]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
KVM: x86: handle hardware breakpoints during emulation
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~host_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         /*
686          * Does the new cr3 value map to physical memory? (Note, we
687          * catch an invalid cr3 even in real-mode, because it would
688          * cause trouble later on when we turn on paging anyway.)
689          *
690          * A real CPU would silently accept an invalid cr3 and would
691          * attempt to use it - with largely undefined (and often hard
692          * to debug) behavior on the guest side.
693          */
694         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695                 return 1;
696         vcpu->arch.cr3 = cr3;
697         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698         vcpu->arch.mmu.new_cr3(vcpu);
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705         if (cr8 & CR8_RESERVED_BITS)
706                 return 1;
707         if (irqchip_in_kernel(vcpu->kvm))
708                 kvm_lapic_set_tpr(vcpu, cr8);
709         else
710                 vcpu->arch.cr8 = cr8;
711         return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717         if (irqchip_in_kernel(vcpu->kvm))
718                 return kvm_lapic_get_cr8(vcpu);
719         else
720                 return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726         unsigned long dr7;
727
728         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729                 dr7 = vcpu->arch.guest_debug_dr7;
730         else
731                 dr7 = vcpu->arch.dr7;
732         kvm_x86_ops->set_dr7(vcpu, dr7);
733         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738         switch (dr) {
739         case 0 ... 3:
740                 vcpu->arch.db[dr] = val;
741                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742                         vcpu->arch.eff_db[dr] = val;
743                 break;
744         case 4:
745                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746                         return 1; /* #UD */
747                 /* fall through */
748         case 6:
749                 if (val & 0xffffffff00000000ULL)
750                         return -1; /* #GP */
751                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752                 break;
753         case 5:
754                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755                         return 1; /* #UD */
756                 /* fall through */
757         default: /* 7 */
758                 if (val & 0xffffffff00000000ULL)
759                         return -1; /* #GP */
760                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761                 kvm_update_dr7(vcpu);
762                 break;
763         }
764
765         return 0;
766 }
767
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770         int res;
771
772         res = __kvm_set_dr(vcpu, dr, val);
773         if (res > 0)
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775         else if (res < 0)
776                 kvm_inject_gp(vcpu, 0);
777
778         return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         switch (dr) {
785         case 0 ... 3:
786                 *val = vcpu->arch.db[dr];
787                 break;
788         case 4:
789                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790                         return 1;
791                 /* fall through */
792         case 6:
793                 *val = vcpu->arch.dr6;
794                 break;
795         case 5:
796                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797                         return 1;
798                 /* fall through */
799         default: /* 7 */
800                 *val = vcpu->arch.dr7;
801                 break;
802         }
803
804         return 0;
805 }
806
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809         if (_kvm_get_dr(vcpu, dr, val)) {
810                 kvm_queue_exception(vcpu, UD_VECTOR);
811                 return 1;
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820         u64 data;
821         int err;
822
823         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824         if (err)
825                 return err;
826         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828         return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840
841 #define KVM_SAVE_MSRS_BEGIN     10
842 static u32 msrs_to_save[] = {
843         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847         MSR_KVM_PV_EOI_EN,
848         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849         MSR_STAR,
850 #ifdef CONFIG_X86_64
851         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
854         MSR_IA32_FEATURE_CONTROL
855 };
856
857 static unsigned num_msrs_to_save;
858
859 static const u32 emulated_msrs[] = {
860         MSR_IA32_TSC_ADJUST,
861         MSR_IA32_TSCDEADLINE,
862         MSR_IA32_MISC_ENABLE,
863         MSR_IA32_MCG_STATUS,
864         MSR_IA32_MCG_CTL,
865 };
866
867 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
868 {
869         if (efer & efer_reserved_bits)
870                 return false;
871
872         if (efer & EFER_FFXSR) {
873                 struct kvm_cpuid_entry2 *feat;
874
875                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
876                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
877                         return false;
878         }
879
880         if (efer & EFER_SVME) {
881                 struct kvm_cpuid_entry2 *feat;
882
883                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
884                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
885                         return false;
886         }
887
888         return true;
889 }
890 EXPORT_SYMBOL_GPL(kvm_valid_efer);
891
892 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
893 {
894         u64 old_efer = vcpu->arch.efer;
895
896         if (!kvm_valid_efer(vcpu, efer))
897                 return 1;
898
899         if (is_paging(vcpu)
900             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
901                 return 1;
902
903         efer &= ~EFER_LMA;
904         efer |= vcpu->arch.efer & EFER_LMA;
905
906         kvm_x86_ops->set_efer(vcpu, efer);
907
908         /* Update reserved bits */
909         if ((efer ^ old_efer) & EFER_NX)
910                 kvm_mmu_reset_context(vcpu);
911
912         return 0;
913 }
914
915 void kvm_enable_efer_bits(u64 mask)
916 {
917        efer_reserved_bits &= ~mask;
918 }
919 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
920
921
922 /*
923  * Writes msr value into into the appropriate "register".
924  * Returns 0 on success, non-0 otherwise.
925  * Assumes vcpu_load() was already called.
926  */
927 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
928 {
929         return kvm_x86_ops->set_msr(vcpu, msr);
930 }
931
932 /*
933  * Adapt set_msr() to msr_io()'s calling convention
934  */
935 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
936 {
937         struct msr_data msr;
938
939         msr.data = *data;
940         msr.index = index;
941         msr.host_initiated = true;
942         return kvm_set_msr(vcpu, &msr);
943 }
944
945 #ifdef CONFIG_X86_64
946 struct pvclock_gtod_data {
947         seqcount_t      seq;
948
949         struct { /* extract of a clocksource struct */
950                 int vclock_mode;
951                 cycle_t cycle_last;
952                 cycle_t mask;
953                 u32     mult;
954                 u32     shift;
955         } clock;
956
957         /* open coded 'struct timespec' */
958         u64             monotonic_time_snsec;
959         time_t          monotonic_time_sec;
960 };
961
962 static struct pvclock_gtod_data pvclock_gtod_data;
963
964 static void update_pvclock_gtod(struct timekeeper *tk)
965 {
966         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
967
968         write_seqcount_begin(&vdata->seq);
969
970         /* copy pvclock gtod data */
971         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
972         vdata->clock.cycle_last         = tk->clock->cycle_last;
973         vdata->clock.mask               = tk->clock->mask;
974         vdata->clock.mult               = tk->mult;
975         vdata->clock.shift              = tk->shift;
976
977         vdata->monotonic_time_sec       = tk->xtime_sec
978                                         + tk->wall_to_monotonic.tv_sec;
979         vdata->monotonic_time_snsec     = tk->xtime_nsec
980                                         + (tk->wall_to_monotonic.tv_nsec
981                                                 << tk->shift);
982         while (vdata->monotonic_time_snsec >=
983                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
984                 vdata->monotonic_time_snsec -=
985                                         ((u64)NSEC_PER_SEC) << tk->shift;
986                 vdata->monotonic_time_sec++;
987         }
988
989         write_seqcount_end(&vdata->seq);
990 }
991 #endif
992
993
994 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
995 {
996         int version;
997         int r;
998         struct pvclock_wall_clock wc;
999         struct timespec boot;
1000
1001         if (!wall_clock)
1002                 return;
1003
1004         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1005         if (r)
1006                 return;
1007
1008         if (version & 1)
1009                 ++version;  /* first time write, random junk */
1010
1011         ++version;
1012
1013         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1014
1015         /*
1016          * The guest calculates current wall clock time by adding
1017          * system time (updated by kvm_guest_time_update below) to the
1018          * wall clock specified here.  guest system time equals host
1019          * system time for us, thus we must fill in host boot time here.
1020          */
1021         getboottime(&boot);
1022
1023         if (kvm->arch.kvmclock_offset) {
1024                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1025                 boot = timespec_sub(boot, ts);
1026         }
1027         wc.sec = boot.tv_sec;
1028         wc.nsec = boot.tv_nsec;
1029         wc.version = version;
1030
1031         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1032
1033         version++;
1034         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1035 }
1036
1037 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1038 {
1039         uint32_t quotient, remainder;
1040
1041         /* Don't try to replace with do_div(), this one calculates
1042          * "(dividend << 32) / divisor" */
1043         __asm__ ( "divl %4"
1044                   : "=a" (quotient), "=d" (remainder)
1045                   : "0" (0), "1" (dividend), "r" (divisor) );
1046         return quotient;
1047 }
1048
1049 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1050                                s8 *pshift, u32 *pmultiplier)
1051 {
1052         uint64_t scaled64;
1053         int32_t  shift = 0;
1054         uint64_t tps64;
1055         uint32_t tps32;
1056
1057         tps64 = base_khz * 1000LL;
1058         scaled64 = scaled_khz * 1000LL;
1059         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1060                 tps64 >>= 1;
1061                 shift--;
1062         }
1063
1064         tps32 = (uint32_t)tps64;
1065         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1066                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1067                         scaled64 >>= 1;
1068                 else
1069                         tps32 <<= 1;
1070                 shift++;
1071         }
1072
1073         *pshift = shift;
1074         *pmultiplier = div_frac(scaled64, tps32);
1075
1076         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1077                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1078 }
1079
1080 static inline u64 get_kernel_ns(void)
1081 {
1082         struct timespec ts;
1083
1084         WARN_ON(preemptible());
1085         ktime_get_ts(&ts);
1086         monotonic_to_bootbased(&ts);
1087         return timespec_to_ns(&ts);
1088 }
1089
1090 #ifdef CONFIG_X86_64
1091 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1092 #endif
1093
1094 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1095 unsigned long max_tsc_khz;
1096
1097 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1098 {
1099         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1100                                    vcpu->arch.virtual_tsc_shift);
1101 }
1102
1103 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1104 {
1105         u64 v = (u64)khz * (1000000 + ppm);
1106         do_div(v, 1000000);
1107         return v;
1108 }
1109
1110 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1111 {
1112         u32 thresh_lo, thresh_hi;
1113         int use_scaling = 0;
1114
1115         /* tsc_khz can be zero if TSC calibration fails */
1116         if (this_tsc_khz == 0)
1117                 return;
1118
1119         /* Compute a scale to convert nanoseconds in TSC cycles */
1120         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1121                            &vcpu->arch.virtual_tsc_shift,
1122                            &vcpu->arch.virtual_tsc_mult);
1123         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1124
1125         /*
1126          * Compute the variation in TSC rate which is acceptable
1127          * within the range of tolerance and decide if the
1128          * rate being applied is within that bounds of the hardware
1129          * rate.  If so, no scaling or compensation need be done.
1130          */
1131         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1132         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1133         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1134                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1135                 use_scaling = 1;
1136         }
1137         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1138 }
1139
1140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1141 {
1142         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1143                                       vcpu->arch.virtual_tsc_mult,
1144                                       vcpu->arch.virtual_tsc_shift);
1145         tsc += vcpu->arch.this_tsc_write;
1146         return tsc;
1147 }
1148
1149 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1150 {
1151 #ifdef CONFIG_X86_64
1152         bool vcpus_matched;
1153         bool do_request = false;
1154         struct kvm_arch *ka = &vcpu->kvm->arch;
1155         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1156
1157         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1158                          atomic_read(&vcpu->kvm->online_vcpus));
1159
1160         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1161                 if (!ka->use_master_clock)
1162                         do_request = 1;
1163
1164         if (!vcpus_matched && ka->use_master_clock)
1165                         do_request = 1;
1166
1167         if (do_request)
1168                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1169
1170         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1171                             atomic_read(&vcpu->kvm->online_vcpus),
1172                             ka->use_master_clock, gtod->clock.vclock_mode);
1173 #endif
1174 }
1175
1176 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1177 {
1178         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1179         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1180 }
1181
1182 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1183 {
1184         struct kvm *kvm = vcpu->kvm;
1185         u64 offset, ns, elapsed;
1186         unsigned long flags;
1187         s64 usdiff;
1188         bool matched;
1189         u64 data = msr->data;
1190
1191         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1192         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193         ns = get_kernel_ns();
1194         elapsed = ns - kvm->arch.last_tsc_nsec;
1195
1196         if (vcpu->arch.virtual_tsc_khz) {
1197                 int faulted = 0;
1198
1199                 /* n.b - signed multiplication and division required */
1200                 usdiff = data - kvm->arch.last_tsc_write;
1201 #ifdef CONFIG_X86_64
1202                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1203 #else
1204                 /* do_div() only does unsigned */
1205                 asm("1: idivl %[divisor]\n"
1206                     "2: xor %%edx, %%edx\n"
1207                     "   movl $0, %[faulted]\n"
1208                     "3:\n"
1209                     ".section .fixup,\"ax\"\n"
1210                     "4: movl $1, %[faulted]\n"
1211                     "   jmp  3b\n"
1212                     ".previous\n"
1213
1214                 _ASM_EXTABLE(1b, 4b)
1215
1216                 : "=A"(usdiff), [faulted] "=r" (faulted)
1217                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1218
1219 #endif
1220                 do_div(elapsed, 1000);
1221                 usdiff -= elapsed;
1222                 if (usdiff < 0)
1223                         usdiff = -usdiff;
1224
1225                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1226                 if (faulted)
1227                         usdiff = USEC_PER_SEC;
1228         } else
1229                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1230
1231         /*
1232          * Special case: TSC write with a small delta (1 second) of virtual
1233          * cycle time against real time is interpreted as an attempt to
1234          * synchronize the CPU.
1235          *
1236          * For a reliable TSC, we can match TSC offsets, and for an unstable
1237          * TSC, we add elapsed time in this computation.  We could let the
1238          * compensation code attempt to catch up if we fall behind, but
1239          * it's better to try to match offsets from the beginning.
1240          */
1241         if (usdiff < USEC_PER_SEC &&
1242             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1243                 if (!check_tsc_unstable()) {
1244                         offset = kvm->arch.cur_tsc_offset;
1245                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1246                 } else {
1247                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1248                         data += delta;
1249                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1250                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1251                 }
1252                 matched = true;
1253         } else {
1254                 /*
1255                  * We split periods of matched TSC writes into generations.
1256                  * For each generation, we track the original measured
1257                  * nanosecond time, offset, and write, so if TSCs are in
1258                  * sync, we can match exact offset, and if not, we can match
1259                  * exact software computation in compute_guest_tsc()
1260                  *
1261                  * These values are tracked in kvm->arch.cur_xxx variables.
1262                  */
1263                 kvm->arch.cur_tsc_generation++;
1264                 kvm->arch.cur_tsc_nsec = ns;
1265                 kvm->arch.cur_tsc_write = data;
1266                 kvm->arch.cur_tsc_offset = offset;
1267                 matched = false;
1268                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1269                          kvm->arch.cur_tsc_generation, data);
1270         }
1271
1272         /*
1273          * We also track th most recent recorded KHZ, write and time to
1274          * allow the matching interval to be extended at each write.
1275          */
1276         kvm->arch.last_tsc_nsec = ns;
1277         kvm->arch.last_tsc_write = data;
1278         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1279
1280         /* Reset of TSC must disable overshoot protection below */
1281         vcpu->arch.hv_clock.tsc_timestamp = 0;
1282         vcpu->arch.last_guest_tsc = data;
1283
1284         /* Keep track of which generation this VCPU has synchronized to */
1285         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1286         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1287         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1288
1289         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1290                 update_ia32_tsc_adjust_msr(vcpu, offset);
1291         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1292         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1293
1294         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1295         if (matched)
1296                 kvm->arch.nr_vcpus_matched_tsc++;
1297         else
1298                 kvm->arch.nr_vcpus_matched_tsc = 0;
1299
1300         kvm_track_tsc_matching(vcpu);
1301         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1302 }
1303
1304 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1305
1306 #ifdef CONFIG_X86_64
1307
1308 static cycle_t read_tsc(void)
1309 {
1310         cycle_t ret;
1311         u64 last;
1312
1313         /*
1314          * Empirically, a fence (of type that depends on the CPU)
1315          * before rdtsc is enough to ensure that rdtsc is ordered
1316          * with respect to loads.  The various CPU manuals are unclear
1317          * as to whether rdtsc can be reordered with later loads,
1318          * but no one has ever seen it happen.
1319          */
1320         rdtsc_barrier();
1321         ret = (cycle_t)vget_cycles();
1322
1323         last = pvclock_gtod_data.clock.cycle_last;
1324
1325         if (likely(ret >= last))
1326                 return ret;
1327
1328         /*
1329          * GCC likes to generate cmov here, but this branch is extremely
1330          * predictable (it's just a funciton of time and the likely is
1331          * very likely) and there's a data dependence, so force GCC
1332          * to generate a branch instead.  I don't barrier() because
1333          * we don't actually need a barrier, and if this function
1334          * ever gets inlined it will generate worse code.
1335          */
1336         asm volatile ("");
1337         return last;
1338 }
1339
1340 static inline u64 vgettsc(cycle_t *cycle_now)
1341 {
1342         long v;
1343         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344
1345         *cycle_now = read_tsc();
1346
1347         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1348         return v * gtod->clock.mult;
1349 }
1350
1351 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1352 {
1353         unsigned long seq;
1354         u64 ns;
1355         int mode;
1356         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1357
1358         ts->tv_nsec = 0;
1359         do {
1360                 seq = read_seqcount_begin(&gtod->seq);
1361                 mode = gtod->clock.vclock_mode;
1362                 ts->tv_sec = gtod->monotonic_time_sec;
1363                 ns = gtod->monotonic_time_snsec;
1364                 ns += vgettsc(cycle_now);
1365                 ns >>= gtod->clock.shift;
1366         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1367         timespec_add_ns(ts, ns);
1368
1369         return mode;
1370 }
1371
1372 /* returns true if host is using tsc clocksource */
1373 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1374 {
1375         struct timespec ts;
1376
1377         /* checked again under seqlock below */
1378         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1379                 return false;
1380
1381         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1382                 return false;
1383
1384         monotonic_to_bootbased(&ts);
1385         *kernel_ns = timespec_to_ns(&ts);
1386
1387         return true;
1388 }
1389 #endif
1390
1391 /*
1392  *
1393  * Assuming a stable TSC across physical CPUS, and a stable TSC
1394  * across virtual CPUs, the following condition is possible.
1395  * Each numbered line represents an event visible to both
1396  * CPUs at the next numbered event.
1397  *
1398  * "timespecX" represents host monotonic time. "tscX" represents
1399  * RDTSC value.
1400  *
1401  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1402  *
1403  * 1.  read timespec0,tsc0
1404  * 2.                                   | timespec1 = timespec0 + N
1405  *                                      | tsc1 = tsc0 + M
1406  * 3. transition to guest               | transition to guest
1407  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1408  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1409  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1410  *
1411  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1412  *
1413  *      - ret0 < ret1
1414  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1415  *              ...
1416  *      - 0 < N - M => M < N
1417  *
1418  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1419  * always the case (the difference between two distinct xtime instances
1420  * might be smaller then the difference between corresponding TSC reads,
1421  * when updating guest vcpus pvclock areas).
1422  *
1423  * To avoid that problem, do not allow visibility of distinct
1424  * system_timestamp/tsc_timestamp values simultaneously: use a master
1425  * copy of host monotonic time values. Update that master copy
1426  * in lockstep.
1427  *
1428  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1429  *
1430  */
1431
1432 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1433 {
1434 #ifdef CONFIG_X86_64
1435         struct kvm_arch *ka = &kvm->arch;
1436         int vclock_mode;
1437         bool host_tsc_clocksource, vcpus_matched;
1438
1439         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1440                         atomic_read(&kvm->online_vcpus));
1441
1442         /*
1443          * If the host uses TSC clock, then passthrough TSC as stable
1444          * to the guest.
1445          */
1446         host_tsc_clocksource = kvm_get_time_and_clockread(
1447                                         &ka->master_kernel_ns,
1448                                         &ka->master_cycle_now);
1449
1450         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1451
1452         if (ka->use_master_clock)
1453                 atomic_set(&kvm_guest_has_master_clock, 1);
1454
1455         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1456         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1457                                         vcpus_matched);
1458 #endif
1459 }
1460
1461 static int kvm_guest_time_update(struct kvm_vcpu *v)
1462 {
1463         unsigned long flags, this_tsc_khz;
1464         struct kvm_vcpu_arch *vcpu = &v->arch;
1465         struct kvm_arch *ka = &v->kvm->arch;
1466         s64 kernel_ns, max_kernel_ns;
1467         u64 tsc_timestamp, host_tsc;
1468         struct pvclock_vcpu_time_info guest_hv_clock;
1469         u8 pvclock_flags;
1470         bool use_master_clock;
1471
1472         kernel_ns = 0;
1473         host_tsc = 0;
1474
1475         /*
1476          * If the host uses TSC clock, then passthrough TSC as stable
1477          * to the guest.
1478          */
1479         spin_lock(&ka->pvclock_gtod_sync_lock);
1480         use_master_clock = ka->use_master_clock;
1481         if (use_master_clock) {
1482                 host_tsc = ka->master_cycle_now;
1483                 kernel_ns = ka->master_kernel_ns;
1484         }
1485         spin_unlock(&ka->pvclock_gtod_sync_lock);
1486
1487         /* Keep irq disabled to prevent changes to the clock */
1488         local_irq_save(flags);
1489         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1490         if (unlikely(this_tsc_khz == 0)) {
1491                 local_irq_restore(flags);
1492                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1493                 return 1;
1494         }
1495         if (!use_master_clock) {
1496                 host_tsc = native_read_tsc();
1497                 kernel_ns = get_kernel_ns();
1498         }
1499
1500         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1501
1502         /*
1503          * We may have to catch up the TSC to match elapsed wall clock
1504          * time for two reasons, even if kvmclock is used.
1505          *   1) CPU could have been running below the maximum TSC rate
1506          *   2) Broken TSC compensation resets the base at each VCPU
1507          *      entry to avoid unknown leaps of TSC even when running
1508          *      again on the same CPU.  This may cause apparent elapsed
1509          *      time to disappear, and the guest to stand still or run
1510          *      very slowly.
1511          */
1512         if (vcpu->tsc_catchup) {
1513                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1514                 if (tsc > tsc_timestamp) {
1515                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1516                         tsc_timestamp = tsc;
1517                 }
1518         }
1519
1520         local_irq_restore(flags);
1521
1522         if (!vcpu->pv_time_enabled)
1523                 return 0;
1524
1525         /*
1526          * Time as measured by the TSC may go backwards when resetting the base
1527          * tsc_timestamp.  The reason for this is that the TSC resolution is
1528          * higher than the resolution of the other clock scales.  Thus, many
1529          * possible measurments of the TSC correspond to one measurement of any
1530          * other clock, and so a spread of values is possible.  This is not a
1531          * problem for the computation of the nanosecond clock; with TSC rates
1532          * around 1GHZ, there can only be a few cycles which correspond to one
1533          * nanosecond value, and any path through this code will inevitably
1534          * take longer than that.  However, with the kernel_ns value itself,
1535          * the precision may be much lower, down to HZ granularity.  If the
1536          * first sampling of TSC against kernel_ns ends in the low part of the
1537          * range, and the second in the high end of the range, we can get:
1538          *
1539          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1540          *
1541          * As the sampling errors potentially range in the thousands of cycles,
1542          * it is possible such a time value has already been observed by the
1543          * guest.  To protect against this, we must compute the system time as
1544          * observed by the guest and ensure the new system time is greater.
1545          */
1546         max_kernel_ns = 0;
1547         if (vcpu->hv_clock.tsc_timestamp) {
1548                 max_kernel_ns = vcpu->last_guest_tsc -
1549                                 vcpu->hv_clock.tsc_timestamp;
1550                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1551                                     vcpu->hv_clock.tsc_to_system_mul,
1552                                     vcpu->hv_clock.tsc_shift);
1553                 max_kernel_ns += vcpu->last_kernel_ns;
1554         }
1555
1556         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1557                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1558                                    &vcpu->hv_clock.tsc_shift,
1559                                    &vcpu->hv_clock.tsc_to_system_mul);
1560                 vcpu->hw_tsc_khz = this_tsc_khz;
1561         }
1562
1563         /* with a master <monotonic time, tsc value> tuple,
1564          * pvclock clock reads always increase at the (scaled) rate
1565          * of guest TSC - no need to deal with sampling errors.
1566          */
1567         if (!use_master_clock) {
1568                 if (max_kernel_ns > kernel_ns)
1569                         kernel_ns = max_kernel_ns;
1570         }
1571         /* With all the info we got, fill in the values */
1572         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1573         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1574         vcpu->last_kernel_ns = kernel_ns;
1575         vcpu->last_guest_tsc = tsc_timestamp;
1576
1577         /*
1578          * The interface expects us to write an even number signaling that the
1579          * update is finished. Since the guest won't see the intermediate
1580          * state, we just increase by 2 at the end.
1581          */
1582         vcpu->hv_clock.version += 2;
1583
1584         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1585                 &guest_hv_clock, sizeof(guest_hv_clock))))
1586                 return 0;
1587
1588         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1589         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1590
1591         if (vcpu->pvclock_set_guest_stopped_request) {
1592                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1593                 vcpu->pvclock_set_guest_stopped_request = false;
1594         }
1595
1596         /* If the host uses TSC clocksource, then it is stable */
1597         if (use_master_clock)
1598                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1599
1600         vcpu->hv_clock.flags = pvclock_flags;
1601
1602         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1603                                 &vcpu->hv_clock,
1604                                 sizeof(vcpu->hv_clock));
1605         return 0;
1606 }
1607
1608 /*
1609  * kvmclock updates which are isolated to a given vcpu, such as
1610  * vcpu->cpu migration, should not allow system_timestamp from
1611  * the rest of the vcpus to remain static. Otherwise ntp frequency
1612  * correction applies to one vcpu's system_timestamp but not
1613  * the others.
1614  *
1615  * So in those cases, request a kvmclock update for all vcpus.
1616  * The worst case for a remote vcpu to update its kvmclock
1617  * is then bounded by maximum nohz sleep latency.
1618  */
1619
1620 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1621 {
1622         int i;
1623         struct kvm *kvm = v->kvm;
1624         struct kvm_vcpu *vcpu;
1625
1626         kvm_for_each_vcpu(i, vcpu, kvm) {
1627                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1628                 kvm_vcpu_kick(vcpu);
1629         }
1630 }
1631
1632 static bool msr_mtrr_valid(unsigned msr)
1633 {
1634         switch (msr) {
1635         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1636         case MSR_MTRRfix64K_00000:
1637         case MSR_MTRRfix16K_80000:
1638         case MSR_MTRRfix16K_A0000:
1639         case MSR_MTRRfix4K_C0000:
1640         case MSR_MTRRfix4K_C8000:
1641         case MSR_MTRRfix4K_D0000:
1642         case MSR_MTRRfix4K_D8000:
1643         case MSR_MTRRfix4K_E0000:
1644         case MSR_MTRRfix4K_E8000:
1645         case MSR_MTRRfix4K_F0000:
1646         case MSR_MTRRfix4K_F8000:
1647         case MSR_MTRRdefType:
1648         case MSR_IA32_CR_PAT:
1649                 return true;
1650         case 0x2f8:
1651                 return true;
1652         }
1653         return false;
1654 }
1655
1656 static bool valid_pat_type(unsigned t)
1657 {
1658         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1659 }
1660
1661 static bool valid_mtrr_type(unsigned t)
1662 {
1663         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1664 }
1665
1666 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1667 {
1668         int i;
1669
1670         if (!msr_mtrr_valid(msr))
1671                 return false;
1672
1673         if (msr == MSR_IA32_CR_PAT) {
1674                 for (i = 0; i < 8; i++)
1675                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1676                                 return false;
1677                 return true;
1678         } else if (msr == MSR_MTRRdefType) {
1679                 if (data & ~0xcff)
1680                         return false;
1681                 return valid_mtrr_type(data & 0xff);
1682         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1683                 for (i = 0; i < 8 ; i++)
1684                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1685                                 return false;
1686                 return true;
1687         }
1688
1689         /* variable MTRRs */
1690         return valid_mtrr_type(data & 0xff);
1691 }
1692
1693 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1694 {
1695         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1696
1697         if (!mtrr_valid(vcpu, msr, data))
1698                 return 1;
1699
1700         if (msr == MSR_MTRRdefType) {
1701                 vcpu->arch.mtrr_state.def_type = data;
1702                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1703         } else if (msr == MSR_MTRRfix64K_00000)
1704                 p[0] = data;
1705         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1706                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1707         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1708                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1709         else if (msr == MSR_IA32_CR_PAT)
1710                 vcpu->arch.pat = data;
1711         else {  /* Variable MTRRs */
1712                 int idx, is_mtrr_mask;
1713                 u64 *pt;
1714
1715                 idx = (msr - 0x200) / 2;
1716                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1717                 if (!is_mtrr_mask)
1718                         pt =
1719                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1720                 else
1721                         pt =
1722                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1723                 *pt = data;
1724         }
1725
1726         kvm_mmu_reset_context(vcpu);
1727         return 0;
1728 }
1729
1730 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1731 {
1732         u64 mcg_cap = vcpu->arch.mcg_cap;
1733         unsigned bank_num = mcg_cap & 0xff;
1734
1735         switch (msr) {
1736         case MSR_IA32_MCG_STATUS:
1737                 vcpu->arch.mcg_status = data;
1738                 break;
1739         case MSR_IA32_MCG_CTL:
1740                 if (!(mcg_cap & MCG_CTL_P))
1741                         return 1;
1742                 if (data != 0 && data != ~(u64)0)
1743                         return -1;
1744                 vcpu->arch.mcg_ctl = data;
1745                 break;
1746         default:
1747                 if (msr >= MSR_IA32_MC0_CTL &&
1748                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1749                         u32 offset = msr - MSR_IA32_MC0_CTL;
1750                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1751                          * some Linux kernels though clear bit 10 in bank 4 to
1752                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1753                          * this to avoid an uncatched #GP in the guest
1754                          */
1755                         if ((offset & 0x3) == 0 &&
1756                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1757                                 return -1;
1758                         vcpu->arch.mce_banks[offset] = data;
1759                         break;
1760                 }
1761                 return 1;
1762         }
1763         return 0;
1764 }
1765
1766 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1767 {
1768         struct kvm *kvm = vcpu->kvm;
1769         int lm = is_long_mode(vcpu);
1770         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1771                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1772         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1773                 : kvm->arch.xen_hvm_config.blob_size_32;
1774         u32 page_num = data & ~PAGE_MASK;
1775         u64 page_addr = data & PAGE_MASK;
1776         u8 *page;
1777         int r;
1778
1779         r = -E2BIG;
1780         if (page_num >= blob_size)
1781                 goto out;
1782         r = -ENOMEM;
1783         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1784         if (IS_ERR(page)) {
1785                 r = PTR_ERR(page);
1786                 goto out;
1787         }
1788         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1789                 goto out_free;
1790         r = 0;
1791 out_free:
1792         kfree(page);
1793 out:
1794         return r;
1795 }
1796
1797 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1798 {
1799         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1800 }
1801
1802 static bool kvm_hv_msr_partition_wide(u32 msr)
1803 {
1804         bool r = false;
1805         switch (msr) {
1806         case HV_X64_MSR_GUEST_OS_ID:
1807         case HV_X64_MSR_HYPERCALL:
1808                 r = true;
1809                 break;
1810         }
1811
1812         return r;
1813 }
1814
1815 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1816 {
1817         struct kvm *kvm = vcpu->kvm;
1818
1819         switch (msr) {
1820         case HV_X64_MSR_GUEST_OS_ID:
1821                 kvm->arch.hv_guest_os_id = data;
1822                 /* setting guest os id to zero disables hypercall page */
1823                 if (!kvm->arch.hv_guest_os_id)
1824                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1825                 break;
1826         case HV_X64_MSR_HYPERCALL: {
1827                 u64 gfn;
1828                 unsigned long addr;
1829                 u8 instructions[4];
1830
1831                 /* if guest os id is not set hypercall should remain disabled */
1832                 if (!kvm->arch.hv_guest_os_id)
1833                         break;
1834                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1835                         kvm->arch.hv_hypercall = data;
1836                         break;
1837                 }
1838                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1839                 addr = gfn_to_hva(kvm, gfn);
1840                 if (kvm_is_error_hva(addr))
1841                         return 1;
1842                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1843                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1844                 if (__copy_to_user((void __user *)addr, instructions, 4))
1845                         return 1;
1846                 kvm->arch.hv_hypercall = data;
1847                 break;
1848         }
1849         default:
1850                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1851                             "data 0x%llx\n", msr, data);
1852                 return 1;
1853         }
1854         return 0;
1855 }
1856
1857 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1858 {
1859         switch (msr) {
1860         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1861                 unsigned long addr;
1862
1863                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1864                         vcpu->arch.hv_vapic = data;
1865                         break;
1866                 }
1867                 addr = gfn_to_hva(vcpu->kvm, data >>
1868                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1869                 if (kvm_is_error_hva(addr))
1870                         return 1;
1871                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1872                         return 1;
1873                 vcpu->arch.hv_vapic = data;
1874                 break;
1875         }
1876         case HV_X64_MSR_EOI:
1877                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1878         case HV_X64_MSR_ICR:
1879                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1880         case HV_X64_MSR_TPR:
1881                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1882         default:
1883                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1884                             "data 0x%llx\n", msr, data);
1885                 return 1;
1886         }
1887
1888         return 0;
1889 }
1890
1891 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1892 {
1893         gpa_t gpa = data & ~0x3f;
1894
1895         /* Bits 2:5 are reserved, Should be zero */
1896         if (data & 0x3c)
1897                 return 1;
1898
1899         vcpu->arch.apf.msr_val = data;
1900
1901         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1902                 kvm_clear_async_pf_completion_queue(vcpu);
1903                 kvm_async_pf_hash_reset(vcpu);
1904                 return 0;
1905         }
1906
1907         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1908                                         sizeof(u32)))
1909                 return 1;
1910
1911         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1912         kvm_async_pf_wakeup_all(vcpu);
1913         return 0;
1914 }
1915
1916 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1917 {
1918         vcpu->arch.pv_time_enabled = false;
1919 }
1920
1921 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1922 {
1923         u64 delta;
1924
1925         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1926                 return;
1927
1928         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1929         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1930         vcpu->arch.st.accum_steal = delta;
1931 }
1932
1933 static void record_steal_time(struct kvm_vcpu *vcpu)
1934 {
1935         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1936                 return;
1937
1938         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1939                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1940                 return;
1941
1942         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1943         vcpu->arch.st.steal.version += 2;
1944         vcpu->arch.st.accum_steal = 0;
1945
1946         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1947                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1948 }
1949
1950 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1951 {
1952         bool pr = false;
1953         u32 msr = msr_info->index;
1954         u64 data = msr_info->data;
1955
1956         switch (msr) {
1957         case MSR_AMD64_NB_CFG:
1958         case MSR_IA32_UCODE_REV:
1959         case MSR_IA32_UCODE_WRITE:
1960         case MSR_VM_HSAVE_PA:
1961         case MSR_AMD64_PATCH_LOADER:
1962         case MSR_AMD64_BU_CFG2:
1963                 break;
1964
1965         case MSR_EFER:
1966                 return set_efer(vcpu, data);
1967         case MSR_K7_HWCR:
1968                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1969                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1970                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1971                 if (data != 0) {
1972                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1973                                     data);
1974                         return 1;
1975                 }
1976                 break;
1977         case MSR_FAM10H_MMIO_CONF_BASE:
1978                 if (data != 0) {
1979                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1980                                     "0x%llx\n", data);
1981                         return 1;
1982                 }
1983                 break;
1984         case MSR_IA32_DEBUGCTLMSR:
1985                 if (!data) {
1986                         /* We support the non-activated case already */
1987                         break;
1988                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1989                         /* Values other than LBR and BTF are vendor-specific,
1990                            thus reserved and should throw a #GP */
1991                         return 1;
1992                 }
1993                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1994                             __func__, data);
1995                 break;
1996         case 0x200 ... 0x2ff:
1997                 return set_msr_mtrr(vcpu, msr, data);
1998         case MSR_IA32_APICBASE:
1999                 kvm_set_apic_base(vcpu, data);
2000                 break;
2001         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2002                 return kvm_x2apic_msr_write(vcpu, msr, data);
2003         case MSR_IA32_TSCDEADLINE:
2004                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2005                 break;
2006         case MSR_IA32_TSC_ADJUST:
2007                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2008                         if (!msr_info->host_initiated) {
2009                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2010                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2011                         }
2012                         vcpu->arch.ia32_tsc_adjust_msr = data;
2013                 }
2014                 break;
2015         case MSR_IA32_MISC_ENABLE:
2016                 vcpu->arch.ia32_misc_enable_msr = data;
2017                 break;
2018         case MSR_KVM_WALL_CLOCK_NEW:
2019         case MSR_KVM_WALL_CLOCK:
2020                 vcpu->kvm->arch.wall_clock = data;
2021                 kvm_write_wall_clock(vcpu->kvm, data);
2022                 break;
2023         case MSR_KVM_SYSTEM_TIME_NEW:
2024         case MSR_KVM_SYSTEM_TIME: {
2025                 u64 gpa_offset;
2026                 kvmclock_reset(vcpu);
2027
2028                 vcpu->arch.time = data;
2029                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2030
2031                 /* we verify if the enable bit is set... */
2032                 if (!(data & 1))
2033                         break;
2034
2035                 gpa_offset = data & ~(PAGE_MASK | 1);
2036
2037                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2038                      &vcpu->arch.pv_time, data & ~1ULL,
2039                      sizeof(struct pvclock_vcpu_time_info)))
2040                         vcpu->arch.pv_time_enabled = false;
2041                 else
2042                         vcpu->arch.pv_time_enabled = true;
2043
2044                 break;
2045         }
2046         case MSR_KVM_ASYNC_PF_EN:
2047                 if (kvm_pv_enable_async_pf(vcpu, data))
2048                         return 1;
2049                 break;
2050         case MSR_KVM_STEAL_TIME:
2051
2052                 if (unlikely(!sched_info_on()))
2053                         return 1;
2054
2055                 if (data & KVM_STEAL_RESERVED_MASK)
2056                         return 1;
2057
2058                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2059                                                 data & KVM_STEAL_VALID_BITS,
2060                                                 sizeof(struct kvm_steal_time)))
2061                         return 1;
2062
2063                 vcpu->arch.st.msr_val = data;
2064
2065                 if (!(data & KVM_MSR_ENABLED))
2066                         break;
2067
2068                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2069
2070                 preempt_disable();
2071                 accumulate_steal_time(vcpu);
2072                 preempt_enable();
2073
2074                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2075
2076                 break;
2077         case MSR_KVM_PV_EOI_EN:
2078                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2079                         return 1;
2080                 break;
2081
2082         case MSR_IA32_MCG_CTL:
2083         case MSR_IA32_MCG_STATUS:
2084         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2085                 return set_msr_mce(vcpu, msr, data);
2086
2087         /* Performance counters are not protected by a CPUID bit,
2088          * so we should check all of them in the generic path for the sake of
2089          * cross vendor migration.
2090          * Writing a zero into the event select MSRs disables them,
2091          * which we perfectly emulate ;-). Any other value should be at least
2092          * reported, some guests depend on them.
2093          */
2094         case MSR_K7_EVNTSEL0:
2095         case MSR_K7_EVNTSEL1:
2096         case MSR_K7_EVNTSEL2:
2097         case MSR_K7_EVNTSEL3:
2098                 if (data != 0)
2099                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2100                                     "0x%x data 0x%llx\n", msr, data);
2101                 break;
2102         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2103          * so we ignore writes to make it happy.
2104          */
2105         case MSR_K7_PERFCTR0:
2106         case MSR_K7_PERFCTR1:
2107         case MSR_K7_PERFCTR2:
2108         case MSR_K7_PERFCTR3:
2109                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2110                             "0x%x data 0x%llx\n", msr, data);
2111                 break;
2112         case MSR_P6_PERFCTR0:
2113         case MSR_P6_PERFCTR1:
2114                 pr = true;
2115         case MSR_P6_EVNTSEL0:
2116         case MSR_P6_EVNTSEL1:
2117                 if (kvm_pmu_msr(vcpu, msr))
2118                         return kvm_pmu_set_msr(vcpu, msr_info);
2119
2120                 if (pr || data != 0)
2121                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2122                                     "0x%x data 0x%llx\n", msr, data);
2123                 break;
2124         case MSR_K7_CLK_CTL:
2125                 /*
2126                  * Ignore all writes to this no longer documented MSR.
2127                  * Writes are only relevant for old K7 processors,
2128                  * all pre-dating SVM, but a recommended workaround from
2129                  * AMD for these chips. It is possible to specify the
2130                  * affected processor models on the command line, hence
2131                  * the need to ignore the workaround.
2132                  */
2133                 break;
2134         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2135                 if (kvm_hv_msr_partition_wide(msr)) {
2136                         int r;
2137                         mutex_lock(&vcpu->kvm->lock);
2138                         r = set_msr_hyperv_pw(vcpu, msr, data);
2139                         mutex_unlock(&vcpu->kvm->lock);
2140                         return r;
2141                 } else
2142                         return set_msr_hyperv(vcpu, msr, data);
2143                 break;
2144         case MSR_IA32_BBL_CR_CTL3:
2145                 /* Drop writes to this legacy MSR -- see rdmsr
2146                  * counterpart for further detail.
2147                  */
2148                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2149                 break;
2150         case MSR_AMD64_OSVW_ID_LENGTH:
2151                 if (!guest_cpuid_has_osvw(vcpu))
2152                         return 1;
2153                 vcpu->arch.osvw.length = data;
2154                 break;
2155         case MSR_AMD64_OSVW_STATUS:
2156                 if (!guest_cpuid_has_osvw(vcpu))
2157                         return 1;
2158                 vcpu->arch.osvw.status = data;
2159                 break;
2160         default:
2161                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2162                         return xen_hvm_config(vcpu, data);
2163                 if (kvm_pmu_msr(vcpu, msr))
2164                         return kvm_pmu_set_msr(vcpu, msr_info);
2165                 if (!ignore_msrs) {
2166                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2167                                     msr, data);
2168                         return 1;
2169                 } else {
2170                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2171                                     msr, data);
2172                         break;
2173                 }
2174         }
2175         return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2178
2179
2180 /*
2181  * Reads an msr value (of 'msr_index') into 'pdata'.
2182  * Returns 0 on success, non-0 otherwise.
2183  * Assumes vcpu_load() was already called.
2184  */
2185 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2186 {
2187         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2188 }
2189
2190 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2191 {
2192         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2193
2194         if (!msr_mtrr_valid(msr))
2195                 return 1;
2196
2197         if (msr == MSR_MTRRdefType)
2198                 *pdata = vcpu->arch.mtrr_state.def_type +
2199                          (vcpu->arch.mtrr_state.enabled << 10);
2200         else if (msr == MSR_MTRRfix64K_00000)
2201                 *pdata = p[0];
2202         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2203                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2204         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2205                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2206         else if (msr == MSR_IA32_CR_PAT)
2207                 *pdata = vcpu->arch.pat;
2208         else {  /* Variable MTRRs */
2209                 int idx, is_mtrr_mask;
2210                 u64 *pt;
2211
2212                 idx = (msr - 0x200) / 2;
2213                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2214                 if (!is_mtrr_mask)
2215                         pt =
2216                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2217                 else
2218                         pt =
2219                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2220                 *pdata = *pt;
2221         }
2222
2223         return 0;
2224 }
2225
2226 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2227 {
2228         u64 data;
2229         u64 mcg_cap = vcpu->arch.mcg_cap;
2230         unsigned bank_num = mcg_cap & 0xff;
2231
2232         switch (msr) {
2233         case MSR_IA32_P5_MC_ADDR:
2234         case MSR_IA32_P5_MC_TYPE:
2235                 data = 0;
2236                 break;
2237         case MSR_IA32_MCG_CAP:
2238                 data = vcpu->arch.mcg_cap;
2239                 break;
2240         case MSR_IA32_MCG_CTL:
2241                 if (!(mcg_cap & MCG_CTL_P))
2242                         return 1;
2243                 data = vcpu->arch.mcg_ctl;
2244                 break;
2245         case MSR_IA32_MCG_STATUS:
2246                 data = vcpu->arch.mcg_status;
2247                 break;
2248         default:
2249                 if (msr >= MSR_IA32_MC0_CTL &&
2250                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2251                         u32 offset = msr - MSR_IA32_MC0_CTL;
2252                         data = vcpu->arch.mce_banks[offset];
2253                         break;
2254                 }
2255                 return 1;
2256         }
2257         *pdata = data;
2258         return 0;
2259 }
2260
2261 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2262 {
2263         u64 data = 0;
2264         struct kvm *kvm = vcpu->kvm;
2265
2266         switch (msr) {
2267         case HV_X64_MSR_GUEST_OS_ID:
2268                 data = kvm->arch.hv_guest_os_id;
2269                 break;
2270         case HV_X64_MSR_HYPERCALL:
2271                 data = kvm->arch.hv_hypercall;
2272                 break;
2273         default:
2274                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2275                 return 1;
2276         }
2277
2278         *pdata = data;
2279         return 0;
2280 }
2281
2282 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2283 {
2284         u64 data = 0;
2285
2286         switch (msr) {
2287         case HV_X64_MSR_VP_INDEX: {
2288                 int r;
2289                 struct kvm_vcpu *v;
2290                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2291                         if (v == vcpu)
2292                                 data = r;
2293                 break;
2294         }
2295         case HV_X64_MSR_EOI:
2296                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2297         case HV_X64_MSR_ICR:
2298                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2299         case HV_X64_MSR_TPR:
2300                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2301         case HV_X64_MSR_APIC_ASSIST_PAGE:
2302                 data = vcpu->arch.hv_vapic;
2303                 break;
2304         default:
2305                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2306                 return 1;
2307         }
2308         *pdata = data;
2309         return 0;
2310 }
2311
2312 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2313 {
2314         u64 data;
2315
2316         switch (msr) {
2317         case MSR_IA32_PLATFORM_ID:
2318         case MSR_IA32_EBL_CR_POWERON:
2319         case MSR_IA32_DEBUGCTLMSR:
2320         case MSR_IA32_LASTBRANCHFROMIP:
2321         case MSR_IA32_LASTBRANCHTOIP:
2322         case MSR_IA32_LASTINTFROMIP:
2323         case MSR_IA32_LASTINTTOIP:
2324         case MSR_K8_SYSCFG:
2325         case MSR_K7_HWCR:
2326         case MSR_VM_HSAVE_PA:
2327         case MSR_K7_EVNTSEL0:
2328         case MSR_K7_PERFCTR0:
2329         case MSR_K8_INT_PENDING_MSG:
2330         case MSR_AMD64_NB_CFG:
2331         case MSR_FAM10H_MMIO_CONF_BASE:
2332         case MSR_AMD64_BU_CFG2:
2333                 data = 0;
2334                 break;
2335         case MSR_P6_PERFCTR0:
2336         case MSR_P6_PERFCTR1:
2337         case MSR_P6_EVNTSEL0:
2338         case MSR_P6_EVNTSEL1:
2339                 if (kvm_pmu_msr(vcpu, msr))
2340                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2341                 data = 0;
2342                 break;
2343         case MSR_IA32_UCODE_REV:
2344                 data = 0x100000000ULL;
2345                 break;
2346         case MSR_MTRRcap:
2347                 data = 0x500 | KVM_NR_VAR_MTRR;
2348                 break;
2349         case 0x200 ... 0x2ff:
2350                 return get_msr_mtrr(vcpu, msr, pdata);
2351         case 0xcd: /* fsb frequency */
2352                 data = 3;
2353                 break;
2354                 /*
2355                  * MSR_EBC_FREQUENCY_ID
2356                  * Conservative value valid for even the basic CPU models.
2357                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2358                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2359                  * and 266MHz for model 3, or 4. Set Core Clock
2360                  * Frequency to System Bus Frequency Ratio to 1 (bits
2361                  * 31:24) even though these are only valid for CPU
2362                  * models > 2, however guests may end up dividing or
2363                  * multiplying by zero otherwise.
2364                  */
2365         case MSR_EBC_FREQUENCY_ID:
2366                 data = 1 << 24;
2367                 break;
2368         case MSR_IA32_APICBASE:
2369                 data = kvm_get_apic_base(vcpu);
2370                 break;
2371         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2372                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2373                 break;
2374         case MSR_IA32_TSCDEADLINE:
2375                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2376                 break;
2377         case MSR_IA32_TSC_ADJUST:
2378                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2379                 break;
2380         case MSR_IA32_MISC_ENABLE:
2381                 data = vcpu->arch.ia32_misc_enable_msr;
2382                 break;
2383         case MSR_IA32_PERF_STATUS:
2384                 /* TSC increment by tick */
2385                 data = 1000ULL;
2386                 /* CPU multiplier */
2387                 data |= (((uint64_t)4ULL) << 40);
2388                 break;
2389         case MSR_EFER:
2390                 data = vcpu->arch.efer;
2391                 break;
2392         case MSR_KVM_WALL_CLOCK:
2393         case MSR_KVM_WALL_CLOCK_NEW:
2394                 data = vcpu->kvm->arch.wall_clock;
2395                 break;
2396         case MSR_KVM_SYSTEM_TIME:
2397         case MSR_KVM_SYSTEM_TIME_NEW:
2398                 data = vcpu->arch.time;
2399                 break;
2400         case MSR_KVM_ASYNC_PF_EN:
2401                 data = vcpu->arch.apf.msr_val;
2402                 break;
2403         case MSR_KVM_STEAL_TIME:
2404                 data = vcpu->arch.st.msr_val;
2405                 break;
2406         case MSR_KVM_PV_EOI_EN:
2407                 data = vcpu->arch.pv_eoi.msr_val;
2408                 break;
2409         case MSR_IA32_P5_MC_ADDR:
2410         case MSR_IA32_P5_MC_TYPE:
2411         case MSR_IA32_MCG_CAP:
2412         case MSR_IA32_MCG_CTL:
2413         case MSR_IA32_MCG_STATUS:
2414         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2415                 return get_msr_mce(vcpu, msr, pdata);
2416         case MSR_K7_CLK_CTL:
2417                 /*
2418                  * Provide expected ramp-up count for K7. All other
2419                  * are set to zero, indicating minimum divisors for
2420                  * every field.
2421                  *
2422                  * This prevents guest kernels on AMD host with CPU
2423                  * type 6, model 8 and higher from exploding due to
2424                  * the rdmsr failing.
2425                  */
2426                 data = 0x20000000;
2427                 break;
2428         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2429                 if (kvm_hv_msr_partition_wide(msr)) {
2430                         int r;
2431                         mutex_lock(&vcpu->kvm->lock);
2432                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2433                         mutex_unlock(&vcpu->kvm->lock);
2434                         return r;
2435                 } else
2436                         return get_msr_hyperv(vcpu, msr, pdata);
2437                 break;
2438         case MSR_IA32_BBL_CR_CTL3:
2439                 /* This legacy MSR exists but isn't fully documented in current
2440                  * silicon.  It is however accessed by winxp in very narrow
2441                  * scenarios where it sets bit #19, itself documented as
2442                  * a "reserved" bit.  Best effort attempt to source coherent
2443                  * read data here should the balance of the register be
2444                  * interpreted by the guest:
2445                  *
2446                  * L2 cache control register 3: 64GB range, 256KB size,
2447                  * enabled, latency 0x1, configured
2448                  */
2449                 data = 0xbe702111;
2450                 break;
2451         case MSR_AMD64_OSVW_ID_LENGTH:
2452                 if (!guest_cpuid_has_osvw(vcpu))
2453                         return 1;
2454                 data = vcpu->arch.osvw.length;
2455                 break;
2456         case MSR_AMD64_OSVW_STATUS:
2457                 if (!guest_cpuid_has_osvw(vcpu))
2458                         return 1;
2459                 data = vcpu->arch.osvw.status;
2460                 break;
2461         default:
2462                 if (kvm_pmu_msr(vcpu, msr))
2463                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2464                 if (!ignore_msrs) {
2465                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2466                         return 1;
2467                 } else {
2468                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2469                         data = 0;
2470                 }
2471                 break;
2472         }
2473         *pdata = data;
2474         return 0;
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2477
2478 /*
2479  * Read or write a bunch of msrs. All parameters are kernel addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2484                     struct kvm_msr_entry *entries,
2485                     int (*do_msr)(struct kvm_vcpu *vcpu,
2486                                   unsigned index, u64 *data))
2487 {
2488         int i, idx;
2489
2490         idx = srcu_read_lock(&vcpu->kvm->srcu);
2491         for (i = 0; i < msrs->nmsrs; ++i)
2492                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2493                         break;
2494         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2495
2496         return i;
2497 }
2498
2499 /*
2500  * Read or write a bunch of msrs. Parameters are user addresses.
2501  *
2502  * @return number of msrs set successfully.
2503  */
2504 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2505                   int (*do_msr)(struct kvm_vcpu *vcpu,
2506                                 unsigned index, u64 *data),
2507                   int writeback)
2508 {
2509         struct kvm_msrs msrs;
2510         struct kvm_msr_entry *entries;
2511         int r, n;
2512         unsigned size;
2513
2514         r = -EFAULT;
2515         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2516                 goto out;
2517
2518         r = -E2BIG;
2519         if (msrs.nmsrs >= MAX_IO_MSRS)
2520                 goto out;
2521
2522         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2523         entries = memdup_user(user_msrs->entries, size);
2524         if (IS_ERR(entries)) {
2525                 r = PTR_ERR(entries);
2526                 goto out;
2527         }
2528
2529         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2530         if (r < 0)
2531                 goto out_free;
2532
2533         r = -EFAULT;
2534         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2535                 goto out_free;
2536
2537         r = n;
2538
2539 out_free:
2540         kfree(entries);
2541 out:
2542         return r;
2543 }
2544
2545 int kvm_dev_ioctl_check_extension(long ext)
2546 {
2547         int r;
2548
2549         switch (ext) {
2550         case KVM_CAP_IRQCHIP:
2551         case KVM_CAP_HLT:
2552         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2553         case KVM_CAP_SET_TSS_ADDR:
2554         case KVM_CAP_EXT_CPUID:
2555         case KVM_CAP_CLOCKSOURCE:
2556         case KVM_CAP_PIT:
2557         case KVM_CAP_NOP_IO_DELAY:
2558         case KVM_CAP_MP_STATE:
2559         case KVM_CAP_SYNC_MMU:
2560         case KVM_CAP_USER_NMI:
2561         case KVM_CAP_REINJECT_CONTROL:
2562         case KVM_CAP_IRQ_INJECT_STATUS:
2563         case KVM_CAP_IRQFD:
2564         case KVM_CAP_IOEVENTFD:
2565         case KVM_CAP_PIT2:
2566         case KVM_CAP_PIT_STATE2:
2567         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2568         case KVM_CAP_XEN_HVM:
2569         case KVM_CAP_ADJUST_CLOCK:
2570         case KVM_CAP_VCPU_EVENTS:
2571         case KVM_CAP_HYPERV:
2572         case KVM_CAP_HYPERV_VAPIC:
2573         case KVM_CAP_HYPERV_SPIN:
2574         case KVM_CAP_PCI_SEGMENT:
2575         case KVM_CAP_DEBUGREGS:
2576         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2577         case KVM_CAP_XSAVE:
2578         case KVM_CAP_ASYNC_PF:
2579         case KVM_CAP_GET_TSC_KHZ:
2580         case KVM_CAP_KVMCLOCK_CTRL:
2581         case KVM_CAP_READONLY_MEM:
2582 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2583         case KVM_CAP_ASSIGN_DEV_IRQ:
2584         case KVM_CAP_PCI_2_3:
2585 #endif
2586                 r = 1;
2587                 break;
2588         case KVM_CAP_COALESCED_MMIO:
2589                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2590                 break;
2591         case KVM_CAP_VAPIC:
2592                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2593                 break;
2594         case KVM_CAP_NR_VCPUS:
2595                 r = KVM_SOFT_MAX_VCPUS;
2596                 break;
2597         case KVM_CAP_MAX_VCPUS:
2598                 r = KVM_MAX_VCPUS;
2599                 break;
2600         case KVM_CAP_NR_MEMSLOTS:
2601                 r = KVM_USER_MEM_SLOTS;
2602                 break;
2603         case KVM_CAP_PV_MMU:    /* obsolete */
2604                 r = 0;
2605                 break;
2606 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2607         case KVM_CAP_IOMMU:
2608                 r = iommu_present(&pci_bus_type);
2609                 break;
2610 #endif
2611         case KVM_CAP_MCE:
2612                 r = KVM_MAX_MCE_BANKS;
2613                 break;
2614         case KVM_CAP_XCRS:
2615                 r = cpu_has_xsave;
2616                 break;
2617         case KVM_CAP_TSC_CONTROL:
2618                 r = kvm_has_tsc_control;
2619                 break;
2620         case KVM_CAP_TSC_DEADLINE_TIMER:
2621                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2622                 break;
2623         default:
2624                 r = 0;
2625                 break;
2626         }
2627         return r;
2628
2629 }
2630
2631 long kvm_arch_dev_ioctl(struct file *filp,
2632                         unsigned int ioctl, unsigned long arg)
2633 {
2634         void __user *argp = (void __user *)arg;
2635         long r;
2636
2637         switch (ioctl) {
2638         case KVM_GET_MSR_INDEX_LIST: {
2639                 struct kvm_msr_list __user *user_msr_list = argp;
2640                 struct kvm_msr_list msr_list;
2641                 unsigned n;
2642
2643                 r = -EFAULT;
2644                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2645                         goto out;
2646                 n = msr_list.nmsrs;
2647                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2648                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2649                         goto out;
2650                 r = -E2BIG;
2651                 if (n < msr_list.nmsrs)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2655                                  num_msrs_to_save * sizeof(u32)))
2656                         goto out;
2657                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2658                                  &emulated_msrs,
2659                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2660                         goto out;
2661                 r = 0;
2662                 break;
2663         }
2664         case KVM_GET_SUPPORTED_CPUID: {
2665                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2666                 struct kvm_cpuid2 cpuid;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2670                         goto out;
2671                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2672                                                       cpuid_arg->entries);
2673                 if (r)
2674                         goto out;
2675
2676                 r = -EFAULT;
2677                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2678                         goto out;
2679                 r = 0;
2680                 break;
2681         }
2682         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2683                 u64 mce_cap;
2684
2685                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2686                 r = -EFAULT;
2687                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2688                         goto out;
2689                 r = 0;
2690                 break;
2691         }
2692         default:
2693                 r = -EINVAL;
2694         }
2695 out:
2696         return r;
2697 }
2698
2699 static void wbinvd_ipi(void *garbage)
2700 {
2701         wbinvd();
2702 }
2703
2704 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2705 {
2706         return vcpu->kvm->arch.iommu_domain &&
2707                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2708 }
2709
2710 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2711 {
2712         /* Address WBINVD may be executed by guest */
2713         if (need_emulate_wbinvd(vcpu)) {
2714                 if (kvm_x86_ops->has_wbinvd_exit())
2715                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2716                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2717                         smp_call_function_single(vcpu->cpu,
2718                                         wbinvd_ipi, NULL, 1);
2719         }
2720
2721         kvm_x86_ops->vcpu_load(vcpu, cpu);
2722
2723         /* Apply any externally detected TSC adjustments (due to suspend) */
2724         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2725                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2726                 vcpu->arch.tsc_offset_adjustment = 0;
2727                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2728         }
2729
2730         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2731                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2732                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2733                 if (tsc_delta < 0)
2734                         mark_tsc_unstable("KVM discovered backwards TSC");
2735                 if (check_tsc_unstable()) {
2736                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2737                                                 vcpu->arch.last_guest_tsc);
2738                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2739                         vcpu->arch.tsc_catchup = 1;
2740                 }
2741                 /*
2742                  * On a host with synchronized TSC, there is no need to update
2743                  * kvmclock on vcpu->cpu migration
2744                  */
2745                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2746                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2747                 if (vcpu->cpu != cpu)
2748                         kvm_migrate_timers(vcpu);
2749                 vcpu->cpu = cpu;
2750         }
2751
2752         accumulate_steal_time(vcpu);
2753         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2754 }
2755
2756 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2757 {
2758         kvm_x86_ops->vcpu_put(vcpu);
2759         kvm_put_guest_fpu(vcpu);
2760         vcpu->arch.last_host_tsc = native_read_tsc();
2761 }
2762
2763 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2764                                     struct kvm_lapic_state *s)
2765 {
2766         kvm_x86_ops->sync_pir_to_irr(vcpu);
2767         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2768
2769         return 0;
2770 }
2771
2772 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2773                                     struct kvm_lapic_state *s)
2774 {
2775         kvm_apic_post_state_restore(vcpu, s);
2776         update_cr8_intercept(vcpu);
2777
2778         return 0;
2779 }
2780
2781 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2782                                     struct kvm_interrupt *irq)
2783 {
2784         if (irq->irq >= KVM_NR_INTERRUPTS)
2785                 return -EINVAL;
2786         if (irqchip_in_kernel(vcpu->kvm))
2787                 return -ENXIO;
2788
2789         kvm_queue_interrupt(vcpu, irq->irq, false);
2790         kvm_make_request(KVM_REQ_EVENT, vcpu);
2791
2792         return 0;
2793 }
2794
2795 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2796 {
2797         kvm_inject_nmi(vcpu);
2798
2799         return 0;
2800 }
2801
2802 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2803                                            struct kvm_tpr_access_ctl *tac)
2804 {
2805         if (tac->flags)
2806                 return -EINVAL;
2807         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2808         return 0;
2809 }
2810
2811 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2812                                         u64 mcg_cap)
2813 {
2814         int r;
2815         unsigned bank_num = mcg_cap & 0xff, bank;
2816
2817         r = -EINVAL;
2818         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2819                 goto out;
2820         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2821                 goto out;
2822         r = 0;
2823         vcpu->arch.mcg_cap = mcg_cap;
2824         /* Init IA32_MCG_CTL to all 1s */
2825         if (mcg_cap & MCG_CTL_P)
2826                 vcpu->arch.mcg_ctl = ~(u64)0;
2827         /* Init IA32_MCi_CTL to all 1s */
2828         for (bank = 0; bank < bank_num; bank++)
2829                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2830 out:
2831         return r;
2832 }
2833
2834 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2835                                       struct kvm_x86_mce *mce)
2836 {
2837         u64 mcg_cap = vcpu->arch.mcg_cap;
2838         unsigned bank_num = mcg_cap & 0xff;
2839         u64 *banks = vcpu->arch.mce_banks;
2840
2841         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2842                 return -EINVAL;
2843         /*
2844          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2845          * reporting is disabled
2846          */
2847         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2848             vcpu->arch.mcg_ctl != ~(u64)0)
2849                 return 0;
2850         banks += 4 * mce->bank;
2851         /*
2852          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2853          * reporting is disabled for the bank
2854          */
2855         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2856                 return 0;
2857         if (mce->status & MCI_STATUS_UC) {
2858                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2859                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2860                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2861                         return 0;
2862                 }
2863                 if (banks[1] & MCI_STATUS_VAL)
2864                         mce->status |= MCI_STATUS_OVER;
2865                 banks[2] = mce->addr;
2866                 banks[3] = mce->misc;
2867                 vcpu->arch.mcg_status = mce->mcg_status;
2868                 banks[1] = mce->status;
2869                 kvm_queue_exception(vcpu, MC_VECTOR);
2870         } else if (!(banks[1] & MCI_STATUS_VAL)
2871                    || !(banks[1] & MCI_STATUS_UC)) {
2872                 if (banks[1] & MCI_STATUS_VAL)
2873                         mce->status |= MCI_STATUS_OVER;
2874                 banks[2] = mce->addr;
2875                 banks[3] = mce->misc;
2876                 banks[1] = mce->status;
2877         } else
2878                 banks[1] |= MCI_STATUS_OVER;
2879         return 0;
2880 }
2881
2882 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2883                                                struct kvm_vcpu_events *events)
2884 {
2885         process_nmi(vcpu);
2886         events->exception.injected =
2887                 vcpu->arch.exception.pending &&
2888                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2889         events->exception.nr = vcpu->arch.exception.nr;
2890         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2891         events->exception.pad = 0;
2892         events->exception.error_code = vcpu->arch.exception.error_code;
2893
2894         events->interrupt.injected =
2895                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2896         events->interrupt.nr = vcpu->arch.interrupt.nr;
2897         events->interrupt.soft = 0;
2898         events->interrupt.shadow =
2899                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2900                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2901
2902         events->nmi.injected = vcpu->arch.nmi_injected;
2903         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2904         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2905         events->nmi.pad = 0;
2906
2907         events->sipi_vector = 0; /* never valid when reporting to user space */
2908
2909         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2910                          | KVM_VCPUEVENT_VALID_SHADOW);
2911         memset(&events->reserved, 0, sizeof(events->reserved));
2912 }
2913
2914 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2915                                               struct kvm_vcpu_events *events)
2916 {
2917         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2918                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2919                               | KVM_VCPUEVENT_VALID_SHADOW))
2920                 return -EINVAL;
2921
2922         process_nmi(vcpu);
2923         vcpu->arch.exception.pending = events->exception.injected;
2924         vcpu->arch.exception.nr = events->exception.nr;
2925         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2926         vcpu->arch.exception.error_code = events->exception.error_code;
2927
2928         vcpu->arch.interrupt.pending = events->interrupt.injected;
2929         vcpu->arch.interrupt.nr = events->interrupt.nr;
2930         vcpu->arch.interrupt.soft = events->interrupt.soft;
2931         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2932                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2933                                                   events->interrupt.shadow);
2934
2935         vcpu->arch.nmi_injected = events->nmi.injected;
2936         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2937                 vcpu->arch.nmi_pending = events->nmi.pending;
2938         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2939
2940         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2941             kvm_vcpu_has_lapic(vcpu))
2942                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2943
2944         kvm_make_request(KVM_REQ_EVENT, vcpu);
2945
2946         return 0;
2947 }
2948
2949 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2950                                              struct kvm_debugregs *dbgregs)
2951 {
2952         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2953         dbgregs->dr6 = vcpu->arch.dr6;
2954         dbgregs->dr7 = vcpu->arch.dr7;
2955         dbgregs->flags = 0;
2956         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2957 }
2958
2959 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2960                                             struct kvm_debugregs *dbgregs)
2961 {
2962         if (dbgregs->flags)
2963                 return -EINVAL;
2964
2965         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2966         vcpu->arch.dr6 = dbgregs->dr6;
2967         vcpu->arch.dr7 = dbgregs->dr7;
2968
2969         return 0;
2970 }
2971
2972 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2973                                          struct kvm_xsave *guest_xsave)
2974 {
2975         if (cpu_has_xsave)
2976                 memcpy(guest_xsave->region,
2977                         &vcpu->arch.guest_fpu.state->xsave,
2978                         xstate_size);
2979         else {
2980                 memcpy(guest_xsave->region,
2981                         &vcpu->arch.guest_fpu.state->fxsave,
2982                         sizeof(struct i387_fxsave_struct));
2983                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2984                         XSTATE_FPSSE;
2985         }
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2989                                         struct kvm_xsave *guest_xsave)
2990 {
2991         u64 xstate_bv =
2992                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2993
2994         if (cpu_has_xsave)
2995                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2996                         guest_xsave->region, xstate_size);
2997         else {
2998                 if (xstate_bv & ~XSTATE_FPSSE)
2999                         return -EINVAL;
3000                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3001                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3002         }
3003         return 0;
3004 }
3005
3006 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3007                                         struct kvm_xcrs *guest_xcrs)
3008 {
3009         if (!cpu_has_xsave) {
3010                 guest_xcrs->nr_xcrs = 0;
3011                 return;
3012         }
3013
3014         guest_xcrs->nr_xcrs = 1;
3015         guest_xcrs->flags = 0;
3016         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3017         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3018 }
3019
3020 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3021                                        struct kvm_xcrs *guest_xcrs)
3022 {
3023         int i, r = 0;
3024
3025         if (!cpu_has_xsave)
3026                 return -EINVAL;
3027
3028         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3029                 return -EINVAL;
3030
3031         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3032                 /* Only support XCR0 currently */
3033                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3034                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3035                                 guest_xcrs->xcrs[0].value);
3036                         break;
3037                 }
3038         if (r)
3039                 r = -EINVAL;
3040         return r;
3041 }
3042
3043 /*
3044  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3045  * stopped by the hypervisor.  This function will be called from the host only.
3046  * EINVAL is returned when the host attempts to set the flag for a guest that
3047  * does not support pv clocks.
3048  */
3049 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3050 {
3051         if (!vcpu->arch.pv_time_enabled)
3052                 return -EINVAL;
3053         vcpu->arch.pvclock_set_guest_stopped_request = true;
3054         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3055         return 0;
3056 }
3057
3058 long kvm_arch_vcpu_ioctl(struct file *filp,
3059                          unsigned int ioctl, unsigned long arg)
3060 {
3061         struct kvm_vcpu *vcpu = filp->private_data;
3062         void __user *argp = (void __user *)arg;
3063         int r;
3064         union {
3065                 struct kvm_lapic_state *lapic;
3066                 struct kvm_xsave *xsave;
3067                 struct kvm_xcrs *xcrs;
3068                 void *buffer;
3069         } u;
3070
3071         u.buffer = NULL;
3072         switch (ioctl) {
3073         case KVM_GET_LAPIC: {
3074                 r = -EINVAL;
3075                 if (!vcpu->arch.apic)
3076                         goto out;
3077                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3078
3079                 r = -ENOMEM;
3080                 if (!u.lapic)
3081                         goto out;
3082                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3083                 if (r)
3084                         goto out;
3085                 r = -EFAULT;
3086                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3087                         goto out;
3088                 r = 0;
3089                 break;
3090         }
3091         case KVM_SET_LAPIC: {
3092                 r = -EINVAL;
3093                 if (!vcpu->arch.apic)
3094                         goto out;
3095                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3096                 if (IS_ERR(u.lapic))
3097                         return PTR_ERR(u.lapic);
3098
3099                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3100                 break;
3101         }
3102         case KVM_INTERRUPT: {
3103                 struct kvm_interrupt irq;
3104
3105                 r = -EFAULT;
3106                 if (copy_from_user(&irq, argp, sizeof irq))
3107                         goto out;
3108                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3109                 break;
3110         }
3111         case KVM_NMI: {
3112                 r = kvm_vcpu_ioctl_nmi(vcpu);
3113                 break;
3114         }
3115         case KVM_SET_CPUID: {
3116                 struct kvm_cpuid __user *cpuid_arg = argp;
3117                 struct kvm_cpuid cpuid;
3118
3119                 r = -EFAULT;
3120                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3121                         goto out;
3122                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3123                 break;
3124         }
3125         case KVM_SET_CPUID2: {
3126                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3127                 struct kvm_cpuid2 cpuid;
3128
3129                 r = -EFAULT;
3130                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3131                         goto out;
3132                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3133                                               cpuid_arg->entries);
3134                 break;
3135         }
3136         case KVM_GET_CPUID2: {
3137                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3138                 struct kvm_cpuid2 cpuid;
3139
3140                 r = -EFAULT;
3141                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3142                         goto out;
3143                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3144                                               cpuid_arg->entries);
3145                 if (r)
3146                         goto out;
3147                 r = -EFAULT;
3148                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3149                         goto out;
3150                 r = 0;
3151                 break;
3152         }
3153         case KVM_GET_MSRS:
3154                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3155                 break;
3156         case KVM_SET_MSRS:
3157                 r = msr_io(vcpu, argp, do_set_msr, 0);
3158                 break;
3159         case KVM_TPR_ACCESS_REPORTING: {
3160                 struct kvm_tpr_access_ctl tac;
3161
3162                 r = -EFAULT;
3163                 if (copy_from_user(&tac, argp, sizeof tac))
3164                         goto out;
3165                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3166                 if (r)
3167                         goto out;
3168                 r = -EFAULT;
3169                 if (copy_to_user(argp, &tac, sizeof tac))
3170                         goto out;
3171                 r = 0;
3172                 break;
3173         };
3174         case KVM_SET_VAPIC_ADDR: {
3175                 struct kvm_vapic_addr va;
3176
3177                 r = -EINVAL;
3178                 if (!irqchip_in_kernel(vcpu->kvm))
3179                         goto out;
3180                 r = -EFAULT;
3181                 if (copy_from_user(&va, argp, sizeof va))
3182                         goto out;
3183                 r = 0;
3184                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3185                 break;
3186         }
3187         case KVM_X86_SETUP_MCE: {
3188                 u64 mcg_cap;
3189
3190                 r = -EFAULT;
3191                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3192                         goto out;
3193                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3194                 break;
3195         }
3196         case KVM_X86_SET_MCE: {
3197                 struct kvm_x86_mce mce;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&mce, argp, sizeof mce))
3201                         goto out;
3202                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3203                 break;
3204         }
3205         case KVM_GET_VCPU_EVENTS: {
3206                 struct kvm_vcpu_events events;
3207
3208                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3209
3210                 r = -EFAULT;
3211                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3212                         break;
3213                 r = 0;
3214                 break;
3215         }
3216         case KVM_SET_VCPU_EVENTS: {
3217                 struct kvm_vcpu_events events;
3218
3219                 r = -EFAULT;
3220                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3221                         break;
3222
3223                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3224                 break;
3225         }
3226         case KVM_GET_DEBUGREGS: {
3227                 struct kvm_debugregs dbgregs;
3228
3229                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3230
3231                 r = -EFAULT;
3232                 if (copy_to_user(argp, &dbgregs,
3233                                  sizeof(struct kvm_debugregs)))
3234                         break;
3235                 r = 0;
3236                 break;
3237         }
3238         case KVM_SET_DEBUGREGS: {
3239                 struct kvm_debugregs dbgregs;
3240
3241                 r = -EFAULT;
3242                 if (copy_from_user(&dbgregs, argp,
3243                                    sizeof(struct kvm_debugregs)))
3244                         break;
3245
3246                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3247                 break;
3248         }
3249         case KVM_GET_XSAVE: {
3250                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3251                 r = -ENOMEM;
3252                 if (!u.xsave)
3253                         break;
3254
3255                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3256
3257                 r = -EFAULT;
3258                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3259                         break;
3260                 r = 0;
3261                 break;
3262         }
3263         case KVM_SET_XSAVE: {
3264                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3265                 if (IS_ERR(u.xsave))
3266                         return PTR_ERR(u.xsave);
3267
3268                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3269                 break;
3270         }
3271         case KVM_GET_XCRS: {
3272                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3273                 r = -ENOMEM;
3274                 if (!u.xcrs)
3275                         break;
3276
3277                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3278
3279                 r = -EFAULT;
3280                 if (copy_to_user(argp, u.xcrs,
3281                                  sizeof(struct kvm_xcrs)))
3282                         break;
3283                 r = 0;
3284                 break;
3285         }
3286         case KVM_SET_XCRS: {
3287                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3288                 if (IS_ERR(u.xcrs))
3289                         return PTR_ERR(u.xcrs);
3290
3291                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3292                 break;
3293         }
3294         case KVM_SET_TSC_KHZ: {
3295                 u32 user_tsc_khz;
3296
3297                 r = -EINVAL;
3298                 user_tsc_khz = (u32)arg;
3299
3300                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3301                         goto out;
3302
3303                 if (user_tsc_khz == 0)
3304                         user_tsc_khz = tsc_khz;
3305
3306                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3307
3308                 r = 0;
3309                 goto out;
3310         }
3311         case KVM_GET_TSC_KHZ: {
3312                 r = vcpu->arch.virtual_tsc_khz;
3313                 goto out;
3314         }
3315         case KVM_KVMCLOCK_CTRL: {
3316                 r = kvm_set_guest_paused(vcpu);
3317                 goto out;
3318         }
3319         default:
3320                 r = -EINVAL;
3321         }
3322 out:
3323         kfree(u.buffer);
3324         return r;
3325 }
3326
3327 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3328 {
3329         return VM_FAULT_SIGBUS;
3330 }
3331
3332 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3333 {
3334         int ret;
3335
3336         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3337                 return -EINVAL;
3338         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3339         return ret;
3340 }
3341
3342 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3343                                               u64 ident_addr)
3344 {
3345         kvm->arch.ept_identity_map_addr = ident_addr;
3346         return 0;
3347 }
3348
3349 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3350                                           u32 kvm_nr_mmu_pages)
3351 {
3352         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3353                 return -EINVAL;
3354
3355         mutex_lock(&kvm->slots_lock);
3356
3357         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3358         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3359
3360         mutex_unlock(&kvm->slots_lock);
3361         return 0;
3362 }
3363
3364 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3365 {
3366         return kvm->arch.n_max_mmu_pages;
3367 }
3368
3369 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3370 {
3371         int r;
3372
3373         r = 0;
3374         switch (chip->chip_id) {
3375         case KVM_IRQCHIP_PIC_MASTER:
3376                 memcpy(&chip->chip.pic,
3377                         &pic_irqchip(kvm)->pics[0],
3378                         sizeof(struct kvm_pic_state));
3379                 break;
3380         case KVM_IRQCHIP_PIC_SLAVE:
3381                 memcpy(&chip->chip.pic,
3382                         &pic_irqchip(kvm)->pics[1],
3383                         sizeof(struct kvm_pic_state));
3384                 break;
3385         case KVM_IRQCHIP_IOAPIC:
3386                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3387                 break;
3388         default:
3389                 r = -EINVAL;
3390                 break;
3391         }
3392         return r;
3393 }
3394
3395 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3396 {
3397         int r;
3398
3399         r = 0;
3400         switch (chip->chip_id) {
3401         case KVM_IRQCHIP_PIC_MASTER:
3402                 spin_lock(&pic_irqchip(kvm)->lock);
3403                 memcpy(&pic_irqchip(kvm)->pics[0],
3404                         &chip->chip.pic,
3405                         sizeof(struct kvm_pic_state));
3406                 spin_unlock(&pic_irqchip(kvm)->lock);
3407                 break;
3408         case KVM_IRQCHIP_PIC_SLAVE:
3409                 spin_lock(&pic_irqchip(kvm)->lock);
3410                 memcpy(&pic_irqchip(kvm)->pics[1],
3411                         &chip->chip.pic,
3412                         sizeof(struct kvm_pic_state));
3413                 spin_unlock(&pic_irqchip(kvm)->lock);
3414                 break;
3415         case KVM_IRQCHIP_IOAPIC:
3416                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3417                 break;
3418         default:
3419                 r = -EINVAL;
3420                 break;
3421         }
3422         kvm_pic_update_irq(pic_irqchip(kvm));
3423         return r;
3424 }
3425
3426 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3427 {
3428         int r = 0;
3429
3430         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3431         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3432         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3433         return r;
3434 }
3435
3436 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3437 {
3438         int r = 0;
3439
3440         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3442         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3443         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444         return r;
3445 }
3446
3447 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3448 {
3449         int r = 0;
3450
3451         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3452         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3453                 sizeof(ps->channels));
3454         ps->flags = kvm->arch.vpit->pit_state.flags;
3455         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456         memset(&ps->reserved, 0, sizeof(ps->reserved));
3457         return r;
3458 }
3459
3460 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3461 {
3462         int r = 0, start = 0;
3463         u32 prev_legacy, cur_legacy;
3464         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3465         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3467         if (!prev_legacy && cur_legacy)
3468                 start = 1;
3469         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3470                sizeof(kvm->arch.vpit->pit_state.channels));
3471         kvm->arch.vpit->pit_state.flags = ps->flags;
3472         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3473         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3474         return r;
3475 }
3476
3477 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3478                                  struct kvm_reinject_control *control)
3479 {
3480         if (!kvm->arch.vpit)
3481                 return -ENXIO;
3482         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3483         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3484         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3485         return 0;
3486 }
3487
3488 /**
3489  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3490  * @kvm: kvm instance
3491  * @log: slot id and address to which we copy the log
3492  *
3493  * We need to keep it in mind that VCPU threads can write to the bitmap
3494  * concurrently.  So, to avoid losing data, we keep the following order for
3495  * each bit:
3496  *
3497  *   1. Take a snapshot of the bit and clear it if needed.
3498  *   2. Write protect the corresponding page.
3499  *   3. Flush TLB's if needed.
3500  *   4. Copy the snapshot to the userspace.
3501  *
3502  * Between 2 and 3, the guest may write to the page using the remaining TLB
3503  * entry.  This is not a problem because the page will be reported dirty at
3504  * step 4 using the snapshot taken before and step 3 ensures that successive
3505  * writes will be logged for the next call.
3506  */
3507 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3508 {
3509         int r;
3510         struct kvm_memory_slot *memslot;
3511         unsigned long n, i;
3512         unsigned long *dirty_bitmap;
3513         unsigned long *dirty_bitmap_buffer;
3514         bool is_dirty = false;
3515
3516         mutex_lock(&kvm->slots_lock);
3517
3518         r = -EINVAL;
3519         if (log->slot >= KVM_USER_MEM_SLOTS)
3520                 goto out;
3521
3522         memslot = id_to_memslot(kvm->memslots, log->slot);
3523
3524         dirty_bitmap = memslot->dirty_bitmap;
3525         r = -ENOENT;
3526         if (!dirty_bitmap)
3527                 goto out;
3528
3529         n = kvm_dirty_bitmap_bytes(memslot);
3530
3531         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3532         memset(dirty_bitmap_buffer, 0, n);
3533
3534         spin_lock(&kvm->mmu_lock);
3535
3536         for (i = 0; i < n / sizeof(long); i++) {
3537                 unsigned long mask;
3538                 gfn_t offset;
3539
3540                 if (!dirty_bitmap[i])
3541                         continue;
3542
3543                 is_dirty = true;
3544
3545                 mask = xchg(&dirty_bitmap[i], 0);
3546                 dirty_bitmap_buffer[i] = mask;
3547
3548                 offset = i * BITS_PER_LONG;
3549                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3550         }
3551         if (is_dirty)
3552                 kvm_flush_remote_tlbs(kvm);
3553
3554         spin_unlock(&kvm->mmu_lock);
3555
3556         r = -EFAULT;
3557         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3558                 goto out;
3559
3560         r = 0;
3561 out:
3562         mutex_unlock(&kvm->slots_lock);
3563         return r;
3564 }
3565
3566 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3567                         bool line_status)
3568 {
3569         if (!irqchip_in_kernel(kvm))
3570                 return -ENXIO;
3571
3572         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3573                                         irq_event->irq, irq_event->level,
3574                                         line_status);
3575         return 0;
3576 }
3577
3578 long kvm_arch_vm_ioctl(struct file *filp,
3579                        unsigned int ioctl, unsigned long arg)
3580 {
3581         struct kvm *kvm = filp->private_data;
3582         void __user *argp = (void __user *)arg;
3583         int r = -ENOTTY;
3584         /*
3585          * This union makes it completely explicit to gcc-3.x
3586          * that these two variables' stack usage should be
3587          * combined, not added together.
3588          */
3589         union {
3590                 struct kvm_pit_state ps;
3591                 struct kvm_pit_state2 ps2;
3592                 struct kvm_pit_config pit_config;
3593         } u;
3594
3595         switch (ioctl) {
3596         case KVM_SET_TSS_ADDR:
3597                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3598                 break;
3599         case KVM_SET_IDENTITY_MAP_ADDR: {
3600                 u64 ident_addr;
3601
3602                 r = -EFAULT;
3603                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3604                         goto out;
3605                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3606                 break;
3607         }
3608         case KVM_SET_NR_MMU_PAGES:
3609                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3610                 break;
3611         case KVM_GET_NR_MMU_PAGES:
3612                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3613                 break;
3614         case KVM_CREATE_IRQCHIP: {
3615                 struct kvm_pic *vpic;
3616
3617                 mutex_lock(&kvm->lock);
3618                 r = -EEXIST;
3619                 if (kvm->arch.vpic)
3620                         goto create_irqchip_unlock;
3621                 r = -EINVAL;
3622                 if (atomic_read(&kvm->online_vcpus))
3623                         goto create_irqchip_unlock;
3624                 r = -ENOMEM;
3625                 vpic = kvm_create_pic(kvm);
3626                 if (vpic) {
3627                         r = kvm_ioapic_init(kvm);
3628                         if (r) {
3629                                 mutex_lock(&kvm->slots_lock);
3630                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3631                                                           &vpic->dev_master);
3632                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3633                                                           &vpic->dev_slave);
3634                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3635                                                           &vpic->dev_eclr);
3636                                 mutex_unlock(&kvm->slots_lock);
3637                                 kfree(vpic);
3638                                 goto create_irqchip_unlock;
3639                         }
3640                 } else
3641                         goto create_irqchip_unlock;
3642                 smp_wmb();
3643                 kvm->arch.vpic = vpic;
3644                 smp_wmb();
3645                 r = kvm_setup_default_irq_routing(kvm);
3646                 if (r) {
3647                         mutex_lock(&kvm->slots_lock);
3648                         mutex_lock(&kvm->irq_lock);
3649                         kvm_ioapic_destroy(kvm);
3650                         kvm_destroy_pic(kvm);
3651                         mutex_unlock(&kvm->irq_lock);
3652                         mutex_unlock(&kvm->slots_lock);
3653                 }
3654         create_irqchip_unlock:
3655                 mutex_unlock(&kvm->lock);
3656                 break;
3657         }
3658         case KVM_CREATE_PIT:
3659                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3660                 goto create_pit;
3661         case KVM_CREATE_PIT2:
3662                 r = -EFAULT;
3663                 if (copy_from_user(&u.pit_config, argp,
3664                                    sizeof(struct kvm_pit_config)))
3665                         goto out;
3666         create_pit:
3667                 mutex_lock(&kvm->slots_lock);
3668                 r = -EEXIST;
3669                 if (kvm->arch.vpit)
3670                         goto create_pit_unlock;
3671                 r = -ENOMEM;
3672                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3673                 if (kvm->arch.vpit)
3674                         r = 0;
3675         create_pit_unlock:
3676                 mutex_unlock(&kvm->slots_lock);
3677                 break;
3678         case KVM_GET_IRQCHIP: {
3679                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3680                 struct kvm_irqchip *chip;
3681
3682                 chip = memdup_user(argp, sizeof(*chip));
3683                 if (IS_ERR(chip)) {
3684                         r = PTR_ERR(chip);
3685                         goto out;
3686                 }
3687
3688                 r = -ENXIO;
3689                 if (!irqchip_in_kernel(kvm))
3690                         goto get_irqchip_out;
3691                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3692                 if (r)
3693                         goto get_irqchip_out;
3694                 r = -EFAULT;
3695                 if (copy_to_user(argp, chip, sizeof *chip))
3696                         goto get_irqchip_out;
3697                 r = 0;
3698         get_irqchip_out:
3699                 kfree(chip);
3700                 break;
3701         }
3702         case KVM_SET_IRQCHIP: {
3703                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3704                 struct kvm_irqchip *chip;
3705
3706                 chip = memdup_user(argp, sizeof(*chip));
3707                 if (IS_ERR(chip)) {
3708                         r = PTR_ERR(chip);
3709                         goto out;
3710                 }
3711
3712                 r = -ENXIO;
3713                 if (!irqchip_in_kernel(kvm))
3714                         goto set_irqchip_out;
3715                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3716                 if (r)
3717                         goto set_irqchip_out;
3718                 r = 0;
3719         set_irqchip_out:
3720                 kfree(chip);
3721                 break;
3722         }
3723         case KVM_GET_PIT: {
3724                 r = -EFAULT;
3725                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3726                         goto out;
3727                 r = -ENXIO;
3728                 if (!kvm->arch.vpit)
3729                         goto out;
3730                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3731                 if (r)
3732                         goto out;
3733                 r = -EFAULT;
3734                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3735                         goto out;
3736                 r = 0;
3737                 break;
3738         }
3739         case KVM_SET_PIT: {
3740                 r = -EFAULT;
3741                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3742                         goto out;
3743                 r = -ENXIO;
3744                 if (!kvm->arch.vpit)
3745                         goto out;
3746                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3747                 break;
3748         }
3749         case KVM_GET_PIT2: {
3750                 r = -ENXIO;
3751                 if (!kvm->arch.vpit)
3752                         goto out;
3753                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3754                 if (r)
3755                         goto out;
3756                 r = -EFAULT;
3757                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3758                         goto out;
3759                 r = 0;
3760                 break;
3761         }
3762         case KVM_SET_PIT2: {
3763                 r = -EFAULT;
3764                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3765                         goto out;
3766                 r = -ENXIO;
3767                 if (!kvm->arch.vpit)
3768                         goto out;
3769                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3770                 break;
3771         }
3772         case KVM_REINJECT_CONTROL: {
3773                 struct kvm_reinject_control control;
3774                 r =  -EFAULT;
3775                 if (copy_from_user(&control, argp, sizeof(control)))
3776                         goto out;
3777                 r = kvm_vm_ioctl_reinject(kvm, &control);
3778                 break;
3779         }
3780         case KVM_XEN_HVM_CONFIG: {
3781                 r = -EFAULT;
3782                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3783                                    sizeof(struct kvm_xen_hvm_config)))
3784                         goto out;
3785                 r = -EINVAL;
3786                 if (kvm->arch.xen_hvm_config.flags)
3787                         goto out;
3788                 r = 0;
3789                 break;
3790         }
3791         case KVM_SET_CLOCK: {
3792                 struct kvm_clock_data user_ns;
3793                 u64 now_ns;
3794                 s64 delta;
3795
3796                 r = -EFAULT;
3797                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3798                         goto out;
3799
3800                 r = -EINVAL;
3801                 if (user_ns.flags)
3802                         goto out;
3803
3804                 r = 0;
3805                 local_irq_disable();
3806                 now_ns = get_kernel_ns();
3807                 delta = user_ns.clock - now_ns;
3808                 local_irq_enable();
3809                 kvm->arch.kvmclock_offset = delta;
3810                 break;
3811         }
3812         case KVM_GET_CLOCK: {
3813                 struct kvm_clock_data user_ns;
3814                 u64 now_ns;
3815
3816                 local_irq_disable();
3817                 now_ns = get_kernel_ns();
3818                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3819                 local_irq_enable();
3820                 user_ns.flags = 0;
3821                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3822
3823                 r = -EFAULT;
3824                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3825                         goto out;
3826                 r = 0;
3827                 break;
3828         }
3829
3830         default:
3831                 ;
3832         }
3833 out:
3834         return r;
3835 }
3836
3837 static void kvm_init_msr_list(void)
3838 {
3839         u32 dummy[2];
3840         unsigned i, j;
3841
3842         /* skip the first msrs in the list. KVM-specific */
3843         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3844                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3845                         continue;
3846                 if (j < i)
3847                         msrs_to_save[j] = msrs_to_save[i];
3848                 j++;
3849         }
3850         num_msrs_to_save = j;
3851 }
3852
3853 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3854                            const void *v)
3855 {
3856         int handled = 0;
3857         int n;
3858
3859         do {
3860                 n = min(len, 8);
3861                 if (!(vcpu->arch.apic &&
3862                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3863                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3864                         break;
3865                 handled += n;
3866                 addr += n;
3867                 len -= n;
3868                 v += n;
3869         } while (len);
3870
3871         return handled;
3872 }
3873
3874 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3875 {
3876         int handled = 0;
3877         int n;
3878
3879         do {
3880                 n = min(len, 8);
3881                 if (!(vcpu->arch.apic &&
3882                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3883                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3884                         break;
3885                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3886                 handled += n;
3887                 addr += n;
3888                 len -= n;
3889                 v += n;
3890         } while (len);
3891
3892         return handled;
3893 }
3894
3895 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3896                         struct kvm_segment *var, int seg)
3897 {
3898         kvm_x86_ops->set_segment(vcpu, var, seg);
3899 }
3900
3901 void kvm_get_segment(struct kvm_vcpu *vcpu,
3902                      struct kvm_segment *var, int seg)
3903 {
3904         kvm_x86_ops->get_segment(vcpu, var, seg);
3905 }
3906
3907 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3908 {
3909         gpa_t t_gpa;
3910         struct x86_exception exception;
3911
3912         BUG_ON(!mmu_is_nested(vcpu));
3913
3914         /* NPT walks are always user-walks */
3915         access |= PFERR_USER_MASK;
3916         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3917
3918         return t_gpa;
3919 }
3920
3921 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3922                               struct x86_exception *exception)
3923 {
3924         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3925         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3926 }
3927
3928  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3929                                 struct x86_exception *exception)
3930 {
3931         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3932         access |= PFERR_FETCH_MASK;
3933         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3934 }
3935
3936 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3937                                struct x86_exception *exception)
3938 {
3939         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3940         access |= PFERR_WRITE_MASK;
3941         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3942 }
3943
3944 /* uses this to access any guest's mapped memory without checking CPL */
3945 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3946                                 struct x86_exception *exception)
3947 {
3948         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3949 }
3950
3951 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3952                                       struct kvm_vcpu *vcpu, u32 access,
3953                                       struct x86_exception *exception)
3954 {
3955         void *data = val;
3956         int r = X86EMUL_CONTINUE;
3957
3958         while (bytes) {
3959                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3960                                                             exception);
3961                 unsigned offset = addr & (PAGE_SIZE-1);
3962                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3963                 int ret;
3964
3965                 if (gpa == UNMAPPED_GVA)
3966                         return X86EMUL_PROPAGATE_FAULT;
3967                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3968                 if (ret < 0) {
3969                         r = X86EMUL_IO_NEEDED;
3970                         goto out;
3971                 }
3972
3973                 bytes -= toread;
3974                 data += toread;
3975                 addr += toread;
3976         }
3977 out:
3978         return r;
3979 }
3980
3981 /* used for instruction fetching */
3982 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3983                                 gva_t addr, void *val, unsigned int bytes,
3984                                 struct x86_exception *exception)
3985 {
3986         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3987         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3988
3989         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3990                                           access | PFERR_FETCH_MASK,
3991                                           exception);
3992 }
3993
3994 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3995                                gva_t addr, void *val, unsigned int bytes,
3996                                struct x86_exception *exception)
3997 {
3998         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3999         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4000
4001         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4002                                           exception);
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4005
4006 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4007                                       gva_t addr, void *val, unsigned int bytes,
4008                                       struct x86_exception *exception)
4009 {
4010         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4011         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4012 }
4013
4014 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4015                                        gva_t addr, void *val,
4016                                        unsigned int bytes,
4017                                        struct x86_exception *exception)
4018 {
4019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4020         void *data = val;
4021         int r = X86EMUL_CONTINUE;
4022
4023         while (bytes) {
4024                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4025                                                              PFERR_WRITE_MASK,
4026                                                              exception);
4027                 unsigned offset = addr & (PAGE_SIZE-1);
4028                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4029                 int ret;
4030
4031                 if (gpa == UNMAPPED_GVA)
4032                         return X86EMUL_PROPAGATE_FAULT;
4033                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4034                 if (ret < 0) {
4035                         r = X86EMUL_IO_NEEDED;
4036                         goto out;
4037                 }
4038
4039                 bytes -= towrite;
4040                 data += towrite;
4041                 addr += towrite;
4042         }
4043 out:
4044         return r;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4047
4048 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4049                                 gpa_t *gpa, struct x86_exception *exception,
4050                                 bool write)
4051 {
4052         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4053                 | (write ? PFERR_WRITE_MASK : 0);
4054
4055         if (vcpu_match_mmio_gva(vcpu, gva)
4056             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4057                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4058                                         (gva & (PAGE_SIZE - 1));
4059                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4060                 return 1;
4061         }
4062
4063         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4064
4065         if (*gpa == UNMAPPED_GVA)
4066                 return -1;
4067
4068         /* For APIC access vmexit */
4069         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4070                 return 1;
4071
4072         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4073                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4074                 return 1;
4075         }
4076
4077         return 0;
4078 }
4079
4080 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4081                         const void *val, int bytes)
4082 {
4083         int ret;
4084
4085         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4086         if (ret < 0)
4087                 return 0;
4088         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4089         return 1;
4090 }
4091
4092 struct read_write_emulator_ops {
4093         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4094                                   int bytes);
4095         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4096                                   void *val, int bytes);
4097         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4098                                int bytes, void *val);
4099         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4100                                     void *val, int bytes);
4101         bool write;
4102 };
4103
4104 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4105 {
4106         if (vcpu->mmio_read_completed) {
4107                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4108                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4109                 vcpu->mmio_read_completed = 0;
4110                 return 1;
4111         }
4112
4113         return 0;
4114 }
4115
4116 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4117                         void *val, int bytes)
4118 {
4119         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4120 }
4121
4122 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4123                          void *val, int bytes)
4124 {
4125         return emulator_write_phys(vcpu, gpa, val, bytes);
4126 }
4127
4128 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4129 {
4130         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4131         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4132 }
4133
4134 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4135                           void *val, int bytes)
4136 {
4137         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4138         return X86EMUL_IO_NEEDED;
4139 }
4140
4141 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4142                            void *val, int bytes)
4143 {
4144         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4145
4146         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4147         return X86EMUL_CONTINUE;
4148 }
4149
4150 static const struct read_write_emulator_ops read_emultor = {
4151         .read_write_prepare = read_prepare,
4152         .read_write_emulate = read_emulate,
4153         .read_write_mmio = vcpu_mmio_read,
4154         .read_write_exit_mmio = read_exit_mmio,
4155 };
4156
4157 static const struct read_write_emulator_ops write_emultor = {
4158         .read_write_emulate = write_emulate,
4159         .read_write_mmio = write_mmio,
4160         .read_write_exit_mmio = write_exit_mmio,
4161         .write = true,
4162 };
4163
4164 static int emulator_read_write_onepage(unsigned long addr, void *val,
4165                                        unsigned int bytes,
4166                                        struct x86_exception *exception,
4167                                        struct kvm_vcpu *vcpu,
4168                                        const struct read_write_emulator_ops *ops)
4169 {
4170         gpa_t gpa;
4171         int handled, ret;
4172         bool write = ops->write;
4173         struct kvm_mmio_fragment *frag;
4174
4175         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4176
4177         if (ret < 0)
4178                 return X86EMUL_PROPAGATE_FAULT;
4179
4180         /* For APIC access vmexit */
4181         if (ret)
4182                 goto mmio;
4183
4184         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4185                 return X86EMUL_CONTINUE;
4186
4187 mmio:
4188         /*
4189          * Is this MMIO handled locally?
4190          */
4191         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4192         if (handled == bytes)
4193                 return X86EMUL_CONTINUE;
4194
4195         gpa += handled;
4196         bytes -= handled;
4197         val += handled;
4198
4199         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4200         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4201         frag->gpa = gpa;
4202         frag->data = val;
4203         frag->len = bytes;
4204         return X86EMUL_CONTINUE;
4205 }
4206
4207 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4208                         void *val, unsigned int bytes,
4209                         struct x86_exception *exception,
4210                         const struct read_write_emulator_ops *ops)
4211 {
4212         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4213         gpa_t gpa;
4214         int rc;
4215
4216         if (ops->read_write_prepare &&
4217                   ops->read_write_prepare(vcpu, val, bytes))
4218                 return X86EMUL_CONTINUE;
4219
4220         vcpu->mmio_nr_fragments = 0;
4221
4222         /* Crossing a page boundary? */
4223         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4224                 int now;
4225
4226                 now = -addr & ~PAGE_MASK;
4227                 rc = emulator_read_write_onepage(addr, val, now, exception,
4228                                                  vcpu, ops);
4229
4230                 if (rc != X86EMUL_CONTINUE)
4231                         return rc;
4232                 addr += now;
4233                 val += now;
4234                 bytes -= now;
4235         }
4236
4237         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4238                                          vcpu, ops);
4239         if (rc != X86EMUL_CONTINUE)
4240                 return rc;
4241
4242         if (!vcpu->mmio_nr_fragments)
4243                 return rc;
4244
4245         gpa = vcpu->mmio_fragments[0].gpa;
4246
4247         vcpu->mmio_needed = 1;
4248         vcpu->mmio_cur_fragment = 0;
4249
4250         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4251         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4252         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4253         vcpu->run->mmio.phys_addr = gpa;
4254
4255         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4256 }
4257
4258 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4259                                   unsigned long addr,
4260                                   void *val,
4261                                   unsigned int bytes,
4262                                   struct x86_exception *exception)
4263 {
4264         return emulator_read_write(ctxt, addr, val, bytes,
4265                                    exception, &read_emultor);
4266 }
4267
4268 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4269                             unsigned long addr,
4270                             const void *val,
4271                             unsigned int bytes,
4272                             struct x86_exception *exception)
4273 {
4274         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4275                                    exception, &write_emultor);
4276 }
4277
4278 #define CMPXCHG_TYPE(t, ptr, old, new) \
4279         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4280
4281 #ifdef CONFIG_X86_64
4282 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4283 #else
4284 #  define CMPXCHG64(ptr, old, new) \
4285         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4286 #endif
4287
4288 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4289                                      unsigned long addr,
4290                                      const void *old,
4291                                      const void *new,
4292                                      unsigned int bytes,
4293                                      struct x86_exception *exception)
4294 {
4295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296         gpa_t gpa;
4297         struct page *page;
4298         char *kaddr;
4299         bool exchanged;
4300
4301         /* guests cmpxchg8b have to be emulated atomically */
4302         if (bytes > 8 || (bytes & (bytes - 1)))
4303                 goto emul_write;
4304
4305         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4306
4307         if (gpa == UNMAPPED_GVA ||
4308             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4309                 goto emul_write;
4310
4311         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4312                 goto emul_write;
4313
4314         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4315         if (is_error_page(page))
4316                 goto emul_write;
4317
4318         kaddr = kmap_atomic(page);
4319         kaddr += offset_in_page(gpa);
4320         switch (bytes) {
4321         case 1:
4322                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4323                 break;
4324         case 2:
4325                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4326                 break;
4327         case 4:
4328                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4329                 break;
4330         case 8:
4331                 exchanged = CMPXCHG64(kaddr, old, new);
4332                 break;
4333         default:
4334                 BUG();
4335         }
4336         kunmap_atomic(kaddr);
4337         kvm_release_page_dirty(page);
4338
4339         if (!exchanged)
4340                 return X86EMUL_CMPXCHG_FAILED;
4341
4342         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4343
4344         return X86EMUL_CONTINUE;
4345
4346 emul_write:
4347         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4348
4349         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4350 }
4351
4352 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4353 {
4354         /* TODO: String I/O for in kernel device */
4355         int r;
4356
4357         if (vcpu->arch.pio.in)
4358                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4359                                     vcpu->arch.pio.size, pd);
4360         else
4361                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4362                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4363                                      pd);
4364         return r;
4365 }
4366
4367 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4368                                unsigned short port, void *val,
4369                                unsigned int count, bool in)
4370 {
4371         trace_kvm_pio(!in, port, size, count);
4372
4373         vcpu->arch.pio.port = port;
4374         vcpu->arch.pio.in = in;
4375         vcpu->arch.pio.count  = count;
4376         vcpu->arch.pio.size = size;
4377
4378         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4379                 vcpu->arch.pio.count = 0;
4380                 return 1;
4381         }
4382
4383         vcpu->run->exit_reason = KVM_EXIT_IO;
4384         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4385         vcpu->run->io.size = size;
4386         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4387         vcpu->run->io.count = count;
4388         vcpu->run->io.port = port;
4389
4390         return 0;
4391 }
4392
4393 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4394                                     int size, unsigned short port, void *val,
4395                                     unsigned int count)
4396 {
4397         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4398         int ret;
4399
4400         if (vcpu->arch.pio.count)
4401                 goto data_avail;
4402
4403         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4404         if (ret) {
4405 data_avail:
4406                 memcpy(val, vcpu->arch.pio_data, size * count);
4407                 vcpu->arch.pio.count = 0;
4408                 return 1;
4409         }
4410
4411         return 0;
4412 }
4413
4414 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4415                                      int size, unsigned short port,
4416                                      const void *val, unsigned int count)
4417 {
4418         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4419
4420         memcpy(vcpu->arch.pio_data, val, size * count);
4421         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4422 }
4423
4424 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4425 {
4426         return kvm_x86_ops->get_segment_base(vcpu, seg);
4427 }
4428
4429 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4430 {
4431         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4432 }
4433
4434 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4435 {
4436         if (!need_emulate_wbinvd(vcpu))
4437                 return X86EMUL_CONTINUE;
4438
4439         if (kvm_x86_ops->has_wbinvd_exit()) {
4440                 int cpu = get_cpu();
4441
4442                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4443                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4444                                 wbinvd_ipi, NULL, 1);
4445                 put_cpu();
4446                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4447         } else
4448                 wbinvd();
4449         return X86EMUL_CONTINUE;
4450 }
4451 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4452
4453 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4454 {
4455         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4456 }
4457
4458 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4459 {
4460         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4461 }
4462
4463 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4464 {
4465
4466         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4467 }
4468
4469 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4470 {
4471         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4472 }
4473
4474 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4475 {
4476         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4477         unsigned long value;
4478
4479         switch (cr) {
4480         case 0:
4481                 value = kvm_read_cr0(vcpu);
4482                 break;
4483         case 2:
4484                 value = vcpu->arch.cr2;
4485                 break;
4486         case 3:
4487                 value = kvm_read_cr3(vcpu);
4488                 break;
4489         case 4:
4490                 value = kvm_read_cr4(vcpu);
4491                 break;
4492         case 8:
4493                 value = kvm_get_cr8(vcpu);
4494                 break;
4495         default:
4496                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4497                 return 0;
4498         }
4499
4500         return value;
4501 }
4502
4503 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4504 {
4505         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4506         int res = 0;
4507
4508         switch (cr) {
4509         case 0:
4510                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4511                 break;
4512         case 2:
4513                 vcpu->arch.cr2 = val;
4514                 break;
4515         case 3:
4516                 res = kvm_set_cr3(vcpu, val);
4517                 break;
4518         case 4:
4519                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4520                 break;
4521         case 8:
4522                 res = kvm_set_cr8(vcpu, val);
4523                 break;
4524         default:
4525                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4526                 res = -1;
4527         }
4528
4529         return res;
4530 }
4531
4532 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4533 {
4534         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4535 }
4536
4537 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4538 {
4539         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4540 }
4541
4542 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4543 {
4544         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4545 }
4546
4547 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4548 {
4549         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4550 }
4551
4552 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4553 {
4554         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4555 }
4556
4557 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4558 {
4559         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4560 }
4561
4562 static unsigned long emulator_get_cached_segment_base(
4563         struct x86_emulate_ctxt *ctxt, int seg)
4564 {
4565         return get_segment_base(emul_to_vcpu(ctxt), seg);
4566 }
4567
4568 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4569                                  struct desc_struct *desc, u32 *base3,
4570                                  int seg)
4571 {
4572         struct kvm_segment var;
4573
4574         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4575         *selector = var.selector;
4576
4577         if (var.unusable) {
4578                 memset(desc, 0, sizeof(*desc));
4579                 return false;
4580         }
4581
4582         if (var.g)
4583                 var.limit >>= 12;
4584         set_desc_limit(desc, var.limit);
4585         set_desc_base(desc, (unsigned long)var.base);
4586 #ifdef CONFIG_X86_64
4587         if (base3)
4588                 *base3 = var.base >> 32;
4589 #endif
4590         desc->type = var.type;
4591         desc->s = var.s;
4592         desc->dpl = var.dpl;
4593         desc->p = var.present;
4594         desc->avl = var.avl;
4595         desc->l = var.l;
4596         desc->d = var.db;
4597         desc->g = var.g;
4598
4599         return true;
4600 }
4601
4602 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4603                                  struct desc_struct *desc, u32 base3,
4604                                  int seg)
4605 {
4606         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4607         struct kvm_segment var;
4608
4609         var.selector = selector;
4610         var.base = get_desc_base(desc);
4611 #ifdef CONFIG_X86_64
4612         var.base |= ((u64)base3) << 32;
4613 #endif
4614         var.limit = get_desc_limit(desc);
4615         if (desc->g)
4616                 var.limit = (var.limit << 12) | 0xfff;
4617         var.type = desc->type;
4618         var.present = desc->p;
4619         var.dpl = desc->dpl;
4620         var.db = desc->d;
4621         var.s = desc->s;
4622         var.l = desc->l;
4623         var.g = desc->g;
4624         var.avl = desc->avl;
4625         var.present = desc->p;
4626         var.unusable = !var.present;
4627         var.padding = 0;
4628
4629         kvm_set_segment(vcpu, &var, seg);
4630         return;
4631 }
4632
4633 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4634                             u32 msr_index, u64 *pdata)
4635 {
4636         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4637 }
4638
4639 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4640                             u32 msr_index, u64 data)
4641 {
4642         struct msr_data msr;
4643
4644         msr.data = data;
4645         msr.index = msr_index;
4646         msr.host_initiated = false;
4647         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4648 }
4649
4650 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4651                              u32 pmc, u64 *pdata)
4652 {
4653         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4654 }
4655
4656 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4657 {
4658         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4659 }
4660
4661 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4662 {
4663         preempt_disable();
4664         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4665         /*
4666          * CR0.TS may reference the host fpu state, not the guest fpu state,
4667          * so it may be clear at this point.
4668          */
4669         clts();
4670 }
4671
4672 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4673 {
4674         preempt_enable();
4675 }
4676
4677 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4678                               struct x86_instruction_info *info,
4679                               enum x86_intercept_stage stage)
4680 {
4681         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4682 }
4683
4684 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4685                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4686 {
4687         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4688 }
4689
4690 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4691 {
4692         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4693 }
4694
4695 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4696 {
4697         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4698 }
4699
4700 static const struct x86_emulate_ops emulate_ops = {
4701         .read_gpr            = emulator_read_gpr,
4702         .write_gpr           = emulator_write_gpr,
4703         .read_std            = kvm_read_guest_virt_system,
4704         .write_std           = kvm_write_guest_virt_system,
4705         .fetch               = kvm_fetch_guest_virt,
4706         .read_emulated       = emulator_read_emulated,
4707         .write_emulated      = emulator_write_emulated,
4708         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4709         .invlpg              = emulator_invlpg,
4710         .pio_in_emulated     = emulator_pio_in_emulated,
4711         .pio_out_emulated    = emulator_pio_out_emulated,
4712         .get_segment         = emulator_get_segment,
4713         .set_segment         = emulator_set_segment,
4714         .get_cached_segment_base = emulator_get_cached_segment_base,
4715         .get_gdt             = emulator_get_gdt,
4716         .get_idt             = emulator_get_idt,
4717         .set_gdt             = emulator_set_gdt,
4718         .set_idt             = emulator_set_idt,
4719         .get_cr              = emulator_get_cr,
4720         .set_cr              = emulator_set_cr,
4721         .set_rflags          = emulator_set_rflags,
4722         .cpl                 = emulator_get_cpl,
4723         .get_dr              = emulator_get_dr,
4724         .set_dr              = emulator_set_dr,
4725         .set_msr             = emulator_set_msr,
4726         .get_msr             = emulator_get_msr,
4727         .read_pmc            = emulator_read_pmc,
4728         .halt                = emulator_halt,
4729         .wbinvd              = emulator_wbinvd,
4730         .fix_hypercall       = emulator_fix_hypercall,
4731         .get_fpu             = emulator_get_fpu,
4732         .put_fpu             = emulator_put_fpu,
4733         .intercept           = emulator_intercept,
4734         .get_cpuid           = emulator_get_cpuid,
4735 };
4736
4737 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4738 {
4739         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4740         /*
4741          * an sti; sti; sequence only disable interrupts for the first
4742          * instruction. So, if the last instruction, be it emulated or
4743          * not, left the system with the INT_STI flag enabled, it
4744          * means that the last instruction is an sti. We should not
4745          * leave the flag on in this case. The same goes for mov ss
4746          */
4747         if (!(int_shadow & mask))
4748                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4749 }
4750
4751 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4752 {
4753         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4754         if (ctxt->exception.vector == PF_VECTOR)
4755                 kvm_propagate_fault(vcpu, &ctxt->exception);
4756         else if (ctxt->exception.error_code_valid)
4757                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4758                                       ctxt->exception.error_code);
4759         else
4760                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4761 }
4762
4763 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4764 {
4765         memset(&ctxt->twobyte, 0,
4766                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4767
4768         ctxt->fetch.start = 0;
4769         ctxt->fetch.end = 0;
4770         ctxt->io_read.pos = 0;
4771         ctxt->io_read.end = 0;
4772         ctxt->mem_read.pos = 0;
4773         ctxt->mem_read.end = 0;
4774 }
4775
4776 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4777 {
4778         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4779         int cs_db, cs_l;
4780
4781         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4782
4783         ctxt->eflags = kvm_get_rflags(vcpu);
4784         ctxt->eip = kvm_rip_read(vcpu);
4785         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4786                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4787                      cs_l                               ? X86EMUL_MODE_PROT64 :
4788                      cs_db                              ? X86EMUL_MODE_PROT32 :
4789                                                           X86EMUL_MODE_PROT16;
4790         ctxt->guest_mode = is_guest_mode(vcpu);
4791
4792         init_decode_cache(ctxt);
4793         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4794 }
4795
4796 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4797 {
4798         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4799         int ret;
4800
4801         init_emulate_ctxt(vcpu);
4802
4803         ctxt->op_bytes = 2;
4804         ctxt->ad_bytes = 2;
4805         ctxt->_eip = ctxt->eip + inc_eip;
4806         ret = emulate_int_real(ctxt, irq);
4807
4808         if (ret != X86EMUL_CONTINUE)
4809                 return EMULATE_FAIL;
4810
4811         ctxt->eip = ctxt->_eip;
4812         kvm_rip_write(vcpu, ctxt->eip);
4813         kvm_set_rflags(vcpu, ctxt->eflags);
4814
4815         if (irq == NMI_VECTOR)
4816                 vcpu->arch.nmi_pending = 0;
4817         else
4818                 vcpu->arch.interrupt.pending = false;
4819
4820         return EMULATE_DONE;
4821 }
4822 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4823
4824 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4825 {
4826         int r = EMULATE_DONE;
4827
4828         ++vcpu->stat.insn_emulation_fail;
4829         trace_kvm_emulate_insn_failed(vcpu);
4830         if (!is_guest_mode(vcpu)) {
4831                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4832                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4833                 vcpu->run->internal.ndata = 0;
4834                 r = EMULATE_FAIL;
4835         }
4836         kvm_queue_exception(vcpu, UD_VECTOR);
4837
4838         return r;
4839 }
4840
4841 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4842                                   bool write_fault_to_shadow_pgtable,
4843                                   int emulation_type)
4844 {
4845         gpa_t gpa = cr2;
4846         pfn_t pfn;
4847
4848         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4849                 return false;
4850
4851         if (!vcpu->arch.mmu.direct_map) {
4852                 /*
4853                  * Write permission should be allowed since only
4854                  * write access need to be emulated.
4855                  */
4856                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4857
4858                 /*
4859                  * If the mapping is invalid in guest, let cpu retry
4860                  * it to generate fault.
4861                  */
4862                 if (gpa == UNMAPPED_GVA)
4863                         return true;
4864         }
4865
4866         /*
4867          * Do not retry the unhandleable instruction if it faults on the
4868          * readonly host memory, otherwise it will goto a infinite loop:
4869          * retry instruction -> write #PF -> emulation fail -> retry
4870          * instruction -> ...
4871          */
4872         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4873
4874         /*
4875          * If the instruction failed on the error pfn, it can not be fixed,
4876          * report the error to userspace.
4877          */
4878         if (is_error_noslot_pfn(pfn))
4879                 return false;
4880
4881         kvm_release_pfn_clean(pfn);
4882
4883         /* The instructions are well-emulated on direct mmu. */
4884         if (vcpu->arch.mmu.direct_map) {
4885                 unsigned int indirect_shadow_pages;
4886
4887                 spin_lock(&vcpu->kvm->mmu_lock);
4888                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4889                 spin_unlock(&vcpu->kvm->mmu_lock);
4890
4891                 if (indirect_shadow_pages)
4892                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4893
4894                 return true;
4895         }
4896
4897         /*
4898          * if emulation was due to access to shadowed page table
4899          * and it failed try to unshadow page and re-enter the
4900          * guest to let CPU execute the instruction.
4901          */
4902         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4903
4904         /*
4905          * If the access faults on its page table, it can not
4906          * be fixed by unprotecting shadow page and it should
4907          * be reported to userspace.
4908          */
4909         return !write_fault_to_shadow_pgtable;
4910 }
4911
4912 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4913                               unsigned long cr2,  int emulation_type)
4914 {
4915         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4916         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4917
4918         last_retry_eip = vcpu->arch.last_retry_eip;
4919         last_retry_addr = vcpu->arch.last_retry_addr;
4920
4921         /*
4922          * If the emulation is caused by #PF and it is non-page_table
4923          * writing instruction, it means the VM-EXIT is caused by shadow
4924          * page protected, we can zap the shadow page and retry this
4925          * instruction directly.
4926          *
4927          * Note: if the guest uses a non-page-table modifying instruction
4928          * on the PDE that points to the instruction, then we will unmap
4929          * the instruction and go to an infinite loop. So, we cache the
4930          * last retried eip and the last fault address, if we meet the eip
4931          * and the address again, we can break out of the potential infinite
4932          * loop.
4933          */
4934         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4935
4936         if (!(emulation_type & EMULTYPE_RETRY))
4937                 return false;
4938
4939         if (x86_page_table_writing_insn(ctxt))
4940                 return false;
4941
4942         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4943                 return false;
4944
4945         vcpu->arch.last_retry_eip = ctxt->eip;
4946         vcpu->arch.last_retry_addr = cr2;
4947
4948         if (!vcpu->arch.mmu.direct_map)
4949                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4950
4951         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4952
4953         return true;
4954 }
4955
4956 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4957 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4958
4959 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4960                                 unsigned long *db)
4961 {
4962         u32 dr6 = 0;
4963         int i;
4964         u32 enable, rwlen;
4965
4966         enable = dr7;
4967         rwlen = dr7 >> 16;
4968         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4969                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4970                         dr6 |= (1 << i);
4971         return dr6;
4972 }
4973
4974 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
4975 {
4976         struct kvm_run *kvm_run = vcpu->run;
4977         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
4978         u32 dr6 = 0;
4979
4980         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
4981             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
4982                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4983                                            vcpu->arch.guest_debug_dr7,
4984                                            vcpu->arch.eff_db);
4985
4986                 if (dr6 != 0) {
4987                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4988                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
4989                                 get_segment_base(vcpu, VCPU_SREG_CS);
4990
4991                         kvm_run->debug.arch.exception = DB_VECTOR;
4992                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
4993                         *r = EMULATE_USER_EXIT;
4994                         return true;
4995                 }
4996         }
4997
4998         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
4999                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5000                                            vcpu->arch.dr7,
5001                                            vcpu->arch.db);
5002
5003                 if (dr6 != 0) {
5004                         vcpu->arch.dr6 &= ~15;
5005                         vcpu->arch.dr6 |= dr6;
5006                         kvm_queue_exception(vcpu, DB_VECTOR);
5007                         *r = EMULATE_DONE;
5008                         return true;
5009                 }
5010         }
5011
5012         return false;
5013 }
5014
5015 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5016                             unsigned long cr2,
5017                             int emulation_type,
5018                             void *insn,
5019                             int insn_len)
5020 {
5021         int r;
5022         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5023         bool writeback = true;
5024         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5025
5026         /*
5027          * Clear write_fault_to_shadow_pgtable here to ensure it is
5028          * never reused.
5029          */
5030         vcpu->arch.write_fault_to_shadow_pgtable = false;
5031         kvm_clear_exception_queue(vcpu);
5032
5033         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5034                 init_emulate_ctxt(vcpu);
5035
5036                 /*
5037                  * We will reenter on the same instruction since
5038                  * we do not set complete_userspace_io.  This does not
5039                  * handle watchpoints yet, those would be handled in
5040                  * the emulate_ops.
5041                  */
5042                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5043                         return r;
5044
5045                 ctxt->interruptibility = 0;
5046                 ctxt->have_exception = false;
5047                 ctxt->perm_ok = false;
5048
5049                 ctxt->only_vendor_specific_insn
5050                         = emulation_type & EMULTYPE_TRAP_UD;
5051
5052                 r = x86_decode_insn(ctxt, insn, insn_len);
5053
5054                 trace_kvm_emulate_insn_start(vcpu);
5055                 ++vcpu->stat.insn_emulation;
5056                 if (r != EMULATION_OK)  {
5057                         if (emulation_type & EMULTYPE_TRAP_UD)
5058                                 return EMULATE_FAIL;
5059                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5060                                                 emulation_type))
5061                                 return EMULATE_DONE;
5062                         if (emulation_type & EMULTYPE_SKIP)
5063                                 return EMULATE_FAIL;
5064                         return handle_emulation_failure(vcpu);
5065                 }
5066         }
5067
5068         if (emulation_type & EMULTYPE_SKIP) {
5069                 kvm_rip_write(vcpu, ctxt->_eip);
5070                 return EMULATE_DONE;
5071         }
5072
5073         if (retry_instruction(ctxt, cr2, emulation_type))
5074                 return EMULATE_DONE;
5075
5076         /* this is needed for vmware backdoor interface to work since it
5077            changes registers values  during IO operation */
5078         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5079                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5080                 emulator_invalidate_register_cache(ctxt);
5081         }
5082
5083 restart:
5084         r = x86_emulate_insn(ctxt);
5085
5086         if (r == EMULATION_INTERCEPTED)
5087                 return EMULATE_DONE;
5088
5089         if (r == EMULATION_FAILED) {
5090                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5091                                         emulation_type))
5092                         return EMULATE_DONE;
5093
5094                 return handle_emulation_failure(vcpu);
5095         }
5096
5097         if (ctxt->have_exception) {
5098                 inject_emulated_exception(vcpu);
5099                 r = EMULATE_DONE;
5100         } else if (vcpu->arch.pio.count) {
5101                 if (!vcpu->arch.pio.in)
5102                         vcpu->arch.pio.count = 0;
5103                 else {
5104                         writeback = false;
5105                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5106                 }
5107                 r = EMULATE_USER_EXIT;
5108         } else if (vcpu->mmio_needed) {
5109                 if (!vcpu->mmio_is_write)
5110                         writeback = false;
5111                 r = EMULATE_USER_EXIT;
5112                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5113         } else if (r == EMULATION_RESTART)
5114                 goto restart;
5115         else
5116                 r = EMULATE_DONE;
5117
5118         if (writeback) {
5119                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5120                 kvm_set_rflags(vcpu, ctxt->eflags);
5121                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5122                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5123                 kvm_rip_write(vcpu, ctxt->eip);
5124         } else
5125                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5126
5127         return r;
5128 }
5129 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5130
5131 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5132 {
5133         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5134         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5135                                             size, port, &val, 1);
5136         /* do not return to emulator after return from userspace */
5137         vcpu->arch.pio.count = 0;
5138         return ret;
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5141
5142 static void tsc_bad(void *info)
5143 {
5144         __this_cpu_write(cpu_tsc_khz, 0);
5145 }
5146
5147 static void tsc_khz_changed(void *data)
5148 {
5149         struct cpufreq_freqs *freq = data;
5150         unsigned long khz = 0;
5151
5152         if (data)
5153                 khz = freq->new;
5154         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5155                 khz = cpufreq_quick_get(raw_smp_processor_id());
5156         if (!khz)
5157                 khz = tsc_khz;
5158         __this_cpu_write(cpu_tsc_khz, khz);
5159 }
5160
5161 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5162                                      void *data)
5163 {
5164         struct cpufreq_freqs *freq = data;
5165         struct kvm *kvm;
5166         struct kvm_vcpu *vcpu;
5167         int i, send_ipi = 0;
5168
5169         /*
5170          * We allow guests to temporarily run on slowing clocks,
5171          * provided we notify them after, or to run on accelerating
5172          * clocks, provided we notify them before.  Thus time never
5173          * goes backwards.
5174          *
5175          * However, we have a problem.  We can't atomically update
5176          * the frequency of a given CPU from this function; it is
5177          * merely a notifier, which can be called from any CPU.
5178          * Changing the TSC frequency at arbitrary points in time
5179          * requires a recomputation of local variables related to
5180          * the TSC for each VCPU.  We must flag these local variables
5181          * to be updated and be sure the update takes place with the
5182          * new frequency before any guests proceed.
5183          *
5184          * Unfortunately, the combination of hotplug CPU and frequency
5185          * change creates an intractable locking scenario; the order
5186          * of when these callouts happen is undefined with respect to
5187          * CPU hotplug, and they can race with each other.  As such,
5188          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5189          * undefined; you can actually have a CPU frequency change take
5190          * place in between the computation of X and the setting of the
5191          * variable.  To protect against this problem, all updates of
5192          * the per_cpu tsc_khz variable are done in an interrupt
5193          * protected IPI, and all callers wishing to update the value
5194          * must wait for a synchronous IPI to complete (which is trivial
5195          * if the caller is on the CPU already).  This establishes the
5196          * necessary total order on variable updates.
5197          *
5198          * Note that because a guest time update may take place
5199          * anytime after the setting of the VCPU's request bit, the
5200          * correct TSC value must be set before the request.  However,
5201          * to ensure the update actually makes it to any guest which
5202          * starts running in hardware virtualization between the set
5203          * and the acquisition of the spinlock, we must also ping the
5204          * CPU after setting the request bit.
5205          *
5206          */
5207
5208         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5209                 return 0;
5210         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5211                 return 0;
5212
5213         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5214
5215         raw_spin_lock(&kvm_lock);
5216         list_for_each_entry(kvm, &vm_list, vm_list) {
5217                 kvm_for_each_vcpu(i, vcpu, kvm) {
5218                         if (vcpu->cpu != freq->cpu)
5219                                 continue;
5220                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5221                         if (vcpu->cpu != smp_processor_id())
5222                                 send_ipi = 1;
5223                 }
5224         }
5225         raw_spin_unlock(&kvm_lock);
5226
5227         if (freq->old < freq->new && send_ipi) {
5228                 /*
5229                  * We upscale the frequency.  Must make the guest
5230                  * doesn't see old kvmclock values while running with
5231                  * the new frequency, otherwise we risk the guest sees
5232                  * time go backwards.
5233                  *
5234                  * In case we update the frequency for another cpu
5235                  * (which might be in guest context) send an interrupt
5236                  * to kick the cpu out of guest context.  Next time
5237                  * guest context is entered kvmclock will be updated,
5238                  * so the guest will not see stale values.
5239                  */
5240                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5241         }
5242         return 0;
5243 }
5244
5245 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5246         .notifier_call  = kvmclock_cpufreq_notifier
5247 };
5248
5249 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5250                                         unsigned long action, void *hcpu)
5251 {
5252         unsigned int cpu = (unsigned long)hcpu;
5253
5254         switch (action) {
5255                 case CPU_ONLINE:
5256                 case CPU_DOWN_FAILED:
5257                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5258                         break;
5259                 case CPU_DOWN_PREPARE:
5260                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5261                         break;
5262         }
5263         return NOTIFY_OK;
5264 }
5265
5266 static struct notifier_block kvmclock_cpu_notifier_block = {
5267         .notifier_call  = kvmclock_cpu_notifier,
5268         .priority = -INT_MAX
5269 };
5270
5271 static void kvm_timer_init(void)
5272 {
5273         int cpu;
5274
5275         max_tsc_khz = tsc_khz;
5276         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5277         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5278 #ifdef CONFIG_CPU_FREQ
5279                 struct cpufreq_policy policy;
5280                 memset(&policy, 0, sizeof(policy));
5281                 cpu = get_cpu();
5282                 cpufreq_get_policy(&policy, cpu);
5283                 if (policy.cpuinfo.max_freq)
5284                         max_tsc_khz = policy.cpuinfo.max_freq;
5285                 put_cpu();
5286 #endif
5287                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5288                                           CPUFREQ_TRANSITION_NOTIFIER);
5289         }
5290         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5291         for_each_online_cpu(cpu)
5292                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5293 }
5294
5295 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5296
5297 int kvm_is_in_guest(void)
5298 {
5299         return __this_cpu_read(current_vcpu) != NULL;
5300 }
5301
5302 static int kvm_is_user_mode(void)
5303 {
5304         int user_mode = 3;
5305
5306         if (__this_cpu_read(current_vcpu))
5307                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5308
5309         return user_mode != 0;
5310 }
5311
5312 static unsigned long kvm_get_guest_ip(void)
5313 {
5314         unsigned long ip = 0;
5315
5316         if (__this_cpu_read(current_vcpu))
5317                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5318
5319         return ip;
5320 }
5321
5322 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5323         .is_in_guest            = kvm_is_in_guest,
5324         .is_user_mode           = kvm_is_user_mode,
5325         .get_guest_ip           = kvm_get_guest_ip,
5326 };
5327
5328 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5329 {
5330         __this_cpu_write(current_vcpu, vcpu);
5331 }
5332 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5333
5334 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5335 {
5336         __this_cpu_write(current_vcpu, NULL);
5337 }
5338 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5339
5340 static void kvm_set_mmio_spte_mask(void)
5341 {
5342         u64 mask;
5343         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5344
5345         /*
5346          * Set the reserved bits and the present bit of an paging-structure
5347          * entry to generate page fault with PFER.RSV = 1.
5348          */
5349          /* Mask the reserved physical address bits. */
5350         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5351
5352         /* Bit 62 is always reserved for 32bit host. */
5353         mask |= 0x3ull << 62;
5354
5355         /* Set the present bit. */
5356         mask |= 1ull;
5357
5358 #ifdef CONFIG_X86_64
5359         /*
5360          * If reserved bit is not supported, clear the present bit to disable
5361          * mmio page fault.
5362          */
5363         if (maxphyaddr == 52)
5364                 mask &= ~1ull;
5365 #endif
5366
5367         kvm_mmu_set_mmio_spte_mask(mask);
5368 }
5369
5370 #ifdef CONFIG_X86_64
5371 static void pvclock_gtod_update_fn(struct work_struct *work)
5372 {
5373         struct kvm *kvm;
5374
5375         struct kvm_vcpu *vcpu;
5376         int i;
5377
5378         raw_spin_lock(&kvm_lock);
5379         list_for_each_entry(kvm, &vm_list, vm_list)
5380                 kvm_for_each_vcpu(i, vcpu, kvm)
5381                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5382         atomic_set(&kvm_guest_has_master_clock, 0);
5383         raw_spin_unlock(&kvm_lock);
5384 }
5385
5386 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5387
5388 /*
5389  * Notification about pvclock gtod data update.
5390  */
5391 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5392                                void *priv)
5393 {
5394         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5395         struct timekeeper *tk = priv;
5396
5397         update_pvclock_gtod(tk);
5398
5399         /* disable master clock if host does not trust, or does not
5400          * use, TSC clocksource
5401          */
5402         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5403             atomic_read(&kvm_guest_has_master_clock) != 0)
5404                 queue_work(system_long_wq, &pvclock_gtod_work);
5405
5406         return 0;
5407 }
5408
5409 static struct notifier_block pvclock_gtod_notifier = {
5410         .notifier_call = pvclock_gtod_notify,
5411 };
5412 #endif
5413
5414 int kvm_arch_init(void *opaque)
5415 {
5416         int r;
5417         struct kvm_x86_ops *ops = opaque;
5418
5419         if (kvm_x86_ops) {
5420                 printk(KERN_ERR "kvm: already loaded the other module\n");
5421                 r = -EEXIST;
5422                 goto out;
5423         }
5424
5425         if (!ops->cpu_has_kvm_support()) {
5426                 printk(KERN_ERR "kvm: no hardware support\n");
5427                 r = -EOPNOTSUPP;
5428                 goto out;
5429         }
5430         if (ops->disabled_by_bios()) {
5431                 printk(KERN_ERR "kvm: disabled by bios\n");
5432                 r = -EOPNOTSUPP;
5433                 goto out;
5434         }
5435
5436         r = -ENOMEM;
5437         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5438         if (!shared_msrs) {
5439                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5440                 goto out;
5441         }
5442
5443         r = kvm_mmu_module_init();
5444         if (r)
5445                 goto out_free_percpu;
5446
5447         kvm_set_mmio_spte_mask();
5448         kvm_init_msr_list();
5449
5450         kvm_x86_ops = ops;
5451         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5452                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5453
5454         kvm_timer_init();
5455
5456         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5457
5458         if (cpu_has_xsave)
5459                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5460
5461         kvm_lapic_init();
5462 #ifdef CONFIG_X86_64
5463         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5464 #endif
5465
5466         return 0;
5467
5468 out_free_percpu:
5469         free_percpu(shared_msrs);
5470 out:
5471         return r;
5472 }
5473
5474 void kvm_arch_exit(void)
5475 {
5476         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5477
5478         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5479                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5480                                             CPUFREQ_TRANSITION_NOTIFIER);
5481         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5482 #ifdef CONFIG_X86_64
5483         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5484 #endif
5485         kvm_x86_ops = NULL;
5486         kvm_mmu_module_exit();
5487         free_percpu(shared_msrs);
5488 }
5489
5490 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5491 {
5492         ++vcpu->stat.halt_exits;
5493         if (irqchip_in_kernel(vcpu->kvm)) {
5494                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5495                 return 1;
5496         } else {
5497                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5498                 return 0;
5499         }
5500 }
5501 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5502
5503 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5504 {
5505         u64 param, ingpa, outgpa, ret;
5506         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5507         bool fast, longmode;
5508         int cs_db, cs_l;
5509
5510         /*
5511          * hypercall generates UD from non zero cpl and real mode
5512          * per HYPER-V spec
5513          */
5514         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5515                 kvm_queue_exception(vcpu, UD_VECTOR);
5516                 return 0;
5517         }
5518
5519         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5520         longmode = is_long_mode(vcpu) && cs_l == 1;
5521
5522         if (!longmode) {
5523                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5524                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5525                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5526                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5527                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5528                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5529         }
5530 #ifdef CONFIG_X86_64
5531         else {
5532                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5533                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5534                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5535         }
5536 #endif
5537
5538         code = param & 0xffff;
5539         fast = (param >> 16) & 0x1;
5540         rep_cnt = (param >> 32) & 0xfff;
5541         rep_idx = (param >> 48) & 0xfff;
5542
5543         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5544
5545         switch (code) {
5546         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5547                 kvm_vcpu_on_spin(vcpu);
5548                 break;
5549         default:
5550                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5551                 break;
5552         }
5553
5554         ret = res | (((u64)rep_done & 0xfff) << 32);
5555         if (longmode) {
5556                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5557         } else {
5558                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5559                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5560         }
5561
5562         return 1;
5563 }
5564
5565 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5566 {
5567         unsigned long nr, a0, a1, a2, a3, ret;
5568         int r = 1;
5569
5570         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5571                 return kvm_hv_hypercall(vcpu);
5572
5573         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5574         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5575         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5576         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5577         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5578
5579         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5580
5581         if (!is_long_mode(vcpu)) {
5582                 nr &= 0xFFFFFFFF;
5583                 a0 &= 0xFFFFFFFF;
5584                 a1 &= 0xFFFFFFFF;
5585                 a2 &= 0xFFFFFFFF;
5586                 a3 &= 0xFFFFFFFF;
5587         }
5588
5589         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5590                 ret = -KVM_EPERM;
5591                 goto out;
5592         }
5593
5594         switch (nr) {
5595         case KVM_HC_VAPIC_POLL_IRQ:
5596                 ret = 0;
5597                 break;
5598         default:
5599                 ret = -KVM_ENOSYS;
5600                 break;
5601         }
5602 out:
5603         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5604         ++vcpu->stat.hypercalls;
5605         return r;
5606 }
5607 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5608
5609 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5610 {
5611         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5612         char instruction[3];
5613         unsigned long rip = kvm_rip_read(vcpu);
5614
5615         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5616
5617         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5618 }
5619
5620 /*
5621  * Check if userspace requested an interrupt window, and that the
5622  * interrupt window is open.
5623  *
5624  * No need to exit to userspace if we already have an interrupt queued.
5625  */
5626 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5627 {
5628         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5629                 vcpu->run->request_interrupt_window &&
5630                 kvm_arch_interrupt_allowed(vcpu));
5631 }
5632
5633 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5634 {
5635         struct kvm_run *kvm_run = vcpu->run;
5636
5637         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5638         kvm_run->cr8 = kvm_get_cr8(vcpu);
5639         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5640         if (irqchip_in_kernel(vcpu->kvm))
5641                 kvm_run->ready_for_interrupt_injection = 1;
5642         else
5643                 kvm_run->ready_for_interrupt_injection =
5644                         kvm_arch_interrupt_allowed(vcpu) &&
5645                         !kvm_cpu_has_interrupt(vcpu) &&
5646                         !kvm_event_needs_reinjection(vcpu);
5647 }
5648
5649 static int vapic_enter(struct kvm_vcpu *vcpu)
5650 {
5651         struct kvm_lapic *apic = vcpu->arch.apic;
5652         struct page *page;
5653
5654         if (!apic || !apic->vapic_addr)
5655                 return 0;
5656
5657         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5658         if (is_error_page(page))
5659                 return -EFAULT;
5660
5661         vcpu->arch.apic->vapic_page = page;
5662         return 0;
5663 }
5664
5665 static void vapic_exit(struct kvm_vcpu *vcpu)
5666 {
5667         struct kvm_lapic *apic = vcpu->arch.apic;
5668         int idx;
5669
5670         if (!apic || !apic->vapic_addr)
5671                 return;
5672
5673         idx = srcu_read_lock(&vcpu->kvm->srcu);
5674         kvm_release_page_dirty(apic->vapic_page);
5675         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5676         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5677 }
5678
5679 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5680 {
5681         int max_irr, tpr;
5682
5683         if (!kvm_x86_ops->update_cr8_intercept)
5684                 return;
5685
5686         if (!vcpu->arch.apic)
5687                 return;
5688
5689         if (!vcpu->arch.apic->vapic_addr)
5690                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5691         else
5692                 max_irr = -1;
5693
5694         if (max_irr != -1)
5695                 max_irr >>= 4;
5696
5697         tpr = kvm_lapic_get_cr8(vcpu);
5698
5699         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5700 }
5701
5702 static void inject_pending_event(struct kvm_vcpu *vcpu)
5703 {
5704         /* try to reinject previous events if any */
5705         if (vcpu->arch.exception.pending) {
5706                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5707                                         vcpu->arch.exception.has_error_code,
5708                                         vcpu->arch.exception.error_code);
5709                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5710                                           vcpu->arch.exception.has_error_code,
5711                                           vcpu->arch.exception.error_code,
5712                                           vcpu->arch.exception.reinject);
5713                 return;
5714         }
5715
5716         if (vcpu->arch.nmi_injected) {
5717                 kvm_x86_ops->set_nmi(vcpu);
5718                 return;
5719         }
5720
5721         if (vcpu->arch.interrupt.pending) {
5722                 kvm_x86_ops->set_irq(vcpu);
5723                 return;
5724         }
5725
5726         /* try to inject new event if pending */
5727         if (vcpu->arch.nmi_pending) {
5728                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5729                         --vcpu->arch.nmi_pending;
5730                         vcpu->arch.nmi_injected = true;
5731                         kvm_x86_ops->set_nmi(vcpu);
5732                 }
5733         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5734                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5735                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5736                                             false);
5737                         kvm_x86_ops->set_irq(vcpu);
5738                 }
5739         }
5740 }
5741
5742 static void process_nmi(struct kvm_vcpu *vcpu)
5743 {
5744         unsigned limit = 2;
5745
5746         /*
5747          * x86 is limited to one NMI running, and one NMI pending after it.
5748          * If an NMI is already in progress, limit further NMIs to just one.
5749          * Otherwise, allow two (and we'll inject the first one immediately).
5750          */
5751         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5752                 limit = 1;
5753
5754         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5755         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5756         kvm_make_request(KVM_REQ_EVENT, vcpu);
5757 }
5758
5759 static void kvm_gen_update_masterclock(struct kvm *kvm)
5760 {
5761 #ifdef CONFIG_X86_64
5762         int i;
5763         struct kvm_vcpu *vcpu;
5764         struct kvm_arch *ka = &kvm->arch;
5765
5766         spin_lock(&ka->pvclock_gtod_sync_lock);
5767         kvm_make_mclock_inprogress_request(kvm);
5768         /* no guest entries from this point */
5769         pvclock_update_vm_gtod_copy(kvm);
5770
5771         kvm_for_each_vcpu(i, vcpu, kvm)
5772                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5773
5774         /* guest entries allowed */
5775         kvm_for_each_vcpu(i, vcpu, kvm)
5776                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5777
5778         spin_unlock(&ka->pvclock_gtod_sync_lock);
5779 #endif
5780 }
5781
5782 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5783 {
5784         u64 eoi_exit_bitmap[4];
5785         u32 tmr[8];
5786
5787         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5788                 return;
5789
5790         memset(eoi_exit_bitmap, 0, 32);
5791         memset(tmr, 0, 32);
5792
5793         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5794         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5795         kvm_apic_update_tmr(vcpu, tmr);
5796 }
5797
5798 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5799 {
5800         int r;
5801         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5802                 vcpu->run->request_interrupt_window;
5803         bool req_immediate_exit = false;
5804
5805         if (vcpu->requests) {
5806                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5807                         kvm_mmu_unload(vcpu);
5808                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5809                         __kvm_migrate_timers(vcpu);
5810                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5811                         kvm_gen_update_masterclock(vcpu->kvm);
5812                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5813                         kvm_gen_kvmclock_update(vcpu);
5814                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5815                         r = kvm_guest_time_update(vcpu);
5816                         if (unlikely(r))
5817                                 goto out;
5818                 }
5819                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5820                         kvm_mmu_sync_roots(vcpu);
5821                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5822                         kvm_x86_ops->tlb_flush(vcpu);
5823                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5824                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5825                         r = 0;
5826                         goto out;
5827                 }
5828                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5829                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5830                         r = 0;
5831                         goto out;
5832                 }
5833                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5834                         vcpu->fpu_active = 0;
5835                         kvm_x86_ops->fpu_deactivate(vcpu);
5836                 }
5837                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5838                         /* Page is swapped out. Do synthetic halt */
5839                         vcpu->arch.apf.halted = true;
5840                         r = 1;
5841                         goto out;
5842                 }
5843                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5844                         record_steal_time(vcpu);
5845                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5846                         process_nmi(vcpu);
5847                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5848                         kvm_handle_pmu_event(vcpu);
5849                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5850                         kvm_deliver_pmi(vcpu);
5851                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5852                         vcpu_scan_ioapic(vcpu);
5853         }
5854
5855         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5856                 kvm_apic_accept_events(vcpu);
5857                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5858                         r = 1;
5859                         goto out;
5860                 }
5861
5862                 inject_pending_event(vcpu);
5863
5864                 /* enable NMI/IRQ window open exits if needed */
5865                 if (vcpu->arch.nmi_pending)
5866                         req_immediate_exit =
5867                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5868                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5869                         req_immediate_exit =
5870                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5871
5872                 if (kvm_lapic_enabled(vcpu)) {
5873                         /*
5874                          * Update architecture specific hints for APIC
5875                          * virtual interrupt delivery.
5876                          */
5877                         if (kvm_x86_ops->hwapic_irr_update)
5878                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5879                                         kvm_lapic_find_highest_irr(vcpu));
5880                         update_cr8_intercept(vcpu);
5881                         kvm_lapic_sync_to_vapic(vcpu);
5882                 }
5883         }
5884
5885         r = kvm_mmu_reload(vcpu);
5886         if (unlikely(r)) {
5887                 goto cancel_injection;
5888         }
5889
5890         preempt_disable();
5891
5892         kvm_x86_ops->prepare_guest_switch(vcpu);
5893         if (vcpu->fpu_active)
5894                 kvm_load_guest_fpu(vcpu);
5895         kvm_load_guest_xcr0(vcpu);
5896
5897         vcpu->mode = IN_GUEST_MODE;
5898
5899         /* We should set ->mode before check ->requests,
5900          * see the comment in make_all_cpus_request.
5901          */
5902         smp_mb();
5903
5904         local_irq_disable();
5905
5906         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5907             || need_resched() || signal_pending(current)) {
5908                 vcpu->mode = OUTSIDE_GUEST_MODE;
5909                 smp_wmb();
5910                 local_irq_enable();
5911                 preempt_enable();
5912                 r = 1;
5913                 goto cancel_injection;
5914         }
5915
5916         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5917
5918         if (req_immediate_exit)
5919                 smp_send_reschedule(vcpu->cpu);
5920
5921         kvm_guest_enter();
5922
5923         if (unlikely(vcpu->arch.switch_db_regs)) {
5924                 set_debugreg(0, 7);
5925                 set_debugreg(vcpu->arch.eff_db[0], 0);
5926                 set_debugreg(vcpu->arch.eff_db[1], 1);
5927                 set_debugreg(vcpu->arch.eff_db[2], 2);
5928                 set_debugreg(vcpu->arch.eff_db[3], 3);
5929         }
5930
5931         trace_kvm_entry(vcpu->vcpu_id);
5932         kvm_x86_ops->run(vcpu);
5933
5934         /*
5935          * If the guest has used debug registers, at least dr7
5936          * will be disabled while returning to the host.
5937          * If we don't have active breakpoints in the host, we don't
5938          * care about the messed up debug address registers. But if
5939          * we have some of them active, restore the old state.
5940          */
5941         if (hw_breakpoint_active())
5942                 hw_breakpoint_restore();
5943
5944         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5945                                                            native_read_tsc());
5946
5947         vcpu->mode = OUTSIDE_GUEST_MODE;
5948         smp_wmb();
5949
5950         /* Interrupt is enabled by handle_external_intr() */
5951         kvm_x86_ops->handle_external_intr(vcpu);
5952
5953         ++vcpu->stat.exits;
5954
5955         /*
5956          * We must have an instruction between local_irq_enable() and
5957          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5958          * the interrupt shadow.  The stat.exits increment will do nicely.
5959          * But we need to prevent reordering, hence this barrier():
5960          */
5961         barrier();
5962
5963         kvm_guest_exit();
5964
5965         preempt_enable();
5966
5967         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5968
5969         /*
5970          * Profile KVM exit RIPs:
5971          */
5972         if (unlikely(prof_on == KVM_PROFILING)) {
5973                 unsigned long rip = kvm_rip_read(vcpu);
5974                 profile_hit(KVM_PROFILING, (void *)rip);
5975         }
5976
5977         if (unlikely(vcpu->arch.tsc_always_catchup))
5978                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5979
5980         if (vcpu->arch.apic_attention)
5981                 kvm_lapic_sync_from_vapic(vcpu);
5982
5983         r = kvm_x86_ops->handle_exit(vcpu);
5984         return r;
5985
5986 cancel_injection:
5987         kvm_x86_ops->cancel_injection(vcpu);
5988         if (unlikely(vcpu->arch.apic_attention))
5989                 kvm_lapic_sync_from_vapic(vcpu);
5990 out:
5991         return r;
5992 }
5993
5994
5995 static int __vcpu_run(struct kvm_vcpu *vcpu)
5996 {
5997         int r;
5998         struct kvm *kvm = vcpu->kvm;
5999
6000         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6001         r = vapic_enter(vcpu);
6002         if (r) {
6003                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6004                 return r;
6005         }
6006
6007         r = 1;
6008         while (r > 0) {
6009                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6010                     !vcpu->arch.apf.halted)
6011                         r = vcpu_enter_guest(vcpu);
6012                 else {
6013                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6014                         kvm_vcpu_block(vcpu);
6015                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6016                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6017                                 kvm_apic_accept_events(vcpu);
6018                                 switch(vcpu->arch.mp_state) {
6019                                 case KVM_MP_STATE_HALTED:
6020                                         vcpu->arch.mp_state =
6021                                                 KVM_MP_STATE_RUNNABLE;
6022                                 case KVM_MP_STATE_RUNNABLE:
6023                                         vcpu->arch.apf.halted = false;
6024                                         break;
6025                                 case KVM_MP_STATE_INIT_RECEIVED:
6026                                         break;
6027                                 default:
6028                                         r = -EINTR;
6029                                         break;
6030                                 }
6031                         }
6032                 }
6033
6034                 if (r <= 0)
6035                         break;
6036
6037                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6038                 if (kvm_cpu_has_pending_timer(vcpu))
6039                         kvm_inject_pending_timer_irqs(vcpu);
6040
6041                 if (dm_request_for_irq_injection(vcpu)) {
6042                         r = -EINTR;
6043                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6044                         ++vcpu->stat.request_irq_exits;
6045                 }
6046
6047                 kvm_check_async_pf_completion(vcpu);
6048
6049                 if (signal_pending(current)) {
6050                         r = -EINTR;
6051                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6052                         ++vcpu->stat.signal_exits;
6053                 }
6054                 if (need_resched()) {
6055                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6056                         kvm_resched(vcpu);
6057                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6058                 }
6059         }
6060
6061         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6062
6063         vapic_exit(vcpu);
6064
6065         return r;
6066 }
6067
6068 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6069 {
6070         int r;
6071         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6072         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6073         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6074         if (r != EMULATE_DONE)
6075                 return 0;
6076         return 1;
6077 }
6078
6079 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6080 {
6081         BUG_ON(!vcpu->arch.pio.count);
6082
6083         return complete_emulated_io(vcpu);
6084 }
6085
6086 /*
6087  * Implements the following, as a state machine:
6088  *
6089  * read:
6090  *   for each fragment
6091  *     for each mmio piece in the fragment
6092  *       write gpa, len
6093  *       exit
6094  *       copy data
6095  *   execute insn
6096  *
6097  * write:
6098  *   for each fragment
6099  *     for each mmio piece in the fragment
6100  *       write gpa, len
6101  *       copy data
6102  *       exit
6103  */
6104 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6105 {
6106         struct kvm_run *run = vcpu->run;
6107         struct kvm_mmio_fragment *frag;
6108         unsigned len;
6109
6110         BUG_ON(!vcpu->mmio_needed);
6111
6112         /* Complete previous fragment */
6113         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6114         len = min(8u, frag->len);
6115         if (!vcpu->mmio_is_write)
6116                 memcpy(frag->data, run->mmio.data, len);
6117
6118         if (frag->len <= 8) {
6119                 /* Switch to the next fragment. */
6120                 frag++;
6121                 vcpu->mmio_cur_fragment++;
6122         } else {
6123                 /* Go forward to the next mmio piece. */
6124                 frag->data += len;
6125                 frag->gpa += len;
6126                 frag->len -= len;
6127         }
6128
6129         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6130                 vcpu->mmio_needed = 0;
6131                 if (vcpu->mmio_is_write)
6132                         return 1;
6133                 vcpu->mmio_read_completed = 1;
6134                 return complete_emulated_io(vcpu);
6135         }
6136
6137         run->exit_reason = KVM_EXIT_MMIO;
6138         run->mmio.phys_addr = frag->gpa;
6139         if (vcpu->mmio_is_write)
6140                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6141         run->mmio.len = min(8u, frag->len);
6142         run->mmio.is_write = vcpu->mmio_is_write;
6143         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6144         return 0;
6145 }
6146
6147
6148 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6149 {
6150         int r;
6151         sigset_t sigsaved;
6152
6153         if (!tsk_used_math(current) && init_fpu(current))
6154                 return -ENOMEM;
6155
6156         if (vcpu->sigset_active)
6157                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6158
6159         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6160                 kvm_vcpu_block(vcpu);
6161                 kvm_apic_accept_events(vcpu);
6162                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6163                 r = -EAGAIN;
6164                 goto out;
6165         }
6166
6167         /* re-sync apic's tpr */
6168         if (!irqchip_in_kernel(vcpu->kvm)) {
6169                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6170                         r = -EINVAL;
6171                         goto out;
6172                 }
6173         }
6174
6175         if (unlikely(vcpu->arch.complete_userspace_io)) {
6176                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6177                 vcpu->arch.complete_userspace_io = NULL;
6178                 r = cui(vcpu);
6179                 if (r <= 0)
6180                         goto out;
6181         } else
6182                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6183
6184         r = __vcpu_run(vcpu);
6185
6186 out:
6187         post_kvm_run_save(vcpu);
6188         if (vcpu->sigset_active)
6189                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6190
6191         return r;
6192 }
6193
6194 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6195 {
6196         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6197                 /*
6198                  * We are here if userspace calls get_regs() in the middle of
6199                  * instruction emulation. Registers state needs to be copied
6200                  * back from emulation context to vcpu. Userspace shouldn't do
6201                  * that usually, but some bad designed PV devices (vmware
6202                  * backdoor interface) need this to work
6203                  */
6204                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6205                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6206         }
6207         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6208         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6209         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6210         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6211         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6212         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6213         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6214         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6215 #ifdef CONFIG_X86_64
6216         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6217         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6218         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6219         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6220         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6221         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6222         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6223         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6224 #endif
6225
6226         regs->rip = kvm_rip_read(vcpu);
6227         regs->rflags = kvm_get_rflags(vcpu);
6228
6229         return 0;
6230 }
6231
6232 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6233 {
6234         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6235         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6236
6237         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6238         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6239         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6240         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6241         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6242         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6243         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6244         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6245 #ifdef CONFIG_X86_64
6246         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6247         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6248         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6249         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6250         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6251         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6252         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6253         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6254 #endif
6255
6256         kvm_rip_write(vcpu, regs->rip);
6257         kvm_set_rflags(vcpu, regs->rflags);
6258
6259         vcpu->arch.exception.pending = false;
6260
6261         kvm_make_request(KVM_REQ_EVENT, vcpu);
6262
6263         return 0;
6264 }
6265
6266 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6267 {
6268         struct kvm_segment cs;
6269
6270         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6271         *db = cs.db;
6272         *l = cs.l;
6273 }
6274 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6275
6276 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6277                                   struct kvm_sregs *sregs)
6278 {
6279         struct desc_ptr dt;
6280
6281         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6282         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6283         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6284         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6285         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6286         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6287
6288         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6289         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6290
6291         kvm_x86_ops->get_idt(vcpu, &dt);
6292         sregs->idt.limit = dt.size;
6293         sregs->idt.base = dt.address;
6294         kvm_x86_ops->get_gdt(vcpu, &dt);
6295         sregs->gdt.limit = dt.size;
6296         sregs->gdt.base = dt.address;
6297
6298         sregs->cr0 = kvm_read_cr0(vcpu);
6299         sregs->cr2 = vcpu->arch.cr2;
6300         sregs->cr3 = kvm_read_cr3(vcpu);
6301         sregs->cr4 = kvm_read_cr4(vcpu);
6302         sregs->cr8 = kvm_get_cr8(vcpu);
6303         sregs->efer = vcpu->arch.efer;
6304         sregs->apic_base = kvm_get_apic_base(vcpu);
6305
6306         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6307
6308         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6309                 set_bit(vcpu->arch.interrupt.nr,
6310                         (unsigned long *)sregs->interrupt_bitmap);
6311
6312         return 0;
6313 }
6314
6315 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6316                                     struct kvm_mp_state *mp_state)
6317 {
6318         kvm_apic_accept_events(vcpu);
6319         mp_state->mp_state = vcpu->arch.mp_state;
6320         return 0;
6321 }
6322
6323 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6324                                     struct kvm_mp_state *mp_state)
6325 {
6326         if (!kvm_vcpu_has_lapic(vcpu) &&
6327             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6328                 return -EINVAL;
6329
6330         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6331                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6332                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6333         } else
6334                 vcpu->arch.mp_state = mp_state->mp_state;
6335         kvm_make_request(KVM_REQ_EVENT, vcpu);
6336         return 0;
6337 }
6338
6339 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6340                     int reason, bool has_error_code, u32 error_code)
6341 {
6342         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6343         int ret;
6344
6345         init_emulate_ctxt(vcpu);
6346
6347         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6348                                    has_error_code, error_code);
6349
6350         if (ret)
6351                 return EMULATE_FAIL;
6352
6353         kvm_rip_write(vcpu, ctxt->eip);
6354         kvm_set_rflags(vcpu, ctxt->eflags);
6355         kvm_make_request(KVM_REQ_EVENT, vcpu);
6356         return EMULATE_DONE;
6357 }
6358 EXPORT_SYMBOL_GPL(kvm_task_switch);
6359
6360 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6361                                   struct kvm_sregs *sregs)
6362 {
6363         int mmu_reset_needed = 0;
6364         int pending_vec, max_bits, idx;
6365         struct desc_ptr dt;
6366
6367         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6368                 return -EINVAL;
6369
6370         dt.size = sregs->idt.limit;
6371         dt.address = sregs->idt.base;
6372         kvm_x86_ops->set_idt(vcpu, &dt);
6373         dt.size = sregs->gdt.limit;
6374         dt.address = sregs->gdt.base;
6375         kvm_x86_ops->set_gdt(vcpu, &dt);
6376
6377         vcpu->arch.cr2 = sregs->cr2;
6378         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6379         vcpu->arch.cr3 = sregs->cr3;
6380         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6381
6382         kvm_set_cr8(vcpu, sregs->cr8);
6383
6384         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6385         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6386         kvm_set_apic_base(vcpu, sregs->apic_base);
6387
6388         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6389         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6390         vcpu->arch.cr0 = sregs->cr0;
6391
6392         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6393         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6394         if (sregs->cr4 & X86_CR4_OSXSAVE)
6395                 kvm_update_cpuid(vcpu);
6396
6397         idx = srcu_read_lock(&vcpu->kvm->srcu);
6398         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6399                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6400                 mmu_reset_needed = 1;
6401         }
6402         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6403
6404         if (mmu_reset_needed)
6405                 kvm_mmu_reset_context(vcpu);
6406
6407         max_bits = KVM_NR_INTERRUPTS;
6408         pending_vec = find_first_bit(
6409                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6410         if (pending_vec < max_bits) {
6411                 kvm_queue_interrupt(vcpu, pending_vec, false);
6412                 pr_debug("Set back pending irq %d\n", pending_vec);
6413         }
6414
6415         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6416         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6417         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6418         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6419         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6420         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6421
6422         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6423         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6424
6425         update_cr8_intercept(vcpu);
6426
6427         /* Older userspace won't unhalt the vcpu on reset. */
6428         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6429             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6430             !is_protmode(vcpu))
6431                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6432
6433         kvm_make_request(KVM_REQ_EVENT, vcpu);
6434
6435         return 0;
6436 }
6437
6438 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6439                                         struct kvm_guest_debug *dbg)
6440 {
6441         unsigned long rflags;
6442         int i, r;
6443
6444         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6445                 r = -EBUSY;
6446                 if (vcpu->arch.exception.pending)
6447                         goto out;
6448                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6449                         kvm_queue_exception(vcpu, DB_VECTOR);
6450                 else
6451                         kvm_queue_exception(vcpu, BP_VECTOR);
6452         }
6453
6454         /*
6455          * Read rflags as long as potentially injected trace flags are still
6456          * filtered out.
6457          */
6458         rflags = kvm_get_rflags(vcpu);
6459
6460         vcpu->guest_debug = dbg->control;
6461         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6462                 vcpu->guest_debug = 0;
6463
6464         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6465                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6466                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6467                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6468         } else {
6469                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6470                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6471         }
6472         kvm_update_dr7(vcpu);
6473
6474         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6475                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6476                         get_segment_base(vcpu, VCPU_SREG_CS);
6477
6478         /*
6479          * Trigger an rflags update that will inject or remove the trace
6480          * flags.
6481          */
6482         kvm_set_rflags(vcpu, rflags);
6483
6484         kvm_x86_ops->update_db_bp_intercept(vcpu);
6485
6486         r = 0;
6487
6488 out:
6489
6490         return r;
6491 }
6492
6493 /*
6494  * Translate a guest virtual address to a guest physical address.
6495  */
6496 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6497                                     struct kvm_translation *tr)
6498 {
6499         unsigned long vaddr = tr->linear_address;
6500         gpa_t gpa;
6501         int idx;
6502
6503         idx = srcu_read_lock(&vcpu->kvm->srcu);
6504         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6505         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6506         tr->physical_address = gpa;
6507         tr->valid = gpa != UNMAPPED_GVA;
6508         tr->writeable = 1;
6509         tr->usermode = 0;
6510
6511         return 0;
6512 }
6513
6514 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6515 {
6516         struct i387_fxsave_struct *fxsave =
6517                         &vcpu->arch.guest_fpu.state->fxsave;
6518
6519         memcpy(fpu->fpr, fxsave->st_space, 128);
6520         fpu->fcw = fxsave->cwd;
6521         fpu->fsw = fxsave->swd;
6522         fpu->ftwx = fxsave->twd;
6523         fpu->last_opcode = fxsave->fop;
6524         fpu->last_ip = fxsave->rip;
6525         fpu->last_dp = fxsave->rdp;
6526         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6527
6528         return 0;
6529 }
6530
6531 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6532 {
6533         struct i387_fxsave_struct *fxsave =
6534                         &vcpu->arch.guest_fpu.state->fxsave;
6535
6536         memcpy(fxsave->st_space, fpu->fpr, 128);
6537         fxsave->cwd = fpu->fcw;
6538         fxsave->swd = fpu->fsw;
6539         fxsave->twd = fpu->ftwx;
6540         fxsave->fop = fpu->last_opcode;
6541         fxsave->rip = fpu->last_ip;
6542         fxsave->rdp = fpu->last_dp;
6543         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6544
6545         return 0;
6546 }
6547
6548 int fx_init(struct kvm_vcpu *vcpu)
6549 {
6550         int err;
6551
6552         err = fpu_alloc(&vcpu->arch.guest_fpu);
6553         if (err)
6554                 return err;
6555
6556         fpu_finit(&vcpu->arch.guest_fpu);
6557
6558         /*
6559          * Ensure guest xcr0 is valid for loading
6560          */
6561         vcpu->arch.xcr0 = XSTATE_FP;
6562
6563         vcpu->arch.cr0 |= X86_CR0_ET;
6564
6565         return 0;
6566 }
6567 EXPORT_SYMBOL_GPL(fx_init);
6568
6569 static void fx_free(struct kvm_vcpu *vcpu)
6570 {
6571         fpu_free(&vcpu->arch.guest_fpu);
6572 }
6573
6574 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6575 {
6576         if (vcpu->guest_fpu_loaded)
6577                 return;
6578
6579         /*
6580          * Restore all possible states in the guest,
6581          * and assume host would use all available bits.
6582          * Guest xcr0 would be loaded later.
6583          */
6584         kvm_put_guest_xcr0(vcpu);
6585         vcpu->guest_fpu_loaded = 1;
6586         __kernel_fpu_begin();
6587         fpu_restore_checking(&vcpu->arch.guest_fpu);
6588         trace_kvm_fpu(1);
6589 }
6590
6591 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6592 {
6593         kvm_put_guest_xcr0(vcpu);
6594
6595         if (!vcpu->guest_fpu_loaded)
6596                 return;
6597
6598         vcpu->guest_fpu_loaded = 0;
6599         fpu_save_init(&vcpu->arch.guest_fpu);
6600         __kernel_fpu_end();
6601         ++vcpu->stat.fpu_reload;
6602         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6603         trace_kvm_fpu(0);
6604 }
6605
6606 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6607 {
6608         kvmclock_reset(vcpu);
6609
6610         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6611         fx_free(vcpu);
6612         kvm_x86_ops->vcpu_free(vcpu);
6613 }
6614
6615 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6616                                                 unsigned int id)
6617 {
6618         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6619                 printk_once(KERN_WARNING
6620                 "kvm: SMP vm created on host with unstable TSC; "
6621                 "guest TSC will not be reliable\n");
6622         return kvm_x86_ops->vcpu_create(kvm, id);
6623 }
6624
6625 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6626 {
6627         int r;
6628
6629         vcpu->arch.mtrr_state.have_fixed = 1;
6630         r = vcpu_load(vcpu);
6631         if (r)
6632                 return r;
6633         kvm_vcpu_reset(vcpu);
6634         r = kvm_mmu_setup(vcpu);
6635         vcpu_put(vcpu);
6636
6637         return r;
6638 }
6639
6640 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6641 {
6642         int r;
6643         struct msr_data msr;
6644
6645         r = vcpu_load(vcpu);
6646         if (r)
6647                 return r;
6648         msr.data = 0x0;
6649         msr.index = MSR_IA32_TSC;
6650         msr.host_initiated = true;
6651         kvm_write_tsc(vcpu, &msr);
6652         vcpu_put(vcpu);
6653
6654         return r;
6655 }
6656
6657 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6658 {
6659         int r;
6660         vcpu->arch.apf.msr_val = 0;
6661
6662         r = vcpu_load(vcpu);
6663         BUG_ON(r);
6664         kvm_mmu_unload(vcpu);
6665         vcpu_put(vcpu);
6666
6667         fx_free(vcpu);
6668         kvm_x86_ops->vcpu_free(vcpu);
6669 }
6670
6671 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6672 {
6673         atomic_set(&vcpu->arch.nmi_queued, 0);
6674         vcpu->arch.nmi_pending = 0;
6675         vcpu->arch.nmi_injected = false;
6676
6677         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6678         vcpu->arch.dr6 = DR6_FIXED_1;
6679         vcpu->arch.dr7 = DR7_FIXED_1;
6680         kvm_update_dr7(vcpu);
6681
6682         kvm_make_request(KVM_REQ_EVENT, vcpu);
6683         vcpu->arch.apf.msr_val = 0;
6684         vcpu->arch.st.msr_val = 0;
6685
6686         kvmclock_reset(vcpu);
6687
6688         kvm_clear_async_pf_completion_queue(vcpu);
6689         kvm_async_pf_hash_reset(vcpu);
6690         vcpu->arch.apf.halted = false;
6691
6692         kvm_pmu_reset(vcpu);
6693
6694         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6695         vcpu->arch.regs_avail = ~0;
6696         vcpu->arch.regs_dirty = ~0;
6697
6698         kvm_x86_ops->vcpu_reset(vcpu);
6699 }
6700
6701 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6702 {
6703         struct kvm_segment cs;
6704
6705         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6706         cs.selector = vector << 8;
6707         cs.base = vector << 12;
6708         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6709         kvm_rip_write(vcpu, 0);
6710 }
6711
6712 int kvm_arch_hardware_enable(void *garbage)
6713 {
6714         struct kvm *kvm;
6715         struct kvm_vcpu *vcpu;
6716         int i;
6717         int ret;
6718         u64 local_tsc;
6719         u64 max_tsc = 0;
6720         bool stable, backwards_tsc = false;
6721
6722         kvm_shared_msr_cpu_online();
6723         ret = kvm_x86_ops->hardware_enable(garbage);
6724         if (ret != 0)
6725                 return ret;
6726
6727         local_tsc = native_read_tsc();
6728         stable = !check_tsc_unstable();
6729         list_for_each_entry(kvm, &vm_list, vm_list) {
6730                 kvm_for_each_vcpu(i, vcpu, kvm) {
6731                         if (!stable && vcpu->cpu == smp_processor_id())
6732                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6733                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6734                                 backwards_tsc = true;
6735                                 if (vcpu->arch.last_host_tsc > max_tsc)
6736                                         max_tsc = vcpu->arch.last_host_tsc;
6737                         }
6738                 }
6739         }
6740
6741         /*
6742          * Sometimes, even reliable TSCs go backwards.  This happens on
6743          * platforms that reset TSC during suspend or hibernate actions, but
6744          * maintain synchronization.  We must compensate.  Fortunately, we can
6745          * detect that condition here, which happens early in CPU bringup,
6746          * before any KVM threads can be running.  Unfortunately, we can't
6747          * bring the TSCs fully up to date with real time, as we aren't yet far
6748          * enough into CPU bringup that we know how much real time has actually
6749          * elapsed; our helper function, get_kernel_ns() will be using boot
6750          * variables that haven't been updated yet.
6751          *
6752          * So we simply find the maximum observed TSC above, then record the
6753          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6754          * the adjustment will be applied.  Note that we accumulate
6755          * adjustments, in case multiple suspend cycles happen before some VCPU
6756          * gets a chance to run again.  In the event that no KVM threads get a
6757          * chance to run, we will miss the entire elapsed period, as we'll have
6758          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6759          * loose cycle time.  This isn't too big a deal, since the loss will be
6760          * uniform across all VCPUs (not to mention the scenario is extremely
6761          * unlikely). It is possible that a second hibernate recovery happens
6762          * much faster than a first, causing the observed TSC here to be
6763          * smaller; this would require additional padding adjustment, which is
6764          * why we set last_host_tsc to the local tsc observed here.
6765          *
6766          * N.B. - this code below runs only on platforms with reliable TSC,
6767          * as that is the only way backwards_tsc is set above.  Also note
6768          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6769          * have the same delta_cyc adjustment applied if backwards_tsc
6770          * is detected.  Note further, this adjustment is only done once,
6771          * as we reset last_host_tsc on all VCPUs to stop this from being
6772          * called multiple times (one for each physical CPU bringup).
6773          *
6774          * Platforms with unreliable TSCs don't have to deal with this, they
6775          * will be compensated by the logic in vcpu_load, which sets the TSC to
6776          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6777          * guarantee that they stay in perfect synchronization.
6778          */
6779         if (backwards_tsc) {
6780                 u64 delta_cyc = max_tsc - local_tsc;
6781                 list_for_each_entry(kvm, &vm_list, vm_list) {
6782                         kvm_for_each_vcpu(i, vcpu, kvm) {
6783                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6784                                 vcpu->arch.last_host_tsc = local_tsc;
6785                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6786                                         &vcpu->requests);
6787                         }
6788
6789                         /*
6790                          * We have to disable TSC offset matching.. if you were
6791                          * booting a VM while issuing an S4 host suspend....
6792                          * you may have some problem.  Solving this issue is
6793                          * left as an exercise to the reader.
6794                          */
6795                         kvm->arch.last_tsc_nsec = 0;
6796                         kvm->arch.last_tsc_write = 0;
6797                 }
6798
6799         }
6800         return 0;
6801 }
6802
6803 void kvm_arch_hardware_disable(void *garbage)
6804 {
6805         kvm_x86_ops->hardware_disable(garbage);
6806         drop_user_return_notifiers(garbage);
6807 }
6808
6809 int kvm_arch_hardware_setup(void)
6810 {
6811         return kvm_x86_ops->hardware_setup();
6812 }
6813
6814 void kvm_arch_hardware_unsetup(void)
6815 {
6816         kvm_x86_ops->hardware_unsetup();
6817 }
6818
6819 void kvm_arch_check_processor_compat(void *rtn)
6820 {
6821         kvm_x86_ops->check_processor_compatibility(rtn);
6822 }
6823
6824 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6825 {
6826         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6827 }
6828
6829 struct static_key kvm_no_apic_vcpu __read_mostly;
6830
6831 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6832 {
6833         struct page *page;
6834         struct kvm *kvm;
6835         int r;
6836
6837         BUG_ON(vcpu->kvm == NULL);
6838         kvm = vcpu->kvm;
6839
6840         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6841         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6842                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6843         else
6844                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6845
6846         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6847         if (!page) {
6848                 r = -ENOMEM;
6849                 goto fail;
6850         }
6851         vcpu->arch.pio_data = page_address(page);
6852
6853         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6854
6855         r = kvm_mmu_create(vcpu);
6856         if (r < 0)
6857                 goto fail_free_pio_data;
6858
6859         if (irqchip_in_kernel(kvm)) {
6860                 r = kvm_create_lapic(vcpu);
6861                 if (r < 0)
6862                         goto fail_mmu_destroy;
6863         } else
6864                 static_key_slow_inc(&kvm_no_apic_vcpu);
6865
6866         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6867                                        GFP_KERNEL);
6868         if (!vcpu->arch.mce_banks) {
6869                 r = -ENOMEM;
6870                 goto fail_free_lapic;
6871         }
6872         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6873
6874         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6875                 r = -ENOMEM;
6876                 goto fail_free_mce_banks;
6877         }
6878
6879         r = fx_init(vcpu);
6880         if (r)
6881                 goto fail_free_wbinvd_dirty_mask;
6882
6883         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6884         vcpu->arch.pv_time_enabled = false;
6885         kvm_async_pf_hash_reset(vcpu);
6886         kvm_pmu_init(vcpu);
6887
6888         return 0;
6889 fail_free_wbinvd_dirty_mask:
6890         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6891 fail_free_mce_banks:
6892         kfree(vcpu->arch.mce_banks);
6893 fail_free_lapic:
6894         kvm_free_lapic(vcpu);
6895 fail_mmu_destroy:
6896         kvm_mmu_destroy(vcpu);
6897 fail_free_pio_data:
6898         free_page((unsigned long)vcpu->arch.pio_data);
6899 fail:
6900         return r;
6901 }
6902
6903 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6904 {
6905         int idx;
6906
6907         kvm_pmu_destroy(vcpu);
6908         kfree(vcpu->arch.mce_banks);
6909         kvm_free_lapic(vcpu);
6910         idx = srcu_read_lock(&vcpu->kvm->srcu);
6911         kvm_mmu_destroy(vcpu);
6912         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6913         free_page((unsigned long)vcpu->arch.pio_data);
6914         if (!irqchip_in_kernel(vcpu->kvm))
6915                 static_key_slow_dec(&kvm_no_apic_vcpu);
6916 }
6917
6918 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6919 {
6920         if (type)
6921                 return -EINVAL;
6922
6923         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6924         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6925         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6926
6927         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6928         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6929         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6930         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6931                 &kvm->arch.irq_sources_bitmap);
6932
6933         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6934         mutex_init(&kvm->arch.apic_map_lock);
6935         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6936
6937         pvclock_update_vm_gtod_copy(kvm);
6938
6939         return 0;
6940 }
6941
6942 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6943 {
6944         int r;
6945         r = vcpu_load(vcpu);
6946         BUG_ON(r);
6947         kvm_mmu_unload(vcpu);
6948         vcpu_put(vcpu);
6949 }
6950
6951 static void kvm_free_vcpus(struct kvm *kvm)
6952 {
6953         unsigned int i;
6954         struct kvm_vcpu *vcpu;
6955
6956         /*
6957          * Unpin any mmu pages first.
6958          */
6959         kvm_for_each_vcpu(i, vcpu, kvm) {
6960                 kvm_clear_async_pf_completion_queue(vcpu);
6961                 kvm_unload_vcpu_mmu(vcpu);
6962         }
6963         kvm_for_each_vcpu(i, vcpu, kvm)
6964                 kvm_arch_vcpu_free(vcpu);
6965
6966         mutex_lock(&kvm->lock);
6967         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6968                 kvm->vcpus[i] = NULL;
6969
6970         atomic_set(&kvm->online_vcpus, 0);
6971         mutex_unlock(&kvm->lock);
6972 }
6973
6974 void kvm_arch_sync_events(struct kvm *kvm)
6975 {
6976         kvm_free_all_assigned_devices(kvm);
6977         kvm_free_pit(kvm);
6978 }
6979
6980 void kvm_arch_destroy_vm(struct kvm *kvm)
6981 {
6982         if (current->mm == kvm->mm) {
6983                 /*
6984                  * Free memory regions allocated on behalf of userspace,
6985                  * unless the the memory map has changed due to process exit
6986                  * or fd copying.
6987                  */
6988                 struct kvm_userspace_memory_region mem;
6989                 memset(&mem, 0, sizeof(mem));
6990                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6991                 kvm_set_memory_region(kvm, &mem);
6992
6993                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6994                 kvm_set_memory_region(kvm, &mem);
6995
6996                 mem.slot = TSS_PRIVATE_MEMSLOT;
6997                 kvm_set_memory_region(kvm, &mem);
6998         }
6999         kvm_iommu_unmap_guest(kvm);
7000         kfree(kvm->arch.vpic);
7001         kfree(kvm->arch.vioapic);
7002         kvm_free_vcpus(kvm);
7003         if (kvm->arch.apic_access_page)
7004                 put_page(kvm->arch.apic_access_page);
7005         if (kvm->arch.ept_identity_pagetable)
7006                 put_page(kvm->arch.ept_identity_pagetable);
7007         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7008 }
7009
7010 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
7011                            struct kvm_memory_slot *dont)
7012 {
7013         int i;
7014
7015         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7016                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7017                         kvm_kvfree(free->arch.rmap[i]);
7018                         free->arch.rmap[i] = NULL;
7019                 }
7020                 if (i == 0)
7021                         continue;
7022
7023                 if (!dont || free->arch.lpage_info[i - 1] !=
7024                              dont->arch.lpage_info[i - 1]) {
7025                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7026                         free->arch.lpage_info[i - 1] = NULL;
7027                 }
7028         }
7029 }
7030
7031 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
7032 {
7033         int i;
7034
7035         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7036                 unsigned long ugfn;
7037                 int lpages;
7038                 int level = i + 1;
7039
7040                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7041                                       slot->base_gfn, level) + 1;
7042
7043                 slot->arch.rmap[i] =
7044                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7045                 if (!slot->arch.rmap[i])
7046                         goto out_free;
7047                 if (i == 0)
7048                         continue;
7049
7050                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7051                                         sizeof(*slot->arch.lpage_info[i - 1]));
7052                 if (!slot->arch.lpage_info[i - 1])
7053                         goto out_free;
7054
7055                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7056                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7057                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7058                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7059                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7060                 /*
7061                  * If the gfn and userspace address are not aligned wrt each
7062                  * other, or if explicitly asked to, disable large page
7063                  * support for this slot
7064                  */
7065                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7066                     !kvm_largepages_enabled()) {
7067                         unsigned long j;
7068
7069                         for (j = 0; j < lpages; ++j)
7070                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7071                 }
7072         }
7073
7074         return 0;
7075
7076 out_free:
7077         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7078                 kvm_kvfree(slot->arch.rmap[i]);
7079                 slot->arch.rmap[i] = NULL;
7080                 if (i == 0)
7081                         continue;
7082
7083                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7084                 slot->arch.lpage_info[i - 1] = NULL;
7085         }
7086         return -ENOMEM;
7087 }
7088
7089 void kvm_arch_memslots_updated(struct kvm *kvm)
7090 {
7091         /*
7092          * memslots->generation has been incremented.
7093          * mmio generation may have reached its maximum value.
7094          */
7095         kvm_mmu_invalidate_mmio_sptes(kvm);
7096 }
7097
7098 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7099                                 struct kvm_memory_slot *memslot,
7100                                 struct kvm_userspace_memory_region *mem,
7101                                 enum kvm_mr_change change)
7102 {
7103         /*
7104          * Only private memory slots need to be mapped here since
7105          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7106          */
7107         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7108                 unsigned long userspace_addr;
7109
7110                 /*
7111                  * MAP_SHARED to prevent internal slot pages from being moved
7112                  * by fork()/COW.
7113                  */
7114                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7115                                          PROT_READ | PROT_WRITE,
7116                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7117
7118                 if (IS_ERR((void *)userspace_addr))
7119                         return PTR_ERR((void *)userspace_addr);
7120
7121                 memslot->userspace_addr = userspace_addr;
7122         }
7123
7124         return 0;
7125 }
7126
7127 void kvm_arch_commit_memory_region(struct kvm *kvm,
7128                                 struct kvm_userspace_memory_region *mem,
7129                                 const struct kvm_memory_slot *old,
7130                                 enum kvm_mr_change change)
7131 {
7132
7133         int nr_mmu_pages = 0;
7134
7135         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7136                 int ret;
7137
7138                 ret = vm_munmap(old->userspace_addr,
7139                                 old->npages * PAGE_SIZE);
7140                 if (ret < 0)
7141                         printk(KERN_WARNING
7142                                "kvm_vm_ioctl_set_memory_region: "
7143                                "failed to munmap memory\n");
7144         }
7145
7146         if (!kvm->arch.n_requested_mmu_pages)
7147                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7148
7149         if (nr_mmu_pages)
7150                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7151         /*
7152          * Write protect all pages for dirty logging.
7153          * Existing largepage mappings are destroyed here and new ones will
7154          * not be created until the end of the logging.
7155          */
7156         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7157                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7158 }
7159
7160 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7161 {
7162         kvm_mmu_invalidate_zap_all_pages(kvm);
7163 }
7164
7165 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7166                                    struct kvm_memory_slot *slot)
7167 {
7168         kvm_mmu_invalidate_zap_all_pages(kvm);
7169 }
7170
7171 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7172 {
7173         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7174                 !vcpu->arch.apf.halted)
7175                 || !list_empty_careful(&vcpu->async_pf.done)
7176                 || kvm_apic_has_events(vcpu)
7177                 || atomic_read(&vcpu->arch.nmi_queued) ||
7178                 (kvm_arch_interrupt_allowed(vcpu) &&
7179                  kvm_cpu_has_interrupt(vcpu));
7180 }
7181
7182 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7183 {
7184         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7185 }
7186
7187 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7188 {
7189         return kvm_x86_ops->interrupt_allowed(vcpu);
7190 }
7191
7192 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7193 {
7194         unsigned long current_rip = kvm_rip_read(vcpu) +
7195                 get_segment_base(vcpu, VCPU_SREG_CS);
7196
7197         return current_rip == linear_rip;
7198 }
7199 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7200
7201 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7202 {
7203         unsigned long rflags;
7204
7205         rflags = kvm_x86_ops->get_rflags(vcpu);
7206         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7207                 rflags &= ~X86_EFLAGS_TF;
7208         return rflags;
7209 }
7210 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7211
7212 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7213 {
7214         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7215             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7216                 rflags |= X86_EFLAGS_TF;
7217         kvm_x86_ops->set_rflags(vcpu, rflags);
7218         kvm_make_request(KVM_REQ_EVENT, vcpu);
7219 }
7220 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7221
7222 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7223 {
7224         int r;
7225
7226         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7227               is_error_page(work->page))
7228                 return;
7229
7230         r = kvm_mmu_reload(vcpu);
7231         if (unlikely(r))
7232                 return;
7233
7234         if (!vcpu->arch.mmu.direct_map &&
7235               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7236                 return;
7237
7238         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7239 }
7240
7241 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7242 {
7243         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7244 }
7245
7246 static inline u32 kvm_async_pf_next_probe(u32 key)
7247 {
7248         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7249 }
7250
7251 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7252 {
7253         u32 key = kvm_async_pf_hash_fn(gfn);
7254
7255         while (vcpu->arch.apf.gfns[key] != ~0)
7256                 key = kvm_async_pf_next_probe(key);
7257
7258         vcpu->arch.apf.gfns[key] = gfn;
7259 }
7260
7261 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7262 {
7263         int i;
7264         u32 key = kvm_async_pf_hash_fn(gfn);
7265
7266         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7267                      (vcpu->arch.apf.gfns[key] != gfn &&
7268                       vcpu->arch.apf.gfns[key] != ~0); i++)
7269                 key = kvm_async_pf_next_probe(key);
7270
7271         return key;
7272 }
7273
7274 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7275 {
7276         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7277 }
7278
7279 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7280 {
7281         u32 i, j, k;
7282
7283         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7284         while (true) {
7285                 vcpu->arch.apf.gfns[i] = ~0;
7286                 do {
7287                         j = kvm_async_pf_next_probe(j);
7288                         if (vcpu->arch.apf.gfns[j] == ~0)
7289                                 return;
7290                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7291                         /*
7292                          * k lies cyclically in ]i,j]
7293                          * |    i.k.j |
7294                          * |....j i.k.| or  |.k..j i...|
7295                          */
7296                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7297                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7298                 i = j;
7299         }
7300 }
7301
7302 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7303 {
7304
7305         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7306                                       sizeof(val));
7307 }
7308
7309 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7310                                      struct kvm_async_pf *work)
7311 {
7312         struct x86_exception fault;
7313
7314         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7315         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7316
7317         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7318             (vcpu->arch.apf.send_user_only &&
7319              kvm_x86_ops->get_cpl(vcpu) == 0))
7320                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7321         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7322                 fault.vector = PF_VECTOR;
7323                 fault.error_code_valid = true;
7324                 fault.error_code = 0;
7325                 fault.nested_page_fault = false;
7326                 fault.address = work->arch.token;
7327                 kvm_inject_page_fault(vcpu, &fault);
7328         }
7329 }
7330
7331 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7332                                  struct kvm_async_pf *work)
7333 {
7334         struct x86_exception fault;
7335
7336         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7337         if (is_error_page(work->page))
7338                 work->arch.token = ~0; /* broadcast wakeup */
7339         else
7340                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7341
7342         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7343             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7344                 fault.vector = PF_VECTOR;
7345                 fault.error_code_valid = true;
7346                 fault.error_code = 0;
7347                 fault.nested_page_fault = false;
7348                 fault.address = work->arch.token;
7349                 kvm_inject_page_fault(vcpu, &fault);
7350         }
7351         vcpu->arch.apf.halted = false;
7352         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7353 }
7354
7355 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7356 {
7357         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7358                 return true;
7359         else
7360                 return !kvm_event_needs_reinjection(vcpu) &&
7361                         kvm_x86_ops->interrupt_allowed(vcpu);
7362 }
7363
7364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7366 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);