                         if (!is_pae(vcpu))
528                                 return 1;
529                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
530                         if (cs_l)
531                                 return 1;
532                 } else
533 #endif
534                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
535                                                  kvm_read_cr3(vcpu)))
536                         return 1;
537         }
538
539         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
540                 return 1;
541
542         kvm_x86_ops->set_cr0(vcpu, cr0);
543
544         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
545                 kvm_clear_async_pf_completion_queue(vcpu);
546                 kvm_async_pf_hash_reset(vcpu);
547         }
548
549         if ((cr0 ^ old_cr0) & update_bits)
550                 kvm_mmu_reset_context(vcpu);
551         return 0;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr0);
554
555 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
556 {
557         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
558 }
559 EXPORT_SYMBOL_GPL(kvm_lmsw);
560
561 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
562 {
563         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
564                         !vcpu->guest_xcr0_loaded) {
565                 /* kvm_set_xcr() also depends on this */
566                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
567                 vcpu->guest_xcr0_loaded = 1;
568         }
569 }
570
571 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
572 {
573         if (vcpu->guest_xcr0_loaded) {
574                 if (vcpu->arch.xcr0 != host_xcr0)
575                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
576                 vcpu->guest_xcr0_loaded = 0;
577         }
578 }
579
580 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
581 {
582         u64 xcr0;
583         u64 valid_bits;
584
585         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
586         if (index != XCR_XFEATURE_ENABLED_MASK)
587                 return 1;
588         xcr0 = xcr;
589         if (!(xcr0 & XSTATE_FP))
590                 return 1;
591         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
592                 return 1;
593
594         /*
595          * Do not allow the guest to set bits that we do not support
596          * saving.  However, xcr0 bit 0 is always set, even if the
597          * emulated CPU does not support XSAVE (see fx_init).
598          */
599         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
600         if (xcr0 & ~valid_bits)
601                 return 1;
602
603         kvm_put_guest_xcr0(vcpu);
604         vcpu->arch.xcr0 = xcr0;
605         return 0;
606 }
607
608 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
609 {
610         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
611             __kvm_set_xcr(vcpu, index, xcr)) {
612                 kvm_inject_gp(vcpu, 0);
613                 return 1;
614         }
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_xcr);
618
619 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
620 {
621         unsigned long old_cr4 = kvm_read_cr4(vcpu);
622         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
623                                    X86_CR4_PAE | X86_CR4_SMEP;
624         if (cr4 & CR4_RESERVED_BITS)
625                 return 1;
626
627         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
628                 return 1;
629
630         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
631                 return 1;
632
633         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
634                 return 1;
635
636         if (is_long_mode(vcpu)) {
637                 if (!(cr4 & X86_CR4_PAE))
638                         return 1;
639         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
640                    && ((cr4 ^ old_cr4) & pdptr_bits)
641                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
642                                    kvm_read_cr3(vcpu)))
643                 return 1;
644
645         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
646                 if (!guest_cpuid_has_pcid(vcpu))
647                         return 1;
648
649                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
650                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
651                         return 1;
652         }
653
654         if (kvm_x86_ops->set_cr4(vcpu, cr4))
655                 return 1;
656
657         if (((cr4 ^ old_cr4) & pdptr_bits) ||
658             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
659                 kvm_mmu_reset_context(vcpu);
660
661         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662                 kvm_update_cpuid(vcpu);
663
664         return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671                 kvm_mmu_sync_roots(vcpu);
672                 kvm_mmu_flush_tlb(vcpu);
673                 return 0;
674         }
675
676         if (is_long_mode(vcpu)) {
677                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
678                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
679                                 return 1;
680                 } else
681                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
682                                 return 1;
683         } else {
684                 if (is_pae(vcpu)) {
685                         if (cr3 & CR3_PAE_RESERVED_BITS)
686                                 return 1;
687                         if (is_paging(vcpu) &&
688                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
689                                 return 1;
690                 }
691                 /*
692                  * We don't check reserved bits in nonpae mode, because
693                  * this isn't enforced, and VMware depends on this.
694                  */
695         }
696
697         vcpu->arch.cr3 = cr3;
698         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699         kvm_mmu_new_cr3(vcpu);
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706         if (cr8 & CR8_RESERVED_BITS)
707                 return 1;
708         if (irqchip_in_kernel(vcpu->kvm))
709                 kvm_lapic_set_tpr(vcpu, cr8);
710         else
711                 vcpu->arch.cr8 = cr8;
712         return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718         if (irqchip_in_kernel(vcpu->kvm))
719                 return kvm_lapic_get_cr8(vcpu);
720         else
721                 return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724
725 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
726 {
727         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
728                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
729 }
730
731 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
732 {
733         unsigned long dr7;
734
735         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
736                 dr7 = vcpu->arch.guest_debug_dr7;
737         else
738                 dr7 = vcpu->arch.dr7;
739         kvm_x86_ops->set_dr7(vcpu, dr7);
740         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
741 }
742
743 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
744 {
745         switch (dr) {
746         case 0 ... 3:
747                 vcpu->arch.db[dr] = val;
748                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
749                         vcpu->arch.eff_db[dr] = val;
750                 break;
751         case 4:
752                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753                         return 1; /* #UD */
754                 /* fall through */
755         case 6:
756                 if (val & 0xffffffff00000000ULL)
757                         return -1; /* #GP */
758                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
759                 kvm_update_dr6(vcpu);
760                 break;
761         case 5:
762                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
763                         return 1; /* #UD */
764                 /* fall through */
765         default: /* 7 */
766                 if (val & 0xffffffff00000000ULL)
767                         return -1; /* #GP */
768                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
769                 kvm_update_dr7(vcpu);
770                 break;
771         }
772
773         return 0;
774 }
775
776 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
777 {
778         int res;
779
780         res = __kvm_set_dr(vcpu, dr, val);
781         if (res > 0)
782                 kvm_queue_exception(vcpu, UD_VECTOR);
783         else if (res < 0)
784                 kvm_inject_gp(vcpu, 0);
785
786         return res;
787 }
788 EXPORT_SYMBOL_GPL(kvm_set_dr);
789
790 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
791 {
792         switch (dr) {
793         case 0 ... 3:
794                 *val = vcpu->arch.db[dr];
795                 break;
796         case 4:
797                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798                         return 1;
799                 /* fall through */
800         case 6:
801                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
802                         *val = vcpu->arch.dr6;
803                 else
804                         *val = kvm_x86_ops->get_dr6(vcpu);
805                 break;
806         case 5:
807                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
808                         return 1;
809                 /* fall through */
810         default: /* 7 */
811                 *val = vcpu->arch.dr7;
812                 break;
813         }
814
815         return 0;
816 }
817
818 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
819 {
820         if (_kvm_get_dr(vcpu, dr, val)) {
821                 kvm_queue_exception(vcpu, UD_VECTOR);
822                 return 1;
823         }
824         return 0;
825 }
826 EXPORT_SYMBOL_GPL(kvm_get_dr);
827
828 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
829 {
830         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
831         u64 data;
832         int err;
833
834         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
835         if (err)
836                 return err;
837         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
838         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
839         return err;
840 }
841 EXPORT_SYMBOL_GPL(kvm_rdpmc);
842
843 /*
844  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
845  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
846  *
847  * This list is modified at module load time to reflect the
848  * capabilities of the host cpu. This capabilities test skips MSRs that are
849  * kvm-specific. Those are put in the beginning of the list.
850  */
851
852 #define KVM_SAVE_MSRS_BEGIN     12
853 static u32 msrs_to_save[] = {
854         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
855         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
856         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
857         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
858         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
859         MSR_KVM_PV_EOI_EN,
860         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
861         MSR_STAR,
862 #ifdef CONFIG_X86_64
863         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
864 #endif
865         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
866         MSR_IA32_FEATURE_CONTROL
867 };
868
869 static unsigned num_msrs_to_save;
870
871 static const u32 emulated_msrs[] = {
872         MSR_IA32_TSC_ADJUST,
873         MSR_IA32_TSCDEADLINE,
874         MSR_IA32_MISC_ENABLE,
875         MSR_IA32_MCG_STATUS,
876         MSR_IA32_MCG_CTL,
877 };
878
879 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
880 {
881         if (efer & efer_reserved_bits)
882                 return false;
883
884         if (efer & EFER_FFXSR) {
885                 struct kvm_cpuid_entry2 *feat;
886
887                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
888                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
889                         return false;
890         }
891
892         if (efer & EFER_SVME) {
893                 struct kvm_cpuid_entry2 *feat;
894
895                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
896                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
897                         return false;
898         }
899
900         return true;
901 }
902 EXPORT_SYMBOL_GPL(kvm_valid_efer);
903
904 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
905 {
906         u64 old_efer = vcpu->arch.efer;
907
908         if (!kvm_valid_efer(vcpu, efer))
909                 return 1;
910
911         if (is_paging(vcpu)
912             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
913                 return 1;
914
915         efer &= ~EFER_LMA;
916         efer |= vcpu->arch.efer & EFER_LMA;
917
918         kvm_x86_ops->set_efer(vcpu, efer);
919
920         /* Update reserved bits */
921         if ((efer ^ old_efer) & EFER_NX)
922                 kvm_mmu_reset_context(vcpu);
923
924         return 0;
925 }
926
927 void kvm_enable_efer_bits(u64 mask)
928 {
929        efer_reserved_bits &= ~mask;
930 }
931 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
932
933
934 /*
935  * Writes msr value into into the appropriate "register".
936  * Returns 0 on success, non-0 otherwise.
937  * Assumes vcpu_load() was already called.
938  */
939 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
940 {
941         return kvm_x86_ops->set_msr(vcpu, msr);
942 }
943
944 /*
945  * Adapt set_msr() to msr_io()'s calling convention
946  */
947 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
948 {
949         struct msr_data msr;
950
951         msr.data = *data;
952         msr.index = index;
953         msr.host_initiated = true;
954         return kvm_set_msr(vcpu, &msr);
955 }
956
957 #ifdef CONFIG_X86_64
958 struct pvclock_gtod_data {
959         seqcount_t      seq;
960
961         struct { /* extract of a clocksource struct */
962                 int vclock_mode;
963                 cycle_t cycle_last;
964                 cycle_t mask;
965                 u32     mult;
966                 u32     shift;
967         } clock;
968
969         /* open coded 'struct timespec' */
970         u64             monotonic_time_snsec;
971         time_t          monotonic_time_sec;
972 };
973
974 static struct pvclock_gtod_data pvclock_gtod_data;
975
976 static void update_pvclock_gtod(struct timekeeper *tk)
977 {
978         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
979
980         write_seqcount_begin(&vdata->seq);
981
982         /* copy pvclock gtod data */
983         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
984         vdata->clock.cycle_last         = tk->clock->cycle_last;
985         vdata->clock.mask               = tk->clock->mask;
986         vdata->clock.mult               = tk->mult;
987         vdata->clock.shift              = tk->shift;
988
989         vdata->monotonic_time_sec       = tk->xtime_sec
990                                         + tk->wall_to_monotonic.tv_sec;
991         vdata->monotonic_time_snsec     = tk->xtime_nsec
992                                         + (tk->wall_to_monotonic.tv_nsec
993                                                 << tk->shift);
994         while (vdata->monotonic_time_snsec >=
995                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
996                 vdata->monotonic_time_snsec -=
997                                         ((u64)NSEC_PER_SEC) << tk->shift;
998                 vdata->monotonic_time_sec++;
999         }
1000
1001         write_seqcount_end(&vdata->seq);
1002 }
1003 #endif
1004
1005
1006 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1007 {
1008         int version;
1009         int r;
1010         struct pvclock_wall_clock wc;
1011         struct timespec boot;
1012
1013         if (!wall_clock)
1014                 return;
1015
1016         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1017         if (r)
1018                 return;
1019
1020         if (version & 1)
1021                 ++version;  /* first time write, random junk */
1022
1023         ++version;
1024
1025         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1026
1027         /*
1028          * The guest calculates current wall clock time by adding
1029          * system time (updated by kvm_guest_time_update below) to the
1030          * wall clock specified here.  guest system time equals host
1031          * system time for us, thus we must fill in host boot time here.
1032          */
1033         getboottime(&boot);
1034
1035         if (kvm->arch.kvmclock_offset) {
1036                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1037                 boot = timespec_sub(boot, ts);
1038         }
1039         wc.sec = boot.tv_sec;
1040         wc.nsec = boot.tv_nsec;
1041         wc.version = version;
1042
1043         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1044
1045         version++;
1046         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1047 }
1048
1049 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1050 {
1051         uint32_t quotient, remainder;
1052
1053         /* Don't try to replace with do_div(), this one calculates
1054          * "(dividend << 32) / divisor" */
1055         __asm__ ( "divl %4"
1056                   : "=a" (quotient), "=d" (remainder)
1057                   : "0" (0), "1" (dividend), "r" (divisor) );
1058         return quotient;
1059 }
1060
1061 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1062                                s8 *pshift, u32 *pmultiplier)
1063 {
1064         uint64_t scaled64;
1065         int32_t  shift = 0;
1066         uint64_t tps64;
1067         uint32_t tps32;
1068
1069         tps64 = base_khz * 1000LL;
1070         scaled64 = scaled_khz * 1000LL;
1071         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1072                 tps64 >>= 1;
1073                 shift--;
1074         }
1075
1076         tps32 = (uint32_t)tps64;
1077         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1078                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1079                         scaled64 >>= 1;
1080                 else
1081                         tps32 <<= 1;
1082                 shift++;
1083         }
1084
1085         *pshift = shift;
1086         *pmultiplier = div_frac(scaled64, tps32);
1087
1088         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1089                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1090 }
1091
1092 static inline u64 get_kernel_ns(void)
1093 {
1094         struct timespec ts;
1095
1096         WARN_ON(preemptible());
1097         ktime_get_ts(&ts);
1098         monotonic_to_bootbased(&ts);
1099         return timespec_to_ns(&ts);
1100 }
1101
1102 #ifdef CONFIG_X86_64
1103 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1104 #endif
1105
1106 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1107 unsigned long max_tsc_khz;
1108
1109 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1110 {
1111         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1112                                    vcpu->arch.virtual_tsc_shift);
1113 }
1114
1115 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1116 {
1117         u64 v = (u64)khz * (1000000 + ppm);
1118         do_div(v, 1000000);
1119         return v;
1120 }
1121
1122 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1123 {
1124         u32 thresh_lo, thresh_hi;
1125         int use_scaling = 0;
1126
1127         /* tsc_khz can be zero if TSC calibration fails */
1128         if (this_tsc_khz == 0)
1129                 return;
1130
1131         /* Compute a scale to convert nanoseconds in TSC cycles */
1132         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1133                            &vcpu->arch.virtual_tsc_shift,
1134                            &vcpu->arch.virtual_tsc_mult);
1135         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1136
1137         /*
1138          * Compute the variation in TSC rate which is acceptable
1139          * within the range of tolerance and decide if the
1140          * rate being applied is within that bounds of the hardware
1141          * rate.  If so, no scaling or compensation need be done.
1142          */
1143         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1144         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1145         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1146                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1147                 use_scaling = 1;
1148         }
1149         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1150 }
1151
1152 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1153 {
1154         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1155                                       vcpu->arch.virtual_tsc_mult,
1156                                       vcpu->arch.virtual_tsc_shift);
1157         tsc += vcpu->arch.this_tsc_write;
1158         return tsc;
1159 }
1160
1161 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1162 {
1163 #ifdef CONFIG_X86_64
1164         bool vcpus_matched;
1165         bool do_request = false;
1166         struct kvm_arch *ka = &vcpu->kvm->arch;
1167         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1168
1169         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1170                          atomic_read(&vcpu->kvm->online_vcpus));
1171
1172         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1173                 if (!ka->use_master_clock)
1174                         do_request = 1;
1175
1176         if (!vcpus_matched && ka->use_master_clock)
1177                         do_request = 1;
1178
1179         if (do_request)
1180                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1181
1182         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1183                             atomic_read(&vcpu->kvm->online_vcpus),
1184                             ka->use_master_clock, gtod->clock.vclock_mode);
1185 #endif
1186 }
1187
1188 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1189 {
1190         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1191         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1192 }
1193
1194 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1195 {
1196         struct kvm *kvm = vcpu->kvm;
1197         u64 offset, ns, elapsed;
1198         unsigned long flags;
1199         s64 usdiff;
1200         bool matched;
1201         u64 data = msr->data;
1202
1203         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1204         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1205         ns = get_kernel_ns();
1206         elapsed = ns - kvm->arch.last_tsc_nsec;
1207
1208         if (vcpu->arch.virtual_tsc_khz) {
1209                 int faulted = 0;
1210
1211                 /* n.b - signed multiplication and division required */
1212                 usdiff = data - kvm->arch.last_tsc_write;
1213 #ifdef CONFIG_X86_64
1214                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1215 #else
1216                 /* do_div() only does unsigned */
1217                 asm("1: idivl %[divisor]\n"
1218                     "2: xor %%edx, %%edx\n"
1219                     "   movl $0, %[faulted]\n"
1220                     "3:\n"
1221                     ".section .fixup,\"ax\"\n"
1222                     "4: movl $1, %[faulted]\n"
1223                     "   jmp  3b\n"
1224                     ".previous\n"
1225
1226                 _ASM_EXTABLE(1b, 4b)
1227
1228                 : "=A"(usdiff), [faulted] "=r" (faulted)
1229                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1230
1231 #endif
1232                 do_div(elapsed, 1000);
1233                 usdiff -= elapsed;
1234                 if (usdiff < 0)
1235                         usdiff = -usdiff;
1236
1237                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1238                 if (faulted)
1239                         usdiff = USEC_PER_SEC;
1240         } else
1241                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1242
1243         /*
1244          * Special case: TSC write with a small delta (1 second) of virtual
1245          * cycle time against real time is interpreted as an attempt to
1246          * synchronize the CPU.
1247          *
1248          * For a reliable TSC, we can match TSC offsets, and for an unstable
1249          * TSC, we add elapsed time in this computation.  We could let the
1250          * compensation code attempt to catch up if we fall behind, but
1251          * it's better to try to match offsets from the beginning.
1252          */
1253         if (usdiff < USEC_PER_SEC &&
1254             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1255                 if (!check_tsc_unstable()) {
1256                         offset = kvm->arch.cur_tsc_offset;
1257                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1258                 } else {
1259                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1260                         data += delta;
1261                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1262                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1263                 }
1264                 matched = true;
1265         } else {
1266                 /*
1267                  * We split periods of matched TSC writes into generations.
1268                  * For each generation, we track the original measured
1269                  * nanosecond time, offset, and write, so if TSCs are in
1270                  * sync, we can match exact offset, and if not, we can match
1271                  * exact software computation in compute_guest_tsc()
1272                  *
1273                  * These values are tracked in kvm->arch.cur_xxx variables.
1274                  */
1275                 kvm->arch.cur_tsc_generation++;
1276                 kvm->arch.cur_tsc_nsec = ns;
1277                 kvm->arch.cur_tsc_write = data;
1278                 kvm->arch.cur_tsc_offset = offset;
1279                 matched = false;
1280                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1281                          kvm->arch.cur_tsc_generation, data);
1282         }
1283
1284         /*
1285          * We also track th most recent recorded KHZ, write and time to
1286          * allow the matching interval to be extended at each write.
1287          */
1288         kvm->arch.last_tsc_nsec = ns;
1289         kvm->arch.last_tsc_write = data;
1290         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1291
1292         vcpu->arch.last_guest_tsc = data;
1293
1294         /* Keep track of which generation this VCPU has synchronized to */
1295         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1296         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1297         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1298
1299         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1300                 update_ia32_tsc_adjust_msr(vcpu, offset);
1301         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1302         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1303
1304         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1305         if (matched)
1306                 kvm->arch.nr_vcpus_matched_tsc++;
1307         else
1308                 kvm->arch.nr_vcpus_matched_tsc = 0;
1309
1310         kvm_track_tsc_matching(vcpu);
1311         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1312 }
1313
1314 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1315
1316 #ifdef CONFIG_X86_64
1317
1318 static cycle_t read_tsc(void)
1319 {
1320         cycle_t ret;
1321         u64 last;
1322
1323         /*
1324          * Empirically, a fence (of type that depends on the CPU)
1325          * before rdtsc is enough to ensure that rdtsc is ordered
1326          * with respect to loads.  The various CPU manuals are unclear
1327          * as to whether rdtsc can be reordered with later loads,
1328          * but no one has ever seen it happen.
1329          */
1330         rdtsc_barrier();
1331         ret = (cycle_t)vget_cycles();
1332
1333         last = pvclock_gtod_data.clock.cycle_last;
1334
1335         if (likely(ret >= last))
1336                 return ret;
1337
1338         /*
1339          * GCC likes to generate cmov here, but this branch is extremely
1340          * predictable (it's just a funciton of time and the likely is
1341          * very likely) and there's a data dependence, so force GCC
1342          * to generate a branch instead.  I don't barrier() because
1343          * we don't actually need a barrier, and if this function
1344          * ever gets inlined it will generate worse code.
1345          */
1346         asm volatile ("");
1347         return last;
1348 }
1349
1350 static inline u64 vgettsc(cycle_t *cycle_now)
1351 {
1352         long v;
1353         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1354
1355         *cycle_now = read_tsc();
1356
1357         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1358         return v * gtod->clock.mult;
1359 }
1360
1361 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1362 {
1363         unsigned long seq;
1364         u64 ns;
1365         int mode;
1366         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368         ts->tv_nsec = 0;
1369         do {
1370                 seq = read_seqcount_begin(&gtod->seq);
1371                 mode = gtod->clock.vclock_mode;
1372                 ts->tv_sec = gtod->monotonic_time_sec;
1373                 ns = gtod->monotonic_time_snsec;
1374                 ns += vgettsc(cycle_now);
1375                 ns >>= gtod->clock.shift;
1376         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1377         timespec_add_ns(ts, ns);
1378
1379         return mode;
1380 }
1381
1382 /* returns true if host is using tsc clocksource */
1383 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1384 {
1385         struct timespec ts;
1386
1387         /* checked again under seqlock below */
1388         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1389                 return false;
1390
1391         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1392                 return false;
1393
1394         monotonic_to_bootbased(&ts);
1395         *kernel_ns = timespec_to_ns(&ts);
1396
1397         return true;
1398 }
1399 #endif
1400
1401 /*
1402  *
1403  * Assuming a stable TSC across physical CPUS, and a stable TSC
1404  * across virtual CPUs, the following condition is possible.
1405  * Each numbered line represents an event visible to both
1406  * CPUs at the next numbered event.
1407  *
1408  * "timespecX" represents host monotonic time. "tscX" represents
1409  * RDTSC value.
1410  *
1411  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1412  *
1413  * 1.  read timespec0,tsc0
1414  * 2.                                   | timespec1 = timespec0 + N
1415  *                                      | tsc1 = tsc0 + M
1416  * 3. transition to guest               | transition to guest
1417  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1418  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1419  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1420  *
1421  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1422  *
1423  *      - ret0 < ret1
1424  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1425  *              ...
1426  *      - 0 < N - M => M < N
1427  *
1428  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1429  * always the case (the difference between two distinct xtime instances
1430  * might be smaller then the difference between corresponding TSC reads,
1431  * when updating guest vcpus pvclock areas).
1432  *
1433  * To avoid that problem, do not allow visibility of distinct
1434  * system_timestamp/tsc_timestamp values simultaneously: use a master
1435  * copy of host monotonic time values. Update that master copy
1436  * in lockstep.
1437  *
1438  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1439  *
1440  */
1441
1442 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1443 {
1444 #ifdef CONFIG_X86_64
1445         struct kvm_arch *ka = &kvm->arch;
1446         int vclock_mode;
1447         bool host_tsc_clocksource, vcpus_matched;
1448
1449         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1450                         atomic_read(&kvm->online_vcpus));
1451
1452         /*
1453          * If the host uses TSC clock, then passthrough TSC as stable
1454          * to the guest.
1455          */
1456         host_tsc_clocksource = kvm_get_time_and_clockread(
1457                                         &ka->master_kernel_ns,
1458                                         &ka->master_cycle_now);
1459
1460         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1461
1462         if (ka->use_master_clock)
1463                 atomic_set(&kvm_guest_has_master_clock, 1);
1464
1465         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1466         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1467                                         vcpus_matched);
1468 #endif
1469 }
1470
1471 static void kvm_gen_update_masterclock(struct kvm *kvm)
1472 {
1473 #ifdef CONFIG_X86_64
1474         int i;
1475         struct kvm_vcpu *vcpu;
1476         struct kvm_arch *ka = &kvm->arch;
1477
1478         spin_lock(&ka->pvclock_gtod_sync_lock);
1479         kvm_make_mclock_inprogress_request(kvm);
1480         /* no guest entries from this point */
1481         pvclock_update_vm_gtod_copy(kvm);
1482
1483         kvm_for_each_vcpu(i, vcpu, kvm)
1484                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1485
1486         /* guest entries allowed */
1487         kvm_for_each_vcpu(i, vcpu, kvm)
1488                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1489
1490         spin_unlock(&ka->pvclock_gtod_sync_lock);
1491 #endif
1492 }
1493
1494 static int kvm_guest_time_update(struct kvm_vcpu *v)
1495 {
1496         unsigned long flags, this_tsc_khz;
1497         struct kvm_vcpu_arch *vcpu = &v->arch;
1498         struct kvm_arch *ka = &v->kvm->arch;
1499         s64 kernel_ns;
1500         u64 tsc_timestamp, host_tsc;
1501         struct pvclock_vcpu_time_info guest_hv_clock;
1502         u8 pvclock_flags;
1503         bool use_master_clock;
1504
1505         kernel_ns = 0;
1506         host_tsc = 0;
1507
1508         /*
1509          * If the host uses TSC clock, then passthrough TSC as stable
1510          * to the guest.
1511          */
1512         spin_lock(&ka->pvclock_gtod_sync_lock);
1513         use_master_clock = ka->use_master_clock;
1514         if (use_master_clock) {
1515                 host_tsc = ka->master_cycle_now;
1516                 kernel_ns = ka->master_kernel_ns;
1517         }
1518         spin_unlock(&ka->pvclock_gtod_sync_lock);
1519
1520         /* Keep irq disabled to prevent changes to the clock */
1521         local_irq_save(flags);
1522         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1523         if (unlikely(this_tsc_khz == 0)) {
1524                 local_irq_restore(flags);
1525                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1526                 return 1;
1527         }
1528         if (!use_master_clock) {
1529                 host_tsc = native_read_tsc();
1530                 kernel_ns = get_kernel_ns();
1531         }
1532
1533         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1534
1535         /*
1536          * We may have to catch up the TSC to match elapsed wall clock
1537          * time for two reasons, even if kvmclock is used.
1538          *   1) CPU could have been running below the maximum TSC rate
1539          *   2) Broken TSC compensation resets the base at each VCPU
1540          *      entry to avoid unknown leaps of TSC even when running
1541          *      again on the same CPU.  This may cause apparent elapsed
1542          *      time to disappear, and the guest to stand still or run
1543          *      very slowly.
1544          */
1545         if (vcpu->tsc_catchup) {
1546                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1547                 if (tsc > tsc_timestamp) {
1548                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1549                         tsc_timestamp = tsc;
1550                 }
1551         }
1552
1553         local_irq_restore(flags);
1554
1555         if (!vcpu->pv_time_enabled)
1556                 return 0;
1557
1558         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1559                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1560                                    &vcpu->hv_clock.tsc_shift,
1561                                    &vcpu->hv_clock.tsc_to_system_mul);
1562                 vcpu->hw_tsc_khz = this_tsc_khz;
1563         }
1564
1565         /* With all the info we got, fill in the values */
1566         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1567         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1568         vcpu->last_kernel_ns = kernel_ns;
1569         vcpu->last_guest_tsc = tsc_timestamp;
1570
1571         /*
1572          * The interface expects us to write an even number signaling that the
1573          * update is finished. Since the guest won't see the intermediate
1574          * state, we just increase by 2 at the end.
1575          */
1576         vcpu->hv_clock.version += 2;
1577
1578         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1579                 &guest_hv_clock, sizeof(guest_hv_clock))))
1580                 return 0;
1581
1582         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1583         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1584
1585         if (vcpu->pvclock_set_guest_stopped_request) {
1586                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1587                 vcpu->pvclock_set_guest_stopped_request = false;
1588         }
1589
1590         /* If the host uses TSC clocksource, then it is stable */
1591         if (use_master_clock)
1592                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1593
1594         vcpu->hv_clock.flags = pvclock_flags;
1595
1596         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1597                                 &vcpu->hv_clock,
1598                                 sizeof(vcpu->hv_clock));
1599         return 0;
1600 }
1601
1602 /*
1603  * kvmclock updates which are isolated to a given vcpu, such as
1604  * vcpu->cpu migration, should not allow system_timestamp from
1605  * the rest of the vcpus to remain static. Otherwise ntp frequency
1606  * correction applies to one vcpu's system_timestamp but not
1607  * the others.
1608  *
1609  * So in those cases, request a kvmclock update for all vcpus.
1610  * The worst case for a remote vcpu to update its kvmclock
1611  * is then bounded by maximum nohz sleep latency.
1612  */
1613
1614 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1615 {
1616         int i;
1617         struct kvm *kvm = v->kvm;
1618         struct kvm_vcpu *vcpu;
1619
1620         kvm_for_each_vcpu(i, vcpu, kvm) {
1621                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1622                 kvm_vcpu_kick(vcpu);
1623         }
1624 }
1625
1626 static bool msr_mtrr_valid(unsigned msr)
1627 {
1628         switch (msr) {
1629         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1630         case MSR_MTRRfix64K_00000:
1631         case MSR_MTRRfix16K_80000:
1632         case MSR_MTRRfix16K_A0000:
1633         case MSR_MTRRfix4K_C0000:
1634         case MSR_MTRRfix4K_C8000:
1635         case MSR_MTRRfix4K_D0000:
1636         case MSR_MTRRfix4K_D8000:
1637         case MSR_MTRRfix4K_E0000:
1638         case MSR_MTRRfix4K_E8000:
1639         case MSR_MTRRfix4K_F0000:
1640         case MSR_MTRRfix4K_F8000:
1641         case MSR_MTRRdefType:
1642         case MSR_IA32_CR_PAT:
1643                 return true;
1644         case 0x2f8:
1645                 return true;
1646         }
1647         return false;
1648 }
1649
1650 static bool valid_pat_type(unsigned t)
1651 {
1652         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1653 }
1654
1655 static bool valid_mtrr_type(unsigned t)
1656 {
1657         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1658 }
1659
1660 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1661 {
1662         int i;
1663
1664         if (!msr_mtrr_valid(msr))
1665                 return false;
1666
1667         if (msr == MSR_IA32_CR_PAT) {
1668                 for (i = 0; i < 8; i++)
1669                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1670                                 return false;
1671                 return true;
1672         } else if (msr == MSR_MTRRdefType) {
1673                 if (data & ~0xcff)
1674                         return false;
1675                 return valid_mtrr_type(data & 0xff);
1676         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1677                 for (i = 0; i < 8 ; i++)
1678                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1679                                 return false;
1680                 return true;
1681         }
1682
1683         /* variable MTRRs */
1684         return valid_mtrr_type(data & 0xff);
1685 }
1686
1687 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1688 {
1689         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1690
1691         if (!mtrr_valid(vcpu, msr, data))
1692                 return 1;
1693
1694         if (msr == MSR_MTRRdefType) {
1695                 vcpu->arch.mtrr_state.def_type = data;
1696                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1697         } else if (msr == MSR_MTRRfix64K_00000)
1698                 p[0] = data;
1699         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1700                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1701         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1702                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1703         else if (msr == MSR_IA32_CR_PAT)
1704                 vcpu->arch.pat = data;
1705         else {  /* Variable MTRRs */
1706                 int idx, is_mtrr_mask;
1707                 u64 *pt;
1708
1709                 idx = (msr - 0x200) / 2;
1710                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1711                 if (!is_mtrr_mask)
1712                         pt =
1713                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1714                 else
1715                         pt =
1716                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1717                 *pt = data;
1718         }
1719
1720         kvm_mmu_reset_context(vcpu);
1721         return 0;
1722 }
1723
1724 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1725 {
1726         u64 mcg_cap = vcpu->arch.mcg_cap;
1727         unsigned bank_num = mcg_cap & 0xff;
1728
1729         switch (msr) {
1730         case MSR_IA32_MCG_STATUS:
1731                 vcpu->arch.mcg_status = data;
1732                 break;
1733         case MSR_IA32_MCG_CTL:
1734                 if (!(mcg_cap & MCG_CTL_P))
1735                         return 1;
1736                 if (data != 0 && data != ~(u64)0)
1737                         return -1;
1738                 vcpu->arch.mcg_ctl = data;
1739                 break;
1740         default:
1741                 if (msr >= MSR_IA32_MC0_CTL &&
1742                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1743                         u32 offset = msr - MSR_IA32_MC0_CTL;
1744                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1745                          * some Linux kernels though clear bit 10 in bank 4 to
1746                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1747                          * this to avoid an uncatched #GP in the guest
1748                          */
1749                         if ((offset & 0x3) == 0 &&
1750                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1751                                 return -1;
1752                         vcpu->arch.mce_banks[offset] = data;
1753                         break;
1754                 }
1755                 return 1;
1756         }
1757         return 0;
1758 }
1759
1760 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1761 {
1762         struct kvm *kvm = vcpu->kvm;
1763         int lm = is_long_mode(vcpu);
1764         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1765                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1766         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1767                 : kvm->arch.xen_hvm_config.blob_size_32;
1768         u32 page_num = data & ~PAGE_MASK;
1769         u64 page_addr = data & PAGE_MASK;
1770         u8 *page;
1771         int r;
1772
1773         r = -E2BIG;
1774         if (page_num >= blob_size)
1775                 goto out;
1776         r = -ENOMEM;
1777         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1778         if (IS_ERR(page)) {
1779                 r = PTR_ERR(page);
1780                 goto out;
1781         }
1782         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1783                 goto out_free;
1784         r = 0;
1785 out_free:
1786         kfree(page);
1787 out:
1788         return r;
1789 }
1790
1791 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1792 {
1793         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1794 }
1795
1796 static bool kvm_hv_msr_partition_wide(u32 msr)
1797 {
1798         bool r = false;
1799         switch (msr) {
1800         case HV_X64_MSR_GUEST_OS_ID:
1801         case HV_X64_MSR_HYPERCALL:
1802         case HV_X64_MSR_REFERENCE_TSC:
1803         case HV_X64_MSR_TIME_REF_COUNT:
1804                 r = true;
1805                 break;
1806         }
1807
1808         return r;
1809 }
1810
1811 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1812 {
1813         struct kvm *kvm = vcpu->kvm;
1814
1815         switch (msr) {
1816         case HV_X64_MSR_GUEST_OS_ID:
1817                 kvm->arch.hv_guest_os_id = data;
1818                 /* setting guest os id to zero disables hypercall page */
1819                 if (!kvm->arch.hv_guest_os_id)
1820                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1821                 break;
1822         case HV_X64_MSR_HYPERCALL: {
1823                 u64 gfn;
1824                 unsigned long addr;
1825                 u8 instructions[4];
1826
1827                 /* if guest os id is not set hypercall should remain disabled */
1828                 if (!kvm->arch.hv_guest_os_id)
1829                         break;
1830                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1831                         kvm->arch.hv_hypercall = data;
1832                         break;
1833                 }
1834                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1835                 addr = gfn_to_hva(kvm, gfn);
1836                 if (kvm_is_error_hva(addr))
1837                         return 1;
1838                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1839                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1840                 if (__copy_to_user((void __user *)addr, instructions, 4))
1841                         return 1;
1842                 kvm->arch.hv_hypercall = data;
1843                 break;
1844         }
1845         case HV_X64_MSR_REFERENCE_TSC: {
1846                 u64 gfn;
1847                 HV_REFERENCE_TSC_PAGE tsc_ref;
1848                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1849                 kvm->arch.hv_tsc_page = data;
1850                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1851                         break;
1852                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1853                 if (kvm_write_guest(kvm, data,
1854                         &tsc_ref, sizeof(tsc_ref)))
1855                         return 1;
1856                 mark_page_dirty(kvm, gfn);
1857                 break;
1858         }
1859         default:
1860                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1861                             "data 0x%llx\n", msr, data);
1862                 return 1;
1863         }
1864         return 0;
1865 }
1866
1867 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1868 {
1869         switch (msr) {
1870         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1871                 unsigned long addr;
1872
1873                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1874                         vcpu->arch.hv_vapic = data;
1875                         break;
1876                 }
1877                 addr = gfn_to_hva(vcpu->kvm, data >>
1878                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1879                 if (kvm_is_error_hva(addr))
1880                         return 1;
1881                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1882                         return 1;
1883                 vcpu->arch.hv_vapic = data;
1884                 break;
1885         }
1886         case HV_X64_MSR_EOI:
1887                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1888         case HV_X64_MSR_ICR:
1889                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1890         case HV_X64_MSR_TPR:
1891                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1892         default:
1893                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1894                             "data 0x%llx\n", msr, data);
1895                 return 1;
1896         }
1897
1898         return 0;
1899 }
1900
1901 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1902 {
1903         gpa_t gpa = data & ~0x3f;
1904
1905         /* Bits 2:5 are reserved, Should be zero */
1906         if (data & 0x3c)
1907                 return 1;
1908
1909         vcpu->arch.apf.msr_val = data;
1910
1911         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1912                 kvm_clear_async_pf_completion_queue(vcpu);
1913                 kvm_async_pf_hash_reset(vcpu);
1914                 return 0;
1915         }
1916
1917         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1918                                         sizeof(u32)))
1919                 return 1;
1920
1921         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1922         kvm_async_pf_wakeup_all(vcpu);
1923         return 0;
1924 }
1925
1926 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1927 {
1928         vcpu->arch.pv_time_enabled = false;
1929 }
1930
1931 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1932 {
1933         u64 delta;
1934
1935         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1936                 return;
1937
1938         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1939         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1940         vcpu->arch.st.accum_steal = delta;
1941 }
1942
1943 static void record_steal_time(struct kvm_vcpu *vcpu)
1944 {
1945         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1946                 return;
1947
1948         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1949                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1950                 return;
1951
1952         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1953         vcpu->arch.st.steal.version += 2;
1954         vcpu->arch.st.accum_steal = 0;
1955
1956         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1957                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1958 }
1959
1960 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1961 {
1962         bool pr = false;
1963         u32 msr = msr_info->index;
1964         u64 data = msr_info->data;
1965
1966         switch (msr) {
1967         case MSR_AMD64_NB_CFG:
1968         case MSR_IA32_UCODE_REV:
1969         case MSR_IA32_UCODE_WRITE:
1970         case MSR_VM_HSAVE_PA:
1971         case MSR_AMD64_PATCH_LOADER:
1972         case MSR_AMD64_BU_CFG2:
1973                 break;
1974
1975         case MSR_EFER:
1976                 return set_efer(vcpu, data);
1977         case MSR_K7_HWCR:
1978                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1979                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1980                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1981                 if (data != 0) {
1982                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1983                                     data);
1984                         return 1;
1985                 }
1986                 break;
1987         case MSR_FAM10H_MMIO_CONF_BASE:
1988                 if (data != 0) {
1989                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1990                                     "0x%llx\n", data);
1991                         return 1;
1992                 }
1993                 break;
1994         case MSR_IA32_DEBUGCTLMSR:
1995                 if (!data) {
1996                         /* We support the non-activated case already */
1997                         break;
1998                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1999                         /* Values other than LBR and BTF are vendor-specific,
2000                            thus reserved and should throw a #GP */
2001                         return 1;
2002                 }
2003                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2004                             __func__, data);
2005                 break;
2006         case 0x200 ... 0x2ff:
2007                 return set_msr_mtrr(vcpu, msr, data);
2008         case MSR_IA32_APICBASE:
2009                 kvm_set_apic_base(vcpu, data);
2010                 break;
2011         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2012                 return kvm_x2apic_msr_write(vcpu, msr, data);
2013         case MSR_IA32_TSCDEADLINE:
2014                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2015                 break;
2016         case MSR_IA32_TSC_ADJUST:
2017                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2018                         if (!msr_info->host_initiated) {
2019                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2020                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2021                         }
2022                         vcpu->arch.ia32_tsc_adjust_msr = data;
2023                 }
2024                 break;
2025         case MSR_IA32_MISC_ENABLE:
2026                 vcpu->arch.ia32_misc_enable_msr = data;
2027                 break;
2028         case MSR_KVM_WALL_CLOCK_NEW:
2029         case MSR_KVM_WALL_CLOCK:
2030                 vcpu->kvm->arch.wall_clock = data;
2031                 kvm_write_wall_clock(vcpu->kvm, data);
2032                 break;
2033         case MSR_KVM_SYSTEM_TIME_NEW:
2034         case MSR_KVM_SYSTEM_TIME: {
2035                 u64 gpa_offset;
2036                 kvmclock_reset(vcpu);
2037
2038                 vcpu->arch.time = data;
2039                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2040
2041                 /* we verify if the enable bit is set... */
2042                 if (!(data & 1))
2043                         break;
2044
2045                 gpa_offset = data & ~(PAGE_MASK | 1);
2046
2047                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2048                      &vcpu->arch.pv_time, data & ~1ULL,
2049                      sizeof(struct pvclock_vcpu_time_info)))
2050                         vcpu->arch.pv_time_enabled = false;
2051                 else
2052                         vcpu->arch.pv_time_enabled = true;
2053
2054                 break;
2055         }
2056         case MSR_KVM_ASYNC_PF_EN:
2057                 if (kvm_pv_enable_async_pf(vcpu, data))
2058                         return 1;
2059                 break;
2060         case MSR_KVM_STEAL_TIME:
2061
2062                 if (unlikely(!sched_info_on()))
2063                         return 1;
2064
2065                 if (data & KVM_STEAL_RESERVED_MASK)
2066                         return 1;
2067
2068                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2069                                                 data & KVM_STEAL_VALID_BITS,
2070                                                 sizeof(struct kvm_steal_time)))
2071                         return 1;
2072
2073                 vcpu->arch.st.msr_val = data;
2074
2075                 if (!(data & KVM_MSR_ENABLED))
2076                         break;
2077
2078                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2079
2080                 preempt_disable();
2081                 accumulate_steal_time(vcpu);
2082                 preempt_enable();
2083
2084                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2085
2086                 break;
2087         case MSR_KVM_PV_EOI_EN:
2088                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2089                         return 1;
2090                 break;
2091
2092         case MSR_IA32_MCG_CTL:
2093         case MSR_IA32_MCG_STATUS:
2094         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2095                 return set_msr_mce(vcpu, msr, data);
2096
2097         /* Performance counters are not protected by a CPUID bit,
2098          * so we should check all of them in the generic path for the sake of
2099          * cross vendor migration.
2100          * Writing a zero into the event select MSRs disables them,
2101          * which we perfectly emulate ;-). Any other value should be at least
2102          * reported, some guests depend on them.
2103          */
2104         case MSR_K7_EVNTSEL0:
2105         case MSR_K7_EVNTSEL1:
2106         case MSR_K7_EVNTSEL2:
2107         case MSR_K7_EVNTSEL3:
2108                 if (data != 0)
2109                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2110                                     "0x%x data 0x%llx\n", msr, data);
2111                 break;
2112         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2113          * so we ignore writes to make it happy.
2114          */
2115         case MSR_K7_PERFCTR0:
2116         case MSR_K7_PERFCTR1:
2117         case MSR_K7_PERFCTR2:
2118         case MSR_K7_PERFCTR3:
2119                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2120                             "0x%x data 0x%llx\n", msr, data);
2121                 break;
2122         case MSR_P6_PERFCTR0:
2123         case MSR_P6_PERFCTR1:
2124                 pr = true;
2125         case MSR_P6_EVNTSEL0:
2126         case MSR_P6_EVNTSEL1:
2127                 if (kvm_pmu_msr(vcpu, msr))
2128                         return kvm_pmu_set_msr(vcpu, msr_info);
2129
2130                 if (pr || data != 0)
2131                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2132                                     "0x%x data 0x%llx\n", msr, data);
2133                 break;
2134         case MSR_K7_CLK_CTL:
2135                 /*
2136                  * Ignore all writes to this no longer documented MSR.
2137                  * Writes are only relevant for old K7 processors,
2138                  * all pre-dating SVM, but a recommended workaround from
2139                  * AMD for these chips. It is possible to specify the
2140                  * affected processor models on the command line, hence
2141                  * the need to ignore the workaround.
2142                  */
2143                 break;
2144         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2145                 if (kvm_hv_msr_partition_wide(msr)) {
2146                         int r;
2147                         mutex_lock(&vcpu->kvm->lock);
2148                         r = set_msr_hyperv_pw(vcpu, msr, data);
2149                         mutex_unlock(&vcpu->kvm->lock);
2150                         return r;
2151                 } else
2152                         return set_msr_hyperv(vcpu, msr, data);
2153                 break;
2154         case MSR_IA32_BBL_CR_CTL3:
2155                 /* Drop writes to this legacy MSR -- see rdmsr
2156                  * counterpart for further detail.
2157                  */
2158                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2159                 break;
2160         case MSR_AMD64_OSVW_ID_LENGTH:
2161                 if (!guest_cpuid_has_osvw(vcpu))
2162                         return 1;
2163                 vcpu->arch.osvw.length = data;
2164                 break;
2165         case MSR_AMD64_OSVW_STATUS:
2166                 if (!guest_cpuid_has_osvw(vcpu))
2167                         return 1;
2168                 vcpu->arch.osvw.status = data;
2169                 break;
2170         default:
2171                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2172                         return xen_hvm_config(vcpu, data);
2173                 if (kvm_pmu_msr(vcpu, msr))
2174                         return kvm_pmu_set_msr(vcpu, msr_info);
2175                 if (!ignore_msrs) {
2176                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2177                                     msr, data);
2178                         return 1;
2179                 } else {
2180                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2181                                     msr, data);
2182                         break;
2183                 }
2184         }
2185         return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2188
2189
2190 /*
2191  * Reads an msr value (of 'msr_index') into 'pdata'.
2192  * Returns 0 on success, non-0 otherwise.
2193  * Assumes vcpu_load() was already called.
2194  */
2195 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2196 {
2197         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2198 }
2199
2200 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2201 {
2202         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2203
2204         if (!msr_mtrr_valid(msr))
2205                 return 1;
2206
2207         if (msr == MSR_MTRRdefType)
2208                 *pdata = vcpu->arch.mtrr_state.def_type +
2209                          (vcpu->arch.mtrr_state.enabled << 10);
2210         else if (msr == MSR_MTRRfix64K_00000)
2211                 *pdata = p[0];
2212         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2213                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2214         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2215                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2216         else if (msr == MSR_IA32_CR_PAT)
2217                 *pdata = vcpu->arch.pat;
2218         else {  /* Variable MTRRs */
2219                 int idx, is_mtrr_mask;
2220                 u64 *pt;
2221
2222                 idx = (msr - 0x200) / 2;
2223                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2224                 if (!is_mtrr_mask)
2225                         pt =
2226                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2227                 else
2228                         pt =
2229                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2230                 *pdata = *pt;
2231         }
2232
2233         return 0;
2234 }
2235
2236 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2237 {
2238         u64 data;
2239         u64 mcg_cap = vcpu->arch.mcg_cap;
2240         unsigned bank_num = mcg_cap & 0xff;
2241
2242         switch (msr) {
2243         case MSR_IA32_P5_MC_ADDR:
2244         case MSR_IA32_P5_MC_TYPE:
2245                 data = 0;
2246                 break;
2247         case MSR_IA32_MCG_CAP:
2248                 data = vcpu->arch.mcg_cap;
2249                 break;
2250         case MSR_IA32_MCG_CTL:
2251                 if (!(mcg_cap & MCG_CTL_P))
2252                         return 1;
2253                 data = vcpu->arch.mcg_ctl;
2254                 break;
2255         case MSR_IA32_MCG_STATUS:
2256                 data = vcpu->arch.mcg_status;
2257                 break;
2258         default:
2259                 if (msr >= MSR_IA32_MC0_CTL &&
2260                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2261                         u32 offset = msr - MSR_IA32_MC0_CTL;
2262                         data = vcpu->arch.mce_banks[offset];
2263                         break;
2264                 }
2265                 return 1;
2266         }
2267         *pdata = data;
2268         return 0;
2269 }
2270
2271 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2272 {
2273         u64 data = 0;
2274         struct kvm *kvm = vcpu->kvm;
2275
2276         switch (msr) {
2277         case HV_X64_MSR_GUEST_OS_ID:
2278                 data = kvm->arch.hv_guest_os_id;
2279                 break;
2280         case HV_X64_MSR_HYPERCALL:
2281                 data = kvm->arch.hv_hypercall;
2282                 break;
2283         case HV_X64_MSR_TIME_REF_COUNT: {
2284                 data =
2285                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2286                 break;
2287         }
2288         case HV_X64_MSR_REFERENCE_TSC:
2289                 data = kvm->arch.hv_tsc_page;
2290                 break;
2291         default:
2292                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2293                 return 1;
2294         }
2295
2296         *pdata = data;
2297         return 0;
2298 }
2299
2300 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2301 {
2302         u64 data = 0;
2303
2304         switch (msr) {
2305         case HV_X64_MSR_VP_INDEX: {
2306                 int r;
2307                 struct kvm_vcpu *v;
2308                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2309                         if (v == vcpu)
2310                                 data = r;
2311                 break;
2312         }
2313         case HV_X64_MSR_EOI:
2314                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2315         case HV_X64_MSR_ICR:
2316                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2317         case HV_X64_MSR_TPR:
2318                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2319         case HV_X64_MSR_APIC_ASSIST_PAGE:
2320                 data = vcpu->arch.hv_vapic;
2321                 break;
2322         default:
2323                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2324                 return 1;
2325         }
2326         *pdata = data;
2327         return 0;
2328 }
2329
2330 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2331 {
2332         u64 data;
2333
2334         switch (msr) {
2335         case MSR_IA32_PLATFORM_ID:
2336         case MSR_IA32_EBL_CR_POWERON:
2337         case MSR_IA32_DEBUGCTLMSR:
2338         case MSR_IA32_LASTBRANCHFROMIP:
2339         case MSR_IA32_LASTBRANCHTOIP:
2340         case MSR_IA32_LASTINTFROMIP:
2341         case MSR_IA32_LASTINTTOIP:
2342         case MSR_K8_SYSCFG:
2343         case MSR_K7_HWCR:
2344         case MSR_VM_HSAVE_PA:
2345         case MSR_K7_EVNTSEL0:
2346         case MSR_K7_PERFCTR0:
2347         case MSR_K8_INT_PENDING_MSG:
2348         case MSR_AMD64_NB_CFG:
2349         case MSR_FAM10H_MMIO_CONF_BASE:
2350         case MSR_AMD64_BU_CFG2:
2351                 data = 0;
2352                 break;
2353         case MSR_P6_PERFCTR0:
2354         case MSR_P6_PERFCTR1:
2355         case MSR_P6_EVNTSEL0:
2356         case MSR_P6_EVNTSEL1:
2357                 if (kvm_pmu_msr(vcpu, msr))
2358                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2359                 data = 0;
2360                 break;
2361         case MSR_IA32_UCODE_REV:
2362                 data = 0x100000000ULL;
2363                 break;
2364         case MSR_MTRRcap:
2365                 data = 0x500 | KVM_NR_VAR_MTRR;
2366                 break;
2367         case 0x200 ... 0x2ff:
2368                 return get_msr_mtrr(vcpu, msr, pdata);
2369         case 0xcd: /* fsb frequency */
2370                 data = 3;
2371                 break;
2372                 /*
2373                  * MSR_EBC_FREQUENCY_ID
2374                  * Conservative value valid for even the basic CPU models.
2375                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2376                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2377                  * and 266MHz for model 3, or 4. Set Core Clock
2378                  * Frequency to System Bus Frequency Ratio to 1 (bits
2379                  * 31:24) even though these are only valid for CPU
2380                  * models > 2, however guests may end up dividing or
2381                  * multiplying by zero otherwise.
2382                  */
2383         case MSR_EBC_FREQUENCY_ID:
2384                 data = 1 << 24;
2385                 break;
2386         case MSR_IA32_APICBASE:
2387                 data = kvm_get_apic_base(vcpu);
2388                 break;
2389         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2390                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2391                 break;
2392         case MSR_IA32_TSCDEADLINE:
2393                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2394                 break;
2395         case MSR_IA32_TSC_ADJUST:
2396                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2397                 break;
2398         case MSR_IA32_MISC_ENABLE:
2399                 data = vcpu->arch.ia32_misc_enable_msr;
2400                 break;
2401         case MSR_IA32_PERF_STATUS:
2402                 /* TSC increment by tick */
2403                 data = 1000ULL;
2404                 /* CPU multiplier */
2405                 data |= (((uint64_t)4ULL) << 40);
2406                 break;
2407         case MSR_EFER:
2408                 data = vcpu->arch.efer;
2409                 break;
2410         case MSR_KVM_WALL_CLOCK:
2411         case MSR_KVM_WALL_CLOCK_NEW:
2412                 data = vcpu->kvm->arch.wall_clock;
2413                 break;
2414         case MSR_KVM_SYSTEM_TIME:
2415         case MSR_KVM_SYSTEM_TIME_NEW:
2416                 data = vcpu->arch.time;
2417                 break;
2418         case MSR_KVM_ASYNC_PF_EN:
2419                 data = vcpu->arch.apf.msr_val;
2420                 break;
2421         case MSR_KVM_STEAL_TIME:
2422                 data = vcpu->arch.st.msr_val;
2423                 break;
2424         case MSR_KVM_PV_EOI_EN:
2425                 data = vcpu->arch.pv_eoi.msr_val;
2426                 break;
2427         case MSR_IA32_P5_MC_ADDR:
2428         case MSR_IA32_P5_MC_TYPE:
2429         case MSR_IA32_MCG_CAP:
2430         case MSR_IA32_MCG_CTL:
2431         case MSR_IA32_MCG_STATUS:
2432         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2433                 return get_msr_mce(vcpu, msr, pdata);
2434         case MSR_K7_CLK_CTL:
2435                 /*
2436                  * Provide expected ramp-up count for K7. All other
2437                  * are set to zero, indicating minimum divisors for
2438                  * every field.
2439                  *
2440                  * This prevents guest kernels on AMD host with CPU
2441                  * type 6, model 8 and higher from exploding due to
2442                  * the rdmsr failing.
2443                  */
2444                 data = 0x20000000;
2445                 break;
2446         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2447                 if (kvm_hv_msr_partition_wide(msr)) {
2448                         int r;
2449                         mutex_lock(&vcpu->kvm->lock);
2450                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2451                         mutex_unlock(&vcpu->kvm->lock);
2452                         return r;
2453                 } else
2454                         return get_msr_hyperv(vcpu, msr, pdata);
2455                 break;
2456         case MSR_IA32_BBL_CR_CTL3:
2457                 /* This legacy MSR exists but isn't fully documented in current
2458                  * silicon.  It is however accessed by winxp in very narrow
2459                  * scenarios where it sets bit #19, itself documented as
2460                  * a "reserved" bit.  Best effort attempt to source coherent
2461                  * read data here should the balance of the register be
2462                  * interpreted by the guest:
2463                  *
2464                  * L2 cache control register 3: 64GB range, 256KB size,
2465                  * enabled, latency 0x1, configured
2466                  */
2467                 data = 0xbe702111;
2468                 break;
2469         case MSR_AMD64_OSVW_ID_LENGTH:
2470                 if (!guest_cpuid_has_osvw(vcpu))
2471                         return 1;
2472                 data = vcpu->arch.osvw.length;
2473                 break;
2474         case MSR_AMD64_OSVW_STATUS:
2475                 if (!guest_cpuid_has_osvw(vcpu))
2476                         return 1;
2477                 data = vcpu->arch.osvw.status;
2478                 break;
2479         default:
2480                 if (kvm_pmu_msr(vcpu, msr))
2481                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2482                 if (!ignore_msrs) {
2483                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2484                         return 1;
2485                 } else {
2486                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2487                         data = 0;
2488                 }
2489                 break;
2490         }
2491         *pdata = data;
2492         return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2495
2496 /*
2497  * Read or write a bunch of msrs. All parameters are kernel addresses.
2498  *
2499  * @return number of msrs set successfully.
2500  */
2501 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2502                     struct kvm_msr_entry *entries,
2503                     int (*do_msr)(struct kvm_vcpu *vcpu,
2504                                   unsigned index, u64 *data))
2505 {
2506         int i, idx;
2507
2508         idx = srcu_read_lock(&vcpu->kvm->srcu);
2509         for (i = 0; i < msrs->nmsrs; ++i)
2510                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2511                         break;
2512         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2513
2514         return i;
2515 }
2516
2517 /*
2518  * Read or write a bunch of msrs. Parameters are user addresses.
2519  *
2520  * @return number of msrs set successfully.
2521  */
2522 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2523                   int (*do_msr)(struct kvm_vcpu *vcpu,
2524                                 unsigned index, u64 *data),
2525                   int writeback)
2526 {
2527         struct kvm_msrs msrs;
2528         struct kvm_msr_entry *entries;
2529         int r, n;
2530         unsigned size;
2531
2532         r = -EFAULT;
2533         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2534                 goto out;
2535
2536         r = -E2BIG;
2537         if (msrs.nmsrs >= MAX_IO_MSRS)
2538                 goto out;
2539
2540         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2541         entries = memdup_user(user_msrs->entries, size);
2542         if (IS_ERR(entries)) {
2543                 r = PTR_ERR(entries);
2544                 goto out;
2545         }
2546
2547         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2548         if (r < 0)
2549                 goto out_free;
2550
2551         r = -EFAULT;
2552         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2553                 goto out_free;
2554
2555         r = n;
2556
2557 out_free:
2558         kfree(entries);
2559 out:
2560         return r;
2561 }
2562
2563 int kvm_dev_ioctl_check_extension(long ext)
2564 {
2565         int r;
2566
2567         switch (ext) {
2568         case KVM_CAP_IRQCHIP:
2569         case KVM_CAP_HLT:
2570         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2571         case KVM_CAP_SET_TSS_ADDR:
2572         case KVM_CAP_EXT_CPUID:
2573         case KVM_CAP_EXT_EMUL_CPUID:
2574         case KVM_CAP_CLOCKSOURCE:
2575         case KVM_CAP_PIT:
2576         case KVM_CAP_NOP_IO_DELAY:
2577         case KVM_CAP_MP_STATE:
2578         case KVM_CAP_SYNC_MMU:
2579         case KVM_CAP_USER_NMI:
2580         case KVM_CAP_REINJECT_CONTROL:
2581         case KVM_CAP_IRQ_INJECT_STATUS:
2582         case KVM_CAP_IRQFD:
2583         case KVM_CAP_IOEVENTFD:
2584         case KVM_CAP_PIT2:
2585         case KVM_CAP_PIT_STATE2:
2586         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2587         case KVM_CAP_XEN_HVM:
2588         case KVM_CAP_ADJUST_CLOCK:
2589         case KVM_CAP_VCPU_EVENTS:
2590         case KVM_CAP_HYPERV:
2591         case KVM_CAP_HYPERV_VAPIC:
2592         case KVM_CAP_HYPERV_SPIN:
2593         case KVM_CAP_PCI_SEGMENT:
2594         case KVM_CAP_DEBUGREGS:
2595         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2596         case KVM_CAP_XSAVE:
2597         case KVM_CAP_ASYNC_PF:
2598         case KVM_CAP_GET_TSC_KHZ:
2599         case KVM_CAP_KVMCLOCK_CTRL:
2600         case KVM_CAP_READONLY_MEM:
2601 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2602         case KVM_CAP_ASSIGN_DEV_IRQ:
2603         case KVM_CAP_PCI_2_3:
2604         case KVM_CAP_HYPERV_TIME:
2605 #endif
2606                 r = 1;
2607                 break;
2608         case KVM_CAP_COALESCED_MMIO:
2609                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2610                 break;
2611         case KVM_CAP_VAPIC:
2612                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2613                 break;
2614         case KVM_CAP_NR_VCPUS:
2615                 r = KVM_SOFT_MAX_VCPUS;
2616                 break;
2617         case KVM_CAP_MAX_VCPUS:
2618                 r = KVM_MAX_VCPUS;
2619                 break;
2620         case KVM_CAP_NR_MEMSLOTS:
2621                 r = KVM_USER_MEM_SLOTS;
2622                 break;
2623         case KVM_CAP_PV_MMU:    /* obsolete */
2624                 r = 0;
2625                 break;
2626 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2627         case KVM_CAP_IOMMU:
2628                 r = iommu_present(&pci_bus_type);
2629                 break;
2630 #endif
2631         case KVM_CAP_MCE:
2632                 r = KVM_MAX_MCE_BANKS;
2633                 break;
2634         case KVM_CAP_XCRS:
2635                 r = cpu_has_xsave;
2636                 break;
2637         case KVM_CAP_TSC_CONTROL:
2638                 r = kvm_has_tsc_control;
2639                 break;
2640         case KVM_CAP_TSC_DEADLINE_TIMER:
2641                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2642                 break;
2643         default:
2644                 r = 0;
2645                 break;
2646         }
2647         return r;
2648
2649 }
2650
2651 long kvm_arch_dev_ioctl(struct file *filp,
2652                         unsigned int ioctl, unsigned long arg)
2653 {
2654         void __user *argp = (void __user *)arg;
2655         long r;
2656
2657         switch (ioctl) {
2658         case KVM_GET_MSR_INDEX_LIST: {
2659                 struct kvm_msr_list __user *user_msr_list = argp;
2660                 struct kvm_msr_list msr_list;
2661                 unsigned n;
2662
2663                 r = -EFAULT;
2664                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2665                         goto out;
2666                 n = msr_list.nmsrs;
2667                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2668                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2669                         goto out;
2670                 r = -E2BIG;
2671                 if (n < msr_list.nmsrs)
2672                         goto out;
2673                 r = -EFAULT;
2674                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2675                                  num_msrs_to_save * sizeof(u32)))
2676                         goto out;
2677                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2678                                  &emulated_msrs,
2679                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2680                         goto out;
2681                 r = 0;
2682                 break;
2683         }
2684         case KVM_GET_SUPPORTED_CPUID:
2685         case KVM_GET_EMULATED_CPUID: {
2686                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2687                 struct kvm_cpuid2 cpuid;
2688
2689                 r = -EFAULT;
2690                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2691                         goto out;
2692
2693                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2694                                             ioctl);
2695                 if (r)
2696                         goto out;
2697
2698                 r = -EFAULT;
2699                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2700                         goto out;
2701                 r = 0;
2702                 break;
2703         }
2704         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2705                 u64 mce_cap;
2706
2707                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2708                 r = -EFAULT;
2709                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2710                         goto out;
2711                 r = 0;
2712                 break;
2713         }
2714         default:
2715                 r = -EINVAL;
2716         }
2717 out:
2718         return r;
2719 }
2720
2721 static void wbinvd_ipi(void *garbage)
2722 {
2723         wbinvd();
2724 }
2725
2726 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2727 {
2728         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2729 }
2730
2731 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2732 {
2733         /* Address WBINVD may be executed by guest */
2734         if (need_emulate_wbinvd(vcpu)) {
2735                 if (kvm_x86_ops->has_wbinvd_exit())
2736                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2737                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2738                         smp_call_function_single(vcpu->cpu,
2739                                         wbinvd_ipi, NULL, 1);
2740         }
2741
2742         kvm_x86_ops->vcpu_load(vcpu, cpu);
2743
2744         /* Apply any externally detected TSC adjustments (due to suspend) */
2745         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2746                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2747                 vcpu->arch.tsc_offset_adjustment = 0;
2748                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2749         }
2750
2751         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2752                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2753                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2754                 if (tsc_delta < 0)
2755                         mark_tsc_unstable("KVM discovered backwards TSC");
2756                 if (check_tsc_unstable()) {
2757                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2758                                                 vcpu->arch.last_guest_tsc);
2759                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2760                         vcpu->arch.tsc_catchup = 1;
2761                 }
2762                 /*
2763                  * On a host with synchronized TSC, there is no need to update
2764                  * kvmclock on vcpu->cpu migration
2765                  */
2766                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2767                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2768                 if (vcpu->cpu != cpu)
2769                         kvm_migrate_timers(vcpu);
2770                 vcpu->cpu = cpu;
2771         }
2772
2773         accumulate_steal_time(vcpu);
2774         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2775 }
2776
2777 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2778 {
2779         kvm_x86_ops->vcpu_put(vcpu);
2780         kvm_put_guest_fpu(vcpu);
2781         vcpu->arch.last_host_tsc = native_read_tsc();
2782 }
2783
2784 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2785                                     struct kvm_lapic_state *s)
2786 {
2787         kvm_x86_ops->sync_pir_to_irr(vcpu);
2788         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2789
2790         return 0;
2791 }
2792
2793 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2794                                     struct kvm_lapic_state *s)
2795 {
2796         kvm_apic_post_state_restore(vcpu, s);
2797         update_cr8_intercept(vcpu);
2798
2799         return 0;
2800 }
2801
2802 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2803                                     struct kvm_interrupt *irq)
2804 {
2805         if (irq->irq >= KVM_NR_INTERRUPTS)
2806                 return -EINVAL;
2807         if (irqchip_in_kernel(vcpu->kvm))
2808                 return -ENXIO;
2809
2810         kvm_queue_interrupt(vcpu, irq->irq, false);
2811         kvm_make_request(KVM_REQ_EVENT, vcpu);
2812
2813         return 0;
2814 }
2815
2816 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2817 {
2818         kvm_inject_nmi(vcpu);
2819
2820         return 0;
2821 }
2822
2823 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2824                                            struct kvm_tpr_access_ctl *tac)
2825 {
2826         if (tac->flags)
2827                 return -EINVAL;
2828         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2829         return 0;
2830 }
2831
2832 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2833                                         u64 mcg_cap)
2834 {
2835         int r;
2836         unsigned bank_num = mcg_cap & 0xff, bank;
2837
2838         r = -EINVAL;
2839         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2840                 goto out;
2841         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2842                 goto out;
2843         r = 0;
2844         vcpu->arch.mcg_cap = mcg_cap;
2845         /* Init IA32_MCG_CTL to all 1s */
2846         if (mcg_cap & MCG_CTL_P)
2847                 vcpu->arch.mcg_ctl = ~(u64)0;
2848         /* Init IA32_MCi_CTL to all 1s */
2849         for (bank = 0; bank < bank_num; bank++)
2850                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2851 out:
2852         return r;
2853 }
2854
2855 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2856                                       struct kvm_x86_mce *mce)
2857 {
2858         u64 mcg_cap = vcpu->arch.mcg_cap;
2859         unsigned bank_num = mcg_cap & 0xff;
2860         u64 *banks = vcpu->arch.mce_banks;
2861
2862         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2863                 return -EINVAL;
2864         /*
2865          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2866          * reporting is disabled
2867          */
2868         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2869             vcpu->arch.mcg_ctl != ~(u64)0)
2870                 return 0;
2871         banks += 4 * mce->bank;
2872         /*
2873          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2874          * reporting is disabled for the bank
2875          */
2876         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2877                 return 0;
2878         if (mce->status & MCI_STATUS_UC) {
2879                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2880                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2881                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2882                         return 0;
2883                 }
2884                 if (banks[1] & MCI_STATUS_VAL)
2885                         mce->status |= MCI_STATUS_OVER;
2886                 banks[2] = mce->addr;
2887                 banks[3] = mce->misc;
2888                 vcpu->arch.mcg_status = mce->mcg_status;
2889                 banks[1] = mce->status;
2890                 kvm_queue_exception(vcpu, MC_VECTOR);
2891         } else if (!(banks[1] & MCI_STATUS_VAL)
2892                    || !(banks[1] & MCI_STATUS_UC)) {
2893                 if (banks[1] & MCI_STATUS_VAL)
2894                         mce->status |= MCI_STATUS_OVER;
2895                 banks[2] = mce->addr;
2896                 banks[3] = mce->misc;
2897                 banks[1] = mce->status;
2898         } else
2899                 banks[1] |= MCI_STATUS_OVER;
2900         return 0;
2901 }
2902
2903 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2904                                                struct kvm_vcpu_events *events)
2905 {
2906         process_nmi(vcpu);
2907         events->exception.injected =
2908                 vcpu->arch.exception.pending &&
2909                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2910         events->exception.nr = vcpu->arch.exception.nr;
2911         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2912         events->exception.pad = 0;
2913         events->exception.error_code = vcpu->arch.exception.error_code;
2914
2915         events->interrupt.injected =
2916                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2917         events->interrupt.nr = vcpu->arch.interrupt.nr;
2918         events->interrupt.soft = 0;
2919         events->interrupt.shadow =
2920                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2921                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2922
2923         events->nmi.injected = vcpu->arch.nmi_injected;
2924         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2925         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2926         events->nmi.pad = 0;
2927
2928         events->sipi_vector = 0; /* never valid when reporting to user space */
2929
2930         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2931                          | KVM_VCPUEVENT_VALID_SHADOW);
2932         memset(&events->reserved, 0, sizeof(events->reserved));
2933 }
2934
2935 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2936                                               struct kvm_vcpu_events *events)
2937 {
2938         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2939                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2940                               | KVM_VCPUEVENT_VALID_SHADOW))
2941                 return -EINVAL;
2942
2943         process_nmi(vcpu);
2944         vcpu->arch.exception.pending = events->exception.injected;
2945         vcpu->arch.exception.nr = events->exception.nr;
2946         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2947         vcpu->arch.exception.error_code = events->exception.error_code;
2948
2949         vcpu->arch.interrupt.pending = events->interrupt.injected;
2950         vcpu->arch.interrupt.nr = events->interrupt.nr;
2951         vcpu->arch.interrupt.soft = events->interrupt.soft;
2952         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2953                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2954                                                   events->interrupt.shadow);
2955
2956         vcpu->arch.nmi_injected = events->nmi.injected;
2957         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2958                 vcpu->arch.nmi_pending = events->nmi.pending;
2959         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2960
2961         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2962             kvm_vcpu_has_lapic(vcpu))
2963                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2964
2965         kvm_make_request(KVM_REQ_EVENT, vcpu);
2966
2967         return 0;
2968 }
2969
2970 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2971                                              struct kvm_debugregs *dbgregs)
2972 {
2973         unsigned long val;
2974
2975         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2976         _kvm_get_dr(vcpu, 6, &val);
2977         dbgregs->dr6 = val;
2978         dbgregs->dr7 = vcpu->arch.dr7;
2979         dbgregs->flags = 0;
2980         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2981 }
2982
2983 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2984                                             struct kvm_debugregs *dbgregs)
2985 {
2986         if (dbgregs->flags)
2987                 return -EINVAL;
2988
2989         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2990         vcpu->arch.dr6 = dbgregs->dr6;
2991         kvm_update_dr6(vcpu);
2992         vcpu->arch.dr7 = dbgregs->dr7;
2993         kvm_update_dr7(vcpu);
2994
2995         return 0;
2996 }
2997
2998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2999                                          struct kvm_xsave *guest_xsave)
3000 {
3001         if (cpu_has_xsave) {
3002                 memcpy(guest_xsave->region,
3003                         &vcpu->arch.guest_fpu.state->xsave,
3004                         vcpu->arch.guest_xstate_size);
3005                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3006                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3007         } else {
3008                 memcpy(guest_xsave->region,
3009                         &vcpu->arch.guest_fpu.state->fxsave,
3010                         sizeof(struct i387_fxsave_struct));
3011                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3012                         XSTATE_FPSSE;
3013         }
3014 }
3015
3016 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3017                                         struct kvm_xsave *guest_xsave)
3018 {
3019         u64 xstate_bv =
3020                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3021
3022         if (cpu_has_xsave) {
3023                 /*
3024                  * Here we allow setting states that are not present in
3025                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3026                  * with old userspace.
3027                  */
3028                 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3029                         return -EINVAL;
3030                 if (xstate_bv & ~host_xcr0)
3031                         return -EINVAL;
3032                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3033                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3034         } else {
3035                 if (xstate_bv & ~XSTATE_FPSSE)
3036                         return -EINVAL;
3037                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3038                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3039         }
3040         return 0;
3041 }
3042
3043 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3044                                         struct kvm_xcrs *guest_xcrs)
3045 {
3046         if (!cpu_has_xsave) {
3047                 guest_xcrs->nr_xcrs = 0;
3048                 return;
3049         }
3050
3051         guest_xcrs->nr_xcrs = 1;
3052         guest_xcrs->flags = 0;
3053         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3054         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3055 }
3056
3057 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3058                                        struct kvm_xcrs *guest_xcrs)
3059 {
3060         int i, r = 0;
3061
3062         if (!cpu_has_xsave)
3063                 return -EINVAL;
3064
3065         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3066                 return -EINVAL;
3067
3068         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3069                 /* Only support XCR0 currently */
3070                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3071                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3072                                 guest_xcrs->xcrs[i].value);
3073                         break;
3074                 }
3075         if (r)
3076                 r = -EINVAL;
3077         return r;
3078 }
3079
3080 /*
3081  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3082  * stopped by the hypervisor.  This function will be called from the host only.
3083  * EINVAL is returned when the host attempts to set the flag for a guest that
3084  * does not support pv clocks.
3085  */
3086 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3087 {
3088         if (!vcpu->arch.pv_time_enabled)
3089                 return -EINVAL;
3090         vcpu->arch.pvclock_set_guest_stopped_request = true;
3091         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3092         return 0;
3093 }
3094
3095 long kvm_arch_vcpu_ioctl(struct file *filp,
3096                          unsigned int ioctl, unsigned long arg)
3097 {
3098         struct kvm_vcpu *vcpu = filp->private_data;
3099         void __user *argp = (void __user *)arg;
3100         int r;
3101         union {
3102                 struct kvm_lapic_state *lapic;
3103                 struct kvm_xsave *xsave;
3104                 struct kvm_xcrs *xcrs;
3105                 void *buffer;
3106         } u;
3107
3108         u.buffer = NULL;
3109         switch (ioctl) {
3110         case KVM_GET_LAPIC: {
3111                 r = -EINVAL;
3112                 if (!vcpu->arch.apic)
3113                         goto out;
3114                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3115
3116                 r = -ENOMEM;
3117                 if (!u.lapic)
3118                         goto out;
3119                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3120                 if (r)
3121                         goto out;
3122                 r = -EFAULT;
3123                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3124                         goto out;
3125                 r = 0;
3126                 break;
3127         }
3128         case KVM_SET_LAPIC: {
3129                 r = -EINVAL;
3130                 if (!vcpu->arch.apic)
3131                         goto out;
3132                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3133                 if (IS_ERR(u.lapic))
3134                         return PTR_ERR(u.lapic);
3135
3136                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3137                 break;
3138         }
3139         case KVM_INTERRUPT: {
3140                 struct kvm_interrupt irq;
3141
3142                 r = -EFAULT;
3143                 if (copy_from_user(&irq, argp, sizeof irq))
3144                         goto out;
3145                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3146                 break;
3147         }
3148         case KVM_NMI: {
3149                 r = kvm_vcpu_ioctl_nmi(vcpu);
3150                 break;
3151         }
3152         case KVM_SET_CPUID: {
3153                 struct kvm_cpuid __user *cpuid_arg = argp;
3154                 struct kvm_cpuid cpuid;
3155
3156                 r = -EFAULT;
3157                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3158                         goto out;
3159                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3160                 break;
3161         }
3162         case KVM_SET_CPUID2: {
3163                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3164                 struct kvm_cpuid2 cpuid;
3165
3166                 r = -EFAULT;
3167                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3168                         goto out;
3169                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3170                                               cpuid_arg->entries);
3171                 break;
3172         }
3173         case KVM_GET_CPUID2: {
3174                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3175                 struct kvm_cpuid2 cpuid;
3176
3177                 r = -EFAULT;
3178                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3179                         goto out;
3180                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3181                                               cpuid_arg->entries);
3182                 if (r)
3183                         goto out;
3184                 r = -EFAULT;
3185                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3186                         goto out;
3187                 r = 0;
3188                 break;
3189         }
3190         case KVM_GET_MSRS:
3191                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3192                 break;
3193         case KVM_SET_MSRS:
3194                 r = msr_io(vcpu, argp, do_set_msr, 0);
3195                 break;
3196         case KVM_TPR_ACCESS_REPORTING: {
3197                 struct kvm_tpr_access_ctl tac;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&tac, argp, sizeof tac))
3201                         goto out;
3202                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3203                 if (r)
3204                         goto out;
3205                 r = -EFAULT;
3206                 if (copy_to_user(argp, &tac, sizeof tac))
3207                         goto out;
3208                 r = 0;
3209                 break;
3210         };
3211         case KVM_SET_VAPIC_ADDR: {
3212                 struct kvm_vapic_addr va;
3213
3214                 r = -EINVAL;
3215                 if (!irqchip_in_kernel(vcpu->kvm))
3216                         goto out;
3217                 r = -EFAULT;
3218                 if (copy_from_user(&va, argp, sizeof va))
3219                         goto out;
3220                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3221                 break;
3222         }
3223         case KVM_X86_SETUP_MCE: {
3224                 u64 mcg_cap;
3225
3226                 r = -EFAULT;
3227                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3228                         goto out;
3229                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3230                 break;
3231         }
3232         case KVM_X86_SET_MCE: {
3233                 struct kvm_x86_mce mce;
3234
3235                 r = -EFAULT;
3236                 if (copy_from_user(&mce, argp, sizeof mce))
3237                         goto out;
3238                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3239                 break;
3240         }
3241         case KVM_GET_VCPU_EVENTS: {
3242                 struct kvm_vcpu_events events;
3243
3244                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3245
3246                 r = -EFAULT;
3247                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3248                         break;
3249                 r = 0;
3250                 break;
3251         }
3252         case KVM_SET_VCPU_EVENTS: {
3253                 struct kvm_vcpu_events events;
3254
3255                 r = -EFAULT;
3256                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3257                         break;
3258
3259                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3260                 break;
3261         }
3262         case KVM_GET_DEBUGREGS: {
3263                 struct kvm_debugregs dbgregs;
3264
3265                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3266
3267                 r = -EFAULT;
3268                 if (copy_to_user(argp, &dbgregs,
3269                                  sizeof(struct kvm_debugregs)))
3270                         break;
3271                 r = 0;
3272                 break;
3273         }
3274         case KVM_SET_DEBUGREGS: {
3275                 struct kvm_debugregs dbgregs;
3276
3277                 r = -EFAULT;
3278                 if (copy_from_user(&dbgregs, argp,
3279                                    sizeof(struct kvm_debugregs)))
3280                         break;
3281
3282                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3283                 break;
3284         }
3285         case KVM_GET_XSAVE: {
3286                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3287                 r = -ENOMEM;
3288                 if (!u.xsave)
3289                         break;
3290
3291                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3292
3293                 r = -EFAULT;
3294                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3295                         break;
3296                 r = 0;
3297                 break;
3298         }
3299         case KVM_SET_XSAVE: {
3300                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3301                 if (IS_ERR(u.xsave))
3302                         return PTR_ERR(u.xsave);
3303
3304                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3305                 break;
3306         }
3307         case KVM_GET_XCRS: {
3308                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3309                 r = -ENOMEM;
3310                 if (!u.xcrs)
3311                         break;
3312
3313                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3314
3315                 r = -EFAULT;
3316                 if (copy_to_user(argp, u.xcrs,
3317                                  sizeof(struct kvm_xcrs)))
3318                         break;
3319                 r = 0;
3320                 break;
3321         }
3322         case KVM_SET_XCRS: {
3323                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3324                 if (IS_ERR(u.xcrs))
3325                         return PTR_ERR(u.xcrs);
3326
3327                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3328                 break;
3329         }
3330         case KVM_SET_TSC_KHZ: {
3331                 u32 user_tsc_khz;
3332
3333                 r = -EINVAL;
3334                 user_tsc_khz = (u32)arg;
3335
3336                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3337                         goto out;
3338
3339                 if (user_tsc_khz == 0)
3340                         user_tsc_khz = tsc_khz;
3341
3342                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3343
3344                 r = 0;
3345                 goto out;
3346         }
3347         case KVM_GET_TSC_KHZ: {
3348                 r = vcpu->arch.virtual_tsc_khz;
3349                 goto out;
3350         }
3351         case KVM_KVMCLOCK_CTRL: {
3352                 r = kvm_set_guest_paused(vcpu);
3353                 goto out;
3354         }
3355         default:
3356                 r = -EINVAL;
3357         }
3358 out:
3359         kfree(u.buffer);
3360         return r;
3361 }
3362
3363 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3364 {
3365         return VM_FAULT_SIGBUS;
3366 }
3367
3368 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3369 {
3370         int ret;
3371
3372         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3373                 return -EINVAL;
3374         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3375         return ret;
3376 }
3377
3378 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3379                                               u64 ident_addr)
3380 {
3381         kvm->arch.ept_identity_map_addr = ident_addr;
3382         return 0;
3383 }
3384
3385 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3386                                           u32 kvm_nr_mmu_pages)
3387 {
3388         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3389                 return -EINVAL;
3390
3391         mutex_lock(&kvm->slots_lock);
3392
3393         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3394         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3395
3396         mutex_unlock(&kvm->slots_lock);
3397         return 0;
3398 }
3399
3400 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3401 {
3402         return kvm->arch.n_max_mmu_pages;
3403 }
3404
3405 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3406 {
3407         int r;
3408
3409         r = 0;
3410         switch (chip->chip_id) {
3411         case KVM_IRQCHIP_PIC_MASTER:
3412                 memcpy(&chip->chip.pic,
3413                         &pic_irqchip(kvm)->pics[0],
3414                         sizeof(struct kvm_pic_state));
3415                 break;
3416         case KVM_IRQCHIP_PIC_SLAVE:
3417                 memcpy(&chip->chip.pic,
3418                         &pic_irqchip(kvm)->pics[1],
3419                         sizeof(struct kvm_pic_state));
3420                 break;
3421         case KVM_IRQCHIP_IOAPIC:
3422                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3423                 break;
3424         default:
3425                 r = -EINVAL;
3426                 break;
3427         }
3428         return r;
3429 }
3430
3431 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3432 {
3433         int r;
3434
3435         r = 0;
3436         switch (chip->chip_id) {
3437         case KVM_IRQCHIP_PIC_MASTER:
3438                 spin_lock(&pic_irqchip(kvm)->lock);
3439                 memcpy(&pic_irqchip(kvm)->pics[0],
3440                         &chip->chip.pic,
3441                         sizeof(struct kvm_pic_state));
3442                 spin_unlock(&pic_irqchip(kvm)->lock);
3443                 break;
3444         case KVM_IRQCHIP_PIC_SLAVE:
3445                 spin_lock(&pic_irqchip(kvm)->lock);
3446                 memcpy(&pic_irqchip(kvm)->pics[1],
3447                         &chip->chip.pic,
3448                         sizeof(struct kvm_pic_state));
3449                 spin_unlock(&pic_irqchip(kvm)->lock);
3450                 break;
3451         case KVM_IRQCHIP_IOAPIC:
3452                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3453                 break;
3454         default:
3455                 r = -EINVAL;
3456                 break;
3457         }
3458         kvm_pic_update_irq(pic_irqchip(kvm));
3459         return r;
3460 }
3461
3462 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3463 {
3464         int r = 0;
3465
3466         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3467         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3468         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3469         return r;
3470 }
3471
3472 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3473 {
3474         int r = 0;
3475
3476         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3478         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3479         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3480         return r;
3481 }
3482
3483 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3484 {
3485         int r = 0;
3486
3487         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3488         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3489                 sizeof(ps->channels));
3490         ps->flags = kvm->arch.vpit->pit_state.flags;
3491         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3492         memset(&ps->reserved, 0, sizeof(ps->reserved));
3493         return r;
3494 }
3495
3496 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3497 {
3498         int r = 0, start = 0;
3499         u32 prev_legacy, cur_legacy;
3500         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3501         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3502         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3503         if (!prev_legacy && cur_legacy)
3504                 start = 1;
3505         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3506                sizeof(kvm->arch.vpit->pit_state.channels));
3507         kvm->arch.vpit->pit_state.flags = ps->flags;
3508         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3509         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3510         return r;
3511 }
3512
3513 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3514                                  struct kvm_reinject_control *control)
3515 {
3516         if (!kvm->arch.vpit)
3517                 return -ENXIO;
3518         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3519         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3520         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3521         return 0;
3522 }
3523
3524 /**
3525  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3526  * @kvm: kvm instance
3527  * @log: slot id and address to which we copy the log
3528  *
3529  * We need to keep it in mind that VCPU threads can write to the bitmap
3530  * concurrently.  So, to avoid losing data, we keep the following order for
3531  * each bit:
3532  *
3533  *   1. Take a snapshot of the bit and clear it if needed.
3534  *   2. Write protect the corresponding page.
3535  *   3. Flush TLB's if needed.
3536  *   4. Copy the snapshot to the userspace.
3537  *
3538  * Between 2 and 3, the guest may write to the page using the remaining TLB
3539  * entry.  This is not a problem because the page will be reported dirty at
3540  * step 4 using the snapshot taken before and step 3 ensures that successive
3541  * writes will be logged for the next call.
3542  */
3543 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3544 {
3545         int r;
3546         struct kvm_memory_slot *memslot;
3547         unsigned long n, i;
3548         unsigned long *dirty_bitmap;
3549         unsigned long *dirty_bitmap_buffer;
3550         bool is_dirty = false;
3551
3552         mutex_lock(&kvm->slots_lock);
3553
3554         r = -EINVAL;
3555         if (log->slot >= KVM_USER_MEM_SLOTS)
3556                 goto out;
3557
3558         memslot = id_to_memslot(kvm->memslots, log->slot);
3559
3560         dirty_bitmap = memslot->dirty_bitmap;
3561         r = -ENOENT;
3562         if (!dirty_bitmap)
3563                 goto out;
3564
3565         n = kvm_dirty_bitmap_bytes(memslot);
3566
3567         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3568         memset(dirty_bitmap_buffer, 0, n);
3569
3570         spin_lock(&kvm->mmu_lock);
3571
3572         for (i = 0; i < n / sizeof(long); i++) {
3573                 unsigned long mask;
3574                 gfn_t offset;
3575
3576                 if (!dirty_bitmap[i])
3577                         continue;
3578
3579                 is_dirty = true;
3580
3581                 mask = xchg(&dirty_bitmap[i], 0);
3582                 dirty_bitmap_buffer[i] = mask;
3583
3584                 offset = i * BITS_PER_LONG;
3585                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3586         }
3587         if (is_dirty)
3588                 kvm_flush_remote_tlbs(kvm);
3589
3590         spin_unlock(&kvm->mmu_lock);
3591
3592         r = -EFAULT;
3593         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3594                 goto out;
3595
3596         r = 0;
3597 out:
3598         mutex_unlock(&kvm->slots_lock);
3599         return r;
3600 }
3601
3602 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3603                         bool line_status)
3604 {
3605         if (!irqchip_in_kernel(kvm))
3606                 return -ENXIO;
3607
3608         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3609                                         irq_event->irq, irq_event->level,
3610                                         line_status);
3611         return 0;
3612 }
3613
3614 long kvm_arch_vm_ioctl(struct file *filp,
3615                        unsigned int ioctl, unsigned long arg)
3616 {
3617         struct kvm *kvm = filp->private_data;
3618         void __user *argp = (void __user *)arg;
3619         int r = -ENOTTY;
3620         /*
3621          * This union makes it completely explicit to gcc-3.x
3622          * that these two variables' stack usage should be
3623          * combined, not added together.
3624          */
3625         union {
3626                 struct kvm_pit_state ps;
3627                 struct kvm_pit_state2 ps2;
3628                 struct kvm_pit_config pit_config;
3629         } u;
3630
3631         switch (ioctl) {
3632         case KVM_SET_TSS_ADDR:
3633                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3634                 break;
3635         case KVM_SET_IDENTITY_MAP_ADDR: {
3636                 u64 ident_addr;
3637
3638                 r = -EFAULT;
3639                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3640                         goto out;
3641                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3642                 break;
3643         }
3644         case KVM_SET_NR_MMU_PAGES:
3645                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3646                 break;
3647         case KVM_GET_NR_MMU_PAGES:
3648                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3649                 break;
3650         case KVM_CREATE_IRQCHIP: {
3651                 struct kvm_pic *vpic;
3652
3653                 mutex_lock(&kvm->lock);
3654                 r = -EEXIST;
3655                 if (kvm->arch.vpic)
3656                         goto create_irqchip_unlock;
3657                 r = -EINVAL;
3658                 if (atomic_read(&kvm->online_vcpus))
3659                         goto create_irqchip_unlock;
3660                 r = -ENOMEM;
3661                 vpic = kvm_create_pic(kvm);
3662                 if (vpic) {
3663                         r = kvm_ioapic_init(kvm);
3664                         if (r) {
3665                                 mutex_lock(&kvm->slots_lock);
3666                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3667                                                           &vpic->dev_master);
3668                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3669                                                           &vpic->dev_slave);
3670                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3671                                                           &vpic->dev_eclr);
3672                                 mutex_unlock(&kvm->slots_lock);
3673                                 kfree(vpic);
3674                                 goto create_irqchip_unlock;
3675                         }
3676                 } else
3677                         goto create_irqchip_unlock;
3678                 smp_wmb();
3679                 kvm->arch.vpic = vpic;
3680                 smp_wmb();
3681                 r = kvm_setup_default_irq_routing(kvm);
3682                 if (r) {
3683                         mutex_lock(&kvm->slots_lock);
3684                         mutex_lock(&kvm->irq_lock);
3685                         kvm_ioapic_destroy(kvm);
3686                         kvm_destroy_pic(kvm);
3687                         mutex_unlock(&kvm->irq_lock);
3688                         mutex_unlock(&kvm->slots_lock);
3689                 }
3690         create_irqchip_unlock:
3691                 mutex_unlock(&kvm->lock);
3692                 break;
3693         }
3694         case KVM_CREATE_PIT:
3695                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3696                 goto create_pit;
3697         case KVM_CREATE_PIT2:
3698                 r = -EFAULT;
3699                 if (copy_from_user(&u.pit_config, argp,
3700                                    sizeof(struct kvm_pit_config)))
3701                         goto out;
3702         create_pit:
3703                 mutex_lock(&kvm->slots_lock);
3704                 r = -EEXIST;
3705                 if (kvm->arch.vpit)
3706                         goto create_pit_unlock;
3707                 r = -ENOMEM;
3708                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3709                 if (kvm->arch.vpit)
3710                         r = 0;
3711         create_pit_unlock:
3712                 mutex_unlock(&kvm->slots_lock);
3713                 break;
3714         case KVM_GET_IRQCHIP: {
3715                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3716                 struct kvm_irqchip *chip;
3717
3718                 chip = memdup_user(argp, sizeof(*chip));
3719                 if (IS_ERR(chip)) {
3720                         r = PTR_ERR(chip);
3721                         goto out;
3722                 }
3723
3724                 r = -ENXIO;
3725                 if (!irqchip_in_kernel(kvm))
3726                         goto get_irqchip_out;
3727                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3728                 if (r)
3729                         goto get_irqchip_out;
3730                 r = -EFAULT;
3731                 if (copy_to_user(argp, chip, sizeof *chip))
3732                         goto get_irqchip_out;
3733                 r = 0;
3734         get_irqchip_out:
3735                 kfree(chip);
3736                 break;
3737         }
3738         case KVM_SET_IRQCHIP: {
3739                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3740                 struct kvm_irqchip *chip;
3741
3742                 chip = memdup_user(argp, sizeof(*chip));
3743                 if (IS_ERR(chip)) {
3744                         r = PTR_ERR(chip);
3745                         goto out;
3746                 }
3747
3748                 r = -ENXIO;
3749                 if (!irqchip_in_kernel(kvm))
3750                         goto set_irqchip_out;
3751                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3752                 if (r)
3753                         goto set_irqchip_out;
3754                 r = 0;
3755         set_irqchip_out:
3756                 kfree(chip);
3757                 break;
3758         }
3759         case KVM_GET_PIT: {
3760                 r = -EFAULT;
3761                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3762                         goto out;
3763                 r = -ENXIO;
3764                 if (!kvm->arch.vpit)
3765                         goto out;
3766                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3767                 if (r)
3768                         goto out;
3769                 r = -EFAULT;
3770                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3771                         goto out;
3772                 r = 0;
3773                 break;
3774         }
3775         case KVM_SET_PIT: {
3776                 r = -EFAULT;
3777                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3778                         goto out;
3779                 r = -ENXIO;
3780                 if (!kvm->arch.vpit)
3781                         goto out;
3782                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3783                 break;
3784         }
3785         case KVM_GET_PIT2: {
3786                 r = -ENXIO;
3787                 if (!kvm->arch.vpit)
3788                         goto out;
3789                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3790                 if (r)
3791                         goto out;
3792                 r = -EFAULT;
3793                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3794                         goto out;
3795                 r = 0;
3796                 break;
3797         }
3798         case KVM_SET_PIT2: {
3799                 r = -EFAULT;
3800                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3801                         goto out;
3802                 r = -ENXIO;
3803                 if (!kvm->arch.vpit)
3804                         goto out;
3805                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3806                 break;
3807         }
3808         case KVM_REINJECT_CONTROL: {
3809                 struct kvm_reinject_control control;
3810                 r =  -EFAULT;
3811                 if (copy_from_user(&control, argp, sizeof(control)))
3812                         goto out;
3813                 r = kvm_vm_ioctl_reinject(kvm, &control);
3814                 break;
3815         }
3816         case KVM_XEN_HVM_CONFIG: {
3817                 r = -EFAULT;
3818                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3819                                    sizeof(struct kvm_xen_hvm_config)))
3820                         goto out;
3821                 r = -EINVAL;
3822                 if (kvm->arch.xen_hvm_config.flags)
3823                         goto out;
3824                 r = 0;
3825                 break;
3826         }
3827         case KVM_SET_CLOCK: {
3828                 struct kvm_clock_data user_ns;
3829                 u64 now_ns;
3830                 s64 delta;
3831
3832                 r = -EFAULT;
3833                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3834                         goto out;
3835
3836                 r = -EINVAL;
3837                 if (user_ns.flags)
3838                         goto out;
3839
3840                 r = 0;
3841                 local_irq_disable();
3842                 now_ns = get_kernel_ns();
3843                 delta = user_ns.clock - now_ns;
3844                 local_irq_enable();
3845                 kvm->arch.kvmclock_offset = delta;
3846                 kvm_gen_update_masterclock(kvm);
3847                 break;
3848         }
3849         case KVM_GET_CLOCK: {
3850                 struct kvm_clock_data user_ns;
3851                 u64 now_ns;
3852
3853                 local_irq_disable();
3854                 now_ns = get_kernel_ns();
3855                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3856                 local_irq_enable();
3857                 user_ns.flags = 0;
3858                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3859
3860                 r = -EFAULT;
3861                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3862                         goto out;
3863                 r = 0;
3864                 break;
3865         }
3866
3867         default:
3868                 ;
3869         }
3870 out:
3871         return r;
3872 }
3873
3874 static void kvm_init_msr_list(void)
3875 {
3876         u32 dummy[2];
3877         unsigned i, j;
3878
3879         /* skip the first msrs in the list. KVM-specific */
3880         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3881                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3882                         continue;
3883                 if (j < i)
3884                         msrs_to_save[j] = msrs_to_save[i];
3885                 j++;
3886         }
3887         num_msrs_to_save = j;
3888 }
3889
3890 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3891                            const void *v)
3892 {
3893         int handled = 0;
3894         int n;
3895
3896         do {
3897                 n = min(len, 8);
3898                 if (!(vcpu->arch.apic &&
3899                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3900                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3901                         break;
3902                 handled += n;
3903                 addr += n;
3904                 len -= n;
3905                 v += n;
3906         } while (len);
3907
3908         return handled;
3909 }
3910
3911 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3912 {
3913         int handled = 0;
3914         int n;
3915
3916         do {
3917                 n = min(len, 8);
3918                 if (!(vcpu->arch.apic &&
3919                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3920                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3921                         break;
3922                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3923                 handled += n;
3924                 addr += n;
3925                 len -= n;
3926                 v += n;
3927         } while (len);
3928
3929         return handled;
3930 }
3931
3932 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3933                         struct kvm_segment *var, int seg)
3934 {
3935         kvm_x86_ops->set_segment(vcpu, var, seg);
3936 }
3937
3938 void kvm_get_segment(struct kvm_vcpu *vcpu,
3939                      struct kvm_segment *var, int seg)
3940 {
3941         kvm_x86_ops->get_segment(vcpu, var, seg);
3942 }
3943
3944 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3945 {
3946         gpa_t t_gpa;
3947         struct x86_exception exception;
3948
3949         BUG_ON(!mmu_is_nested(vcpu));
3950
3951         /* NPT walks are always user-walks */
3952         access |= PFERR_USER_MASK;
3953         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3954
3955         return t_gpa;
3956 }
3957
3958 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3959                               struct x86_exception *exception)
3960 {
3961         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3962         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3963 }
3964
3965  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3966                                 struct x86_exception *exception)
3967 {
3968         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3969         access |= PFERR_FETCH_MASK;
3970         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3971 }
3972
3973 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3974                                struct x86_exception *exception)
3975 {
3976         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3977         access |= PFERR_WRITE_MASK;
3978         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3979 }
3980
3981 /* uses this to access any guest's mapped memory without checking CPL */
3982 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3983                                 struct x86_exception *exception)
3984 {
3985         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3986 }
3987
3988 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3989                                       struct kvm_vcpu *vcpu, u32 access,
3990                                       struct x86_exception *exception)
3991 {
3992         void *data = val;
3993         int r = X86EMUL_CONTINUE;
3994
3995         while (bytes) {
3996                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3997                                                             exception);
3998                 unsigned offset = addr & (PAGE_SIZE-1);
3999                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4000                 int ret;
4001
4002                 if (gpa == UNMAPPED_GVA)
4003                         return X86EMUL_PROPAGATE_FAULT;
4004                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4005                 if (ret < 0) {
4006                         r = X86EMUL_IO_NEEDED;
4007                         goto out;
4008                 }
4009
4010                 bytes -= toread;
4011                 data += toread;
4012                 addr += toread;
4013         }
4014 out:
4015         return r;
4016 }
4017
4018 /* used for instruction fetching */
4019 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4020                                 gva_t addr, void *val, unsigned int bytes,
4021                                 struct x86_exception *exception)
4022 {
4023         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4024         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4025
4026         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4027                                           access | PFERR_FETCH_MASK,
4028                                           exception);
4029 }
4030
4031 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4032                                gva_t addr, void *val, unsigned int bytes,
4033                                struct x86_exception *exception)
4034 {
4035         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4036         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4037
4038         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4039                                           exception);
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4042
4043 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4044                                       gva_t addr, void *val, unsigned int bytes,
4045                                       struct x86_exception *exception)
4046 {
4047         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4048         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4049 }
4050
4051 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4052                                        gva_t addr, void *val,
4053                                        unsigned int bytes,
4054                                        struct x86_exception *exception)
4055 {
4056         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4057         void *data = val;
4058         int r = X86EMUL_CONTINUE;
4059
4060         while (bytes) {
4061                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4062                                                              PFERR_WRITE_MASK,
4063                                                              exception);
4064                 unsigned offset = addr & (PAGE_SIZE-1);
4065                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4066                 int ret;
4067
4068                 if (gpa == UNMAPPED_GVA)
4069                         return X86EMUL_PROPAGATE_FAULT;
4070                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4071                 if (ret < 0) {
4072                         r = X86EMUL_IO_NEEDED;
4073                         goto out;
4074                 }
4075
4076                 bytes -= towrite;
4077                 data += towrite;
4078                 addr += towrite;
4079         }
4080 out:
4081         return r;
4082 }
4083 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4084
4085 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4086                                 gpa_t *gpa, struct x86_exception *exception,
4087                                 bool write)
4088 {
4089         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4090                 | (write ? PFERR_WRITE_MASK : 0);
4091
4092         if (vcpu_match_mmio_gva(vcpu, gva)
4093             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4094                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4095                                         (gva & (PAGE_SIZE - 1));
4096                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4097                 return 1;
4098         }
4099
4100         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4101
4102         if (*gpa == UNMAPPED_GVA)
4103                 return -1;
4104
4105         /* For APIC access vmexit */
4106         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4107                 return 1;
4108
4109         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4110                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4111                 return 1;
4112         }
4113
4114         return 0;
4115 }
4116
4117 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4118                         const void *val, int bytes)
4119 {
4120         int ret;
4121
4122         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4123         if (ret < 0)
4124                 return 0;
4125         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4126         return 1;
4127 }
4128
4129 struct read_write_emulator_ops {
4130         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4131                                   int bytes);
4132         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4133                                   void *val, int bytes);
4134         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4135                                int bytes, void *val);
4136         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4137                                     void *val, int bytes);
4138         bool write;
4139 };
4140
4141 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4142 {
4143         if (vcpu->mmio_read_completed) {
4144                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4145                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4146                 vcpu->mmio_read_completed = 0;
4147                 return 1;
4148         }
4149
4150         return 0;
4151 }
4152
4153 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4154                         void *val, int bytes)
4155 {
4156         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4157 }
4158
4159 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4160                          void *val, int bytes)
4161 {
4162         return emulator_write_phys(vcpu, gpa, val, bytes);
4163 }
4164
4165 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4166 {
4167         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4168         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4169 }
4170
4171 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4172                           void *val, int bytes)
4173 {
4174         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4175         return X86EMUL_IO_NEEDED;
4176 }
4177
4178 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4179                            void *val, int bytes)
4180 {
4181         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4182
4183         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4184         return X86EMUL_CONTINUE;
4185 }
4186
4187 static const struct read_write_emulator_ops read_emultor = {
4188         .read_write_prepare = read_prepare,
4189         .read_write_emulate = read_emulate,
4190         .read_write_mmio = vcpu_mmio_read,
4191         .read_write_exit_mmio = read_exit_mmio,
4192 };
4193
4194 static const struct read_write_emulator_ops write_emultor = {
4195         .read_write_emulate = write_emulate,
4196         .read_write_mmio = write_mmio,
4197         .read_write_exit_mmio = write_exit_mmio,
4198         .write = true,
4199 };
4200
4201 static int emulator_read_write_onepage(unsigned long addr, void *val,
4202                                        unsigned int bytes,
4203                                        struct x86_exception *exception,
4204                                        struct kvm_vcpu *vcpu,
4205                                        const struct read_write_emulator_ops *ops)
4206 {
4207         gpa_t gpa;
4208         int handled, ret;
4209         bool write = ops->write;
4210         struct kvm_mmio_fragment *frag;
4211
4212         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4213
4214         if (ret < 0)
4215                 return X86EMUL_PROPAGATE_FAULT;
4216
4217         /* For APIC access vmexit */
4218         if (ret)
4219                 goto mmio;
4220
4221         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4222                 return X86EMUL_CONTINUE;
4223
4224 mmio:
4225         /*
4226          * Is this MMIO handled locally?
4227          */
4228         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4229         if (handled == bytes)
4230                 return X86EMUL_CONTINUE;
4231
4232         gpa += handled;
4233         bytes -= handled;
4234         val += handled;
4235
4236         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4237         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4238         frag->gpa = gpa;
4239         frag->data = val;
4240         frag->len = bytes;
4241         return X86EMUL_CONTINUE;
4242 }
4243
4244 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4245                         void *val, unsigned int bytes,
4246                         struct x86_exception *exception,
4247                         const struct read_write_emulator_ops *ops)
4248 {
4249         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250         gpa_t gpa;
4251         int rc;
4252
4253         if (ops->read_write_prepare &&
4254                   ops->read_write_prepare(vcpu, val, bytes))
4255                 return X86EMUL_CONTINUE;
4256
4257         vcpu->mmio_nr_fragments = 0;
4258
4259         /* Crossing a page boundary? */
4260         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4261                 int now;
4262
4263                 now = -addr & ~PAGE_MASK;
4264                 rc = emulator_read_write_onepage(addr, val, now, exception,
4265                                                  vcpu, ops);
4266
4267                 if (rc != X86EMUL_CONTINUE)
4268                         return rc;
4269                 addr += now;
4270                 val += now;
4271                 bytes -= now;
4272         }
4273
4274         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4275                                          vcpu, ops);
4276         if (rc != X86EMUL_CONTINUE)
4277                 return rc;
4278
4279         if (!vcpu->mmio_nr_fragments)
4280                 return rc;
4281
4282         gpa = vcpu->mmio_fragments[0].gpa;
4283
4284         vcpu->mmio_needed = 1;
4285         vcpu->mmio_cur_fragment = 0;
4286
4287         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4288         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4289         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4290         vcpu->run->mmio.phys_addr = gpa;
4291
4292         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4293 }
4294
4295 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4296                                   unsigned long addr,
4297                                   void *val,
4298                                   unsigned int bytes,
4299                                   struct x86_exception *exception)
4300 {
4301         return emulator_read_write(ctxt, addr, val, bytes,
4302                                    exception, &read_emultor);
4303 }
4304
4305 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4306                             unsigned long addr,
4307                             const void *val,
4308                             unsigned int bytes,
4309                             struct x86_exception *exception)
4310 {
4311         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4312                                    exception, &write_emultor);
4313 }
4314
4315 #define CMPXCHG_TYPE(t, ptr, old, new) \
4316         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4317
4318 #ifdef CONFIG_X86_64
4319 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4320 #else
4321 #  define CMPXCHG64(ptr, old, new) \
4322         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4323 #endif
4324
4325 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4326                                      unsigned long addr,
4327                                      const void *old,
4328                                      const void *new,
4329                                      unsigned int bytes,
4330                                      struct x86_exception *exception)
4331 {
4332         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4333         gpa_t gpa;
4334         struct page *page;
4335         char *kaddr;
4336         bool exchanged;
4337
4338         /* guests cmpxchg8b have to be emulated atomically */
4339         if (bytes > 8 || (bytes & (bytes - 1)))
4340                 goto emul_write;
4341
4342         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4343
4344         if (gpa == UNMAPPED_GVA ||
4345             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4346                 goto emul_write;
4347
4348         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4349                 goto emul_write;
4350
4351         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4352         if (is_error_page(page))
4353                 goto emul_write;
4354
4355         kaddr = kmap_atomic(page);
4356         kaddr += offset_in_page(gpa);
4357         switch (bytes) {
4358         case 1:
4359                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4360                 break;
4361         case 2:
4362                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4363                 break;
4364         case 4:
4365                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4366                 break;
4367         case 8:
4368                 exchanged = CMPXCHG64(kaddr, old, new);
4369                 break;
4370         default:
4371                 BUG();
4372         }
4373         kunmap_atomic(kaddr);
4374         kvm_release_page_dirty(page);
4375
4376         if (!exchanged)
4377                 return X86EMUL_CMPXCHG_FAILED;
4378
4379         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4380
4381         return X86EMUL_CONTINUE;
4382
4383 emul_write:
4384         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4385
4386         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4387 }
4388
4389 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4390 {
4391         /* TODO: String I/O for in kernel device */
4392         int r;
4393
4394         if (vcpu->arch.pio.in)
4395                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4396                                     vcpu->arch.pio.size, pd);
4397         else
4398                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4399                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4400                                      pd);
4401         return r;
4402 }
4403
4404 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4405                                unsigned short port, void *val,
4406                                unsigned int count, bool in)
4407 {
4408         trace_kvm_pio(!in, port, size, count);
4409
4410         vcpu->arch.pio.port = port;
4411         vcpu->arch.pio.in = in;
4412         vcpu->arch.pio.count  = count;
4413         vcpu->arch.pio.size = size;
4414
4415         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4416                 vcpu->arch.pio.count = 0;
4417                 return 1;
4418         }
4419
4420         vcpu->run->exit_reason = KVM_EXIT_IO;
4421         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4422         vcpu->run->io.size = size;
4423         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4424         vcpu->run->io.count = count;
4425         vcpu->run->io.port = port;
4426
4427         return 0;
4428 }
4429
4430 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4431                                     int size, unsigned short port, void *val,
4432                                     unsigned int count)
4433 {
4434         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435         int ret;
4436
4437         if (vcpu->arch.pio.count)
4438                 goto data_avail;
4439
4440         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4441         if (ret) {
4442 data_avail:
4443                 memcpy(val, vcpu->arch.pio_data, size * count);
4444                 vcpu->arch.pio.count = 0;
4445                 return 1;
4446         }
4447
4448         return 0;
4449 }
4450
4451 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4452                                      int size, unsigned short port,
4453                                      const void *val, unsigned int count)
4454 {
4455         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4456
4457         memcpy(vcpu->arch.pio_data, val, size * count);
4458         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4459 }
4460
4461 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4462 {
4463         return kvm_x86_ops->get_segment_base(vcpu, seg);
4464 }
4465
4466 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4467 {
4468         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4469 }
4470
4471 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4472 {
4473         if (!need_emulate_wbinvd(vcpu))
4474                 return X86EMUL_CONTINUE;
4475
4476         if (kvm_x86_ops->has_wbinvd_exit()) {
4477                 int cpu = get_cpu();
4478
4479                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4480                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4481                                 wbinvd_ipi, NULL, 1);
4482                 put_cpu();
4483                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4484         } else
4485                 wbinvd();
4486         return X86EMUL_CONTINUE;
4487 }
4488 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4489
4490 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4491 {
4492         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4493 }
4494
4495 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4496 {
4497         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4498 }
4499
4500 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4501 {
4502
4503         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4504 }
4505
4506 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4507 {
4508         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4509 }
4510
4511 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4512 {
4513         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4514         unsigned long value;
4515
4516         switch (cr) {
4517         case 0:
4518                 value = kvm_read_cr0(vcpu);
4519                 break;
4520         case 2:
4521                 value = vcpu->arch.cr2;
4522                 break;
4523         case 3:
4524                 value = kvm_read_cr3(vcpu);
4525                 break;
4526         case 4:
4527                 value = kvm_read_cr4(vcpu);
4528                 break;
4529         case 8:
4530                 value = kvm_get_cr8(vcpu);
4531                 break;
4532         default:
4533                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4534                 return 0;
4535         }
4536
4537         return value;
4538 }
4539
4540 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4541 {
4542         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4543         int res = 0;
4544
4545         switch (cr) {
4546         case 0:
4547                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4548                 break;
4549         case 2:
4550                 vcpu->arch.cr2 = val;
4551                 break;
4552         case 3:
4553                 res = kvm_set_cr3(vcpu, val);
4554                 break;
4555         case 4:
4556                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4557                 break;
4558         case 8:
4559                 res = kvm_set_cr8(vcpu, val);
4560                 break;
4561         default:
4562                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4563                 res = -1;
4564         }
4565
4566         return res;
4567 }
4568
4569 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4570 {
4571         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4572 }
4573
4574 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4575 {
4576         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4577 }
4578
4579 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4580 {
4581         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4582 }
4583
4584 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4585 {
4586         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4587 }
4588
4589 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4590 {
4591         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4592 }
4593
4594 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4595 {
4596         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4597 }
4598
4599 static unsigned long emulator_get_cached_segment_base(
4600         struct x86_emulate_ctxt *ctxt, int seg)
4601 {
4602         return get_segment_base(emul_to_vcpu(ctxt), seg);
4603 }
4604
4605 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4606                                  struct desc_struct *desc, u32 *base3,
4607                                  int seg)
4608 {
4609         struct kvm_segment var;
4610
4611         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4612         *selector = var.selector;
4613
4614         if (var.unusable) {
4615                 memset(desc, 0, sizeof(*desc));
4616                 return false;
4617         }
4618
4619         if (var.g)
4620                 var.limit >>= 12;
4621         set_desc_limit(desc, var.limit);
4622         set_desc_base(desc, (unsigned long)var.base);
4623 #ifdef CONFIG_X86_64
4624         if (base3)
4625                 *base3 = var.base >> 32;
4626 #endif
4627         desc->type = var.type;
4628         desc->s = var.s;
4629         desc->dpl = var.dpl;
4630         desc->p = var.present;
4631         desc->avl = var.avl;
4632         desc->l = var.l;
4633         desc->d = var.db;
4634         desc->g = var.g;
4635
4636         return true;
4637 }
4638
4639 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4640                                  struct desc_struct *desc, u32 base3,
4641                                  int seg)
4642 {
4643         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4644         struct kvm_segment var;
4645
4646         var.selector = selector;
4647         var.base = get_desc_base(desc);
4648 #ifdef CONFIG_X86_64
4649         var.base |= ((u64)base3) << 32;
4650 #endif
4651         var.limit = get_desc_limit(desc);
4652         if (desc->g)
4653                 var.limit = (var.limit << 12) | 0xfff;
4654         var.type = desc->type;
4655         var.present = desc->p;
4656         var.dpl = desc->dpl;
4657         var.db = desc->d;
4658         var.s = desc->s;
4659         var.l = desc->l;
4660         var.g = desc->g;
4661         var.avl = desc->avl;
4662         var.present = desc->p;
4663         var.unusable = !var.present;
4664         var.padding = 0;
4665
4666         kvm_set_segment(vcpu, &var, seg);
4667         return;
4668 }
4669
4670 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4671                             u32 msr_index, u64 *pdata)
4672 {
4673         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4674 }
4675
4676 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4677                             u32 msr_index, u64 data)
4678 {
4679         struct msr_data msr;
4680
4681         msr.data = data;
4682         msr.index = msr_index;
4683         msr.host_initiated = false;
4684         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4685 }
4686
4687 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4688                              u32 pmc, u64 *pdata)
4689 {
4690         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4691 }
4692
4693 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4694 {
4695         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4696 }
4697
4698 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4699 {
4700         preempt_disable();
4701         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4702         /*
4703          * CR0.TS may reference the host fpu state, not the guest fpu state,
4704          * so it may be clear at this point.
4705          */
4706         clts();
4707 }
4708
4709 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4710 {
4711         preempt_enable();
4712 }
4713
4714 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4715                               struct x86_instruction_info *info,
4716                               enum x86_intercept_stage stage)
4717 {
4718         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4719 }
4720
4721 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4722                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4723 {
4724         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4725 }
4726
4727 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4728 {
4729         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4730 }
4731
4732 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4733 {
4734         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4735 }
4736
4737 static const struct x86_emulate_ops emulate_ops = {
4738         .read_gpr            = emulator_read_gpr,
4739         .write_gpr           = emulator_write_gpr,
4740         .read_std            = kvm_read_guest_virt_system,
4741         .write_std           = kvm_write_guest_virt_system,
4742         .fetch               = kvm_fetch_guest_virt,
4743         .read_emulated       = emulator_read_emulated,
4744         .write_emulated      = emulator_write_emulated,
4745         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4746         .invlpg              = emulator_invlpg,
4747         .pio_in_emulated     = emulator_pio_in_emulated,
4748         .pio_out_emulated    = emulator_pio_out_emulated,
4749         .get_segment         = emulator_get_segment,
4750         .set_segment         = emulator_set_segment,
4751         .get_cached_segment_base = emulator_get_cached_segment_base,
4752         .get_gdt             = emulator_get_gdt,
4753         .get_idt             = emulator_get_idt,
4754         .set_gdt             = emulator_set_gdt,
4755         .set_idt             = emulator_set_idt,
4756         .get_cr              = emulator_get_cr,
4757         .set_cr              = emulator_set_cr,
4758         .set_rflags          = emulator_set_rflags,
4759         .cpl                 = emulator_get_cpl,
4760         .get_dr              = emulator_get_dr,
4761         .set_dr              = emulator_set_dr,
4762         .set_msr             = emulator_set_msr,
4763         .get_msr             = emulator_get_msr,
4764         .read_pmc            = emulator_read_pmc,
4765         .halt                = emulator_halt,
4766         .wbinvd              = emulator_wbinvd,
4767         .fix_hypercall       = emulator_fix_hypercall,
4768         .get_fpu             = emulator_get_fpu,
4769         .put_fpu             = emulator_put_fpu,
4770         .intercept           = emulator_intercept,
4771         .get_cpuid           = emulator_get_cpuid,
4772 };
4773
4774 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4775 {
4776         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4777         /*
4778          * an sti; sti; sequence only disable interrupts for the first
4779          * instruction. So, if the last instruction, be it emulated or
4780          * not, left the system with the INT_STI flag enabled, it
4781          * means that the last instruction is an sti. We should not
4782          * leave the flag on in this case. The same goes for mov ss
4783          */
4784         if (!(int_shadow & mask))
4785                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4786 }
4787
4788 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4789 {
4790         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4791         if (ctxt->exception.vector == PF_VECTOR)
4792                 kvm_propagate_fault(vcpu, &ctxt->exception);
4793         else if (ctxt->exception.error_code_valid)
4794                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4795                                       ctxt->exception.error_code);
4796         else
4797                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4798 }
4799
4800 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4801 {
4802         memset(&ctxt->opcode_len, 0,
4803                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4804
4805         ctxt->fetch.start = 0;
4806         ctxt->fetch.end = 0;
4807         ctxt->io_read.pos = 0;
4808         ctxt->io_read.end = 0;
4809         ctxt->mem_read.pos = 0;
4810         ctxt->mem_read.end = 0;
4811 }
4812
4813 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4814 {
4815         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4816         int cs_db, cs_l;
4817
4818         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4819
4820         ctxt->eflags = kvm_get_rflags(vcpu);
4821         ctxt->eip = kvm_rip_read(vcpu);
4822         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4823                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4824                      cs_l                               ? X86EMUL_MODE_PROT64 :
4825                      cs_db                              ? X86EMUL_MODE_PROT32 :
4826                                                           X86EMUL_MODE_PROT16;
4827         ctxt->guest_mode = is_guest_mode(vcpu);
4828
4829         init_decode_cache(ctxt);
4830         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4831 }
4832
4833 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4834 {
4835         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4836         int ret;
4837
4838         init_emulate_ctxt(vcpu);
4839
4840         ctxt->op_bytes = 2;
4841         ctxt->ad_bytes = 2;
4842         ctxt->_eip = ctxt->eip + inc_eip;
4843         ret = emulate_int_real(ctxt, irq);
4844
4845         if (ret != X86EMUL_CONTINUE)
4846                 return EMULATE_FAIL;
4847
4848         ctxt->eip = ctxt->_eip;
4849         kvm_rip_write(vcpu, ctxt->eip);
4850         kvm_set_rflags(vcpu, ctxt->eflags);
4851
4852         if (irq == NMI_VECTOR)
4853                 vcpu->arch.nmi_pending = 0;
4854         else
4855                 vcpu->arch.interrupt.pending = false;
4856
4857         return EMULATE_DONE;
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4860
4861 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4862 {
4863         int r = EMULATE_DONE;
4864
4865         ++vcpu->stat.insn_emulation_fail;
4866         trace_kvm_emulate_insn_failed(vcpu);
4867         if (!is_guest_mode(vcpu)) {
4868                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4869                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4870                 vcpu->run->internal.ndata = 0;
4871                 r = EMULATE_FAIL;
4872         }
4873         kvm_queue_exception(vcpu, UD_VECTOR);
4874
4875         return r;
4876 }
4877
4878 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4879                                   bool write_fault_to_shadow_pgtable,
4880                                   int emulation_type)
4881 {
4882         gpa_t gpa = cr2;
4883         pfn_t pfn;
4884
4885         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4886                 return false;
4887
4888         if (!vcpu->arch.mmu.direct_map) {
4889                 /*
4890                  * Write permission should be allowed since only
4891                  * write access need to be emulated.
4892                  */
4893                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4894
4895                 /*
4896                  * If the mapping is invalid in guest, let cpu retry
4897                  * it to generate fault.
4898                  */
4899                 if (gpa == UNMAPPED_GVA)
4900                         return true;
4901         }
4902
4903         /*
4904          * Do not retry the unhandleable instruction if it faults on the
4905          * readonly host memory, otherwise it will goto a infinite loop:
4906          * retry instruction -> write #PF -> emulation fail -> retry
4907          * instruction -> ...
4908          */
4909         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4910
4911         /*
4912          * If the instruction failed on the error pfn, it can not be fixed,
4913          * report the error to userspace.
4914          */
4915         if (is_error_noslot_pfn(pfn))
4916                 return false;
4917
4918         kvm_release_pfn_clean(pfn);
4919
4920         /* The instructions are well-emulated on direct mmu. */
4921         if (vcpu->arch.mmu.direct_map) {
4922                 unsigned int indirect_shadow_pages;
4923
4924                 spin_lock(&vcpu->kvm->mmu_lock);
4925                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4926                 spin_unlock(&vcpu->kvm->mmu_lock);
4927
4928                 if (indirect_shadow_pages)
4929                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4930
4931                 return true;
4932         }
4933
4934         /*
4935          * if emulation was due to access to shadowed page table
4936          * and it failed try to unshadow page and re-enter the
4937          * guest to let CPU execute the instruction.
4938          */
4939         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4940
4941         /*
4942          * If the access faults on its page table, it can not
4943          * be fixed by unprotecting shadow page and it should
4944          * be reported to userspace.
4945          */
4946         return !write_fault_to_shadow_pgtable;
4947 }
4948
4949 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4950                               unsigned long cr2,  int emulation_type)
4951 {
4952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4954
4955         last_retry_eip = vcpu->arch.last_retry_eip;
4956         last_retry_addr = vcpu->arch.last_retry_addr;
4957
4958         /*
4959          * If the emulation is caused by #PF and it is non-page_table
4960          * writing instruction, it means the VM-EXIT is caused by shadow
4961          * page protected, we can zap the shadow page and retry this
4962          * instruction directly.
4963          *
4964          * Note: if the guest uses a non-page-table modifying instruction
4965          * on the PDE that points to the instruction, then we will unmap
4966          * the instruction and go to an infinite loop. So, we cache the
4967          * last retried eip and the last fault address, if we meet the eip
4968          * and the address again, we can break out of the potential infinite
4969          * loop.
4970          */
4971         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4972
4973         if (!(emulation_type & EMULTYPE_RETRY))
4974                 return false;
4975
4976         if (x86_page_table_writing_insn(ctxt))
4977                 return false;
4978
4979         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4980                 return false;
4981
4982         vcpu->arch.last_retry_eip = ctxt->eip;
4983         vcpu->arch.last_retry_addr = cr2;
4984
4985         if (!vcpu->arch.mmu.direct_map)
4986                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4987
4988         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4989
4990         return true;
4991 }
4992
4993 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4994 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4995
4996 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4997                                 unsigned long *db)
4998 {
4999         u32 dr6 = 0;
5000         int i;
5001         u32 enable, rwlen;
5002
5003         enable = dr7;
5004         rwlen = dr7 >> 16;
5005         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5006                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5007                         dr6 |= (1 << i);
5008         return dr6;
5009 }
5010
5011 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5012 {
5013         struct kvm_run *kvm_run = vcpu->run;
5014
5015         /*
5016          * Use the "raw" value to see if TF was passed to the processor.
5017          * Note that the new value of the flags has not been saved yet.
5018          *
5019          * This is correct even for TF set by the guest, because "the
5020          * processor will not generate this exception after the instruction
5021          * that sets the TF flag".
5022          */
5023         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5024
5025         if (unlikely(rflags & X86_EFLAGS_TF)) {
5026                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5027                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5028                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5029                         kvm_run->debug.arch.exception = DB_VECTOR;
5030                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5031                         *r = EMULATE_USER_EXIT;
5032                 } else {
5033                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5034                         /*
5035                          * "Certain debug exceptions may clear bit 0-3.  The
5036                          * remaining contents of the DR6 register are never
5037                          * cleared by the processor".
5038                          */
5039                         vcpu->arch.dr6 &= ~15;
5040                         vcpu->arch.dr6 |= DR6_BS;
5041                         kvm_queue_exception(vcpu, DB_VECTOR);
5042                 }
5043         }
5044 }
5045
5046 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5047 {
5048         struct kvm_run *kvm_run = vcpu->run;
5049         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5050         u32 dr6 = 0;
5051
5052         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5053             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5054                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5055                                            vcpu->arch.guest_debug_dr7,
5056                                            vcpu->arch.eff_db);
5057
5058                 if (dr6 != 0) {
5059                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5060                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5061                                 get_segment_base(vcpu, VCPU_SREG_CS);
5062
5063                         kvm_run->debug.arch.exception = DB_VECTOR;
5064                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5065                         *r = EMULATE_USER_EXIT;
5066                         return true;
5067                 }
5068         }
5069
5070         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5071                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5072                                            vcpu->arch.dr7,
5073                                            vcpu->arch.db);
5074
5075                 if (dr6 != 0) {
5076                         vcpu->arch.dr6 &= ~15;
5077                         vcpu->arch.dr6 |= dr6;
5078                         kvm_queue_exception(vcpu, DB_VECTOR);
5079                         *r = EMULATE_DONE;
5080                         return true;
5081                 }
5082         }
5083
5084         return false;
5085 }
5086
5087 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5088                             unsigned long cr2,
5089                             int emulation_type,
5090                             void *insn,
5091                             int insn_len)
5092 {
5093         int r;
5094         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5095         bool writeback = true;
5096         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5097
5098         /*
5099          * Clear write_fault_to_shadow_pgtable here to ensure it is
5100          * never reused.
5101          */
5102         vcpu->arch.write_fault_to_shadow_pgtable = false;
5103         kvm_clear_exception_queue(vcpu);
5104
5105         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5106                 init_emulate_ctxt(vcpu);
5107
5108                 /*
5109                  * We will reenter on the same instruction since
5110                  * we do not set complete_userspace_io.  This does not
5111                  * handle watchpoints yet, those would be handled in
5112                  * the emulate_ops.
5113                  */
5114                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5115                         return r;
5116
5117                 ctxt->interruptibility = 0;
5118                 ctxt->have_exception = false;
5119                 ctxt->perm_ok = false;
5120
5121                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5122
5123                 r = x86_decode_insn(ctxt, insn, insn_len);
5124
5125                 trace_kvm_emulate_insn_start(vcpu);
5126                 ++vcpu->stat.insn_emulation;
5127                 if (r != EMULATION_OK)  {
5128                         if (emulation_type & EMULTYPE_TRAP_UD)
5129                                 return EMULATE_FAIL;
5130                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5131                                                 emulation_type))
5132                                 return EMULATE_DONE;
5133                         if (emulation_type & EMULTYPE_SKIP)
5134                                 return EMULATE_FAIL;
5135                         return handle_emulation_failure(vcpu);
5136                 }
5137         }
5138
5139         if (emulation_type & EMULTYPE_SKIP) {
5140                 kvm_rip_write(vcpu, ctxt->_eip);
5141                 return EMULATE_DONE;
5142         }
5143
5144         if (retry_instruction(ctxt, cr2, emulation_type))
5145                 return EMULATE_DONE;
5146
5147         /* this is needed for vmware backdoor interface to work since it
5148            changes registers values  during IO operation */
5149         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5150                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5151                 emulator_invalidate_register_cache(ctxt);
5152         }
5153
5154 restart:
5155         r = x86_emulate_insn(ctxt);
5156
5157         if (r == EMULATION_INTERCEPTED)
5158                 return EMULATE_DONE;
5159
5160         if (r == EMULATION_FAILED) {
5161                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5162                                         emulation_type))
5163                         return EMULATE_DONE;
5164
5165                 return handle_emulation_failure(vcpu);
5166         }
5167
5168         if (ctxt->have_exception) {
5169                 inject_emulated_exception(vcpu);
5170                 r = EMULATE_DONE;
5171         } else if (vcpu->arch.pio.count) {
5172                 if (!vcpu->arch.pio.in) {
5173                         /* FIXME: return into emulator if single-stepping.  */
5174                         vcpu->arch.pio.count = 0;
5175                 } else {
5176                         writeback = false;
5177                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5178                 }
5179                 r = EMULATE_USER_EXIT;
5180         } else if (vcpu->mmio_needed) {
5181                 if (!vcpu->mmio_is_write)
5182                         writeback = false;
5183                 r = EMULATE_USER_EXIT;
5184                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5185         } else if (r == EMULATION_RESTART)
5186                 goto restart;
5187         else
5188                 r = EMULATE_DONE;
5189
5190         if (writeback) {
5191                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5192                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5193                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5194                 kvm_rip_write(vcpu, ctxt->eip);
5195                 if (r == EMULATE_DONE)
5196                         kvm_vcpu_check_singlestep(vcpu, &r);
5197                 kvm_set_rflags(vcpu, ctxt->eflags);
5198         } else
5199                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5200
5201         return r;
5202 }
5203 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5204
5205 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5206 {
5207         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5208         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5209                                             size, port, &val, 1);
5210         /* do not return to emulator after return from userspace */
5211         vcpu->arch.pio.count = 0;
5212         return ret;
5213 }
5214 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5215
5216 static void tsc_bad(void *info)
5217 {
5218         __this_cpu_write(cpu_tsc_khz, 0);
5219 }
5220
5221 static void tsc_khz_changed(void *data)
5222 {
5223         struct cpufreq_freqs *freq = data;
5224         unsigned long khz = 0;
5225
5226         if (data)
5227                 khz = freq->new;
5228         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5229                 khz = cpufreq_quick_get(raw_smp_processor_id());
5230         if (!khz)
5231                 khz = tsc_khz;
5232         __this_cpu_write(cpu_tsc_khz, khz);
5233 }
5234
5235 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5236                                      void *data)
5237 {
5238         struct cpufreq_freqs *freq = data;
5239         struct kvm *kvm;
5240         struct kvm_vcpu *vcpu;
5241         int i, send_ipi = 0;
5242
5243         /*
5244          * We allow guests to temporarily run on slowing clocks,
5245          * provided we notify them after, or to run on accelerating
5246          * clocks, provided we notify them before.  Thus time never
5247          * goes backwards.
5248          *
5249          * However, we have a problem.  We can't atomically update
5250          * the frequency of a given CPU from this function; it is
5251          * merely a notifier, which can be called from any CPU.
5252          * Changing the TSC frequency at arbitrary points in time
5253          * requires a recomputation of local variables related to
5254          * the TSC for each VCPU.  We must flag these local variables
5255          * to be updated and be sure the update takes place with the
5256          * new frequency before any guests proceed.
5257          *
5258          * Unfortunately, the combination of hotplug CPU and frequency
5259          * change creates an intractable locking scenario; the order
5260          * of when these callouts happen is undefined with respect to
5261          * CPU hotplug, and they can race with each other.  As such,
5262          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5263          * undefined; you can actually have a CPU frequency change take
5264          * place in between the computation of X and the setting of the
5265          * variable.  To protect against this problem, all updates of
5266          * the per_cpu tsc_khz variable are done in an interrupt
5267          * protected IPI, and all callers wishing to update the value
5268          * must wait for a synchronous IPI to complete (which is trivial
5269          * if the caller is on the CPU already).  This establishes the
5270          * necessary total order on variable updates.
5271          *
5272          * Note that because a guest time update may take place
5273          * anytime after the setting of the VCPU's request bit, the
5274          * correct TSC value must be set before the request.  However,
5275          * to ensure the update actually makes it to any guest which
5276          * starts running in hardware virtualization between the set
5277          * and the acquisition of the spinlock, we must also ping the
5278          * CPU after setting the request bit.
5279          *
5280          */
5281
5282         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5283                 return 0;
5284         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5285                 return 0;
5286
5287         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5288
5289         spin_lock(&kvm_lock);
5290         list_for_each_entry(kvm, &vm_list, vm_list) {
5291                 kvm_for_each_vcpu(i, vcpu, kvm) {
5292                         if (vcpu->cpu != freq->cpu)
5293                                 continue;
5294                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5295                         if (vcpu->cpu != smp_processor_id())
5296                                 send_ipi = 1;
5297                 }
5298         }
5299         spin_unlock(&kvm_lock);
5300
5301         if (freq->old < freq->new && send_ipi) {
5302                 /*
5303                  * We upscale the frequency.  Must make the guest
5304                  * doesn't see old kvmclock values while running with
5305                  * the new frequency, otherwise we risk the guest sees
5306                  * time go backwards.
5307                  *
5308                  * In case we update the frequency for another cpu
5309                  * (which might be in guest context) send an interrupt
5310                  * to kick the cpu out of guest context.  Next time
5311                  * guest context is entered kvmclock will be updated,
5312                  * so the guest will not see stale values.
5313                  */
5314                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5315         }
5316         return 0;
5317 }
5318
5319 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5320         .notifier_call  = kvmclock_cpufreq_notifier
5321 };
5322
5323 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5324                                         unsigned long action, void *hcpu)
5325 {
5326         unsigned int cpu = (unsigned long)hcpu;
5327
5328         switch (action) {
5329                 case CPU_ONLINE:
5330                 case CPU_DOWN_FAILED:
5331                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5332                         break;
5333                 case CPU_DOWN_PREPARE:
5334                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5335                         break;
5336         }
5337         return NOTIFY_OK;
5338 }
5339
5340 static struct notifier_block kvmclock_cpu_notifier_block = {
5341         .notifier_call  = kvmclock_cpu_notifier,
5342         .priority = -INT_MAX
5343 };
5344
5345 static void kvm_timer_init(void)
5346 {
5347         int cpu;
5348
5349         max_tsc_khz = tsc_khz;
5350         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5351         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5352 #ifdef CONFIG_CPU_FREQ
5353                 struct cpufreq_policy policy;
5354                 memset(&policy, 0, sizeof(policy));
5355                 cpu = get_cpu();
5356                 cpufreq_get_policy(&policy, cpu);
5357                 if (policy.cpuinfo.max_freq)
5358                         max_tsc_khz = policy.cpuinfo.max_freq;
5359                 put_cpu();
5360 #endif
5361                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5362                                           CPUFREQ_TRANSITION_NOTIFIER);
5363         }
5364         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5365         for_each_online_cpu(cpu)
5366                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5367 }
5368
5369 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5370
5371 int kvm_is_in_guest(void)
5372 {
5373         return __this_cpu_read(current_vcpu) != NULL;
5374 }
5375
5376 static int kvm_is_user_mode(void)
5377 {
5378         int user_mode = 3;
5379
5380         if (__this_cpu_read(current_vcpu))
5381                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5382
5383         return user_mode != 0;
5384 }
5385
5386 static unsigned long kvm_get_guest_ip(void)
5387 {
5388         unsigned long ip = 0;
5389
5390         if (__this_cpu_read(current_vcpu))
5391                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5392
5393         return ip;
5394 }
5395
5396 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5397         .is_in_guest            = kvm_is_in_guest,
5398         .is_user_mode           = kvm_is_user_mode,
5399         .get_guest_ip           = kvm_get_guest_ip,
5400 };
5401
5402 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5403 {
5404         __this_cpu_write(current_vcpu, vcpu);
5405 }
5406 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5407
5408 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5409 {
5410         __this_cpu_write(current_vcpu, NULL);
5411 }
5412 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5413
5414 static void kvm_set_mmio_spte_mask(void)
5415 {
5416         u64 mask;
5417         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5418
5419         /*
5420          * Set the reserved bits and the present bit of an paging-structure
5421          * entry to generate page fault with PFER.RSV = 1.
5422          */
5423          /* Mask the reserved physical address bits. */
5424         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5425
5426         /* Bit 62 is always reserved for 32bit host. */
5427         mask |= 0x3ull << 62;
5428
5429         /* Set the present bit. */
5430         mask |= 1ull;
5431
5432 #ifdef CONFIG_X86_64
5433         /*
5434          * If reserved bit is not supported, clear the present bit to disable
5435          * mmio page fault.
5436          */
5437         if (maxphyaddr == 52)
5438                 mask &= ~1ull;
5439 #endif
5440
5441         kvm_mmu_set_mmio_spte_mask(mask);
5442 }
5443
5444 #ifdef CONFIG_X86_64
5445 static void pvclock_gtod_update_fn(struct work_struct *work)
5446 {
5447         struct kvm *kvm;
5448
5449         struct kvm_vcpu *vcpu;
5450         int i;
5451
5452         spin_lock(&kvm_lock);
5453         list_for_each_entry(kvm, &vm_list, vm_list)
5454                 kvm_for_each_vcpu(i, vcpu, kvm)
5455                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5456         atomic_set(&kvm_guest_has_master_clock, 0);
5457         spin_unlock(&kvm_lock);
5458 }
5459
5460 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5461
5462 /*
5463  * Notification about pvclock gtod data update.
5464  */
5465 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5466                                void *priv)
5467 {
5468         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5469         struct timekeeper *tk = priv;
5470
5471         update_pvclock_gtod(tk);
5472
5473         /* disable master clock if host does not trust, or does not
5474          * use, TSC clocksource
5475          */
5476         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5477             atomic_read(&kvm_guest_has_master_clock) != 0)
5478                 queue_work(system_long_wq, &pvclock_gtod_work);
5479
5480         return 0;
5481 }
5482
5483 static struct notifier_block pvclock_gtod_notifier = {
5484         .notifier_call = pvclock_gtod_notify,
5485 };
5486 #endif
5487
5488 int kvm_arch_init(void *opaque)
5489 {
5490         int r;
5491         struct kvm_x86_ops *ops = opaque;
5492
5493         if (kvm_x86_ops) {
5494                 printk(KERN_ERR "kvm: already loaded the other module\n");
5495                 r = -EEXIST;
5496                 goto out;
5497         }
5498
5499         if (!ops->cpu_has_kvm_support()) {
5500                 printk(KERN_ERR "kvm: no hardware support\n");
5501                 r = -EOPNOTSUPP;
5502                 goto out;
5503         }
5504         if (ops->disabled_by_bios()) {
5505                 printk(KERN_ERR "kvm: disabled by bios\n");
5506                 r = -EOPNOTSUPP;
5507                 goto out;
5508         }
5509
5510         r = -ENOMEM;
5511         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5512         if (!shared_msrs) {
5513                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5514                 goto out;
5515         }
5516
5517         r = kvm_mmu_module_init();
5518         if (r)
5519                 goto out_free_percpu;
5520
5521         kvm_set_mmio_spte_mask();
5522         kvm_init_msr_list();
5523
5524         kvm_x86_ops = ops;
5525         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5526                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5527
5528         kvm_timer_init();
5529
5530         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5531
5532         if (cpu_has_xsave)
5533                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5534
5535         kvm_lapic_init();
5536 #ifdef CONFIG_X86_64
5537         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5538 #endif
5539
5540         return 0;
5541
5542 out_free_percpu:
5543         free_percpu(shared_msrs);
5544 out:
5545         return r;
5546 }
5547
5548 void kvm_arch_exit(void)
5549 {
5550         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5551
5552         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5553                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5554                                             CPUFREQ_TRANSITION_NOTIFIER);
5555         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5556 #ifdef CONFIG_X86_64
5557         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5558 #endif
5559         kvm_x86_ops = NULL;
5560         kvm_mmu_module_exit();
5561         free_percpu(shared_msrs);
5562 }
5563
5564 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5565 {
5566         ++vcpu->stat.halt_exits;
5567         if (irqchip_in_kernel(vcpu->kvm)) {
5568                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5569                 return 1;
5570         } else {
5571                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5572                 return 0;
5573         }
5574 }
5575 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5576
5577 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5578 {
5579         u64 param, ingpa, outgpa, ret;
5580         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5581         bool fast, longmode;
5582         int cs_db, cs_l;
5583
5584         /*
5585          * hypercall generates UD from non zero cpl and real mode
5586          * per HYPER-V spec
5587          */
5588         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5589                 kvm_queue_exception(vcpu, UD_VECTOR);
5590                 return 0;
5591         }
5592
5593         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5594         longmode = is_long_mode(vcpu) && cs_l == 1;
5595
5596         if (!longmode) {
5597                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5598                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5599                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5600                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5601                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5602                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5603         }
5604 #ifdef CONFIG_X86_64
5605         else {
5606                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5607                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5608                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5609         }
5610 #endif
5611
5612         code = param & 0xffff;
5613         fast = (param >> 16) & 0x1;
5614         rep_cnt = (param >> 32) & 0xfff;
5615         rep_idx = (param >> 48) & 0xfff;
5616
5617         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5618
5619         switch (code) {
5620         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5621                 kvm_vcpu_on_spin(vcpu);
5622                 break;
5623         default:
5624                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5625                 break;
5626         }
5627
5628         ret = res | (((u64)rep_done & 0xfff) << 32);
5629         if (longmode) {
5630                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5631         } else {
5632                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5633                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5634         }
5635
5636         return 1;
5637 }
5638
5639 /*
5640  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5641  *
5642  * @apicid - apicid of vcpu to be kicked.
5643  */
5644 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5645 {
5646         struct kvm_lapic_irq lapic_irq;
5647
5648         lapic_irq.shorthand = 0;
5649         lapic_irq.dest_mode = 0;
5650         lapic_irq.dest_id = apicid;
5651
5652         lapic_irq.delivery_mode = APIC_DM_REMRD;
5653         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5654 }
5655
5656 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5657 {
5658         unsigned long nr, a0, a1, a2, a3, ret;
5659         int r = 1;
5660
5661         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5662                 return kvm_hv_hypercall(vcpu);
5663
5664         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5665         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5666         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5667         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5668         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5669
5670         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5671
5672         if (!is_long_mode(vcpu)) {
5673                 nr &= 0xFFFFFFFF;
5674                 a0 &= 0xFFFFFFFF;
5675                 a1 &= 0xFFFFFFFF;
5676                 a2 &= 0xFFFFFFFF;
5677                 a3 &= 0xFFFFFFFF;
5678         }
5679
5680         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5681                 ret = -KVM_EPERM;
5682                 goto out;
5683         }
5684
5685         switch (nr) {
5686         case KVM_HC_VAPIC_POLL_IRQ:
5687                 ret = 0;
5688                 break;
5689         case KVM_HC_KICK_CPU:
5690                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5691                 ret = 0;
5692                 break;
5693         default:
5694                 ret = -KVM_ENOSYS;
5695                 break;
5696         }
5697 out:
5698         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5699         ++vcpu->stat.hypercalls;
5700         return r;
5701 }
5702 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5703
5704 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5705 {
5706         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5707         char instruction[3];
5708         unsigned long rip = kvm_rip_read(vcpu);
5709
5710         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5711
5712         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5713 }
5714
5715 /*
5716  * Check if userspace requested an interrupt window, and that the
5717  * interrupt window is open.
5718  *
5719  * No need to exit to userspace if we already have an interrupt queued.
5720  */
5721 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5722 {
5723         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5724                 vcpu->run->request_interrupt_window &&
5725                 kvm_arch_interrupt_allowed(vcpu));
5726 }
5727
5728 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5729 {
5730         struct kvm_run *kvm_run = vcpu->run;
5731
5732         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5733         kvm_run->cr8 = kvm_get_cr8(vcpu);
5734         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5735         if (irqchip_in_kernel(vcpu->kvm))
5736                 kvm_run->ready_for_interrupt_injection = 1;
5737         else
5738                 kvm_run->ready_for_interrupt_injection =
5739                         kvm_arch_interrupt_allowed(vcpu) &&
5740                         !kvm_cpu_has_interrupt(vcpu) &&
5741                         !kvm_event_needs_reinjection(vcpu);
5742 }
5743
5744 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5745 {
5746         int max_irr, tpr;
5747
5748         if (!kvm_x86_ops->update_cr8_intercept)
5749                 return;
5750
5751         if (!vcpu->arch.apic)
5752                 return;
5753
5754         if (!vcpu->arch.apic->vapic_addr)
5755                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5756         else
5757                 max_irr = -1;
5758
5759         if (max_irr != -1)
5760                 max_irr >>= 4;
5761
5762         tpr = kvm_lapic_get_cr8(vcpu);
5763
5764         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5765 }
5766
5767 static void inject_pending_event(struct kvm_vcpu *vcpu)
5768 {
5769         /* try to reinject previous events if any */
5770         if (vcpu->arch.exception.pending) {
5771                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5772                                         vcpu->arch.exception.has_error_code,
5773                                         vcpu->arch.exception.error_code);
5774                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5775                                           vcpu->arch.exception.has_error_code,
5776                                           vcpu->arch.exception.error_code,
5777                                           vcpu->arch.exception.reinject);
5778                 return;
5779         }
5780
5781         if (vcpu->arch.nmi_injected) {
5782                 kvm_x86_ops->set_nmi(vcpu);
5783                 return;
5784         }
5785
5786         if (vcpu->arch.interrupt.pending) {
5787                 kvm_x86_ops->set_irq(vcpu);
5788                 return;
5789         }
5790
5791         /* try to inject new event if pending */
5792         if (vcpu->arch.nmi_pending) {
5793                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5794                         --vcpu->arch.nmi_pending;
5795                         vcpu->arch.nmi_injected = true;
5796                         kvm_x86_ops->set_nmi(vcpu);
5797                 }
5798         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5799                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5800                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5801                                             false);
5802                         kvm_x86_ops->set_irq(vcpu);
5803                 }
5804         }
5805 }
5806
5807 static void process_nmi(struct kvm_vcpu *vcpu)
5808 {
5809         unsigned limit = 2;
5810
5811         /*
5812          * x86 is limited to one NMI running, and one NMI pending after it.
5813          * If an NMI is already in progress, limit further NMIs to just one.
5814          * Otherwise, allow two (and we'll inject the first one immediately).
5815          */
5816         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5817                 limit = 1;
5818
5819         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5820         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5821         kvm_make_request(KVM_REQ_EVENT, vcpu);
5822 }
5823
5824 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5825 {
5826         u64 eoi_exit_bitmap[4];
5827         u32 tmr[8];
5828
5829         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5830                 return;
5831
5832         memset(eoi_exit_bitmap, 0, 32);
5833         memset(tmr, 0, 32);
5834
5835         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5836         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5837         kvm_apic_update_tmr(vcpu, tmr);
5838 }
5839
5840 /*
5841  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5842  * exiting to the userspace.  Otherwise, the value will be returned to the
5843  * userspace.
5844  */
5845 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5846 {
5847         int r;
5848         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5849                 vcpu->run->request_interrupt_window;
5850         bool req_immediate_exit = false;
5851
5852         if (vcpu->requests) {
5853                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5854                         kvm_mmu_unload(vcpu);
5855                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5856                         __kvm_migrate_timers(vcpu);
5857                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5858                         kvm_gen_update_masterclock(vcpu->kvm);
5859                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5860                         kvm_gen_kvmclock_update(vcpu);
5861                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5862                         r = kvm_guest_time_update(vcpu);
5863                         if (unlikely(r))
5864                                 goto out;
5865                 }
5866                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5867                         kvm_mmu_sync_roots(vcpu);
5868                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5869                         kvm_x86_ops->tlb_flush(vcpu);
5870                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5871                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5872                         r = 0;
5873                         goto out;
5874                 }
5875                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5876                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5877                         r = 0;
5878                         goto out;
5879                 }
5880                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5881                         vcpu->fpu_active = 0;
5882                         kvm_x86_ops->fpu_deactivate(vcpu);
5883                 }
5884                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5885                         /* Page is swapped out. Do synthetic halt */
5886                         vcpu->arch.apf.halted = true;
5887                         r = 1;
5888                         goto out;
5889                 }
5890                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5891                         record_steal_time(vcpu);
5892                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5893                         process_nmi(vcpu);
5894                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5895                         kvm_handle_pmu_event(vcpu);
5896                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5897                         kvm_deliver_pmi(vcpu);
5898                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5899                         vcpu_scan_ioapic(vcpu);
5900         }
5901
5902         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5903                 kvm_apic_accept_events(vcpu);
5904                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5905                         r = 1;
5906                         goto out;
5907                 }
5908
5909                 inject_pending_event(vcpu);
5910
5911                 /* enable NMI/IRQ window open exits if needed */
5912                 if (vcpu->arch.nmi_pending)
5913                         req_immediate_exit =
5914                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5915                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5916                         req_immediate_exit =
5917                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5918
5919                 if (kvm_lapic_enabled(vcpu)) {
5920                         /*
5921                          * Update architecture specific hints for APIC
5922                          * virtual interrupt delivery.
5923                          */
5924                         if (kvm_x86_ops->hwapic_irr_update)
5925                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5926                                         kvm_lapic_find_highest_irr(vcpu));
5927                         update_cr8_intercept(vcpu);
5928                         kvm_lapic_sync_to_vapic(vcpu);
5929                 }
5930         }
5931
5932         r = kvm_mmu_reload(vcpu);
5933         if (unlikely(r)) {
5934                 goto cancel_injection;
5935         }
5936
5937         preempt_disable();
5938
5939         kvm_x86_ops->prepare_guest_switch(vcpu);
5940         if (vcpu->fpu_active)
5941                 kvm_load_guest_fpu(vcpu);
5942         kvm_load_guest_xcr0(vcpu);
5943
5944         vcpu->mode = IN_GUEST_MODE;
5945
5946         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5947
5948         /* We should set ->mode before check ->requests,
5949          * see the comment in make_all_cpus_request.
5950          */
5951         smp_mb__after_srcu_read_unlock();
5952
5953         local_irq_disable();
5954
5955         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5956             || need_resched() || signal_pending(current)) {
5957                 vcpu->mode = OUTSIDE_GUEST_MODE;
5958                 smp_wmb();
5959                 local_irq_enable();
5960                 preempt_enable();
5961                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5962                 r = 1;
5963                 goto cancel_injection;
5964         }
5965
5966         if (req_immediate_exit)
5967                 smp_send_reschedule(vcpu->cpu);
5968
5969         kvm_guest_enter();
5970
5971         if (unlikely(vcpu->arch.switch_db_regs)) {
5972                 set_debugreg(0, 7);
5973                 set_debugreg(vcpu->arch.eff_db[0], 0);
5974                 set_debugreg(vcpu->arch.eff_db[1], 1);
5975                 set_debugreg(vcpu->arch.eff_db[2], 2);
5976                 set_debugreg(vcpu->arch.eff_db[3], 3);
5977         }
5978
5979         trace_kvm_entry(vcpu->vcpu_id);
5980         kvm_x86_ops->run(vcpu);
5981
5982         /*
5983          * If the guest has used debug registers, at least dr7
5984          * will be disabled while returning to the host.
5985          * If we don't have active breakpoints in the host, we don't
5986          * care about the messed up debug address registers. But if
5987          * we have some of them active, restore the old state.
5988          */
5989         if (hw_breakpoint_active())
5990                 hw_breakpoint_restore();
5991
5992         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5993                                                            native_read_tsc());
5994
5995         vcpu->mode = OUTSIDE_GUEST_MODE;
5996         smp_wmb();
5997
5998         /* Interrupt is enabled by handle_external_intr() */
5999         kvm_x86_ops->handle_external_intr(vcpu);
6000
6001         ++vcpu->stat.exits;
6002
6003         /*
6004          * We must have an instruction between local_irq_enable() and
6005          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6006          * the interrupt shadow.  The stat.exits increment will do nicely.
6007          * But we need to prevent reordering, hence this barrier():
6008          */
6009         barrier();
6010
6011         kvm_guest_exit();
6012
6013         preempt_enable();
6014
6015         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6016
6017         /*
6018          * Profile KVM exit RIPs:
6019          */
6020         if (unlikely(prof_on == KVM_PROFILING)) {
6021                 unsigned long rip = kvm_rip_read(vcpu);
6022                 profile_hit(KVM_PROFILING, (void *)rip);
6023         }
6024
6025         if (unlikely(vcpu->arch.tsc_always_catchup))
6026                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6027
6028         if (vcpu->arch.apic_attention)
6029                 kvm_lapic_sync_from_vapic(vcpu);
6030
6031         r = kvm_x86_ops->handle_exit(vcpu);
6032         return r;
6033
6034 cancel_injection:
6035         kvm_x86_ops->cancel_injection(vcpu);
6036         if (unlikely(vcpu->arch.apic_attention))
6037                 kvm_lapic_sync_from_vapic(vcpu);
6038 out:
6039         return r;
6040 }
6041
6042
6043 static int __vcpu_run(struct kvm_vcpu *vcpu)
6044 {
6045         int r;
6046         struct kvm *kvm = vcpu->kvm;
6047
6048         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6049
6050         r = 1;
6051         while (r > 0) {
6052                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6053                     !vcpu->arch.apf.halted)
6054                         r = vcpu_enter_guest(vcpu);
6055                 else {
6056                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6057                         kvm_vcpu_block(vcpu);
6058                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6059                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6060                                 kvm_apic_accept_events(vcpu);
6061                                 switch(vcpu->arch.mp_state) {
6062                                 case KVM_MP_STATE_HALTED:
6063                                         vcpu->arch.pv.pv_unhalted = false;
6064                                         vcpu->arch.mp_state =
6065                                                 KVM_MP_STATE_RUNNABLE;
6066                                 case KVM_MP_STATE_RUNNABLE:
6067                                         vcpu->arch.apf.halted = false;
6068                                         break;
6069                                 case KVM_MP_STATE_INIT_RECEIVED:
6070                                         break;
6071                                 default:
6072                                         r = -EINTR;
6073                                         break;
6074                                 }
6075                         }
6076                 }
6077
6078                 if (r <= 0)
6079                         break;
6080
6081                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6082                 if (kvm_cpu_has_pending_timer(vcpu))
6083                         kvm_inject_pending_timer_irqs(vcpu);
6084
6085                 if (dm_request_for_irq_injection(vcpu)) {
6086                         r = -EINTR;
6087                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6088                         ++vcpu->stat.request_irq_exits;
6089                 }
6090
6091                 kvm_check_async_pf_completion(vcpu);
6092
6093                 if (signal_pending(current)) {
6094                         r = -EINTR;
6095                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6096                         ++vcpu->stat.signal_exits;
6097                 }
6098                 if (need_resched()) {
6099                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6100                         cond_resched();
6101                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6102                 }
6103         }
6104
6105         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6106
6107         return r;
6108 }
6109
6110 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6111 {
6112         int r;
6113         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6114         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6115         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6116         if (r != EMULATE_DONE)
6117                 return 0;
6118         return 1;
6119 }
6120
6121 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6122 {
6123         BUG_ON(!vcpu->arch.pio.count);
6124
6125         return complete_emulated_io(vcpu);
6126 }
6127
6128 /*
6129  * Implements the following, as a state machine:
6130  *
6131  * read:
6132  *   for each fragment
6133  *     for each mmio piece in the fragment
6134  *       write gpa, len
6135  *       exit
6136  *       copy data
6137  *   execute insn
6138  *
6139  * write:
6140  *   for each fragment
6141  *     for each mmio piece in the fragment
6142  *       write gpa, len
6143  *       copy data
6144  *       exit
6145  */
6146 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6147 {
6148         struct kvm_run *run = vcpu->run;
6149         struct kvm_mmio_fragment *frag;
6150         unsigned len;
6151
6152         BUG_ON(!vcpu->mmio_needed);
6153
6154         /* Complete previous fragment */
6155         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6156         len = min(8u, frag->len);
6157         if (!vcpu->mmio_is_write)
6158                 memcpy(frag->data, run->mmio.data, len);
6159
6160         if (frag->len <= 8) {
6161                 /* Switch to the next fragment. */
6162                 frag++;
6163                 vcpu->mmio_cur_fragment++;
6164         } else {
6165                 /* Go forward to the next mmio piece. */
6166                 frag->data += len;
6167                 frag->gpa += len;
6168                 frag->len -= len;
6169         }
6170
6171         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6172                 vcpu->mmio_needed = 0;
6173
6174                 /* FIXME: return into emulator if single-stepping.  */
6175                 if (vcpu->mmio_is_write)
6176                         return 1;
6177                 vcpu->mmio_read_completed = 1;
6178                 return complete_emulated_io(vcpu);
6179         }
6180
6181         run->exit_reason = KVM_EXIT_MMIO;
6182         run->mmio.phys_addr = frag->gpa;
6183         if (vcpu->mmio_is_write)
6184                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6185         run->mmio.len = min(8u, frag->len);
6186         run->mmio.is_write = vcpu->mmio_is_write;
6187         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6188         return 0;
6189 }
6190
6191
6192 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6193 {
6194         int r;
6195         sigset_t sigsaved;
6196
6197         if (!tsk_used_math(current) && init_fpu(current))
6198                 return -ENOMEM;
6199
6200         if (vcpu->sigset_active)
6201                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6202
6203         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6204                 kvm_vcpu_block(vcpu);
6205                 kvm_apic_accept_events(vcpu);
6206                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6207                 r = -EAGAIN;
6208                 goto out;
6209         }
6210
6211         /* re-sync apic's tpr */
6212         if (!irqchip_in_kernel(vcpu->kvm)) {
6213                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6214                         r = -EINVAL;
6215                         goto out;
6216                 }
6217         }
6218
6219         if (unlikely(vcpu->arch.complete_userspace_io)) {
6220                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6221                 vcpu->arch.complete_userspace_io = NULL;
6222                 r = cui(vcpu);
6223                 if (r <= 0)
6224                         goto out;
6225         } else
6226                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6227
6228         r = __vcpu_run(vcpu);
6229
6230 out:
6231         post_kvm_run_save(vcpu);
6232         if (vcpu->sigset_active)
6233                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6234
6235         return r;
6236 }
6237
6238 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6239 {
6240         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6241                 /*
6242                  * We are here if userspace calls get_regs() in the middle of
6243                  * instruction emulation. Registers state needs to be copied
6244                  * back from emulation context to vcpu. Userspace shouldn't do
6245                  * that usually, but some bad designed PV devices (vmware
6246                  * backdoor interface) need this to work
6247                  */
6248                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6249                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6250         }
6251         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6252         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6253         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6254         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6255         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6256         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6257         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6258         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6259 #ifdef CONFIG_X86_64
6260         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6261         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6262         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6263         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6264         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6265         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6266         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6267         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6268 #endif
6269
6270         regs->rip = kvm_rip_read(vcpu);
6271         regs->rflags = kvm_get_rflags(vcpu);
6272
6273         return 0;
6274 }
6275
6276 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6277 {
6278         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6279         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6280
6281         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6282         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6283         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6284         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6285         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6286         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6287         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6288         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6289 #ifdef CONFIG_X86_64
6290         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6291         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6292         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6293         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6294         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6295         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6296         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6297         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6298 #endif
6299
6300         kvm_rip_write(vcpu, regs->rip);
6301         kvm_set_rflags(vcpu, regs->rflags);
6302
6303         vcpu->arch.exception.pending = false;
6304
6305         kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307         return 0;
6308 }
6309
6310 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6311 {
6312         struct kvm_segment cs;
6313
6314         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6315         *db = cs.db;
6316         *l = cs.l;
6317 }
6318 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6319
6320 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6321                                   struct kvm_sregs *sregs)
6322 {
6323         struct desc_ptr dt;
6324
6325         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6326         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6327         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6328         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6329         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6330         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6331
6332         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6333         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6334
6335         kvm_x86_ops->get_idt(vcpu, &dt);
6336         sregs->idt.limit = dt.size;
6337         sregs->idt.base = dt.address;
6338         kvm_x86_ops->get_gdt(vcpu, &dt);
6339         sregs->gdt.limit = dt.size;
6340         sregs->gdt.base = dt.address;
6341
6342         sregs->cr0 = kvm_read_cr0(vcpu);
6343         sregs->cr2 = vcpu->arch.cr2;
6344         sregs->cr3 = kvm_read_cr3(vcpu);
6345         sregs->cr4 = kvm_read_cr4(vcpu);
6346         sregs->cr8 = kvm_get_cr8(vcpu);
6347         sregs->efer = vcpu->arch.efer;
6348         sregs->apic_base = kvm_get_apic_base(vcpu);
6349
6350         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6351
6352         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6353                 set_bit(vcpu->arch.interrupt.nr,
6354                         (unsigned long *)sregs->interrupt_bitmap);
6355
6356         return 0;
6357 }
6358
6359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6360                                     struct kvm_mp_state *mp_state)
6361 {
6362         kvm_apic_accept_events(vcpu);
6363         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6364                                         vcpu->arch.pv.pv_unhalted)
6365                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6366         else
6367                 mp_state->mp_state = vcpu->arch.mp_state;
6368
6369         return 0;
6370 }
6371
6372 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6373                                     struct kvm_mp_state *mp_state)
6374 {
6375         if (!kvm_vcpu_has_lapic(vcpu) &&
6376             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6377                 return -EINVAL;
6378
6379         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6380                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6381                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6382         } else
6383                 vcpu->arch.mp_state = mp_state->mp_state;
6384         kvm_make_request(KVM_REQ_EVENT, vcpu);
6385         return 0;
6386 }
6387
6388 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6389                     int reason, bool has_error_code, u32 error_code)
6390 {
6391         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6392         int ret;
6393
6394         init_emulate_ctxt(vcpu);
6395
6396         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6397                                    has_error_code, error_code);
6398
6399         if (ret)
6400                 return EMULATE_FAIL;
6401
6402         kvm_rip_write(vcpu, ctxt->eip);
6403         kvm_set_rflags(vcpu, ctxt->eflags);
6404         kvm_make_request(KVM_REQ_EVENT, vcpu);
6405         return EMULATE_DONE;
6406 }
6407 EXPORT_SYMBOL_GPL(kvm_task_switch);
6408
6409 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6410                                   struct kvm_sregs *sregs)
6411 {
6412         int mmu_reset_needed = 0;
6413         int pending_vec, max_bits, idx;
6414         struct desc_ptr dt;
6415
6416         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6417                 return -EINVAL;
6418
6419         dt.size = sregs->idt.limit;
6420         dt.address = sregs->idt.base;
6421         kvm_x86_ops->set_idt(vcpu, &dt);
6422         dt.size = sregs->gdt.limit;
6423         dt.address = sregs->gdt.base;
6424         kvm_x86_ops->set_gdt(vcpu, &dt);
6425
6426         vcpu->arch.cr2 = sregs->cr2;
6427         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6428         vcpu->arch.cr3 = sregs->cr3;
6429         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6430
6431         kvm_set_cr8(vcpu, sregs->cr8);
6432
6433         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6434         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6435         kvm_set_apic_base(vcpu, sregs->apic_base);
6436
6437         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6438         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6439         vcpu->arch.cr0 = sregs->cr0;
6440
6441         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6442         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6443         if (sregs->cr4 & X86_CR4_OSXSAVE)
6444                 kvm_update_cpuid(vcpu);
6445
6446         idx = srcu_read_lock(&vcpu->kvm->srcu);
6447         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6448                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6449                 mmu_reset_needed = 1;
6450         }
6451         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6452
6453         if (mmu_reset_needed)
6454                 kvm_mmu_reset_context(vcpu);
6455
6456         max_bits = KVM_NR_INTERRUPTS;
6457         pending_vec = find_first_bit(
6458                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6459         if (pending_vec < max_bits) {
6460                 kvm_queue_interrupt(vcpu, pending_vec, false);
6461                 pr_debug("Set back pending irq %d\n", pending_vec);
6462         }
6463
6464         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6465         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6466         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6467         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6468         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6469         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6470
6471         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6472         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6473
6474         update_cr8_intercept(vcpu);
6475
6476         /* Older userspace won't unhalt the vcpu on reset. */
6477         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6478             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6479             !is_protmode(vcpu))
6480                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6481
6482         kvm_make_request(KVM_REQ_EVENT, vcpu);
6483
6484         return 0;
6485 }
6486
6487 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6488                                         struct kvm_guest_debug *dbg)
6489 {
6490         unsigned long rflags;
6491         int i, r;
6492
6493         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6494                 r = -EBUSY;
6495                 if (vcpu->arch.exception.pending)
6496                         goto out;
6497                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6498                         kvm_queue_exception(vcpu, DB_VECTOR);
6499                 else
6500                         kvm_queue_exception(vcpu, BP_VECTOR);
6501         }
6502
6503         /*
6504          * Read rflags as long as potentially injected trace flags are still
6505          * filtered out.
6506          */
6507         rflags = kvm_get_rflags(vcpu);
6508
6509         vcpu->guest_debug = dbg->control;
6510         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6511                 vcpu->guest_debug = 0;
6512
6513         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6514                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6515                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6516                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6517         } else {
6518                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6519                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6520         }
6521         kvm_update_dr7(vcpu);
6522
6523         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6524                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6525                         get_segment_base(vcpu, VCPU_SREG_CS);
6526
6527         /*
6528          * Trigger an rflags update that will inject or remove the trace
6529          * flags.
6530          */
6531         kvm_set_rflags(vcpu, rflags);
6532
6533         kvm_x86_ops->update_db_bp_intercept(vcpu);
6534
6535         r = 0;
6536
6537 out:
6538
6539         return r;
6540 }
6541
6542 /*
6543  * Translate a guest virtual address to a guest physical address.
6544  */
6545 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6546                                     struct kvm_translation *tr)
6547 {
6548         unsigned long vaddr = tr->linear_address;
6549         gpa_t gpa;
6550         int idx;
6551
6552         idx = srcu_read_lock(&vcpu->kvm->srcu);
6553         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6554         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6555         tr->physical_address = gpa;
6556         tr->valid = gpa != UNMAPPED_GVA;
6557         tr->writeable = 1;
6558         tr->usermode = 0;
6559
6560         return 0;
6561 }
6562
6563 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6564 {
6565         struct i387_fxsave_struct *fxsave =
6566                         &vcpu->arch.guest_fpu.state->fxsave;
6567
6568         memcpy(fpu->fpr, fxsave->st_space, 128);
6569         fpu->fcw = fxsave->cwd;
6570         fpu->fsw = fxsave->swd;
6571         fpu->ftwx = fxsave->twd;
6572         fpu->last_opcode = fxsave->fop;
6573         fpu->last_ip = fxsave->rip;
6574         fpu->last_dp = fxsave->rdp;
6575         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6576
6577         return 0;
6578 }
6579
6580 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6581 {
6582         struct i387_fxsave_struct *fxsave =
6583                         &vcpu->arch.guest_fpu.state->fxsave;
6584
6585         memcpy(fxsave->st_space, fpu->fpr, 128);
6586         fxsave->cwd = fpu->fcw;
6587         fxsave->swd = fpu->fsw;
6588         fxsave->twd = fpu->ftwx;
6589         fxsave->fop = fpu->last_opcode;
6590         fxsave->rip = fpu->last_ip;
6591         fxsave->rdp = fpu->last_dp;
6592         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6593
6594         return 0;
6595 }
6596
6597 int fx_init(struct kvm_vcpu *vcpu)
6598 {
6599         int err;
6600
6601         err = fpu_alloc(&vcpu->arch.guest_fpu);
6602         if (err)
6603                 return err;
6604
6605         fpu_finit(&vcpu->arch.guest_fpu);
6606
6607         /*
6608          * Ensure guest xcr0 is valid for loading
6609          */
6610         vcpu->arch.xcr0 = XSTATE_FP;
6611
6612         vcpu->arch.cr0 |= X86_CR0_ET;
6613
6614         return 0;
6615 }
6616 EXPORT_SYMBOL_GPL(fx_init);
6617
6618 static void fx_free(struct kvm_vcpu *vcpu)
6619 {
6620         fpu_free(&vcpu->arch.guest_fpu);
6621 }
6622
6623 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6624 {
6625         if (vcpu->guest_fpu_loaded)
6626                 return;
6627
6628         /*
6629          * Restore all possible states in the guest,
6630          * and assume host would use all available bits.
6631          * Guest xcr0 would be loaded later.
6632          */
6633         kvm_put_guest_xcr0(vcpu);
6634         vcpu->guest_fpu_loaded = 1;
6635         __kernel_fpu_begin();
6636         fpu_restore_checking(&vcpu->arch.guest_fpu);
6637         trace_kvm_fpu(1);
6638 }
6639
6640 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6641 {
6642         kvm_put_guest_xcr0(vcpu);
6643
6644         if (!vcpu->guest_fpu_loaded)
6645                 return;
6646
6647         vcpu->guest_fpu_loaded = 0;
6648         fpu_save_init(&vcpu->arch.guest_fpu);
6649         __kernel_fpu_end();
6650         ++vcpu->stat.fpu_reload;
6651         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6652         trace_kvm_fpu(0);
6653 }
6654
6655 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6656 {
6657         kvmclock_reset(vcpu);
6658
6659         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6660         fx_free(vcpu);
6661         kvm_x86_ops->vcpu_free(vcpu);
6662 }
6663
6664 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6665                                                 unsigned int id)
6666 {
6667         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6668                 printk_once(KERN_WARNING
6669                 "kvm: SMP vm created on host with unstable TSC; "
6670                 "guest TSC will not be reliable\n");
6671         return kvm_x86_ops->vcpu_create(kvm, id);
6672 }
6673
6674 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6675 {
6676         int r;
6677
6678         vcpu->arch.mtrr_state.have_fixed = 1;
6679         r = vcpu_load(vcpu);
6680         if (r)
6681                 return r;
6682         kvm_vcpu_reset(vcpu);
6683         kvm_mmu_setup(vcpu);
6684         vcpu_put(vcpu);
6685
6686         return r;
6687 }
6688
6689 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6690 {
6691         int r;
6692         struct msr_data msr;
6693
6694         r = vcpu_load(vcpu);
6695         if (r)
6696                 return r;
6697         msr.data = 0x0;
6698         msr.index = MSR_IA32_TSC;
6699         msr.host_initiated = true;
6700         kvm_write_tsc(vcpu, &msr);
6701         vcpu_put(vcpu);
6702
6703         return r;
6704 }
6705
6706 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6707 {
6708         int r;
6709         vcpu->arch.apf.msr_val = 0;
6710
6711         r = vcpu_load(vcpu);
6712         BUG_ON(r);
6713         kvm_mmu_unload(vcpu);
6714         vcpu_put(vcpu);
6715
6716         fx_free(vcpu);
6717         kvm_x86_ops->vcpu_free(vcpu);
6718 }
6719
6720 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6721 {
6722         atomic_set(&vcpu->arch.nmi_queued, 0);
6723         vcpu->arch.nmi_pending = 0;
6724         vcpu->arch.nmi_injected = false;
6725
6726         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6727         vcpu->arch.dr6 = DR6_FIXED_1;
6728         kvm_update_dr6(vcpu);
6729         vcpu->arch.dr7 = DR7_FIXED_1;
6730         kvm_update_dr7(vcpu);
6731
6732         kvm_make_request(KVM_REQ_EVENT, vcpu);
6733         vcpu->arch.apf.msr_val = 0;
6734         vcpu->arch.st.msr_val = 0;
6735
6736         kvmclock_reset(vcpu);
6737
6738         kvm_clear_async_pf_completion_queue(vcpu);
6739         kvm_async_pf_hash_reset(vcpu);
6740         vcpu->arch.apf.halted = false;
6741
6742         kvm_pmu_reset(vcpu);
6743
6744         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6745         vcpu->arch.regs_avail = ~0;
6746         vcpu->arch.regs_dirty = ~0;
6747
6748         kvm_x86_ops->vcpu_reset(vcpu);
6749 }
6750
6751 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6752 {
6753         struct kvm_segment cs;
6754
6755         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6756         cs.selector = vector << 8;
6757         cs.base = vector << 12;
6758         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6759         kvm_rip_write(vcpu, 0);
6760 }
6761
6762 int kvm_arch_hardware_enable(void *garbage)
6763 {
6764         struct kvm *kvm;
6765         struct kvm_vcpu *vcpu;
6766         int i;
6767         int ret;
6768         u64 local_tsc;
6769         u64 max_tsc = 0;
6770         bool stable, backwards_tsc = false;
6771
6772         kvm_shared_msr_cpu_online();
6773         ret = kvm_x86_ops->hardware_enable(garbage);
6774         if (ret != 0)
6775                 return ret;
6776
6777         local_tsc = native_read_tsc();
6778         stable = !check_tsc_unstable();
6779         list_for_each_entry(kvm, &vm_list, vm_list) {
6780                 kvm_for_each_vcpu(i, vcpu, kvm) {
6781                         if (!stable && vcpu->cpu == smp_processor_id())
6782                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6783                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6784                                 backwards_tsc = true;
6785                                 if (vcpu->arch.last_host_tsc > max_tsc)
6786                                         max_tsc = vcpu->arch.last_host_tsc;
6787                         }
6788                 }
6789         }
6790
6791         /*
6792          * Sometimes, even reliable TSCs go backwards.  This happens on
6793          * platforms that reset TSC during suspend or hibernate actions, but
6794          * maintain synchronization.  We must compensate.  Fortunately, we can
6795          * detect that condition here, which happens early in CPU bringup,
6796          * before any KVM threads can be running.  Unfortunately, we can't
6797          * bring the TSCs fully up to date with real time, as we aren't yet far
6798          * enough into CPU bringup that we know how much real time has actually
6799          * elapsed; our helper function, get_kernel_ns() will be using boot
6800          * variables that haven't been updated yet.
6801          *
6802          * So we simply find the maximum observed TSC above, then record the
6803          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6804          * the adjustment will be applied.  Note that we accumulate
6805          * adjustments, in case multiple suspend cycles happen before some VCPU
6806          * gets a chance to run again.  In the event that no KVM threads get a
6807          * chance to run, we will miss the entire elapsed period, as we'll have
6808          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6809          * loose cycle time.  This isn't too big a deal, since the loss will be
6810          * uniform across all VCPUs (not to mention the scenario is extremely
6811          * unlikely). It is possible that a second hibernate recovery happens
6812          * much faster than a first, causing the observed TSC here to be
6813          * smaller; this would require additional padding adjustment, which is
6814          * why we set last_host_tsc to the local tsc observed here.
6815          *
6816          * N.B. - this code below runs only on platforms with reliable TSC,
6817          * as that is the only way backwards_tsc is set above.  Also note
6818          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6819          * have the same delta_cyc adjustment applied if backwards_tsc
6820          * is detected.  Note further, this adjustment is only done once,
6821          * as we reset last_host_tsc on all VCPUs to stop this from being
6822          * called multiple times (one for each physical CPU bringup).
6823          *
6824          * Platforms with unreliable TSCs don't have to deal with this, they
6825          * will be compensated by the logic in vcpu_load, which sets the TSC to
6826          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6827          * guarantee that they stay in perfect synchronization.
6828          */
6829         if (backwards_tsc) {
6830                 u64 delta_cyc = max_tsc - local_tsc;
6831                 list_for_each_entry(kvm, &vm_list, vm_list) {
6832                         kvm_for_each_vcpu(i, vcpu, kvm) {
6833                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6834                                 vcpu->arch.last_host_tsc = local_tsc;
6835                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6836                                         &vcpu->requests);
6837                         }
6838
6839                         /*
6840                          * We have to disable TSC offset matching.. if you were
6841                          * booting a VM while issuing an S4 host suspend....
6842                          * you may have some problem.  Solving this issue is
6843                          * left as an exercise to the reader.
6844                          */
6845                         kvm->arch.last_tsc_nsec = 0;
6846                         kvm->arch.last_tsc_write = 0;
6847                 }
6848
6849         }
6850         return 0;
6851 }
6852
6853 void kvm_arch_hardware_disable(void *garbage)
6854 {
6855         kvm_x86_ops->hardware_disable(garbage);
6856         drop_user_return_notifiers(garbage);
6857 }
6858
6859 int kvm_arch_hardware_setup(void)
6860 {
6861         return kvm_x86_ops->hardware_setup();
6862 }
6863
6864 void kvm_arch_hardware_unsetup(void)
6865 {
6866         kvm_x86_ops->hardware_unsetup();
6867 }
6868
6869 void kvm_arch_check_processor_compat(void *rtn)
6870 {
6871         kvm_x86_ops->check_processor_compatibility(rtn);
6872 }
6873
6874 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6875 {
6876         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6877 }
6878
6879 struct static_key kvm_no_apic_vcpu __read_mostly;
6880
6881 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6882 {
6883         struct page *page;
6884         struct kvm *kvm;
6885         int r;
6886
6887         BUG_ON(vcpu->kvm == NULL);
6888         kvm = vcpu->kvm;
6889
6890         vcpu->arch.pv.pv_unhalted = false;
6891         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6892         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6893                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6894         else
6895                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6896
6897         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6898         if (!page) {
6899                 r = -ENOMEM;
6900                 goto fail;
6901         }
6902         vcpu->arch.pio_data = page_address(page);
6903
6904         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6905
6906         r = kvm_mmu_create(vcpu);
6907         if (r < 0)
6908                 goto fail_free_pio_data;
6909
6910         if (irqchip_in_kernel(kvm)) {
6911                 r = kvm_create_lapic(vcpu);
6912                 if (r < 0)
6913                         goto fail_mmu_destroy;
6914         } else
6915                 static_key_slow_inc(&kvm_no_apic_vcpu);
6916
6917         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6918                                        GFP_KERNEL);
6919         if (!vcpu->arch.mce_banks) {
6920                 r = -ENOMEM;
6921                 goto fail_free_lapic;
6922         }
6923         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6924
6925         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6926                 r = -ENOMEM;
6927                 goto fail_free_mce_banks;
6928         }
6929
6930         r = fx_init(vcpu);
6931         if (r)
6932                 goto fail_free_wbinvd_dirty_mask;
6933
6934         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6935         vcpu->arch.pv_time_enabled = false;
6936
6937         vcpu->arch.guest_supported_xcr0 = 0;
6938         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6939
6940         kvm_async_pf_hash_reset(vcpu);
6941         kvm_pmu_init(vcpu);
6942
6943         return 0;
6944 fail_free_wbinvd_dirty_mask:
6945         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6946 fail_free_mce_banks:
6947         kfree(vcpu->arch.mce_banks);
6948 fail_free_lapic:
6949         kvm_free_lapic(vcpu);
6950 fail_mmu_destroy:
6951         kvm_mmu_destroy(vcpu);
6952 fail_free_pio_data:
6953         free_page((unsigned long)vcpu->arch.pio_data);
6954 fail:
6955         return r;
6956 }
6957
6958 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6959 {
6960         int idx;
6961
6962         kvm_pmu_destroy(vcpu);
6963         kfree(vcpu->arch.mce_banks);
6964         kvm_free_lapic(vcpu);
6965         idx = srcu_read_lock(&vcpu->kvm->srcu);
6966         kvm_mmu_destroy(vcpu);
6967         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6968         free_page((unsigned long)vcpu->arch.pio_data);
6969         if (!irqchip_in_kernel(vcpu->kvm))
6970                 static_key_slow_dec(&kvm_no_apic_vcpu);
6971 }
6972
6973 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6974 {
6975         if (type)
6976                 return -EINVAL;
6977
6978         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6979         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6980         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6981         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
6982
6983         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6984         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6985         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6986         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6987                 &kvm->arch.irq_sources_bitmap);
6988
6989         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6990         mutex_init(&kvm->arch.apic_map_lock);
6991         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6992
6993         pvclock_update_vm_gtod_copy(kvm);
6994
6995         return 0;
6996 }
6997
6998 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6999 {
7000         int r;
7001         r = vcpu_load(vcpu);
7002         BUG_ON(r);
7003         kvm_mmu_unload(vcpu);
7004         vcpu_put(vcpu);
7005 }
7006
7007 static void kvm_free_vcpus(struct kvm *kvm)
7008 {
7009         unsigned int i;
7010         struct kvm_vcpu *vcpu;
7011
7012         /*
7013          * Unpin any mmu pages first.
7014          */
7015         kvm_for_each_vcpu(i, vcpu, kvm) {
7016                 kvm_clear_async_pf_completion_queue(vcpu);
7017                 kvm_unload_vcpu_mmu(vcpu);
7018         }
7019         kvm_for_each_vcpu(i, vcpu, kvm)
7020                 kvm_arch_vcpu_free(vcpu);
7021
7022         mutex_lock(&kvm->lock);
7023         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7024                 kvm->vcpus[i] = NULL;
7025
7026         atomic_set(&kvm->online_vcpus, 0);
7027         mutex_unlock(&kvm->lock);
7028 }
7029
7030 void kvm_arch_sync_events(struct kvm *kvm)
7031 {
7032         kvm_free_all_assigned_devices(kvm);
7033         kvm_free_pit(kvm);
7034 }
7035
7036 void kvm_arch_destroy_vm(struct kvm *kvm)
7037 {
7038         if (current->mm == kvm->mm) {
7039                 /*
7040                  * Free memory regions allocated on behalf of userspace,
7041                  * unless the the memory map has changed due to process exit
7042                  * or fd copying.
7043                  */
7044                 struct kvm_userspace_memory_region mem;
7045                 memset(&mem, 0, sizeof(mem));
7046                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7047                 kvm_set_memory_region(kvm, &mem);
7048
7049                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7050                 kvm_set_memory_region(kvm, &mem);
7051
7052                 mem.slot = TSS_PRIVATE_MEMSLOT;
7053                 kvm_set_memory_region(kvm, &mem);
7054         }
7055         kvm_iommu_unmap_guest(kvm);
7056         kfree(kvm->arch.vpic);
7057         kfree(kvm->arch.vioapic);
7058         kvm_free_vcpus(kvm);
7059         if (kvm->arch.apic_access_page)
7060                 put_page(kvm->arch.apic_access_page);
7061         if (kvm->arch.ept_identity_pagetable)
7062                 put_page(kvm->arch.ept_identity_pagetable);
7063         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7064 }
7065
7066 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7067                            struct kvm_memory_slot *dont)
7068 {
7069         int i;
7070
7071         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7072                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7073                         kvm_kvfree(free->arch.rmap[i]);
7074                         free->arch.rmap[i] = NULL;
7075                 }
7076                 if (i == 0)
7077                         continue;
7078
7079                 if (!dont || free->arch.lpage_info[i - 1] !=
7080                              dont->arch.lpage_info[i - 1]) {
7081                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7082                         free->arch.lpage_info[i - 1] = NULL;
7083                 }
7084         }
7085 }
7086
7087 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7088                             unsigned long npages)
7089 {
7090         int i;
7091
7092         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7093                 unsigned long ugfn;
7094                 int lpages;
7095                 int level = i + 1;
7096
7097                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7098                                       slot->base_gfn, level) + 1;
7099
7100                 slot->arch.rmap[i] =
7101                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7102                 if (!slot->arch.rmap[i])
7103                         goto out_free;
7104                 if (i == 0)
7105                         continue;
7106
7107                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7108                                         sizeof(*slot->arch.lpage_info[i - 1]));
7109                 if (!slot->arch.lpage_info[i - 1])
7110                         goto out_free;
7111
7112                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7113                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7114                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7115                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7116                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7117                 /*
7118                  * If the gfn and userspace address are not aligned wrt each
7119                  * other, or if explicitly asked to, disable large page
7120                  * support for this slot
7121                  */
7122                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7123                     !kvm_largepages_enabled()) {
7124                         unsigned long j;
7125
7126                         for (j = 0; j < lpages; ++j)
7127                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7128                 }
7129         }
7130
7131         return 0;
7132
7133 out_free:
7134         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7135                 kvm_kvfree(slot->arch.rmap[i]);
7136                 slot->arch.rmap[i] = NULL;
7137                 if (i == 0)
7138                         continue;
7139
7140                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7141                 slot->arch.lpage_info[i - 1] = NULL;
7142         }
7143         return -ENOMEM;
7144 }
7145
7146 void kvm_arch_memslots_updated(struct kvm *kvm)
7147 {
7148         /*
7149          * memslots->generation has been incremented.
7150          * mmio generation may have reached its maximum value.
7151          */
7152         kvm_mmu_invalidate_mmio_sptes(kvm);
7153 }
7154
7155 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7156                                 struct kvm_memory_slot *memslot,
7157                                 struct kvm_userspace_memory_region *mem,
7158                                 enum kvm_mr_change change)
7159 {
7160         /*
7161          * Only private memory slots need to be mapped here since
7162          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7163          */
7164         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7165                 unsigned long userspace_addr;
7166
7167                 /*
7168                  * MAP_SHARED to prevent internal slot pages from being moved
7169                  * by fork()/COW.
7170                  */
7171                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7172                                          PROT_READ | PROT_WRITE,
7173                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7174
7175                 if (IS_ERR((void *)userspace_addr))
7176                         return PTR_ERR((void *)userspace_addr);
7177
7178                 memslot->userspace_addr = userspace_addr;
7179         }
7180
7181         return 0;
7182 }
7183
7184 void kvm_arch_commit_memory_region(struct kvm *kvm,
7185                                 struct kvm_userspace_memory_region *mem,
7186                                 const struct kvm_memory_slot *old,
7187                                 enum kvm_mr_change change)
7188 {
7189
7190         int nr_mmu_pages = 0;
7191
7192         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7193                 int ret;
7194
7195                 ret = vm_munmap(old->userspace_addr,
7196                                 old->npages * PAGE_SIZE);
7197                 if (ret < 0)
7198                         printk(KERN_WARNING
7199                                "kvm_vm_ioctl_set_memory_region: "
7200                                "failed to munmap memory\n");
7201         }
7202
7203         if (!kvm->arch.n_requested_mmu_pages)
7204                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7205
7206         if (nr_mmu_pages)
7207                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7208         /*
7209          * Write protect all pages for dirty logging.
7210          * Existing largepage mappings are destroyed here and new ones will
7211          * not be created until the end of the logging.
7212          */
7213         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7214                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7215 }
7216
7217 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7218 {
7219         kvm_mmu_invalidate_zap_all_pages(kvm);
7220 }
7221
7222 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7223                                    struct kvm_memory_slot *slot)
7224 {
7225         kvm_mmu_invalidate_zap_all_pages(kvm);
7226 }
7227
7228 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7229 {
7230         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7231                 !vcpu->arch.apf.halted)
7232                 || !list_empty_careful(&vcpu->async_pf.done)
7233                 || kvm_apic_has_events(vcpu)
7234                 || vcpu->arch.pv.pv_unhalted
7235                 || atomic_read(&vcpu->arch.nmi_queued) ||
7236                 (kvm_arch_interrupt_allowed(vcpu) &&
7237                  kvm_cpu_has_interrupt(vcpu));
7238 }
7239
7240 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7241 {
7242         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7243 }
7244
7245 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7246 {
7247         return kvm_x86_ops->interrupt_allowed(vcpu);
7248 }
7249
7250 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7251 {
7252         unsigned long current_rip = kvm_rip_read(vcpu) +
7253                 get_segment_base(vcpu, VCPU_SREG_CS);
7254
7255         return current_rip == linear_rip;
7256 }
7257 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7258
7259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7260 {
7261         unsigned long rflags;
7262
7263         rflags = kvm_x86_ops->get_rflags(vcpu);
7264         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7265                 rflags &= ~X86_EFLAGS_TF;
7266         return rflags;
7267 }
7268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7269
7270 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7271 {
7272         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7273             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7274                 rflags |= X86_EFLAGS_TF;
7275         kvm_x86_ops->set_rflags(vcpu, rflags);
7276         kvm_make_request(KVM_REQ_EVENT, vcpu);
7277 }
7278 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7279
7280 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7281 {
7282         int r;
7283
7284         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7285               work->wakeup_all)
7286                 return;
7287
7288         r = kvm_mmu_reload(vcpu);
7289         if (unlikely(r))
7290                 return;
7291
7292         if (!vcpu->arch.mmu.direct_map &&
7293               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7294                 return;
7295
7296         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7297 }
7298
7299 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7300 {
7301         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7302 }
7303
7304 static inline u32 kvm_async_pf_next_probe(u32 key)
7305 {
7306         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7307 }
7308
7309 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7310 {
7311         u32 key = kvm_async_pf_hash_fn(gfn);
7312
7313         while (vcpu->arch.apf.gfns[key] != ~0)
7314                 key = kvm_async_pf_next_probe(key);
7315
7316         vcpu->arch.apf.gfns[key] = gfn;
7317 }
7318
7319 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7320 {
7321         int i;
7322         u32 key = kvm_async_pf_hash_fn(gfn);
7323
7324         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7325                      (vcpu->arch.apf.gfns[key] != gfn &&
7326                       vcpu->arch.apf.gfns[key] != ~0); i++)
7327                 key = kvm_async_pf_next_probe(key);
7328
7329         return key;
7330 }
7331
7332 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7333 {
7334         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7335 }
7336
7337 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7338 {
7339         u32 i, j, k;
7340
7341         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7342         while (true) {
7343                 vcpu->arch.apf.gfns[i] = ~0;
7344                 do {
7345                         j = kvm_async_pf_next_probe(j);
7346                         if (vcpu->arch.apf.gfns[j] == ~0)
7347                                 return;
7348                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7349                         /*
7350                          * k lies cyclically in ]i,j]
7351                          * |    i.k.j |
7352                          * |....j i.k.| or  |.k..j i...|
7353                          */
7354                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7355                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7356                 i = j;
7357         }
7358 }
7359
7360 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7361 {
7362
7363         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7364                                       sizeof(val));
7365 }
7366
7367 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7368                                      struct kvm_async_pf *work)
7369 {
7370         struct x86_exception fault;
7371
7372         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7373         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7374
7375         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7376             (vcpu->arch.apf.send_user_only &&
7377              kvm_x86_ops->get_cpl(vcpu) == 0))
7378                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7379         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7380                 fault.vector = PF_VECTOR;
7381                 fault.error_code_valid = true;
7382                 fault.error_code = 0;
7383                 fault.nested_page_fault = false;
7384                 fault.address = work->arch.token;
7385                 kvm_inject_page_fault(vcpu, &fault);
7386         }
7387 }
7388
7389 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7390                                  struct kvm_async_pf *work)
7391 {
7392         struct x86_exception fault;
7393
7394         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7395         if (work->wakeup_all)
7396                 work->arch.token = ~0; /* broadcast wakeup */
7397         else
7398                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7399
7400         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7401             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7402                 fault.vector = PF_VECTOR;
7403                 fault.error_code_valid = true;
7404                 fault.error_code = 0;
7405                 fault.nested_page_fault = false;
7406                 fault.address = work->arch.token;
7407                 kvm_inject_page_fault(vcpu, &fault);
7408         }
7409         vcpu->arch.apf.halted = false;
7410         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7411 }
7412
7413 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7414 {
7415         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7416                 return true;
7417         else
7418                 return !kvm_event_needs_reinjection(vcpu) &&
7419                         kvm_x86_ops->interrupt_allowed(vcpu);
7420 }
7421
7422 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7423 {
7424         atomic_inc(&kvm->arch.noncoherent_dma_count);
7425 }
7426 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7427
7428 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7429 {
7430         atomic_dec(&kvm->arch.noncoherent_dma_count);
7431 }
7432 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7433
7434 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7435 {
7436         return atomic_read(&kvm->arch.noncoherent_dma_count);
7437 }
7438 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7439
7440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);